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Abstract 

 

Variability-Aware Compact Modeling of Nano-scale Technologies  
with Customized Test Structure Designs 

 
by 

Ying Qiao 

 
Doctor of Philosophy in Electrical Engineering and Computer Sciences 

 
University of California, Berkeley 

Professor Costas J. Spanos, Chair 

 

 

It is widely recognized that in nano-scale CMOS technology variation in 
the manufacturing process has emerged as a fundamental challenge to IC design. 
While foundries are working hard to mitigate process variability, the design 
houses are asking for accurate and appropriate models to handle statistical circuit 
performance evaluation. To accurately represent the process and device variability, 
it is essential to incorporate the variability during the extraction and calibration 
phase of compact transistor models. In addition, these compact transistor models 
require customized test structure designs as well as proper statistical 
characterization procedures. Conventional statistical compact model 
characterization methodologies require special single transistor, direct-access test 
arrays, or virtual measurements from physical simulation data; moreover, these 
models do not include rigorous statistical model parameter selection criteria. 

Our proposed variability-aware compact transistor models can enable 
statistically optimized designs by capturing device variations in a concise, yet 
physically accurate way, and they are relatively easy to integrate with existing 
CAD tool flow. In this work, we have electrical measurements from carefully 
designed SRAM array test structures with bit transistor access, fabricated using a 
collaborating foundry’s 28nm FDSOI technology. Stepwise parameter selection is 
combined with sequential extractions of statistical compact model parameters 
upon foundry-provided nominal compact model cards. These nominal models are 
trusted as they have been tested extensively and used during the test structure 
design. 
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Our characterization methodology selects an optimal statistical model 
parameter set that can be reliability extracted with the given measurement data. 
With further data from imaging ROIC test array, we are able to explore the linear 
spatial propagation of variance method to extract the variability in the compact 
model parameters with hierarchical models. 

We have also built a customized Monte Carlo (MC) simulation platform to 
utilize these compact transistor models in the statistical IC design flow. Different 
statistical model parameters can be specified prior to the MC simulation within 
the scripted wrapper of standard SPICE-based simulators. We further exploit the 
statistical structure of the extracted parameters in order to capture the nonlinear 
correlations and the non-Gaussian distributions through mixture of Gaussian 
distributions. The goal is to demonstrate that significant non-normality in the 
measured data can be captured by our simplified model. Such non-normality is 
often evident at the tails of the performance distributions, and capturing that is 
necessary for the statistical modeling of inherently high-yielding IC designs. 
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Chapter 1 
 
Introduction 

 

1.1 Motivation: Process Variation 
 

In 1965, Gordon Moore observed that the number of transistors on a single 
chip doubled every 18 to 24 months [1-1]; this is an observation now widely 
known as Moore's Law. The perpetual doubling of transistor density has served as 
the driving force of an astonishing increase in the functionality and computational 
capability of electronic devices since then hitherto. Between generations, 
minimum transistor dimensions undergo scaling by a factor of 0.7, enabling the 
integration of more transistors with less power dissipation. In recent years, 
however, several bottlenecks have appeared as we continue to scale down beyond 
sub 28nm technologies. One of the key issues related to deeply scaled 
semiconductor manufacturing is the yield, defined as the proportion of 
manufactured circuits that are functional and meet their performance requirements 
[1-2]. The overall yield loss falls into two major categories: catastrophic yield loss 
(due to physical and structural defects, e.g., open, short, etc.) and parametric yield 
loss (due to parametric variations in process parameters, e.g., threshold voltage, 
stress, etc.). A large portion of yield loss in circuits now occurs due to process 
variations, which can be defined as the deviations in the manufactured circuit in 
comparison to its design [1-3]. 
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With decreasing transistors sizes and increasing transistor densities, the 
effect of process and manufacturing variabilities are more significant; meeting 
performance and yield specifications is increasingly challenging. For example, 
Figure 1-1 shows the general trend in the ratio between the corresponding 3σ 
variation and mean value for some key technology devices and wire parameters 
from 250nm to 45nm. Over the time of interest, we see that the proportion of Leff 
variation increases from 30% to 45%. Wire geometry parameters - width W, 
height H and resistivity ρ - also undergo significant increases. Other parameters 
such as the threshold voltage Vth and oxide thickness Tox increase at a lower rate. 

 
 

 

Figure 1-1 Increase of process variability in conventional scaled MOS technology [1-2] 

 
 

Increasing process variations introduce significant uncertainty for both 
circuit performance and leakage power. It has been shown in that even for the 
180nm technology, process variation can lead to 1.3X variation in frequency and 
20X variation in leakage power [1-4]. In future technology generations, such an 
impact will become more magnified because the technology is approaching a 
fundamental randomness regime in the behavior of silicon structures. In recent 
years, Design for Manufacturability (DFM) methods, including attempts to reduce 
the systematic sources of variability, statistical modeling, extraction, and 
optimization for VLSI circuits, have been developed to alleviate the variation 
effects. For DFM to be meaningful, however, variability needs to be characterized 
empirically for a specific semiconductor process to obtain a quantitative 
understanding of variability mechanisms. Such “statistical metrology" methods 
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include measurement techniques for the characterization of variabilities, and 
statistical modeling and extraction methods for properly interpreting measurement 
results. 

 

1.2 Background 
 

Background knowledge about advanced transistor structures, sources of 
variability and test structures for variability characterization is necessary to 
understand the motivation and context behind the following chapters in this work.  

 

1.2.1 Advanced Transistor Structures 
 

To achieve a higher transistor density on a chip, the dimensions of a 
transistor must be scaled. Constant field scaling - where device dimension, doping 
density, and supply voltages are scaled simultaneously - has worked for a while, 
but it has started to slow down dramatically when the minimum half-pitch reached 
90nm [1-5]. Figure 1-2 shows a series of transmission electron microscopy (TEM) 
images of classical planar bulk MOSFET from the 65nm technology node down 
to the 32nm technology node [1-6]. Here, gate leakage due to the thin layer of 
gate oxide (SiO2) can be mitigated by using a high-permittivity (high-k) dielectric 
and metal gate (HKMG) stack [1-8]. As the gate length of a transistor is made 
smaller, non-ideal effects, which are negligible at long gate lengths, can degrade 
transistor performance. These effects are usually referred to as short-channel 
effects (SCEs) [1-9].  
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Figure 1-2 TEM cross-sections of MOSFETs at various technology nodes, with 
approximately the same scale [1-7] 

 
 

Short-channel effects can become very difficult to suppress in a planar 
bulk transistor for gate lengths below 25nm. Therefore, to allow further 
miniaturization, advanced transistor structures employing thin-body regions such 
as the fully depleted silicon-on-insulator (FD-SOI) [1-10] and the three-
dimensional FinFET have been developed for future generations of CMOS 
technology [1-11]. 

A FD-SOI MOSFET is a planar structure that is fabricated in a thin Si 
layer on top of a buried oxide (BOX) layer. An illustration of the FD-SOI 
MOSFET structure is shown in Figure 1-3(a) and a TEM cross-section is shown 
in Figure 1-3(b). Electrostatic gate control in the FD-SOI MOSFET is superior to 
that in a planar bulk MOFSET due to its thin silicon body, since OFF-state 
leakage current paths far away from the gate are eliminated [1-13]. Because of the 
minimal differences between FD-SOI and planar bulk MOSFETs, few changes 
are needed to migrate circuit designs from bulk to FD-SOI. 
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Figure 1-3 (a) 3D view of a planar FD-SOI transistor [1-12];  
(b) A TEM cross-section of N-channel FD-SOI transistors [1-13]. 

 
 

Another variation of a thin-body MOSFET is the vertical FinFET, where 
the body has a fin-like shape and a gate electrode straddles it, as depicted in 
Figure 1-4. Due to gating from all three sides of the channel, SCE can be well 
suppressed if the fin width is less than half the gate length (!!" !~!!!/2). 
Experimental results have demonstrated FinFET transfer characteristics with low 
sub-threshold swing and low drain-induced barrier lowering (DIBL) [1-10]. 
Recently, the FinFET has supplanted the planar bulk MOSFET in the most 
advanced microprocessor chips at leading semiconductor foundries. 

 
 

 

Figure 1-4 (a) 3D view o f a vertical FinFET transistor;  
(b) TEM image of an array of FinFET transistors showing the fin and gate features [1-14].  
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1.2.2 Sources of Variation 
 

Sources of transistor variation caused by an imperfect manufacturing 
process are often categorized as either systematic or random. Systematic (or 
global) variations, dependent on the layout of the transistors and its surroundings, 
affect all devices on the same die, wafer, or lot; this causes devices of different 
physical hierarchies or locations to have different drive current versus gate 
voltage characteristics. Random (or local) variation, on the other hand, can result 
in differences between identically drawn transistors within the same layout 
environment, reducing matching in analog differential pairs or proportionally 
sized devices in SRAM cells. As the critical dimension decreases with technology 
advancements, the contributions of different physical sources of variation such as 
random dopant fluctuations (RDF) or line edge roughness (LER) change [1-15]. 

RDF is caused by variations in the number and placement of dopant atoms 
in the channel region of the transistor. The small number of dopant atoms makes 
the threshold voltage susceptible to even the slightest amount of dopant variation. 
Reducing device dimensions and increasing doping density will result in a larger 
Vth variation. Conversely, by reducing the effective thickness of the gate oxide 
(e.g. by adopting a high-k dielectric), !!!!  can be reduced. A more detailed 
analysis of Vth variations due to RDF can be performed through 3D device 
simulations, which randomly place dopant atoms within the transistor [1-16]. 

The gate length, aka critical dimension (CD) of the transistor becomes so 
small that a slight deviation from the nominal value can have a large effect on 
electrical performance. LER, one of the main contributors to random variation in 
CD, is caused by the granularity of the photoresist material (used to define the 
pattern of the gate electrodes) at the molecular level [1-17]. As the CD decreases, 
LER does not decrease commensurately, which can result in large Vth variations 
[1-18]. LER can affect both the gate length and channel width of a transistor as 
depicted in Figure 1-5(a). With a more advanced structure like the FinFET, fin 
width variations caused by LER is also becoming a major concern. 
Characterization of LER can be done efficiently by analyzing the top view of the 
scanning electron microscope (SEM) image of the feature as in Figure 1-5(b) [1-
19].  
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Figure 1-5 (a) Top view showing how LER can affect the gate length and channel width of a 
transistor; (b) SEM image of a photoresist line with LER [1-19]. 

 
 

When we analyze the scaling factors of the recent technology nodes, we 
come to the conclusion that the electrical characterization of these really 
challenging technologies becomes an absolute must. However, the extremely 
small process windows, and the 3-dimensional nature of the FinFET devices and 
the complicated interconnect schemes, make this characterization very difficult 
[1-20]. As FinFETs emerging to be the solution for short channel effects, fin 
shape significantly impacts transistor leakage in bulk tri-gate nFinFETs with thin 
fins when the fin body doping profile is optimized to minimize leakage [1-21]. 
With appropriate doping optimization, a 22-nm nFinFET with triangular fin cross 
section results in an ineligible reduction in leakage current over a rectangular fin 
with the same base fin width [1-21]. 

 
 

  



CHAPTER 1. Introduction  8 

 

 
 

1.2.3 Test Structures for Variation Characterization 
 
To improve our understanding of process variation and ultimately reduce 

this variation to improve yield, process variation needs to be thoroughly 
characterized with the help of on-chip test structures. The test structures are 
devices or circuits that are added onto a wafer to help control, understand, and 
model the behavior of MOSFETs. Per the objective of measurements, test 
structures fall into two classes: (a) test structures for process control, and (b) test 
structures for modeling [1-2]. 

Test structures for process control are used for monitoring and controlling 
the fabrication line. These are typically small devices or circuits placed in the 
scribe line on all wafers and therefore can model the history of the line. Monitors 
often consist of simple test structures that allow the measurements of current-
voltage (I~V) characteristics of MOSFETs [1-22], of the resistivity of wires and 
vias [1-23], and of interconnect capacitance [1-24]. 

It is important to extract physically meaningful model parameters, as they 
help to identify possible root causes for process failures, and help drive 
optimization of the process in early stage process development. The difficulty of 
this problem comes from the fact that measurements are collected from a limited 
number of early prototype devices rather than from a full suite of designed test 
structures. Test structures for modeling are used to generate the fundamental data 
needed to create models of the fabricated components. These test structures are 
complex in nature and are typically designed to be sensitive to a specific physical 
parameter. Therefore, a much richer variety of test structures is needed for 
modeling purposes.  

