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ABSTRACT OF THE DISSERTATION

High Precision Bootstrapping of Approximate Homomorphic Encryption

by

Nathan Manohar

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Amit Sahai, Chair

The CKKS homomorphic encryption scheme is a homomorphic encryption scheme that

supports approximate arithmetic over real/complex numbers. Due to its ability to natively

compute over real numbers, the CKKS homomorphic encryption scheme is considerably more

efficient than other schemes for many real world applications that naturally lend themselves

to computation over real numbers. Such applications include, for example, privacy-preserving

machine learning and secure genome analysis.

In the CKKS homomorphic encryption scheme, ciphertexts have an associated level,

which is reduced as homomorphic computation is performed. Eventually, a ciphertext is

at the lowest level, and no further homomorphic computation can be performed. In order

to evaluate high depth circuits, it is necessary to bootstrap a ciphertext using a procedure

called bootstrapping, which takes a ciphertext at the lowest level and increases its level so

that additional homomorphic computation is possible. Unfortunately, the bootstrapping
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procedure for CKKS has a large associated error, and, prior to this work, it was not possible

to perform high precision computations in CKKS since bootstrapping would reduce the

precision of the plaintext. Obtaining high precision bootstrapping of CKKS is particularly

important since many applications of CKKS require high precision computation.

In this dissertation, we show how to obtain high precision bootstrapping of CKKS. The

main challenge is to find low-degree polynomial approximations of the mod function in small

intervals around multiples of the modulus. We show the above by first showing how to

approximate the mod function in ε-sized intervals around multiples of the modulus using a

sine series, where our sine series of order n has error O(ε2n+1). This, after a Taylor series

approximation of the sine function, results in a low-degree polynomial approximation of the

mod function with small coefficients that can be used to approximate the mod function to

arbitrary precision, resulting in practical high precision bootstrapping of the CKKS homo-

morphic encryption scheme. We validate our approach by an implementation and obtain 100

bit precision bootstrapping as well as improvements over prior work even at lower precision.

The contents of this dissertation are based on a joint work with Charanjit S. Jutla.
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Chapter 1

Introduction

In its most primitive form, cryptography deals with methods of communicating secret mes-

sages between parties in a manner that hides the contents of these messages from other

external parties. Such methods are referred to as encryption schemes and come in two

types: private (or symmetric)-key encryption schemes and public-key encryption schemes.

Private-key encryption schemes are the simplest form of encryption schemes and in these

schemes, there is a shared secret key sk that can be used to encrypt and decrypt messages.

In public-key encryption schemes, the key consists of two parts: a public key pk and a se-

cret key sk. Encryption only requires the public key pk and, thus, anybody is capable of

encrypting messages in a public-key encryption scheme. While encrypting data succeeds in

hiding the data from external parties, it comes at the cost of eliminating functionality. For

example, if a client wants to store data on some external untrusted server, they can use an

encryption scheme to store their data in encrypted form on the server. However, if the client

later wants to learn something about the data (such as search for a particular entry), the
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client is unable to do so easily because the data stored on the server is encrypted. This basic

challenge has led to modern cryptography exploring methods of computing on encrypted

data. Encryption schemes that are capable of computing on encrypted data are referred to

as homomorphic encryption schemes.

1.1 Homomorphic Encryption

A homomorphic encryption scheme is an encryption scheme that additionally possesses an

evaluation procedure. This evaluation procedure takes as input a function f and a ciphertext

ct that encrypts some message m and returns a ciphertext ct′ that encrypts f(m). To make

such a notion non-trivial (and useful), we additionally require that the size of the ciphertext

ct′ does not grow with the size of f . A homomorphic encryption scheme that is capable of

evaluating all efficiently computable functions f is called a fully homomorphic encryption

scheme.

The problem of constructing fully homomorphic encryption (FHE) has a rich history,

and, it turns out, for a long time, it was not clear if it was even possible to construct FHE.

In 1978, Rivest, Adleman, and Dertouzos [RAD78] formalized the theoretical notion of FHE

and noted how incredibly useful it would be if it could be constructed. While it was known

how to construct somewhat homomorphic encryption schemes (RSA encryption [RSA78] is

multiplicatively homomorphic and El-Gamal encryption [ElG84] can be made either addi-

tively or multiplicatively homomorphic), at that time, it was unknown if constructing FHE

was even possible. For about three decades, this was the state of affairs until the world of

cryptography changed in 2009 with Craig Gentry’s breakthrough result [Gen09], which gave
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the first candidate construction of FHE that supported computing any general functionality.

This candidate was revolutionary because it was the first feasibility result, but at the same

time, it was very far from practical. However, over the last decade or so, cryptography re-

searchers have a put a lot of effort into improving the performance of FHE constructions and

now, we have several FHE schemes and implementation libraries that can be downloaded

and ran on a commodity laptop. Table 1.1 gives an overview of the state of the art FHE

schemes. These FHE schemes support different circuit types and plaintext types and, thus,

the FHE scheme one should use is determined by the application. However, these schemes all

share several common characteristics. For one, the security of all these FHE schemes relies

on the hardness of the learning with errors problem (LWE) [Reg09] or its ring variant ring-

LWE [LPR10]. Due to the reliance on this computational hardness assumption, ciphertexts

in these FHE schemes all have an associated “error” that grows during homomorphic com-

putation. Decryption operates by first recovering a noisy value and then “rounding” away

the error to obtain the message in the clear. This “error” enforces a computational budget.

After this computational budget has been exhausted, further homomorphic computation

cannot be performed. Following Gentry’s blueprint [Gen09], these FHE schemes possess a

bootstrapping procedure, which “refreshes” the computational budget of a ciphertext so that

additional homomorphic computation can be performed. By repeatedly alternating between

computing homomorphically and bootstrapping, these FHE schemes support unbounded

computation. In this dissertation, we will focus on improving the bootstrapping procedure

of the CKKS homomorphic encryption scheme.
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Table 1.1: Overview of FHE Schemes

Scheme Circuit Type Plaintext Type

BGV [BGV12] Arithmetic Mod p

BFV [Bra12, FV12] Arithmetic Mod p

GSW [GSW13] Boolean Bits

FHEW [DM15] Boolean Bits

TFHE [CGGI20] Boolean Bits

CKKS† [CKKS17] Arithmetic Real/Complex
† Only for approximate arithmetic

1.2 CKKS Overview

The work of [CKKS17] presented a new homomorphic encryption (HE) scheme for approxi-

mate arithmetic (called the CKKS-HE scheme) over real/complex numbers. Due to its ability

to natively approximately evaluate arithmetic circuits, the CKKS-HE scheme is considerably

more efficient than other schemes for many real world applications that naturally lend them-

selves to computation over real numbers. One of the key insights of [CKKS17] is to treat

the ciphertext “error” as part of the approximate arithmetic error, and, thus, no additional

mechanism is required to round away the ciphertext error after decryption. The CKKS-HE

scheme has found many applications, among them privacy-preserving machine learning and

secure genome analysis (see [KSK+18, MHS+20, BHHH19, KSW+18, SPTP+20, KHB+20]

for some examples).

However, the initial CKKS-HE scheme was only capable of evaluating low depth circuits

since it lacked a bootstrapping procedure to “refresh” the computational budget of a cipher-
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text to enable further homomorphic computation. In CKKS, ciphertexts have an associated

level and homomorphic multiplication consumes a level. Thus, if a fresh ciphertext was at

level L, then one can only evaluate arithmetic circuits with multiplicative depth L− 1 until

one ends up with a ciphertext at level 1, on which no additional homomorphic computa-

tion can be performed. Therefore, the initial CKKS-HE scheme is a leveled homomorphic

encryption scheme, since there is a bound on the depth of circuits it can evaluate, and the

parameters of the scheme scale with this depth. The consequence of this was that many

real world applications (computations with multiplicative depth greater than ≈ 20–25) were

practically infeasible due to the computational inefficiency caused by the parameter growth.

1.2.1 Bootstrapping of CKKS Homomorphic Encryption

This was remedied when [CHK+18a] introduced the first bootstrapping procedure for the

CKKS-HE scheme which enabled, for the first time, arbitrary depth computations in CKKS.

An observant reader may note that supporting arbitrary depth computations seems contra-

dictory to the fact that CKKS is only for approximate arithmetic. In particular, as more

computation is performed, the precision of the plaintext value decreases until, eventually,

the encrypted message is nothing but noise. While this is true, bootstrapping for CKKS is

essential since, as discussed above, it enables evaluating larger depth circuits without greatly

increasing the parameter sizes, making evaluating such circuits practically feasible. One crit-

ical point to note is that since CKKS is only for approximate arithmetic, the bootstrapping

procedure for CKKS differs from that of other FHE schemes. In particular, bootstrapping in

other FHE schemes follows Gentry’s blueprint [Gen09] and involves evaluating the decryption
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circuit homomorphically on an encryption of the secret key in order to reduce the ciphertext

error to enable further homomorphic computation. However, since decryption in CKKS is

only approximate, the standard bootstrapping procedure would not succeed in reducing the

ciphertext error. Instead, the goal of CKKS bootstrapping is only to refresh the ciphertext

level (from 1 to some higher level L′) to enable further homomorphic computation, and the

ciphertext error actually increases as a result of CKKS bootstrapping. Unfortunately, the

error associated with the bootstrapping procedure in [CHK+18a] is so large that only the

most significant 20–25 bits of the message are preserved. The consequence of this is that

it was not possible to perform high precision computation in CKKS since as soon as boot-

strapping was required, all but the most significant bits of the message would be destroyed.

This naturally leads to the question that is the focus of this dissertation

How can we limit the error growth associated with the bootstrapping procedure so that high

precision computations can be performed?

The reason obtaining high precision bootstrapping for CKKS is important is that one of

the main applications of CKKS is privacy-preserving machine learning. However, many ML

algorithms require high precision computation in order to converge. This may be especially

true during the learning phase of neural networks, which involves back propagation and

integer division by private integers. Additional nonlinear steps involve pooling functions,

threshold functions, etc. Moreover, due to their high depth, computing these ML algo-

rithms homomorphically without bootstrapping is infeasible. Thus, for privacy-preserving

ML applications, high precision bootstrapping is required.
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The State of the Art Prior to This Work

To understand the challenges associated with achieving high precision bootstrapping in

CKKS, we will first give an overview of the state of the art prior to this work. All bootstrap-

ping procedures for CKKS (including this work) follow the general bootstrapping template

introduced in [CHK+18a]. As mentioned previously, ciphertexts in CKKS have an associated

level from 1 to L. The level ` of the ciphertext determines the ciphertext modulus q`, which

can be thought of as q` for some fixed base modulus q. Recall that the goal of bootstrap-

ping is to take a ciphertext ct at level 1 (with respect to modulus q) and transform it into

a new ciphertext ct′ at some higher level ` to enable further homomorphic computation.

For bootstrapping to be useful, we necessarily require that ct′ encrypts approximately the

same message as ct. Bootstrapping for CKKS involves viewing a ciphertext ct with a small

modulus q as a ciphertext with respect to the largest modulus qL and then homomorphi-

cally computing coefficient rounding modulo q to obtain a new ciphertext ct′ that encrypts

approximately the same message as ct with respect to a larger modulus q`, enabling further

homomorphic computation. Thus, a challenge here is to compute the mod function homo-

morphically, which is not easily representable via an arithmetic circuit. In fact, the mod

function modulo q on the interval [−Kq,Kq] for some integer K is not even a continuous

function. However, [CHK+18a] made the clever observation that in the CKKS-HE scheme,

we have an upper bound m on the size of the message, which can be made much smaller

than q. In this situation, we actually only need to be able to compute the mod function on

points in [−Kq,Kq] that are a distance at most m from a multiple of q. In this case, the

mod function is periodic with period q and is linear on each of the small intervals around a
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multiple of q. Figure 1.1 shows the mod function along with the intervals for approximation.

