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Abstract 

 

Integrating Physiology, Phenology and Demography in Biogeographical Analysis 

 

Gabriel Henrique de Oliveira Caetano 

 

Biological processes underlying species responses to climate, such as physiology, phenology 

and demography, can add important information to the prediction of climate change effects on 

organisms, yet most studies do not consider those processes. On this thesis, I present and evaluate 

different venues of incorporating such processes on biogeographical analysis. On the first chapter, I 

show activity time can be a better predictor than environmental temperatures for the distribution a 

tropical lizard, Tropidurus torquatus. I also determine the best practices for obtaining those estimates. 

Tropidurus torquatus seems to be restricted in its distributions by colder temperatures and 

precipitation, thus climate warming could lead to potential range expansion. On the second chapter, I 

examine the drivers of reproductive seasonality in two tropical lizards, Tropidurus torquatus and 

Ameiva ameiva. Solar radiation and day length were the main factors determining the reproductive 

seasonality of T. torquatus, while A. ameiva was more sensitive to precipitation. Solar radiation could 

be driving T. torquatus breeding phenology through the parietal eye mechanism, while A. ameiva, 

which lacks such structure, could be more sensitive to immediate weather conditions. This might have 

important consequences for these T. torquatus adaptation to climate change, since the rapid shift in 

weather might cause a mismatch between the photoperiodic cue and optimal environmental conditions 

for reproduction. On the third chapter, I use the estimates of time of activity and breeding phenology o 

from the previous chapters to spatially extrapolate demographic rates obtained from a 12-year mark 

and recapture study on a T. torquatus population. Survival was correlated with time of activity and 

precipitation, both interacting with breeding phenology, while recruitment was correlated with 

temperature and precipitation, with no breeding season interaction. Population growth projections were 

not correlated with occurrence records, indicating that spatial predictions were unreliable. Physiology 
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and phenology add important information to the estimation of demographic rates at local scales but 

proved unreliable predictors for spatial extrapolation of those rates. This could be due to environmental 

variation, adaptation, plasticity or species interactions. We suggest possible venues for incorporating 

those processes and improving similar analysis. I provide an R package, Mapinguari, with tools to 

generate spatial predictors based on the processes described here. 
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General Introduction 

 Climate change has severe effects on biodiversity (Pearson et al., 2004), such as changing 

species distribution, phenology, composition of communities, and ecosystem dynamics (Walther et al., 

2002). It is not a question of if, but when and how those effects will occur, which brings the 

importance of understanding them to unprecedented levels. This understanding also improves our 

ability to predict biodiversity responses to future climate changes and use those predictions to inform 

appropriate conservation efforts. 

A popular tool to predict effects of climate change on individual species is species distribution 

modeling (SDM). Also known as ecological niche modeling or climate envelope modeling, this 

method relates spatially explicit predictors (such as climate, soil composition, topography, geological 

features) to diagnostics of a species distribution or to a process that might limit a species distribution 

[i.e., occurrence records themselves, or climate-driven extirpation records (Sinervo et al., 2010), 

constraints on species physiology (Elith, Kearney, & Phillips, 2010; Buckley, Waaser, MacLean, & 

Fox, 2011)]. They allow us to better understand a species distribution and associated ecological and 

evolutionary patterns and processes, as well as to extrapolate the species distribution in space and time 

(Elith & Leathwick, 2009), and to study the dynamics of biological invasion (Urban, Phillips, Skelly, 

& Shine, 2007; Elith et al., 2010). The extrapolation in time can be projected both to the future and to 

the past. Forecasting SDMs can help us make decisions on conservation efforts (Thuiller et al., 2005; 

Araújo & New, 2007; Petchey et al., 2015a), while hindcasting SDMs can help us understand the 

effects of climate on a species evolutionary history (Kitchener, A. C., and Dugmore, 2000; Kristen, 

Robert, & Craig, 2006; Kozak, Graham, & Wiens, 2008). 

 There are two basic kinds of SDMs: correlative models relate occurrence records to 

environmental predictors on those locations and extend this relation to other areas; and mechanistic 

models try to elucidate the processes limiting a species range, then predict inhabitable locations from 

this information. This dichotomy has been extensively reviewed in two papers (Kearney & Porter, 

2009; Buckley et al., 2010). 

Most predictions currently don’t consider processes underlying species responses to climate 
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change. In a recent review, it was found that 77% of prediction models published didn’t incorporate 

any biological mechanism at all (Petchey et al., 2015b). Urban et al. (2016) identified six biological 

mechanisms crucial for more realistic predictions and called for an organized effort on the collection of 

this data and improvement of methods). Those mechanisms are: physiology, dispersal, species 

interaction, evolution, responses to environmental variation and demography, and they are fundamental 

to understand biological response to climate change (Zarnetske, Phoebe, Skelly, David, & Urban, 

Mark, 2012; Rissler, Wake, Hijmans, Moritz, & Graham, 2017a).  

Correlative models require easily accessible data but have fragile assumptions when used 

predictively. They assume the species is in equilibrium with their environment, that occurrence records 

are unbiased in their distribution, the species range reflects its climate niche and there is no influence 

of species interactions, dispersal, genotypic and phenotypic variation (Pulliam, 2000; Midgley, 

Hughes, Thuiller, & Rebelo, 2006; Carsten F., 2007; De Marco, Diniz-Filho, & Bini, 2008; Elith & 

Leathwick, 2009; Pagel & Schurr, 2012; Schiffers et al., 2016; Rissler et al., 2017a). This is the most 

widespread type of SDM and has been applied in many different contexts (Elith et al., 2006). They are 

still very useful for estimating current distributions, and identifying climate variables limiting them 

(Buckley et al., 2010), but don’t do very well when extrapolated beyond the range of the variables they 

were fitted to (Klausmeier, Loeuille, Norberg, Urban, & Vellend, 2012; Zarnetske, Phoebe et al., 2012; 

Atkins et al., 2013; Schiffers et al., 2016). Nevertheless, they will continue to be used due to easiness 

of implementation and demand for map products for conservation, especially in data deficient taxa 

(Guisan & Thuiller, 2005).  

Mechanistic models, on the other hand, have the disadvantage of being more data intensive 

and species specific, (i. e. the same parameterization will have very different accuracies, depending on 

the species) (Kearney & Porter, 2009; Buckley et al., 2010). They are also very sensitive to errors, such 

as mischaracterization of the process modeled or choice of processes that do not limit the species range 

(Buckley et al., 2010; but see Sinervo et al. 2018 for a decomposition of the two basic types of errors 

in the context of observed extirpations). They are especially useful for species known to be constrained 

by specific mechanisms (Elith et al., 2010). Mechanistic models might perform very similarly or 
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weaker than correlative models for predicting current distributions (Buckley et al., 2010) but 

outperform correlative models in hindcasting (Araújo, Pearson, & Thuiller, 2005; Randin et al., 2006; 

Wethey & Woodin, 2008; Jones, Mieszkowska, & Wethey, 2009) and forecasting (Pagel & Schurr, 

2012; Schiffers et al., 2016). Researchers might be discouraged to gather the amount of data necessary 

to fit mechanistic models and incur in the risk of getting poor predictions. However, that should be an 

incentive to further improve mechanistic models, instead of abandoning them, since they allow us to 

overcome severe limitations of correlative models. With mechanistic models, we can realistically 

incorporate important factors for a species distribution such as demography, evolution, plasticity, 

dispersal and biotic interactions (Urban et al., 2016), unlike correlative models [but see (Peterson & 

Holt, 2003; Rissler, Wake, Hijmans, Moritz, & Graham, 2017b)]. Mechanistic models also allow us to 

account for multiple interacting processes, non-linear dynamics and uncertainty (Pulliam, 2000; 

Kearney & Porter, 2009; Pearson et al., 2014; Mouquet, Lagadeuc, & Devictor, 2015; Pe’er et al., 

2015; Urban et al., 2016). 

 Global climate models were once very poor and climate was considered a very complicated 

thing to be predicted, but through an organized effort and a lot of data collection, climate scientists are 

now able to accurately model climatic patterns (Urban et al., 2016). If a similar effort is to be made on 

the biodiversity front, it will require scientist to continue collecting data on processes and updating 

mechanistic modeling (Urban et al., 2016).  

 Hybrid approaches that take advantage of both model types’ strengths might be applied. The 

convenience of correlative models makes them useful for identifying common variables that limit the 

current range of a taxon, and then scientists can focus on collecting data and modeling the processes 

underlying the influence of those variables. The output of mechanistic models can be used as 

predictors for correlative models (Kearney & Porter, 2009; Buckley et al., 2010, 2011), so the model 

considers both factors with well described underlying mechanism and those without. An example 

would be a correlative model using as predictors a geographical projection of daily hours of activity, a 

species specific mechanistic variable detailing the response of organisms to temperature (Sinervo et al., 

2010), along with total rainfall (Vicenzi et al. 2017), a simple climatic variable without detailed 
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account of how it affects organisms. Example of hybrid models can be found on the literature (Midgley 

et al., 2006; Kearney & Porter, 2009; Morin & Thuiller, 2009; Buckley et al., 2010; Elith et al., 2010). 

In an effort to facilitate the incorporation of biological processes in biogeographical analysis, 

we developed Mapinguari, an add-on package for the statistical environment R (R Development Core 

Team, 2018) that offers tools for process based SDMs. I hope this package stimulate scientists and 

conservationists to use processes in species distribution modeling, as well as provides convenience and 

stimulates good practices in species distribution modeling. Using package Mapinguari, here I evaluate 

venues of incorporating thermal physiology, breeding phenology and demography in biogeographical 

analysis. On the first chapter of this thesis, I test if estimates of time of activity determined by thermal 

tolerances are better predictors of the distribution a tropical lizard, Tropidurus torquatus, than 

environmental temperatures. I also determine which are the best practices for obtaining those 

estimates. On the second chapter, I examine the drivers of reproductive seasonality in two tropical 

lizards, Tropidurus torquatus and Ameiva ameiva. I then predict the geographical variation in breeding 

season duration for both species across the Brazilian Cerrado On the third chapter, I use the estimates 

of time of activity and breeding physiology obtained from the previous chapters to spatially extrapolate 

demographic rates obtained from a 12-year mark and recapture study in central Brazil. 