Prior comprehensive test structures of variability studies have previously 
been published for 45nm [1-25] CMOS, but only limited variability information is 
available for technology nodes at 28nm and below. Moreover, prior experimental 
work has focused on addressable device arrays with analog switches that require 
long design times and cumbersome testing setups with separate bench supplies for 
each device terminal [1-26]. To address this issue, some prior work [1-27] has 
demonstrated custom technology characterization chips with fully digital 
interfaces, including a complete current vs. voltage (I-V) characterization chip 
with an integrated digital to analog converter (DAC) and analog to digital 
converter (ADC).  
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1.3 Thesis Organization 

In this thesis we propose accurate and efficient statistical techniques to 
solve the following problem in DFM: given hands-on knowledge of the test chip 
design and the measurements of one or several functions (e.g., transistor I-V 
measurements), we need to find the value of transistor compact model parameters 
(such as parameters sensitive to process variation) to predict circuit performance 
and to eventually improve product yield.  

In Chapter 2, the design of a test chip to study the impact of transistor 
variation in 28nm planar bulk and FD-SOI MOSFETs is discussed. A device 
characterization array including transistors in mismatch pairs and different layout 
proximities are used to study the impact of random and systematic variation 
respectively. Measurement setup is documented in detail, and transistor variation 
observation and characterization limitations are discussed. 

In Chapter 3, we establish the background for statistical compact 
variability modeling. We propose a general parameter extraction method to enable 
the extraction of an entire set of MOSFET I-V model parameters, even in the face 
of few or missing I-V measurements in the data set. Our improved method for 
modeling the variability of transistors with compact models works seamlessly 
with the widely-used PSP model for efficient statistical circuit performance 
estimation.  

In Chapter 4, we apply the statistical compact model extraction 
methodology to the actual silicon data collected from the SRAM bit cells on the 
28nm test chip. For the foundry-wrapped PSP model, stepwise parameter 
selection is applied to find an optimal set of model parameters, from which the 
measurement data is characterized to create a custom statistical compact model. 
These statistical compact models provide better accuracies in predicting bit-cell 
static performance variations than conventional methods. 

Chapter 5 demonstrates the full statistical device characterization and 
circuit performance modeling on the imaging ROIC test array measurement data. 
With a larger dataset including chip spatial info, we can apply the linear spatial 
backward propagation of variance method for compact model parameters. 
Furthermore, a mixture of Gaussian model can be applied onto non-Gaussian 
correlated model parameters for better circuit performance statistical modeling. 
Results are shown in detail in this chapter. 

Chapter 6 concludes the thesis. We summarize the key contributions of the 
thesis. With challenges in the analysis of process variation ahead, areas for future 
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research are suggested, including variation prediction within a process 
development cycle. 
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Chapter 2 
 
Variability Characterization Test 
Structures 

 

2.1 Introduction 
 

To satisfy Moore’s Law, transistors are miniaturized in each successive 
technology node so that more of them can be put onto a chip [2-1]. However, such 
aggressive scaling can also have an adverse effect on the electrostatic integrity of 
a transistor, causing large off-state current and worsening short-channel effects. 
One of the root causes of poor electrostatic control is relatively weak capacitive 
gate coupling to the electric potential in the silicon body region that is further 
from the gate-oxide interface [2-2]. To tackle this challenge head on, one can 
think of removing all paths far away from the gate, which is precisely the idea 
behind the thin-body (fully depleted) MOSFET [2-3]. If the thickness of the 
silicon body is made much thinner than the gate length, short-channel effects are 
dramatically reduced. The two most common implementations of a thin-body 
MOSFET today are the vertical FinFET or planar FDSOI (Fully-Depleted Silicon-
On-Insulator) MOSFET [2-4]. 

The FinFET is a double-gate MOSFET structure, which is more scalable 
compared to the FDSOI MOSFET due to superior gate control. However, it 
requires a high aspect ratio Si fin geometry, which presents a major challenge 
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from a fabrication standpoint. Additionally, since the drive strength of a FinFET 
is adjusted by changing the number of fins, circuit designers must cope with 
discrete adjustments in the drive current for FinFETs [2-5]. On the other hand, the 
FD-SOI MOSFET structure, which also uses a thin body like the FinFET, offers 
improved electrostatic control over the planar bulk MOSFET without adding 
significant fabrication challenges or imposing new restrictions on circuit design. 
Instead of a bulk Si wafer, the starting substrate is a Silicon-On-Insulator (SOI) 
wafer [2-6]. The device fabrication process steps are very similar and less 
complicated compared to those of a standard planar bulk Si device fabrication 
process. From a circuit designer’s standpoint, the FDSOI design kit is also easier 
to adapt from that of bulk Si technology: device widths can be adjusted to tune 
transistor drive strength, and back-biasing can be used to dynamically adjust 
transistor threshold voltage [2-7]. 

Given that FDSOI technology is a promising candidate to replace planar 
bulk Si technology, variability analysis of FDSOI MOSFETs is necessary. This 
can be achieved by implementing a device characterization array in a test chip. 

 

2.2 Transistor Characterization Array Design 
 

To capture and understand the impact of different variability sources on 
device performance, transistors of different sizes and layout geometries are 
included in the transistor characterization array. Using built-in circuitry on the 
chip, each individual transistor can be electrically accessed and characterized 
through the input/output pads. In general, the variability test structures can be 
classified as random or systemic variability test structures. Both NMOS and 
PMOS transistors of different threshold values are included. Test chips were 
fabricated by STMicroelectronics using a 28nm high-k/metal-gate (HKMG) 
process, on both bulk-Si and SOI substrates to allow for a direct comparison of 
planar bulk vs. FDSOI technologies. The layout of the transistor characterization 
block is shown in Figure 2-1. 
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  (a)

(b)  

Figure 2-1 (a) Layout of transistors characterization block and DUT  
(b) Photo of a die under test with probe tips landed on top;  

magnified photo of the die showing the macro on the bottom row. 

  



CHAPTER 2. Variability Characterization Test Structures  17 

 
 

2.2.1 Random Variability Test Structures 
 

Random variability sources such as random dopant fluctuations (RDF), 
gate work function variation (WFV), and line-edge roughness (LER) can 
contribute to variations in Vth, IOFF, and ION between devices with identical layouts. 
To isolate the impact of random variability from that of systematic variability, 
transistor pairs (i.e. mismatch test structures) are often used. These test transistors 
are identically drawn structures that are placed near one another on the chip. If 
there were a systematic source of variability, its impact would be the same for 
both devices. Thus, when the difference (as opposed to the absolute value) of the 
performance parameters between the two transistors in a pair is analyzed, the 
impact due to systematic variability will cancel out, i.e. the difference will 
entirely be caused by random variability.  To ensure that the transistors in a pair 
are identical in every possible aspect, it is important to make sure that the 
surrounding area is the same for both transistors. Figure 2-2 shows a Device-
Under-Test (DUT) surrounded by dummy active regions. The other corresponding 
DUT in the pair is also drawn in a similar manner. Such a layout will help to 
eliminate variability that might arise from layout-dependent proximity effects 
such as mechanical stress from Shallow Trench Isolation (STI) or near-by active 
devices [2-8]. 

 

 

Figure 2-2 Layout showing DUT surrounded by dummy active regions  
with equal distance to eliminate any layout-dependent proximity effects 
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It has been theoretically derived and experimentally validated that 
variability in MOSFET threshold voltage increases as the transistor channel 
dimensions are made smaller. Specifically, the variation of MOSFET threshold 
voltages is proportional to transistor channel dimensions [2-9]. Thus, devices with 
different channel area values are included in the array to assess the significance of 
this trend. To further examine the sensitivity of variability sources to various 
transistor design parameters (e.g. channel width and gate length), different 
combinations of W and L corresponding to a fixed channel area are also included. 
This allows us to decouple different variation sources affecting the transistor 
threshold voltage. 

For System-On-Chip (SOC) products, multiple values of Vth must be 
available to the designers [1-1]. Therefore, it is also important to investigate how 
variability will affect transistors of different nominal Vth values. To this end, three 
different Vth levels (Low, Regular, and High Vth) are included for each value of 
width/length combinations. 

 

2.2.2 Systematic Variability Test Structures 
 

In addition to transistor structures used to study random variability, 
several device structures are included to assist with the study of systematic 
variability associated with layout proximity effects, including mechanical stress 
induced by STI, Length of Diffusion (LOD), well doping proximity, and 
segmented channel design. The design and layout of these structures are 
summarized in the following sections. 

 

2.2.2.1 Shallow Trench Isolation (STI) Effect 
 

Mechanical stress induced by STI can affect carrier mobility and thereby 
transistor on-state drive currents [2-11]. To quantify the impact of STI-induced 
stress from different directions, dummy active regions are drawn at different 
distances (λ) away from the device under test. Similarly, the effect of STI-induced 
stress across the channel (along the width direction) can also be captured by 
placing the dummy active regions at the top and bottom of a DUT at different 
distances as depicted in Figure 2-3. 



CHAPTER 2. Variability Characterization Test Structures  19 

 
 

 
(a) 

 

 
(b) 

 
Figure 2-3 (a) Test structures to monitor the effect of STI-induced stress along the channel 
direction (lateral) (b) Test structures to monitor the effect of STI-induced stress across the 

channel direction (vertical) 

 

 

2.2.2.2 Length of Diffusion Effect 
 

The stress profile within the channel region of the DUT also depends on 
the length of the diffusion (LOD) or source/drain regions of the transistor. To 
study the impact of LOD on device performances, transistors with the same gate 
length Lg and channel width W are drawn with different diffusion lengths at λ, 3λ, 
4λ, and 5λ for both the source and the drain sides, as shown in Figure 2-4(a). 
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In addition to devices having equal source/drain diffusion lengths, the 
LOD of a DUT can also be asymmetric (e.g. source-side LOD is longer than 
drain-side LOD), as illustrated in Figure 2-4(b). This test structure can be used to 
decouple the impacts of source-side LOD vs. drain-side LOD, permitting a close 
examination of parameters that are sensitive to S/D asymmetry such as VTSAT and 
source-injection velocity. 

 

 

(a) 

 

(b) 

Figure 2-4 (a) Test structures used to study the impact of length of diffusion on transistor 
performance (b) Test structures with asymmetric source/drain diffusion lengths  
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2.2.2.3 Well Proximity Effect 
 

In a planar bulk CMOS technology, NMOS and PMOS transistors are 
placed inside P-well and N-well regions, respectively [2-12][2-13]. In FD-SOI 
CMOS technology, the doping type underneath the isolating buried oxide (BOX) 
layer can be adjusted to achieve the desired Vth specification, for both NMOS and 
PMOS transistors. Due to lateral straggle of implanted dopant atoms, the doping 
concentration within the well region of the DUT can be affected if it is situated 
close to the boundary between the N-well and the P-well. To investigate this 
effect, test structures shown in Figure 2-5 are used, wherein the DUTs are placed 
at different distances away from the boundary of the well doping, laterally as well 
as vertically. In order to isolate the well proximity effect from a particular 
direction, transistors are placed at least 3µm away from that particular well 
boundary.  

 

 

        
(a)      (b) 

 
Figure 2-5 (a) Test structures used to study the impact of proximity to the bottom N-well (b) 
Test structures to study the impact of proximity to the side N-well, away from bottom N-well 
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2.2.2.4 Segmented Channel Transistors 
 

Instead of a transistor having a continuous width, the channel region can 
be segmented into multiple stripes of equal width as shown in Figure 2-6. From 
an electrostatic control standpoint, a segmented channel transistor can offer 
improved short-channel effect due to the slight wrap-around of the gate over the 
channel and the gate fringing electric field coupling to the channel region through 
the STI [2-14], if the stripe width is comparable to the channel length. Thus, even 
though the segmented channel design takes up more layout area as compared to a 
conventional channel design, the improvement in transistor performance can 
provide a net benefit when normalized to the same layout area. To observe the 
greatest benefit of the segmented channel design, the minimum drawn device 
width is used for each channel segment. 

