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ABSTRACT OF THE DISSERTATION

High-Level Liquid Types

by

Ming Woo-Kawaguchi

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Ranjit Jhala, Chair

Because every aspect of our lives is now inexorably dependent on software, it is

crucial that the software systems that we depend on are reliable, safe, and correct. However,

verifying that software systems are safe and correct in the real world is extraordinarily

difficult. In this dissertation, we posit that this difficulty is often due to a fundamental

impedance mismatch between a programmer’s “high-level” intent for the operation of their

program versus the “low-level” source code that they write. In particular, we claim that the

impedance exists in the large because of the lack of mechanisms available for encoding

and verifying complex properties of unbounded data structures. Then, we propose several
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augmentations of the Liquid Types method of automatic program verification for uniformly

describing high-level specifications and for verifying that source code is correct with respect

to such specifications. First, we describe a means of verifying the correctness of programs

that perform subtle manipulations over complex recursive and linked data structures such as

sorted lists, balanced trees and acyclic graphs. Second, we describe a means of verifying the

correctness of concurrent, shared memory programs that perform subtle manipulations on

the heap. In particular we automatically verify that concurrent, heap manipulating programs

intended to be deterministic over all possible schedules do always produce the same heap.

Finally, we show empirically that these techniques are practical and efficient by building two

tools: DSOLVE, for verifying that real programs that manipulate complex data structures do

so correctly, and CSOLVE for verifying that real, subtly deterministic heap manipulating

programs do, in fact, always produce the same heap.
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Chapter 1

Introduction

It is well known that computer programs often do not work. Computer programs

contain bugs and vulnerabilities that violate the safety of both the computer systems on

which they execute, and the systems that rely on them. In an ideal world, we would simply

examine every program at compile time using a computer program and decide whether that

program would always execute safely, or whether some execution of that program violates

a safety property. This is a problem that is generally referred to as the static software

verification problem. Further, it is a classic and trivial result that static verification reduces

to the halting problem and hence is undecidable. That is, no such program safety verifying

computer program exists.

Yet, it is also well-known that there exist important classes of programs for which

static software verification can either be decided or efficiently recognized. Further, this

literature on verification frameworks dates back to the inception of programming languages.

Yet, static program verification is still considered to be impractical and inefficient for most

use cases.

1
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1.1 Verifying High-Level Invariants

In this dissertation, we address high-level specifications, complex properties that

capture programmer intent over potentially unbounded data and control structures. In

particular, we claim that one significant reason programs do not behave as the programmer

intended is because of an impedance mismatch between programmer and program.

That is, we claim that it is vastly easier for a programmer to design algorithms that

utilize high-level properties for efficient, practical programming than it is to correctly imple-

ment those high-level properties in source code programs. We recall, then, the automatic

software verification problem and consider whether we can use tools that encode properties

and verify that source code maintains them to develop better language-level constructs and

development tools for such programmers.

However, in practice and theory, programmer intent is amorphous and difficult to

infer from code. We define intent as properties intended to be true of a program by a

programmer that may or may not be explicitly reflected in source code. For example, intent

may be embedded in conditionals that lead nowhere or to a dynamic error. Programmer

intent may even be embedded only in non-executable comments that are impossible to

automatically reason about to any reasonable definition.

Yet, programmers must program with intent, so our research posits that, in fact, intent

is embedded in all code as invariants: properties that are true of sets of values, variables and

the heap in all potential executions of a program. Then, we claim that high-level invariants

are properties that relate multiple values, values and their heap interactions in all potential

executions of a program.

We capture these high-level invariants in refinement types that extend primitive types

of values and variables with refinements that allow us to express properties of complex,
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potentially recursive and algebraic, data structures of unbounded size even when they

represent subtle relationships between stack allocated values and data on the heap. We

then use Liquid Type Inference, due to Rondon, Kawaguchi and Jhala [52, 54] to enable

automatic static verification of these invariants.

To that end, we refine our problem statement: Programmer intent is embedded in

data structure invariants, program properties that are true over every execution, including

those over complex control invariants such as pattern matching, pointer arithmetic, and

polymorphic recursion.

High-Level Liquid Types. Then, the goal of this dissertation is to utilize and adapt the

Liquid Type Inference [52, 54] technique and related type-based verification techniques to

capture, encode and verify that source code is implemently correctly with respect to high-

level invariants that accurately represent programmer intent with respect to their programs.

1.2 Contributions

As a result, this dissertation contributes the following to the research state of the art.

1. We describe a novel means of writing “high-level” data structure specifications using

“Liquid” refinement types that correspond naturally to programmer intent.

2. We describe a static analysis algorithm for inferring such refinement types over

functional data structures using Rondon, Kawaguchi and Jhala’s Liquid Type Inference

technique [52, 54] for automatic inference of refinement types.

3. We describe a type and effects system embedded in our refinement type system that

allows us to describe the interaction of merge-join style concurrent programs over

shared heaps.
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4. We describe a static analysis algorithm for inferring the above refinement types over

merge-join concurrent programs that subtly manipulate mutable data structures and

hence prove that they are memory-safe, i.e., deterministic.

5. We show that our techniques are practical and efficient by implementing two tools,

DSOLVE and CSOLVE that implement the techniques and use them to verify the safety

and determinism of a number of challenging benchmarks both from the literature and

from production data structure libraries.

1.2.1 Chapter Summaries

To this end, in Chapter 2 we introduce Recursive Refinements, a technique for

encoding and efficiently verifying universally quantified data structure properties that hold

for every element of a recursive structure. This includes, but is not limited to, sorted-ness of

lists, balanced-ness of trees, and compositions of properties such as balanced binary search

trees.

Then, in Chapter 3 we introduce Measures and Polymorphic Refinements. First,

we show that measures are a means of specifying non-boolean, well-founded properties of

recursive and variant structures. We show that, when encoded using our methods, these

properties can be verified directly against their implementations in source code and used

to prove that code maintains complex properties syntactically expressed using the measure

name.

Second, we show that Polymorphic Refinements allow a programmmer the expres-

siveness of existentially quantified properties without causing undecidability of verification.

To this end, we demonstrate a syntactic guarantee that the existential quantifier can be

eliminated during proof search, ensuring that proof search remains decidable.
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In Chapter 4, we introduce Liquid Effects, a type-and-effect system for C programs

that encodes memory access patterns over heaps, and admits Liquid Type Inference to enable

the automatic proof of disjointness of such access patterns, allowing a programmer to write

provably deterministic parallel code using fork-join concurrency.

Finally, in Chapter 5 we conclude with a detailed summary of both the concepts

introduced in this dissertation, and a brief mention of the impact that our work has had

on the research community attempting to address both verification of complex high-level

program properties as well as synthesis of programs that provably maintain high-level

program properties.

1.2.2 Dissertation Summary

This dissertation addresses the impedance mismatch that programmers face when

attempting to encode high-level invariants over source code constructs that may not explicitly

reflect their intent. We posit that this impedance mismatch is largely due to the need for

encoding and automatic static verification of data structure invariants. Then, we show

that, by piggybacking predicates over expressive base types, there exists both an intuitive

encoding of complex properties such as, but not limited to, sortedness of lists, balanced-ness

of trees, and acyclicity of linked structures. Further, we show that this technique extends to

a significant concurrent setting with novel expressiveness.

Finally, we argue that work detailed in this dissertation has had a lasting effect on the

field of automatic program verification. We argue that, prior to this work, the state of the art

in automatic data structure reasoning was intractable, either requiring reasoning undecidable

problems such as satisfaction of quantified first and higher-order logical sentences, or doubly

exponential solvers for approximate graph domains.
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We then argue that our key ideas enabling decidable reasoning about data structure

properties have enabled new lines of work in tractable reasoning and automatic verification

of complex data structure manipulating code. We justify this argument by following the

direct lines of research that utilize and extend our approaches to solve previously intractable

problems such as program synthesis, inference of arbitrary data structure invariants, auto-

matic verification of imperative code manipulating linked data structures, and an extensive

line of work on verifying HASKELL programs.



Chapter 2

Recursive Refinements

In this chapter, we will introduce a mechanism which we call Recursive Refinements.

The key idea behind Recursive Refinements is that they are an intuitive way to soundly

reason about “well-formed” data structures.

What is a “well-formed” data structure? In this thesis, we will say that a data

structure is “well-formed” if there exists a language level mechanism for reasoning about its

properties.

For example, in Java, objects instantiated of a well-defined class are “well-formed”

data structures because of the existence of class declaration and definition syntax. Further,

In C, records are “well-formed” data structures, because of the existence of the C “struct”

syntax.

However the term “well-formed” will not make any statement about whether or

not these data structures are guaranteed to match their compile-time definitions over every

possible execution of a program which defines them. That is, the term “well-formed” says

nothing about the dynamic behavior of a data structure.

In fact, C does not have a type system which is statically enforced, and hence a

7



8

segment of memory whose life starts as a struct may end as any arbitrary binary value. In

particular, this value may have no valid interpretation as a C struct. Yet, we still consider

records to be well-formed data structures in C.

In fact, the goal of this thesis will be to define a set of syntactic and semantic

mechanisms that allow for the definition of “well-formed” data structures of a certain

complexity which are not only syntactically definable in our language, but whose properties,

in which the complexity lies, are guaranteed to hold over every execution.

In particular, the complex properties I refer to are those that are often considered

“semantic” or “high-level” properties of ordered data, such as sortedness for lists, balanced-

ness for trees, acyclicity for graphs, and so on. Further, we will show that, given careful

specification and use of the mechanisms we introduce, these “high-level” properties can be

guaranteed to hold at runtime over every possible execution.

2.1 Recursive Algebraic Data Types

In functional languages, data structure values are given types corresponding to their

structure. The key idea of data structure type is that they are typically recursively defined

disjoint unions of tuples known as Algebraic Data Types, or ADTs.

Lists. We begin by examining the primitive functional list. We will refer to such structures

as recursively defined linked structures. That is, structures which can be ordinally organized

such that the n+1st element can be defined in terms of the nth element which precedes it. To

use the instructive example of a functional list, it suffices to define a list as a basis, or initial

0th element, followed by a single inductive definition which defines any given element in

terms of the element which precedes it.

For example, to define a list of the natural counting numbers from one to three, or
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range13 using the OCAML standard library, we produce the following definitions:

type int list= Cons of int∗int list

| Nil

letrange1,3 = Cons(1,Cons(2,Cons(3,Nil)))

Let us dissect this set of definitions. We first define a type in a pattern-matching

style. This style of definition is often referred to as a variant, a disjoint union, or as we will

refer to them henceforth, an algebraic data type. This type definition states, simply, that for

any value which has type list, the basis this value is an arbitrary object which we call Nil,

and further, every list otherwise contains a Cons which must be followed by either another

integer Cons or a Nil, which must necessarily end the list.

To produce the n+1st item of this list, for n > 1, one need only recursively produce

the nth item, then apply the inductive rule. One can easily see that this can be repeated

indefinitely, and hence one can “unfold” this definition an arbitrary number of times to

produce an arbitrarily long list of integers. Conversely, with a simple recursive function,

one can produce the set of naturals up to any integer n, or more succinctly stated using the

OCAML standard library range1n.

However, the type we have just defined, int list, does not only describe intervals

of the naturals. In fact, in OCAML, we can think of types as sets of values, and the set

described by int list is the set of all lists of integers in any order or sign. In practice, we

say that every list of integers inhabits the type int list.

this is a convenient mechanism for summarization: we give all lists the same type,
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and then we can have functions which take as input only lists but any list at all. That is, we

can create a function

list sum : int list→ int

and in many ways this is very convenient. We have described a function which takes any list

of integers, and most likely produces an integer which is the sum of all the integers in the

input list.

However, my claim is that this is actually a suboptimal mechanism when trying to

do what we will refer to in this thesis as “precise reasoning” about programs at compile

time. To see what “precise reasoning means”, consider the following function signature:

pos list sum : int list→ int

That is, we would like to describe a function which takes only lists of positive

integers and returns an expression which is a sum of the list’s elements. As it turns out, ML

types alone do not let one check this property at compile time or runtime. The ML type

system will allow this function to take any integer list at all and return any integer it may

compute.

One option for checking this property might might be to embed a property checking

piece of code, which is often called a “code contract” in the literature, into the function.

This code contract could detect a violation of the property in the course of any execution

which did violate the property. However, such a method has several drawbacks. First, a code

contract cannot tell you whether there exists an execution which might violate the property.

Second, it may be that the code contract is forced to simply halt the program or otherwise

do something bad if the property is violated.
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This raises the following question: why does ML not include such a type and enforce

it at runtime? As aforementioned, it is because of fundamental limits on computability. The

problem of determining “high-level-properties” on values of this kind is directly reducible

to the halting program; it is easy to see why by recalling our implementation of this check as

a contract that halts the program on property violation. If we can determine at compile-time

whether the contract is violated, we can determine, in general, whether the program halts.

Consider the following: first, determining the length of a list at compile-time is

undecidable for the same reason as above. Consequently, there is no bound on the number

of list items that a property must specify as positive. Hence, we must say something of the

sort “for every integer in this list, that integer is positive”. In fact, this directly translates into

a statement in first order logic that is a universally quantified and, as it turns out, satisfaction

of quantified first order logic is undecidable as well.

Hence, the decision problems we are trying to reason about in order to verify the

maintenance of high-level-properties over data structures are generally undecidable.

However, as it turns out, for some large classes of data structure intensive programs,

we need only embed quantifier free first-order statements into structured type refinements

that we call recursive refinements. This by itself does not solve our problem, since the

satisfaction of quantifier-free first order logic may not be decidable, but is NP-complete.

Hence, we rely on one more mechanism: in this thesis, we assume and show

experimentally that there exist efficient Satisfiabiliy Modulo Theories (SMT) solvers that

can prove satisfaction of the kinds of formulas that the algorithms for inferring and checking

recursive refinements generate efficiently.

In the remainder of this chapter, we will describe the recursive refinements mech-

anism and show why and how it makes the problem of checking these properties more
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tractable than their worst-case computability and complexity.

In the next section, we will first use a series of didactic examples to informally show

how these invariants are specified and how they are then automatically proven. Then, we will

fully formalize a toy language and a checkable type system around the crux of these ideas.

Finally, we will show the reader a method by which recursive refinements are automatically

inferred.

2.2 Verifying Software with Liquid Types

We begin with an overview of our type-based verification approach. First, we

review simple refinement and liquid types. Next, we describe recursive and polymorphic

refinements, and illustrate how they can be used to verify data structure invariants.

Refinement Types. Our system is built on the notion of refining base types with predicates

over program values that specify additional constraints which are satisfied by all values of

the type [6, 21]. For example, all values of integer type (denoted int), can be described as

{ν : int | e} where ν is a special value variable not appearing in the program, and e is a

boolean-valued expression constraining the value variable called the refinement predicate.

Intuitively, the base refinement predicate specifies the set of values c of the base type B such

that the predicate e[ν 7→ c] evaluates to true. Then, consider the type {ν : int | ν ≤ n}.

We say that this refinement type is inhabited by the set of integers whose value is less than or

equal to the value of the variable n. That is, the base type integer is refined by a dependent

express that depends on the value of the variable n. Dependent Function Types. We use

the base refinements to build up dependent function types, written x :τ1→τ2. Here, τ1 is the

domain type of the function, such that the name x denotes the the formal parameter of the
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function. Then, the parameter x may appear in the base refinements of the range type τ2. For

example, x :int→{ν : int | x≤ ν} is the type of a function that takes an input integer

and returns an integer greater than the input. Thus, the type int abbreviates {ν : int | >},

where > and ⊥ abbreviate true and false respectively.

Liquid Types. A logical qualifier is a boolean-valued expression (i.e., predicate) over the

program variables, the special value variable ν which is distinct from the program variables,

and the special placeholder variable ? that can be instantiated with program variables. We

say that a qualifier q matches the qualifier q′ if replacing some subset of the free variables in

q with ? yields q′. For example, the qualifier i≤ ν matches the qualifier ?≤ ν . We write

Q? for the set of all qualifiers not containing ? that match some qualifier in Q. In the rest of

this section, let Q be the qualifiers

Q= {0 < ν , ?≤ ν}.

A liquid type over Q is a dependent type where the refinement predicates are conjunctions

of qualifiers from Q?. We write liquid type when Q is clear from the context. We can

automatically infer refinement types by requiring that certain expressions like recursive

functions have liquid types [52].

Safety Verification. Refinement types can be used to statically prove safety properties by

encoding appropriate preconditions into the types of primitive operations. For example, to

prove that no divide-by-zero or assertion failures occur at run-time, we can type check the

program using the types int→{ν : int | ν 6= 0}→int and {ν : bool | ν}→unit for

division and assert respectively.
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let rec range i j =

if i > j then

[]

else

let is = range (i+1) j in

i::is

let harmonic n =

let ds = range 1 n in

List.fold_left

(fun s k -> s + 10000/k)

0 ds

Figure 2.1: Divide-by-zero

let rec insert x ys =

match ys with

| [] -> [x]

| y::ys’ ->

if x < y then x::y::ys’

else y::(insert x ys’)

let rec insertsort xs =

match xs with

| [] -> []

| x::xs’ ->

insert x (insertsort xs’)

Figure 2.2: Insertion Sort
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2.3 Overview

In this section, we begin by augmenting a vanilla ML ADT with uniform refinements,

statements which apply to every element in an ADT and may not depend on items within

the data structure. Then, we expound on this mechanism to introduce recursive refinements,

for describing universal invariants on data structures which can depend on items within the

structure.

Uniform Refinements. Recall that the ML type for integer lists is:

µt.Nil + Cons〈x1 :int,x2 : t〉

a recursive sum-of-products which we abbreviate to int list. We specify a list of in-

tegers each of which satisfies a predicate p as (〈〈〉;〈p;>〉〉) int list. For example,

(〈〈〉;〈i≤ ν ;>〉〉) int list specifies lists of integers greater than some program variable

i. This representation reduces specification and inference to determining which logical

qualifiers apply at each position of the refinement matrix. In the sequel, for any expression e

and relation ./ we define the abbreviation ρe
./ as:

ρ
e
./
·
=〈〈〉;〈e ./ ν ;>〉〉 (2.1)

To see how such uniform refinements can be used for verification, consider the

program in Figure 2.1. The function range takes two integers, i and j, and returns the list

of integers i, . . . ,j. The function harmonic takes an integer n and returns the nth (scaled)

harmonic number. To do so, harmonic first calls range to get the list of denominators

1, . . . ,n, and then calls foldl with an accumulator to compute the harmonic number. To
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prove that the divisions inside harmonic are safe, we need to know that all the integers in

the list is are non-zero. Using Q, our system infers:

range : i :int→j :int→(ρi
≤) int list

By substituting the actuals for the formals in the inferred type for range, our system infers

that the variable ds has the type: (ρ1
≤) int list. As the polymorphic ML type for foldl

is ∀α,β .(α→β→α)→α→β list→α , our system infers that, at the application to foldl

inside harmonic, α and β are respectively instantiated with int and {ν : ν | int}0 < ν ,

and hence, that the accumulator f has the type:

s :int→k :{ν : ν | int}0 < ν→int

As k is strictly greater than 0, our system successfully typechecks the application of the

division operator /, proving the program “division safe”. Hence, by refining the base types

that appear inside recursive types, we can capture invariants that hold uniformly across all

the elements within the recursively defined value.

2.3.1 Recursive Refinements

The key idea behind recursive refinements is that recursive types can be refined using

a matrix of predicates, where each predicate applies to a particular element of the recursive

type. For ease of exposition, we consider recursive types whose body is a sum-of-products.

Each product can be refined using a product refinement, which is a vector of predicates

where the jth predicate refines the jth element of the product. Each sum-of-products (and

hence the entire recursive type), can be refined with a recursive refinement, which is a vector
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of product refinements, where the ith product refinement refines the ith element of the sum.

Nested Refinements. The function range returns an increasing sequence of integers.

Recursive refinements can capture this invariant by applying the recursive refinement to the

µ-bound variables inside the recursive type. For each type typ define:

typ list≤
·
= µt.Nil + Cons〈x1 : typ,x2 :(ρx1

≤ ) t〉 (2.2)

Thus, a list of increasing integers is int list≤. This succinctly captures the fact that the

list is increasing, since the result of “unfolding” the type by substituting each occurrence of

t with the entire recursively refined type is:

Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) int list≤〉

where x′1,x
′
2 are fresh names introduced for the top-level “head” and “tail”. Intuitively, this

unfolded sum type corresponds to a value that is either the empty list or a cons of a head x′1

and a tail which is an increasing list of integers greater than x′1.

For inference, we need only find which qualifiers flow into the recursive refinement

matrices. Using Q, our system infers that range returns an increasing list of integers no less

than i:

range : i :int→j :int→(ρi
≤) int list≤

As another example, consider the insertion sort function from Figure 2.2. In a

manner similar to the analysis for range, using just Q, and no other annotations, our

system infers that insert has the type x :α→ys :α list≤→α list≤, and hence that

program correctly sorts lists. Furthermore, the system infers that insertsort has the type
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xs :α list→α list≤.

The main difficulty in inferring this type arises from the case where insert is

recursively invoked on the tail of ys. The arguments passed to the recursive call to insert

are a value no less than y (inferred from the branch) and a list of values no less than y (as the

list is increasing). Thus, at this site, we can instantiate the α in the polymorphic ML type

of insert, namely ∀α.α→α list→α list, with the monomorphic {ν : α | y≤ ν} to

deduce that the output of the recursive call has type {ν : ν | y≤ ν} list, i.e., is a list of

values no less than y. This fact, combined with the (inductive) fact that insert preserves

the increasing property, shows that the result of cons-ing y and the recursively computed

value (and hence, the output of insert) is an increasing list.