 

Chapter 1 - Time of activity is a better predictor than environmental temperature for the 

distribution of a tropical lizard and a R package for estimating ecophysiological spatial 

predictors 

 

Abstract 

Environmental temperatures influence ectotherms’ physiology and their capacity to perform 

activities necessary for survival and reproduction. Thermal tolerance allows us to estimate the time 

available to perform those activities under different temperature regimes. Estimates of activity time 

might enhance our ability to predict the suitability of areas for the persistence of a species, compared to 

using exclusively abiotic parameters, such as environmental temperature. We compare the ability of 
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environmental temperature and estimates of activity time to predicting the distribution of a tropical 

lizard, Tropidurus torquatus. We compare 105 estimates of activity time, generated by the combination 

of four methodological decisions: a) how to estimate daily environmental temperature variation 

(sinusoid: modeling a sinusoid wave ranging from monthly minimum to maximum temperature, 

operative: extrapolating from operative environmental temperatures measured in field or microclim: 

using geographical projections of microclimate), b) within which temperature range an animal should 

be considered to be active, c) should body temperatures obtained in laboratory or in the field be used to 

determine those temperature ranges, d) should thermoregulation simulations be included in the 

estimations? We show activity time estimates made with the sinusoid and microclim methods of 

temperature variation had higher predictive power than environmental temperatures, with sinusoid 

being the best for this species. Lower thresholds of wide temperature ranges measured in laboratory 

generated the best predictors. Thermoregulation simulations did not improve model predictions. 

Precipitation ranked high in both algorithms. Activity time adds important information to distribution 

modeling at low cost and should be considered as a predictor in studies of ectotherms. Tropidurus 

torquatus seems to be restricted in its distributions by colder temperatures and precipitation, thus 

climate warming could lead to potential range expansion. We provide an R package, Mapinguari, with 

tools to generate spatial predictors based on the processes described here. 

 

Introduction 

Ectotherms’ metabolism depends on environmental temperatures at any range. Temperature 

changes influence their foraging, digestion and escape from predators, activities critical for survival, 

growth and reproduction (Porter et al., 1973; Adolph, 1990; Adolph & Porter, 1993). Ectotherms are 

vulnerable to global climate change, especially in tropical areas (Deutsch et al., 2008; Huey et al., 

2009; Sinervo et al., 2010). Several extirpations of lizard populations due to climate change have been 

documented and more are predicted to happen in 30 years (Sinervo et al., 2010; Foufopoulos, et al., 

2011). 
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Physiology modulates the effect of abiotic conditions on behavior, phenology and dispersal, 

which influence population dynamics and persistence (Huey, 1991; Walther et al., 2002; Kearney & 

Porter, 2009). Climate change interacts with thermal tolerance, changing the time available for critical 

activities each day (Grant & Dunham, 1988; Adolph & Porter, 1993; Sinervo & Adolph, 1994). 

Activity time constrains the energy an individual can allocate to growth, maintenance and reproduction 

(Porter et al., 1973; Sinervo & Adolph, 1994; Kearney & Porter, 2009). Time in which activity is 

restricted by extreme temperatures has been correlated with persistence of lizards’ populations 

(Sinervo et al., 2010). 

Estimating time of activity depends on two important decisions: 1) the choice of temperature 

ranges in which to consider animals active and 2) the choice of a method to estimate the temperature 

variation animals experience. Numerous combinations of methodologies can result from those 

decisions, generating considerable variation in estimates of activity time, which influences prediction 

accuracy. It is crucial to make informed decisions before applying those methodologies. 

A direct way to obtain temperature ranges for activity is to measure animals body 

temperatures in natural habitats. However, temperatures sampled may not capture the range of activity, 

since activity may be restricted by predation risk, social interactions, or lack of thermal opportunity 

(Hertz, et al., 1983; Autumn & Denardo, 1995; Ibargüengoytía, 2005). An alternative is to measure the 

temperature ranges of activity animals in laboratory, using thermal gradient experiments. Animal 

would not be subject to costs of thermoregulation, but artificial conditions subject individuals to 

stresses that might affect their activity patterns. Another advantage of those experiments is that they 

provide a greater volume of data, compared to field sampling. 

We can derive important thermal traits, such as preferred temperatures (Tpref), or ranges of 

preferred temperatures (Tset) using field or laboratory data (Hertz et al., 1993), but it is important to test 

which method produces most informative estimates. Tpref is calculated as the mean or median 

temperature selected by individuals at thermal gradients, while Tset can be estimated as the whole range 

of temperatures observed or a quantile range around the median (Hertz et al., 1993; Huey et al., 2009; 

Gutiérrez et al., 2010). Choosing Tpref or Tset to determine temperature ranges of activity, and which 
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quantile to use for Tset, will influence results of subsequent analysis, thus it is important to determine 

what produces better estimates. Neurophysiological evidence suggests ectotherms regulate body 

temperatures between two set points (Firth & Turner, 1982), but single set-points are widely used and 

available in the literature (Sinervo et al., 2010). Further complexity can be added to models of activity 

time by including microclimatic variation or thermoregulatory behavior. However, adding complexity 

requires additional data, and the benefit is not always clear. 

Our goal is to verify if activity time is a better predictor of species distributions than 

temperature measurements used to calculate it. We assess the accuracy of different estimates of activity 

time in predicting the distribution of a tropical lizard, Tropidurus torquatus Wied, 1820 (Squamata, 

Tropiduridae), generated under different methodological decisions. Tropidurus torquatus occurs 

throughout the Cerrado savanna and Atlantic rainforest in South America (Rodrigues, 1987). It is a 

locally abundant and conspicuous lizard, making it convenient to collect thermal ecology data. Finally, 

we provide tools to facilitate the described estimations in a statistical package for programming 

environment R, named Mapinguari. 

 

Methods 

Distribution data:  

We used 359 distribution records from the literature and scientific collections spanning the 

range of T. torquatus. To minimize the effects of spatial autocorrelation and sampling bias, we used 

function clean_points from Mapinguari eliminate records within 40 km from each other, leaving us 

with 144 records. This large buffer area was determined by fitting Random Forest models under 

different buffers (1, 5, 10, 20, 30, 40 and 50 kilometers) and comparing Moran’s I index (Gittleman & 

Kot, 1990) calculated from the models’ residuals and choosing the smaller buffer with no spatial 

autocorrelation, using R package ape (Paradis et al., 2004). Thirty percent of the distribution data, 44 

records, was set aside for model cross-validation. 

 

Physiological data:  
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From 2013 to 2017, we obtained laboratory physiological data from five populations of T. 

torquatus sampled during monitoring studies and field expeditions. Monitoring took place in Brasília, 

Distrito Federal (15.7998°S, 47.8645°W, 24 individuals) and Nova Xavantina, Mato Grosso 

(14.6644°S, 52.3585°W, 4 individuals). Short-term field sampling occurred at Gaúcha do Norte 

(12.9656°S, 53.5636°W, 13 individuals) and Alta Floresta, Mato Grosso (9.8765°S, 56.0855°W, 3 

individuals); and Lagoa da Confusão, Tocantins (10.9201°S, 50.1833°W, 8 individuals). We captured 

animals using pitfall traps, nooses and by hand. 

We placed captured lizards on thermal gradients, which were created by a 60-watt 

incandescent lamp on one end and an ice pack on the other (Paranjpe, Bastiaans, Patten, Cooper, & 

Sinervo, 2013). Lizards could stayed in the gradient for one hour while their body temperature was 

recorded every minute by a thermocouple attached to their abdomen and connected to a data logger 

(Eltek® 1000 Series Squirrel Meter Data Logger 64K, 10 Channel 1001WD), excluding temperatures 

during the first ten minutes (Paranjpe et al., 2013), in which individuals were acclimating to the 

gradient. We calculated for each individual and for the whole sample: (1) the range between the 5th and 

95th temperature percentile registered in the gradient (T90), (2) range between the 25th and 75th 

temperature percentile registered (T50) and (3) average temperature (Tpref). Tpref and T50 have been used 

in previous studies (Sinervo et al., 2010; Kubisch et al., 2016; Piantoni,et al., 2016), and the broader 

range, T90, was chosen under the hypothesis that lizards spend almost all of their time in the gradient at 

comfortable temperatures. 

We obtained field body temperatures from lizards in Brasília, Distrito Federal, from natural 

populations occurring within the city’s Zoo (15.8512°S, 47.9379°W, details in Wiederhecker, et al., 

2002), and Santa Terezinha, Mato Grosso (10.3705°S, 50.5145°W). Animals observed in activity were 

noosed and had their cloacal temperature measured with a Miller & Weber T-6000 quick reading 

cloacal thermometer (0.02 ºC precision). We then calculated T90, T50 and Tpref from the aggregated 

body temperatures. 

The different methods of collecting body temperatures result in very different data structures. 

While the laboratory experiments allow extensive sampling of fewer individuals, field sampling allows 
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the collection of many individuals, but few samples from each. In laboratory, we sampled 52 

individuals with median 65 measures per individual and 9.48 standard deviation, while in field we 

sampled 649 individuals with median 1 measure per individual and 1.58 standard deviation. This 

presents a challenge when comparing the data from the two sources, since we could calculate the 

temperature ranges individually for the laboratory data but not for most individuals sampled in the 

field. For the field data, we pooled the data across all individuals and assumed thermal tolerances of 

the entire sample are equivalent to that of individuals. For laboratory data, we estimated temperature 

ranges as both averages of individual values or from the data aggregated from the whole sample, and 

then assessed which choice generated better results. We performed an analysis of variance to verify if 

body temperatures measured in gradients differed between populations and between individuals inside 

the same population. 

 

Operative Environmental Temperatures: 

We recorded operative temperatures using dataloggers (HOBO® U23 Pro v2 2x External 

Temperature Data Logger-U23-003) with sensors attached to PVC models of equivalent size and color 

as T. torquatus. This methodology has been validated by previous studies with small ectotherms 

(Adolph, 1990; Lara-Reséndiz et al., 2015; Kirchhof et al., 2017). We placed models adjacent to pitfall 

trap arrays, in the locations where lizards were captured for the physiological trials, in microhabitats 

where they were observed in activity –shaded and open spots on the ground, on termite mounds, and at 

the base of trees. Data loggers recorded temperatures every 10 minutes during the trapping period at 

each location. Variation in air temperature was also measured at the same time and locations, using 

another data logger without a PVC model (HOBO® U23 Pro v2 Temperature/Relative Humidity Data 

Logger). 

 

Data analysis:  

All analyses were performed in the R programming environment, version 3.5.0 (R 

Development Core Team, 2018). To perform time of activity estimates, we developed a custom library 
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for R, named Mapinguari, which provides tools for incorporating diverse biological processes in 

species distribution modeling. Mapinguari is an open source program and available on a GitHub 

repository github.com/gabrielhoc/Mapinguari with a tutorial on gabrielhoc.github.io/Mapinguari. 