 

 
 

Figure 2-6 Test structures comparing continuous vs. segmented channel designs 
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2.3 Transistor Array Test Setup and Measurement 

 
 

2.3.1 Test Circuitry 
 

Transistor characterization arrays allow for many test devices of different 
designs to be included on a single die. Usually, these test devices are not directly 
probed due to the limited die area. Therefore, electrical access to individual 
devices in the array is made through the I/O pads of the test chip. Since the 
number of I/O pads is limited and must be sufficiently allocated for all the signals 
in different test blocks, a decoder circuit is used to share some common digital 
signals such as scan-in (SIN), scan-out (SOUT), and scan-clock (SCLK). The 
decoder is controlled by a 2-bit signal used to select one of the 4 modules within 
the array, and only one of the modules is active at any given time. Additionally, 
an enable signal (EN) for transistor characterization is also included. The floor 
plan of the characterization array is shown in Figure 2-7. There are 6 columns 
each in the PMOS and NMOS modules: mismatch pair transistors of RVT, LVT 
and HVT flavors each take up two columns. The digital signals and the selection 
circuitry are summarized in Figure 2-8. 
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Figure 2-7 Floor plan for the transistor characterization array  
consisting of selection circuitry and DUTs 
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Figure 2-8 Top-level schematic showing selection circuitry and analog signals 

 

 

Transistors within an array are accessed in a serial manner, in a row-wise 
fashion using a scan-chain circuit. A simple scan-chain circuit comprised of D 
flip-flops (D-FF) chained together can be used to activate/deactivate the row 
under test. A column can be selected through a column multiplexer that has a 3-
bit control signal, allowing one out of the six columns to be selected at a given 
time. The source and drain of devices in the same column share electrical lines. 
With a combination of row select (through scan-chain clocking) and column 
select (through multiplexer), each individual transistor inside the array can be 
accessed, allowing full control over the biasing of the source, drain, and gate 
terminals through the I/O pads. 
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Figure 2-9 Circuit schematic showing access transistors for row selection  
and Kelvin Force/Sense configuration 

 

 

Analog signal lines used to apply voltage to and measure current from the 
terminals of the DUT are routed through a series of pass-gates. Due to parasitic 
resistance along the wire trace from the probe pad to the DUT, the voltage applied 
to the device’s terminals is smaller than the nominal voltage. This voltage 
difference can be significant if the resistance along the wire is large. To 
circumvent this problem, the Kelvin measurement technique - utilizing separate 
sets of Force and Sense lines - is implemented for the source and drain terminals 
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of the DUT [2-15]. Figure 2-9 shows the basic Kelvin measurement configuration 
for the source and drain terminals. The current is passed through the Force lines 
and the voltage drop across the DUT is sensed across the Sense lines. The access 
transistors which are used to connect the force lines to the device in a row must be 
large enough to support the current level of the DUT, but small enough such that 
they will not have a large off-state leakage current. Due to the high impedance 
associated with the sense line (like the impedance of a voltage meter), very low 
parasitic current can flow through it. 

Leakage control is also important in this type of transistor characterization 
array. Since only one active device is to be characterized at a time, the leakage 
current from the other devices in the same column should be as small as possible. 
To this end, a separate gate bias voltage (VGX) is applied to turn off the 
transistors that are not being tested. Figure 2-10 shows the schematic of the 
leakage control circuit.  

 

 

 

Figure 2-10 Row selection circuit with VGX biasing  
for minimizing off-state leakage for an NMOS array  

 

 

  



CHAPTER 2. Variability Characterization Test Structures  28 

 
 

2.3.2 Measurement Setup 
 

The fabricated chip was packaged in a pin grid array (PGA) mountable to 
a printed circuit board (PCB) using a standard chip socket. The PCB was designed 
in-house and it contains various test pins, decoupling capacitors, voltage level 
shifter, and connectors for digital and analog signals. Triaxial connectors are used 
to bias the source and drain terminals as they help to prevent leakage current 
through the insulator of the cable, which is necessary for measuring small levels 
of current flowing through the source and drain of a transistor. A photograph of 
the test chip mounted on the PCB is shown in Figure 2-11(a). 

A semiconductor parameter analyzer (SPA) is used to control the digital 
and analog signals. The SPA outputs the signal per the binary representation of 
the programmed decimal value. For this specific instrument, a digital high is 
represented as a ‘0’ and a digital low is represented as a ‘1’. A level shifter is 
needed on the PCB board to convert the digital output from the SPA (5V) to the 
acceptable range used by the test chip (0.9V- 1V). An example of a scan-chain test 
with signals coming out is shown in Figure 2-11(b). 

 

  



CHAPTER 2. Variability Characterization Test Structures  29 

 
 

 

(a) 

 

(b) 

Figure 2-11 (a) Packaged test chip mounted on the custom-made PCB; coaxial and tri-axial 
cables are used for delivering analog signals to the chip; 

(b) Digital signals outputted from DB25 port used to control the scan-chain.  
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Once the transistor in the array is selected, its source, drain and gate 
terminals are multiplexed to the I/O pads that are now connected to the SPA. This 
allows us to perform any basic electrical measurements such as ID-VG and ID-VD. 
However, the I-V characteristic tends to suffer from a high leakage floor due to 
the off-state leakage currents flowing through the other transistors within the 
same column of the characterization array. As mentioned in the previous section, 
the built-in leakage control circuitry allows the gate terminal of the idle transistors 
to be set at VGX to make them strongly off. In conjunction with this method, one 
can also try to calibrate out the leakage current. This is accomplished by first 
performing a parametric I-V measurement sweep with none of the devices in the 
array selected (i.e. the scan-chain is filled with zeros). Let’s call the resulting 
current !!"#$#%". Then, one can perform the I-V measurement for the DUT to get 
!!"# . To calibrate the leakage-current out, the two current quantities are 
subtracted from one another, i.e., the quality of the calibrated current depends on 
the current sensitivity level of the SPA that can be set for optimal operation, as 
shown in Figure 2-12. 
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(a) 

 

(b) 

Figure 2-12 (a) Leakage calibration: leakage floor subtracted out from the raw data.  
(b) Higher Ion current is observed with Kelvin measurement. 
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2.3.3 Variability Observation 

Transistors are characterized in order to understand the underlying 
variability components. Threshold voltages in both the linear and saturation 
regimes of operation are extracted using a constant-current definition: 300!" ∙
!/! for NMOS. Once experimental data is acquired, quantities such as DIBL 
(the difference between VT LIN and VT SAT) can be derived with respect to different 
modes of measurements. The box plot of VT SAT of the minimum-sized (Lg=30nm) 
transistors across different measured FDSOI dies is shown in Figure 2-13. 
Different threshold voltage flavors are shown separately across 7 dies with a total 
of 180 devices in each subcategory. Die mean values are later excluded and 
modeled as global variations. 

The histograms of VT SAT for the two minimum-sized (Lg=30nm, 60nm) 
transistors are shown in Figure 2-14. The number of mismatched pairs used in this 
study is 60. Experimental distributions are shown in different colors for various 
Vth flavors. The distributions of VT SAT are found to be non-Gaussian due to a 
limited data size and a premature manufacturing phase. The key point to note here 
is that non-Gaussian behavior should be captured for compact modeling used in 
the latter statistical circuit simulation. 
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Figure 2-13 Boxplot of VT SAT of the minimum-sized (Lg=30nm) transistors  
across various measured FDSOI dies  
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Figure 2-14 Distributions of VT SAT [@VDS=1V]. RVT have nearly Gaussian distributions,  
but LVT and HVT do not follow a strict normal distribution. 
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Figure 2-15 Strong positive correlation shows between VT LIN and VT SAT;  
weak correlation between VT SAT and DIBL, negative correlation between VT LIN and DIBL. 

 

 

Correlation between linear and saturation Vth of the same device measured 
is plotted in Figure 2-15 (first two rows/columns). Overall, there is a positive 
correlation between VT SAT and VT LIN. The relationship between DIBL and Vth can 
also be understood by comparing the experimental data in Figure 2-15 (last green 
row). DIBL (i.e. VT LIN – VT SAT) is plotted against the linear threshold voltage VT 

LIN as well as the saturation threshold voltage VT SAT. The medians of Vth of the 
different operation regimes are essentially the same (i.e. this is seen by the same 
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horizontal spread in the scatter plot). However, there is a large difference in the 
corresponding DIBL value. Here, the VT LIN shows a higher correlation with DIBL 
and a much larger variability. This is because these DUTs are prone to 
components of RDF [2-16]. 

 

2.4 Summary 

The impact of transistor variability can be efficiently studied using a test 
chip vehicle. Characterization of an array of test devices including mismatch pairs, 
different combinations of gate length and channel width dimensions, and different 
layout proximity allowing for the collection of data, which can be used to analyze 
random and systematic variability. Since the number of I/O pads is quite limited, 
many signals must be shared among test blocks either through a decoder or a 
multiplexer. Care must be taken when designing the selection circuitry to ensure 
correct operation when accessing a device in an array and to minimize its impact 
on the measured device characteristics. Leakage minimization circuits can be 
designed to ensure that the devices that are not under test are turned strongly off 
to minimize their contributions to the measured current. The variation sources 
identified in this experiment will help build variability-aware compact models of 
transistors with physically meaningful parameters sensitive to variability observed 
in the manufacturing process. 
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Chapter 3 
 
Statistical Compact Model 
Characterization and Statistical 
Circuit Verification 

 

3.1 Introduction 
 

It is widely recognized that in nanoscale CMOS technology, variation in 
the manufacturing process has emerged as a fundamental challenge to IC design. 
While foundries are working hard to mitigate process variability, the design 
houses are asking for accurate and appropriate models to handle statistical circuit 
performance evaluation. To accurately represent the process and device variability, 
it is essential to incorporate the variability during the extraction and calibration 
phase of compact transistor models. In addition, these compact transistor models 
require customized test structure designs as well as proper statistical 
characterization procedures. Conventional statistical compact model 
characterization methodologies [3-1][3-2] require special single transistor, direct-
access test arrays, or virtual measurements from physical simulation data; 
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moreover, these models do not include rigorous statistical model parameter 
selection criteria.  

After obtaining measurement results from the test structures described in 
Chapter 2, the next step is to apply statistical analysis techniques to interpret these 
measurement data. In this chapter, we propose a methodology consisting of a 
complete flow of statistical compact model characterization (analysis of 
variability in transistor behavior) and statistical circuit performance evaluation 
(translation of transistor variability to circuit performance variability).  

Our proposed variability-aware compact transistor models can enable 
statistically optimized designs by capturing device variations in a concise, yet 
physically accurate way, and they are relatively easy to integrate with existing 
CAD tool flow. Stepwise parameter selection is combined with sequential 
extractions of statistical compact model parameters upon foundry-provided 
nominal compact model cards. These nominal models are trusted as they have 
been tested extensively and used during the test structure design. Our 
characterization algorithm selects an optimal statistical model parameter set that 
can be reliability extracted with the given measurement data.  

In addition, we have built a customized Monte Carlo (MC) simulation 
platform to utilize these compact transistor models in the statistical IC design flow. 
Different statistical model parameters can be specified prior to the MC simulation 
within the scripted wrapper of standard SPICE-based simulators. With Gaussian 
Mixture Models (GMM), non-Gaussian tails in the circuit performances can be 
more accurately estimated compared to estimation with conventional methods. 

 

3.2 Statistical Compact Model Characterization 
 
 

3.2.1 MOSFET Device Models and Extraction 
 

Interconnect and MOSFET device models are the critical interface 
between the manufacturing technology and integrated circuit design. Compact 
models include key equations that describe the current of a device as a function of 
its terminal voltages, to enable circuit simulation. To meet accuracy requirements 



CHAPTER 3. SCM Characterization and Statistical Circuit Verification 41 

 
 

on device models, existing BSIM [3-4] and PSP [3-5] models are being constantly 
upgraded to account for the emerging physical phenomena in the nanometer 
regime. The BSIM models illustrate an example of the evolution of the parametric 
complexity of transistor models in industrial design kits. For the 0.5µm 
technology in the early nineties, this model had 99 parameters, 7% of which were 
physical [3-4]. Here, physical quantities directly describe the physical attributes of 
the system. In the deep sub-micron era (65nm), the BSIM4 generation of this 
model has 355 parameters, 2.5% of which are physical. The PSP compact model 
has a similar parametric complexity [3-5]. 