2.4 Base Language

We begin by reviewing the core language NanoML from [52], by presenting its

syntax and static semantics. NanoML has a strict, call-by-value semantics, formalized in

Figure 2.4 using a small-step operational semantics. In this and the following chapters,

we will extend this language with syntactic mechanisms and a type system that guarantees

its safe behavior with regard to the complex data structure properties mentioned in the

introduction.

Expressions. The expressions of NanoML, summarized in Figure 2.3, include variables,

primitive constants, λ−abstractions and function application. In addition, NanoML has

let-bindings and recursive function definitions using the fixpoint operator fix. Our type

system conservatively extends ML-style parametric polymorphism. Thus, we assume that

the ML type inference algorithm automatically places appropriate type generalization and

instantiation annotations into the source expression. Finally, we assume that, via α-renaming,
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e ::= Expressions:
| x variable
| c constant
| λx.e abstraction
| x x application
| if e then e else e if-then-else
| let x = e in e let-binding
| fix x.e fixpoint
| [Λα]e type-abstraction
| [typ]e type-instantiation

Q ::= Liquid Refinements
| > true
| q qualifier in Q?

| Q∧Q conjunction
B ::= Base:

| int integers
| bool booleans
| α type variable

A(B) ::= Unrefined Skeletons:
| B base
| x :T(B)→T(B) function

T(B) ::= Refined Skeletons:
| {ν : A(B) | B} refined type

S(B) ::= Type Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype

typ,σ ::= T(>),S(>) Types, Schemas
τ,S ::= T(E),S(E) Depend. Types, Schemas
τ̂, Ŝ ::= T(Q),S(Q) Liquid Types, Schemas

Figure 2.3: NanoML Syntax
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Contexts C
v ::= Values:

| c constants
| λx.e λ -terms
| 〈v〉 tuples

C ::= Contexts:
| • hole
| C e application left
| v C application right
| if C then e else e if-then-else
| let x = C in e let-binding
| 〈v1, . . . ,v j−1,C ,e j+1,en〉 tuples

Evaluation e ; e′

c v ; [[c]](v) [E-PRIM]
(λx.e) v ; e[x 7→ v] [E-β ]

if true then e else e′ ; e [E-IF-TRUE]
if false then e else e′ ; e′ [E-IF-FALSE]

let x = v in e ; e[x 7→ v] [E-LET]
C [e] ; C [e′] if e ; e′ [E-COMPAT]

Figure 2.4: NanoML Small-Step Operational Semantics
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each variable is bound at most once in an environment.

Types and Schemas. NanoML has a system of base types, function types, and ML-style

parametric polymorphism using type variables α and schemas where the type variables are

quantified at the outermost level. We organize types into unrefined types, which have no

top-level refinement predicates, but which may be composed of types which are themselves

refined, and refined types, which have a top-level refinement predicate. An ML type (schema)

is a type (schema) where all the refinement predicates are >. A liquid type (schema) is a

type (schema) where all the refinement predicates are conjunctions of qualifiers from Q?.

We write typ and σ for ML types and schemas, τ and S for refinement types and schemas,

and τ̂ and Ŝ for liquid types and schemas. We write typ to abbreviate {ν : typ | >}, and

typ to abbreviate {ν : typ | ⊥}. When typ is clear from context, we write {e} to abbreviate

{ν : typ | e}.

Instantiation. We write Ins(S,α,τ) for the instantiation of the type variable α in the

scheme S with the refined type τ . Intuitively, Ins(S,α,{ν : τ ′ | e′}) is the refined type

obtained by replacing each occurrence of {ν : α | e} in S with {ν : τ ′ | e∧ e′}.

Constants. The basic units of computation in NanoML are primitive constants, which are

given refinement types that precisely capture their semantics. Primitive constants include

basic values, like integers and booleans, as well as primitive functions that define basic

operations. The input types for primitive functions describe the values for which each

function is defined, and the output types describe the values returned by each function. In
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addition to / and assert, the constants of NanoML include:

true : {ν : bool | ν}

false : {ν : bool | not ν}

3 : {ν : int | ν = 3}

= : x :int→y :int→{ν : bool | ν ⇔ (x = y)}

+ : x :int→y :int→{ν : int | ν = x+ y}

Next, we give an overview of our static type system, by describing environments and

summarizing the different kinds of judgments.

Environments and Shapes. A type environment Γ is a sequence of type bindings of the

form x :S and guard predicates e. The guard predicates are used to capture constraints about

“path” information corresponding to the branches followed in if-then-else expressions. The

shape of a refinement type schema S, written as Shape(S), is the ML type schema obtained

by replacing all the refinement predicates with > (i.e., “erasing” the refinement predicates).

The shape of an environment is the ML type environment obtained by applying Shape to

each type binding and removing the guards.

Judgments. Our system has four kinds of judgments that relate environments, expressions,

recursive refinements and types. Well-formedness judgments (Γ ` S) state that a type schema

S is well-formed under environment Γ. Intuitively, the judgment holds if the refinement

predicates of S are boolean expressions in Γ. Subtyping judgments (Γ ` S1 <: S2) state that

the type schema S1 is a subtype of the type schema S2 under environment Γ. Intuitively, the

judgments state that, under the value-binding and guard constraints imposed by Γ, the set of

values described by S1 is contained in the set of values described by S2. Typing judgments

(Γ `Q e :S) state that, using the logical qualifiers Q, the expression e has the type schema
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Well-Formed Types Γ ` S

Shape(τ) = τ

Γ ` τ
[WF-REFLEX]

Γ ` τ Γ;ν :Shape(τ) ` e : bool
Γ ` {ν : τ | e}

[WF-REFINE]

Γ ` τ Γ;x :Shape(τ) ` τ
′

Γ ` x :τ→τ
′ [WF-FUN]

Figure 2.5: NanoML: Well-Formedness Rules

Decidable Subtyping Γ ` S1 <: S2

Γ ` τ <: τ
[<:-REFLEX]

Γ ` τ <: τ
′ Valid([[Γ]]∧ [[e]]⇒ [[e′]])

Γ ` {ν : τ | e}<: {ν : τ
′ | e′}

[<:-REFINE]

Γ ` τ2 <: τ1 Γ;x2 :τ2 ` τ
′
1[x1 7→ x2]<: τ

′
2

Γ ` x1 :τ1→τ
′
1 <: x2 :τ2→τ

′
2

[<:-FUN]

Figure 2.6: NanoML: Subtyping Rules

S under environment Γ. Intuitively, the judgments state that, under the value-binding and

guard constraints imposed by Γ, the expression e will evaluate to a value described by the

type S.

Decidable Subtyping and Liquid Type Inference. In order to determine whether one type

is a subtype of another, our system uses the subtyping rules (Figure 2.6) to generate a set of

implication checks over refinement predicates. To ensure that these implication checks are

decidable, we embed the implication checks into a decidable logic of equality, uninterpreted

functions, and linear arithmetic (EUFA) that can be decided by an SMT solver [15]. As the

types of branches, functions, and polymorphic instantiations are liquid, we can automatically

infer liquid types for programs using abstract interpretation [52].
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Liquid Type Checking Γ `Q e : S

Γ `Q e : S Γ ` S <: S′ Γ `Q S′

Γ `Q e : S′
[L-SUB]

Γ(x) = {ν : τ | e}
Γ `Q x : {ν : τ | e∧ν = x}

[L-VAR]
Γ `Q c : ty(c)

[L-CONST]

Γ ` x : τ̂x→τ̂ Γ;x : τ̂x `Q e : τ̂

Γ `Q (λx.e) : x : τ̂x→τ̂
[L-FUN]

Γ `Q x1 : x :τ→τ
′

Γ `Q x2 : τ

Γ `Q x1 x2 : τ
′[x 7→ x2]

[L-APP]

Γ ` τ̂ Γ `Q e1 : bool Γ;e1 `Q e2 : τ̂ Γ;¬e1 `Q e3 : τ̂

Γ `Q if e1 then e2 else e3 : τ̂
[L-IF]

Γ ` τ̂ Γ `Q e1 : S1 Γ;x :S1 `Q e2 : τ̂

Γ `Q let x = e1 in e2 : τ̂
[L-LET]

Γ ` Ŝ Γ;x : Ŝ `Q e : Ŝ

Γ `Q fix x.e : Ŝ
[L-FIX]

Γ `Q e : S α 6∈ Γ

Γ `Q [Λα]e : ∀α.S
[L-GEN]

Γ ` τ Shape(τ) = typ Γ `Q e : ∀α.S
Γ `Q [typ]e : Ins(S,α,τ)

[L-INST]

Figure 2.7: Liquid Type Checking Rules for NanoML
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e ::= . . . Expressions:
| 〈e〉 tuple
| C〈e〉 constructor
| match e with |i Ci〈xi〉 7→ ei match-with
| unfold e unfold
| fold e fold

ε ::= m | c | x | ε ε M-Expressions
M ::= (m,〈Ci〈xi〉 7→ εi〉, typ,µt.ΣiCi〈xi : typi〉) Measures
ρ(B) ::= 〈〈B〉∗〉∗ Recursive Refinement
A(B) ::= . . . Unrefined Skeletons:

| 〈x :T(B)〉 product
| ΣiCi〈x :T(B)〉 sum
| (ρ(B)) t recursive type variable
| (ρ(B)) µt.ΣiCi〈x :T(B)〉 recursive type

Figure 2.8: Recursive Refinements: Syntax

ρ-Application (ρ) τ . τ ′

fresh x′(〈e〉[x 7→ x′]) 〈x :τ[x 7→ x′]〉. 〈x′ :τ
′〉

(e;〈e〉) (x :{ν : τ | ex};〈x :τ〉). (x′ :{ν : τ | e∧ ex};〈x′ :τ
′〉)

[.-PROD]

∀i : (ρi) 〈xi :τi〉. 〈x′i :τ
′
i 〉

(ρ) ΣiCi〈xi :τi〉.ΣiCi〈x′i :τ
′
i 〉

[.-SUM]

Figure 2.9: Recursive Refinement Application

2.5 Recursive Refinements

We now describe NanoMLds, an extension our core language NanoML with recur-

sively refined datatypes and corresponding values. As we proceed through this thesis, we

will evolve NanoMLds to provide support for an increasing number of verified features.

However, in the following we will first describe how we extend the syntax of

expressions and types, and correspondingly extend the dynamic semantics to support refined

recursive types using recursive refinements. Then, we extend the static type system by

formalizing the derivation rules that deal with recursive values, and illustrate how the rules
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Well-Formed Types Γ ` S

Γ ` τ Γ;x :Shape(τ) ` 〈x :τ〉
Γ ` x :τ;〈x :τ〉

[WF-PROD]

∀i : Γ ` 〈xi :τi〉
Γ ` ΣiCi〈xi :τi〉

[WF-SUM]

(ρ) τ . τ
′

Γ ` τ
′[t 7→ Shape(µt.τ)]

Γ ` (ρ) µt.τ
[WF-REC]

Figure 2.10: Recursive Refinement Well-Formedness Rules

Decidable Subtyping Γ ` S1 <: S2

Γ ` τ <: τ
′

Γ;x :τ ` 〈x :τ〉<: 〈x′ :τ
′[x′ 7→ x]〉

Γ ` x :τ;〈x :τ〉<: x′ :τ
′;〈x′ :τ

′〉
[<:-PROD]

∀i : Γ ` 〈xi :τi〉<: 〈x′i :τ
′
i 〉

Γ ` ΣiCi〈xi :τi〉<: ΣiCi〈x′i :τ
′
i 〉

[<:-SUM]

(ρ1) τ1 . τ
′
1 (ρ2) τ2 . τ

′
2

typ= Shape(µt.τ1) = Shape(µt.τ2) Γ ` τ
′
1[t 7→ typ]<: τ

′
2[t 7→ typ]

Γ ` (ρ1) µt.τ1 <: (ρ2) µt.τ2
[<:-REC]

Figure 2.11: Recursive Refinement Subtyping

Liquid Type Checking Γ `Q e : S

Γ ` (ρ̂) µt.τ̂ (ρ) τ̂ . τ̂
′

Γ `Q e : {ν : τ̂
′[t 7→ (ρ̂) µt.τ̂] | e′}

Γ `Q fold e : {ν : (ρ̂) µt.τ̂ | e′}
[L-FOLD]

(ρ) τ . τ
′

Γ ` e : {ν : (ρ) µt.τ | e′}
Γ ` unfold e : {ν : τ

′[t 7→ (ρ) µt.τ] | e′}
[L-UNFOLD]

Γ `Q 〈e〉 : 〈x :τ〉
Γ `Q C j〈e〉 : C j〈x :τ〉+Σi6= jCi〈xi : typi〉

[L-SUM]

Γ ` e : ΣiCi〈xi :τi〉 Γ ` τ ∀i Γ;〈xi :τi〉;`ei : τ̂

Γ ` match e with |i Ci〈xi〉 7→ ei : τ̂
[L-MATCH]

Figure 2.12: Recursive Refinements Static Semantics
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Contexts C
v ::= Values:

| c constants
| λx.e λ -terms
| 〈v〉 tuples
| Civ sums
| fold v folds

C ::= Contexts:
| • hole
| C e application left
| v C application right
| if C then e else e if-then-else
| let x = C in e let-binding
| 〈v1, . . . ,v j−1,C ,e j+1,en〉 tuples
| CiC sums
| fold C folds
| unfold C unfolds

Evaluation e ; e′

c v ; [[c]](v) [E-PRIM]
(λx.e) v ; e[x 7→ v] [E-β ]

if true then e else e′ ; e [E-IF-TRUE]
if false then e else e′ ; e′ [E-IF-FALSE]

let x = v in e ; e[x 7→ v] [E-LET]
unfold (fold v) ; v [E-UNFOLD]

match C j〈v〉 with |i Ci〈xi〉 7→ ei ; e j[〈x〉 7→ 〈v〉] [E-MATCH]
C [e] ; C [e′] if e ; e′ [E-COMPAT]

Figure 2.13: NanoMLds: Small-Step Operational Semantics



28

are applied to check expressions.

2.5.1 Syntax and Dynamic Semantics

Figure 2.8 describes how the expressions and types of NanoMLds are extended to

include recursively-defined values. The language of expressions includes tuples, value

constructors, folds, unfolds, and pattern-match expressions. The language of types is

extended with product types, tagged sum types, and a system of iso-recursive types. We

assume that appropriate fold and unfold annotations are automatically placed in the source

at the standard construction and matching sites, respectively [43]. We assume that different

types use disjoint constructors, and that pattern match expressions contain exactly one match

binding for each constructor of the appropriate type. The run-time values are extended with

tuples, tags and explicit fold/unfold values in the standard manner [43].

Similarly, Figure 2.13 defines a small-step operational semantics that extends those

of NanoML to account for the additional expression syntax in the standard manner

Notation. We write 〈Z〉 for a sequence of values of the kind Z. We write (Z;〈Z〉) for a

sequence of values whose first element is Z, and the remaining elements are 〈Z〉. We write 〈〉

for the empty sequence. As for functions, we write dependent tuple types using a sequence

of name-to-type bindings, and allow refinements for “later” elements in the tuple to refer to

previous elements. For example, 〈x1 :int;x2 :{ν : int | x1 ≤ ν}〉 is the type of pairs of

integers where the second element is greater than the first.

2.5.2 Static Semantics

The derivation rules pertaining to recursively refined types, including the rules for

product, sum, and recursive types, as well as construction, match-with, fold and unfold
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expressions are shown in Figure 2.12. The fold and unfold rules use a judgment called

ρ-application, written (ρ) τ . τ ′. Intuitively, this judgment states that when a recursive

refinement ρ is applied to a type τ , the result is a sum type τ ′ with refinements from ρ .

Next, we describe each judgment and the rules relevant to it.

Next, we describe the typing judgments of the static type system, focusing on the

rules relating to recursive types. The other rules are either standard [21], or can be found

in previous work [52]. We end the section by discussing various design decisions made in

order to maintain a balance between expressiveness of the system and decidability of type

checking and inference.

ρ-Application and Unfolding. Formally, a recursive type (ρ) µt.τ is unfolded in two

steps. First, we apply the recursive refinement ρ to the body of the recursive type τ to get

the result τ ′ (written (ρ) τ . τ ′). Second, in the result of the application τ ′, we replace

the µ-bound recursive type variable t with the entire original recursive type ((ρ) µt.τ),

and normalize by replacing adjacent refinements (ρ)(ρ ′) with a new refinement ρ ′′ which

contains the conjunctions of corresponding predicates from ρ and ρ ′.

Example. Consider the type which describes increasing lists of integers greater than some

x′1:

(ρ
x′1
≤ ) µt.Nil + Cons〈x1 :int,x2 :(ρx1

≤ ) t〉

To unfold this type, we first apply the recursive refinement ρ
x′1
≤ to the recursive type’s

body, Nil + Cons〈x1 :int,x2 :(ρx1
≤ )t〉. To apply the recursive refinement to the above sum

type, we use rule [.-SUM] to apply the product refinements 〈〉 and 〈x′1 ≤ ν ;>〉 of ρ
x′1
≤ to

the products corresponding to the Nil and Cons constructors, respectively. To apply the
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refinements to each product, we use the rule [.-PROD] to obtain the result:

Nil + Cons〈x′′1 :{ν : int | x′1 ≤ ν},x′′2 :(ρx′′1
≤ )t〉 (2.3)

Notice that the result is a sum type with fresh names for the “head” and “tail” of the unfolded

list. Observe that this renaming allows us to soundly use the head’s value to refine the tail,

via a recursive refinement stipulating all elements in the tail are greater than the head, x′′1 . To

complete the unfolding, we replace t with the entire recursive type and normalize to get:

Nil + Cons〈x′′1 :{ν : int | x′1 ≤ ν},x′′2 :(ρ) int list≤〉

where ρ
·
= 〈〈〉;〈x′1 ≤ ν ∧ x′′1 ≤ ν ;>〉〉. Intuitively, the result of the unfolding is a type that

specifies an empty list, or a non-empty list with a head greater than x′1 and an increasing tail

whose elements are greater than x′1 and x′′1 .

Next, consider the type describing lists of increasing integers from (2.2). Formally,

the type is

(ρ>) µt.Nil + Cons〈x1 :int,x2 :(ρx1
≤ ) t〉 (2.4)

where ρ> is the trivial recursive refinement 〈〈〉;〈>;>〉〉. To unfold this type, we first apply

the (trivial) recursive refinement ρ> to the body, using rules .-SUM and .-PROD to get

Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) t〉 (2.5)

To complete the unfolding, we replace the µ-bound t in the above with the entire recursive
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type, to get

Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) (ρ>) int list≤〉

which after conjoining the adjacent ρ
x′1
≤ and ρ> reduces to

Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) int list≤〉

Note that the fresh names x′1 and x′2 for the head and tail of the unfolded list allow us

to soundly use the head’s value to refine the tail, via a recursive refinement stipulating

all elements in the tail are greater than the head x′1. In effect this allows us to soundly

“instantiate” the recursive refinement ρ
x1
≤ with the “bound” x1 with the specific head x′1 of

the list. Intuitively, the result of the unfolding is a type that specifies an empty list, or a

non-empty list whose tail is a list of increasing integers, each of which is greater than the

head.

Well-formedness. We require that the refinement types of program expressions are well-

formed, i.e., boolean expressions over variables in scope at that point. For example, the type

of a let expression should not refer to the variable it binds (rule [L-LET]). Rule [WF-REC]

checks if a recursive type (ρ) µt.τ is well-formed in an environment Γ , i.e., if Γ ` (ρ) µt.τ .

First, the rule applies the refinement ρ to τ , the body of the recursive type, to obtain τ ′.

Next, the rule replaces the µ-bound variable t in τ ′ with the shape of the recursive type and

checks the well-formedness of the result of the substitution.

Example. When ρ>
·
= 〈〈〉;〈>;>〉〉, the check

/0 ` (ρ>) µt.Nil + Cons〈x1 :int,x2 :(ρx1
≤ ) t〉
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is reduced to checking, using [WF-REFINE] that in the environment where x′1 (the fresh

name given to the unfolded list’s “head”) has type int, the refinement {ν : int | x′1 ≤ ν}

(applied to the elements of the unfolded list’s “tail”) is well-formed. Formally, the check is

reduced by [WF-REC], which first applies ρ> to the body of the type, yielding:

Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) t〉

Next, [WF-REC] substitutes the shape for t, reducing the check to:

/0 ` Nil + Cons〈x′1 :int,x′2 :(ρx′1
≤ ) int list〉

which gets reduced by [WF-SUM] and [WF-PROD] to:

x′1 :int ` (ρx′1
≤ ) int list

i.e., that the type that describes a list of integers greater than x′1, is well-formed in an

environment where x′1 is an integer. This is also checked using [WF-REC], which first

applies the refinement to the body of the recursive type to get (2.3). Next, the rule substitutes

the shape int list for the µ-bound variable t to reduce the above to the following:

x′1 :int ` Nil + Cons〈x′′1 :{ν : int | x′1 ≤ ν},x′′2 :int list〉
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[WF-SUM], [WF-PROD], and [WF-REFINE] reduce this to:

x′1 :int;x′′1 :int `int list

x′1 :int;ν :int `(x′1 ≤ ν) : bool

which follow from [WF-REFLEX] and ML typing rules.

Subtyping. The subtyping relationship between two types reduces to a set of implication

checks between the refinement predicates for the types. The rules for base and function

types are standard [21].

Products and Sums. Rule [<:-PROD] (resp. [<:-SUM]) determines whether two products

(resp. sums) satisfy the subtyping relation by checking subtyping between corresponding

elements.