Figure 1.1: The mod function with modulus q = 1000. The solid red lines represent the
intervals on which we need to approximate.

The work of [CHK+18a] further observed that the mod function [t]q on these intervals

can be approximated via a scaled sine function S(t) = q
2π

sin
(

2πt
q

)
. This approximation

introduces an inherent error that depends on the message upper bound m. Let ε denote the

ratio m
q

. Then, it can be shown that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in bootstrap-

ping provided that S(t) can be well-approximated by a low degree polynomial. The work

of [CHK+18a] along with several followup works [CCS19, HK20] proceeded to provide meth-

ods of approximating this scaled sine function (or scaled cosine function in the case of [HK20])

by a low-degree polynomial, which can then be plugged into the bootstrapping procedure

of [CHK+18a]. However, due to the inherent error between the mod function [t]q and the

scaled sine function S(t), this approach has a “fundamental error” that will occur regardless
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of how S(t) is approximated. Figure 1.2a shows the scaled sine approximation of the mod

function and Figure 1.2b shows this approximation zoomed in on the interval around the

origin.

(a) (b)

Figure 1.2: Scaled sine approximation of the mod function.

One of the problems with this is that in order for the error to be O(1) (and, therefore,

not destroy the message), m must be O(q2/3). This means that we must begin bootstrapping

while the size of the encrypted message is considerably smaller than q, which is a source of

inefficiency in the bootstrapping procedure, particularly in applications that require high

precision. An even greater problem is that when homomorphically computing the mod

function, we must treat qI + m for some integer I as the input, which we refer to as the

bootstrapping plaintext. The issue with this is that if q is significantly larger than m, then

since the number of modulus bits “consumed” by each homomorphic multiplication of the

mod function is the size of the bootstrapping plaintext, these homomorphic multiplications

will consume significantly more modulus bits than normal homomorphic operations. Thus,

it is inefficient to obtain high precision bootstrapping by simply increasing q to decrease

ε. Instead, in order to obtain high precision bootstrapping, it is beneficial to obtain good
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polynomial approximations to the mod function for fixed ε. An additional challenge to ob-

taining high precision bootstrapping is that the approximation to the mod function must

be representable by a low-degree polynomial. If the degree of the polynomial is too high,

evaluating it homomorphically may consume almost all of the ciphertext modulus, leaving

the ciphertext after bootstrapping incapable of performing many homomorphic operations.

Compounding this challenge is the fact that the coefficients of the low-degree polynomial

approximation to the mod function must additionally be small. This is because if the coef-

ficients are large, when evaluating the polynomial, the basis polynomials must be computed

to higher precision to ensure the stability of the computation, since errors introduced by

approximate arithmetic are amplified by large coefficients.

Recently, the works of [LLL+21] and [JM20] were able to bypass the “fundamental error”

in the approximation of the mod function by a scaled sine function to obtain higher-precision

bootstrapping. [LLL+21] attempts to avoid the scaled sine function by finding the optimal

minimax polynomial of a fixed degree that approximates the mod function via algorithmic

search. They use a variant of the Remez algorithm [Rem34] to obtain an approximation to

the optimal minimax polynomial of a given degree that approximates the modular reduction

function on the union of intervals containing points close to multiples of q. Unfortunately, as

observed by [LLL+21], the size of the coefficients of these polynomials are too large to enable

high precision bootstrapping. They then show that by using a composition of sine/cosine

and the inverse sine function and using the Remez algorithm to algorithmically search for

good polynomial approximations to these functions, one can obtain higher-precision boot-

strapping, but their bootstrapping method has only been shown to obtain 40 bit message
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precision in the latest version of their work. [JM20] avoids the “fundamental error” by

finding direct polynomial approximations of the mod function on small intervals around the

modulus via a new technique called modular Lagrange interpolation. The coefficients of

these polynomials were small enough to enable high precision bootstrapping. However, the

coefficients were still large enough that in order to evaluate the polynomial approximations,

one would need to operate at a higher precision than the bootstrapping plaintext. Ulti-

mately, this fact corresponded to the bootstrapping procedure losing additional levels, since

the computations during bootstrapping were operating at a higher precision. The authors

are able to obtain 67 bit precision bootstrapping in the latest version of their work.

1.3 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a different method

from that of [JM20] and more in line with the original sine function approach of [CHK+18a].

Instead of approximating the mod function directly, we first approximate the mod function

by a sine series and then approximate the sine function by its Taylor series (more precisely,

the Taylor series of eix). This is then followed by a series of squarings to approximate the

other terms in the sine series. We show that the sine series converges to the mod function

in small intervals around the modulus. In particular, our sine series of order n has error

O(ε2n+1) for approximating the mod function in ε-sized intervals around multiples of the

modulus. Figure 1.3 shows our sine series approximation of the mod function of order 4.

Observe that the red approximation regions are completely covered by our approximation.

Thus, we avoid the fundamental error of the scaled sine approach and are able to obtain
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Figure 1.3: Our sine series approximation of the mod function of order 4.

an approximation with arbitrarily small error in the desired intervals. Furthermore, the

coefficients of the sine series are small (in fact, they have norm < 2). This, combined with

the fact that the Taylor series expansion of sinx has small coefficients, leads to a polynomial

approximation of the mod function with small coefficients. Due to these small coefficients,

the whole polynomial can be computed at a precision only slightly larger than (−2n−1) log ε,

the precision of the approximation being sought.

We validate our approach by an implementation and obtain 100 bit precision bootstrap-

ping as well as improvements over prior work even at lower precision.

1.3.1 Problem Overview

Here, we provide a brief overview of the challenges of approximating the mod function for

use in CKKS-HE bootstrapping. We provide a thorough overview of the bootstrapping

procedure in Chapter 2. Recall, the goal of CKKS-HE bootstrapping is to take a ciphertext

ct at the lowest level and bring it up to the highest level so that homomorphic computation
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can continue. In other words, we wish to obtain a ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`,

where q is the lowest level modulus and q` represents a higher level modulus. Since errors

accumulated during homomorphic computation are not eliminated by decryption in CKKS-

HE, the goal is not to reduce the error in the ciphertext, but, rather, to increase the modulus

so that more computations can be performed. If one simply views the ciphertext ct as oper-

ating at the highest level qL, then it follows that 〈ct, sk〉 mod qL = qI+m. The magnitude of

I can be upper bounded and m� q and, thus, the challenge then becomes to compute mod

q on small intervals near multiples of q (we defer additional complications such as computing

on slots vs. coefficients to Chapter 2). Since CKKS-HE can compute homomorphic additions

and multiplications, we need a polynomial approximation to the mod function. However,

there are three crucial criteria that are relevant to the bootstrapping application.

• Error: The error of the approximation contributes additional error to the message m,

which, if large, will cause a loss in plaintext precision.

• Degree: The degree of the polynomial approximation determines the multiplicative

depth required to evaluate it. A larger multiplicative depth corresponds to losing more

modulus levels and, thus, if too large, the polynomial will not be able to be evaluated

homomorphically.
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• Coefficient Magnitude: The size of the coefficients of the polynomial approximation

determine the “evaluation precision” at which one must operate during bootstrapping.

Larger coefficients correspond to a larger “evaluation precision” in order to maintain

numerical stability, which, in turn, corresponds to losing more modulus bits per level.

Thus, it is critical that we obtain good low-degree polynomial approximations to the

mod function in small intervals around multiples of the modulus that additionally have

small coefficients. Moreover, as discussed previously, it is important the ratio m/q = ε is

not too small, since then the size of the bootstrapping plaintext qI +m will be significantly

larger than m, and homomorphically evaluating the approximation to the mod function will

consume a large number of modulus bits. Thus, one can think of ε as fixed to be, say 2−10.

1.3.2 Sine Series

As mentioned previously, several prior approaches to CKKS-HE bootstrapping approximated

the mod function via a scaled sine function. For simplicity, we will ignore the scaling for

the moment and try to obtain a good approximation to the mod 2π function. Thus, prior

works used sinx as an approximation of this function and noted that, for |x| < ε, the error

of approximation is O(ε3). It is well-known that the Fourier series of the mod function

(or sawtooth function) converges everywhere except the discontinuities. Unfortunately, the

rate of convergence is too slow, and the Fourier series does not give a good approximation

when the number of terms is small. Figure 1.4 demonstrates this, with Figure 1.4a showing

the Fourier series approximation of the mod function of order 4 and Figure 1.4b showing

this same approximation zoomed in on the interval around the origin, with the scaled sine
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approximation plotted in purple for comparison.

(a) (b)

Figure 1.4: Fourier series approximation of the mod function of order 4.

Instead, we will approximate the mod function by a different sine series such that it

converges to the mod function near multiples of the modulus very quickly. As a warmup,

suppose we added a sin 2x term to our approximation of the mod function. If we can

determine coefficients β1 and β2 such that the Taylor series expansion of β1 sinx+ β2 sin 2x

is x + x5p(x) for some polynomial p(x), then for |x| < ε, the error of approximation will be

O(ε5), an improvement on sinx. Thus, looking at the x and x3 terms in the Taylor series

expansions of sin x and sin 2x, we wish to determine β1, β2 such that β1 + 2β2 = 1 (so that

the coefficient of x is 1) and β1 + 23β2 = 0 (so that the coefficient of x3 is 0). This can be

solved to yield β1 = 4/3, β2 = −1/6. This intuition can then be extended to give an n-term

sine series with error O(ε2n+1). We will show that the βi’s are small and, thus, the resulting

low-degree polynomial approximation has small coefficients. Moreover, we will show that the

constants hiding in the big-O notation are reasonable, and the dependence on n is minor.
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On Approximating Arcsine

An alternative way to view our result is that having computed the periodic function sinx,

our sine series allows us to compute arcsin (of sin x) using an angle-multiplication compu-

tation. In other words, since we showed above that x = 4/3 sinx − 1/6 sin 2x + O(x5) (for

small x, and hence small sinx), then equivalently arcsin y = 4/3 y−1/6 d(y) +O(y5), where

d is a function such that d(sinx) = sin 2x. However, d(sinx) is not a simple polynomial

function of sinx (as opposed to the easy double-angle formula for cosx), and this way of

computing arcsin y cannot use a simple polynomial of y. While good polynomial approxi-

mations of arcsin y might exist (for small y), there seems no simple methodology to obtain

this. Instead, [LLL+21] use the Remez algorithm to obtain a best fit low degree polynomial

approximation of arcsin. This algorithmic approach has the drawback that while the poly-

nomial degree maybe small, the coefficients of the polynomial output by Remez algorithm

can be of arbitrary size. Fortunately, [LLL+21] report that the coefficients are small enough

to obtain 40-bit precision bootstrapping, although it is not clear if this holds in general.

Our approach is different, as we utilize the potential of CKKS-HE to compute on complex

numbers. Thus, instead of first computing sinx and then its arcsin, we first compute the

periodic function eix (using its Taylor series approximation) and then compute its logarithm.

Thus, given that x = 4/3sin x−1/6sin 2x+O(x5), we also get that x = Im(4/3eix−1/6e2ix)+

O(x5) (for small x). Most importantly, it is a polynomial in its argument (i.e. eix) with small

coefficients. Thus, this allows for an easy homomorphic computation.
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1.3.3 Organization

In Chapter 2, we describe the CKKS-HE scheme and its bootstrapping procedure. In Chap-

ter 3, we formalize the above intuition and prove explicit error bounds for the sine series

approximation of the mod function. In Chapter 4, we implement bootstrapping using our sine

series approximation and give performance metrics and comparisons with prior approaches.
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Chapter 2

The CKKS Homomorphic Encryption

Scheme

In this chapter, we describe the CKKS homomorphic encryption scheme [CKKS17] and its

bootstrapping procedure introduced in [CHK+18a].