Once the required transistor measurement data are acquired, one can 
perform either analytical regression or numerical optimization to estimate the 
compact model parameters. This procedure and the full set of compact model 
parameters are commonly referred to as compact model parameter extraction and 
model card, respectively. The increasing number of parameters and complexity of 
equations of compact transistor models drive the need to accurately determine all 
that many model parameters to reproduce the behavior of a specific observed 
device. In practice, a complete compact model, for example in this work, a 
foundry-provided nominal model card, is usually generated using a combination 
of pre-known technological process data, analytic methods, and numerical 
optimization methods. 

The most widely used numerical optimization methods are based on the 
deterministic minimization of a nonlinear least squares error function between 
model output and measurement data. Nearly all optimization methods are iterative, 
and defining an appropriate starting point as well as parameter bounds is of 
crucial importance, and often relies on a deep understanding of the model to guide 
the minimization process. 
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Figure 3-1 Compact Modeling for Statistical Circuit Design Scheme [3-7] 

 

 

3.2.2 Statistical Device Characterization 
 

Process variations usually manifest themselves as parameter fluctuations 
in nanoscale transistor physical dimensions or material/electronic properties, such 
as channel length, threshold voltage, and transistor parasitic [3-6]. All challenges 
with nominal device characterization become more serious for statistical device 
characterization, since statistical extraction procedures rely on an accurate 
extraction of nominal parameters. 

After designing appropriate test structures as described in Chapter 2, 
variation measurements need to be correctly mapped and embedded into a 
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statistically capable design kit, such that circuit designers can perform statistical 
circuit analysis and optimization to improve yield. This task is referred to as 
statistical extraction, as illustrated in Figure 3-1. One major problem in statistical 
estimation is to determine the appropriate distribution of the parameters (e.g., to 
determine the distribution of Vth follows a normal distribution or a log-normal 
distribution). The next key question for statistical extraction is to determine the 
parameters of a specific distribution (e.g., determine mean and variance of a 
parameter which follows a normal distribution, or to find the mean and covariance 
structure of a correlated set of multivariate normally distributed parameters). 

We focus here on the statistical sub-model of the transistor compact model, 
which consists of a set of model parameters assigned with a Gaussian variability 
model. The mean of the distribution is the nominal value given in the full model, 
while the standard deviation can be determined by various methods, including 
direct extractions from atomistic device simulation data [3-2] or backward 
propagation of variance from unit circuit performance measurement data [3-8][3-
9].  

 

3.2.2.1 Stepwise Compact Model Parameter Selection Algorithm 
 

Our proposed methodology, using stepwise selection of compact model 
parameters with sequential extractions from transistor measurement data, can 
provide statistical model parameters that reflect true variability while preserving 
reduced complexity in subsequent statistical circuit simulations. 

The statistical compact model parameter extraction is normally done using 
numerical nonlinear least-squares optimization methods. Given a reasonable set of 
initial guesses, (i.e. the nominal model card), a set of model parameter values can 
be estimated by minimizing the error between the model and the measurement 
data. Industrial standard transistor compact models, as well as open-source 
compact models under development, have many parameters. However, due to the 
high computational cost involved in optimization problems with large numbers of 
variables, it is helpful to reduce the number of model parameters to be extracted 
so that only essential parameters are fitted. Furthermore, imposing constraints on 
the optimization problem can ensure that the results are physically realistic and 
can reduce the indeterminacy or numerical instabilities during the optimization. 

The nonlinear least-squares regression problem can be formulated as 
follows: 
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!∗ = argmin
!

!!(!)      !
!= argmin! !! − !! !!,… ,!! !!

!!!    (3-1)  
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Here !!  are the electrical measurement data, !!  are the compact model 
parameters, of which p is the n-dimensional parameter vector, and !! !  are the 
evaluated model equation values with parameter p, where !!(!)  is an m-
dimensional function (Transistor compact model equation is normally a 
continuous one, which can be mapped onto space of any dimensions). This sum of 
squared residuals cost function is nonnegative, real-valued and continuously 
differentiable, which leads to least square estimation of the optimal value p*. We 
rewrite the fitting residual or error function as 

Δ! = [Δ!!,Δ!!,… ,Δ!!!]!, Δ!!(!) = !! − !! !    (3-2) 

We can approximate the error function stepping with the following Taylor 
series expansion, where J is the Jacobian matrix of the objective function F, if the 
derivatives exist for!!!(!): 

Δ! = ! !+ Δ! − ! !         

≅ !"
!!!!

Δ!! +⋯+ !"
!!!!

!Δ!! + !
!

!!!
!!!!!!

Δ!!Δ!!!
!!!

!
!!!   (3-3) 

    = ∇!(!)! ⋅ Δ!+ !
! !Δ!

!! ! Δ!       

Here, the gradient and Hessian matrix of the objective function can be estimated 
through the Jacobian matrix as: 

∇! ! = ! ! !Δ!, ! ! ≅ ! ! !!(!)     

! ! =

!"!!
!!!

⋯ !"!!
!!!

⋮ ⋱ ⋮
!"!!
!!!

⋯ !"!!
!!!

    (3-4) 

This approximation of the Hessian matrix is acceptable because we assume that, 
at least locally, the objective function is linear. 
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Various optimization algorithms use slightly different methods in 
determining the size of each iterative step [3-10]. Gradient descent method will 
simply compute the tangent line of an objective function, and take a fixed step 
size in that direction; alternatively, the traditional Newton’s method takes a step 
of  

Δ! = !−! ! !!∇!(!)    (3-5) 

If the model parameters can be described as a relatively tight statistical 
distribution centered on their respective typical values, we can locally 
approximate the compact model equations with the following linear equation, 
where J is the Jacobian matrix of the original non-linear problem and Δ! is the 
optimal step size: 

Δ! = ! ! ! ⋅ Δ!+ !     (3-6) 

As in the context of linear regression, the estimated variance of a model 
parameter is given by the diagonal elements of the covariance matrix, and a 
common way to express it is via the normalized confidence interval (CI) of the 
estimated value [3-11]:  

!! !∗ = !! !∗ ⋅ !"#$ ! !∗ !!(!∗) !!      

!"! = !!!!!! !! !!!!→ !!!!!95%!!normalized!!!!! :!± 1.96
!(!!)
! !  (3-7) 

The objective now is to identify the subset of model parameters that can 
be reliably extracted based on the available transistor I-V measurements. A 
stepwise parameter selection scheme is therefore developed not only upon fitting 
quality, but also upon extraction quality [3-3]. 

Starting with ! parameters, we fit the measurement data by nonlinear least 
squares optimization. Suppose we have a criterion function that represents the 
“goodness” of each extracted parameter, or the so-called extraction quality. If the 
current round of extraction provides an acceptable fitting quality, measured by the 
overall extraction/simulation fitting relative residual error, the “worst” parameter 
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will be removed from the extraction and be set to a proper constant value, i.e. a 
nominal value from design kit model card or a median of previously extracted 
parameter values. With the reduced parameter set containing !−1 parameters, we 
repeat the same procedure until the fitting error begins to increase significantly or 
above a cutoff value, as shown in Figure 3-2.  

 

 

(a) (b)  

Figure 3-2 (a) Stepwise compact model parameter selection algorithm. 
(b) Compact model parameter extraction with Newton’s method. 
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The key here is the definition of the extraction quality criterion. Ideally, it 
should represent how reliably the extracted parameter estimates its true value. 
However, in practice, there is no “true value” of model parameters from real 
transistors on silicon. Instead, we must define the criterion with metrics that can 
be calculated or observed from the extraction result itself. In this work, we choose 
the normalized confidence interval as defined in Equation 3-7. From the 
perspective of statistical circuit simulation where the models are utilized, we 
would like the statistical distribution as well as the correlation structure assigned 
for each of the model parameters to be as simple as possible. For example, a 
normally distributed parameter with a reasonable variance value is preferred over 
a multimodal distribution, which often indicates that there are two or more 
distinct transistor behaviors in the dataset1.  

 

3.2.2.2 Linear Spatial Backward Propagation of Variance 
 

After getting the reduced transistor model parameter set, with supported 
measurement dataset, we can further improve the estimation of the model 
parameter statistical distribution estimation by performing our previously 
proposed method of linear spatial backward propagation of variance [3-12].   

A statistical extraction method, namely Backward Propagation of 
Variance (BPV), has been proposed for iteratively solving the statistics of process 
parameters from the statistics of electrical performance measurements [3-8]. With 
the BPV approach, we can formulate statistical models as a set of independent, 
normally distributed process parameters, expressed as {!!}. These parameters 
control the variations seen in device electrical performance {!!}. With variations 
!!!  ( ! = 1,2… !! ) of electrical performance parameters (e.g., Idsat, Ioff, etc.) 
measured under different geometry and bias conditions, the BPV method 
calculates !!! (! = 1,2…!) through [3-9]: 

!!!! = !!"!!!!!!
!!!      (3-8) 

  

                                                
1 Multimodal distributions can also be represented via a “mixture of Gaussians” mechanism, discussed in 
Section 3.3.2.1. 
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The respective sensitivities are then defined around the nominal values as 

s!" = !!!(!)
!!! !!!

     (3-9) 

For a complete set of device performance electrical test measurements (large m) 
and carefully selected variation-aware compact model parameters (small n), the 
equations are solved using multivariate least squares fit or other linear regression 
methods. Electrical measurements of devices that strongly affect target circuit 
performances are selected as key quantities in {!! }. Knowledge of circuit 
applications and device operations should guide this selection. Conversely, bias 
conditions or device geometries that are far removed from typical circuit 
applications are less likely to be chosen. Moreover, selection of {!!} is also 
required to make {!!} observable, and this requires that the sensitivity matrix!!
! = !!" !×!, which is at the core of the BPV linear system, is well conditioned. 

The BPV method is highly extendable to incorporate hierarchical variation 
models [3-3] which accurately describe the variability structure in the electrical 
measurement data. The superimposition property of linear systems makes linear 
BPV applicable to spatial variability characterization in compact models.  

 

! Hierarchical Variability Modeling 

Statistical process variations include both deterministic and 
random components. Certain types of deterministic variations are 
hierarchical in nature, while random variations can be modeled as white 
noise and added to the baseline. For simplicity, and without loss of 
generality, the total variation can be expressed as 

Δ! = ∆!!!! + ∆!!" + ∆!!"# + ∆!!" + ∆!!"# + ∆!!"#$%& + !!"#$%" (3-10) 

In this work, the measurement dataset does not have wafer-to-
wafer random variations!∆!!!!, across-wafer systematic variations!∆!!", 
or across-wafer random variations!∆!!"#. The layout-dependent variations 
∆!!"#$%& can be ignored due to the regularized Device-Under-Test (DUT) 
design, and the residual !!"#$%" can be absorbed into the across-die random 
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variations!∆!!"#~!! 0,!!"#! . Across-die or within-die variation refers to 
the fluctuation of device properties on the same die/chip. The systematic 
across-die variation of a device with location !! ,!!  on the die/chip are 
usually parabolic due to stepper-induced variations [3-13], as shown 
below. 

∆!!"(!! ,!!) = !! + !!! + !!! + !!!" + !!!! + !!!!  (3-11) 

 

Assuming a hierarchical variability structure, we apply an extension to the 
linear BPV statistical compact model characterization method [3-12]. The 
proposed method will obtain hierarchical spatial patterns of assigned compact 
model parameters (the optimal model parameter set selected by the algorithm 
described in Section 3.2.2.1) directly from test chip electrical measurement data. 
This propagation method applies linear regression to the coefficients of the 
hierarchical spatial variability model, i.e. !!~!!. The compact model sensitivity 
analysis is done at the nominal value, and the spatial coefficients of the 
hierarchical variability model in measured I-V data are linearly propagated to 
selected compact model parameters. 

For a better application of our method, the hierarchical variability model is 
modified as (for chip-level data of transistor I-V test arrays): 

!!!!!!!!Δ!! = ∆!!",! + ∆!!"#,! = !" !"#! ⋅ !! + !     

= !!,! + !!,!! + !!,!! + !!,!!" + !!,!!! + !!,!!! + !  (3-12) 

The SBPV linear regression equation is: 

Δ! = !Δ! = !!"#$%#&!     