 

Pseudoabsences:  

We used two different algorithms to infer the accuracy of estimates in predicting distribution: 

Random Forest (RF), using R package randomForest (Breiman & Cutler, 2012) and Gradient Boosting 

(GB), using R package gbm (Ridgeway, 2007). We generated 100 different sets of pseudoabsences, 

each with 100 pseudoabsences, the same number of presences (Barbet-Massin, Jiguet, Albert, & 

Thuiller, 2012) . We used environmental profiling with One-Classification Support Vector Machine 

(OCSVM), using the R package mopa, (Senay, Worner, & Ikeda, 2013). This methodology restricts the 

background sampled for pseudoabsences to a distance from presence points determined by the 

variation in environmental conditions and selects points representing that variation. We obtained 

climate variables (maximum daily temperature, minimum daily temperature, average daily 

temperature, precipitation and altitude) from the WorldClim 2.0 database at 2.5 arc minutes resolution 

for present-day (1970-2000) (Fick & Hijmans, 2017). Every subsequent analysis was repeated for each 

pseudoabsence set and the results were averaged between sets. 

 

Temperature variation estimation:  

We used three different methods to estimate daily temperature variation to which animals are 

subject to, and from which we determine how much time they spent within or without temperature 

ranges for activity: 

 

a) Sinusoid method: 

 We used the approach of Sinervo and collaborators (Sinervo et al., 2010) implemented in the 

Mapinguari function sin_h. This approach requires the least amount of data and assumes 

lizard body temperature tracks environmental temperature. It models daily air temperature 
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variation as a sinusoidal curve ranging between the maximum and minimum daily air 

temperatures at a location. Then we recorded how much time the environmental temperature 

is within T90, within T50, above Tpref, for both field and lab temperature ranges at each 

occurrence and pseudoabsence point. We also did the same calculations for the lower and 

upper temperatures thresholds of T90 and T50 to verify if colder or hotter thresholds are more 

relevant than the whole range of activity. We used a time resolution of 1 hour to make 

estimates comparable with the microclim method, which is derived from hourly data. Hours 

above Tpref is a measure of hours of restriction to activity, so it should be interpreted on the 

opposite ways as the other metrics. These estimates of activity time, as well as all subsequent 

ones, were capped by day length at each location, calculated using Corripio’s method 

(Corripio, 2003). 

 

b) Operative temperature method: 

 We used daily temperature variation collected with operative temperatures models 

(Te) (Bakken, 1992) to estimate time of activity for each day, location and microhabitat 

sampled, using the same temperature ranges mentioned above. These data were regressed 

against maximum daily air temperatures for the same period, using a Richards growth model 

(Richards, 1959). These models were applied to present-day maximum daily air temperature 

data from the WorldClim 2.0 database at 2.5 minutes resolution, for each occurrence and 

pseudoabsence point. 

 

c) Microclim method:  

We used the microclim database (Kearney, et al., 2014), which simulates environmental 

temperatures for each hour of the day in six levels of shade and different kinds of substrate for 

the whole world. We used the soil substrate, which we regarded as the most common for T. 

torquatus based on field observations. We used function summary_microclim from 

Mapinguari to estimate time of activity, for the same temperature ranges mentioned above, at 
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each shade level, for each occurrence or pseudoabsence point (Sinervo et al., 2018). 

Microclim data are available at 10 arc minute resolution, so they were rescaled to 2.5 arc 

minutes raster using bilinear interpolation in package raster (Hijmans et al., 2016). 

 

Thermoregulation simulation: 

Operative temperature and microclim methods provide information on microclimatic variation 

at each site, so we simulated thermoregulation, assuming lizards would choose any microhabitat with 

temperatures inside the activity range when available. For comparison, we generated estimates of time 

of activity under no thermoregulation by averaging the time of activity between all microhabitats. 

Names used to represent each estimate are summarized in the appendix table A1, hereafter the 

estimates will be designated by these names. 

 

Predictor evaluation: 

Estimates of activity time were used as predictors of species distribution in models 

constructed with different algorithms, and their quality as predictors was assessed using the protocol 

describe below. Each model also included maximum air temperature as a comparison, since estimates 

were derived from maximum air temperature and should outperform it if they add any relevant 

information. We also include average air temperature, a commonly used climate variable, and 

precipitation, to control for variation not associated with thermal physiology. 

Considering the problem at hand, all estimates are expected to be highly correlated. So we 

used algorithms robust to multicollinearity, Random Forest and Gradient Boosting (James et al., 2013), 

to assess predictor importance. We evaluated the performance of each algorithm by the area under the 

receiver operating characteristic curve (AUC), constructed with the set of presence records set aside for 

cross-validation and 100 sets of pseudoabsences. The agreement between algorithms` variable 

importance indexes was used to determine predictor importance. The importance index used for 

Random Forest was mean decrease in accuracy (Archer & Kimes, 2008) and for Gradient Boosting, 

relative influence (Friedman, 2001). Importance measures of variables obtained from each algorithm 
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were grouped by each methodological decision, weighted by the AUC of each algorithm and averaged 

to obtain a consensus of importance of each decision. Finally, activity time estimates and climate 

variables with greater support were used to predict the potential distribution of the animal. 

 

Results 

 Body temperatures measured in laboratory differed significantly between populations 

(F=124.17, df=4, p<0.0001) and between individuals in each population (Brasília: F=186.32, df=23, 

p<0.0001; Alta Floresta: F=1502.4, df=2, p<0.0001; Gaúcha do Norte: F=180.82, df=12, p<0.0001; 

Lagoa da Confusão: F=88.849, df=7, p<0.0001; Nova Xavantina: F=9.5095, df=3, p<0.0001;). We can 

observe a lot of variation in the distribution of body temperatures (Figure 1.1). This indicates lizards 

are comfortable in wide temperature ranges and each lizard is not exploring its whole thermal tolerance 

range in the gradient. This suggests it is better to pool all body temperatures in order to characterize 

thermal tolerance ranges. 

Median body temperature collected at the gradients was very similar to the one collected on 

field (laboratory=33.6°C, field=33°C), but with higher standard deviation (laboratory=6.02, 

field=2.62). This lead to broader temperature ranges for activity when compared to field estimates. 

Physiological temperature thresholds and ranges for T. torquatus, calculated from the gradient 

experiments, had the following values: Tpref=31.5°C (standard deviation: 6.02), T50_lwr=26.7°C, 

T50_upr=36.6°C, T90_lwr=12.4°C, T90_upr=47.2°C, whereas estimates calculated from field temperatures 

had the following values Tpref=32.6°C (standard deviation: 2.62), T50_lwr=30.9°C, T50_upr=34.6°C, 

T90_lwr=25.2°C, T90_upr=40.2°C. Figure 1.2 shows the distribution of activity time estimates grouped 

under each methodological decision. 

Random Forest had similar AUC (0.783±0.047) to Gradient Boosting (0.762±0.053). 

Predictor importances are summarized in Table 1.1. Precipitation ranked highest for RF and second 

highest for GB. Across both algorithms, activity time estimates ranked higher than environmental 

temperature. Estimate sin_t90_lwr_lab (Table A1) ranked on both algorithms (Table 1.1). The 

consensus between algorithms averaged for methodological decisions is summarized in Table 1.2. The 
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distribution predicted by the most supported variables, sin_t90_lab_lwr and precipitation, is displayed 

on Figure 1.3. 

 

Discussion 

All decisions made for the estimation of time of activity generated significantly different 

estimates, demonstrating each of them can severely influence activity time estimates and should be 

carefully considered before making them. estimates under many permutations of methodological 

decisions ranked above environmental temperatures, as much as 6 times more importance on the RF 

algorithm and 27 times more on the GB algorithm (Table 1.2). This indicates activity time is a useful 

to model mechanisms by which temperature restricts the distribution of species. Our results are further 

evidence that incorporating mechanisms improve the accuracy of species distribution models (Buckley 

et al., 2010; Urban et al., 2016). 

The simplest temperature variation method, sinusoid, ranked highest in both algorithms 

(Table 1.1), and when averaged across all variables using this decision (Table 1.2). This shows this 

method is the most reliable for our study species. The microclim method also generated better 

predictors than environmental temperatures, so it is a viable alternative. Estimates made with the 

operative method ranked below environmental temperature indicating this method needs refinement, 

perhaps by modeling how microclimates interact with microhabitat structure and macroclimate. 

Lizards’ access to microhabitats might be limited by species interactions and dispersal capacity. 

Modeling such processes is complex and data is scarce, complicating the prospects of realizing such a 

detailed model. Using simpler and general methods could yield more accurate predictors at lower 

costs. 

The lower threshold of T90 measured in laboratory had the most predictive power. This shows 

lower temperatures are limiting this species distribution, unlike other species studied previously 

(Sinervo et al., 2010; Andrango et al., 2016; Medina et al., 2016). Estimates made with interquartile 

ranges also ranked higher than environmental temperatures on average, so this range could also be 

informative and used in future studies, though our results favor the use of the 90th quantile ranges. The 
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upper threshold of T90 was rarely crossed (Table 1.1), showing this lizard is rarely experiencing 

temperatures above its tolerance in its current range. The species is tolerant to heat and could benefit 

from climate warming, expanding its distribution to areas previously too cold for it to inhabit, where it 

could potentially displace native species less adapted to hotter conditions. Future studies should be 

done to verify if the same methodological choices apply to more thermally restricted species. 

Laboratory body temperatures yielded better results in general field ones, reinforcing the 

importance of experiments for characterizing thermal physiology. Animals might explore wider 

temperature ranges in thermal gradients than the field, avoiding constraints present in their natural 

habitats. We recommend future studies thermal gradients for estimating thermal tolerances. 

Aggregating temperatures from all individuals then calculating thermal tolerances yielded better results 

than calculating thermal tolerances individually. Individuals might not be exploring their full thermal 

tolerance in the thermal gradient, so observing all individuals together could give us a better picture of 

the species’ thermal tolerance. 

We and could not generate informative estimates of activity time with the model of 

thermoregulation employed. This may be due to the assumption that animals would have immediate 

access to all microhabitats available for thermoregulation. Laboratory experiments to elucidate how 

efficient animals are in choosing appropriate microclimates and projections of microhabitat structure 

might help add realism to those models. 

Precipitation ranked high in both algorithms, in agreement with studies that show it is a 

reliable predictor of lizard distribution (Araújo, et al., 2006; Barrows, 2011; Nasrabadi et al., 2018). 

Tropidurus torquatus contract its range at more arid regions, such as the interface of the Cerrado with 

the semi-arid Caatinga the northeast of the species distribution. Modeling the processes by which 

rainfall affects ectotherm distribution is more complex than with thermal physiology, since it might 

involve species interactions, prey availability and egg survival, which would require data not 

commonly available. 