2.1 Defining Approximate Homomorphic Encryption

A public-key approximate homomorphic encryption scheme AHE = (KeyGen,Enc,Dec,Eval)

consists of four probabilistic polynomial-time (PPT) algorithms. Let M = Mλλ∈N denote

the message space of the scheme with an associated norm || · ||. Let C = {Cλ}λ∈N denote

the circuit family of the scheme with outputs in M. Let E denote an error function that

takes as input the security parameter 1λ and a circuit C ∈ C (or ⊥) and outputs an upper

bound on the approximate homomorphic computation error. The algorithms of AHE have

the following syntax.
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• KeyGen(1λ): On input the security parameter 1λ, KeyGen outputs the public key, secret

key, and evaluation key (pk, sk, evk).

• Enc(pk,m): On input the public key pk and a message m ∈M, Enc outputs a cipher-

text ct.

• Dec(sk, ct): On input the secret key sk and a ciphertext ct, Dec outputs a message

m′ ∈M.

• Eval(evk, C, ~ct): On input the evaluation key evk, a circuit C ∈ C with ` inputs, and

vector of length ` of ciphertexts ~ct, Eval outputs a ciphertext ct′.

We require an approximate homomorphic encryption scheme to satisfy the following

properties.

Definition 2.1.1 (Approximate Correctness). For all λ ∈ N, for all m ∈Mλ,

Pr


(pk, sk, evk)← KeyGen(1λ)

ct← Enc(pk,m)

||Dec(sk, ct)−m|| ≤ E(1λ,⊥)

 = 1− negl(λ)
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and for all λ ∈ N, for all circuits C ∈ Cλ with ` inputs, for all m1,m2, . . . ,m` ∈Mλ,

Pr



(pk, sk, evk)← KeyGen(1λ)

cti ← Enc(pk,mi) for i ∈ [`]

ct′ ← Eval(evk, C(ct1, ct2, . . . , ct`))

||Dec(sk, ct′)− C(m1,m2, . . . ,m`)|| ≤ E(1λ, C)


= 1− negl(λ).

Definition 2.1.2 (Compactness). There is a fixed polynomial poly(·) such that for all λ ∈ N,

for all circuits C ∈ Cλ with ` inputs, for all m1,m2, . . . ,m` ∈Mλ,

Pr



(pk, sk, evk)← KeyGen(1λ)

cti ← Enc(pk,mi) for i ∈ [`]

ct′ ← Eval(evk, C(ct1, ct2, . . . , ct`))

|ct′| ≤ poly(λ)


= 1.

Definition 2.1.3 (IND-CPA Security). For any PPT adversary A, there exists a negligible

function negl(·) such that for all sufficiently large λ ∈ N, the advantage of A is

AdvIND−CPA
A =

∣∣∣Pr[ExptIND−CPAA (1λ, 0) = 1]− Pr[ExptIND−CPAA (1λ, 1) = 1]
∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptIND−CPAA (1λ, b) is defined as follows:

1. Generate (pk, sk, evk)← KeyGen(1λ) and send (pk, evk) to A.

2. A outputs a pair of messages m0,m1 ∈Mλ.
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3. Run ct← Enc(pk,mb) and send ct to A.

4. A outputs a bit b′, and the output of the experiment is set to b′.

For certain applications, the notion of IND-CPA security may be insufficient since it does

not provide any guarantee if the results of decryption (which are only approximately correct)

are given to the adversary. We examine this issue in more detail when we discuss the security

of the CKKS homomorphic encryption scheme later in this chapter.

2.2 CKKS Preliminaries

Throughout, let Zq denote the integers modulo q in balanced representation (in [−q/2, q/2)).

Let N be a power of 2 and Φ2N(X) = XN + 1 be the 2Nth cyclotomic polynomial of degree

N . Let R = Z[X]/Φ2N(X). For an integer q, let Rq = Zq[X]/Φ2N(X). We refer to N as

the ring dimension of R. The 2Nth roots of unity are e
2πi
2N

k for k = 1, 2, . . . , 2N , and the

φ(2N) = N primitive 2Nth roots of unity are e
2πi
2N

k for odd integers k between 1 and 2N . The

N primitive 2Nth roots of unity are the roots of the 2Nth cyclotomic polynomial Φ2N(X).

Let ζ = e
2πi
2N . The Galois group of Q[ζ]/Q is given by the automorphisms σk that map ζ to ζk

for odd integers k between 1 and 2N . This Galois group is isomorphic to Z∗2N ∼= ZN/2 × Z2.

The security of the CKKS homomorphic encryption scheme is based on the ring-LWE

(RLWE) assumption [LPR10]. We will use a version of the RLWE assumption defined for

cyclotomic rings of degree N for N a power of 2 and secret keys with low Hamming weight.
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Let R and Rq be defined as above. Fix s ∈ R. For a real σ > 0, let χ denote the distribution

over R obtained by sampling each coefficient independently from the discrete Gaussian

distribution with variance σ2. Let Ds,χ denote the distribution over R2
q obtained by sampling

a← Rq uniformly at random, sampling e← χ, and outputting (a, b = a ∗ s+ e mod q). Let

S denote a distribution over R.

Definition 2.2.1 (Ring-LWE Assumption). No probabilistic polynomial-time adversary A,

given polynomially many independent samples, can distinguish with non-negligible advantage

between the distribution Ds,χ with s← S and UR2
q
, the uniform distribution over R2

q.

In the above definition, we have left S, the secret distribution, unspecified. Theoretical

results [LPR10, LPR13] justify setting S to be the same as the error distribution χ. However,

for improved efficiency, CKKS employs a ternary secret distribution, where the coefficients

of s ∈ R are all in {−1, 0, 1}. We will utilize two different secret distributions. The first,

HWT (h), for a positive integer h, is the uniform distribution over ternary secrets with

Hamming weight h. That is, HWT (h) is the distribution over R obtained by sampling

uniformly over the set of vectors in {−1, 0, 1}N with Hamming weight h and then viewing

this vector as the coefficient vector of an element of R. The second distribution is simply

the distribution over ternary secrets where each coefficient is sampled independently from

the same probability distribution over {−1, 0, 1}. The particular distribution we will use will

have 0 occur with probability 1/2 and −1 and 1 occur each with probability 1/4.

Although ring-LWE with sparse secrets lacks a reduction to worst-case lattice problems,

the security of ring-LWE with sparse secrets has been studied, and the parameters N, q, σ, h

must be delicately chosen to obtain the desired security level λ. Please refer to [CP19, Alb17,
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APS15] for security analysis and appropriate parameter choices.

2.3 Message Space Encoding

The message space of CKKS will be ring polynomials m(X) ∈ R with sufficiently small norm.

In order to support real/complex arithmetic, it is necessary to map such numbers into the

polynomial ring R. To begin, the reverse is possible using the canonical embedding σ : R →

CN defined by σ(m(X)) = [m(ζ),m(ζ3),m(ζ5), . . . ,m(ζ2N−1)], where ζ is a primitive 2Nth

root of unity. That is, σ is defined to be the resulting complex vector obtained by evaluating

m(X) at all the primitive 2Nth roots of unity. Since the primitive 2Nth roots of unity come

in conjugate pairs, these evaluations also come in conjugate pairs since m(ζj) = m(ζj). This

follows since

m(ζj) =
N−1∑
k=0

mkζ
kj =

N−1∑
k=0

mk(ζ−kj)

=
N−1∑
k=0

mk(ζ−kj) = m(ζj),

where the equality in the second line follows from the fact that the mk’s are integers.

Thus, overloading notation, one can consider the restricted canonical embedding σ : R →

CN/2 that only evaluates the ring polynomial at one of the primitive roots in each conjugate

pair. For easy interaction with the Galois group, these primitive roots are chosen to be

ζ, ζ5, ζ5
2
, . . . , ζ5

N/2−1
. Extending σ to also operate on polynomials with real coefficients, it

is also possible to define an isometric ring isomorphism between S = R[X]/ΦM(X) and
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CN/2, where for an element m(X) ∈ S, it has the canonical embedding norm ||m||can∞ =

||σ(m)||∞. This means that polynomial addition and multiplication in S is mapped to

coordinate-wise addition and multiplication in CN/2 and, moreover, norms of elements are

preserved. This is crucial because, as we will see, it enables packing N/2 complex numbers

into a single CKKS ciphertext and performing the same operations on each entry in the

complex vector independently. These different entries in the complex vector are referred to

as the plaintext slots. Moreover, preserving norms is essential because CKKS is only for

approximate arithmetic, and the fact that norms are preserved ensures that small errors in

the coefficients of m(X) will map to small errors in the plaintext slots.

Since the message space is the ring R, it is necessary to first round a vector of complex

numbers z in CN/2 to the image of σ(R) before inverting. There are various methods to

round to the image of σ(R) with small rounding error, which we will not discuss here. In

order to maintain a larger number of bits of precision, one can first multiply z by a scaling

factor ∆ ≥ 1 before rounding to the image of σ(R) and mapping to R. A plaintext ring

polynomial m(X) is decoded to z by simply applying σ and dividing by the scale factor ∆.

2.4 Approximate HE Construction

We are now ready to describe the construction of the CKKS homomorphic encryption scheme.

The message space of the scheme is polynomials m in R with ||m||can∞ < q/2 for a base

modulus q. As discussed above, one can map a vector in CN/2 of fixed precision into R. A

ciphertext ct encrypting a message m ∈ R is an element of R2
q`

for some ` ∈ {0, . . . , L}. `

refers to the “level” of the ciphertext. In [CKKS17], q` = p`∗q for integers p and q. However,
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q` can be set in other ways (such as via an RNS basis [CHK+18b]). It can be convenient to

have p and q be powers of 2 so that every q` is a power of 2. In this case, instead of referring

to a ciphertext by its level, we can refer to it by the number of ciphertext modulus bits

(log2 q`). The advantage of this is that instead of reducing a ciphertext modulus by an entire

level at a time, we can reduce the ciphertext modulus by a fixed number of bits. This allows

for more fine-grained managing of ciphertexts, which can enable additional homomorphic

computation prior to exhausting a ciphertext’s computational budget.

The decryption structure is 〈ct, sk〉 mod q` = m+ e for some small error e ∈ R. Observe

that there is no way to remove e and some of the least significant bits of m are unrecoverable.

A fresh ciphertext is generated at the highest level L. Homomorphic operations increase the

magnitude of the error and the message and one must apply the rescaling procedure or mod-

ular reduction to bring a ciphertext to a lower level to continue homomorphic computation.

Eventually, a ciphertext is at the lowest level (an element of R2
q), and no further operations

can be performed. The scheme’s algorithms are given below. Implicit in the description is

the requirement to keep ciphertexts tagged with their current level `.

• KeyGen(1λ) : On input the security parameter 1λ, choose integers L, p, q, P, h, a power

of two N , and a real number σ so that the ring-LWE assumption with parameters

N,P ∗ qL, σ, h holds with desired security level λ. Sample s ← HWT (h), a ← RqL ,

and e← χ. Set b = −a ∗ s+ e mod qL. Set pk as (b, a) ∈ R2
qL

and set sk as (1, s) ∈ R2.

Sample a′ ← RP∗qL and e′ ← χ. Set b′ = −a′ ∗ s + e′ + P ∗ s2 mod P ∗ qL. Set the

evaluation key evk as (b′, a′) ∈ R2
P∗qL . Output (pk, sk, evk).
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• Enc(pk,m) : On input the public key pk and a message m ∈ R, sample v ∈ R by

sampling each coefficient independently from the distribution over {−1, 0, 1} that is

0 with probability 1/2 and −1, 1 with probability 1/4. Sample e0, e1 ← χ. Output

v ∗ pk + (m+ e0, e1) mod qL.

• Dec(sk, ct) : On input the secret key sk and a ciphertext ct, parse ct as (b, a) and

output b+ a ∗ s mod q`, where ` is the level of ct.

• AddConst(ct, c) : On input a ciphertext ct and a constant c ∈ R, output ct+(c, 0) mod

q`, where ` is the level of ct.

• MultConst(ct, c) : On input a ciphertext ct and a constant c ∈ R, output c ∗ ct mod q`,

where ` is the level of ct.