Δ! = Δ!! !,! ,… ,Δ!! !,! !   (3-13) 

 Δ! = Δ!! !,! ,… ,Δ!! !,! !     

The spatial coefficients and modified sensitivity matrix are 
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! = !!,! (!×!)×! = (!!!,… ,!!!)!    

!!"#$%#& = !!"!"#$%#& !× !×!
= !!! !

!!! !!!!!
⋅ !" !"#!

!!!,!,…,!;
!!!,!,…,!

 (3-14) 

Although process variation is correlated with parameters in a device model, 
it is rare that the sources of process variation are directly represented in the model 
parameters. Typically, device parameters include multiple sources of variation, 
and are therefore statistically correlated because of this common dependency. 
However, the conventional simple BPV method assumes all parameters {!!} to be 
uncorrelated. Therefore, in BPV and many other model parameter extraction 
approaches, it is necessary to transfer correlated parameters into a set of 
uncorrelated variables.  

This can be achieved either by physically decoupling, with each parameter 
corresponding to a single physical effect, or by numerical methods such as 
Principal Component Analysis (PCA)2. As a physical decoupling example, the Vth 
fluctuation could be separated into two items: Δ!!! = Δ!!!! + Δ!!! !!"" , where 
Vth0 represents the threshold voltage of the long channel device which is only 
related to random dopant fluctuation (RDF), and the later item corresponds to the 
drain-induced barrier lowering (DIBL) effect which is only related to line-edge 
roughness (LER). To account for and separate these correlations among model 
parameters and reach accuracy requirements on device models for deeply scaled 
devices, the parametric complexity of the underlying device model inevitably 
increases. 

In this work, however, with the stepwise parameter selection algorithm 
performed first, the correlation structure among all the compact model parameters 
within the final optimal parameter set is well examined (and could be preserved 
with GMM, see Section 3.3.2.1).  

  

                                                
2 PCA generates an orthogonal basis set of parameters and its mathematical details will be discussed in 
Section 3.3.2 
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3.3 Statistical Circuit Verification 
 
 

3.3.1 Statistical Parametric Yield Estimation 
 

To ensure IC design robustness in the presence of variability, process 
variability must be properly modeled, and the model must be integrated into the 
design flow. Statistical circuit verification involves mainly two steps: worst-case 
analysis and yield estimation. 

The circuit design is tested first through simulations on worst-case corner 
models [3-14] to see if it is robust under the influence of variability. If it fails, 
either the circuit topology or the design parameters should be changed. When the 
design passes the corner model test, it will be further evaluated by Monte Carlo 
simulations to estimate the parametric yield. If the yield is below the desired value, 
the design will also have to be rolled back and changed, and if the yield is 
satisfactory, the design is ready for tape-out. 

Statistical circuit yield estimation starts with the assumption that the 
parameters (either process or compact model parameters) characterizing 
variability can be described by random variables, of which the distribution has a 
certain probability density function (PDF), for example, the commonly used 
Gaussian PDF. The parametric yield is associated with certain circuit performance 
metric(s). Based on the value of performance metric, one can judge whether the 
circuit succeeds or fails to meet specifications. Calculating the yield is equivalent 
to calculating the failure probability. Typically, the yield is high and the failure 
probability is low.  

 

3.3.1.1 Customized Monte Carlo Simulation  
 

The golden standard to estimate failure probability is the Monte Carlo 
method [3-15]. In Monte Carlo, a random sequence of length R on transistor 
compact model variability parameter (denoted as a random vector) !! !!!

! !is 
generated per its probability density function !"#!(!); then, the performance 
metric !!(!) is evaluated for all X’s. The failure probability ℙ! is estimated as: 
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ℙ! = !
! !(! !! ∈ !ℱ)!

!!!     (3-15) 

Here ℱ represents the failure region and !!(! !! ∈ !ℱ) is the indicator 
function of the failure event. Since these summands (indicator functions) are 
identically independent Bernoulli random variable with probability!ℙ!, ℙ! is an 
unbiased estimate of the true failure probability. When the sample number R is 
large enough, the central limit theorem [3-15] shows that ℙ!  is normally 
distributed with!! ℙ! , ℙ!(1− ℙ!)/! .  

To achieve a certain accuracy of the estimate, when the target failure 
probability is relatively low, the required sample size could be very high; for 
example, SRAM cell failure rate could be as low as 10-6 [3-16] in industrial 
standard production chips. This calls for a more efficient parametric yield MC 
simulation with a both simpler and quicker SPICE simulation on each run 
(calculating!! !! ) and more sensitivity of the failure region (evaluating!! !! ∈
!ℱ). Therefore, in this work, with full control starting from statistical device 
characterization, we have characterized our compact variability model specifically 
for a certain circuit performance metric (increased sensitivity) with a reduced 
number of model parameters (decreased simulation cost per run). These models 
can be incorporated into standard MC simulation flow with Python-based in-
house customized scripts. 

MC simulation based methods, when efficiently done, can naturally 
capture non-Gaussian circuit performance distributions through the non-linear 
SPICE simulation mapping from well-characterized compact variability models. 
We will show the results of customized MC simulation results in both Chapter 4 
and Chapter 5. 
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3.3.2 Statistical Circuit Modeling 
 

Another way to address the parametric yield problem is to efficiently 
model key performance metrics of circuit blocks (e.g., critical path delay of a 
digital circuit block, etc.) directly utilizing on-chip test structure measurement 
data, often referred to as statistical circuit performance modeling. This 
methodology in general requires more measurement data support (shown later in 
this section with details) than basic MC simulations with a compact variability 
model, and therefore, circuit verification results using our proposed methods 
described in this section will only be presented in Chapter 5. 

Without loss of generality, we consider the problem of estimating a single 
performance metric, f (we imply the assumption that!!~!!(!! ,!!), of which can 
be relaxed to a “mixture of Gaussians”, later). Due to the constraints on testing 
costs, measurements of f may not be directly available. Instead, groups of 
measurement data of other electrical performance (typically transistor I-V) are 
provided, denoted by!! = !!, !!… !!! . For an example, consider the problem of 
post-silicon validation of a small digital system. The performance metric f might 
be critical path delay and Ii would be measurement results from on-chip 
monitoring transistor arrays [3-17]. The problem definition here is to predict the 
distribution of f given I and consequently, predict the parametric yield. 

One conventional approach to this problem is to apply principal 
component analysis (PCA) to ! and select its top features X. The rest of the 
problem is then converted into a response surface modeling (RSM) problem [3-
19]. 

! Principal Component Analysis 

PCA is a commonly used statistical technique that transforms 
correlated measurements into a set of low-dimensional, uncorrelated 
factors. Given M samples from a set of correlated electrical 
measurements!!, PCA seeks a linear transformation of these variables into 
a new set of random variables X which are orthogonal. The procedure 
starts by forming the correlation matrix amongst the measured samples. 
An eigenvalue decomposition of the correlation matrix is then performed 
and combinations of eigenvalues and corresponding eigenvectors are 
obtained [3-18]. If we use the top eigenvalue/eigenvector combinations, 
we can explain most of the overall observed variation among the measured 
samples with just a few uncorrelated variables.  
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! Response Surface Modeling 

For RSM, a linear least square error function can be employed to 
optimize the results !∗ = argmin! !− ! ⋅ !!(!) !, where f is the vector 
of performances, α is a vector of the unknown response surface model 
coefficients, b (X) is a vector of orthogonal basis functions (e.g., linear or 
quadratic polynomials of principal components X). When the 
measurement data set is not large enough to support the variable space, 
model coefficients estimates by RSM can become non-unique, which is 
known as overfitting [3-20]. One common strategy for preventing 
overfitting is by adding regularization terms to error functions to reduce 
the number of significant or retained model parameters. An example of 
such a strategy is least-angle regression (LARS) which adds the L1-norm 
(the summation of the absolute values of all elements in the parameter 
coefficient vector) regularization ! ! ≤ ! to the error function [3-21]. 
One major benefit of regularizing with the L1-norm is that by decreasing λ, 
we can impose a strong constraint for scarcity and achieve a sparse 
solution making use of fewer model coefficients. However, the selection 
of λ is of crucial importance for such optimizations and requires 
considerable domain knowledge. 

 

However, with our pre-selected optimal compact model parameter set 
described in section 3.2.2.1, we naturally obtain a feature subspace of parameters 
with a good correlation structure and process variability interpretability. Here, ! 
is re-used as the feature vector of compact model parameters (instead of principal 
components). The performance metric could then be approximated as: 

! Δ! = !! ⋅ !!(Δ!)!
!!!     (3-16) 

Here !! Δ! ; !! = 1,2…!  contains the basis functions (in this work, for 
simplicity, linear expansion is selected), and !!; !! = 1,2…!  are the 
performance model coefficients, which are determined by solving a linear system 
with just a few sampling points of direct measurement data from test structures3. 

  

                                                
3 With our measurement data in Chapter 5, the dataset is split into “training” (for fitting these 
coefficients) and “testing” (for statistical circuit performance verification). 
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3.3.2.1 Enhanced Method with Gaussian Mixture Model 
 

We propose Gaussian Mixture Models (GMM) to represent the 
distributions of compact model parameters, or equivalently the feature subspace 
for performance modeling. The GMM is a weighted sum of Gaussian distributions, 
and can represent non-Gaussian distributions generated by compact model 
parameter extraction properly. Moreover, GMMs can represent any correlation 
easily since each component is Gaussian; thus, we can easily compute correlation 
caused by dependencies intrinsic to some of compact model parameters [3-22].  

The Expectation-Maximization (EM) algorithm has been widely used for 
building GMMs for digital statistical static timing analysis (SSTA) [3-23]; it is 
thus adopted here for fitting a GMM to the statistical compact model parameters. 
We study the following probabilistic model: 

ℙ !|! = !!ℙ !|!! ,!!!
!!!    (3-17) 

ℙ !|!! ,!! = !
!! !/! !!

!/! exp − !
! !− !!

!!!!! !− !!    

Here the mixture weight !! ≥ 0 and !!!
!!! = 1 and n is the dimensionality of 

the vector X. The parameter vector ! consists of!!!, mean vectors! !! , and the 
covariance matrices! !! . Given the number of mixtures !and ! independent, 
identically distributed (i.i.d.) samples ! !(!) !

!
, we obtain the following log-

likelihood: 

! ! = !"# ℙ !(!)|!!
!!! = !"#ℙ !(!)|!!

!!!   (3-18) 

The EM algorithm updates the parameter vector as shown in Table 3-1. 

When we get the statistics out of the feature vector X, we can then 
calculate the mean and standard deviation of the performance metric through 
Equation 3-16, with linear superposition of different mixtures. Furthermore, with 
GMM, we can utilize our customized MC simulation platform to further improve 
the accuracy of the parametric circuit yield estimation.  
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Algorithm EM algorithm to solve GMM parameter vector 

Initialization 
 

Choose an initial setting for the parameter vector !!"# 
(uniform mixture weight, global mean/variance for all) 

Repeat !!"# = !!"# 

[E-step] Evaluate posterior probabilities!!!!"#: 

 
!!!"# ! =

!!
!"#ℙ !(!)|!!!"#,!!!"#
!!
!"#ℙ !(!)|!!!"#,!!!"#!

!!!
 

[M-step] Evaluate !!"# given by: 

 
!!
!"# = !

! !!!"#(!)
!

!!!
 

 
!!!"# =

!!!"# ! !(!)!
!!!

!!!"#(!)!
!!!

 

 
!!!"# =

!!!"# ! ! ! − !!!"# ! ! − !!!"#
!!

!!!
!!!"# ! !(!)!

!!!
 

Until !!"# − !!"# < ! 

 
Table 3-1 EM algorithm to solve GMM maximum likelihood estimation 
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3.4 Summary 

Statistical compact models properly characterized for process variability 
are important for the design of high-yield integrated circuits. Although it is 
important to understand the underlying physical mechanisms that cause variations 
in device performances, the goal of compact statistical modeling is to accurately 
represent variations of simulated circuit characteristics. This chapter includes a 
brief review of statistical compact modeling methods, and then proposes 
methodology based on stepwise parameter selection and BPV for fast statistical 
compact model characterization.  