Example. When Γ
·
= x′1 :int, the check

Γ ` 〈y1 :{x′1 < ν},y2 :int list〉<: 〈z1 :{x′1 6= ν},z2 :int list〉 (2.6)

is reduced by [<:-PROD] to:

Γ `{ν : int | x′1 < ν}<: {ν : int | x′1 6= ν}

Γ;y1 :int `int list<: int list

[<:-REFLEX] ensures the latter. [<:-REFINE] reduces the former to checking the validity

of x′1 < ν ⇒ x′1 6= ν in EUFA.

Recursive Types. Rule [<:-REC] determines whether the subtyping relation holds between

two recursively refined types. The rule first applies the outer refinements to the bodies
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of the recursive types, then substitutes the µ-bound variable with the shape (as for well-

formedness), and then checks that the resulting sums are subtypes.

Example. Consider the subtyping check

x′1 :int `(ρx′1
< ) int list<: (ρx′1

6= ) int list (2.7)

that is, the list of integers greater than x′1 is a subtype of the list of integers distinct from

x′1. Rule [<:-REC] applies the refinements to the bodies of the recursive types and then

substitutes the shapes, reducing the above (after using [<:-SUM], [<:-PROD] and [<:-

REFLEX]) to (2.6). Finally, applying the rule [<:-REC] yields the judgment

/0 `int list< <: int list6= (2.8)

int list<
·
=(ρ>) µt.Nil + Cons〈x1 :int,x2 :(ρx1

< ) t〉

int list6=
·
=(ρ>) µt.Nil + Cons〈x1 :int,x2 :(ρx1

6= ) t〉

that is, that the list of strictly increasing integers is a subtype of the list of distinct integers.

To see why, observe that after applying the trivial top-level recursive refinement ρ> to the

body, substituting the shapes, and applying the [<:-SUM], [<:-PROD] and [<:-REFLEX]

rules, the check reduces to (2.7).

Local Subtyping. Our recursive refinements represent universally quantified properties

over the elements of a structure. Hence, we reduce subtyping between two recursively-

refined structures to local subtype checks between corresponding elements of two arbitrarily

chosen values of the recursive types. The judgment [<:-REC] carries out this reduction via

ρ-application and unfolding and enforces the local subtyping requirement with the final

antecedent.
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Well-foundedness. Although the rule [<:-REC] unfolds the bodies of the recursive types,

our subtyping check is well-founded, i.e., terminates, as the µ−bound variable is substituted

with the shape, not the dependent recursive type. Thus, our system unfolds the recursive type

twice; once to apply the outer recursive refinement, and once to apply the inner recursive

refinements after unfolding.

Fresh names. Note that the ρ-application introduces fresh names for the “top-level” ele-

ments of the recursive type. However, as with the names of formal parameters in function

types, the fresh names are unified using substitution as shown in [<:-PROD].

Typing. We now turn to the rules for type checking expressions. We start with the rules for

matching (unfolding) and construction (folding) recursive values.

Match and Unfold. Rules [L-UNFOLD] and [L-MATCH] describe how values extracted

from recursively constructed values are type checked. First, [L-UNFOLD] is applied, which

performs one unfolding of the recursive type, as described above. Second, the rule [L-

MATCH] is used on the resulting sum type. This rule stipulates that the entire expression

has some type τ̂ if the type is well-formed in the current environment, and that, for each

case of the match (i.e., for each element of the sum), the body expression has type τ̂ in the

environment extended with the corresponding match bindings.

Example. Consider the following function:

let rec sortcheck xs =

match xs with

| x::(x’::_ as xs’) ->

assert (x <= x’); sortcheck xs’

| _ -> ()

Let Γ be xs :α list≤. From rule [L-UNFOLD], we have

Γ `Qunfold xs : Nil+Cons〈x :α;xs′ :(ρx
≤) α list≤〉



36

For clarity, we assume that the fresh names are those used in the match-bindings. For the

Cons pattern in the outer match, we use the rule [L-MATCH-M] to get the environment Γ′,

which is Γ extended with x :α , xs′ :(ρx
≤) α list≤. Thus, [L-UNFOLD] yields

Γ
′ `Qunfold xs′ : Nil+Cons〈x′ :{ν : α | x≤ ν};xs′′ : . . .〉

Hence, in the environment:

xs :α list≤;x :α;xs′ :(ρx
≤) α list≤;x′ :{ν : α | x≤ ν}

which corresponds to the extension of Γ′ with the (inner) pattern-match bindings, the

argument type {ν = x≤ x′} is a subtype of the input type {ν} and system verifies that the

assert cannot fail.

Construct and Fold. Rules [L-SUM] and [L-FOLD] describe how recursively constructed

values are type checked. First, [L-SUM] is applied, which uses the constructor C j to

determine which sum type the tuple should be injected into. Notice that, in the resulting

sum, the refinement predicate for all other sum elements is ⊥, capturing the fact that C j is

the only inhabited constructor within the sum value. Second, the rule [L-FOLD] folds the

(sum) type into a recursive type.

This is analogous to the classical fold [43] for iso-recursive types, which checks that

the unfolded version of the typeis in fact the type of the expression prior to applying the

fold operator [43].

Example. Consider the expression Cons(i,is) which is returned by the function range
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from Figure 2.1. Let Γ
·
= i :int;is :(ρi+1

≤ ) int list≤. Rule [<:-REFINE] yields:

Γ;x′1 :{i= ν} `{i+1≤ ν}<: {x′1 ≤ ν ∧ i≤ ν}

Consequently, using the rules for subtyping, we derive:

Γ;x′1 :{i= ν} `(ρi+1
≤ ) int list≤ <: (ρ ′) int list≤ (2.9)

where ρ ′ is 〈〈〉;〈x′1 ≤ ν ∧ i≤ ν ;>〉〉. Using [L-PROD]:

Γ `Q(i,is) : 〈x′1 :{i= ν};x′2 :(ρ ′) int list≤〉

and so, using the subsumption rule [L-SUB] and (2.9) we have:

Γ `Q(i,is) : 〈x′1 :{i≤ ν};x′2 :(ρ ′) int list≤〉

i.e., the first element of the pair is greater than i and the second element is an increasing list

of values greater than than the first element and i. Thus, applying [L-SUM], we get:

Γ `Q Cons(i,is) : Nil + Cons 〈x′1 :{i≤ ν};x′2 :(ρ ′) int list≤〉

As (ρi
≤) int list≤ unfolds to the above type, [L-FOLD] yields

Γ `Q fold(Cons(i,is)) : (ρi
≤) int list≤

i.e., range returns an increasing list of integers greater than i.
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2.5.3 Type Inference

Next, we summarize the main issues that had to be addressed to extend the liquid

type inference algorithm of [52] to the setting of recursive refinements. For details, see [51].

Polymorphic Recursion. Recall the function insert from Figure 2.2. Suppose that ys is

an increasing list, i.e., it has the type α list≤. In the case when ys is not empty, and x is

not less than y, the system must infer that the list Cons(y,insert x ys′) is an increasing

list. To do so, it must reason that the recursive call to insert returns a list of values that

are (a) increasing and, (b) greater than y. Fact (a) can be derived from the (inductively

inferred) output type of insert. However, fact (b) is specific to this particular call site – y

is not even in scope at other call sites, or at the point at which insert is defined. Notice,

though, that the branch condition at the recursive call tells us that the first parameter passed

to insert, namely, x, is greater than y. As y and ys′ are the head and tail of the increasing

list ys, we know also that every element of ys′ is greater than y. The ML type of insert

is ∀α.α→α list→α list. By instantiating α at this call site with {ν : α | y≤ ν}, we

can deduce fact (b).

This kind of reasoning is critical for establishing recursive properties. In our system

it is formalized by the combination of [L-INST], a rule for dependent polymorphic instantia-

tion, and [L-FIX], a dependent version of Mycroft’s rule [39] that allows the instantiation

of the polymorphic type of a recursive function within the body of the function. Although

Mycroft’s rule is known to render ML type inference undecidable [25], this is not so for

our system, as it conservatively extends the ML type system. In other words, since only

well-typed ML programs are typable in our system, we can use Milner’s rule to construct

an ML type derivation tree in a first pass, and subsequently use Mycroft’s rule and the

generalized types inferred in the first pass to instantiate dependent types at (polymorphic)
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recursive call sites.

Conjunctive Templates. Recall from Section 2.4 that polymorphic instantiation using Ins

(rule [L-INST]) results in types whose refinements are a conjunction of the refinements

applied to the original type variables (i.e., α) within the scheme (i.e., S) and the top-level

refinements applied to the type used for instantiation (i.e., τ). Similarly, the normalizing of

recursive refinements (i.e., collapsing adjacent refinements (ρ)(ρ ′)) results in new refine-

ments that conjoin refinements from ρ and ρ ′. Due to these mechanisms, the type inference

engine must solve implication constraints over conjunctive refinement templates described

by the grammar

θ ::= ε | [x 7→ e];θ (Pending Substitutions)

L ::= e | θ ·κ ∧L (Refinement Template)

where κ are liquid type variables [52]. We use the fact that

P⇒ (Q∧R) is valid iff P⇒ Q and P⇒ R are valid

to reduce each implication constraint over a conjunctive template into a set of constraints

over simple templates (with a single conjunct). The iterative weakening algorithm from [52]

suffices to solve the reduced constraints, and hence infer liquid types.

3. Liquid Type Restriction. In our system, two key ingredients make inference decidable.

First, we have ensured that all dependent constraints are captured explicitly using refinement

predicates. Second, we have ensured that for certain critical kinds of expressions, for which

types must be inferred (as they cannot be locally synthesized [44]), the types are liquid,

i.e., all refinement predicates are conjunctions of logical qualifiers. This ensures that the
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space of possible refinements is finite and can be efficiently searched, thereby making

inference decidable.

1. Path-sensitivity. In order to precisely check and infer properties of recursive values, it is

critical that the system track explicit value flow due to name bindings, as well as implicit

value relationships effected through the use of branches in if-then-else expressions and

match-with expressions. Our system captures explicit value flow via subtyping and implicit

relationships via environment guard predicates. For example, in the insert function from

Figure 2.2, the comparison is crucial for establishing that in the then branch, as y is greater

than x, and all the elements of ys′ are greater than y (as Cons(y,ys′) is increasing), it must

be that all the elements of ys′ are greater than x and so Cons(x,ys′) is increasing.

2.6 Summary

In this chapter we introduced Recursive Refinements, an invariant encoding mecha-

nism that places quantifier-free logical refinements within the algebraic structure of recursive

ADTs. We then provided an overview demonstrating their use and a formalism for reasoning

about their expressiveness. Finally, we discussed the use of type inference to enable auto-

matic program verification using recursive ADTs augmented with Recursive Refinements.

However, we note that Recursive Refinements are not expressive enough to represent

properties that cannot be recursively, transitively defined, properties that are non-boolean, or

properties that require the use of existentional quantification i.e., properties that are true of

one or more, but not all values in a structur.

In Chapter 3 we introduce Measures and Polymorphic Refinements; We then show

how Measures allow encoding of potentially non-recursive, non-transitive and non-boolean

properties. Next, we show how Polymorphic Refinements allow encoding of properties
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requiring exponential quantification. Further, we show that these mechanisms both admit

Liquid Type Inference for automatic program verification. Finally, we present our experimen-

tal results using DSOLVE, a static program verification tool that uses Recursive Refinements,

Measures and Polymorphic Refinements to automatically verify the correctness of a number

of challenging data structure benchmarks.
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Chapter 3

Measures and Polymorphic Refinements

3.1 Measures: Introduction

Motivation. In practice, data structure invariants are not always “well formed” in that they

cannot always be recursively, transitively defined, or they may not be strict invariants at

all; to check many data structure manipulating programs it turns out that we often need to

reason about properties of data structures which are not boolean, and may be represented by

nearly arbitrary computations over values.

Hence, in this chapter, we present a mechanism we call Measures that can be used

to specify “programmatic” properties of structures. That is, Measures encode properties of

structures that require non-declarative computational expressiveness. These properties may

not be transitive, if they are even inductive, and they are likely to be non-boolean.

Measures. Invariants may rely on non-boolean valued properties of structures or boolean

valued properties which cannot be inductively, transitively described with recursive refine-

ments. For example, an invariant on lists may refer to the length of the list, or an invariant

on trees may refer to the height. Worse, there are common invariants that rely on complex

42
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measure len =

| [] -> 0

| x::xs -> 1 + len xs

Figure 3.1: Measure for the length of a list

definitions such as tree balanced-ness, meaning the set of subtrees both have something

called a height, and there is a strict inequality on these heights. In fact, these are not

uncommon properties; in the last chapter we saw that recursive refinements were unable

to describe the properties of an elementary red black tree due to the alternation of red and

black nodes.

To implement this mechanism within the regime of quantifier-free first order logic,

we use the logic of uninterpreted functions combined with a loose restriction on the domain

of expressible properties such that the properties can be overapproximated within the logic.

For example, consider the example of a length properties over lists. We require

the programmer to state her intention of using such a property by defining what we call a

measure. Then, she need simply state a short measure annotation, specifically that shown in

Figure 3.1, within the specification file inductively expressing the list length property.

The crux of this methodology is that we restrict the language used in measure

definitions such that they can be easily embedded within our decidable EUFA refinement

embedding framework.

However, this alone is not enough to allow an automated prover to reason about such

a function. Hence, at appropriate points, we insert witnesses skolemized about values of

type µt.Nil + Cons〈x1 :int,x2 : t〉 into prover queries. The combination of skolemization

of witnesses and restriction of definition allows for tractable automated proving despite the

use of potentially unbounded data structures.

As usual, an astute reader will notice that such definitions can cause a refinement
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let rec insert x ys =

match ys with

| [] -> [x]

| y::ys’ ->

if x < y then x::y::ys’

else y::(insert x ys’)

let rec insertsort xs =

match xs with

| [] -> []

| x::xs’ ->

insert x (insertsort xs’)

Figure 3.2: Insertion Sort

type system to be unsound, even with careful application of witnesses such that any proof

that length a is true requires that the measure defined above actually be true.

In fact, measures are simply approximations of program functions that may or may

not exist in the programmer’s written code. If the code for such a function length does

exist, then some measure definitions would result in an unsound type system.

Informally, we note that, for well-founded recursive definitions and quantifier-free

overapproximations made in a restricted pattern-matching syntax, measures can be defined

and used soundly, we will not prove such a theorem.

Hence, it is arguably more important to note that measures need not be sound. They

are simply user-defined uninterpreted functions whose user-defined definitions are applied

at a fixed finite set of points as part of proof obligations.

3.2 Measures: Overview

Structure Refinements via Measures. Suppose we wish to check that insertsort’s

output list has the same set of elements as the input list. We first specify what we mean
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measure len =

| [] -> 0

| x::xs -> 1 + len xs

Figure 3.3: Measure for the length of a list

measure elts =

| [] -> empty

| x::xs -> union (single x) (elts xs)

Figure 3.4: Measure for the set of elements in a list

by “the set of elements” of the list using a measure, an inductively-defined, terminating

function that we can soundly use in refinements. The measure in Figure 3.4 specifies the set

of elements in a list, where empty, union and single are primitive constants corresponding

to the respective set values and operations. Using just the measure specification and the

SMT solver’s decidable theory of sets our system infers that insertsort has the type:

xs :α list→{ν : α list≤ | elts ν = elts xs}

i.e., the output list is sorted and has the same elements as the input list. In Section 3.7

we will show how properties like balancedness can be verified by combining measures (to

specify heights) and recursive refinements (to specify balancedness at each level).

Suppose we wish to check that the output list has the same number of elements as

the input list. To do so, we first specify what we mean by “the number of elements” of the

list using a measure: a set of expressions which defines, for each constructor, the measure of

that constructor in terms of its arguments. Recall the measure for the length of a list from

Figure 3.1, with

Q= {len ν = len ?,len ν = 1+len ?}
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Using just the measure specification, our system infers that insert and insertsort

have the types:

x :α→ys :α list→{ν : α list | len ν = 1+len ys}

xs :α list→{ν : α list | len ν = len xs}

and thus prove that the number of elements in the list returned by insertsort list is the

same as that of the input lis

Summary. In this section, we introduced measures, a mechanism for using refinement type

inference over the logic including uninterpreted functions that can be used as a knob to

accomplish one or both of the following tasks: First, measures can be used to universally

embed complex inductive properties present in the code about recursive structures into

refinement types. Second, measures can be used to assume complex inductive properties

do hold over recursive structures, and then to embed that assumption into refinement types.

As we note above, when measures are used to assume inductive properties that are either

non-total, not well-founded, or do not have witnesses in the program code, the measures

mechanism is a knob for introducing unsoundness into the verification tool. One can think

of this as an ”escape hatch“ for proving properties in an, e.g. rely-guarantee model in which

verification is not whole-program; further, trusted assumptions [17] can be combined with

e.g. hybrid type checking [21] to defer static checking of inductive properties that may be

intractable at compile-time as checks performed at runtime.

However, Measures cannot express existential properties. In the sequel, we introduce

Polymorphic Refinements to express properties that require existential statements, such as

properties that relate the keys and correspondent values in map structures.
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3.3 Polymorphic Refinements: Introduction

Motivation. As was our motivation for formulating measures, data structures are not always

“well formed”. However, in this section we consider data structures that cannot always be

recursively , or otherwise defined by an ADT. For example, arrays, vectors and hashtables,

while they may be textbook parts of a programmer’s toolkit, are not definable using ADTs.

In this chapter, we present a mechanism that we call “Polymorphic Refinements”

which can be used to specify properties of linked structures which may not have or maintain

an inductive or recursive structure, and some which may even be mutable such as hashtables.

Polymorphic Refinements. In ML, arbitrary linked data structures are generally repre-

sented using maps. In fact, as every student learns an elementary principle of maps and

graphs is that an appropriately interpreted map can represent any arbitrary directed graph

using a simple adjacency list scheme.

However, arbitrary maps are difficult to reason about for several reasons. First, most

invariants over such structures are existential in nature. To wit, consider a directed graph

which has the property that it is acyclic. Then, it is an elementary result that there exists

a strict ordering among the elements of the adjacency map, and in practice many directed

acyclic graphs are constructed in programs by adding adjacent edges only when a strict

ordering holds. To represent this invariant over a map, we would like to say the following:

“each element of this map is adjacent only to elements which are greater than the element”.

However, expressing such invariants using predicate logic is quite tricky. As it turns out, it

is most expedient to simply say of every list in the adjacency map that there exists some

integer, say n, such that every item in the list is greater than n, then we have expressed our

invariant.

The problem with this scheme is that, much like universal quantification, existential
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quantification is quite difficult to reason about automatically. In fact, recall that negation

carries through a universal quantifier by turning it into an existential and v.v. Hence, just as

we obviated universal quantifiers using recursive refinements, we would like to concoct a

mechanism to obviate existentials as well. Further, we would like to formulate a mechanisms

to both specify and check existential properties.

To this end, we present Polymorphic Refinements, a means of specifying existential

invariants which has exactly these two properties. First, it is easy to specify existential

properties, adding only a small amount of type annotation to polymorphic type variable dec-

larations and instantiations which represent user intent. Second, every existential invariant

specified using our simple scheme has decidable satisfaction and is hence checkable.

The key idea behind this mechanism is that when an existentially quantified variable

is introduced, the refinement it is introduced in must state that it has a polymorphic existential

introduction. Then, the elimination rules for such quantified variables must contain a skolem

variable such that the result of substituting the quantified variable with the skolem results in

a valid type.

More succinctly, if one introduces an existentially quantified variable to use in

refinement types, every usage of that variable must contain a witness for which the refinement

holds. As usual, we provision our mechanism such that annotations are checked using our

standard solving mechanism.

Again, the key idea is that every variable which may be existentially quantified in

a refinement type must have been declared in an outer scope over which the existentially

quantified variable is meant to refer to. Further, each usage of the quantified variable in a

type must include a skolem which is a valid witness.

The astute reader will notice that only trivial existentials can be introduced; this is
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not a mistake! In fact, the motivation for our design is due to observation of how existentially

quantified properties are used in practical program verification. Most often, a variable is only

existentially quantified for one of two reasons: first, because the actual program variable

which a quantified variable refers to is inconveniently placed syntactically in the program

text; Second, because a quantified variable may refer to multiple actual program variables

due to parametric polymorphism.

Chapter Summary. Hence, this chapter will have the following form. First, we will give an

overview of how to use these two mechanisms to prove challenging properties over linked

structures that may or may not be definable using recursive ADTs. Then, we will redefine

our toy ML-like language NanoMLds and give its type systems polymorphic refinements

and measures using a simple and natural specification syntax very similar to that shown

above. Once we have formally defined our mechanisms, we will show how how to check

them and, as usual, how to use the liquid types framework to infer properties involving

them. Finally, we will describe our experimental evaluation of all three mechanisms:

Recursive Refinements, Polymorphic Refinements, and Measures, working in harmony to

prove challenging “high-level” properties on data structure-related benchmarks in OCAML.

3.4 Polymorphic Refinements: Overview

Maps. In the last section, we discussed how finite maps, such as arrays, vectors, hash tables,

etc. are an essential tool in any programmer’s toolbox for representing arbitrary graphs. The

classical way to model maps is using the array axioms [37], and by using algorithmically

problematic, universally quantified formulas to capture properties over all key-value bindings.
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let fib i =

let rec f t0 n =

if mem t0 n then

(t0, get t0 n)

else if n <= 2 then

(t0, 1)

else

let (t1,r1) = f t0 (n-1) in

let (t2,r2) = f t1 (n-2) in

let r = r1 + r2 in

(set t2 n r, r) in

snd (f (new 17) i)

Figure 3.5: Memoization

let rec build_dag (n, g) =

let node = random () in

if (0>node || node>=n) then

(n, g)

else

let succs = get g node in

let succs’ = (n+1)::succs in

let g’ = set g node succs’ in

build_dag (n+1, g’)

let g0 = set (new 17) 0 []

let (_,g1) = build_dag (1, g0)

Figure 3.6: Acyclic Graph
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Polymorphic refinements allow the implicit representation of universal map invariants within

the type system and provide a strategy for generalizing and instantiating quantifiers in order

to verify and infer universal map invariants.