• Add(ct1, ct2) : On input ciphertexts ct1, ct2 at the same level `, output ct1 +ct2 mod q`.

• Mult(evk, ct1, ct2) : On input the evaluation key evk and ciphertexts ct1, ct2 at the

same level `, parse ct1 as (b1, a1) and ct2 as (b2, a2). Set (d0, d1, d2) = (b1b2, a1b2 +

a2b1, a1a2) mod q`. Output (d0, d1) + bP−1 ∗ d2 ∗ evke mod q`.
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• Rescale(ct) : On input a ciphertext ct at level `, output bct/pe mod q`−1.

• ModDown(ct) : On input a ciphertext ct at level `, output ct mod q`−1.

Using CKKS

In order to perform computation using CKKS, it is necessary to keep ciphertexts tagged

with additional information and to carefully manage ciphertexts. Ciphertexts should always

be stored with their level `, an upper bound M on the plaintext magnitude, an upper bound

B on the error magnitude, and the scaling factor ∆ for decoding. The upper bound M on

the plaintext magnitude is used to ensure that no homomorphic computation is performed

that could cause ||m||can∞ > q`/2 for a ciphertext at level `, which would cause overflow and

prevent correct decryption. The upper bound B on the error magnitude is used to keep track

of the number of accurate plaintext bits during approximate arithmetic.

The Add and Mult algorithms only work when both input ciphertexts are at the same level

`. Thus, if they are at different levels, it is necessary to bring the one at the higher level down

to the lower level before utilizing the desired algorithm. Either the Rescale or the ModDown

algorithm can be used to reduce the ciphertext level. ModDown simply reduces the ciphertext

level without altering the plaintext or its associated error. Rescale, on the other hand, not

only reduces the ciphertext level, but also scales down the plaintext by approximately p

and the associated error as well. Thus, when Rescale is used, the scale factor ∆ should

be adjusted accordingly. One must always take the scale factor of ciphertexts into account
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when performing homomorphic operations. A simple way to manage ciphertexts is to use a

fixed scale factor ∆ and always apply Rescale after Mult, which will bring the scale factor

back to ∆ from ∆2. ModDown is utilized for other instances when ciphertext level reduction

is required since it does not affect the scaling factor. In this manner, the number of levels

consumed by a computation is its multiplicative depth.

Correctness and Compactness It follows immediately from the construction that for

m ∈ R, for (pk, sk, evk)← KeyGen(1λ),

Dec(sk,Enc(pk,m)) = m+ (ev + e0 + e1s) mod qL.

Thus, for ||m||can∞ � qL, decryption is approximately correct with error e′ = ev+e0 +e1s,

which is small since v and s have small entries and Hamming weight with high probability.

Correctness of AddConst and MultConst are immediate by inspection. Correctness of Add

follows from the fact that decryption is linear, so if 〈ct1, sk〉 mod q` ≈ m1 and 〈ct2, sk〉 mod

q` ≈ m2, then

〈ct1 + ct2, sk〉 mod q` = 〈ct1, sk〉+ 〈ct2, sk〉 mod q` ≈ m1 +m2.

Correctness of Mult follows from the fact that the multiplied ciphertext decrypts to
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d0 + d1s+ bP−1 ∗ d2 ∗ (−a′ ∗ s+ e′ + P ∗ s2)e+ bP−1 ∗ d2 ∗ a′ ∗ se mod q`

≈ b1b2 + (a1b2 + a2b1)s+ a1a2s
2 + bP−1 ∗ a1a2 ∗ e′e mod q`

≈ m1m2

since

m1m2 ≈ 〈ct1, sk〉 ∗ 〈ct2, sk〉 mod q`

= (b1 + a1s) ∗ (b2 + a2s) mod q`

= b1b2 + (a1b2 + a2b1)s+ a1a2s
2

and bP−1 ∗ a1a2 ∗ e′e is small for sufficiently large P .

Correctness of Rescale and ModDown are immediate, noting that ModDown is only a

valid operation if the underlying plaintext m satisfies ||m||can∞ � q`−1. By appropriately

applying these procedures, it is possible to evaluate bounded-depth arithmetic circuits, and

correctness follows. Compactness also follows from noting that the evaluation procedures

do not increase the size of the ciphertext, which is always two ring elements in R2
q`

, where `

is the level of the ciphertext. In fact, ciphertexts actually decrease in size as homomorphic

computation is performed since reducing the level of a ciphertext reduces the ciphertext

modulus.
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Security

Assuming the hardness of ring-LWE with ternary secrets (Def. 2.2.1), the CKKS homomor-

phic encryption scheme satisfies the standard definition of IND-CPA security (Def. 2.1.3).

We note that we can only prove security when the adversary is not given access to the eval-

uation key evk and will have to rely on a circular security assumption for security when the

adversary has access to evk.

We will prove IND-CPA security (against an adversary not given access to evk) via a

hybrid argument. Consider the following sequence of hybrids.

• Hyb1(1
λ, b): This hybrid is the same as ExptIND−CPAA (1λ, b) except that pk is sampled

uniformly at random from R2
qL

.

• Hyb2(1
λ, b): This hybrid is the same as Hyb1 except that Enc(pk,mb) is computed

by sampling two uniformly random elements u0, u1 from R2
qL

and outputting ct =

(u0 +mb, u1) mod qL.

• Hyb3(1
λ, b): This hybrid is the same as Hyb2 except that Enc(pk,mb) is computed by

sampling two uniformly random elements u0, u1 from R2
qL

and outputting ct = (u0, u1).

Lemma 2.4.1. ExptIND−CPAA (1λ, 0) ≈c Hyb1(1λ, b).

Proof. This follows immediately from the ring-LWE assumption with sparse secrets where s

is the ring-LWE secret.

30



Lemma 2.4.2. Hyb1(1
λ, b) ≈c Hyb2(1λ, b).

Proof. This follows immediately from the ring-LWE assumption with sparse secrets where v

is the ring-LWE secret.

Lemma 2.4.3. Hyb2(1
λ, b) ≈s Hyb3(1λ, b).

Proof. This is immediate since the distribution of u0 +mb is uniform.

Observe that Hyb3(1
λ, b) is independent of b, so it follows that ExptIND−CPAA (1λ, 0) ≈c

ExptIND−CPA
A (1λ, 1) as desired.

Security When Publishing Decryption Results

Since CKKS is for approximate arithmetic, the notion of IND-CPA security may be insuffi-

cient for various applications. This is because if the approximate computation results are

published, they may reveal information about the underlying ring-LWE error, compromising

security. In fact, [LM21] recently showed attacks against CKKS if the decryption results

are published. This can be addressed by modifying the decryption algorithm to, say, add

additional noise or round the decrypted value. We refer the interested reader to [LM21] for

more details.

Error Growth

As previously discussed, CKKS is only for approximate arithmetic and, therefore, there

are associated errors with the various homomorphic operations. It is crucial to have an

understanding of the error growth of various operations, so that the error bounds associated

31



with ciphertexts can be updated appropriately and the precision of a decrypted value is

known. We will cite the error analysis given in [CKKS17] and refer the interested reader

there for further details. The error growth can be bounded based on the following constants

that we will subsequently define: Bclean, Bscale, and Bmult(`). A fresh ciphertext has an

error upper bound of Bclean. AddConst does not affect the error bound of a ciphertext, while

MultConst applied to a ciphertext with error bound B outputs a ciphertext with error bound

||c||can∞ ∗B, where c is the constant multiplied. Add simply adds the error bounds B1 and B2

of ct1 and ct2, respectively, to give the error bound B1 + B2 of the added ciphertext. Mult

takes ciphertexts ct1 and ct2 at level `, with message and error bounds M1, B1 and M2, B2,

respectively, and outputs a ciphertext with error bound M1B2 + M2B1 + B1B2 + Bmult(`).

Rescale takes a ciphertext with error bound B and outputs a ciphertext with error bound

B/p+Bscale. ModDown does not affect the error bound B of a ciphertext.

The constants Bclean, Bscale, and Bmult(`) are given as follows in Lemmas 1–3 in [CKKS17]

and are upper bounds with high probability:

Bclean = 8
√

2σN + 6σ
√
N + 16σ

√
hN

Bscale =
√
N/3 ∗ (3 + 8

√
h)

Bmult(`) = P−1 ∗ q` ∗ (8σN/
√

3) +Bscale
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Rotating and Conjugating Plaintext Slots

The procedures described above operate independently on each of the plaintext slots. This

immediately gives parallelism since up to N/2 complex numbers can be encoded in a single

ring polynomial m ∈ R. However, using the Galois group action, it is also possible to rotate

the plaintext slots to enable interaction between them and conjugate the plaintext slots.

Recall that the Galois group G of Q[ζ]/Q is given by the automorphisms fk that map ζ to ζk

for odd integers k between 1 and 2N and is isomorphic to Z∗2N . G is generated by the auto-

morphisms f5 and f−1 = f2N−1. Recall that the plaintext encoding is defined by the mapping

σ, where σ(m) = [m(ζ),m(ζ5),m(ζ5
2
), . . . ,m(ζ5

N/2−1
)]. Applying the automorphism f5 to

m gives m′(X) = m(X5) such that

σ(m′) = [m(ζ5),m(ζ5
2

), . . . ,m(ζ5
N/2−1

),m(ζ)],

a rotation of the plaintext slots of m. Similarly, applying the automorphism f−1 to m gives

m′(X) = m(X−1) such that

σ(m′) = [m(ζ−1),m(ζ−5),m(ζ−5
2

), . . . ,m(ζ−5
N/2−1

)]

= [m(ζ),m(ζ5),m(ζ52), . . . ,m(ζ5N/2−1)]

= [m(ζ),m(ζ5),m(ζ52), . . . ,m(ζ5N/2−1)],

a conjugation of the plaintext slots of m.

It is also possible to apply the automorphisms to ciphertexts in order to rotate/conjugate
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the encrypted plaintext slots. For example, if we have a ciphertext ct = (b, a) that encrypts

m ∈ R, then applying an automorphism f to ct gives the ciphertext ct′ = (f(b), f(a)). Since

f is an automorphism, it follows that ct′ decrypts to f(m) under the secret key sk′ = (1, f(s)).

Therefore, it is necessary to apply the key-switching procedure to ct′ to transform it into a

ciphertext that decrypts to f(m) under the original secret key sk = (1, s). This can be done

by having KeyGen additionally publish an automorphism key autk for f that is analogous to

evk except it encrypts f(s) instead of s2. Key-switching, as is implicit in the description of

Mult, can then be applied to ct′ using autk. One can simply give out automorphism keys for

f5 and f−1 to enable performing any automorphism in G, but, in practice, one can give out

additional automorphism keys to allow the automorphisms to be performed more efficiently

at the cost of increasing the size of the extra key material required.

2.5 Bootstrapping of Approximate HE

[CHK+18a] introduced the first bootstrapping procedure for the CKKS-HE scheme. Subse-

quent works [CCS19, HHC19, HK20, BMTPH21] improved various aspects of bootstrapping,

but the overall procedure remains the same. The goal is to take a ciphertext at the lowest

level and bring it up to a higher level so that homomorphic computation can continue. Thus,

given a ciphertext ct at the lowest level, we want to obtain another ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`
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for some ` > 1. For simplicity in the following, we will include the starting decryption error

in the message m. That is, we will assume that 〈ct, sk〉 mod q = m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest level, it

follows that 〈ct, sk〉 mod qL = qI +m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the polynomial

coefficients of t = qI + m. However, recall that homomorphic computations evaluate

coordinate-wise on the plaintext “slots,” not the polynomial coefficients. Thus, we

need to transform our ciphertext so that the polynomial coefficients are in the “slots.”

This can be done by evaluating a linear transformation homomorphically. We elabo-

rate below.