Statistical circuit modeling methods are reviewed briefly, followed by our 
proposed customized MC simulation platform developed with the compatibility of 
industrial standard design flow, as well as the extensibility of incorporating GMM 
models into the statistical sub-model of transistor compact models. The 
demonstration of all proposed methodology on post-silicon data will be presented 
in the following chapters. 
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Chapter 4 
 
Variability-Aware Compact Modeling 
and Statistical Circuit Validation on 
SRAM Test Array 

 

4.1 Introduction 
 

Variability modeling at the compact transistor model level can enable 
statistically optimized designs in view of limitations imposed by the fabrication 
technology. In this chapter, we propose a variability-aware compact model 
characterization methodology based on stepwise parameter selection. Transistor I-
V measurements are obtained from bit transistor accessible SRAM test array 
fabricated using a collaborating foundry’s 28nm FDSOI technology. Our in-house 
customized Monte Carlo simulation bench can incorporate these statistical 
compact models; simulation results on SRAM writability performance are very 
close to measurements in distribution estimation. Our proposed statistical compact 
model parameter extraction methodology also has the potential to predict non-
Gaussian behavior in statistical circuit performances through mixtures of 
Gaussian distributions. 
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4.2 SRAM Test Array Design and Measurement 
 

Static memory (SRAM) is a critical component of VLSI systems today. 
SRAM can provide the fastest random access time to stored data, and is used for 
lower-level caches and registers [4-1]. To increase the size of the cache on a chip, 
it is desirable and economical to fit as many cells into an SRAM array as possible. 
However, as the memory cell areas is scaled down with each new technology 
node, the read and write margins are degraded due to increasing variability in 
transistor characteristics. It is therefore desirable to minimize the operating 
voltage VDD of an SRAM cell to minimize power consumption. But a small 
mismatch in Vth values can significantly reduce cell stability, setting a lower limit 
for the minimum operating voltage VDD min of the cell [4-2][4-3].  

A widely-used SRAM cell design is the six-transistor (6T) cell, consisting 
of one pair of NMOS pull-down transistors, one pair of PMOS pull-up transistors, 
and one pair of NMOS pass-gate transistors. Since the transistors in the SRAM 
cell are packed very close to one another to maximize storage density, the 
transistor pairs inside a 6T cell naturally form mismatch pairs that are ideal for 
studying random variability [4-4]. 

 

4.2.1 6T SRAM Macro 
 

In a normal 6T SRAM cell, the only accessible nodes are the Word Line 
(WL), Bit Lines (BL, BLB), voltage supply (VDD), and ground (GND). This is 
acceptable if we just want to perform basic SRAM operations such as read, write, 
and hold. However, to gauge SRAM cell stability, it is necessary to access the 
internal storage node to sweep the voltage on the node [4-5]. To this end, padded 
out SRAM cells were previously employed such that every node of a transistor 
inside the cells can be directly accessed [4-6]. Not only does this permit the 
butterfly plot to be generated, but the standard transistor level characterization test 
such as current vs. voltage can also be performed, allowing a direct correlation 
between transistor performance parameters and SRAM cell metrics to be observed. 
However, this adds too much of area overhead onto the state-of-the-art test chip 
design; furthermore, the final SRAM array designed does not mimic what is 
commonly used in real-life applications, which allows unforeseen discrepancy 
between experimental results versus actual performances. 
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As shown in Figure 4-1, a direct bit transistor accessible (DBTA) SRAM 
is identical to a typical functional SRAM except that it has direct bit-line access 
and independent controls of array, word-line, and bit-line power supplies. In 
DBTA test mode, the bit lines of the addressed bit are multiplexed to the 
respective pads through multiple levels of analog multiplexers. The word-line of 
the addressed bit is selected and the bit is initialized. When testing pass-gate 
transistor Q1, an overdrive voltage VH is set on array and one of the bit lines 
(BLB) to maintain the source node SNT close to 0V. The gate voltage on the 
word-line and drain voltage on the other bit-line (BLT) are individually swept 
while the drain current on BLT is measured at each step [4-7].  

 

 

Figure 4-1 Direct bit transistor access cell pass-gate transistor I-V measurement scheme. [4-7] 

 

  



CHAPTER 4. VCM and Stat. Circuit Validation on SRAM Test Array 64 

 
 

4.2.2 Test Circuitry 
 

Our collaborating design team has designed a bit-transistor accessible 
SRAM test array [2-8], as shown in Figure 4-2, using foundry’s pre-production 
28nm FDSOI technology [4-9]. This design enables fast high-volume transistor I-
V measurements as well as cell DC characteristics measurements. The same 
design mask set was used to manufacture both bulk and FDSOI wafers, which 
enables direct comparison between bulk and FDSOI transistor gate stacks [4-10].   

Figure 4-2(a) shows the transistor layout for a given cell. Note that the 
pull-down devices are larger than the pass gates (to ensure read stability) and the 
pull-up devices are smaller than the pass gates (to ensure write-ability). Figure 4-
2(b) shows the metal layers that connect to each cell. VDD runs vertically along a 
column, and GND is supplied from different wires for the left and right sides and 
is shared with the rows above and below. Figure 4-2(c) shows a small 8 by 8 array 
with 64 total cells. All cells on the same row share the same word-line (WL) wire 
and all cells on the same column share the same bit-line (BLL and BLR) wires. 
The full array implementation is formed by combining these sub-arrays to form an 
8kB memory, the effective size of which is 128 rows by 512 columns. 

 

 
Figure 4-2 (a) Layout of transistors in a 6T SRAM cell; (b) Layout of metal layers for a 6T 

SRAM cell (c) Generic overview of SRAM array design [4-10]   
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Separated supplies, combined with a bit line multiplexer, are central to 
static I-V measurements. When assigning different bias voltages to a node inside 
the 6T cell, this allows for I-V measurement of any one of the 6 transistors inside 
the cell. The measurement setup was shown in Figure 4-1. 

The digital control signal that is fed to the test array is controlled by off-
chip FPGA on an in-house designed test PCB. Once a set of binary sequences has 
been loaded into the SRAM control BIST and bit line multiplexer, logic gates are 
set such that the desired operation is performed. For example, if the binary 
sequence is meant to enable a ID-VG sweep of a PG transistor on the left half of 
the SRAM cell, the circuitry will use this binary sequence to connect the source 
and gate terminals of the left PG transistor to the correct analog signals on the I/O 
pads, while setting the cell to storage ‘0’. 

 

4.2.3 Measurement Setup 
 

The fabricated test chips were sent back in a form of a 12-inch wafer. 
Several dies were then packaged into sockets fit for our test PCB, making it 
compatible with all electrical measurement equipment.  

Due to the limited number of I/O pads, attaching all necessary digital 
signals onto the main PCB directly is not practical. Also, with the addition of the 
weight of all analog triaxial connectors, it can result in the test PCB being flexed 
too much. To alleviate this problem, a small breakout board is used instead to 
route the digital signals from the main test PCB to a FPGA control board for 
easier digital signal control and programming. All the sensitive analog signals 
passing to the SMUs are connected through coaxial and triaxial cables to mitigate 
leakage and excessive voltage drop. Digital signals are jumped using header pins 
and ribbon cables with alternating ground between the adjacent wires to help 
shield the signals from cross talk and ambient electric noise.  

The test configuration is shown in Figure 4-3. A laptop computer is used 
to control and remotely program all characterization equipment through GPIB 
connections. 
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(a)  

 

Figure 4-3 (a) Wafer photo containing multiple dies; (b) Overall test setup consisting of 
semiconductor parametric analyzer (Agilent B1500A), arbitrary waveform generator, DC 

power supply, and a laptop computer; enlarged photo of test PCB and die socket. 
 

(b) 
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We have collected I-V measurement data of the pass-gate transistor within 
each SRAM cell across 5 rows and 512 columns of the test structure array on 
chip1 (G10) as well as data across 55 rows and 512 columns on chip2 (G7).  
These I-V curves are then used for compact variability model characterization. In 
this work, bit-line write trip voltage (BWTV) [2-11] is measured as a circuit 
performance example instead of other static metrics because it can be easily 
measured by sweeping the bit-line voltages of the SRAM cell while monitoring 
the currents flowing through the bit-lines. BWTV data are collected on chip1 
(G10) only. 

 

 

4.3 SRAM Transistor PSP Model Statistical 
Characterization 
 
 

4.3.1 Review of PSP Model Parameters 
 

The PSP model is an advanced surface potential based compact SPICE 
model, intended for digital, analog and RF design, which has been jointly 
developed by Philips Research and The Pennsylvania State University [4-12]. It 
includes all relevant physical effects including mobility reduction, velocity 
saturation, DIBL, gate current, and STI stress to model Nano-scale CMOS 
technologies. Wrapper models can be easily developed upon this core model at 
the foundry’s site for adaptation to specific manufacturing process. 

The PSP model has two sets of model parameters: the global-level 
parameter set, which describes entire space of device geometries, and the local-
level parameter set, which models transistors with specific device dimensions [4-
13]. In this experiment, we only extract parameters of the pass-gate transistors 
within the bit cell, focusing on the derived local-level parameters. Per the 
recommended local parameter extraction procedure in the PSP manual [4-13] and 
the I-V data available in the experiment, 18 parameters are chosen as pre-
candidates for our experiment in parameter extraction. The parameter names and 
their physical meanings are listed in Table 4-1.  
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Param. Description Param. Description 

vfbo  
 

Geometry-independent flat-
band voltage 

toxo Gate oxide thickness 

nsubo Geometry-independent 
substrate doping 

npo Geometry-independent gate 
polysilicon doping 

dphibo Geometry-independent offset 
of !! 

rsw1 Source/drain series resistance 
 

cto Geometry-independent part of 
interface states factor CT 

thesato Geometry-independent velocity 
saturation 

cfl Length dependence of CT alpl Length dependence of CLM pre-
factor ALP 

uo Zero-field mobility at TR alp1l1 Length dependence of CLM 
enhancement factor above 
threshold 

xmueo Geometry-independent 
mobility reduction coefficient 

novo Effective doping of overlap region 

themuo Mobility reduction exponent vpo CLM logarithmic dependence 

xcoro Geometry-independent non-
universality 

cso Geometry-independent Coulomb 
scattering 

 
Table 4-1 Candidates of PSP model parameters for extraction [4-15] 
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4.3.2 Statistical Model Characterization Results4 
 

As discussed in [4-14], properly selecting model parameters for statistical 
characterization is essential for compact variability modeling. We have proposed 
and implemented a stepwise parameter selection procedure to obtain an optimal 
set of model parameters for statistical model parameter extraction. Based on the 
test structure design, we have chosen the industry standard PSP 103.1 model with 
nominal model parameter values from the collaborating foundry’s default model. 
The dataset presented here is obtained from chip1 (G10), with pass-gate NMOS 
transistor full I-V curves among cells across 5 rows and 512 columns.  

Simulation-based sensitivity analysis of pass-gate NMOS threshold 
voltage on the nominal model card is applied to select a “starting” subset of the 
standard PSP statistical model parameters (~20). The normalized CIs, described in 
Chapter 3, of these parameters are treated as indicators for parameter selection. 
This set can capture the variations in device performance within the low drain 
voltage operation region, where our measurements are collected. 

The stepwise parameter selection analysis starts with an “initial” set of 8 
PSP model parameters. Model parameters with the “worst” extraction quality are 
removed iteratively. This procedure stops when excluding more parameters will 
severely deteriorate the fitting quality, as represented by the relative residual 
fitting error. As shown in Figure 4-4, the optimal four-parameter-set, {vfbo, uo, 
toxo, nsubo}, has clear physical property representations in the model equation, 
reasonable model fitting error (1.833) and a far simpler statistical correlation 
structure. The parameters that are excluded during the procedure either have 
extremely high correlations with all the other parameters (rsw1, npo) or have 
unreliable extraction values of hitting the preset boundary values (cto). 

 
 

                                                
4 The contents of this and the following sections are generated from the previously published 
article [4-17]. 
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Stepwise parameter selection results with pass-gate I-V data  
from chip1 on PSP model (to be continued) 
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Figure 4-4 Stepwise parameter selection results with pass-gate I-V data  

from chip1 on PSP model 



CHAPTER 4. VCM and Stat. Circuit Validation on SRAM Test Array 72 

 
 

4.4 Statistical Circuit Simulation Results on SRAM 
writability 

In this work, we have developed a customized MC simulation bench to 
conduct statistical circuit performance simulations using our variability-aware 
compact models. Python-based in-house customized scripts work as a wrapper 
driving standard HSPICE MC Simulations on circuits. The scripts can 
accommodate pre-defined compact model statistical parameters without hacking 
into the standard MC simulation flow.  