To this end, we extend the notion of parametric polymorphism to include refined

polytype variables and schemas. Using polymorphic refinements, we can give a polymorphic

map the type (i :α,β ) Map.t. Intuitively, this type describes a map where every key i of type

α is mapped to a value of type β and β can refer to i. For example, if we instantiate α and

β with int and {ν : int | 1 < ν ∧i−1 < ν}, respectively, the resulting type describes a

map from integer keys i to integer values strictly greater than 1 and i−1.

Memoization. Consider the memoized fibonacci function fib in Figure 3.5. The ex-

ample is shown in the SSA-converted style of Appel [5], with t0 being the input name

of the memo table, and t1 and t2 the names after updates. To verify that fib always

returns a value greater than 1 and (the argument) i− 1, we require the universally quan-

tified invariant that every key j in the memo table t0 is mapped to a value greater than

1 and j− 1. Using the qualifiers {1≤ ν ,?−1≤ ν}, our system infers that the poly-

type variables α and β can be instantiated as described above, and so the map t0 has

type (i :int,{ν : int | 1≤ ν ∧i−1≤ ν}) Map.t, i.e., every integer key i is mapped

to a value greater than 1 and i− 1. Using this, the system infers that fib has type

i :int→{ν : int | 1≤ ν ∧ i−1≤ ν}.

Directed Graphs. Consider the function build dag from Figure 3.6, which represents a

directed graph with the pair (n,g) where n is the number of nodes of the graph, and g is a

map that encodes the link structure by mapping each node, an integer less than n, to the

list of its directed successors, each of which is also an integer less than n. In each iteration,

the function build dag randomly chooses a node in the graph, looks up the map to find
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its successors, creates a new node n+ 1 and adds n+ 1 to the successors of the node in

the graph. As each node’s successors are greater than the node, there can be no cycles

in the graph. Using just the qualifiers {ν ≤ ?,? < ν} our system infers that the function

build dag inductively constructs a directed acyclic graph. Formally, the system infers that

g1 has type

DAG ·
=(i :int,(〈〈〉;〈i< ν ;>〉〉) int list) Map.t (3.1)

which specifies that each node i has successors that are strictly greater than i. Thus, by

combining recursive and polymorphic refinements over simple quantifier-free predicates,

our system infers complex shape invariants about linked structures.

3.5 NanoMLds Base Language: Extended

We now describe how the toy language NanoML is extended to capture invariants

of finite maps and complex non-boolean properties by describing the syntax and static

semantics of Polymorphic Refinements and Measures. The syntax of expressions and

dynamic semantics are unchanged. Note that we have reprinted the syntax for NanoMLds

for reference and highlighted the changes to the static syntax needed to support Polymorphic

Refinements and Measures.

3.5.1 Syntax

Figure 3.7 shows how the syntax of types is extended to include polymorphically

refined types (in addition to standard polymorphic types). First, type schemas can be

universally quantified over polyrefined polytype variables α〈x : typ〉. Second, the body of
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a ::= Specification:
| measure x : B→ B = p

p | p| p
p | c→ ep

|
e ::= Expressions:

| x variable
| c constant
| λx.e abstraction
| x x application
| if e then e else e if-then-else
| let x = e in e let-binding
| fix x.e fixpoint
| [Λα]e type-abstraction
| [typ]e type-instantiation

Q ::= Liquid Refinements
| > true
| q qualifier in Q?

| Q∧Q conjunction
B ::= Base:

| int integers
| bool booleans
| α type variable

A(B) ::= Unrefined Skeletons:
| B base
| x :T(B)→T(B) function

T(B) ::= Refined Skeletons:
| α[x 7→ y] polyrefined polytype variable
| {ν : A(B) | B} refined type

S(B) ::= Type Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype
| ∀α〈x : typ〉.S(B) polyrefined polytype schema

typ,σ ::= T(>),S(>) Types, Schemas
τ,S ::= T(E),S(E) Depend. Types, Schemas
τ̂, Ŝ ::= T(Q),S(Q) Liquid Types, Schemas

Figure 3.7: NanoMLds: Syntax
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the type schema can contain polyrefined polytype variable instances α[x 7→ y].

Intuitively, the quantification over α〈x : typ〉 indicates that α can be instantiated with

a refined type containing a free variable x of type typ. It is straightforward to extend the

system to allow multiple free variables; we omit this for clarity. A refined polytype instance

α[x 7→ y] is a standard polymorphic type variable α with a pending substitution [x 7→ y] that

gets applied after α is instantiated.

Note that in fact a polytype variable instance is inherently existential. That is, the

polytype variable instance is syntactic sugar for ∃x.{ν : α | y = x}. That is, y serves as a

witness for the existentially bound x. To keep the quantification implicit, the instantiation

function Ins eagerly applies the pending substitution whenever each polytype variable is

instantiated. When the polytype variable is instantiated with a type containing other polytype

instances, it suffices to telescope the pending substitutions by replacing α[x 7→ x1][x2 7→ y]

with α[x 7→ y] if x1 ≡ x2 and with α[x 7→ x1] otherwise.

Example. The following refined polytype schema signature specifies the behavior of the

key operations of a finite dependent map.

new :∀α,β 〈x :α〉.int→(i :α,β [x 7→ i]) t

set :∀α,β 〈x :α〉.(i :α,β [x 7→ i]) t→k :α→β [x 7→ k]→(j :α,β [x 7→ j]) t

get :∀α,β 〈x :α〉.(i :α,β [x 7→ i]) t→k :α→β [x 7→ k]

mem :∀α,β 〈x :α〉.(i :α,β [x 7→ i]) t→k :α→bool

In the signature, t is a polymorphic type constructor that takes two arguments corresponding

to the types of the keys and values stored in the map. If the signature is implemented using

association lists, the type (i :α,β [x 7→ i]) t is an abbreviation for 〈i :α,β [x 7→ i]〉 list.
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In general, this signature can be implemented by any appropriate data structure, such as

balanced search trees, hash tables, etc. The signature specifies that certain relationships

must hold between the keys and values when new elements are added to the map (using set),

and it ensures that subsequent reads (using get) return values that satisfy the relationship.

For example, when α and β are instantiated with int and {ν : int | x≤ ν} respectively,

we get a finite map (i :int,{ν : int | i≤ ν}) t where, for each key-value binding, the

value is greater than the key. For this map, the type for set ensures that when a new binding

is added to the map, the value to be added has the type {x≤ ν}[x 7→ k], which is {k≤ ν},

i.e., is greater than the key k. Dually, when get is used to query the map with a key k, the

type specifies that the returned value is guaranteed to be greater than the key k.

Measures. As we previously discussed, many properties of structures used in invariants

are non-boolean. To allow these properties to be used in invariants, we must extend the

language to facilitate a type of annotation which we explicitly call a specification. These

specifications take the form of a function definition.

However, we must be careful in calling these specifications functions, as they are not

exactly as expressive as functions. In particular, measures are strictly defined as functions

that take values of the language’s base ADTs and, via explicitly defined pattern matching

expressions, output values of another base type.

Further, for soundness we require several restrictions on measure functions. First,

it may be that a function with an identical name as the measure function is defined within

the program itself. If an identically named function is defined within the program, then for

soundness we require that the annotated measure function overapproximate the function

defined in the program. Second, regardless of whether a function with a similar name

is defined within the program, all recursive functions must be well-founded. Note that,



56

although we require this in the metatheory, we do not check for these properties within the

type system; these restrictions must be minded by the programmer herself.

Figure 3.7 shows the syntax of measure functions under the non-terminal a. A

measure name m is a special variable drawn from a set of measure names. A measure

expression ε is an expression drawn from a restricted language of variables, constants,

measure names and application. A measure for a recursive (ML) type µt.ΣiCi〈xi : typi〉 of

type typ is a quadruple: (m,〈Ci〈xi〉 7→ εi〉, typ,µt.ΣiCi〈xi : typi〉). We note that when measures

are strictly defined by structural induction, they are well-founded and hence total for the

purpose of reasoning about soundness.

3.6 NanoMLds Type Checking: Extended

We now describe our extended static type system in detail, by discussing each of

its judgments in turn and the treatment of both Polymorphic Refinement and Measure

annotations. For brevity, we do not rehash those rules covered in Chapter 2, although we

reprint the type checking rules for reference.

The structure of this section will proceed as follows. First, we will discuss the check-

ing and static semantics of polymorphic refinements. Then, because the two mechanisms can

be examined independently, we will discuss the checking and static semantics of measures.

Note again that neither of these mechanisms affect the dynamic semantics of NanoMLds.

3.6.1 Static Semantics

Figure 3.9 summarizes the rules for polymorphic refinements.

Well-formedness. We extend our well-formedness rules with a rule [WF-REFVAR] which
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Liquid Type Checking Γ `Q e : S

Γ `Q e : S Γ ` S <: S′ Γ `Q S′

Γ `Q e : S′
[L-SUB]

Γ(x) = {ν : τ | e}
Γ `Q x : {ν : τ | e∧ν = x}

[L-VAR-B]

Γ `Q c : ty(c)
[L-CONST]

Γ ` x : τ̂x→τ̂ Γ;x : τ̂x `Q e : τ̂

Γ `Q (λx.e) : x : τ̂x→τ̂
[L-FUN]

Γ `Q e1 : x :τ→τ
′

Γ `Q e2 : τ

Γ `Q e1 e2 : τ
′[x 7→ e2]

[L-APP]

Γ ` τ̂ Γ `Q e1 : bool Γ;e1 `Q e2 : τ̂ Γ;¬e1 `Q e3 : τ̂

Γ `Q if e1 then e2 else e3 : τ
[L-IF]

Γ ` τ̂ Γ `Q e1 : S1 Γ;x :S1 `Q e2 : τ̂

Γ `Q let x = e1 in e2 : τ̂
[L-LET]

Γ ` Ŝ Γ;x : Ŝ `Q e : Ŝ

Γ `Q fix x.e : Ŝ
[L-FIX]

Γ `Q e : S α 6∈ Γ

Γ `Q [Λα]e : ∀α.S
[L-GEN]

Γ ` τ Shape(τ) = typ Γ `Q e : ∀α.S
Γ `Q [typ]e : S[α 7→ τ]

[L-INST]

Γ ` (ρ̂) µt.τ̂ (ρ̂) τ̂ . τ̂
′

Γ `Q e : τ̂
′[t 7→ (ρ̂) µt.τ̂]

Γ `Q fold e : (ρ̂) µt.τ̂
[L-FOLD]

(ρ) τ . τ
′

Γ `Q e : (ρ) µt.τ
Γ `Q unfold e : τ

′[t 7→ (ρ) µt.τ]
[L-UNFOLD]

fresh x Γ `Q e : τ Γ;x :τ `Q 〈e〉 : 〈x :τ〉
Γ `Q (e,〈e〉) : (x :τ,〈x :τ〉)

[L-PRODUCT]

Γ `Q 〈e〉 : 〈x :τ〉
Γ `Q C j〈e〉 : C j〈x :τ〉+Σi6= jCi〈xi : typi〉

[L-SUM]

Γ ` τ̂ Γ `Q e : ΣiCi〈xi :τi〉 ∀i : Γ;〈xi :τi〉 `Q ei : τ̂

Γ `Q match e with |i Ci〈xi〉 7→ ei : τ̂
[L-MAT]

Figure 3.8: Liquid Type Checking Rules for NanoMLds
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Well-Formed Types Γ ` S

α〈x : typ〉 ∈ Γ Γ ` y : typ
Γ ` α[x 7→ y]

[WF-REFVAR]

Γ;α〈x : typ〉 ` S
Γ ` ∀α〈x : typ〉.S

[WF-REFPOLY]

Decidable Subtyping Γ ` S1 <: S2

α〈x : typ〉 ∈ Γ Γ ` {ν : typ | ν = y1}<: {ν : typ | ν = y2}
Γ ` α[x 7→ y1]<: α[x 7→ y2]

[<:-REFVAR]

Γ;α〈x : typ〉 ` S1 <: S2

Γ ` ∀α〈x : typ〉.S1 <: ∀α〈x : typ〉.S2
[<:-REFPOLY]

Liquid Type Checking Γ `Q e : S

Γ;α〈x : typ〉 `Q e : S α〈x : typ〉 6∈ Γ

Γ `Q [Λα〈x : typ〉]e : ∀α〈x : typ〉.S
[L-REFGEN]

Γ;x : typx ` τ Shape(τ) = typ Γ `Q e : ∀α〈x : typx〉.S
Γ `Q [typ]e : Ins(S,α,τ)

[L-REFINST]

Figure 3.9: Polymorphic Refinements: Syntax, Static Semantics

let rec get xs k =

match xs with

| [] -> diverge ()

| (k’,d’)::xs’ -> if k=k’ then d’ else get xs’ k

Figure 3.10: Implementation of get function
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states that a polytype instance α[x 7→ y] is well-formed if: (a) the instance occurs in a schema

quantified over α〈x : typ〉, i.e., where α can have a free occurrence of x of type typ, and

(b) the free variable y that replaces x is bound in the environment to a type typ.

Subtyping. We extend our subtyping rules with a rule [<:-REFVAR] for subtyping refined

polytype variable instances. The intuition behind the rule follows from the existential

interpretation of the refined polytype instances and the fact that ∀ν .(ν = y1)⇒ (ν = y2)

implies y1 = y2, which implies (∃x.P∧x= y1)⇒ (∃x.P∧x= y2) for every logical formula P

in which x occurs free. Thus, to check that the subtyping holds for any possible instantiation

of α containing a free x, it suffices to check that the replacement variables y1 and y2 are

equal.

Example. It is straightforward to check that each of the schemas for set, get, etc. are

well-formed. Next, let us see how the following implementation of the get function in

Figure 3.10 implements the refined polytype schema shown above. That is, let us see how

our rules derive:

/0 `Q get : ∀α,β 〈x :α〉.(i :α,β [x 7→ i]) t→k :α→β [x 7→ k]

From the input assumption that xs has the type 〈i :α,β [x 7→ i]〉 list, and the rules for

unfolding and pattern matching ([L-UNFOLD-M] and [L-MATCH-M]) we have that, at the

point where d′ is returned, the environment Γ contains the type binding

d′ :β [x 7→ i][i 7→ k′]
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let fib m =

let rec fibmemo t0 n =

if n <= 2 then (t0, 1) else

if mem t0 n then (t0, get t n) else

let (t1, r1) = fibmemo t (n-1) in

let (t2, r2) = fibmemo t1 (n-2) in

(set t2 n (r1 + r2), r1 + r2) in

snd (fibmemo (create 17) m)

Figure 3.11: Memoized Implementation of the Fibonacci Function.

which, after telescoping the substitutions, is equivalent to the binding

d′ :β [x 7→ k′].

Due to [L-IF], the branch condition k= k′ is in Γ, and so

Γ ` {ν : α | ν = k′}<: {ν : α | ν = k}.

Thus, from rule [<:-REFVAR], and subsumption, we derive that the then branch has the type

β [x 7→ k] from which the schema follows. The reasoning for checking the other functions

like set and mem, and also implementations using different underlying data structures like

balanced maps or hash tables is similar.

Typing. We extend the typing rules with rules that handle refined polytype generalization

([L-REFGEN]) and instantiation ([L-REFINST]). A refined polytype variable α〈x : typ〉 can

be instantiated with a dependent type τ that contains a free occurrence of x of type typ.

This is ensured by the well-formedness antecedent for [L-REFINST] which checks that τ

is well-formed in the environment extended with the appropriate binding for x. However,

once τ is substituted into the body of the schema S, the different pending substitutions at
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each of the refined polytype instances of α are applied and hence x does not appear free in

the instantiated type, which is consistent with the existential interpretation of polymorphic

refinements.

The soundness of treating a refined polytype variable instantiation as an unrefined

variable instantiation proceeded by a substitution follows from the fact that for all P and Q

where x appears free, (∃x.(P∼Q)∧x= y) is logically equivalent to (∃x.P∧x= y)∼ (∃x.Q∧

x = y) for ∼∈ {∧,∨}. This equivalence allows us to “push” the pending substitutions

“inside” the (monomorphic) dependent type τ used for instantiation.

Example: [Checking Clients]. Consider the code in Figure 3.11, that uses dependent maps

to implement a memoized version of the fibonacci function. Let us see how our system uses

polymorphic refinements to derive that

/0 `Q fib : m :int→{ν : int | 1≤ ν ∧m−1≤ ν}

First we deduce that

/0 `Q fibmemo : t0 :Fibi→int→〈Fibi,{ν : int | 1≤ ν ∧n−1≤ ν}〉

where

Fibi
·
= (i :int,{ν : int | 1≤ ν ∧i−1≤ ν}) t.

To derive the above, we instantiate the refined polytype variables α and β 〈x :α〉 in the

signatures for mem,get,set with int and {1≤ ν ∧ x−1≤ ν} respectively, after which the

rules from Section 3.5 suffice to establish the types of fibmemo and fib.

Polymorphic Refinements vs. Array Axioms. Our technique of specifying the behavior
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of finite maps using polymorphic refinements is orthogonal, and complementary, to the

classical approach that uses McCarthy’s array axioms [37]. In this approach, one models

reads and writes to arrays, or, more generally, finite maps, using two operators. The first,

Sel(m, i), takes a map m and an address i and returns the value stored in the map at that

address. The second, Upd(m, i,v), takes a map m, an address i and a value v and returns the

new map which corresponds to m updated at the address i with the new value v. The two

efficiently decidable axioms

∀m, i,v. Sel(Upd(m, i,v), i) = v

∀m, i, j,v. i = j∨Sel(Upd(m, i,v), j) = Sel(m, j)

specify the behavior of the operators. Thus, an analysis can use the operators to algo-

rithmically reason about the exact contents of explicitly named addresses within a map.

For example, the predicate Sel(m,i) = 0 specifies that m maps the key i to the value 0.

However, to capture invariants that hold for all key-value bindings in the map, one must use

universally quantified formulas, which make algorithmic reasoning brittle and unpredictable.

For example, to verify fib from Figure 3.11, we need the invariant

∀i.(1≤ Sel(t0,i)∧i−1≤ Sel(t0, i)).

Unfortunately, quantifiers make algorithmic reasoning brittle and unpredictable as ad-hoc

heuristics are required to generalize and instantiate the quantifiers.

In contrast, polymorphic refinements can smoothly capture and reason about the

relationship between all the addresses and values but do not, as described so far, let us refer

to particular named addresses.
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We can have the best of both worlds in our system by combining these techniques.

Using polymorphic refinements, we can reason about universal relationships between

keys and values and by refining the output types of set and get with the predicates

(ν = Upd(m,k,v)) and (ν = Sel(m,k)), respectively, we can simultaneously reason about

the specific keys and values in a map.

Formally, we give the set function the signature

set : m :(i :α,β [x 7→ i]) t→k :α→v :β [x 7→ k]→

{ν : (j :α,β [x 7→ j]) t | ν = Upd(m,k,v)}

and the get function the signaure

get : m :(i :α,β [x 7→ i]) t→k :α→

{ν : β [x 7→ k] | ν = Sel(m,k)}.

Example: [Mutable Linked Structures]. Polymorphic refinements can be used to verify

properties of linked structures, as each link field corresponds to a map from the set of source

structures to the set of link targets. For example, a field f corresponds to a map f, a field read

x.f corresponds to get f x, and a field write x.f← e corresponds to set f x e. Consider an

SSA-converted [5] implementation of the textbook find function for the union-find data

structure shown in Figure 3.12.

The function find takes two maps as input: rank and parent0, corresponding to

the rank and parent fields in an imperative implementation, and an element x, and finds the

“root” of x by transitively following the parent link, until it reaches an element that is its

own parent. The function implements path-compression, i.e., it destructively updates the
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let rec find rank parent0 x =

let px = get parent0 x in

if px = x then (parent0, x) else

let (parent1, px’) = find rank parent0 px in

let parent2 = set parent1 x px’ in

(parent2, px’)

let union r0 p0 x y =

let (p1, x’) = find r p x in

let (p2,y’) = find r p’ y in

let _ = assert (get p2 x’ = x’) in

let _ = assert (get p2 y’ = y’) in

if x’ != y’ then begin

let rx’ = get r0 x’ in

let ry’ = get r0 y’ in

if rx’ > ry’ then

(r0, set p2 y’ x’)

else if rx’ < ry’ then

(r, set p2 x’ y’)

else

let r1 = set r0 x’ (rx’ + 1) in

let p3 = set p2 y’ x’ in

(r1, p3)

end else

(r0, p2)

Figure 3.12: Functional Union-Find With Mutation and Path Compression
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parent map so that subsequent queries jump straight to the root. The data structure maintains

the acyclicity invariant that each non-root element’s rank is strictly smaller than the rank of

the element’s parent. The acyclicity invariant of the parent map is captured by the type

(i :int,{ν : int | (i= ν)∨Sel(rank,i)< Sel(rank,ν)}) t

which states that for each key i, the parent ν is such that, either the key is its own parent or

the key’s rank is less than the parent’s rank.