3. Compute the Mod Function: We need a procedure to compute/approximate the

mod function homomorphically. This is a significant challenge since we can only com-

pute arithmetic operations homomorphically. Improving this step is the focus of this

dissertation, and we describe our approach via a sine series approximation of the mod

function in Chapter 3.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step. This can

be done by homomorphically evaluating the inverse of the previous linear transform.
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Observe that if we can approximate the mod function, then the above procedure will

give us a ct′ at some higher level ` that decrypts to m + e for some small error e. Since we

are dealing with approximate arithmetic, this error from bootstrapping can be absorbed into

the other errors that occur during approximate arithmetic and homomorphic evaluation. We

can upper bound |I| < K for some integer K so that we only need to approximate the mod

function on the interval [−Kq − m,Kq + m], where we have overloaded notation to make

m an upper bound on the size of the message. The integer K is determined based on the

Hamming weight h of the secret s. Under the assumption that the coefficients of a ciphertext

are distributed uniformly over Zq, we can obtain an O(
√
h) bound for K.

Coefficients to Slots and Slots to Coefficients

Let ζj = ζ5
j

for 0 ≤ j < N/2. Recall that a ring polynomial m(X) ∈ R encodes the complex

vector zT = [m(ζ),m(ζ5),m(ζ5
2
), . . . ,m(ζ5

N/2−1
)]. We can express this relationship via the

following linear transform.



1 ζ0 ζ20 . . . ζN−10

1 ζ1 ζ21 . . . ζN−11

...
...

...
. . .

...

1 ζN/2−1 ζ2N/2−1 . . . ζN−1N/2−1


·



m0

m1

...

mN−1


=



z0

z1

...

zN/2−1


Defining the leftmost matrix as U and the coefficient vector of m(X) as m, it follows

that U ·m = z and U ·m = z. Define W =

 U

U

. It follows that W−1 = 1
N
W

T
since
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XN − 1 = (X − 1)(1 +X +X2 + . . .+XN−1), which implies that 1 +X +X2 + . . .+XN−1

evaluates to 0 at every Nth root of unity except for 1 where it evaluates to N . Thus,

m = W−1 ·

 z

z

. Thus, if we want to take a ciphertext encrypting m(X), which encodes

the complex vector z, and obtain ciphertexts encrypting a message polynomials that encode

the complex vectors m0 = [m0,m1, . . . ,mN/2−1]
T and m1 = [mN/2,mN/2+1, . . . ,mN−1]

T , it

suffices to homomorphically evaluate the linear transform W−1 on ciphertexts encrypting

the complex vectors z and z. Observe that we require two ciphertexts to hold all the

coefficients of m(X) since there are N coefficients, but only N/2 plaintext slots. We can

easily obtain a ciphertext encrypting z from one encrypting z by applying the automorphism

for conjugation. From this, we can obtain ciphertexts encrypting m0 and m1 by performing

homomorphic matrix multiplications and additions. Observe that matrix multiplication can

be evaluated homomorphically using a combination of homomorphic multiplications and

rotations. For the inverse operation (the Slots to Coefficients step), observe that defining

U =

[
U0 U1

]
for square matrices U0, U1 gives z = U0 ·m0+U1 ·m1. Thus, we can obtain a

ciphertext encrypting z from ones encrypting m0 and m1 by evaluating the previous equation

homomorphically.

It is often the case that we do not need to utilize all N/2 plaintext slots. If, instead, we

only use n slots, it is possible to encode these n slots in a subring of R and adapt the above

approach so that the number of homomorphic operations required depends on n instead of

N . Please refer to [CHK+18a] for additional details. Furthermore, while the above illustrates

the method of performing the Coefficients to Slots and Slots to Coefficients steps presented

in [CHK+18a], there have been subsequent works [CCS19, BMTPH21] that have improved
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the efficiency of these steps.
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Chapter 3

Sine Series Approximation of the

Mod Function

In this chapter, we will show the following theorem and corollaries, giving a sine series

approximation to the mod function in small intervals around the modulus that can be used

for CKKS-HE bootstrapping.

Theorem 3.0.1. For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such

that for every ε, 0 < ε < 2/
√
n, for every |x| < ε,

∣∣∣∣∣x−
n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1.

Using the periodicity of the sine function, we immediately arrive at the following corollary.

Corollary 3.0.1. For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such
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that for every ε, 0 < ε < 2/
√
n, for every integer m, for every x such that |x− 2mπ| < ε,

∣∣∣∣∣(x mod 2π)−
n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1.

A further simple manipulation leads to the following scaled version of the corollary.

Corollary 3.0.2. For every n ≥ 1, there exists a sequence of rational numbers β1, ...βn such

that for every ε, 0 < ε < 1
π
√
n

, for every integer q ≥ 1, for every integer m, for every x such

that |x−m ∗ q| < ε ∗ q,

∣∣∣∣∣(x mod q)− q

2π
∗

n∑
k=1

βk sin(2πk ∗ x/q)

∣∣∣∣∣ < e2 ∗ q
2π
∗ (n+ 1) ∗ (επ)2n+1.

3.1 Determining the βi’s

To prove Theorem 3.0.1, for each n, we will determine the rational numbers {βi}i∈[n]. In

particular, these are not the same as the Fourier coefficients of the sawtooth function, as we

are focused on x that is potentially much smaller than the period of the sawtooth function.

Recall that we wish to determine {βi}i∈[n] such that the resulting sine series has a Taylor

series expansion of the form x + x2n+1p(x) for some polynomial p(x). In particular, there

are no terms of degree < 2n+ 1 (except for x). These constraints give a system of equations

that can be solved to determine the βi’s.

We begin by formalizing this intuition. For every n > 0, for every sequence of n distinct

integers a = (a1, ..., an), let V (n)(a) denote the Vandermonde matrix of a, i.e. it is the n×n

matrix with the (i, j)-th element aj−1i (for i, j ∈ [1..n]). Define S(n)(a) to be the n×n matrix
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with the (i, j)-th element a2j−1i , i.e. each row is the odd powers of the elements of a. Note

that the first column of this matrix is just a. Also, define a related matrix Ŝ(n)(a) to be the

n × n matrix which is same as S(n)(a) except that the first column (i.e. a) is replaced by

(2n+ 1)-th powers of a. In other words, the (i, 1)-th element of this matrix is a
(2n+1)
i .

Let ~β = (β1, β2, . . . , βn) be an n-vector of rational numbers. For the sine series approxi-

mation, we would like to determine ~β so that the transpose of the matrix S(n)(a) multiplied

by ~β is a vector with all entries zero except the first, which is one. Since βi refers to the

coefficient of the sin(aix) term in the sine series, the above requirement ensures that when

we Taylor expand each sine term in the sine series about the origin (or a multiple of 2π)

and sum the terms, the resulting polynomial will be x+x2n+1p(x) for some polynomial p(x).

Thus, the x3, x5, . . . , x2n−1 terms in the Taylor series expansions of the sin(ix)’s cancel out.

We note that since our sine series will include sinx, sin 2x, sin 3x, . . . terms, we will later

instantiate a with (1, 2, . . . , n). The required condition is drawn below.



a1 a2 ... an

a31 a32 ... a3n

...

a2n−11 a2n−12 ... a2n−1n


·



β1

β2

...

βn


=



1

0

...

0


(3.1)

Let di denote the (i, 1)-th minor of S(n)(a). In other words, the list {di}i is the list of

minors of the first column of S(n)(a).

Lemma 3.1.1.

βi = (−1)i+1 ∗ di
det(S(n)(a))

.
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Proof. From the above equation, ~β is just the first column of the inverse of (S(n)(a))T . Note

that the (i, 1)-th element of the inverse of the transpose of S(n)(a) is (−1)i+1 ∗ di divided by

the determinant of S(n)(a).

We now give an explicit formula for the determinant of S(n)(a). We will also give an

explicit formula for the determinant of Ŝ(n)(a), which will be of use later. We will use the

well-known fact that the determinant of the Vandermonde matrix is given by the following

formula.

det(V (n)(a)) =
n∏
i=1

∏
1≤j<i

(ai − aj).

Lemma 3.1.2. The determinant of the matrix S(n)(a) is

(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j).

The determinant of the matrix Ŝ(n)(a) is

(−1)n−1 ∗ det(S(n)(a)) ∗
n∏
i=1

a2i .

Proof. We will first focus on the matrix S(n)(a). For computing the determinant, for each

row i, we get a contribution of a factor ai towards the determinant, and the remaining matrix

is then just a Vandermonde matrix with all powers of a2i . Thus,

det(S(n)(a)) =

(
n∏
i=1

ai

)
∗ det(V (n)(a′)),

where a′ = (a21, . . . , a
2
n). The result then follows from the well-known determinant of Van-
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dermonde matrices.

As for the claim for the matrix Ŝ(n)(a), first consider a modified matrix that is obtained

by moving the first column to the last. Since this can be accomplished by (n − 1) column

exchanges, the determinant of the modified matrix is (−1)n−1 times the determinant of

Ŝ(n)(a). Furthermore, the determinant of the modified matrix is easily related to determinant

of S(n)(a) by noting that i-th row in the modified matrix is a2i times the i-th row in S(n)(a).

We observe from the formula for the determinant of S(n)(a) that if the sequence of

integers a are in increasing order and lower bounded by one, then the determinant of S(n)(a)

is positive. We now show the following lemma, characterizing the βi’s.

Lemma 3.1.3. For the matrix S(n)(a) with a set to the sequence of integers from one to n,

β1 =
2n

n+ 1
< 2

and, for i ≥ 2

|βi| < 1.

Moreover, the βi’s alternate in sign and decrease in magnitude as i increases. That is,

|βi+1| < |βi|

for all i ∈ [n], β2j+1 > 0, and β2j < 0.
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Proof. We will show this using the formula for βi from Lemma 3.1.1. By definition,

di = det



a31 a51 ... a2n−11

a32 a52 ... a2n−12

...

a3i−1 a5i−1 ... a2n−1i−1

a3i+1 a5i+1 ... a2n−1i+1

...

a3n a5n ... a2n−1n


Thus,

di =

(
n∏

j=1,j 6=i

a2j

)
∗ det(S(n−1)(a′)),

where a′ is a with ai removed. Thus,

βi = (−1)i+1 ∗

(∏n
j=1,j 6=i a

2
j

)
ai ∗

(∏i−1
j=1(a

2
i − a2j)

)
∗
(∏n

j=i+1(a
2
j − a2i )

) .
We observe that every term in the above expression is positive except for (−1)i+1 and, thus,

the βi’s alternate sign with β2j+1 > 0 and β2j < 0. It follows that

β1 =
2(n!)2

(n+ 1)!(n− 1)!
=

2n

n+ 1
< 2.
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Moreover, for i ≥ 2,

|βi| =
1

i
∗ 2(n!)2

(2n)!
∗
(

2n

n+ i

)

Observe that |βi+1| < |βi|. Moreover, since
(

2n
n+i

)
<
(
2n
n

)
for i ≥ 2, it follows that

|βi| <
2

i
≤ 1

for i ≥ 2.

3.2 Bounding the Error: A First Attempt

Having characterized the βi’s, we now turn our focus to bounding the error between f(x) =∑n
k=1 βk sin(kx) and x for |x| < ε. We note that f(x) is an analytic function since it is the

sum of analytic functions and, therefore, its Taylor series converges to f(x). Thus, taking

the Taylor series expansion of f(x) around 0,

f(x) = x+
∞∑

m=2n+1

f (m)(0)

m!
xm.

We can bound |x− f(x)| for |x| < ε using the Lagrange remainder term of the 2n-th Taylor

polynomial of f(x). Thus,

|x− f(x)| =
∣∣∣∣f (2n+1)(ξ)

(2n+ 1)!
x2n+1

∣∣∣∣
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for some real number ξ between 0 and x. We have that

f (2n+1)(x) = ±
n∑
k=1

βkk
2n+1 cos(kx).

Upper bounding f (2n+1)(ξ) gives

|x− f(x)| <
n∑
k=1

|βk|k2n+1 |x2n+1|
(2n+ 1)!