Circuit performance measurements are obtained simultaneously with 
device characterization data to reduce systematic error. The data presented here 
are collected from chip1 (G10), fabricated in 28nm FDSOI technology, with 
SRAM cells across 5 rows and 512 columns.  

Figure 4-5 shows the comparison results of measurements vs. simulations. 
QQ-plots are added for a complete comparison and clear visualization of the 
distribution. The “full standard” MC simulations are based on the compact model 
embedded in the default design kit. The results show that customized MC 
simulations using the far simpler statistical compact models, represented only by 
parameters that were selected from Figure 4-4, match the full MC simulation 
results in distribution estimation. Both present very similar histograms and 
standard deviation numbers compared to the measurement data, though missing 
the non-Gaussian tail. Furthermore, as shown in Figure 4-5, for this SRAM 
dataset, the optimal statistical model parameter set for simulation is the same as 
for extraction, which is {vfbo, uo, toxo, nsubo}, based on the nominal PSP model. 
Redundant compact model statistical parameters slow down the simulation 
without improving the overall accuracy in circuit performance distribution 
estimation. This is a strong validation of our proposed model characterization 
methodology. 
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Figure 4-5 SRAM DC write noise margin BWTV metric 

Comparison of measurements vs. full standard Monte Carlo simulations vs.  
customized Monte Carlo simulations using differ reduced set of extracted model parameters.  
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Figure 4-6 Statistical model parameter extraction results from chip2 data (55 rows and 512 
columns) on PSP model, extracted parameter set of {vfbo, uo, toxo, nsubo} shows multimodal 

distribution as well as outliers in the data set. 
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4.5 Summary 

We have proposed a statistical compact model extraction methodology, 
which has been implemented on a PSP model with 28nm SRAM cell bit 
transistors data. We built a CAD flow to utilize the models for statistical circuit 
performance estimation; simulation results on SRAM writability performances are 
very close to measurements in statistical distributions. In the future, we will 
exploit the statistical structure of the extracted parameters to capture the nonlinear 
correlations and the non-Gaussian distributions through mixture of Gaussian 
distributions, as in Figure 4-6. The goal is to demonstrate that our simplified 
model can capture significant non-normality in the measured data. Such non-
normality is often evident at the tails of the performance distributions, and 
capturing that is necessary for the statistical modeling of inherently high-yielding 
IC designs. 
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Chapter 5 
 
Statistical Device Characterization 
and Circuit Modeling with Imaging 
ROIC Data 

 

5.1 Introduction 
 

This chapter proposes an efficient method to build statistically valid 
prediction models for circuit performances based on transistor test array 
measurement data. We exploit the improvement of statistical model parameter 
extraction procedure by a stepwise parameter selection algorithm with confidence 
intervals (CI) as quantitative extraction quality criteria. This projection maps on-
chip electrical measurements onto a subspace spanned by a set of physical 
variables of compact transistor models. The key idea is to reduce the 
dimensionality (model parameters) of the statistical sub-model while keeping the 
physical correlation between the model prediction and the device electrical 
measurement.  

In addition, an expectation-maximization (EM) algorithm is employed to 
iteratively solve the GMM estimation problem of the extracted model parameters. 
Our customized MC simulation platform therefore incorporates this advanced 
statistical compact variability model for better circuit performance modeling. 
Compared with the traditional PCA and RSM method, the proposed method 
reserves the physical link between compact model variables and measurements 
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while still compatible with industrial standard IC design flow, as illustrated 
conceptually in Figure 5-1. 

 

 

Figure 5-1 Conceptual illustration of our proposed method 

 

 

5.2 Imaging ROIC Design and Measurement 
 

In CMOS infrared (IR) imagers, a non-silicon photodetector, which 
generates current proportional to the amount of light it absorbs, is fabricated on 
top of a standard CMOS readout integrated circuit (ROIC). With IC technology 
advancing, this photocurrent is typically converted to a digital signal with an 
analog to digital converter (ADC) built at the pixel level, using a current to 
frequency converter and a digital counter [5-1]. However, with shrinking device 
sizes down to nanometer range, degradation of performance shows up in imaging 
sensor cell resolution improvements with in-pixel computation [5-2].  
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On the other hand, large-scale device characterization studies can help 
provide information about the performance variation within a CMOS technology 
node [5-3]. With prior work that requires direct addressable device arrays using 
separate test bench supplies for each device terminal [5-4], our collaborating 
design team builds on well-tested techniques in imaging ROIC design to 
investigate methods of variability characterization with fully digital interfaces [5-
5]. The design team uses an array of test cells with in-pixel integrated ADCs to 
achieve high measurement throughput for characterizing performance variation in 
a 28nm bulk CMOS technology, to determine the feasibility of implementing 
precision ROICs [5-6]. 

 

5.2.1 DUT and Measurement Cell 
 

The device under test (DUT) unit cell, shown in Figure 5-2, generates a 
test current fed into the adjacent measurement cell. Within the DUT cell, digital 
scan chain signals ensure that only the drain current of the desired DUTs 
contributes to the test current. The scan input (S_in) and scan clock (S_clk) are 
shared between all unit cells, but the scan chain output (S_out) only propagates if 
both row and column enable signals (array-level controls) are high. In the 
characterization testing, only the |VGS| of selected devices is set to the input value, 
while other terminals are fixed at preset voltages. 

Within the measurement cell, !!"#! from the DUT cell is first subtracted 
from a bias current !!"#$ (due to design topology) before being integrated onto a 
reference capacitor. This is to implement the current-to-frequency converter, 
where the capacitor is reset whenever the ramp voltage, generated by the test 
current capacitive integration, exceeds a preset threshold within the RST (reset) 
logic block. These pulses are counted through a 16-bit counter for digitalizing the 
current-dependent frequency. Measurement cells will be calibrated using the chip-
level bias current reference to mitigate the effect of variations in the integration 
capacitance and the preset ramp voltage threshold. 
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Figure 5-2 General structure of unit cell pair, containing one device under test (DUT)  
unit cell (left) and one measurement unit cell (right) [5-6]. 

 

 

 

 
Figure 5-3 Characterization chip system architecture [5-6]   
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5.2.2 Test Chip Architecture 
 

This characterization chip mirrors the design of a digital focal plane array 
(FPA) ROIC [5-7]. Figure 5-3 shows that it consists of a central array of 96x48 
DUT and measurement cell pairs, with peripheral circuitry to address each cell 
pair. Digital frequency/counter readings from each cell pair are collected through 
the chip-level output using the row/column decoders. A simple current mirror 
generates reference bias currents for measurement calibration. Adopting an 
architecture that is similar to a FPA ROIC allows the digital interface circuitry as 
well as the test chip measurement processing platform be reproduced from 
previous work [5-8]. 

A die photo of the test chip fabricated in a 28nm bulk CMOS process is 
shown in Figure 5-4. The total die area is 3.24mm2, with approximate core area of 
1.82 mm2 [5-9].  

 

 

 

Figure 5-4 Die photo of the fabricated chip in 28nm bulk process [5-6] 
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5.2.3 Measurement Procedure and Calibration 
 

To obtain statistically meaningful results, this dataset of characterization 
test chip measurement includes over 6,000 functional DUTs for each type of 
device. NMOS and PMOS devices with multiple (high/regular/low) threshold 
voltage (Vth) flavors and dimensions of interest (80nm/30nm, 80nm/86nm) to 
digital designs are included. Within each cell, the serial scan chain signal is 
translated into 24 parallel select signals that control the 24 devices within the 
DUT cell. Thus, each transistor is identified by a scan channel number, as well as 
the row and column addresses of the unit cell. 

 

 

Figure 5-5 Example of calibration and measurement [5-6] 

 

 

The illustration of the typical integration period and possible measurement 
parasitics are show in Figure 5-5 and Equation 5-1:   
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! ! ~!!"#$ = !!!! = !!"# + !!"#!!!"#$
!!"#$! !!"#!!!!"#$%

!!
     

!!!!= ! !!"#$ − !!"#! !!"# ,!!"#Δ!!"#$, !!"#$%)    (5-1) 

!!"#! = !!! !!"#$@!!"#! = 0|!!"#$ − !!! !!"#$@!!"#! = !!,!"#|!!"#$   

Here, !!"# is the reset (RST) pulse duration, !!"#! is the desired device test current, 
!!"#$% is the unwanted parasitic current in the test array (gate leakage, additional 
leakage from non-DUT transistors, etc.), !!"#$ is the measurement cell bias current, 
!!!"#$is the voltage swing determined by the measurement cell delay path trip 
point, and !!!"!is the total integration capacitance at the ramp output node. 

To account for the nonlinearity in the formula [5-11], each unit cell pair 
must be calibrated individually by measuring a full !!"#$ vs. frequency counter 
digital output D curve over the desired operating range, which can be used as a 
lookup table to find the corresponding test current given a measured counter 
output. Here, the test current is sampled differentially before and after the desired 
test device is selected by the scan chain in order to eliminate possible parasitic 
background current !!"#$%. Meanwhile, this calibration procedure will generate the 
indirect measurement of !!"# during the function !!!!parameter fitting, which we 
will use later in our circuit performance modeling study. 

 

 

5.3 Transistor Model Statistical Characterization 

 

5.3.1 Dataset Description and PSP Model Parameter Review 
 

The measured test chip (labeled: chip3) contains 96 cell pairs per column 
and 48 cell pairs per row. There are two types of unit cell pairs: a normal I-V 
characterization unit, in which the VGS of each DUT can be controlled 
independently to sweep across desired measurement voltage range (VDS is set at 
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50mV for better Vth and noise characterization for other collaborating work), and a 
leakage current characterization unit, in which VDS modulation is used to control 
drain to source leakage current for DUTs that already have VGS=0V. Therefore, 
there are only 96*18=1728 cell pairs measured for I-V characterization data (out 
of the 24 I-V cell pairs per row, 6 of them are not included due to ill-functioned 
behavior caused by their periphery array location). 

Table 5-1 summarizes the quantity of various PMOS device types 
included in the chip. Here, we pick PMOS I-V data, which is more prone to error 
as it is not limited by the predefined!!!"#$. Each I-V DUT cell contains 24 PFETs, 
with six unique device types. The high VTH (HVT), low VTH (LVT), and regular 
VTH (RVT) devices are used to validate leakage current measurement trends as 
well as explore variability as a function of threshold voltage. Only two device 
dimensions are considered: minimum-sized transistors (80nm/30nm) for digital 
gates and longer devices (80nm/86nm) for analog applications. It allows more 
devices of each type to be incorporated within each DUT cell by including only a 
few dimensions, which will create a larger statistical dataset and improve the 
likelihood of capturing corner cases of interest.  

 

 

PMOS DUT 
Quantity DUT VTH flavors HVT RVT LVT 

DUT dimensions 
(W/L) 

1728*24= 
41472 

1728*8= 
13824 

1728*8= 
13824 

1728*8= 
13824 

80nm/30nm 1728*12= 
20736 

1728*4= 
6912 

1728*4= 
6912 

1728*4= 
6912 

80nm/86nm 1728*12= 
20736 

1728*4= 
6912 

1728*4= 
6912 

1728*4= 
6912 

 
Table 5-1 Summary of DUT types included in the measurement dataset. 

 

The foundry-wrapped PSP models applied within the design kit of this 
characterization chip have its own set of statistical model parameters. We adopt a 
subset of the foundry default parameter set based on both the design kit and Table 
4-1, shown in Table 5-2. 
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Param. Description Param. Description 

vfbo  
 

Geometry-independent flat-band 
voltage 

toxo Gate oxide thickness 

nsubo Geometry-independent substrate 
doping 

npo Geometry-independent gate 
polysilicon doping 

dphibo Geometry-independent offset of !! rsw1 Source/drain series resistance 
 

cto Geometry-independent part of 
interface states factor CT 

thesato Geometry-independent 
velocity saturation 

cfl Length dependence of CT novo Effective doping of overlap 
region 

uo Zero-field mobility at TR xcoro Geometry-independent non-
universality 

themuo Mobility reduction exponent cso Geometry-independent 
Coulomb scattering 

 
Table 5-2 Candidates of PSP model parameters for statistical extraction  

(excerpt from design kit manual) 

 

 

5.3.2 Stepwise Compact Model Parameter Selection Results 
 

As discussed in Section 3.2.2, we have proposed and implemented a 
stepwise compact model parameter selection procedure to obtain an optimal set of 
model parameters for statistical compact model parameter extraction. Based on 
the chip design kit, we have chosen the industry standard PSP model wrapped 
with foundry’s confidential driver. 