We found T. torquatus rarely experiences temperatures above its upper thermal tolerance, 

suggesting high levels of warming would be required for distribution contraction. Previous work has 
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found Htpref to be a good predictor for the persistence of desert lizard populations in Mexico (Sinervo et 

al., 2010), while the same estimate ranked very low for T. torquatus. This could be due to the extreme 

differences in the environments inhabited by those animals: desert lizards experienced much higher 

temperatures along their evolutionary history than T. torquatus and thus have evolved preferred 

temperatures closer to their upper thermal tolerance limits, so smaller levels of warming may be 

required to endanger those species. 

Most studies report negative effects of climate warming on Lepidosauria (Diele-Viegas & 

Rocha, 2018), unlike what was found for T. torquatus. Thermal tolerant species might dominate reptile 

communities in the near future, given other species are expected to decline (Diele-Viegas & Rocha, 

2018). Other studies found lower thermal tolerance to evolve quickly in tropical lizards (Leal & 

Gunderson, 2012), reinforcing the hypothesis that thermal tolerant lizards could expand their 

distributions after climate change. 

Activity time alone is not the sole factor determining the presence of a species (Kearney, 

2013), but it is a better predictor than environmental temperature alone. It is possible to model 

mechanisms by which the environment affects physiological with limited information adding 

important information to distribution modelling. Package Mapinguari is an effort to increase 

accessibility to the techniques used here and facilitate their further development. We hope users of the 

package can generate biologically relevant information to provide policy makers with tools to mitigate 

the effects of climate warming on vulnerable species. 

 

Tables and Figures 

Table 1.1. Median, standard deviation (SD) and importance indexes of each estimate of time of 

activity to predict distribution of Tropidurus torquatus, under Random Forest (RF) and Gradient 

Boosting (GB) algorithms. The importance index used for RF was mean decrease in accuracy and for 

GB was relative influence. Variables ranked above environmental temperatures, are in bold and 

include their ranks on parenthesis. Precipitation was included as a covariate. Detailed description of 

variables can be found on Table A1. 
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Variable Median SD RF (rank) GB (rank) 

prec 121.275 21.744 0.044 (1) 0.083 (3) 

sin_tabs_lwr_lab 11.676 1.103 0.033 (2) 0.374 (1) 

sin_tabs_lab 11.676 1.103 0.032 (3) 0.000 

mc_tiq_lab_avg 4.954 0.742 0.022 (4) 0.157 (2) 

mc_tiq_lab_ind_avg 1.695 0.347 0.021 (5) 0.000 

mc_tabs_field_avg 4.053 0.733 0.020 (6) 0.010 (8) 

mc_tabs_lab_ind_avg 3.626 0.641 0.018 (7) 0.021 (6) 

mc_tp_lab_min 0.281 0.477 0.015 (8) 0.000 

mc_tiq_upr_lab_avg 1.810 1.002 0.015 (9) 0.000 

mc_tp_lab_ind_min 0.237 0.410 0.014 (10) 0.000 

mc_tabs_lab_avg 9.067 0.901 0.014 (11) 0.000 

mc_tiq_field_avg 1.661 0.351 0.013 (12) 0.030 (5) 

mc_tabs_upr_field_avg 1.870 1.013 0.013 (13) 0.000 

mc_tabs_lwr_lab_max 10.557 0.792 0.013 (14) 0.000 

mc_tabs_lab_max 10.557 0.792 0.013 (15) 0.000 

mc_tabs_lwr_lab_avg 10.036 1.140 0.011 (16) 0.000 

mc_tiq_upr_field_avg 2.560 1.166 0.011 (17) 0.000 

mc_tabs_upr_lab_avg 1.245 0.846 0.010 (18) 0.000 
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mc_tp_lab_avg 3.829 1.392 0.010 (19) 0.008 (9) 

mc_tp_field_min 0.091 0.184 0.009 (20) 0.000 

mc_tiq_upr_lab_ind_avg 2.989 1.247 0.009 (21) 0.047 (4) 

mc_tp_lab_ind_avg 3.747 1.375 0.009 (22) 0.006 (10) 

op_tabs_lab_ind_max 3.784 1.300 0.009 (23) 0.000 

mc_tabs_upr_lab_ind_avg 2.274 1.105 0.009 (24) 0.000 

mc_tiq_lwr_field_avg 4.221 1.461 0.009 (25) 0.013 (7) 

mc_tp_field_avg 3.327 1.294 0.008 (26) 0.000 

mc_tabs_lwr_field_avg 5.924 1.614 0.008 (27) 0.000 

mc_tiq_lwr_lab_max 8.689 0.982 0.008 (28) 0.000 

mc_tabs_lwr_lab_ind_avg 5.900 1.612 0.008 (29) 0.000 

mc_tiq_lab_ind_max 7.435 1.239 0.008 (30) 0.000 

mc_tiq_lab_max 8.689 0.982 0.008 (31) 0.000 

mc_tabs_field_max 8.244 1.120 0.008 (32) 0.000 

mc_tiq_lwr_lab_avg 6.764 1.549 0.007 (33) 0.000 

mc_tabs_lwr_field_max 8.244 1.120 0.007 (34) 0.000 

mc_tiq_field_max 7.119 1.313 0.007 (35) 0.000 

sin_tiq_lwr_lab 6.463 3.129 0.007 (36) 0.001 

mc_tiq_lwr_field_max 7.121 1.314 0.007 (37) 0.000 
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mc_tiq_lwr_lab_ind_avg 4.684 1.530 0.007 (38) 0.000 

sin_tabs_lwr_field 4.587 3.033 0.007 (39) 0.000 

tavg 23.108 2.152 0.007 0.003 

op_tabs_field_max 3.848 1.322 0.007 0.000 

sin_tiq_lab 6.463 3.129 0.007 0.000 

op_tabs_lwr_lab_ind_max 3.818 1.362 0.007 0.000 

mc_tabs_lwr_lab_ind_max 8.229 1.126 0.007 0.000 

op_tiq_upr_lab_avg 0.441 0.459 0.007 0.000 

op_tabs_upr_field_avg 0.444 0.466 0.007 0.000 

mc_tiq_lwr_lab_ind_max 7.463 1.272 0.006 0.000 

mc_tabs_lab_ind_max 8.229 1.126 0.006 0.000 

sin_tabs_field 4.587 3.033 0.006 0.000 

sin_tabs_lwr_lab_ind 4.544 3.030 0.006 0.000 

op_tabs_lwr_field_max 3.862 1.350 0.006 0.000 

op_tiq_field_max 1.788 1.372 0.006 0.000 

op_tabs_lab_max 9.520 0.369 0.006 0.000 

op_tp_lab_ind_avg 0.939 1.049 0.006 0.000 

sin_tabs_lab_ind 4.544 3.030 0.006 0.000 

op_tabs_lwr_lab_ind_avg 2.009 1.495 0.006 0.000 
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op_tabs_lwr_lab_avg 8.259 0.917 0.006 0.000 

sin_tiq_lab_ind 2.141 2.187 0.006 0.000 

sin_tiq_lwr_field 1.520 1.965 0.006 0.000 

sin_tiq_lwr_lab_ind 2.275 2.430 0.006 0.000 

op_tiq_lab_ind_avg 0.461 0.470 0.006 0.000 

sin_tiq_field 1.501 1.918 0.006 0.000 

op_tiq_lwr_field_avg 1.028 1.159 0.006 0.000 

tmax 28.945 2.413 0.005 0.004 

op_tiq_lwr_lab_ind_avg 1.207 1.271 0.005 0.000 

op_tabs_upr_lab_ind_avg 0.503 0.597 0.005 0.000 

sin_tp_lab_ind 0.887 1.434 0.005 0.001 

op_tabs_lwr_field_avg 2.070 1.478 0.005 0.000 

op_tp_field_avg 0.813 0.907 0.005 0.000 

op_tabs_lab_avg 8.016 0.688 0.005 0.000 

op_tp_lab_avg 0.957 1.065 0.005 0.000 

op_tiq_lwr_field_max 1.855 1.487 0.005 0.000 

op_tiq_lab_max 4.629 1.222 0.005 0.000 

op_tiq_lwr_lab_ind_max 2.580 1.383 0.005 0.000 

op_tiq_upr_lab_ind_avg 0.747 0.813 0.005 0.000 
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op_tiq_field_avg 0.516 0.528 0.005 0.000 

op_tiq_lwr_lab_max 4.645 1.252 0.005 0.000 

op_tabs_lwr_lab_max 9.524 0.374 0.005 0.000 

op_tp_lab_ind_min 0.373 0.570 0.005 0.000 

op_tabs_lab_ind_avg 1.505 0.922 0.005 0.000 

sin_tp_lab 0.990 1.513 0.005 0.002 

op_tp_field_min 0.208 0.364 0.005 0.000 

op_tiq_lab_ind_max 2.458 1.193 0.005 0.000 

op_tabs_field_avg 1.627 1.029 0.005 0.000 

op_tiq_upr_field_avg 0.512 0.643 0.004 0.000 

op_tp_lab_min 0.380 0.582 0.004 0.000 

op_tiq_lwr_lab_avg 3.102 1.429 0.004 0.000 

op_tiq_lab_avg 2.661 0.996 0.004 0.000 

op_tabs_upr_lab_avg 0.243 0.308 0.003 0.000 

sin_tp_field 0.389 0.845 0.003 0.001 

mc_tiq_upr_lab_ind_min 0.028 0.074 0.003 0.000 

op_tiq_upr_lab_ind_min 0.122 0.249 0.003 0.000 

op_tiq_upr_field_min 0.067 0.165 0.002 0.000 

sin_tiq_upr_lab_ind 0.134 0.439 0.001 0.000 
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mc_tabs_upr_lab_ind_min 0.000 0.000 0.000 0.000 

sin_tabs_upr_lab_ind 0.000 0.000 0.000 0.000 

sin_tiq_upr_lab 0.000 0.000 0.000 0.000 

sin_tabs_upr_lab 0.000 0.000 0.000 0.000 

sin_tabs_upr_field 0.000 0.000 0.000 0.000 

mc_tiq_upr_lab_min 0.000 0.000 0.000 0.000 

mc_tabs_upr_lab_min 0.000 0.000 0.000 0.000 

mc_tabs_upr_field_min 0.000 0.000 0.000 0.000 

op_tabs_upr_lab_ind_min 0.035 0.115 0.000 0.000 

mc_tiq_upr_field_min 0.001 0.011 0.000 0.000 

sin_tiq_upr_field 0.019 0.121 0.000 0.000 

op_tabs_upr_lab_min 0.005 0.033 -0.001 0.000 

op_tabs_upr_field_min 0.014 0.063 -0.001 0.000 

op_tiq_upr_lab_min 0.016 0.069 -0.001 0.000 

 
 

Table 1.2. Median, standard deviation (SD) and weighted average of variable importance for 

activity time estimates for the distribution of the tropical lizard Tropidurus torquatus, grouped 

under different methodological decisions. (1) method of estimation of temperature variation to 

which animals experienced. Sinusoid simulates temperature variation as a sine wave spanning from 

daily maximum to minimum air temperatures. Operative used operative temperature models to 

measure daily temperature variations in situ and them extrapolated time of activity measures by 
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correlating it to air temperatures. Microclim used microclimatic surfaces (Kearney et al., 2014) 

containing estimates of daily temperature variation in different microhabitats. (2) range of 

temperatures in which animals were regarded as active. Tpref: above average body temperature, T50_lwr: 

above 25th quantile, T50_upr: above 75th quanile, T90_lwr above 5th quantile, T90_upr above 95th quantile. 