Our system verifies that when find is called with a parent map that satisfies the

invariant, the output map also satisfies the invariant. To do so, it automatically instantiates the

refined polytype variables in the signatures for get and set with the appropriate refinement

types, after which the rules from Section 3.5 (shown in Figure 3.9) suffice to establish the

invariant. Similarly, our system verifies the union function where the rank of a root is

incremented when two roots of equal ranks are linked. Thus, polymorphic refinements

enable the verification of complex acyclicity invariants of mutable data structures.

UFi
·
= i= ν ∨Sel(rank,i)< Sel(rank,ν)

UFi
·
= (i :int,{ν : int | UFi})t

The type UFi captures the key acyclicity invariant by stating that the rank of each parent i

is either a self-loop or a child with a strictly smaller rank. Our system verifies the invariant
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by proving that when find is called with arguments

rank : (int,int)t

parent : UFi

x : int

it returns as output a pair of type

〈UFi,{ν : int | x = ν ∨Sel(rank,x)< Sel(rank,ν)}〉

/0 `Qrank :(int,int)t→rank :UFi→x :int→〈UFi,{ν : int | UFx}〉

That is, the function returns a pair of an updated parent map that satisfies the key invariant,

and an element that is either the same as the input x (if x was a root), or whose rank exceeds

that of x. To obtain this judgment, our system automatically instantiates the refined polytype

variables α and β 〈x :α〉 in the signatures for get and set with int and {UFx} respectively,

type of find.

Typechecking with Measures. Figure 3.14 shows the rule used to check that a measure

specification is well-formed. We assume that the specified sequence of measures 〈M〉 is

such that /0 ` 〈M〉. Measures are like “ghost” or “auxiliary” variables common in program

verification; they exist purely for specification and verification.

Figure 3.13 shows the rules for typechecking using measures. The only rules that

are changed are those for fold, unfold, construction and pattern-matching. [L-FOLD-M]

and [L-UNFOLD-M] ensure that the refinements for the recursive types are the same as

those for the corresponding unfolded type. [L-SUM-M] ensures that, when a sum type is

constructed, a predicate specifying the value of the measure m is conjoined to the refinement
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Measured Type Checking Γ ` e : S

Γ ` (ρ̂) µt.τ̂ (ρ) τ̂ . τ̂
′

Γ `Q e : {ν : τ̂
′[t 7→ (ρ̂) µt.τ̂] | e′}

Γ `Q fold e : {ν : (ρ̂) µt.τ̂ | e′}
[L-FOLD-M]

(ρ) τ . τ
′

Γ ` e : {ν : (ρ) µt.τ | e′}
Γ ` unfold e : {ν : τ

′[t 7→ (ρ) µt.τ] | e′}
[L-UNFOLD-M]

Γ `Q C j〈e〉 : ΣiCi〈xi :τi〉
Γ `Q C j〈e〉 : {ν : ΣiCi〈xi :τi〉 | ∧mm(ν) = C j,m(〈e〉)}

[L-SUM-M]

Γ ` e : ΣiCi〈xi :τi〉 Γ ` τ ∀i Γ;〈xi :τi〉;∧mm(e) = Ci,m(〈xi〉) ` ei : τ̂

Γ ` match e with |i Ci〈xi〉 7→ ei : τ̂
[L-MATCH-M]

Figure 3.13: Measured Type Checking Rules

Measure Well-formedness Γ ` 〈M〉

Γ;m : µt.ΣiCi〈xi : typi〉→typ ` 〈M〉
∀i : Γ;m : µt.ΣiCi〈xi : typi〉→typ;〈xi : typi〉 ` εi : typ

Γ ` (m,〈Ci〈xi〉 7→ εi〉, typ,µt.ΣiCi〈xi : typi〉);〈M〉
[WF-M]

Figure 3.14: Measured Well-Formedness Rule
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for the constructed type for each measure m defined for the corresponding recursive type.

[L-MATCH-M] ensures that when a sum type is accessed using a match expression, the

environment is extended with a guard predicate that captures the relationship between the

measure of the matched expression and the variables bound by the corresponding pattern for

each case of the match.

That is, we insert witnesses to measure properties at the following points:

(a) the corresponding match bindings and (b) the guard predicate that captures the

relationship between the measure of the matched expression and the variables bound by the

matched pattern.

(b) for each measure m defined for the corresponding recursive type, a predicate

specifying the value of the measure m is conjoined to the refinement for the constructed sum.

Example: Measuring Length. Consider the expression:

let a = [] in let b = 1::a in

match b with x::xs -> () | [] -> assert false

Using the measure for list length from Section 3.2 (shown in Figure 3.3), and rules [L-SUM-

M] and [L-FOLD-M] (and [L-LET]), we can derive:

/0 `QNil : {len ν = 0}

a :{len ν = 0} `QCons(1,a) : {len ν = 1+len a}

We omit the ML type int list being refined for brevity. Due to rules [L-UNFOLD-

M] and [L-MATCH-M], the assert in the Nil pattern-match body is checked in an

environment Γ containing a :{len ν = 0}, b :{len 1+len a} and the guard (len b = 0)

from the Nil case in the measure definition for len. As Γ is inconsistent, the argument type

{not ν} is a subtype of the input type {} under Γ, and so the call to assert type checks,
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proving the Nil case is not reachable.

These mechanisms combine to allow the specification and verification of inductive

properties in a local manner. For example, to specify that a tree is balanced, one can define

a a height measure and thereafter, use a recursive refinement that states that at each point

in the tree, the difference between the heights of the left and right trees is bounded. The

measure functions are structured so as to be locally instantiated at construction and match

expressions.

3.7 Evaluation

We have implemented our type-based data structure verification techniques in

DSOLVE, which takes as input an OCAML program (a .ml file), a property specifica-

tion (a .mlq file), and a set of logical qualifiers (a .quals file). The program corresponds

to a module, and the specification comprises measure definitions and types against which

the interface functions of the module should be checked. DSOLVE combines the manually

supplied qualifiers (.quals) with qualifiers scraped from the properties to be proved (.mlq)

to obtain the set Q used to infer types for verification. DSOLVE produces as output the list

of possible refinement type errors, and a .annot file containing the inferred liquid types for

all the program expressions.

Benchmarks. We applied DSOLVE to the following set of benchmarks, designed to demon-

strate: Expressiveness—that our approach can be used to verify a variety of complex

properties across a diverse set of data structures, including textbook structures, and struc-

tures designed for particular problem domains; Efficiency—that our approach scales to large,

realistic data structure implementations; and Automation—that, due to liquid type inference,

our approach requires a small set of manual qualifier annotations.
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• List-sort: a collection of textbook list-based sorting routines, including insertion-

sort, merge-sort and quick-sort,

• Map: an ordered AVL-tree based implementation of finite maps, (from the OCAML

standard library)

• Ralist: a random-access lists library, (due to Xi [64])

• Redblack: a red-black tree insertion implementation (without deletion), (due to

Dunfield [18])

• Stablesort: a tail recursive mergesort, (from the OCAML standard library)

• Vec: a tree-based vector library (due to de Alfaro [14])

• Heap: a binary heap library, (due to Filliâtre [20])

• Splayheap: a splay tree based heap, (due to Okasaki [42])

• Malloc: a resource management library,

• Bdd: a binary decision diagram library (due to Filliâtre [20])

• Unionfind: the textbook union-find data structure,

• Subvsolve: a DAG-based type inference algorithm [27]

On the programs, we check the following properties: Sorted, the output list is sorted,

Elts, the output list has the same elements as the input, Balance, the output trees are balanced,

BST, the output trees are binary search ordered, Set, the structure implements a set interface,

e.g. the outputs of the add, remove, merge functions correspond to the addition of, removal

of, union of, (resp.) the elements or sets corresponding to the inputs, Len, the various
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operations appropriately change the length of the list, Color, the output trees satisfy the

red-black color invariant, Heap, the output trees are heap-ordered, Min, the extractmin

function returns the smallest element, Alloc, the used and free resource lists only contain

used and free resources,VariableOrder, the output BDDs have the variable ordering property,

Acyclic, the output graphs are acyclic. The complete benchmark suite is available in [51].

Results. The results of running DSOLVE on the benchmarks are summarized in Table 3.1.

The columns of Table 3.1 are as follows: LOC is the number of lines of code without

comments, Property is the properties verified, Ann. is the number of manual qualifier

annotations, and T(s) is the time in seconds DSOLVE requires to verify each property.

Annotation Burden. Even for the larger benchmarks, very few qualifiers are required for

verification. These qualifiers capture simple relationships between variables that are not

difficult to specify after understanding the program. Due to liquid type inference, the total

amount of manual annotation remains extremely small — just 3% of code size, which is

acceptable given the complexity of the implementation and the properties being verified.

Next, we describe the subtleties of some of the benchmarks and describe how DSOLVE

verifies the key invariants.

Sorting. We used DSOLVE to verify that implementations of various list sorting algo-

rithms returned sorted lists whose elements were the same as the input lists’, i.e., that the

sorting functions had type xs :α list→{ν : α list≤ | elts ν = elts xs}. We applied

DSOLVE to verify several functions that sort lists. For each function, we checked that the

returned list was a list of increasing elements with the same element set as the input list.
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Table 3.1: DSOLVE: Data Structure Experimental Results

Program LOC Ann. T(s) Property
List-sort 110 7 11 Sorted, Elts
Map 95 3 23 Balance, BST, Set
Ralist 91 3 3 Len
Redblack 105 3 32 Balance, Color, BST
Stablesort 161 1 6 Sorted
Vec 343 9 103 Balance, Len1, Len2
Heap 120 2 41 Heap, Min, Set
Splayheap 128 3 7 BST, Min, Set
Malloc 71 2 2 Alloc
Bdd 205 3 38 VariableOrder
Unionfind 61 2 5 Acyclic
Subvsolve 264 2 26 Acyclic
Total 1754 40 297

The properties are specified by the types (written separately for clarity):

xs :α list→α list≤ (Sorted)

xs :α list→{ν : α list | len ν = len xs} (Len)

We checked the above properties on insertsort (shown in Figure 2.2), mergesort [64]

which recursively halves the lists, sorts, and merges the results, mergesort2 [64] which

chops the list into a list of (sorted) lists of size two, and then repeatedly passes over the list

of lists, merging adjacent lists, until it is reduced to a singleton which is the fully sorted

list, quicksort, shown in Figure 3.16, which partitions the list around a pivot, then sorts

and appends the two partitions, and stablesort, from the OCAML standard library’s List

module, which is a tail-recursive mergesort that uses two mutually recursive functions, one

which returns an increasing list, another a decreasing list. For each benchmark, DSOLVE

infers that the sort function has type Sorted using only the qualifier {ν ≤ ?}. To prove

Elts, we need a few simple qualifiers relating the elements of the output list to those
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of the input. DSOLVE cannot check Elts for stablesort due to its (currently) limited

handling of OCAML’s pattern syntax. For example, to capture concatenation, the qualifier

elts ν = union (elts ?) (elts ?) mergesort2 requires a measure specifying the elements

of a list of lists.

Non-aliasing. Nested refinements can be useful not just to verify properties like sortedness,

but also to ensure non-aliasing across an unbounded and unordered collection of values.

As an example, consider the two functions alloc and free of Figure 3.15. The functions

manipulate a “world” which is a triple comprised of: m, a bitmap indicating whether

addresses are free (0) or used (1), us, a list of addresses marked used, and fs, a list of

addresses marked free. Suppose that the map functions have types:

set : m :(α,β ) t→k :α→d :β→{ν : (α,β ) t | ν = Upd(m,k,d)}

get : m :(α,β ) t→k :α→{ν : β | ν = Sel(m,k)}

We can formalize the invariants on the lists using the product type:

ρc
·
=〈〈〉;〈Sel(m,ν) = c;>〉〉

σ
c
./
·
=(ρc) int list./

RES./
·
=〈m :(int,int)t,us :σ

1
./,fs :σ

0
./〉

The function alloc picks an address from the free list, sets the used bit of the address in

the bitmap, adds it to the used list and returns this address together with the updated world.

Dually, the function free checks if the given address is in use and, if so, removes it from

the used list, unsets the used bit of the address, and adds it to the free list. We would like to
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verify that that the functions preserve the invariant on the world above, i.e.,

alloc : RES→〈RES,int〉, free : RES→int→RES.

However, the functions do not have these types. Suppose that the free list, fs, passed

to alloc, contains duplicates. In particular, suppose that the head element p also appears

inside the tail fs′. In that case, setting p’s used bit will cause there to be an element of the

output free list fs′, namely p, whose used bit is set, violating the output invariant. Hence,

we need to capture the invariant that there are no duplicates in the used or free lists, i.e., that

no two elements of the used or free lists are aliases for the same address. In our system, this

is expressed by the type int list 6=, as defined by (2.1). Hence, If the input world has type

RES 6=, then when p’s bit is set, the SMT solver uses the array axioms to determine that for

each ν 6= p, Sel(m′,ν) = Sel(m,ν) and hence, the used bit of each address in fs′ remains

unset in the new map m′. Dually, our system infers that the no-duplicates invariant holds on

p :: us as p (whose bit is unset in m) is different from all the elements of us (whose bits are

set in m). Thus, our system automatically verifies:

alloc : RES 6=→〈RES 6=,int〉, free : RES 6=→int→RES 6=

Maps. We applied DSOLVE to verify OCAML’s tree-based functional Map library. The trees

have the ML type:

type (’a,’b) t =

E | N of ’a * ’b * (’a,’b) t * (’a,’b) t * int

The N constructor takes as input a key of type ’a, a datum of type ’b, two subtrees, and an

integer representing the height of the resulting tree. The library implements a variant of
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let alloc (m, us, fs) =

match fs with

| [] ->

assert false

| p::fs’ ->

let m’ = set m p 1 in

let us’ = p::us in

((m’, us’, fs’), p)

let free (m, us, fs) p =

if get m p = 0 then

(m, us, fs)

else

let m’ = set m p 0 in

let us’ = delete p us in

let fs’ = p::fs in

(m’, us’, fs’)

Figure 3.15: Excerpt from Malloc

AVL trees where, internally, the heights of siblings can differ by at most 2. A binary search

tree (BST) is one where, for each node, the keys in the left (resp. right) subtree are smaller

(resp. greater) than the node’s key. A tree is balanced if, at each node, the heights of its

subtrees differ by at most two. Formally, after defining a height measure ht:

measure ht = E -> 0 | N (_,_,l,r,_) ->

if ht l < ht r then 1 + ht r else 1 + ht l

the balance and BST invariants are respectively specified by:

(ρbal) µt. E+N〈k :α,d :β , l : t,r : t,h :int〉 (Balance)

µt. E+N〈k :α,d :β , l :(ρ<) t,r :(ρ>) t,h :int〉 (BST)

ρ./
·
=〈〈〉;〈ν ./ k;>;>;>;>〉〉 for ./ ∈ {<,>}

ρbal
·
=〈〈〉;〈>;>;>;eb;eh〉〉

eh
·
=(ht l < ht r)?(ν = 1+ht r) : (ν = 1+ht l)

eb
·
=(ht l−ht ν ≤ 2)∧ (ht ν−ht l ≤ 2)

DSOLVE verifies that all trees returned by API functions are balanced binary search trees,

that no programmer-specified assertion fails at run-time, and that the library implements

a set interface. Even though various “rotations” are performed to ensure balancedness,
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DSOLVE infers the types required to prove BST automatically using qualifiers generated

from the specification. To prove Balance, acDSOLVE requires some manually specified

qualifiers to infer the appropriate type for the rebalancing functions.

Vectors. We applied DSOLVE to verify various invariants in a library that uses binary trees

to represent C++-style extensible vectors [14]. Formally, vectors are represented as:

type ’a t =

Emp | Node of ’a t * int * ’a * ’a t * int * int

The elements of the tuple for the Node constructor correspond to the left tree, the number

of elements in the left tree, the element at the node, the right tree, the number of elements

in the right tree, and the height of the tree, respectively. The ith element of the vector is

the root if the size of the left tree is i, the ith element of the left tree if i is less than the

number of elements of the left tree, and the (i−n−1)th element of the right tree if the

left tree has n elements. To ensure that various operations are efficient, the heights of the

subtrees at each level are allowed to differ by at most two. DSOLVE verifies that that all the

trees returned by API functions, which include appending to the end of a vector, updating

values, deleting sub-vectors, concatenation, etc. , are balanced, vector operations performed

with valid index operands, i.e., indices between 0 and the number of elements in the vector

don’t fail (Len1), and that all functions passed as arguments to the iteration, fold and map

procedures are called with integer arguments in the appropriate range (Len2). For example,

DSOLVE proves:

iteri : v :α t→({0≤ ν < len v}→α→unit)→unit

That is, the second argument passed to the higher-order iterator is only called with inputs

between 0 and the length of the vector, i.e., the number of elements in each vector. DSOLVE
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found a subtle bug in the rebalancing procedure; by using the inferred types, we were able

to find a minimal and complete fix which the author adopted.

Fixing bugs with type inference. DSOLVE was able to help find and debug a subtle flaw

in the recursive recbal procedure used to efficiently merge two balanced trees of arbitrarily

different heights into a single balanced tree. Initially, DSOLVE inferred that the difference

between the heights of siblings may be no greater than 4 (violating Balance by 2). Yet, the

inferred type provided a clue: the height of the output at recursive call-sites was no less than

the max of the input heights minus one. By mutating the code and re-inferring types, we

were able to determine the code path for which the latter bound was tight, and thus the exact

set of paths which broke the balance property. Using this information, we could find test

inputs whose outputs matched the inferred bounds, as well as a minimal and complete fix.

DSOLVE then verified that the fixed code satisfied Balance, Len1, and Len2.

Binary Decision Diagrams. A Binary Decision Diagram (BDD) is a reduced decision

tree used to represent boolean formulas. Each node is labeled by a propositional variable

drawn from some ordered set x1 < .. . < xn. The nodes satisfy a variable ordering invariant

that if a node labeled xi has a child labeled x j then xi < x j. A combination of hash-

consing/memoization and variable ordering ensures that each formula has a canonical BDD

representation. Using just three similar, elementary qualifiers, DSOLVE verifies the variable

ordering invariant in Filliâtre’s OCAML BDD library [20]. The verification requires recursive

refinements to handle the ordering invariant and polymorphic refinements to handle the

memoization that is crucial for efficient implementations. The type used to encode BDDs,

simplified for exposition, is:

type var = int

type bdd = Z of int | O of int

| N of var * bdd * bdd * int
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where var is the variable at a node, and the int elements are hash-cons tags for the

corresponding sub-BDDs. To capture the order invariant, we write a measure that represents

the index of the root variable of a BDD:

measure var = Z _ | O _ -> maxvar + 1

| N (x,_,_,_) -> x

where maxvar is the total number of propositional variables being used to construct BDDs.

After defining

bdd
·
=µt. Zint+Oint+N〈x :int, t, t,int〉

ρV
·
=〈〈>〉;〈>〉;〈>;(x < varν);(x < varν);>〉〉

we can specify BDDs satisfying the variable ordering VariableOrder invariant as (ρV) bdd.

The following code shows the function that computes the BDD corresponding to the negation

of the input x, by using the table cache for memoization.

let mk_not x =

let cache = Hash.create cache_default_size in

let rec mk_not_rec x =

if Hash.mem cache x then Hash.find cache x else

let res = match x with

| Z _ -> one | O _ -> zero

| N (v, l, h, _) ->

mk v (mk_not_rec l) (mk_not_rec h) in

Hash.add cache x res; res in

mk_not_rec x

Using the polymorphically refined signatures for the hash table operations (set, get,

etc. from Section 3.6.1), with the proviso, already enforced by OCAML, that the key’s type

be treated as invariant, DSOLVE is able to verify that variable ordering (VariableOrder) is

preserved on the entire library. To do so, DSOLVE uses the qualifier var ? ≤ var ν to

automatically instantiate the refined polytype variables α and β 〈x :α〉 in the signatures for
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Hash.find and Hash.add with bdd and {ν : bdd | var x≤ var ν}, which, with the other

rules, suffices to infer that:

mk not : x :bdd→{ν : bdd | var x≤ var ν}

Bit-level Type Inference. We applied DSOLVE to verify an implementation of a graph-

based algorithm for inferring bit-level types from the bit-level operations of a C program [27].

The bit-level types are represented as a sequence of blocks, each of which is represented

as a node in a graph. Mask or shift operations on the block cause the block to be split into

sub-blocks, which are represented by the list of successors of the block node. Finally, the fact

that value-flow can cause different bit-level types to have unified subsequences of blocks is

captured by having different nodes share successor blocks. A similar algorithm was proposed

to recover record structure in legacy COBOL programs [19]. The key invariant maintained

by the algorithm is that the graph contains no cycles. In the implementation, the graph is

represented as pair of an integer representing the number of nodes, and a hash map from

nodes to lists of successor nodes. DSOLVE combines recursive and polymorphic refinements

to verify that the graph satisfies an acyclicity invariant like DAG from Equation (3.1) in

Section 3.4.

DSOLVE was able to verify this invariant completely automatically, using three

simple inequality qualifiers. The algorithm works by representing bitvectors as directed

acyclic graphs.

Red-Black Trees. We applied DSOLVE to verify the following three critical invariants of a

Red-Black Tree implementation due to Dunfield [18]. First, the color invariant, that a Red

node has no Red children. Second, the black height invariant, that along all paths from root
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to leaf the number of Black nodes is the same. Third, the binary search tree invariant, that at

each node the keys in the left subtree are smaller than the keys in the right subtree. To prove

the black height property, we first specify a black height measure bht (similar to the ht

measure). Next, we specify a recursive refinement using a predicate bht l = bht ν , i.e., the

black height of the right tree is the same as that of the left tree. DSOLVE verifies this property

automatically using qualifiers gleaned from the specification. The binary search property

is analogous to BST, and DSOLVE proves it automatically using qualifiers generated from

the specification. For the color invariant, the challenge lies in the fact that, at intermediate

points, a node is created that violates the color invariant.