.

By Lemma 3.1.3, βk < 2/k, which gives

|x− f(x)| < |x2n+1| ∗ 2

(2n+ 1)!
∗

n∑
k=1

k2n.

This then gives an upper bound of ε2n+1 ∗ 2∗n∗n2n

(2n+1)!
, and no better than ε2n+1 ∗ 2∗n2n

(2n+1)!
≈

(ε/2)2n+1 ∗ e2n/(
√
π(n+ 1) ∗ n) However, we will now show that a more sophisticated, yet

elementary, approach that improves upon this bound by approximately a factor of e2n, es-

sentially giving us an upper bound of (ε/2)2n+1.

3.3 A Better Bound via the Alternating Series Test

To obtain a better error bound, we will show that the Taylor series expansion of our sine

series satisfies Leibniz’s alternating series test. This will enable us to bound the error of

the sine series f(x) from the mod function by the (2n + 1)−th term in the Taylor series

expansion (the first nonzero term after x). We can write the Taylor series expansion of f(x)
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as x−
∑∞

m=n+1(−1)m ∗ bm, where

bm =
n∑
j=1

βj ∗
(jx)2m−1

(2m− 1)!
. (3.2)

To bound the error, we will show, for any x in the domain of approximation, that the

series
∑∞

m=n+1(−1)m ∗ bm satisfies the alternating series test. The alternating series test

requires that the bm satisfy the following three conditions.

1. limm→∞ bm = 0

2. All bm are positive (or all bm are negative)

3. |bm| ≥ |bm+1| for all natural numbers m ≥ n+ 1.

Theorem 3.3.1. Alternating Series Test [Leibniz]. If the series above satisfies the alternat-

ing series test then
∑∞

m=n+1(−1)m ∗ bm converges. Moreover, for all k ≥ 0,

∣∣∣∣∣
∞∑

m=n+1

(−1)m ∗ bm −
n+1+k−1∑
m=n+1

(−1)m ∗ bm

∣∣∣∣∣ ≤ |bn+1+k|.

We will show the following lemma.

Lemma 3.3.1. (Main Lemma) For every |x| < 2/
√
n, the above series given by bm satisfies

the Leibniz alternating series test.

A Naive Proof Attempt

We briefly explain why the following naive approach to proving this lemma fails. For sim-

plicity, assume that n is odd, so that βn is positive and βn−1 is negative by Lemma 3.1.3.
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Then, the naive approach would be to prove that

βn ∗
(n ∗ x)2m−1

(2m− 1)!
+ βn−1 ∗

((n− 1) ∗ x)2m−1

(2m− 1)!

(and similarly paired other terms) decreases as m increases, starting from m = n+ 1. Since

powers of n ∗ x are larger than powers of (n− 1) ∗ x, this would eventually be true for some

m > n + 1. However, since |βn| < |βn−1| and βn−1 is negative (see Lemma 3.1.3), this is

not necessarily true at m = n+ 1. In fact, calculations show that this indeed fails for a few

terms beyond m = n + 1. Thus, a more advanced approach is required to prove that the

Leibniz test holds starting at m = n+ 1. We will show that the test holds for |x| < 2/
√
n.

Preparing for the Proof

We prove Lemma 3.3.1 in the next subsection, but first we show several additional lemmas

which will assist us in the proof of Lemma 3.3.1.

Define V (n,k)(a) to be an n×n matrix, which is same as the Vandermonde matrix V (n)(a)

except the last column is replaced by the (n − 1 + k)-th powers (instead of the (n − 1)-th

powers).

Let hk(a) be the complete homogeneous symmetric polynomial of degree k in a given by

hk(a) =
∑

1≤i1≤...≤ik≤n

ai1 ∗ · · · ∗ aik .

The base polynomial h0(a) is taken to be one. Note that the polynomials hk(a) differ from

the elementary symmetric polynomials ek(a), since in the latter the summation is taken over
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1 ≤ i1 < ... < ik ≤ n. The following lemma is a consequence of the well-known generating

series of the complete homogeneous symmetric polynomials, but we give a simple proof for

completeness.

Lemma 3.3.2. For any k ≥ 0, any a of length n > 0, and an independent formal variable

t,
k∑
j=0

hj(a)tj =
n∏
i=1

k∑
j=0

(tai)
j mod tk+1.

Proof. We prove this lemma by induction over n. The base case for n = 1 follows as

hj(a) = aj for every j in [0..k]. Suppose the lemma holds for n − 1. Then, let a′ be the
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truncation of a to its first n− 1 components. We have, modulo tk+1,

n∏
i=1

k∑
j=0

(tai)
j =

k∑
z=0

(tan)z ∗
n−1∏
i=1

k∑
j=0

(tai)
j

=
k∑
z=0

tzazn ∗
k∑
j=0

hj(a
′)tj

=
k∑
j=0

k∑
z=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k∑
j=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k−z∑
j=0

azn ∗ hj(a′)tj+z

=
k∑
z=0

k∑
j′=z

azn ∗ hj′−z(a′)tj
′

=
k∑
z=0

∑
k≥j′; j′≥z

azn ∗ hj′−z(a′)tj
′

=
∑

z≤k; j′≤k; z≥0; z≤j′
azn ∗ hj′−z(a′)tj

′

=
k∑

j′=0

j′∑
z=0

azn ∗ hj′−z(a′)tj
′

=
k∑

j′=0

hj′(a)tj
′
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Lemma 3.3.3. For k ≥ 1, the determinant of the matrix V (n,k)(a) is

det(V (n)(a)) ∗ hk(a)

Proof. Fix any k ≥ 1. Consider an n × n matrix M which is same as V (n,k)(a) ex-

cept that the last row is powers of an indeterminate x. In other words the last row is

(x0, x1, ..., xn−2, xn−1+k). Let a′ stand for the (n − 1) length truncation of a. Treating the

elements of a′ as scalars, the determinant of the matrix M is a polynomial in x of degree

n− 1 + k. Call this polynomial f(x). Since the determinant of a matrix with two equal (or

even scaled by a constant) rows is zero, the polynomial f(x) has roots a′. Thus,

f(x) = g(x) ∗
n−1∏
i=1

(x− ai), (3.3)

where g(x) is a polynomial (to be determined) of degree k . However, f(x), the degree

n−1+k polynomial, has zero coefficients for all monomials xj with j in [n−1..n−1+k−1].

If we introduce a new formal variable t = 1/x, then the above equation (3.3) can be written

as

f̃(t) = g̃(t) ∗
n−1∏
i=1

(1− tai). (3.4)

where f̃ (resp. g̃) is the polynomial f (resp. g) with coefficients reversed. Note, all the zero

coefficients of f(x) described above imply that coefficient of monomial tj in f̃(t) is zero for

every j in [1..k], and the constant term in f̃(t) is fn−1+k, where fn−1+k denotes the coefficient

of xn−1+k in f(x). Thus, f̃(t) = fn−1+k mod tk+1. Considering equation (3.4) modulo tk+1,
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we get

fn−1+k ∗
n−1∏
i=1

(1− tai)−1 = g̃(t) mod tk+1. (3.5)

The above equation is well-formed as inverse of (1− tai) modulo tk+1 is well-defined. Indeed,

it is easy to check that (1− tai) ∗
∑k

j=0(tai)
j is 1 mod tk+1. Hence, we also get,

fn−1+k ∗
n−1∏
i=1

k∑
j=0

(tai)
j = g̃(t) mod tk+1. (3.6)

Since g(x) is of degree k, g̃(t) has degree at most k as well. Denote by g̃j the coefficient

of tj in g̃j, which is same as gk−j. Then, by comparing coefficients of tj on both sides, by

Lemma 3.3.2 we get that for each j ∈ [0..k],

gk−j = g̃j = fn−1+k ∗ hj(a′).

Thus, having determined g(x), we also have f(x) by (3.3). Letting x = an, then we get

det (V (n,k)(a)) = f(an)

=
n−1∏
i=1

(an − ai) ∗ g(an)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗
k∑
j=0

ak−jn hj(a
′)

=
n−1∏
i=1

(an − ai) ∗ fn−1+k ∗ hk(a)

= det(V (n)(a)) ∗ hk(a),
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where the last equality follows by noting that the top coefficient of f(x), i.e. fn−1+k is the

(n, n)-minor of V (n,k)(a), which is same as the (n, n)-minor of Vandermonde matrix V (n)(a),

which, in turn, is (−1)n+n ∗ det V (n−1)(a′).

Lemma 3.3.4. For a = (12, 22, 32, . . . , n2), for all k ≥ 0,

hk+1(a)

hk(a)
≤ n3.

Proof. First note that hk+1(a) =
∑n

i=1 ai ∗hk(a(i)), where a(i) is a restricted to first i entries.

Since ai are monotonically increasing, it follows that hk+1(a) ≤ n ∗ an ∗ hk(a), from which

the claim follows.

Lemma 3.3.5. For the matrix S(n)(a) with a set to the sequence of integers from one to n,

let βi be given by the formula in Lemma 3.1.1. Then,

n∑
i=1

βi ∗ i2n+1 = (−1)n−1 ∗ (n!)2.

Proof. With a set to the sequence of integers from one to n,
∑n

i=1 βi ∗ i2n+1 is the inner

product of the first column of Ŝ(n)(a) and ~β. In the following, the i-th column of a matrix

M will be denoted by Mi, and the (i, j)-th entry of M will be denoted by Mi,j. Thus, using
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Lemma 3.1.1, we have

n∑
i=1

βi ∗ i2n+1 = ~β > · (Ŝ(n)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n)(a))i,1

=
det(Ŝ(n)(a))

det(S(n)(a))

= (−1)n−1 ∗
n∏
i=1

a2i

= (−1)n−1 ∗ (n!)2,

where we have used Lemma 3.1.2 in the second-to-last equality.

3.3.1 Alternating Series Test (Proof of the Main Lemma)

Having shown Lemmas 3.3.3, 3.3.4, and 3.3.5, we are now ready to prove the main lemma

(Lemma 3.3.1).

Proof. (of Lemma 3.3.1) In this proof, we will fix a to be the sequence of integers from 1 to

n. Note, each bm can be written as bm = cm ∗ x2m−1

(2m−1)! , where cm =
∑n

j=1 βj ∗ j2m−1. We now

prove the three properties required of bm so that the series
∑∞

m=n+1(−1)m ∗ bm satisfies the

alternating series test.

1. We show that bm goes to zero, as m goes to infinity. Since n is fixed and all βi are

bounded by Lemma 3.1.3, we just need to show that for every x in the domain of

approximation, for every j ∈ [n], (jx)2m−1

(2m−1)! goes to zero as m goes to infinity. Since the
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domain of approximation is bounded, |x| itself is bounded. Since, k! ≥ e(k/e)k, the

above is upper bounded by e−1 ∗ (jx ∗ e/(2m− 1))2m−1, which goes to zero as m goes

to infinity.

2. To show that all bm are positive (or all are negative), it suffices to show that all cm are

positive (or all cm are negative). As a warmup, we first focus on cn+1 (i.e. m set to

n+ 1). By Lemma 3.3.5, this quantity is simply (−1)(n−1) ∗ (n!)2 and hence is positive

if n is odd, and negative when n is even.

Let Ŝ(n,k)(a) be the matrix that is the same as Ŝ(n)(a) except that the first column is

replaced by the (2n − 1 + 2k) powers of a. Thus, Ŝ(n,1)(a) is same as Ŝ(n)(a). As in

the proof of Lemma 3.3.5,

cn+k =
n∑
i=1

βi ∗ i2n−1+2k

= ~β > · (Ŝ(n,k)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n,k)(a))i,1

=
det(Ŝ(n,k)(a))

det(S(n)(a))

To give an expression for det(Ŝ(n,k)(a)), we will use Lemma 3.3.3. To use this lemma,

we first relate Ŝ(n,k)(a) to V n,k(a). Recall, the first column of Ŝ(n,k)(a) is (2n− 1 + 2k)

powers of a. Also, for other columns, the (i, j)-th entry is a2j−1i (2 ≤ j ≤ n). Since

k ≥ 1, each entry in the i-th row has at least one power of ai, and hence the determinant

of Ŝ(n,k)(a) is
∏n

i=1 ai times the determinant of a new matrix M , which has as its first
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column (2n + 2(k − 1)) powers of a, and all other columns as 2(j − 1)-th powers of a

(2 ≤ j ≤ n). Let a(2) be the sequence a, but with each entry squared. Then this matrix

M is same as the matrix V n,k−1(a(2)) but with the first and last column exchanged.