T50: between T50_lwr and T50_upr and T90: between T90_lwr and T90_upr (3) origin of body temperatures used 

for range estimation: field or laboratory. Laboratory ranges were obtained by aggregating data from all 

individuals then calculating range or calculating range for each individual and averaging between 

them. (4) use of thermoregulation simulations on operative and microclim methods of temperature 

variation. The average between microhabitats for each temperature range is also included for 

comparison. Also included are (5) climate variables: average air temperature (Tavg), maximum air 

temperature (Tmax) and precipitation. Importance indexes were obtained from Random Forest (mean 

decrease in accuracy) and Gradient Boosting (relative influence) regressions of distribution against 

hours of activity and climate. 

Methodological decisions Median SD Importance 

(1) temperature variation       

sinusoid 0.917 4.024 0.012 

operative 0.917 2.385 0.002 

microclim 3.639 2.590 0.008 

(2) range       

Tpref 1.250 1.816 0.004 

T50 1.736 2.420 0.010 

T90 4.250 3.638 0.006 
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T50_lwr 3.167 2.779 0.004 

T90_lwr 6.042 3.655 0.017 

T50_upr 0.333 1.323 0.003 

T90_upr 0.208 1.029 0.002 

(3) origin       

laboratory-pooled 3.750 4.114 0.012 

laboratory-individual 1.583 2.249 0.004 

field 1.361 2.210 0.004 

(4) thermoregulation       

average-T50, T90 2.382 2.782 0.015 

maximum-T50, T90 7.000 3.022 0.004 

average-T50_lwr, T90_lwr 4.333 3.087 0.004 

maximum-T50_lwr, T90_lwr 7.000 3.014 0.003 

average – Tpref, T50_lwr, T90_lwr 1.188 1.536 0.006 

minimum – Tpref, T50_lwr, T90_lwr 0.000 0.301 0.002 

(5) climate       

precipitation 124.000 21.744 0.064 

Tavg 23.175 2.152 0.005 

Tmax 28.630 2.413 0.005 
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Figure 1.1. Distribution of body temperatures of Tropidurus torquatus lizards in 5 populations in 

Brazil. Body temperatures were collected every minute for one hour at a thermal gradient. 
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Figure 1.2. Distribution of activity time estimates at known occurrence sites of Tropidurus 

torquatus. a) grouped by temperature variation method. Sinusoid simulates temperature variation as a 

sine wave spanning from daily maximum to minimum air temperatures. Operative used operative 

temperature models to measure daily temperature variations in situ and them extrapolated time of 

activity measures by correlating it to air temperatures. Microclim used microclimatic surfaces 

(Kearney et al., 2014) containing estimates of daily temperature variation in different microhabitats. b) 

grouped by temperature range of activity. Tpref : above average body temperature, T50_lwr : above 25th 

quantile, T50_upr : above 75th quanile, T90_lwr above 5th quantile, T90_upr above 95th quantile. T50: between 
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T50_lwr and T50_upr and T90: between T90_lwr and T90_uprc) grouped by origin of body temperatures used to 

estimate temperature ranges of activity (laboratory or field) d) grouped by use of thermoregulation 

simulations. 

 

 

Figure 1.3. Probability of occurrence of the lizard Tropidurus torquatus across Brazil. Estimated 

using Random Forest regression of occurrence records and background points against precipitation and 

hours of activity. Circles represent occurrence records. 
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Chapter 2 - Is day length more important than climate in predicting reproductive seasonality of 

a lizard with a parietal eye?  
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Abstract 

We aim to determine if geographical variation of reproductive seasonality is determined by 

day length in tropical lizard species with and without a parietal eye. We performed a literature search 

for records of reproductive individuals of both species, then used a Random Forest model to infer 

which environmental variables mostly influenced reproductive status for each species. The resulting 

model was used to predict reproduction seasonality and infer geographical variation in breeding 

patterns across the Brazilian Cerrado. Solar radiation and day length were the main factors determining 

the reproductive seasonality of T. torquatus, a lizard that has a parietal eye, while A. ameiva, which 

lacks this trait, was more sensitive to temperature and precipitation. Both species showed a latitudinal 

pattern in breeding season duration, breeding for longer as they get closer to the equator. A. ameiva 

usually had longer breeding seasons, achieving yearlong reproduction in some areas. The model 

yielded high predictive accuracy for T. torquatus, showing simple random forest regressions could be 

used to predict geographical variation in breeding seasonality of data deficient taxa. The parietal eye is 

an important anatomical structure which helps to determine geographic variation in reproductive 

seasonality of lizards with such structure. The presence of a functional parietal eye might have 

important consequences for squamates’ adaptation to climate change, since the rapid shift in weather 

might cause a mismatch between the photoperiodic cue and optimal environmental conditions for 

reproduction. 

 

Introduction 

Timing of reproduction is crucial for animals living in seasonal environments. They can 

optimize the allocation of resources by timing life history events so each stage of development happens 

in optimal environmental conditions (Bradshaw & Holzapfel, 2007). Failing to do so might result in 

suboptimal allocation of reproductive effort or even loss of offspring, as well as affect adult survival 

(Corn & Muths, 2002; Goodenough et al., 2010; Saino et al., 2011). It has been extensively 

demonstrated that animals and plants may shift their breeding phenology in response to climate change 

(Forchhammer et al., 1998; Walther et al., 2002; Parmesan & Yohe, 2003; Visser & Both, 2005). 
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These shifts might be adaptive if they allow the organisms to track optimal environmental conditions 

for breeding or offspring development. However, they can be maladaptive if they result in mismatches 

with the phenology of optimal environmental conditions, food sources and important interacting 

species (Parmesan & Yohe, 2003). Thus, the ability to accurately shift breeding periods might be 

crucial for the survival of a species in face of global climate change. 

Many animals rely on environmental cues to time reproductive events. Day length is a highly 

consistent and reliable cue for climate conditions across geographical ranges, and is used by a wide 

variety of organisms (Bradshaw & Holzapfel, 2007). It seems to be more important for the breeding 

phenology of animals living at high latitudes (Angilletta, Jr., 2001; Bradshaw & Holzapfel, 2007), but 

few studies on have been done on tropical taxa (Hau, 2001). 

Reproductive seasonality in tropical lizards has been associated with risks of egg desiccation 

and food availability (Colli et al., 1997), both of which are influenced by climate. Tropidurus 

torquatus (Tropiduridae) and Ameiva ameiva (Teiidae) are two of the most widely distributed and 

locally abundant lizard species in the Brazilian Cerrado. Both species are typical of open areas and 

very abundant in this region, which consists mostly of shrublands and fields. It has been suggested that 

precipitation affects the seasonality of food abundance, mostly arthropods, hatchling survival and 

microhabitats appropriate for egg laying, and thus the reproductive cycle, of A. ameiva (Colli, 1991). 

Data on geographical variation of reproductive phenology of tropical lizards is scarce, and 

most methods available are data intensive or easier applied to temperate taxa. Here we propose and 

evaluate a simple correlative model for predicting geographical variation in phenology that can be used 

in data deficient taxa and examine drivers of geographical variation in reproductive seasonality in two 

tropical lizards. We hope to stimulate phenological studies with tropical and data deficient taxa, which 

in turn would make more data available so more sophisticated methodologies might be applied or 

developed. 
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Methods 

We conducted a literature search for papers providing information on reproductive status, 

time and location of lizards of both species. We then compiled climatic conditions (maximum month 

temperature, minimum month temperature, average month temperature, total month precipitation, total 

month solar radiation) for the locations and times when the lizards were captured, using 2.5 minute 

resolution climate surfaces from WorldClim 2 (Fick & Hijmans, 2017). We classified the instances 

found as: (1) Reproductive, if female lizards were found to have mature gonads or were bearing eggs; 

and (2) Non-reproductive, if a study reported none or a very small proportion of reproductive females 

under a reasonable sample size. We estimated day length for the same time and locations using 

Corripio’s method (Corripio, 2003).  

In addition to climatic variables, we estimated daily hours of activity for each time and 

location considered (Sinervo et al., 2010). This method consists of simulating daily temperature 

variation as a sine wave ranging from daily minimum to maximum temperatures and then counting the 

number of hours in which those temperatures fall in the temperature range in which an animal is 

considered to be active. In order to obtain those temperature ranges, we placed lizards in thermal 

gradients for one hour and had their body temperatures registered every minute. Then we calculated 

the range between the 5th and 95th temperature percentile registered in the gradient and considered that 

as the temperature range of activity. These methods are described in detail in Caetano et al., 2019. 

To assess which environmental variables drove the reproductive phenology of each species, 

we used a Least Absolute Shrinkage and Selection Operator (LASSO) procedure to a Generalized 

Linear Mixed Model (GLMM) regression using R package glmmLasso (Schelldorfer et al., 2014) 

between reproductive status records, minimum month temperature, maximum month temperature, 

average month temperature, total month precipitation, using a logit link function. We performed a 5-

fold cross validation using R package cvms (Olsen, 2016) to assess model accuracy.  

We then fitted GLMMs with only the variables selected in LASSO to make predictions for the 

Cerrado, using the WorldClim monthly climate surfaces, so we could examine model-predicted 

geographical patterns in breeding season duration. We chose the Cerrado to make our projections 
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because it is the major region of range overlap between our focal species, where both are very 

abundant. All analyses were performed in the R programming environment, version 3.5.0 (R 

Development Core Team, 2018). 

 

Results 

 We found 9 studies containing data on 16 populations of T. torquatus and 10 studies 

containing data on 15 populations of A. ameiva, although only 7 of the A. ameiva studies included 

information on the reproductive status of lizards for the whole year. These data are summarized in 

tables 1 and 2. 