Previous approaches to verifying the color invariant capture the broken tree, either

using indices [65] which encode the number of consecutive red nodes, or by specifying a

hierarchy of datasort refinements [18]. In either case, one must manually specify the delicate

interaction between the type constructors and the indices or datasorts. While our system

can permit such a proof, it also enables a more “declarative” approach to specification and

verification.

First, we extend the ML type with a Purple constructor P that encodes Red nodes

with Red children. Thus, the tree is defined as:

type ’a t =

| E

| B of ’a * ’a t * ’a t

| R of ’a * ’a t * ’a t

| P of ’a * ’a t * ’a t

There is a single point in the code where a tree with two consecutive Red nodes is built, and

here, instead the code is changed to use P. Next, we define a measure, col, for the color of

the tree’s root:

measure col = E -> 0 |B _ -> 1 |R _ -> 2 |P _ -> 3
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Third, we specify the following refinement vectors

eEBR
·
=col ν ≤ 2 eEB

·
=col ν ≤ 1

ρB
·
=〈>;eEBR;eEBR〉 ρR

·
=〈>;eEB;eEB〉

ρP
·
=〈>;>;>〉 ρcol

·
=〈〈〉;ρR;ρB;ρP;ρP〉

The recursive refinement ρcol states that Black nodes (ρB) have Empty, Black or Red sub-

trees (eEBR), Red nodes (ρR) have only Empty or Black sub-trees (eEB), and Purple nodes

(ρP) are unconstrained. Thus, a tree satisfying the color invariant has type:

{ν : (ρcol) α t | eEBR} (Color)

where α t abbreviates the recursive (ML) type corresponding to the tree. This type also

ensures there are no purple nodes in the trees returned to clients as the root is not purple

and ρR and ρB ensure that neither Red nor Black nodes have any Purple children. Using

the qualifiers (eEBR∨col ? = 2), i.e., a tree is Purple only when another tree is Red, and

(col ν = 2)⊕ (col ? = 2), i.e., exactly one of two trees is Red, DSOLVE proves that all

created trees have type Color, and hence satisfy the color invariant.

3.7.1 Limitations and Future Work

Our case studies reveal several expressiveness limitations of our system. Currently,

simple modifications allow each program to typecheck. We intend to address these limita-

tions in future work.

First-order Refinements. To preserve decidability, our EUFA embedding leaves all
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function applications in the refinement predicates uninterpreted. This prevents checking

quicksort with the standard higher-order partition function:

part : α list→p :(α→bool)→{p(ν)} list∗{¬p(ν)} list

where p is the higher-order predicate used for partitioning. The function applications p(ν)

in part’s output type are left uninterpreted, so we cannot use them in verification. Instead,

we change the program so that the type of p is α→(β ,γ) either where (β ,γ) either has

constructors T of β and F of γ . The new part function then collects T and F values into a

pair of separate lists. Thus, if w is the pivot, we can verify quicksort by passing part a

higher-order predicate of type:

α→({ν : α | ν ≥ w},{ν : α | ν < w}) either.

Existential Witnesses. Recall that expressing the key acyclicity invariant in union-find’s

find function (shown in Section 3.6.1) required referencing the rank map. Although rank

is not used in the body of the find function, omitting it from the parameter list causes this

acyclicity invariant to be ill-formed within find. Instead of complicating our system with

existentially quantified types, we add rank as a witness parameter to find. Similarly, notice

that the list obtained by appending two sorted lists xs and ys is sorted iff there exists some

w such that the elements of xs (resp. ys) are less than (resp. greater than) w. In the case of

quicksort, this w is exactly the pivot. Hence, we add w as a witness parameter to append,

and pass in the pivot at the callsite, after which the system infers:

append : w :α→{ν ≤ w} list≤→{w≤ ν} list≤→α list≤
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and hence that quicksort has type Sorted. Similar witness parameters are needed for the

tail-recursive merges used in stablesort.

Context-Sensitivity. Finally, there were cases where functions have different behavior

in different calling contexts. For example, stablesort uses a function that reverses a

list. Depending upon the context, the function is either (1) passed an increasing list as

an argument and returns a decreasing list as output, or, (2) passed a decreasing list as an

argument and returns an increasing list. Our system lacks intersection types (e.g. [18]),

and we cannot capture the above, which forces us to duplicate code at each callsite. In our

experience so far, this has been rare (out of all our benchmarks, only one duplicate function

in stablesort was required), but nevertheless, in the future, we would like to investigate

how our system can be extended to intersection types.

3.8 Conclusion

In this chapter, we show two new mechanisms for describing, checking and inferring

invariants on structures that may not be well-behaved: Measures and Polymorphic Refine-

ments. For each mechanism, we show how the mechanism can be used to encode and verify

correctness properties of data structures that are non-boolean, and existential, resp.

Further, we show that these mechanisms work in harmony with Recursive Refine-

ments to automatically and efficiently prove extremely complex invariants over challenging

data structure benchmarks in OCAML. To wit, we provide a case study in which our

experiments discovered an exceptionally complex bug in a program that simultaneously

manipulated sorted lists, balanced trees and maps.
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type (’a, ’b) boolean = T of ’a | F of ’b

let rec partition f = function

| [] -> ([], [])

| x::xs ->

let (ts,fs) = partition f xs in

(match f x with

| T y -> (y::ts,fs)

| F y -> (ts,y::fs))

let rec append k xs ys =

match xs with

| [] -> ys

| x::xs’ -> x::(append k xs’ ys)

let rec quicksort = function

| [] -> []

| x::xs’ ->

let f y = if y < x then T y else F y in

let (ls,rs) = partition f xs’ in

append x (quicksort ls) (x::(quicksort rs))

Figure 3.16: A Simple, Functional Quicksort
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Chapter 4

Liquid Effects

4.1 Introduction

How do we program multi-core hardware? While many models have been proposed,

the model of multiple sequential threads concurrently executing over a single shared memory

remains popular due to its efficiency, its universal support in mainstream programming

languages and its conceptual simplicity. Unfortunately, shared memory multithreading is

fiendishly hard to get right, due to the inherent non-determinism of thread scheduling. Unless

the programmer is exceptionally vigilant, concurrent accesses to shared data can result in

non-deterministic behaviors in the program, potentially yielding difficult-to-reproduce

“heisenbugs” whose appearance depends on obscurities in the bowels of the operation

system’s scheduler and are hence notoriously hard to isolate and fix.

Determinism By Default. One way forward is to make parallel programs “deterministic

by default” [2] such that, no matter how threads are scheduled, program behavior remains

the same, eliminating unruly heisenbugs and allowing the programmer to reason about their

parallel programs as if they were sequential. In recent years, many static and dynamic

86
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approaches have been proposed for ensuring determinism in parallel programs. While

dynamic approaches allow arbitrary data sharing patterns, they also impose non-trivial

run-time overheads and hence are best in situations where there is relatively little sharing [7].

In contrast, while static approaches have nearly no run-time overhead, they have been limited

to high-level languages like Haskell [11] and Java [2] and require that shared structures be

refactored into specific types or classes for which deterministic compilation strategies exist,

thereby restricting the scope of sharing patterns.

Liquid Effects. In this chapter, we present Liquid Effects, a type-and-effect system based on

refinement type inference which uses recent advances in SMT solvers to provide the best of

both worlds: it allows for fine-grained shared memory multithreading in low-level languages

with program-specific data access patterns, and yet statically guarantees that programs are

deterministic.

Any system that meets these goals must satisfy several criteria. First, the system must

support precise and expressive effect specifications. To precisely characterize the effect of

program statements, it must precisely reason about complex heap access patterns, including

patterns not foreseen by the system’s designers, and it must be able to reason about relations

between program values like loop bounds and array segment sizes. Second, the system must

be extensible with user-defined effects to track effects which are domain-specific and thus

could not be foreseen by the system’s designers. Finally, the system must support effect

inference, so that the programmer is not overwhelmed by the burden of providing effect

annotations.

1. Precise and Expressive Effect Specifications. Our Liquid Effects type-and-effect

system expresses the effect of a statement on the heap as a formula in first-order logic

that classifies which addresses in the heap are accessed and with what effect they were



88

accessed — for example, whether the data was read or written. Expressing effects as first-

order formulas makes our type-and-effect system highly expressive: for example, using

the decidable theory of linear arithmetic, it is simple to express heap access patterns like

processing chunks of an array in parallel or performing strided accesses in a number of

separate threads. Using first-order formulas for effects ensures that our system can express

complex access patterns not foreseen by the system’s designers, and allows us to incorporate

powerful off-the-shelf SMT solvers in our system for reasoning about effects. Further, by

building our type-and-effect system as an extension to an existing dependent refinement

type system and allowing effect formulas to reference program variables, our system gains

precise value and branch-sensitive reasoning about effects.

2. Extensibility. Our effect formulas specify how locations on the heap are affected

using effect labeling predicates like Read and Write. These effect labeling predicates are

ordinary uninterpreted predicates in first-order logic; our system does not treat effect labeling

predicates specially. Thus, we are able to provide extensibility by parameterizing our system

over a set of user-defined effect labeling predicates. Further, we allow the user to give

commutativity declarations specifying which pairs of effects have benign interactions when

they simultaneously occur in separate threads of execution. This enables users to track

domain-specific effects not envisioned by the designers of the type-and-effect system.

3. Effect Inference. Our type rules can be easily recast as an algorithm for generating

constraints over unknown refinement types and effect formulas; these constraints can then

be solved using the Liquid Types technique for invariant inference, thus yielding a highly-

automatic type-based method for proving determinism.

To illustrate the utility of Liquid Effects, we have implemented our type-and-effect

checking techniques in CSOLVE, a refinement type inference system for C programs based
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on Liquid Types. We demonstrate how CSOLVE uses Liquid Effects to prove the determinism

of a variety of benchmarks from the literature requiring precise, value-aware tracking of both

built-in and user-defined heap effects while imposing a low annotation burden on the user.

As a result, CSOLVE opens the door to efficient, deterministic programming in mainstream

languages like C.

4.2 Overview

We start with a high-level overview of our approach. Figures 4.1 and 4.2 show two

functions, sum1 and sum2 respectively, which add up the elements of an array of size 2k

in-place by dividing the work up into independent sub-computations that can be executed

in parallel. At the end of both procedures, the first element of the array contains the final

sum. In this section, we demonstrate how our system seamlessly combines path-sensitive

reasoning using refinement types, heap effect tracking, and SMT-based reasoning to prove

that sum3 and sum2 are deterministic.

4.2.1 Contiguous Partitions

The function sum1 sums array a of length len using the auxiliary function sumBlock,

which sums the elements of the contiguous segment of array a consisting of len-many

elements and beginning at index i. Given an array segment of length len, sumBlock

computes the sum of the segment’s elements by dividing it into two contiguous subsegments

which are recursively summed using sumBlock. The recursive calls place the sum of each

subsegment in the first element of the segment; sumBlock computes its final result by

summing the first element of each subsegment and stores it in the first element of the entire
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void sumBlock (char *a, int i, int len) {

if (len <= 1) return;

int hl = len / 2;

cobegin {

sumBlock (a, i, hl);

sumBlock (a, i + hl, len - hl);

}

a[i] += a[i + hl];

}

int sum1 (char *a, int len) {

sumBlock (a, 0, len);

return a[0];

}

Figure 4.1: Parallel Array Summation With Contiguous Partitions

array segment.

Cobegin Blocks. To improve performance, we can perform the two recursive calls inside

sumBlock in parallel. This is accomplished using the cobegin construct, which evaluates

each statement in a block in parallel. Note that the recursive calls both read and write to the

array passed to sumBlock; thus, to prove that the program is deterministic, we have to show

that the part of the array that is written by each call does not overlap with the portion of the

array that is read by the other. In the following, we demonstrate how our system is able

to show that the recursive calls access disjoint parts of the array and thus that the function

sumBlock is deterministic.

Effect Formulas. We compute the region of the array accessed by sumBlock as an effect

formula that describes which pointers into the array are accessed by a call to sumBlock with

parameters i and len. We note that the final line of sumBlock writes element i of a. We
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state the effect of this write as the formula 1

Σa[i]
·
= ν = a+i.

We interpret the above formula, Σa[i], as “the pointer ν accessed by the expression a[i] is

equal to the pointer obtained by incrementing pointer a by i.” The final line of sumBlock

also reads element i+hl of a. The effect of this read is stated as a similar formula:

Σa[i+hl]
·
= ν = a+i+hl.

The total effect of the final line of sumBlock stating which portion of the heap it accesses is

then given by the disjunction of the two effect formulas:

Σa[i]⊕Σa[i+hl]
·
= ν = a+i∨ν = a+i+hl.

The above formula says that the heap locations accessed in the final line of sumBlock are

exactly the locations corresponding to a[i] and a[i+hl]. Having determined the effect of

the final line of sumBlock as a formula over the local variables a, i, and hl, we make two

observations to determine the effect of the entire sumBlock function as a formula over its

arguments a, i, and len. First, we observe that, in the case where len= 2,

a[i+hl] = a[i+len−1].

1Here we associate effects with program expressions like a[i]. However, in the technical development and
our implementation, effects are associated with heap locations in order to soundly account for aliasing (refer to
Section 4.4).
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From this, we can see inductively that a call to sumBlock with index i and length len will

access elements a[i] to a[i+len−1]. Thus, we can soundly ascribe sumBlock the effect

ΣsumBlock
·
= a+i≤ ν ∧ν < a+i+len.

That is, sumBlock will access all elements in the given array segment.

Determinism via Effect Disjointness. We are now ready to prove that the recursive calls

within sumBlock access disjoint regions of the heap and thus that sumBlock behaves

deterministically when the calls are executed in parallel. We determine the effect of the first

recursive call by instantiating sumBlock’s effect, i.e., by replacing formals a, i, and len

with actuals a, i, and hl, respectively:

ΣCall 1
·
= a+i≤ ν ∧ν < a+i+hl.

The resulting effect states that the first recursive call only accesses array elements a[i]

through a[i+hl−1]. We determine the effect of the second recursive call with a similar

instantiation of sumBlock’s effect:

ΣCall 2
·
= a+i+hl≤ ν ∧ν < a+i+len−hl.

All that remains is to show that the effects ΣCall 1 and ΣCall 2 are disjoint. We do so by asking

an SMT solver to prove the unsatisfiability of the conjoined access intersection formula

ΣUnsafe = ΣCall 1∧ΣCall 2,

whose inconsistency establishes that the intersection of the sets of pointers ν accessed
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declare effect Accumulate;

declare Accumulate commutes with Accumulate;

void accumLog (char *l, int j)

effect

(&l[j], Accumulate(v) && !Read(v) && !Write(v));

void sumStride (char *a, int stride, char *log) {

foreach (i, 0, THREADS) {

for (int j = i; j < stride; j += THREADS) {

a[j] += a[j + stride];

accumLog (log, j);

}

}

}

int sum2 (char *a, int len) {

log = (char *) malloc (len);

for (int stride = len/2; stride > 0; stride /= 2)

sumStride (a, stride, log);

return a[0];

}

Figure 4.2: Parallel Array Summation With Strided Partitions

by both recursive calls is empty.

4.2.2 Complex Partitions

In the previous example, function sum1 computed the sum of an array’s elements by

recursively subdividing the array into halves and operating on each half separately before

combining the results. We were able to demonstrate that sum1 is deterministic by showing

that the concurrent recursive calls to sumBlock operate on disjoint contiguous segments of

the array. We now show that our system is capable of proving determinism even when the

array access patterns are significantly more complex.
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Function sum2 uses the auxiliary function sumStride, which sums an array’s ele-

ments using the following strategy: First, the array is divided into two contiguous segments.

Each element in the first half is added to the corresponding element in the second half, and

the element in the first half is replaced with the result. The problem is now reduced to

summing only the first half of the array, which proceeds in the same fashion, until we can

reduce the problem no further, at which point the sum of all the array elements is contained

in the first element of the array.

Foreach Blocks. To increase performance, the pairwise additions between corresponding

elements in the first and second halves of the array are performed in parallel, with the level

of parallelism determined by a compile-time constant THREADS. The parallel threads are

spawned using the foreach construct. The statement

foreach (i, l, u) s;

executes statement s once with each possible binding of i in the range [l,u). Further, all

executions of statement s are performed in parallel. The foreach loop within sumStride

spawns THREADS many threads. Thread i processes elements i, i+ THREADS, i+ 2 ∗

THREADS, etc. , of array a. While this strided decomposition may appear contrived, it

is commonly used in GPU programming to maximize memory bandwidth by enabling

“adjacent” threads to access adjacent array cells via memory coalescing [1].

To prove that the foreach loop within sumStride is deterministic, we must show

that no location that is written in one iteration is either read from or written to in another

iteration. (We ignore the effect of the call to the function accumLog for now and return to

it later.) Note that this differs from the situation with sum1: in order to demonstrate that

sum1 is deterministic, it was not necessary to consider read and write effects separately; it
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was enough to know that recursive calls to sumBlock operated on disjoint portions of the

heap. However, the access pattern of a single iteration of the foreach loop in sumStride is

considerably more complicated, and reasoning about noninterference between loop iterations

will require tracking not only which locations are affected but precisely how they are affected

— that is, whether they are read from or written to.

Labeled Effect Formulas. We begin by computing the effect of each iteration of the loop

on the heap, tracking which locations are accessed as well as which effects are performed

at each location. We first compute the effect of each iteration of the inner for loop, which

adds the value of a[j+stride] to a[j]. We will use the unary effect labeling predicates

Read(ν) and Write(ν) to record the fact that a location in the heap has or has not been read

from or written to, respectively. We capture the effect of the read of a[j+stride] with the

effect formula

Σ1
·
= Read(ν)∧¬Write(ν)∧ν = a+j+stride.

Note that we have used the effect label predicates Read and Write to record not only that we

have accessed a[j+stride] but also that this location was only read from, not written to.

We record the effect of the write to a[j] with a similar formula:

Σ2
·
= Write(ν)∧¬Read(ν)∧ν = a+j
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As before, the overall effect of these two operations performed sequentially, and thus the

effect of a single iteration of the inner for loop is the disjunction of the two effect formulas

above:

Σj
·
= Σ1∨Σ2

Iteration Effect Formulas. Having computed the effect of a single iteration of sumStride’s

inner for loop, the next step in proving that sumStride is deterministic is to compute the

effect of each iteration of the outer foreach loop, with our goal being to show that the

effects of any two distinct iterations must be disjoint. We begin by generalizing the effect

formula we computed to describe the effect of a single iteration of the inner for loop to an

effect formula describing the effect of the entire for loop. The effect formula describing

the effect of the entire for is an effect formula that does not reference the loop induction

variable j, but is implied by the conjunction of the loop body’s single-iteration effect and

any loop invariants that apply to the loop induction variable j.

Note that the induction variable j enjoys the loop invariant

j< stride∧j≡ i mod THREADS.

Given this invariant for j, we can now summarize the effect of the for loop as an effect

formula which does not reference the loop induction variable j but is implied by the
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conjunction of the above invariant on j and the single-iteration effect formula Σj:

Σfor
·
= (Write(ν)⇒ (ν−a)≡ i mod THREADS)

∧ (Write(ν)⇒ ν < a+stride)

∧ (Read(ν)⇒ ν ≥ a+stride) (4.1)

We have now computed the effect of sumStride’s inner for loop, and thus the

effect of a single iteration of sumStride’s outer foreach loop.

Effect Projection. We define an effect projection operator π(Σ,E) which returns the

restriction of the effect formula Σ to the effect label E. In essence, the effect projection is

the formula implied by the conjunction of Σ and E(ν). For example, the projection of the

Write effect of iteration i of the foreach loop represents the addresses written by thread i.

Determinism via Iteration Effect Disjointness. To prove that the foreach loop is deter-

ministic, we must show that values that are written in one iteration are not read or overwritten

in another. First, we show that no two foreach iterations (i.e., threads) write to the same

location, or, in other words, that distinct iterations write through disjoint sets of pointers. We

establish this fact by asking the SMT solver to prove the unsatisfiability of the write-write

intersection formula:

ΣUnsafe = π(Σfor,Write)∧π(Σfor,Write)[i 7→ i′]

∧ i 6= i′∧0≤ i,i′ < THREADS.
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The formula is indeed unsatisfiable as, from Effect 4.1,

π(Σfor,Write) ·= (ν−a)≡ i mod THREADS

∧ ν < a+stride (4.2)

and so, after substituting i′ the query formula is

(ν−a)≡ i mod THREADS∧ (ν−a)≡ i′ mod THREADS

which is unsatisfiable when i 6= i′.

Next, we prove that no heap location is read in one iteration (i.e., thread) and written

in another. As before, we verify that the intersection of the pointers read in one iteration

with those written in another iteration is empty. Concretely, we ask the SMT solver to prove

the unsatisfiability of the write-read intersection formula

ΣUnsafe = π(Σfor,Write)∧π(Σfor,Read)[i 7→ i′]∧i 6= i′

where, from Effect 4.1, the locations read in a single iteration of the foreach loop are

described by the Read projection

π(Σfor,Read) ·= ν ≥ a+stride.

After substituting the the write effect from Effect 4.2, we can see that the write-read-

intersection formula is unsatisfiable as

ν < a+stride∧ν ≥ a+stride
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is inconsistent. Thus, by proving the disjointness of the write-write and write-read effects,

we have proved that the foreach loop inside sumStride is deterministic.

4.2.3 User-Defined Effects

By expressing our effect labeling predicates as ordinary uninterpreted predicates in

first-order logic, we open the door to allowing the user to define their own effects. Such

user-defined effects are first-class: we reason about them using the same mechanisms as

the built-in predicates Read and Write, and effect formulas over user-defined predicates are

equally as expressive as those over the built-in predicates.