Thus, using Lemma 3.3.3, it follows that det(Ŝ(n,k)(a)) is

(−1)n−1 ∗ hk−1(a(2)) ∗
n∏
i=1

∏
1≤j<i

(a2i − a2j) ∗
n∏
i=1

a3i ,

From Lemma 3.1.2, we also have that the determinant of S(n)(a) is

(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j).

Recalling that ai is just i, we thus have that for k ≥ 1, all cn+k are positive if n is odd,

and all cn+k are negative if n is even.

3. We now show that |bm| ≥ |bm+1| for all m ≥ n+ 1. We have,

|bm+1|
|bm|

=
(−1)n−1 ∗ hm+1−(n+1)(a

(2)) ∗
∏n

i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗ x2m+1

(2m+1)!

(−1)n−1 ∗ hm−(n+1)(a(2)) ∗
∏n

i=1

∏
1≤j<i(a

2
i − a2j) ∗

∏n
i=1 a

3
i ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2)) ∗ x2m+1

(2m+1)!

hm−(n+1)(a(2)) ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2))

hm−(n+1)(a(2))
∗ x2

2m(2m+ 1)

≤ n3 ∗ x2

2m(2m+ 1)
(by Lemma 3.3.4)

≤ 1 (for |x| < 2/
√
n).
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We are now ready to prove Theorem 3.0.1.

Proof. (of Theorem 3.0.1) Let βk, for k ∈ [1..n], be defined as in equation (3.1) with a set

to the sequence of numbers from 1 to n. From the Taylor series expansion of the sine series,

which converges since the sine series is analytic, it follows that

n∑
k=1

βk sin(kx) = x−
∞∑

m=n+1

(−1)m ∗ bm,

where bm are defined in equation (3.2), i.e. bm =
∑n

k=1 βk ∗
(kx)2m−1

(2m−1)! . Thus, by Lemma 3.3.1

and Leibniz’s alternating series test (Theorem 3.3.1), we have for |x| < 2/
√
n,

∣∣∣∣∣x−
n∑
k=1

βk sin(kx)

∣∣∣∣∣ ≤ |bn+1|

=

∣∣∣∣∣
n∑
k=1

βk ∗
(kx)2n+1

(2n+ 1)!

∣∣∣∣∣
=
|x2n+1|

(2n+ 1)!
∗

∣∣∣∣∣
n∑
k=1

βk ∗ k2n+1

∣∣∣∣∣
=

(n!)2

(2n+ 1)!
∗ |x2n+1|,

where we used Lemma 3.3.5 in the last equality.
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Restricting |x| < ε, Theorem 3.0.1 follows from the fact that

(n!)2

(2n+ 1)!
ε2n+1 <

((n+ 1)/e)2n+2e2

((2n+ 1)/e)2n+1
ε2n+1

= e ∗ (n+ 1) ∗
(
n+ 1

2n+ 1

)2n+1

∗ ε2n+1

= e ∗ (n+ 1) ∗
(

2n+ 2

2n+ 1

)2n+1

∗
( ε

2

)2n+1

< e2 ∗ (n+ 1) ∗
( ε

2

)2n+1

,

where we have used the fact that

(n
e

)n
< n! <

(
n+ 1

e

)n+1

e

for all n ≥ 1 and that (1 + 1/n)n < e for all n ≥ 1.

3.4 Evaluating the Sine Series Approximation of the

Mod Function

In order to use the sine series approximation of the mod function given by Corollary 3.0.2

for bootstrapping, we must approximate the sine series by a low-degree polynomial, since

the CKKS-HE scheme cannot compute sine directly. In this section, using our sine series

approximation of the mod function and the well-known Taylor series expansion of the sine

function, we will give explicit low-degree polynomial approximations of the mod function

on small intervals around multiples of the modulus to (almost) arbitrary precision. The
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resulting polynomials have small coefficients, as the Taylor series of the sine function has

small coefficients, and the sine series itself has small coefficients by Lemma 3.1.3. Recall

that small coefficients are beneficial in contrast to large coefficients, as in the latter case one

is forced to compute the different power monomials to much higher precision in order to

obtain an accurate polynomial evaluation. This, in turn, causes the computational precision

that we must operate at during bootstrapping to be higher, which causes each “level” to

consume more bits of the modulus. We next explain how we evaluate the sine series and then

determine the degree and evaluation precision required for the Taylor series approximation

of sine.

Evaluating the Sine Series

To evaluate the sine series, we first compute a Taylor series approximation of eix (recall that

CKKS-HE allows us to compute over complex numbers). We can obtain an approximation to

sinx by extracting the imaginary part. The other higher order sin kx terms can be obtained

conveniently by computing eikx from eix and extracting the imaginary part. As for computing

the Taylor series approximation of the sine function, note that the domain of approximation

is small intervals around `q, where ` ∈ [−K..K] and q is the modulus. The bound K comes

from the bound on the Hamming-weight of the secret key and is typically 12 to 32. If

our input is X = x + `q for some small offset x and ` ∈ [−K..K], our goal is to compute

ei(2π(x+`q)/q). This then requires a Taylor series that has powers of 2π(x+`q)/q, which can be

more than one. Earlier works noted that one can instead first compute ei(2π(x+`q)/(q2
r)) using

a Taylor series expansion (for some r > 0) and then compute ei(2π(x+`q)/q) using r squarings.
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Determining the Degree of the Taylor Series Approximation

Next, we must determine the degree to which we compute the Taylor series expansion of

e2πi(x+`q)/(q2
r). The Taylor series expansion is

∞∑
m=0

(2πi(x+ `q)/(q2r))m/m!.

We now determine for which range of values of (x+`q) the above restricted to the sine terms,

i.e. the imaginary terms or odd powers of x, satisfies the alternating series test (so that the

partial series error can be bound by the absolute value of the next missing term). Thus, we

need to determine the conditions under which

1 >
(2π|(x+ `q)|/(q2r))(2m+1)/(2m+ 1)!

(2π|(x+ `q)|/(q2r))(2m−1)/(2m− 1)!

=
(2π|(x+ `q)|/(q2r))2

(2m+ 1)(2m)

Assuming x� q and 2r ≈ K + 1, the above holds when m > π. Thus, if the Taylor series is

computed partially up to any degree 2m− 1, then the error in the approximation of sine is

at most

(2π)2m+1/(2m+ 1)! < (2πe/(2m+ 1))2m+1,

which is at most 2−(2m+1) if we require that m > 2πe.

Thus, having computed sin(2π(x+`q)/(q2r)) partially up to m terms, we now investigate

the error for the higher order terms in the sine series, i.e. sin(2πk(x+`q)/q) for k ≥ 1. If the

error in the approximation of the original term is small, say δ � 1, then the error for this

60



k-th term is approximately k2r ∗δ (as it requires r+log k squarings). Thus, the total error in

the sine series due to the Taylor series approximation of
∑n

k=1 βk sin(2πk(x+ `q)/q) is upper

bounded in absolute value by
∑n

k=1 |βk|∗k2rδ, which is approximately (K+1)δ
∑n

k=1 |βk|∗k,

which is at most n2(K + 1)δ by Lemma 3.1.3, which, in turn, is at most n2(K + 1)2−(2m+1).

Finally, using Corollary 3.0.2, the total error in the mod function approximation, for an

input X = x+ `q with ` ∈ [−K..K] and |x| < ε ∗ q for any ε < 1/π
√
n is

(q/2π) ∗ n2(K + 1)2−(2m+1) +
e2 ∗ q

2π
∗ (n+ 1) ∗ (ε ∗ π)2n+1.

Thus, it makes sense to have m about −n log2 (ε ∗ π) (which is typically greater than 2πe for

n > 1; if this value is less than 2πe, then the above analysis must be redone for potentially

a larger r).

Determining the Evaluation Precision

We must also determine the precision to which to evaluate the polynomials. Setting Y =

2π(x+ `q)/(q2r), we observe that the degree m Taylor expansion of e2πi(x+`q)/(q2
r) is simply

the polynomial
m∑
j=0

(iY )j/j!.

Recall that we have chosen r so that |Y | < 1. Moreover, setting cj = ij/j!, the polynomial

becomes
∑m

j=0 cjY
j, where |cj| ≤ 1. We need to determine the precision to which we evaluate

the powers Y j (we will first evaluate the Y 2j ’s by repeated squaring and then use these powers

to evaluate all intermediate powers). Let Y j denote the exact values and let Ỹ j denote the

61



approximated values (to some precision to be determined). Suppose we evaluate the powers

Y j up to w bits (and simply chop off the additional bits). Then, |Ỹ −Y | < 2−w. Computing

Ỹ 2 by squaring Ỹ and rounding, we have that Ỹ 2 differs from Y 2 by at most ≈ 2 ∗ 2−w. To

see this, note that Ỹ = Y ± δ, where δ < 2−w. Then, Ỹ 2 = Y 2 ± 2Y δ + δ2 < Y 2 ± 2δ + δ2 ≈

Y 2 ± 2 ∗ 2−w. By an analogous argument, it follows that Ỹ j differs from Y j by at most

approximately j ∗ 2−w. Thus, the error of
∑m

j=0 cjỸ
j is bounded by

m∑
j=0

j ∗ 2−w ∗ 1

j!
=

m∑
j=1

2−w

(j − 1)!
< e ∗ 2−w.

Thus, to obtain error 2−d, it suffices to compute the powers Ỹ j to precision w for w >

d+ log2 e, only slightly higher than the minimum precision d required to obtain this approx-

imation.

In the above, we saw that having small coefficients cj (and coefficients that decrease

in magnitude as j increases) enabled the approximation of the polynomial
∑m

j=0 cjY
j by

evaluating the powers of Y to precision only a couple bits larger than the minimum precision

required for the desired error. This is crucial during bootstrapping as a higher evaluation

precision directly corresponds to losing more bits of the modulus during the polynomial

evaluation. In contrast, suppose that the cj’s were large and bounded in magnitude |cj| < 2k

for some k. Then, if the powers of Y are evaluated to precision w, the error of the polynomial

evaluation is bounded by

m∑
j=0

j ∗ 2−w ∗ 2k <
m(m+ 1)

2
∗ 2k−w.
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Thus, to obtain error 2−d, the powers of Y would need to be evaluated to precision w >

d+ k + 2 logm− 1. Note the additional dependence on both k and the number of terms m.
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Chapter 4

Implementation and Evaluation

To demonstrate the applicability of our polynomial approximation to high precision boot-

strapping for approximate homomorphic encryption, we updated the bootstrapping proce-

dure of the HEAAN library [HEA] to utilize our sine series during the “Compute the Mod

Function” step (see Section 2.5). Additionally, we updated HEAAN to use the quadmath li-

brary, since we wanted to achieve bootstrapping error smaller than the precision of a double.

We ran our implementation using a PC with an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU.

Table 4.1 gives our bootstrapping results for sine series of various orders. As before, ε

represents the ratio p/q, where p is an upper bound on the size of the message (including

any errors associated from the approximate arithmetic and prior homomorphic operations)

and q is the size of the modulus prior to bootstrapping. In Table 4.1, ε is set to 2−10.