Solar radiation and day length were the only predictors for which coefficients were not 

reduced to zero on the LASSO procedure for T. torquatus, indicating those are the best predictors of 

reproduction timing for this species, in agreement with previous reports for a population in central 

Cerrado (Wiederhecker et al., 2002). The only important predictor for A. ameiva was linear 

precipitation, also agreeing with previous reports (Colli, 1991; Vitt & Colli, 1994). Cross-validation 

yielded an AUC of 0.840 for the T. torquatus model, indicating the model has high predictive power, 

while the A. ameiva model had less support (AUC = 0.645), indicating there are other drivers of 

breeding phenology not captured in the model. Overall, T. torquatus was predicted to have more 

variation than A. ameiva in breeding seasonality, along a latitudinal gradient with longer breeding 

seasons in the north, while A. ameiva (Figure 1) showed longitudinal gradient with longer breeding 

seasons in the west. 

 

Discussion 

Neither lizards’ phenology showed correlation with temperatures, unlike what has been found 

for many ectotherms (Conover & Present, 1990; Grant & Dunham, 1990; Sinervo & Doyle, 1990; 

Adolph & Porter, 1993; Bernardo, 1994), including A. ameiva (Fitzgerald et al., 1999). Another 

thermally related variable, time of activity, was not strongly correlated with reproductive phenology 

for either species in our study, but it has been shown to be important in other ectotherms (Sinervo & 
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Adolph, 1989, 1994, Adolph & Porter, 1993, 1996). Precipitation showed a positive correlation with A. 

ameiva breeding phenology, indicating it prefers to breed in the rainy season, as reported by previous 

studies (Colli, 1991; Vitt & Colli, 1994). Studies on other tropical species found similar correlations to 

precipitation, with lizards reproducing continuously wherever there was enough rainfall (Watling et 

al., 2005). Ameiva ameiva was predicted to breed for longer in the border of the Cerrado with the 

Amazon and Atlantic rainforests (Figure 1), in accordance to what was observed in a previous study 

(Colli, 1991). The same study however, reported longer breeding seasons at the semi-arid regions to 

the east as well, the opposite of what our model predicted. That study associated breeding season 

duration with predictability of rainfall, a temporal dynamic that was not included in our modeling.  

The selection of day length and solar radiation for T. torquatus and precipitation for A. ameiva 

suggest the influence of the parietal eye mechanism in driving the breeding phenology of T. torquatus. 

While very common in Tropiduridae, including T. torquatus, all Teiidae lack a functional parietal eye, 

including A. ameiva (Gundy & Wurst, 1976). The parietal eye is an important photoreceptive organ 

that can detect day length. It is usually located in forehead and attached to the pineal gland, which can 

trigger important hormonal changes based on the day length. For instance, the it influences patterns of 

thermoregulation, circadian cycles and reproductive physiology (Tosini, 1997). Through the 

modulation of melatonin brought by the pineal organ, the parietal eye can affect gonadal condition and 

mating behavior (Clausen & Poris, 1937; Haldar & Thapliyal, 1977, 1981; Underwood, 1985; Nelson 

et al., 1987; Crews et al., 1988; Haldar & Pandey, 1989a,b; Mendonça et al., 1996). Intensity of solar 

radiation has been associated with behavioral changes intermediated by the parietal eye (Glaser, 1958; 

Stebbins & Eakin, 1958).  

Relying on photoperiodic cues to time their reproductive seasonality could have important 

consequences for T. torquatus and other lizards with parietal eyes, in face of climate change, since cue 

and environment might be mismatched if climate shifts faster than an animal can adapt its 

photoperiodic response (Caprioli et al., 2012). However, studies on other species with parietal eyes 

found substantial plasticity in reproductive phenology in response to temperature variations 
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(Ljungström et al., 2015; Rutschmann et al., 2016), indicating the photoperiodic response might not be 

so restrictive. 

A fundamental question in life history studies is if variation among populations is caused by 

environmental constraints or by adaptation (Adolph & Porter, 1996). This distinction can have 

important consequences for a species response to climate change. If that variation is caused by the 

species struggling with restricting conditions and resource limitation, climate change might bring 

further stress and hamper reproductive efforts. If that variation is caused by adaptation or plasticity, it 

is an indicator of breeding strategy malleability that might be adaptive to face new conditions brought 

by climate change. While we found that somewhat rigid variables predict timing of reproduction in T. 

torquatus, the species shows substantial variation in other aspects of its life history, such as clutch size, 

mass and frequency (Vitt & Goldberg, 1983; Wiederhecker et al., 2002; Kiefer et al., 2008). If that is 

due to plasticity or adaptive capacity, T. torquatus might be able to buffer the effects of climate change 

on breeding season duration in time to adapt its photoperiodic response to new climate conditions 

(Caprioli et al., 2012). 

Our results suggest geographical variation of reproductive seasonality can vary substantially 

between tropical lizard species. One of the probable causes of such differences is the presence of 

parietal eyes on some species, such as T. torquatus. Future studies on breeding phenology should 

consider photoperiodic responses as a candidate driver of breeding phenology for species having this 

structure. This is especially important on studies about climate change effects, since reliance on a 

mechanism dependent on somewhat inflexible environmental cues could make the species unable to 

adjust their breeding phenology to new conditions. 

 

Tables and Figures 
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Fig 1. Breeding season duration for Tropidurus torquatus and Ameiva ameiva across the Brazilian 

Cerrado estimated with a generalized linear mixed model, with average month day length and 

total month solar radiation as predictors for T. torquatus and total month precipitation for A. 

ameiva. 
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Chapter 3 - Using physiology and phenology to estimate geographical variation and climate 

change effects on the population dynamics of a tropical lizard 

 

Abstract 

We aim to understand geographical variation in survival, recruitment and population growth 

of a tropical lizard across its range, using physiological and phenological information, and assess 

which demographic rates are more important for the effect of climate change in those populations. We 

conducted a mark and recapture study of a T. torquatus population in central Brazil for 12 years. We 

examined the influence of climate and time of activity, interacting with breeding phenology, in 

population survival and recruitment. We then extrapolated demographic rates across the species range 

by applying the relationships observed to spatial predictors of the same variables. We obtained 

population growth projections by summing the survival and recruitment projections. Then, we 

evaluated the accuracy of projections by comparing population growth rates to known points of 

occurrence. Monthly survival was correlated with time of activity and precipitation, both interacting 

with breeding phenology, while monthly recruitment was correlated with temperature and 

precipitation, with no breeding season interaction. Population growth projections were not correlated 

with occurrence records, indicating that spatial predictions were unreliable. Physiology and phenology 

add important information to the estimation of demographic rates at local scales but proved unreliable 

predictors for spatial extrapolation of those rates. Local variation in how populations respond to 

climate has an important influence in demographic rates that was not captured in our model and is 

possibly the most important venue to be pursued for model improvement. This variation could be due 

to environmental variation, adaptation, plasticity or species interactions. We suggest possible venues 

for incorporating those processes and improving similar analysis. 

 

Introduction 

It is well documented now that climate change has severe effects on biodiversity (Pearson et 

al., 2004), such as changing species distribution, phenology, communities composition and ecosystem 
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dynamics (Walther et al., 2002). Organisms responses to climate change are likely to be mediated by 

mechanisms like physiology, dispersal, species interaction, evolution, responses to environmental 

variation and demography (Urban, Tewksbury, & Sheldon, 2012; Zarnetske, Phoebe et al., 2012; 

Rissler et al., 2017a), thus it is crucial that we seek to incorporate those as possible in biogeography 

studies. Understanding biological mechanisms underlying species responses to the environment is 

essential to predict a species range (Kearney & Porter, 2004), yet 77% of species distribution models 

published don’t incorporate any biological mechanism (Petchey et al., 2015b). Moreover, a model 

based on processes might be made without distribution information. This provides the advantage of 

revealing the fundamental niche of the species and examining why this niche is not realized can reveal 

important constraints brought by species interactions and dispersal abilities (Buckley, 2007; Buckley et 

al., 2010). 

One of the most common mechanisms incorporated in species distribution modelling is 

physiology (Urban et al., 2016). Physiology acts as a filter of immediate physical conditions on 

organismal responses, such as phenology changes and dispersal, which, in turn, influence population 

dynamics and species persistence (Kearney & Porter, 2009). Thermal physiology is especially relevant 

for ectotherms, since temperature influences their activity and performance and as a result, their 

survival, growth and reproduction (Porter et al., 1973; Sinervo & Adolph, 1989, 1994; Adolph, 1990; 

Adolph & Porter, 1993; Deutsch et al., 2008). Temperature can directly determine time of activity in 

ectotherms (Porter et al., 1973; Grant & Dunham, 1988; Grant, 1990; Adolph & Porter, 1993; Kearney 

& Porter, 2009; Sinervo et al., 2010), and through it, affect life history, demography and distribution 

(Porter et al., 1973; Huey, 1991; Walther et al., 2002; Kearney & Porter, 2009). 

Another crucial process that will be affected by climate change is species breeding phenology. 

Changes in the timing of life history events affect the reproductive output of individuals (Massot, 

Clobert, & Ferrière, 2008) their interaction with other species (Durant, Hjermann, Ottersen, & 

Stenseth, 2007) and consequently, can have important impacts in population dynamics (Miller-

Rushing, Høye, Inouye, & Post, 2010). Climate change has already altered plants and animal 

phenologies (Root, Price, Hall, & Schneider, 2003), causing mismatches between life history stages 
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and environmental conditions adequate for reproduction (Parmesan & Yohe, 2003). We must predict 

how life history phenology is changing in space and time to accurately assess the effect of climate 

change in species demography and distribution, so we are better informed to design conservation 

measures. 

Spatial extrapolation of demographic rates can help us understand which aspects of 

population dynamics are driving species distribution and make also make inferences about 

metapopulation dynamics. Climate has complex effects on population dynamics (Crozier & Dwyer, 

2006), therefore, analysis that can discriminate the effects of climate change in different demographic 

rates can be crucial for improving predictions and informing policy. For example, if it is predicted that 

climate change will cause a population to decline mostly by affecting recruitment rates, conservation 

efforts might be directed to sites and times of the year more relevant for the species reproduction. 

Having such information would help save resources and greatly increase conservation efficacy. 

One technique that could be harnessed for spatial extrapolation of demography is mark and 

recapture analysis. This type of analysis is widely used in demographic, dispersal and meta-population 

dynamics studies in a wide range of taxa (Hill, Thomas, & Lewis, 1996; Sweanor, Logan, & 

Hornocker, 2000; Wiederhecker, Pinto, Paiva, & Colli, 2003; Straley, Quinn, & Gabriele, 2009). They 

provide estimates of demographic rates for species with difficult detection, providing an invaluable 

tool for understanding population dynamics of such taxa. Population dynamics is what ultimately 

determine species range, since a species ability to inhabit a location depends upon whether individuals 

can survive, reproduce or migrate to nearby sites in sufficient numbers (Holt, 2003; Holt & Keitt, 

2005). 