We return to the sumStride function to demonstrate the use of user-defined effects.

The for loop in sumStride tracks how many times the entry a[j] is written by incrementing

the j-th value in the counter array log using the externally-defined function accumLog. We

assume that the accumLog function is implemented so that its operation is atomic. Thus,

using accumLog to increment the count of the same element in two distinct iterations of the

foreach loop does not cause non-determinism.

Specifying Effects. We create a new user-defined effect predicate to track the effect of the

accumLog function using the statement

declare effect Accumulate;

This extends the set of effect predicates that our system tracks to

E ·
= {Read,Write,Accumulate}.

We then annotate the prototype of the accumLog function to specify accumLog causes the
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Accumulate effect to occur on the j-th entry of its parameter array l:

void accumLog (char *l, int j)

effect

(&l[j], Accumulate(v) && !Read(v) && !Write(v));

Specifying Commutativity. We specify that our user effect Accumulate does not cause

nondeterminism even when it occurs on the same location in two separate threads using the

commutativity annotation

declare Accumulate commutes with Accumulate;

This annotation extends the set of pairs of effects that commute with each other — that is,

which can occur in either order without affecting the result of the computation. In particular,

the commutativity annotation above extends the set of commutable pairs to

C ·
= {(Read,Read),(Accumulate,Accumulate)}.

The extended set formally specifies that in addition to pairs of Read effects (included by

default), pairs of of Accumulate effects also commute, and hence may be allowed to occur

simultaneously.

Generalized Effect Disjointness. Finally, we generalize our method for ensuring determin-

ism. We check the disjointness of two effect formulas Σ1 and Σ2 by asking the SMT solver

to prove the unsatisfiability of the effect intersection formula:

ΣUnsafe = ∃(E1,E2) ∈ (E×E\C).π(Σ1,E1)∧π(Σ2,E2).

That is, for each possible combination of effect predicates that have not been explicitly
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declared to commute, we check that the two effect sets are disjoint when projected on those

effects.

Thus, by declaring an Accumulate effect which is commutative, we are able to verify

the determinism of sum2.

Effect Inference. In the preceding, we gave explicit loop invariants and heap effects where

necessary. Later in this chapter, we explain how we use Liquid Type inference [53] to reduce

the annotation burden on the programmer by automatically inferring the loop invariants and

heap effects given above.

Outline. The remainder of this chapter is organized as follows: In Section 4.3, we give the

syntax of NanoCe f f programs, informally explain their semantics, and give the syntax of

NanoCe f f ’s types. We define the type system of NanoCe f f in Section 4.4. In Section 4.5,

we give an overview of the results of applying an implementation of a typechecker for

NanoCe f f to a series of examples from the literature. We review related work in Section 4.6.

4.3 Syntax and Semantics

In this section, we present the syntax of NanoCe f f programs, informally discuss

their semantics, and give the syntax of NanoCe f f types.

4.3.1 Programs

The syntax of NanoCe f f programs is shown in Figure 4.3. Most of the expression

forms for expressing sequential computation are standard or covered extensively in previous

work [53]; the expression forms for parallel computation are new to this work.

Values. The set of NanoCe f f values v includes program variables, integer constants n, and
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v ::= Values
| x variable
| n integer
| &n pointer

a ::= Pure Expressions
| v value
| a1 ◦a2 arithmetic operation
| a1 +p a2 pointer arithmetic
| a1 ∼ a2 comparison

e ::= Expressions
| a pure expression
| ∗v heap read
| ∗v1 := v2 heap write
| if v then e1 else e2 if-then-else
| f (v) function call
| malloc(v) memory allocation
| let x = e1 in e2 let binding
| letu x = unfold v in e location unfold
| fold l location fold
| e1 ‖ e2 parallel composition
| for each x in v1 to v2 {e} parallel iteration

F ::= f (xi) { e } Function Declarations

P ::= F e Programs

Figure 4.3: Syntax of NanoCe f f programs
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constant pointer values &n representing addresses in the heap. With the exception of the

null pointer value &0, constant pointer values do not appear in source programs.

Expressions. The set of pure NanoCe f f expressions a includes values v, integer arithmetic

expressions a1 ◦a2, where ◦ is one of the standard arithmetic operators +,−, ∗, etc. , pointer

arithmetic expressions a1+p a2, and comparisons a1 ∼ a2 where ∼ is one of the comparison

operators =, <, >, etc. Following standard practice, zero and non-zero values represent

falsity and truth, respectively.

The set of NanoCe f f expressions e includes the pure expressions a as well as all

side-effecting operations. The expression forms for pointer read and write, if-then-else,

function call, memory allocation, and let binding are all standard. The location unfold

and fold expressions are used to support type-based reasoning about the heap using strong

updates As they have no effect on the dynamic semantics of NanoCe f f programs, we defer

discussion of location unfold and fold expressions to Section 4.4.

Parallel Expressions. The set of NanoCe f f expressions includes two forms for expressing

parallel computations. The first, parallel compositioni

e1 ‖ e2,

evaluates expressions e1 and e2 in parallel and returns when both subexpressions have

evaluated to values.

The second parallel expression form is the parallel iteration expression form

for each x in v1 to v2 {e},

where v1 and v2 are integer values. A parallel iteration expression is evaluated by evaluating
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the body expression e once for each possible binding of variable x to an integer in the range

[v1,v2). All iterations are evaluated in parallel, and the parallel iteration expression returns

when all iterations have finished evaluating. Both forms of parallel expressions are evaluated

solely for their side effects.

Functions and Programas. A function declaration f (xi) { e } declares a function f

with arguments xi whose body is the expression e. The return value of the function is

the value of the expression. An NanoCe f f program consists of a sequence of function

declarations F followed by an expression e which is evaluated in the environment containing

the previously-declared functions.

4.3.2 Types

The syntax of NanoCe f f types is shown in Figure 4.4. Base Types. The base types

b of NanoCe f f include integer types int(i) and pointer types ref(l, i). The integer type

int(i) describes an integer whose value is in the set described by the index i; the set of

indices is described below. The pointer type ref(l, i) describes a pointer value to the heap

location l whose offset from the beginning of location l is an integer belonging to the set

described by index i.

Indices. The language of NanoCe f f base types uses indices i to approximate the values of

integers and the offsets of pointers from the starts of the heap locations where they point.

There are two forms of indices. The first, the singleton index n, describes the set of integers

{n}. The second, the sequence index n+m, represents the sequence of offsets {n+ lm}∞

l=0.

Refinement Types. The NanoCe f f refinement types τ are formed by joining a base type b

with a refinement formula p to form the refinement type {ν : b | p}. The distinguished

value variable ν refers to the value described by this type. The refinement formula p is a log-
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b ::= Base Types
| int(i) integer
| ref(l, i) pointer

p ::= φ(v) Refinement Formulas

τ ::= {ν : b | p} Refinement Types

i ::= Indices
| n constant
| n+m sequence

c ::= i : τ Blocks

l ::= Heap Locations
| l̃ abstract location
| l j concrete location

h ::= Heap Types
| ε empty heap
| h∗ l 7→ c extended heap

Σ ::= Heap Effects
| ε empty effect
| Σ∗ l̃ 7→ p extended effect

σ ::= (xi : τi)/h1 → τ/h2/Σ Function Schemes

Figure 4.4: Syntax of NanoCe f f types
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ical formula φ(ν ,v) over NanoCe f f values v and the value variable ν . The type {ν : b | p}

describes all values v of base type b that satisfy the formula p[ν 7→ v]. Our refinements are

first-order formulas with equality, uninterpreted functions, and linear arithmetic.

When it is unambiguous from the context, we use b to abbreviate {ν : b | true}.

Blocks. A block c describes the contents of a heap location as a sequence of bindings from

indices i to refinement types τ . Each binding i : τ states that a value of type τ is contained

in the block at each offset n from the start of the block which is described by the index i.

Bindings of the form m : τ , where types are bound to singleton indices, refer to exactly one

element within the block; as such, we allow the refinement formulas within the same block

to refer to the value at offset m using the syntax @m. We require all indices in a block to be

disjoint.

Heap Types. Heap types h statically describe the contents of run-time heaps as sets of

bindings from heap locations l to blocks c. A heap type is either the empty heap ε or a

heap h extended with a binding from location l to block c, written h∗ l 7→ c. The location

l is either an abstract location l̃, which corresponds to arbitrarily many run-time heap

locations, or a concrete location l j, which corresponds to exactly one run-time heap location.

The distinction between abstract and concrete locations is used to implement a form of

sound strong updates on heap types in the presence of aliasing, unbounded collections, and

concurrency; we defer detailed discussion to Section 4.4. Locations may be bound at most

once in a heap.

Heap Effects. A heap effect Σ describes the effect of an expression on a set of heap locations

as a set of bindings from heap locations l to effect formulas p. A heap effect is either the

empty effect ε or an effect Σ extended with a binding from location l̃ to an effect formula p

over the in-scope program variables and the value variable ν , written Σ∗ l̃ 7→ p. Intuitively,
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an effect binding l̃ 7→ p describes the effect of an expression on location l̃ as the set of

pointers v such that the formula p[ν 7→ v] is valid. Note that we only bind abstract locations

in heap effects.

Effect Formulas. The formula portion of an effect binding can describe the effect of an

expression with varying degrees of precision, from simply describing whether the expression

accesses the location at all, to describing which offsets into a location are accessed, to

describing which offsets into a location are accessed and how they are accessed (e.g. whether

they are read or written).

For example, if we use the function BB(ν) to refer to the beginning of the block

where ν points, we can record the fact that expression e accesses the first ten items in the

block at location l̃ (for either reading or writing) with the effect binding

l̃ 7→ BB(ν)≤ ν ∧ν < BB(ν)+10,

i.e., by stating that all pointers used by e to accesses location l̃ satisfy the above formula. To

record that an expression does not access location l̃ at all, we ascribe it the effect formula

false.

We add further expressiveness to our language of effect formulas by enriching it

with effect-specific predicates used to describe the particular effects that occurred within a

location. We use the unary predicates Read(v) and Write(v) to indicate that pointer v was

read from or written to, respectively. Using these predicates, we can precisely state how an

expression depends upon or affects the contents of a heap location.

For example, we can specify that an expression does not write to a location l̃ using

the effect binding

l̃ 7→ ¬Write(ν).
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On the other hand, we may specify precisely which offsets into l̃ are written by using Write

to guard a predicate describing a set of pointers into l̃. For example, the effect binding

l̃ 7→Write(ν)⇒ (BB(ν)≤ ν ∧ν < BB(ν)+10)

describes an expression which writes to the first ten elements of the block at l̃.

Effect predicates like Read and Write may only appear in heap effect bindings; they

may not appear in type refinements.

Function Schemes. A NanoCe f f function scheme

(xi :τi)/h1 → τ/h2/Σ

is the type of functions which take arguments xi of corresponding types τi in a heap of type

h1, return values of type τ in a heap of type h2, and incur side-effects described by the heap

effect Σ. The types of function parameters may depend on the other function parameters,

and the type of the input heap may depend on the parameters. The types of the return value,

output heap, and heap effect may depend on the types of the parameters. We implicitly

quantify over all the location names appearing in a function scheme.

4.4 Type System

In this section, we present the typing rules of NanoCe f f . We begin with a discussion

of NanoCe f f ’s type environments. We then discuss NanoCe f f ’s expression typing rules,

paying particular attention to how the rules carefully track side effects. Finally, we describe

how we use tracked effects to ensure determinism.
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Type Environments. Our typing rules make use of three types of environments. A local

environment, Γ, is a sequence of type bindings of the form x :τ recording the types of

in-scope variables and guard formulas p recording any branch conditions under which an

expression is evaluated. A global environment, Φ, is a sequence of function type bindings

of the form f :S which maps functions to their refined type signatures. Finally, an effect

environment Π is a pair (E,C). The first component in the pair, E, is a set of effect label

predicates. The second component in the pair, C, is a set of pairs of effect label predicates

such that (E1,E2) ∈ C states that effect E1 commutes with E2. By default, E includes the

built-in effects, Read and Write, and C includes the pair (Read,Read), which states that

competing reads to the same address in different threads produce a result that is independent

of their ordering. In our typing rules, we implicitly assume a single global effect environment

Π.

Local environments are well-formed if each bound type or guard formula is well-

formed in the environment that precedes it. An effect environment (E,C) is well-formed

as long as C is symmetric and only references effects in the set E, i.e., C ⊆ E×E, and

(E1,E2) ∈ C iff (E2,E1) ∈ C.

Γ ::=ε | x :τ;Γ | p;Γ (Local Environment)

Φ ::=ε | f :S;Φ (Global Environment)

E ::={Read,Write} | E;E

C ::=(Read,Read) | (E,E);C

Π ::=(E,C) (Effect Environment)
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4.4.1 Typing Judgments

We now discuss the rules for ensuring type well-formedness, subtyping, and typing

expressions. Due to space constraints, we only present the formal definitions of the most

pertinent rules, and defer the remainder to the accompanying technical report [29].

Subtyping Judgments. The rules for subtyping refinement types are straightforward: type

τ1 is a subtype of τ2 in environment Γ, written Γ ` τ1 <: τ2, if 1) τ1’s refinement implies τ2

under the assumptions recorded as refinement types and guard predicates in Γ and 2) τ1’s

index is included in τ2’s when both are interpreted as sets.

Heap type h1 is a subtype of h2 in environment Γ, written Γ ` h1 <: h2, if both heaps

share the same domain and, for each location l, the block bound to l in h1 is a subtype of the

block bound to l in h2. Subtyping between blocks is pairwise subtyping between the types

bound to each index in each block; we use substitutions to place bindings to offsets @i in

the environment.

Because effect formulas are first-order formulas, subtyping between effects is simply

subtyping between refinement types: an effect Σ1 is a subtype of Σ2 in environment Γ,

written Γ ` Σ1 <: Σ2, if each effect formula bound to a location in Σ1 implies the formula

bound to the same location in Σ2 using the assumptions in Γ.

Type Well-Formedness. The type well-formedness rules of NanoCe f f ensure that all

refinement and effect formulas are well-scoped and that heap types and heap effects are

well-defined maps over locations. These rules are straightforward; we briefly discuss them

below, deferring their formal definitions [29].

A heap effect Σ is well-formed with respect to environment Γ and heap h, written

Γ,h ` Σ, if it binds only abstract locations which are bound in h, binds a location at most

once, and binds locations to effect formulas which are well-scoped in Γ. Further, an effect
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formula p is well-formed in an effect environment (E,C) if all effect names in p are present

in E.

A refinement type τ is well-formed with respect to Γ, written Γ ` τ , if its refinement

predicate references only variables contained in Γ. A heap type h is well-formed in environ-

ment Γ, written Γ ` h, if it binds any location at most once, binds a corresponding abstract

location for each concrete location it binds, and contains only well-formed refinement types.

A “world” consisting of a refinement type, heap type, and heap effect is well-formed

with respect to environment Γ, written Γ ` τ/h/Σ, if, with respect to the environment Γ, the

type and heap type are well-formed and the heap effect Σ is well-formed with respect to the

heap h.

The rule for determining the well-formedness of function type schemes is standard.

Pure Expression Typing. The rules for typing a pure expression a in an environment Γ,

written Γ ` a : τ , are straightforward, and are deferred to [29]. These rules assign each pure

expression a refinement type that records the exact value of the expression.

Expression Typing and Effect Tracking. Figure 4.5 shows the rules for typing expressions

which explicitly manipulate heap effects to track or compose side-effects. Each expression

is typed with a refinement type, a refinement heap assigning types to the heap’s contents

after evaluating the expression, and an effect which records how the expression accesses

each heap location as a mapping from locations to effect formulas. We use the abbreviation

void to indicate the type {ν : int(0) | true}.

Pointer dereference expressions ∗v are typed by the rule [T-READ]. The value v

is typed to find the location and index into which it points in the heap; the type of the

expression is the type at this location and index. The rule records the read’s effect in the

heap by creating a new binding to v’s abstract location, l̃, and uses the auxiliary function
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Typing Rules Φ,Γ,h ` e : τ/h2/Σ

Γ ` v : ref(l j, i) h = h1 ∗ l j 7→ . . . , i :τ, . . .

Φ,Γ,h ` ∗v : τ/h/l̃ 7→ logEffect(v,Read)
[T-READ]

h = h1 ∗ l j 7→ . . . ,n :b, . . . Γ ` v1 : ref(l j,n)
Γ ` v2 : b h′ = h1 ∗ l j 7→ . . . ,n :{ν : b | ν = v2}, . . .
Φ,Γ,h ` ∗v1 := v2 : void/h′/l̃ 7→ logEffect(v1,Write)

[T-SUPD]

Γ ` v1 : ref(l j,n+m) Γ ` v2 : τ̂ h = h1 ∗ l j 7→ . . . ,n+m : τ̂, . . .

Φ,Γ,h ` ∗v1 := v2 : void/h/l̃ 7→ logEffect(v1,Write)
[T-WUPD]

Φ,Γ,h ` e1 : τ1/h1/Σ1 Φ,Γ;x :τ1,h1 ` e2 : τ̂2/ĥ2/Σ̂2 Γ ` τ̂2/ĥ2/Σ̂2

Φ,Γ,h ` let x = e1 in e2 : τ̂2/ĥ2/Σ1⊕ Σ̂2
[T-LET]

Φ,Γ,h ` e1 : τ1/ĥ′/Σ̂1 Φ,Γ,h ` e2 : τ2/ĥ′/Σ̂2
Φ,Γ, ĥ′ ` Σ̂{1,2} Φ,Γ ` OK(Σ̂1, Σ̂2) h abstract

Φ,Γ,h ` e1 ‖ e2 : void/ĥ′/Σ̂1⊕ Σ̂2
[T-PAR]

Γ ` v1 : int(i) Γ ` v2 : int(i)
Γ1 = Γ;x :{ν : int(i) | v1 ≤ ν < v2} Φ,Γ1,h ` e : τ/h/Σ

y fresh Γ2 = Γ1;y :{ν : int(i) | v1 ≤ ν < v2∧ν 6= x}
Φ,Γ2 ` OK(Σ,Σ[x 7→ y])

Φ,Γ,h ` τ/h/Σ̂
′

Γ1 ` Σ <: Σ̂
′ h abstract

Φ,Γ,h ` for each x in v1 to v2 {e} : void/h/Σ̂
′ [T-FOREACH]

Γ ` v : {ν : ref(l̃, iy) | ν 6= 0}
h = h0 ∗ l̃ 7→ nk :τk, i+ :τ+ θ = [@nk 7→ xk] xk fresh

Γ1 = Γ;xk :θτk l j fresh h1 = h∗ l j 7→ nk :{ν = xk}, i+ :θτ+

Φ,Γ1;x :{ν : ref(l j, iy) | ν = v},h1 ` e : τ̂2/ĥ2/Σ̂ Γ1 ` h1
Γ ` τ̂2/ĥ2/Σ̂ Σ = Σ̂⊕{(l̃ 7→ logEffect(BB(ν)+nk,Read))}nk

Φ,Γ,h ` letu x = unfold v in e : τ̂2/ĥ2/Σ
[T-UNFOLD]

h = h0 ∗ l̃ 7→ ĉ1 ∗ l j 7→ c2 Γ ` c2 <: ĉ1

Φ,Γ,h ` fold L : void/h0 ∗ l̃ 7→ ĉ1/ε
[T-FOLD]

Figure 4.5: Typing Rules for NanoCe f f
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Effects Checking Γ ` OK(Σ1,Σ2)

Ψ(E1,E2) = π(p1,E1)∧π(p2,E2) ∀(E1,E2) ∈ (E×E)\C.Unsat([[Γ]]∧Ψ(E1,E2))

Γ ` OK(p1, p2)

∀l ∈ Dom(Σ1⊕Σ2).Γ ` OK(LU(Σ1, l),LU(Σ2, l))
Γ ` OK(Σ1,Σ2)

Effects Operations

Σ1⊕Σ2
·
= {l 7→ LU(Σ1, l)∨LU(Σ2, l)}l∈

⋃
Dom(Σ1,2)

LU(Σ, l) ·=

{
Σ(l) l ∈ Dom(Σ)

false o.w.

π(p,E) ·= p[E 7→ Check]∧Check(ν)

logEffect(v,E) ·= E(ν)∧ν = v∧E ′∈E\{E}¬E ′(ν)

Figure 4.6: NanoCe f f Rules for Effectful Operations

logEffect to create an effect formula which states that the only location that is accessed

by this dereference is exactly that pointed to by v (i.e., ν = v), that the location is read

(i.e., Read(ν)), and that no other effect occurs.

The rules for typing heap-mutating expressions of the form ∗v1 := v2, [T-SUPD]

and [T-WUPD], are similar to [T-READ]. The two rules for mutation differ only in whether

they perform a strong update on the type of the heap, i.e., writing through a pointer with a

singleton index strongly updates the type of the heap, while writing through a pointer with a

sequence index does not.

Expressions are sequenced using the let construct, typed by rule [T-LET]. The

majority of the rule is standard; we discuss only the portion concerning effects. The rule

types expressions e1 and e2 to yield their respective effects Σ1 and Σ2. The effect of the

entire let expression is the composition of the two effects, Σ1⊕Σ2, defined in Figure 4.6.

We check that Σ2 is well-formed in the initial environment to ensure that the variable x does
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not escape its scope.

Rule [T-PAR] types the parallel composition expression e1 ‖ e2. Expressions e1

and e2 are typed to obtain their effects Σ1 and Σ2. We then use the OK judgment, defined

in Figure 4.6, to verify that effects Σ1 and Σ2 commute, i.e., that the program remains

deterministic regardless of the interleaving of the two concurrently-executing expressions.