The Hamming weight of the secret key is set to h = 256, so that on average K is about

√
h = 16. However, our implementation can handle K as large as 31. qL denotes the modulus

of the largest level, which is the modulus of a fresh ciphertext prior to any homomorphic
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Table 4.1: High-Precision Bootstrapping Results for ε = 2−10. The Hamming weight of
the secret key is set to h = 256. The errors reported are for K up to 31.

Input Sine Modulus Ring Boot. Modulus Error Runtime††

Precision† Series (Fresh) Dim. prec. (After) (Boot.) (secs)

log2 p Order log2 qL N log2 q`′ βbs = err/p

30 2 1200 216 55 344 2−25 22

50 3 1600 216 75 531 2−45 32

60 4 2400 217 85 1008 2−54 119

80 5 2400 217 105 583 < 2−80 129

100 6 3000 217 125 843 < 2−100 167
† The modulus q` of the ciphertext prior to bootstrapping is p/ε. The number of bits of q` is
p− log ε = p+ 10, and bootstrapping (computational) precision is set to (p− log ε+ log2K) + 10.

†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. Number of slots
fixed to be 8 so that the “Compute the Mod Function” step dominates runtime. Results reported
are from an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU using quadmath, NTL and GMP software
libraries.
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operations. N denotes the ring dimension, which we increase as qL increases to maintain

128-bit security [CP19, Alb17, APS15]. Results in this table were obtained using 8 slots, and

the dependence on a larger number of slots is reported below. q`′ denotes the modulus of the

ciphertext after bootstrapping. The reported error is the decryption error after performing

bootstrapping. In other words, if the decryption before bootstrapping would have resulted in

message slot value M , then the decryption after bootstrapping would result in a message slot

value M ′ such that |M ′ −M | ≤ βbs|M |. As can be seen from Table 4.1, for log2 p = 80 and

log2 p = 100, the bootstrapping error is essentially zero. This is because the bootstrapping

procedure is performed at a precision that is ten bits more than the number of bits required

to represent M +Kq (i.e. the value which needs to be reduced mod q).

Recall that the sine series approach begins by approximating eix using a Taylor series

approximation, since CKKS-HE allows computation on complex numbers. In this partic-

ular implementation, we approximated eix/K to degree 63 using the Paterson-Stockmeyer

polynomial evaluation optimization [PS73] and then performed logK squarings to obtain an

approximation of eix. Below, we report results for other variants for approximating eix.

We see that our methodology is capable of achieving high precision bootstrapping, with

the resulting message precision as large as 100 bits. Prior to our work, the highest precision

bootstrapping of CKKS was the recent work of [JM20] which could achieve a resulting mes-

sage precision of up to 67 bits. However, that result was only for K = 12 and secret key

Hamming weight h = 64, whereas our 100 bit precision bootstrapping is for h = 256 and

can handle K up to 31. Observe that using a sparser key (in addition to weakening secu-

rity) reduces the number of intervals required for approximation, making the approximation
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Table 4.2: Timing and Error Dependence on Number of Slots. In this table ε = 2−10,
log2 p = 80, and the sine series order is fixed to n = 5.

Num Input Sine Modulus Ring Boot. Modulus Error Runtime††

Slots Precision Series (Fresh) Dim. prec. (After) (Boot.) (secs)

log2 p Order log2 qL N log2 q`′ βbs = err/p

8 80 5 2400 217 105 583 < 2−80 129

16 80 5 2400 217 105 583 < 2−80 151

32 80 5 2400 217 105 583 2−72 178

64 80 5 2400 217 105 583 2−71 208

128 80 5 2400 217 105 583 2−69 269
†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. For all rows, the mod

function evaluation time is almost the same at 82 secs.

easier. Thus, we view our result as a substantial improvement for bootstrapping in settings

where high precision is required, such as the inference step of a convolution neural network

or even the learning stage of the neural network. As mentioned earlier, since CKKS is for

approximate arithmetic, it is only possible to have unlimited computation for stable com-

putations that do not lose precision. However, even such stable computations lose precision

in early stages prior to convergence. Thus, it is important to begin such computations with

high precision and, later, one can switch to smaller precision during the stable regime.
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4.1 Time and Error Dependence on the Number of

Slots

As the number of slots is increased, the time of the mod function evaluation step during boot-

strapping remains the same (assuming we use at most N/4 slots, so that all the polynomial

coefficients can be packed into a single ciphertext during the “Coefficients To Slots” step).

However, the linear transforms that send the coefficients to slots and vice versa take a sub-

stantial hit since their runtime scales with the number of slots. Since the linear transforms

also involve more rotations, key-switchings, multiplications by constants, and additions, for

every doubling of the number of slots, the bootstrapping error also increases proportion-

ately. However, since our error is so low, the error for a high number of slots still remains

low enough to be termed high-precision. This dependence of runtime and bootstrapping

error is reported in Table 4.2 for one particular parameter, where the sine series is of order

five. Observe that for 8 and 16 slots, our bootstrapping method gives essentially no error.

However, for a larger number of slots, the error is about 2−69. This is because once the

number of slots becomes larger, the error is dominated by the error introduced during the

linear transform steps.

4.2 Comparison with Basic Sine and Other Variants

While the implementation results reported in Table 4.1 used a Taylor series approximation

of degree 63 of eix/K , the implementation in [HEA] instead used a degree 7 approximation

of eix/K∗2
4

followed by 4 additional squarings. We investigated if we could use a similar
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approach for the sine series, as the different order sine terms are obtained by squarings of

eix anyways. We found that for small precision, i.e. log2 p ≤ 40, this approach can lead to a

faster implementation while yielding effectively the same error. However, for log2 p ≥ 50, this

approach led to substantially worse error. For example, at log2 p = 50, the error increased

from 2−45 to 2−30. But, as mentioned, for smaller log2 p we get the following improvements.

First of all, the basic sine approach (i.e. n = 1) with r = 4 and degree 7 Taylor series yields

an error of 2−19 for log2 p = 30. If the fresh modulus used is 1600 bits, then the modulus

after bootstrapping has 795 bits. The time taken is 10.5 secs. Interestingly, with sine series

of order two, i.e. n = 2, using the same approach we get an error of 2−26, with modulus

after bootstrapping having 685 bits. Moreover, the time taken is 10.7 secs. Yet another

implementation, with a degree 31 Taylor series approximation, and r = 0, also yields error

2−25, but takes time 16.5 secs. However, the modulus after bootstrapping has more bits at

744 bits. Regardless, it seems that the sine series of order two with a degree 7 Taylor series

and r = 4 seems to be beneficial at low precision.

We also experimented with different values of ε, in particular ε set to 2−5, 2−10, 2−15, 2−20.

The errors at each input precision were not much different, and, in fact, ε = 2−10 seems to

be the best option.

4.3 Comparison with Other Prior Works

The work [CCS19] followed an interesting approach of obtaining Chebyshev interpolants

of the scaled sine function. In particular, using the Taylor series of sin(2πK cosx), they

obtained approximations of sin(2πKx) in terms of Chebyshev polynomials. Furthermore,
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Table 4.3: Comparison with [LLL+21]. Note, [LLL+21] cites results for K = 25, whereas our
results are for K up to 31.

[LLL+21] This Work

Key Hamming Ciphertext Bootstrapping Key Hamming Ciphertext Bootstrapping

Weight (h) Bits Lost Precision (bits) Weight (h) Bits Lost Precision (bits)

192 1080 40.5 256 1069 44

N/A N/A N/A 256 1392 53

N/A N/A N/A 256 1817 80

N/A N/A N/A 256 2157 100

Table 4.4: Comparison with Modular Lagrange Interpolation [JM20]. Note, [JM20] cites
results for K = 12, whereas our results are for K up to 31.

[JM20] This Work

Input Key Hamming Ciphertext Error Key Hamming Ciphertext Error

Precision Weight (h) Bits Lost (Boot.) Weight (h) Bits Lost (Boot.)

30 64 935 2−24 256 856 2−25

50 64 1725 2−46 256 1069 2−45

60 64 1800 2−54 256 1392 2−54

80 64 2150 2−63 256 1817 < 2−80

100 N/A N/A N/A 256 2157 < 2−100
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this approach also leads to an almost optimal minmax polynomial approximation, as well

as yielding small coefficients. Since the scaling K is already incorporated in the function,

it removes the logK squarings required in [CHK+18a] and in this work. However, Cheby-

shev interpolants do not readily submit to the Paterson-Stockmeyer evaluation optimization

and while [CCS19] did show a variant of this method, it leads to coefficients increasing in

size. Thus, as explained in Section 2.5, this then requires a larger computational precision

that leads to loss of many more (ciphertext modulus) bits per multiplication depth in the

bootstrapping circuit. For a direct comparison of our approach to [CCS19], we take data

from Tables 2-4 from that work, as their implementation is unfortunately not public, and

note that the best approximation they obtain has error 2−21 for data set IV∗. A look at

our Table 4.1 shows that the worst error we obtain is 2−25 for log2 p = 30. The number

of ciphertext (modulus) bits lost for that error is 1200 − 344 = 856, whereas [CCS19] loses

1240− 43 ∗ 6 = 982 bits. Moreover, our implementation can handle K up to 31 since we set

the secret key Hamming weight h = 256, whereas [CCS19] gives results for K = 12 and use

h = 64. Thus, our approach is clearly better at even this low precision.

In [HK20], the authors obtain better approximation error than [CCS19] by leveraging

the fact the approximation is only needed in small intervals around multiples of the modu-

lus. However, their approach also uses a baby-step giant-step, or alternately the Paterson-

Stockmeyer variant applied to Chebyshev polynomials that can lead to a blowup in the size

of coefficients. The authors do not give details on the number of ciphertext (modulus) bits

lost in the bootstrapping procedure, nor is their implementation public. The maximum

bootstrapping precision they achieve is 18.5 bits.
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In [LLL+21], the authors report high-precision bootstrapping using a composition of

sine/cosine and arcsine. The polynomials to approximate these functions are found via

algorithmic search using the Remez algorithm (which gives no guarantee on the size of the

coefficients), and the authors do not provide any details on the size of these coefficients

apart from noting that they “are small enough not to distort the messages.” Moreover, their

implementation is not public. The authors report a practical implementation of up to 40-bits

precision bootstrapping. In Table 4.3, we compare our results with theirs using the relevant

available information in their paper. We note that [LLL+21] gives an implementation of RNS-

CKKS [CHK+18b], which improves performance over the original CKKS implementation by

utilizing an RNS basis. This introduces an additional challenge of having to ensure that

rescaling errors are small, but this can be done without significantly increasing error, and,

in fact, the recent work [KPP20] shows a method of managing the scaling factor so that

homomorphic multiplication error in RNS-CKKS is about the same as that of the original

CKKS scheme.

The work [JM20] gives a direct approximation of the mod function, i.e. without going

through the sine function, and hence bypasses the fundamental error of the sine function

approach. Thus, they can get arbitrarily high precision, and they also show that the coef-

ficients of their polynomial approximation are not too large. Nevertheless, the coefficients

are large enough that our approach beats [JM20]. Moreover, they only give implementation

numbers for K = 12, and for K = 31, the number of ciphertext modulus bits lost during

bootstrapping would be higher. In Table 4.4, we compare their results with ours for ε = 2−10

and various plaintext precisions.
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The recent work [BMTPH21] optimized the performance of bootstrapping for RNS-

CKKS. They introduce a scale-invariant polynomial evaluation method as well as a “double

hoisting” technique for evaluating the homomorphic linear transforms. These techniques im-

prove the performance of bootstrapping considerably and are compatible with our sine series

approximation of the mod function. Moreover, to the best of our knowledge, [BMTPH21]

gives the first public implementation of full RNS-CKKS with bootstrapping. We note that

they do not focus on obtaining better approximations to the mod function and utilize pre-

vious techniques and variants thereof to perform the “Compute the Mod Function” step in

bootstrapping. Their maximum bootstrapping precision achieved is 32.6 bits, but we stress

that this was not the focus of their work. An interesting direction would be to combine both

their bootstrapping optimizations with our sine series approximation of the mod function.
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