Here, we aim to determine if populations of the lizard Tropidurus torquatus in Brazil will be 

able to persist across the species’ current range through 2070, under different carbon emission 

scenarios. We developed a model of population dynamics that incorporates species physiology, 

phenology and demography independent of species occurrence records. Geographical models of 

population dynamics incorporating physiology and life history have been used before for insects 

(Crozier & Dwyer, 2006) and lizards (Buckley, 2007). Those studies relied on very specific 
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mechanistic models of how those physiology and life history drive demographic rates, which are likely 

to have low transferability. Our model is the first to do so using mark and recapture population models, 

a more general methodology which allow the estimation of demographic rates without making many 

assumptions about underlying mechanisms of climate effects on those rates. 

 

Methods 

Study species: 

Tropidurus torquatus Wied, 1820 (Squamata, Tropiduridae) is a locally abundant lizard, 

common in urban areas, which occurs in Brazil, Uruguay, Paraguay and Argentina; in Brazil, it occurs 

throughout the Cerrado region and in some areas of the Atlantic Forest (Rodrigues, 1987). Its local 

abundance and conspicuousness make it a convenient model for ecological studies, and its wide 

distribution makes it a good candidate for testing if biogeographical methodologies are applicable over 

large areas. Moreover, it is one of the most well studied South American lizards, so it is a prime 

candidate for studies involving literature reviews, such as this one. Its demography has been studied 

before and populations have shown high turnover rates resulting from high investment in reproduction, 

low investment in survival and short life cycles (Wiederhecker et al., 2003), a pattern which is 

expected to be replicated across the species range if demographic projections are accurate. 

 

Population monitoring: 

A population of T. torquatus was monitored in the gallery forest of the Monjolo creek at 

Reserva Ecológica do Roncador (RECOR), a protected area in Brasília, Distrito Federal, at the central 

region of the Brazilian Cerrado (15°55'51.37" S, 47°53'1.99" W). Lizards were trapped with 20 arrays 

of pitfall traps, which were visited twice a week, every week, from June 2000 to May 2012. Each array 

consists of one 30-liter central plastic bucket buried in the ground, surrounded by three more buckets 6 

m away from the center. The peripheral buckets are connected to the central one by 6 m long and 0.5 m 

high galvanized foil fences, angled 120º from each other, forming an “Y” figure to the array. Captured 

lizards were given a permanent, individual numerical identities by toe clipping, so they could later be 
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identified if recaptured. The capture history of individuals was kept in a binomial record, assigning the 

value “1” to each individual in the months it was captured and “0” in the months it was not captured. 

Individuals were released in the same area immediately after marking and performing morphological 

measurements. We obtained maximum temperature and total precipitation data for each month on the 

study period from RECOR's weather station, to be used later on demographic modeling. 

 

Time of activity estimates: 

We estimated daily hours of activity for the population monitoring site along the study period 

(Sinervo et al., 2010) implemented in package Mapinguari (Caetano, Santos, Miles, Colli, & Sinervo, 

2019). This method consists of simulating daily temperature variation as a sine wave ranging from 

daily minimum to maximum temperatures and then counting the number of hours in which those 

temperatures fall in the temperature range in which an animal is active based on laboratory behavioral 

studies. 

We collected animals in the Brazilian municipalities of Brasília (15.7998° S, 47.8645° W) at 

Distrito Federal; Nova Xavantina (14.6644° S, 52.3585° W), Alta Floresta (9.8765° S, 56.0855° W) 

and Gaúcha do Norte (12.9656° S, 53.5636° W) at the state of Mato Grosso; and Lagoa da Confusão 

(10.9201° S, 50.1833° W) at the state of Tocantins. Those sites cover a variety of environments across 

the species range such as core savannah areas and savannah-rainforest interfaces, potentially sampling 

relevant variations on the species physiology. Animals were captured using the same kind of pitfall 

traps used for population monitoring, and by noosing and manual capture.  

To determine suitable temperatures for activity, we performed thermal gradient preference 

experiments (Caetano, Santos, Miles, et al., 2019). We placed captured lizards on a temperature 

gradient created by a 60-watt incandescent lamp on one end and an ice pack on the other end. The 

gradient floor was made of aluminum, for better temperature conductance and the walls were made of 

smooth plywood to avoid climbing. Lizards could choose their position in the gradient for one hour 

while their body temperature was recorded every minute by a thermocouple attached to their abdomen 

insulated with surgical tape and connected to a data logger (Eltek® 1000 Series Squirrel Meter Data 
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Logger 64K, 10 Channel 1001WD)(Paranjpe et al., 2013). We excluded the temperature measurements 

during the first ten minutes, in which the individual was acclimating to the gradient. Then we 

calculated the range between the 5th and 95th temperature percentile registered in the gradient and 

considered that as the temperature range of activity. Those percentiles were calculated from the pooled 

temperatures measured for all lizards, which generates better predictors for species distribution 

(Caetano et al., 2019a). 

 

Demographic modelling: 

We fitted mark and recapture models of the capture history of individuals monitored at 

RECOR with the weather station data and hours of activity estimates for the same period, to identify 

the best predictors of demographic rates, using the package RMark (Laake, 2013), which builds models 

for the Program MARK (White & Burnham, 1999). We used Pradel open population model (Pradel, 

1996) due to its ability to estimate both survival (Phi) and per capita recruitment (f) in open 

populations. We used a logistic link function for survival and exponential for recruitment. Before 

fitting the models we tested if the data met the assumptions of no transience (animals have different 

survival probabilities) and no trap-dependence (animals have different capture probabilities) (Cooch & 

White, 2006), using standard tests in the program RELEASE (Burnham, Anderson, White, Brownie, & 

Pollock, 1987). 

We fitted 16 Pradel models for survival and recruitment in RMark with different combinations 

of predictors. Each model had a thermally-related term, average temperature or time of activity, and a 

precipitation term, as predictors for Phi and f. Temperature predictors included quadratic terms to 

simulate parabolic thermal performance curve type of responses, in which the demographic trait 

decreases as temperature moves away from an optimum in both directions. We created a categorical 

variable assigning different values for months of the breeding season (August to February) and months 

of the non-breeding season (March to July) (Wiederhecker et al., 2002). We included models in which 

the breeding variable interacts with the climatic predictors. We also fitted a fully saturated (time as a 
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categorical variable) and a null model (intercept only) for comparison. We let detection probability 

remain saturated in every model. The list of models fitted can be verified in Table 3.1. 

We then selected the models based on the Akaike information criterion corrected for finite 

sample sizes (AICc) (Burnham & Anderson, 2002, 2004). We set aside models less than 2 difference in 

AICc to the best model (Burnham & Anderson, 2004). We assessed the goodness-of-fit of the best 

models by calculating the model’s deviance R2, calculated by dividing the difference of the log-

likelihood of the candidate model and the null model by the difference of the log-likelihood of the 

saturated model and the null model. 

 

Phenology projections: 

We conducted a literature search for papers providing information on reproductive status, 

time and location of T. torquatus lizards. We classified the instances found as: (1) Reproductive, if 

female lizards were found to have mature gonads or were bearing eggs; and (2) Non-reproductive, if a 

study reported none or a very small proportion of reproductive females under a reasonable sample size. 

We then compiled environmental conditions (maximum month temperature, minimum month 

temperature, total month solar radiation) for the locations and months when the lizards were captured, 

using 2.5 minutes resolution climate surfaces from WorldClim 2 (Fick & Hijmans, 2017). We 

estimated day length for the same time and locations using Corripio’s method (Corripio, 2003). In 

addition to climatic variables, we generated monthly time of activity estimates, using the method 

described above over Worldclim maximum and minimum temperature data at 2.5 arc minutes 

resolution, with the sinusoidal model described in (Sinervo et al., 2010), with limits defined by the 5% 

and 95% voluntary minima and maxima from the study of thermoregulation in the laboratory gradient.  

We performed a Random Forest (RF) regression on package randomForest (Breiman & 

Cutler, 2012) between the reproductive status records obtained from literature and solar radiation, day 

length and time of activity, variables which are good predictors for T. torquatus breeding phenology 

(Caetano, Santos, Miles, et al., 2019). Then, we used this model to predict breeding season timing 

across the species range (Caetano, Santos, Miles, et al., 2019). We projected the predictions of the 
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models across WorldClim monthly climate surfaces for the study area at 2.5 arc minutes resolution. 

We classified areas at each month as breeding if the predicted probability was greater than 0.5 and 

non-breeding if it was less. 

 

Demographic projections: 

The coefficients for each variable on the mark and recapture model were applied to spatial 

predictors corresponding to the variables selected in the demographic analysis, obtained as described 

above for the phenological modeling, allowing us to create spatial projections of survival and 

recruitment. For the variables that contained breeding season interactions, we used the spatial 

projections of phenology described above to determine the coefficients to be used. We obtained 

estimates of discrete population growth rate by summing survival and recruitment projections (Cooch 

& White, 2006). We restricted projections to areas in which environmental variables were inside the 

ranges experienced by the population during the monitoring period. 

Since we only have one population monitoring site, validation of demographic spatial 

projections is difficult. To increase confidence in the results, we assessed if known occurrence records 

were correlated to positive population growth rate. Lizards are unlikely to disperse more than a few 

dozen to hundreds of meters in a year (Doughty & Sinervo, 1994; Olsson, Gullberg, & Tegelström, 

1996; Olsson & Shine, 2003), so populations in areas predicted to not sustain population growth 

should be rare if projections are accurate. We used population growth projections to determine areas 

where growth was higher than one and those that were lower, and then used this as a predictor of 

population occurrence in a GLMM model, implemented in package SPAMM (Rousset and Ferdy 

2014), using a Matern autocorrelation structure to account for spatial autocorrelation. We used 100 

different sets of pseudoabsences in those regression models, each with 1000 pseudoabsences. 

Pseudoabsences were generated by environmental profiling with One-Classification Support Vector 

Machine (OCSVM), using the R package mopa, (Senay et al., 2013; Iturbide et al., 2015). All analyses 

were made in the software R, version 3.5.0 (R Development Core Team, 2018). 
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Results 

 The data satisfied the assumption of no transience (Chi2 = 0.486, df = 1, p = 0.486) and no 

trap-dependence (Chi2 = 1.804, df = 10, p = 0.998). Only one model was selected using the AICc 

criterium established (Table A4). The best predictors of survival were time of activity and 

precipitation, both interacting with breeding season, and for recruitment, temperature and precipitation, 

with no interaction (Table A4). Survival was negatively correlated with time of activity during the 

breeding season and positively correlated during the non-breeding season and precipitation was 

positively correlated in both seasons, but with a bigger coefficient during the non-breeding season. 