We give e1 ‖ e2 the effect Σ1⊕Σ2. We require that the input heap for a parallel composition

expression must be abstract, that is, contain only bindings for parallel compositions; this

forces the expressions which are run in parallel to unfold any locations they access, which in

turn enforces several invariants that will prevent the type system from unsoundly assuming

invariants in one thread which may be broken by the heap writes performed in another. We

elaborate on this below.

Rule [T-FOREACH] types the foreach parallel loop expression. The loop induction

variable i ranges over values between v1 and v2, exclusive; we type the body expression e

in the environment enriched with an appropriate binding for i and compute the resulting

heap and per-iteration effect Σ. We require that the heap is loop-invariant. To ensure that

the behavior of the foreach loop is deterministic, we must check that the effects of distinct

iterations do not interfere. Hence, we check non-interference at two arbitrary, distinct

iterations by adding a binding for a fresh name j to the environment with the invariant that

i 6= j, and verifying with OK that the effect at an iteration i, Σ, commutes with the effect at

a distinct iteration j, Σ[i 7→ j]. We return Σ′, which subsumes Σ but is well-formed in the

original environment, ensuring that the loop induction variable i does not escape its scope.

As with [T-PAR], we require that the input heap is abstract, for the same reasons.

Strong Updates and Concurrency The rules [T-UNFOLD] and [T-FOLD] are used to

implement a local non-aliasing discipline for performing strong updates on the types of heap
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locations when only one pointer to the location is accessed at a time. The mechanism is

similar to freeze/thaw and adopt/focus [63, 16]. These rules are treated in previous work

[53]; we now discuss how these rules handle effects and briefly recap their handling of

strong updates.

Rule [T-UNFOLD] types the letu construct for unfolding a pointer to an abstract

location, l̃, to obtain a pointer to a corresponding concrete location, l j, bound to the variable

x. [T-UNFOLD] constructs the block bound to l j by creating a skolem variable x j for each

binding of a singleton index n j to a type τ j; the binding is a singleton index in a concrete

location, so it corresponds to exactly one datum on the heap. We apply an appropriate

substitution to the elements within the block, then typecheck the body expression e with

respect to the extended heap and enriched environment. Well-formedness constraints ensure

that an abstract location is never unfolded twice in the same scope and that x does not escape

its scope.

We allow two concurrently-executing expressions to unfold, and thus simultaneously

access, the same abstract location. When a location is unfolded, our type system records

the refinement types bound to each of its singleton indices in the environment. If we do not

take care, the refinement types bound to singleton indices and recorded in the environment

may be invalidated by an effect (e.g. a write) occurring in a simultaneously-executing

expression.Thus, an expression which unfolds a location implicitly depends on the data

whose invariants are recorded in its environment at the time of unfolding. To capture these

implicit dependencies, when a pointer v is unfolded, we conservatively record a pseudo-

read [62] at each singleton offset nk within the block into which v points by recording in the

heap effect that the pointer BB(v)+nk is read, where BB(v) is the beginning of the memory

block where v points. Then, the invariant recorded in the environment at the unfolding is
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preserved, as any violating writes would get caught by the determinism check.

Rule [T-FOLD] removes a concrete location from the heap so that a different pointer

to the same abstract location may be unfolded. The rule ensures that the currently-unfolded

concrete location’s block is a subtype of the corresponding abstract location’s so that we

can be sure that the abstract location’s invariant holds when it is unfolded later. The fold

expression has no heap effect.

Program Typing. The remaining expression forms do not manipulate heap effects; as their

typing judgments are straightforward and covered in previous work [53], we defer their

definition [29]. We note that the rule for typing if expressions records the value of the branch

condition in the environment when typing each branch. The judgments for typing function

declarations and programs in NanoCe f f are straightforward and are deferred to [29].

4.4.2 Handling Effects

We now describe the auxiliary definitions used by the typing rules of Section 4.4.1

for checking effect noninterference.

Combining Effects. In Figure 4.6, we define the ⊕ operator for combining effects. Our

decision to encode effects as formulas in first-order logic makes the definition of this operator

especially simple: for each location l, the combined effect of Σ1 and Σ2 on location l is

the disjunction of of the effects on l recorded in Σ1 and Σ2. We use the auxiliary function

LU(Σ, l) to look up the effect formula for location l in Σ; if there is no binding for l in Σ,

the false formula, indicating no effect, is returned instead.

Effects Checking. We check the noninterference of heap effects Σ1, Σ2 using the OK

judgment, defined in Figure 4.6. The effects are noninterfering if the formulas bound to

locations in both heap effects are pairwise noninterfering. Two effect formulas p1 and p2
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Table 4.1: CSOLVE: Liquid Effects Experimental Results

Program LOC Quals Annot Changes T (s)
Reduce 39 7 7 N/A 8.8
SumReduce 39 1 3 0 1.8
QuickSort 73 3 4 N/A 5.9
MergeSort 95 6 7 0 32.4
IDEA 222 7 5 3 59.7
K-Means 458 7 10 16 63.7

are noninterfering as follows. For each pair of non-commuting effects E1 and E2 in the set

E, we project the set of pointers in p1 (resp., p2) which are accessed with effect E1 (resp.,

E2) using the effect projection operator π . Now, if the conjunction of the projected formulas

is unsatisfiable, the effect formulas are noninterfering.

User-Defined Effects and Commutativity. We allow our set of effects E to be extended

with additional effect label predicates by the user. To specify how these effects interact,

commutativity annotations can be provided that indicate which effects do not result in

nondeterministic behavior when run simultaneously. Then, the user may override the effect

of any function by providing an effect Σ as an annotation, allowing additional flexibility to

specify domain-specific effects or override the effect system if needed.

4.5 Evaluation

In Table 4.1, (LOC) is the number of source code lines as reported by sloccount,

(Quals) is the number of logical qualifiers required to prove memory safety and determinism,

(Annot) is the number of annotated function signatures plus the number of effect and

commutativity declarations. (Changes) is the number of program modifications, (T) is the

time in seconds taken for verification.

We have implemented the techniques in this chapter as an extension to CSOLVE, a
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<region r1,r2,r3 | r1:* # r3:*, r2:* # r3:*> void

merge(DPJArrayInt<r1> a, DPJArrayInt<r2> b, DPJArrayInt<r3> c)

reads r1:*, r2:* writes r3:* {

if (a.length <= merge_size)

seq_merge(a, b, c);

else {

int ha=a.length/2, sb=split(a.get(ha),b);

final DPJPartitionInt<r1> a_split=new DPJPartitionInt<r1>(a,hd);

final DPJPartitionInt<r2> a_split=new DPJPartitionInt<r2>(b,sb);

final DPJPartitionInt<r3> c_split=new DPJPartitionInt<r3>(c,ha+sb);

cobegin { merge(a_split.get(0),b_split.get(0),c_split.get(0));

merge(a_split.get(1),b_split.get(1),c_split.get(1)); }}}

Figure 4.7: DPJ merge function

qualif Q(V: ptr) : &&[_ <= V; V {<, >=} (_ + _ + _)]

void merge(int* ARRAY LOC(L) a,

int* ARRAY LOC(L) b,

int la, int lb, int* ARRAY c) {

if (la <= merge_size){

seq_merge(a, b, la, lb, c);

} else {

int ha = la / 2, sb = split(a[ha],b,lb);

cobegin {

merge(a,b,ha,sb,c);

merge(a+ha,b+sb,la-ha,lb-sb,c+ha+sb); }}}

Figure 4.8: CSOLVE merge function
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refinement type-based verifier for C. CSOLVE takes as input a C program and a set of logical

qualifiers, or formulas over the value variable ν , to use in refinement and effect inference.

CSOLVE then checks the program both for memory safety errors (e.g. out-of-bounds array

accesses, null pointer dereferences) and non-determinism. If CSOLVE determines that

the program is free from such errors, it outputs an annotation file containing the types of

program variables, heaps, functions, and heap effects. If CSOLVE cannot determine that the

program is safe, it outputs an error message with the line number of the potential error and

the inferred types of the program variables in scope at that location.

Type and Effect Inference. CSOLVE infers refinement types and effect formulas using the

predicate abstraction-based Liquid Types [53] technique; we give a high-level overview

here. We note that there are expressions whose refinement types and heap effects cannot be

constructed from the types and heap effects of subexpressions or from bindings in the heap

and environment but instead must be synthesized. For example, the function typing rule

requires us to synthesize types, heaps, and heap effects for functions. This is comparable

to inferring pre- and post-conditions for functions (and similarly, loop invariants), which

reduces to determining appropriate formulas for refinement types and effects. To make

inference tractable, we require that formulas contained in synthesized types, heaps, and

heap effects are liquid, i.e., conjunctions of logical qualifier formulas provided by the user.

These qualifiers are templates for predicates that may appear in types or effects. We read our

inference rules as an algorithm for constructing subtyping constraints which, when solved,

yield a refinement typing for the program.

Methodology To evaluate our approach, we drew from the set of Deterministic Parallel Java

(DPJ) benchmarks reported in [2]. For those which were parallelized using the methods we

support, namely heap effects and commutativity annotations, we verified determinism and



120

memory safety using our system. Our goals for the evaluation were to show that our system

was as expressive as DPJ’s for these benchmarks while requiring less program restructuring.

Results The results of running CSOLVE on the following benchmarks are presented in

Table 4.1. Reduce is the program given in Section 4.2. SumReduce initializes an array

using parallel iteration, then sums the results using a parallel divide-and-conquer strategy.

MergeSort divides an array into quarters, recursively sorting each in parallel. It then merges

pairs of sorted quarters in parallel, and finally merges the two sorted halves to yield a

single sorted array. The final merges are performed recursively in parallel. QuickSort is

a standard in-place quicksort adapted from a sequential version included with DPJ. We

parallelized the algorithm by partitioning the input array around its median, then recursively

sorting each partition in parallel. K-Means was adapted from the STAMP benchmarks [38],

the C implementation that was ported for DPJ. IDEA is an encryption/decryption kernel

ported to C from DPJ.

Changes Some benchmarks required modifications in order to conform to the current

implementation of CSOLVE; this does not indicate inherent limitations in the technique.

These include: multi-dimensionalizing flattened arrays, writing stubs for matrix malloc,

expanding structure fields (K-Means), and soundly abstracting non-linear operations and

#define-ing configuration parameters to constants to work around a bug in the SMT solver

(IDEA).

Annotations CSOLVE requires two classes of annotations to compute base types for the

program. First, the annotation ARRAY is required to distinguish between pointers to single-

tons and pointers to arrays. Second, as base type inference is intraprocedural, we must

additionally specify which pointer parameters may be aliased by annotating them with a

location parameter of the form LOC(L).
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Qualitative Comparison Since the annotations used by CSOLVE and DPJ are very different,

a quantitative comparison between them is not meaningful. Instead, we illustrate the kinds

of annotations used by each tool and qualitatively compare them. Figures 4.7, 4.8 contain

DPJ, and CSOLVE code, resp., implementing the recursive Merge routine from MergeSort,

including region annotations and required wrapper classes. In the latter, Merge takes two

arrays a and b and recursively splits them, sequentially merging them into array c at a target

size. In particular, each statement in the cobegin writes to a different contiguous interval of

c.

In DPJ, verifying this invariant requires: First, wrapping all arrays with an API class

DPJArrayInt, and then wrapping each contiguous subarray with another class

DPJArrayPartitionInt. This must be done because DPJ does not support precise effects

over partitions of native Java arrays. Second, the method must be explicitly declared to be

polymorphic over named regions r1, r2, and r3, corresponding to the memory locations in

which the formals reside. Finally, Merge must be explicitly annotated with the appropriate

effects, i.e., it reads r1 and r2 and writes r3.

In CSOLVE, verifying this invariant requires: First, specifying that a and b are

potentially aliased arrays (the annotation LOC(L) ARRAY). Second, we specify the qualifiers

used to synthesize refinement types and heap effects via the line starting with qualif. This

specification says that a predicate of the given form may appear in a type or effect, with

the wildcard replaced by any program identifier in scope for that type or effect. Using the

given qualifier, CSOLVE infers that a and b’s location is only read, and that c’s location is

only written at indices described by the formula c≤ ν < c+ la+ lb, which suffices to prove

determinism.

Unlike DPJ, CSOLVE does not require invasive changes to code (e.g. explicit array
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partitioning), and hence supports domain- and program-specific sharing patterns (e.g. mem-

ory coalescing from Figure 4.2). However, this comes at the cost of providing qualifiers. In

future work, abstract interpretation may help lessen this burden.

4.6 Related Work

The literature on checking determinism (and other properties) of multithreaded

programs generally fall into two categories: static and dynamic. While there has been much

exciting work on dynamic mechanisms, including work at the architecture [41], operating

system [7] and language runtime [9, 34] levels, for relevance, we limit our discussion to

static mechanisms for checking and enforcing determinism for relevance. In particular

the literature that pertains to reasoning about heap disjointness: type-and-effect systems,

semantic determinism checking, and other closely related techniques.

Named Regions. Region-based approaches assign references (or objects) to distinct seg-

ments of the heap, which are explicitly named and manipulated by the programmer. This

approach was introduced in the context of adding impure computations to a functional

language, and developed as a means of controlling the side-effects incurred by segments of

code in sequential programs [33, 35]. Effects were also investigated in the context of safe,

programmer-controlled memory management [58, 28, 32]. Ideas from this work led to the

notion of abstract heap locations [63, 24, 16] and our notion of fold and unfold.

Ownership Types. In the OO setting, regions are closely related to ownership types which

use the class hierarchy of the program to separate the heap into disjoint, nested regions

[13, 56]. In addition to isolation, ownership types can be used to track effects [12], and to

reason about data races and deadlocks [10, 4, 36].
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Such techniques can be used to enforce determinism [57], but regions and ownership

relations are not enough to enforce fine-grained separation. Instead, we must precisely track

relations between program variables. We are inspired by DPJ [2], which shows how some

sharing patterns can be captured in a dependent region system. However, we show the full

expressiveness of refinement type inference and SMT solvers can be brought to bear to

enable complex, low-level sharing with static determinism guarantees.

Checking Properties of Multithreaded Programs. Several authors have looked into type-

and-effect systems for checking other properties of multithreaded programs. For example,

[22, 47] show how types can be used to prevent races, [23] describes an effect discipline that

encodes Lipton’s Reduction method for proving atomicity. Our work focuses on the higher-

level semantic property of determinism. Nevertheless, it would be useful to understand how

race-freedom and atomicity could be used to establish determinism. Others [50, 3] have

looked at proving that different blocks of operations commute. In future work, we could use

these to automatically generate effect labels and commutativity constraints.

Program Logics and Abstract Interpretation. There is a vast literature on the use of

logic (and abstract interpretation) to reason about sets of addresses (i.e., the heap). The

literature on logically reasoning about the heap includes the pioneering work in TVLA

[66], separation logic [49], and the direct encoding of heaps in first-order logic [30, 31],

or with explicit sets of addresses called dynamic frames [26]. These logics have also been

applied to reason about concurrency and parallelism: [48] looks at using separation logic to

obtain (deterministic) parallel programs, and [66] uses abstract interpretation to find loop

invariants for multithreaded, heap-manipulating Java programs. The above look at analyzing

disjointness for linked data structures. The most closely related to our work is [61], which

uses intra-procedural numeric abstract interpretation to determine the set of array indices
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used by different threads, and then checks disjointness over the domains.

Our work differs in that we show how to consolidate all the above lines of work into

a uniform location-based heap abstraction (for separation logic-style disjoint structures)

with type refinements that track finer-grained invariants. Unlike [48], we can verify access

patterns that require sophisticated arithmetic reasoning, and unlike [61] we can check

separation between disjoint structures, and even indices drawn from compound structures

like arrays, lists and so on. Our type system allows “context-sensitive” reasoning about

(recursive) procedures. Further, first-order refinements allow us to verify domain-specific

sharing patterns via first class effect labels [35].

4.7 Conclusion

In this chapter, we broadened the scope of Liquid Types from the verification of

pure functional programs in a high-level language to the verification of impure imperative

programs in a low-level language. We did this by carefully combining several powerful

constructs: precise models of typed heaps with concrete and abstract locations, a fold and

unfold mechanism for coping with temporary invariant violation, and Liquid Types for

inferring precise data structure invariants. We demonstrated that this combination enables

the largely-automatic verification of memory safety properties through several realistic

examples requiring precise reasoning about invariants of in-memory data structures.
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Chapter 5

Conclusions and Impact

In the introduction to this dissertation, we claimed that there exists an impedance

mismatch between the high-level properties that programmers would like to be true of their

programs and the tools, including language-level mechanisms, that they use to implement

their programs. We then posited that such high-level property specifications, and hence

the impedance mismatch, is due to the low level of source code mechanisms available for

implementing and specifying properties of data structures such as sorted lists, balanced trees,

acyclic graphs, disjoint in-heap arrays, and so on.

Encoding. In the preceding chapters, we introduced four methods for encoding high-level

invariants of data structure as refinement types for the purpose of program verification.

In Chapter 2, we described Recursive Refinements for encoding properties of re-

cursive structures such as sorted lists and binary search trees. In Chapter 3, we described

Measures for encoding non-boolean, but well-founded inductive properties of structures

such as the size of sets and height of trees. Then, we described Polymorphic Refinements for

encoding properties of linked structures such as the acyclicity of graphs and dependencies

between keys and values in arrays and hashmaps. In Chapter 4, we described Liquid Effects,

126
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a type-and-effects system for C programs that encodes memory access patterns over heaps,

and how it can be used to guarantee the determinism of fork-join concurrency.

Verification. Further, we showed that each method was compatible with Liquid Type

Inference [52, 54], an algorithm for inferring refinement types such that a program is safe

if a “Liquid” typing for the program can be inferred. We then showed that, with minimal

programmer annotation, our refinement type encoding and Liquid Type Inference enable

static program verification.

Finally, we showed that our techniques are practical and efficient by implementing

them as two tools: first, DSOLVE for verifying complex data structure properties in OCAML

programs, and second, CSOLVE for verifying complex data structure properties in the

presence of fork-join concurrency in C programs.

Practicality. Using DSOLVE, we verified the safety of thousands of lines of challenging

benchmarks, including both canonical data structure implementations and production data

structure libraries, such as the OCAML standard library’s Map module. Further, we described

how DSOLVE found a subtle bug in a production library, vec, and was used to find a minimal

test case and fix that was reported to and adopted by the library authors.

Efficiency. Using CSOLVE and DSOLVE, we automatically verified 20 challenging OCAML

and C benchmarks (totaling 1754 lines and 926 lines, resp.) in a cumulative total of 470

seconds. Further, we showed that this performance could be reached with an extremely low

programmer burden, totaling only 126 total lines of annotation, or 5% of total code size.

Contributions. In this dissertation, we claim that we have produced lasting solutions that

mitigate the fundamental impedance mismatch between high-level programmer intent and

the limits of language expressiveness. In particular, we posit that this mismatch is due

to the difficulty of expressing and verifying the maintenance of high-level data structure
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invariants and propose novel, practical and efficient solutions for both encoding data structure

invariants and automatically verifying that source code maintains these invariants in two

realistic settings.

Finally, we experimentally show that these methods are practical, efficient and novel

by implementing them into two tools, DSOLVE and CSOLVE to prove, for the first time:

First, the safety of multiple OCAML standard library and production modules. Second,

we describe how we discovered a bug in production OCAML module vec, such that a

programmer-intended data structure invariant was not preserved due to a subtle programmer

error on a single path in a complex piece of source code. Third, we describe a method for

automatically proving the safety of complex concurrent memory access patterns that use

pointer arithmetic to enable code performance in environments such as general purpose

GPU programming.

Prior to our work. the state of the art in data structure invariant encoding and verifi-

cation relied on intractable or manual, tedious methods: First, universal quantification

over predicates in first order logic for which no complete decision procedure exists and

heuristic solvers are impractically slow and unpredictable; Second, hand-written proofs in

domain-specific logics [40] or worse, higher-order logical sentences [67]; Third, multiply

exponential abstract interpretation using graph domains [55].

Our work. In this dissertation, we showed that a significant class of data structure invariants

can be encoded and automatically verified by piggybacking quantifier-free logical predicates

over a source language’s base types. Our method enables the following novel capabilities.

First, we allow quantifier-free predicates to be used to describe unbounded structures in

which previous methods require universal quantification. Second, we introduce measures

to automatically describe proof terms using predicate-free statements in well-founded



129

procedures verified against a source program’s syntax, rather than a specialized interactive

proof language. Third, we introduce polymorphic refinements to enable decidable use of a

crucial class of existentially quantified predicates for maps and linked structures. We then

show experimentally that verification in this framework is practical and efficient.

Finally, we introduce Liquid Effects, a type-and-effect system that precisely and

expressively describes the footprint of fork-join style concurrently executing threads. We

show qualitatively and quantitatively that programming with deterministic parallelism in

this framework has a low programmer burden while remaining provably correct.

Impact. In particular, we argue that results derived from our three key mechanisms —

Recursive Refinements, Polymorphic Refinements, and most importantly, Measures — have

enabled a wide range of subsequent advancement inthe automatic inference of arbitrary,

non-Liquid, refinement types in data structure manipulating code [68], decidable synthesis

of programs performing challenging tasks such as manipulating data structures and effectful

tracking of information flow [45, 46], verify numerous challenging HASKELL benchmarks

under lazy evaluation and a non-Hindley-Milner base type system [59, 60], and automatic

verification linked data structure invariants in imperative programs using logically refined

alias types with a separation logic fragment to establish physical typing of the heap [8].
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