SPICE simulation based sensitivity analysis of the HVT PMOS threshold 
voltage on the nominal model card (with nominal compact model parameter 
values from the foundry’s default model) is applied to select a “starting” subset of 
the standard PSP statistical model parameters. The normalized confidence 
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intervals (CIs), described in the Equation 3-7, of these parameters are treated as 
extraction quality criteria for parameter selection. This starting parameter set can 
capture the variations in device performance with low-VDS operations, where our 
measurements are collected. The dataset presented here is obtained from chip3, 
with minimum-sized HVT PMOS transistor full I-V curves among cells across 96 
rows and 18 columns. 

The stepwise compact model parameter selection algorithm starts with an 
“initial” set of 8 PSP model parameters. Model parameters with the “worst” 
extraction quality are removed iteratively. This procedure stops when excluding 
more parameters will severely deteriorate the fitting quality, as represented by the 
relative residual fitting error. As shown in Figure 5-6, the optimal four-parameter-
set, {vfbo, uo, toxo, cto} has clear physical property representations in the model 
equation, a reasonable model fitting error (1.138) and a far simpler statistical 
correlation structure.  

The parameters that are excluded during the procedure either have no 
variability representation (novo) or have unreliable extraction values of hitting the 
preset boundary values (npo). Furthermore, from the correlation plot of the final 
optimal parameter set, we can see a clear “grouping” effect, which indicates 
clusters (or groups) within the dataset. Just by preliminary data structure 
examination, we can speculate that the different scan channel number within each 
DUT cell can contribute to this dissection of dataset. GMM estimation in the later 
section will help verify this hypothesis by better visualization. 
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Stepwise parameter selection results with HVT PMOS I-V data  
from chip3 on PSP model (continued on next page) 
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Figure 5-6 Stepwise parameter selection results with HVT PMOS I-V data  

from chip3 on PSP model. 
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5.3.3 Linear SBPV Device Characterization Results 
 

The within-chip spatial pattern of the optimal four-parameter-set, {vfbo, 
uo, toxo, cto} of the HVT PMOS transistors are shown in Figure 5-7. 

 

 

Figure 5-7 Chip maps of extracted compact model parameters {toxo, vfbo, uo, cto}; 
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The mobility parameter {uo} does not show any significant across-chip 
pattern (but rather flat with a few outliers), which is in line with the fact that 
mobility variation in PSP compact model is mainly associated with the result of 
random dopant fluctuation and is largely dominated by the random components 
[5-10]. On the other hand, the parameters {vfbo, cto} both show a clear cross-chip 
pattern that varies along the columns of the DUT cell array, which will be 
captured by the SBPV method described in Chapter 3. We decompose the 
variability in the selected transistor I-V measurement points and apply our SBPV 
method to extract spatial patterns (parabolic surfaces along chip columns plus 
random components) of model parameters through linear propagation. The results 
are shown in Figure 5-8. 

 

 

 

 Chip level variation decomposition for {toxo, vfbo} calculated from SBPV method  
(more parameters next) 
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Figure 5-8 Chip level variation decomposition for {uo, cto} calculated from SBPV method; 

 

 

5.4 Statistical Circuit Modeling and Verification Results 
on Critical Path Delays 

 

5.4.1 Circuit Performance GMM Results 
 

We have developed Python-based customized scripts to drive standard 
HSPICE Monte Carlo (MC) simulations incorporating our variability-aware 
compact models. The scripts can accommodate pre-defined compact model 
statistical parameters without hacking into the standard MC simulation flow. 
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However, with a complex correlation structure among extracted model parameters, 
Gaussian mixture models will be applied first to build mean/variance estimations 
of potential mixtures through the EM algorithm. 

Our employment of GMM on the extracted model parameters falls within 
a general clustering problem (we do not have the “group label info”), which 
requires a systematic exploration of the number of mixture components. Here, 
with prior knowledge of four different scan channel number within the dataset, we 
limit the maximum mixture components to 4. The visualization of two parameters 
{vfbo, cto} is shown in Figure 5-9, with the final selected 2-component GMM 
details shown in Figure 5-10.  

 

 

Figure 5-9 Fitting GMM contours with different number of mixture components on 
extracted model parameter pair {vfbo, cto} for visualization; 
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Figure 5-10 Surface plot, scatter plot and fitted GMM contours with 2 mixture components 
on extracted model parameter pair {vfbo, cto} for visualization; 

 

 

5.4.2 Customized MC Simulation Results 
 

We pick the critical path delay of the RST block as our target performance 
metric, because measurements of this circuit performance metric can be obtained 
simultaneously with device characterization data (during the calibration phase) to 
reduce systematic error. The data presented here are collected from chip3, 
fabricated in 28nm bulk technology, with DUT cells across 96 rows and 18 
columns.  

Figure 5-11 shows the comparison results of measurements vs. simulations. 
QQ-plots are added for complete comparison and clear visualization of the 
distribution. The “full standard” Monte Carlo simulations are based on the full 
compact model embedded in the default design kit. The results show that 
customized MC simulations using the compact variability model with only 
parameters that were selected from Figure 5-8, match the full MC simulation 
results in distribution estimation.  
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The 4-parameter customized MC simulation results present very similar 
histograms and standard deviations compared to the measurement data, though 
missing the non-Gaussian tail. Furthermore, as shown in Figure 5-11, the optimal 
statistical model parameter set for simulation is the same as for extraction, which 
is {toxo, vfbo, uo, cto} based on the nominal PSP model. Redundant compact 
model statistical parameters (results with P6 and P8) slow down the simulation 
without improving the overall accuracy in circuit performance distribution 
estimation. This is a strong validation of our proposed model characterization 
methodology.   

In order to capture the final missing components in the distribution 
estimation, GMMs are introduced to capture the non-Gaussian tail of the 
measurement data. As shown in Figure 5-12, standard full MC results tend to give 
a strict normal distribution (linear QQ plot) due to its intrinsic parameter sampling 
algorithm. Our GMM-incorporated customized MC simulation results, though 
have different mixture components, give a pretty good prediction of the overall 
statistical distribution of the target circuit performance. 
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Comparison of measurements vs. full standard MC simulations vs.  

customized MC simulations using extracted model parameters 
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Figure 5-11 RST critical path delay metric 

Comparison of measurements vs. full standard MC simulations vs.  
customized MC simulations using different reduced set of extracted model parameters.  
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Figure 5-12 Comparison of measurement, standard full MC  
and customized MC with GMM models.  



CHAPTER 5. Stat. Dev. Char. and Circ. Modeling w/ Imaging ROIC Data 99 

 
 

5.5 Summary 

Our proposed statistical compact model characterization methodology has 
been implemented on a PSP model with 28nm imaging ROIC based transistor 
array test chip measurement data. We built a CAD flow with a customized MC 
simulation platform to utilize the SBPV models generated from the extracted 
compact model parameters for statistical circuit performance estimation. 
Simulation results on RST block critical path delay performances are very close to 
measurements in statistical distributions. Furthermore, we exploit the statistical 
structure of the extracted parameters to capture the nonlinear correlations and the 
non-Gaussian distributions through a mixture of Gaussian distributions [5-11]. 
We demonstrate that our simplified model, when incorporated into our 
customized MC simulations, can capture non-normality in the measured data. 
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Chapter 6 
 
Conclusion 

 

6.1 Summary and Thesis contribution 
 

Variability modeling and extraction in advanced process technologies is a 
key challenge to ensure robust circuit performance as well as high manufacturing 
yield. In this thesis, we present an efficient framework for device and circuit 
variability modeling and extraction by combining a variability-aware compact 
transistor model characterized using customized test structure designs, and 
customized Monte Carlson simulation method for utilizing these models.  

We start with a test chip design and measurement of device array 
including different combinations of gate length/width dimensions and different 
layout proximities, which allow for the collection of data that can be used to 
analyze random and systematic variability. We take care of the limited I/O pads 
by designing selection circuitry with a decoder or multiplexer to access a device 
in the array. We examine the leakage path and minimize its impact on the 
measured device characteristics. The variation sources identified in this 
experiment will help build variability-aware compact models of transistors with 
physically meaningful parameters sensitive to variability observed in the 
manufacturing process. 

A critical problem in design for manufacturability (DFM) is to build 
statistically valid prediction models of circuit performance based on a small 
number of measurements taken from on-chip test structures. Towards this goal, 
we propose a statistical compact modeling methodology based on stepwise 
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parameter selection and linear spatial BPV for fast statistical compact model 
characterization. The methodology has been implemented on a PSP model with 
28nm FDSOI SRAM cell bit transistor data, as well as 28nm bulk imaging ROIC 
transistor I-V data (which includes chip spatial info and linear SBPV part of the 
methodology is validated on this dataset).  

Finally, the key contribution of this thesis work is that we built a CAD 
flow with a customized MC simulation setup to utilize these variability-aware 
compact transistor models for statistical circuit performance estimation. 
Simulation results on SRAM writability performances are very close to on-chip 
measurements in statistical distributions. In the imaging ROIC data, we further 
exploit the extracted compact model parameters through a mixture of Gaussian 
modeling, and demonstrate that significant non-normality in the measured data 
can be captured by our customized MC simulation platform using these simplified 
statistical compact transistor models.  

 

 

6.2 Suggestions for Future Work 

 

6.2.1 Process Variation Ahead 
 

The semiconductor industry has seen a remarkable progression in 
integrated circuit technology over the years, which helped to usher in the personal 
computing era, mobile and cloud based computing, and the emerging market of 
Internet of Things (IoT). Underlying this success is the unwavering determination 
and resiliency to keep up with Moore’s Law, despite all the technical challenges. 
Unfortunately, all exponential growth trends eventually come to an end, and 
Moore’s Law is no exception. There are signs that the end of Moore’s Law may 
not be far out. Market analysis shows that the cost of manufacturing a transistor is 
no longer decreasing, starting from the 28nm technology node as shown in [6-1]. 
Since the motivation behind Moore’s Law is to reduce cost, the recent trend for 
transistor manufacturing costs is of major concern. Chip design costs have also 
risen rapidly with each new technology node. In fact, an apparent slowdown can 
be observed when looking at the volume production at a given technology node vs. 
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the year it is introduced. Starting from the 32nm technology node, the introduction 
of new generation of chips is taking longer than before, shown in [6-2]. 

 

 

6.2.2 Variation Prediction within a Process Development 
Cycle 
 
 

For the statistical compact model characterization methodology described 
in Chapter 3, we made an important assumption that the nominal physical core 
part of the compact transistor model is fixed given a detailed technology. 
However, this assumption is only valid for a mature technology where key 
process steps are stable. In practical product development, winning in the 
marketplace requires system development teams to bring a better product to the 
market ahead of the competition and to continuously improve the yield of that 
product. In addition, to continue design success and make an impact on leading 
products, advanced circuit design exploration must begin in parallel with early 
silicon development.  

For example, Intel has adopted a development cycle model named “Tick-
Tock", where a new line of processors is released shortly after a shrinking of the 
process technology [6-3]. However, simulations with an early version of the 
design kit may have large differences with realistic or later manufacturing output 
of the technology. For each process development cycle, the specification for each 
technology is typically tighter than that which can be achieved early in its life 
cycle. By the time the designs enters the fab in volume, the technology would 
have been refined to the point that it can achieve tighter tolerances that typically 
at the beginning of the technology introduction.  

It would be interesting and important to dynamically predict parameter 
variations for a later targeted release date, with only early stage process 
information for the targeted technology, and with historical information on how 
past technologies have evolved for a complete process development cycle. 
Extrapolations of the shrinking covariance matrices for model parameters over 
time as the process matures can be used to predict yield improvement trends or 
expectations. A methodology could be introduced using the Bayesian framework 
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[6-4][6-5], with sophisticated prior selection and belief propagation to learn the 
evolution of process tolerances over the lifetime of a manufacturing technology.  
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