Recruitment had a negative parabolic relationship with temperature and a negative correlation with 

precipitation (Table 3.2). The saturated model and null models had an AICc much larger than the 

models selected (difference in AICc > 1900), indicating that including the predictors selected added 

valuable information (Table 3.1). The best model had a deviance R-squared of 0.88, indicating a good 

fit. 

Survival was projected to be moderate in most of the range, while recruitment was higher in 

the south of the Cerrado, towards higher elevations (Figure 3.1). Because there was much more spatial 

variation in predicted recruitment than survival, predicted values of population growth essentially 

reflected spatial patterns of recruitment rates. Only 45 of 100 test sets showed correlation between 

occurrence and positive population growth, indicating the model does not perform reliably. Overall, 

the results indicate the demographic rates did a poor job of predicting the species distribution (Figure 

3.1).  

 

Discussion 

At the population monitoring site, time of activity ranked better than environmental 

temperatures as a predictor of survival, and variables with breeding season interaction performed better 

than those without, but recruitment responded mostly to pure climatic variables with no breeding 

season interaction (Table 3.1). This indicates that including thermal physiology and phenology in 

demographic models can improve survival predictions, but not as much for recruitment. Climate 
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effects on survival were quite distinct from the effects on recruitment, showing it is important to seek 

methods to make those differences explicit to understand the effects of climate change in populations. 

The unreliable correlation between occurrence records and areas able to sustain population 

growth show the model was unsuccessful in extrapolating the demographic rates from the population 

monitoring sites, and that relationships between climate, physiology and phenology are not similar 

across the species range. Hereafter, we examine four important factors that are likely to be varying 

across the species range and could lead to the observed results: environmental variation, adaptation, 

plasticity and species interactions (Urban et al., 2016), and suggest ways in which they could be 

included in future analysis. 

Environmental characteristics not directly related to weather, such as habitat structure, 

thermal opportunities and water availability, could be an important source of demographic variation. 

Those are likely to be very different from the center of the species distribution, in the savannah-like 

Cerrado environment, to the border with other biomes such as the Amazon rainforest to the northwest 

and the semi-arid Caatinga to the northeast. Another factor likely to be important is anthropization.  

Our model was fitted to a natural population, but T. torquatus is well-known to thrive perianthropic 

areas (Nogueira, Valdujo, & França, 2005). So, data from population monitoring studies in urban 

environments (Wiederhecker et al., 2003) and in the border with other biomes could be employed to 

generate a similar models. Then, the predictions for those models could be compounded using spatial 

projections of vegetation structure, aridity and anthropization as weights.  

Plastic and adaptative responses to climate variation is poorly studied in reptiles (Sinervo et 

al., 2018), especially in thermal physiology (but see Leal & Gunderson, 2012; Moritz et al., 2012; 

Clusella-Trullas & Chown, 2014) which could have important consequences for the effects of thermal 

environments on T. torquatus demographic rates. Those two mechanisms could produce similar 

changes in thermal physiology, so laboratory studies are likely the best option to determine which one 

is most prevalent in the study species. Raising individuals from different populations in a range of 

temperature conditions could help us separate the effects of plasticity from adaptation and determine 

how environmental variation affects thermal ranges, similarly to plasticity studies commonly done on 
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the effect of temperature on lizards life histories (Sinervo & Adolph, 1994; Sorci, Clobert, & Belichon, 

2006) of the impact of maternal environment and thermal preference eon progeny thermal preference 

(Paranjpe et al., 2013). A model that accounts for such mechanisms must be able to correlate 

environmental conditions with expected variation in thermal traits under such mechanisms to be able to 

accurately project physiological variables. 

Species interactions are known to have severe impacts on demographic rates (McPeek & 

Peckarsky, 1998; Miller-Rushing et al., 2010). We must identify the most important interacting species 

to test if they are indeed affecting geographical variation in demographic rates. Likely candidates for T. 

torquatus are congeneric competitors, such as Tropidurus hispidus. T. torquatus is replaced by T. 

hispidus in the northeast in environments similar to the ones it usually inhabits (Rodrigues, 1987). 

Competing species could exclude T. torquatus from important territories and food resources at the 

interfaces of the distributions of both species. Competition can interact with climate and physiology, 

since suboptimal environmental conditions could affect T. torquatus thermal performance, making 

them poorer competitors. Moreover, Sinervo et al. (2010) demonstrate that while 2/3 of the observed 

extirpations of Mexican Sceloporus lizards could be explained by their thermal ecophysiological limits 

being exceeded, 1/3 of the extinctions were unexplained by the ecophysiological model. Instead, in 6 

of the 8 unexplained cases, they observed range expansion into the extirpation site by a potential 

competitor with a superior thermal niche, suggesting that competition impacted demography (Sinervo 

et al., 2018). The distribution of competing species could be used to constrain the range in which we 

make demographic projections, but a more direct way to measure the effect of competition would be to 

have monitor populations in the contact area of both species` distributions. In that way, fluctuations in 

the demography of both species could be used as predictors for each other in demographic models, and 

climate interactions could be included as well.  

The incorporation of the factors cited here seem to require the deployment of several multi-

species population monitoring studies across the species range, which could be impractical due to high 

cost and time necessary to accumulate data. However, some of those studies have already been 

conducted for T. torquatus (urban environment: Wiederhecker et al., 2003; interface with the Amazon: 



 

47 

Campelo, 2017) and this data could be harnessed in such effort. Other taxa, such as birds are more well 

studied and could be used to test this methodology. Alternatively, the methodology could be applied to 

extreme endemic species with more restricted distributions and specialized habitat uses, like the 

endangered lizard Liolaemus lutzae, which lives only on sand dunes in a small coastal stretch in 

southeast Brazil (Carlos F. D. Rocha, Siqueira, & Ariani, 2010). For such species, it is likely that 

environmental variation, adaptation, plasticity and species interactions do not change a lot across their 

range, since they will live in similar habitats throughout. Previous studies have identified areas with 

suitable climate for this species (Winck, Almeida-Santos, & Rocha, 2014), but our methodology, if 

validated for such species, could reveal underlying demographic causes of habitat suitability. L. lutzae 

species has been transplanted to a location outside its natural range in an effort to establish a 

population in an area with less anthropic pressure (Soares & Araujo, 2009), and the projection of 

demographic rates could better inform similar practices. 

Our results stress the importance physiology and phenology in mediating the effect of climate 

in population dynamics at local scales, but we couldn’t assess if those process have utility in spatial 

extrapolation of population dynamics. The methodology used here seems to be limited in its spatial 

extrapolation, which show the importance of local conditions and variation in population responses for 

making accurate predictions. Incorporating this into future analysis is an important venue for future 

research. There are many challenges to overcome when spatially projecting demographic rates, but the 

potential benefits of doing so accurately can greatly improve information for conservation efforts. 

Attempts such as the one conducted here are useful to identify shortcomings and direct future efforts in 

the area. 

 

Tables and Figures 

Table 3.1. List of best mark and recapture Pradel demographic models for a population of 

Tropidurus torquatus in Brasília, Brazil, monitored from May 2000 to June 2012. Displayed are 

the predictors for survival (Phi), recruitment (f) for each model, number of parameters (npar), Akaike 

information criterion corrected for finite sample sizes (AICc), difference in AICc from the best model 
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(DAICc), model weight and deviance. Also included are the same data for a saturated, fully time-

dependent model (time as a factor), and a null model (intercept only). 

Phi f npar AICc DAICc weight deviance 

hab + precb temp2 + temp + prec 153 4951.227 0 0.686 972.766 

temp2+temp+prec temp2+temp+prec 152 4954.429 3.202 0.138 979.565 

temp2
b+tempb+precb temp2+temp+prec 155 4955.557 4.330 0.079 969.854 

hab+precb temp2
b+tempb+precb 156 4955.611 4.384 0.076 966.261 

temp2+temp+prec temp2
b+tempb+precb 155 4959.346 8.118 0.012 973.642 

ha+prec temp2+temp+prec 151 4959.995 8.767 0.009 988.712 

temp2
b+tempb+precb temp2

b+tempb+precb 158 4967.743 16.516 0 971.052 

ha+prec temp2
b+tempb+precb 154 4967.874 16.648 0 985.800 

hab+precb hab+precb 154 4990.543 39.316 0 1008.469 
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temp2
b+tempb+precb hab+precb 156 4994.825 43.597 0 1005.475 

temp2+temp+prec hab+precb 153 4996.373 45.145 0 1017.912 

temp2
b+tempb+precb ha+prec 154 5001.727 50.500 0 1019.653 

temp2+temp+prec ha+prec 151 5001.812 50.585 0 1030.530 

hab+precb ha+prec 152 5001.868 50.641 0 1027.005 

ha+prec hab+precb 152 5009.102 57.875 0 1034.239 

ha+prec ha+prec 150 5031.471 80.244 0 1063.755 

time  time 430 7447.836 2496.60

9 

- 852.961 

null null 3 5455.386 1992.45

0 

- 1882.072 

 
 

Table 3.2. Coefficients for survival and recruitment estimated in a mark and recapture Pradel 

model for a population of Tropidurus torquatus monitored in Brasília, Brazil, from June 2000 to 

May 2012. temp represents maximum temperatures, prec represents precipitation and ha 

represents hours of activity. Variables with subscript b are averaged for the breeding season, 



 

50 

with subscript nb are averaged for the non-breeding season and subscript year are averaged for 

the whole year. Also displayed are standard errors for the estimate (SE), lower confidence limit 

(LCL) and upper confidence limit (UCL) 

 

variable coefficient SE LCL UCL 

Survival     

Intercept 2.289 1.560 -0.761 5.340 

hab -0.144 0.108 -0.355 0.067 

hanb 0.173 0.329 -0.471 0.817 

precb 0.009 0.002 0.004 0.013 

precnb 0.0206 0.148 -0.270 0.311 

Recruitment     

Intercept 61.568 0.717 60.2 62.973 

temp2 0.089 0.002 0.085 0.093 

temp -4.851 0.027 -4.900 -4.798 

prec -0.014 0.009 -0.003 0.004 
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Figure 3.1. Projected demographic rates for Tropidurus torquatus populations across Brazil. (a) 

Probability of surviving to the next year. (b) Per capita recruitment per year. (c) Instantaneous 

population growth rate. (d) Areas with positive population growth rate. Blue circle represents 

site of population monitoring. Black circles represent known sites of species occurrence. 
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Appendix 

Table A1. Description of time of activity estimates for the lizard Tropidurus torquatus across known occurrence points. Sinusoidal method 

measured hours above or between temperature thresholds by simulating daily temperature variation from macroclimate data. Operative temperature 

method used on site measures of daily temperature variation at different microhabitats and then extrapolated those measures to areas not sampled. 

Microclim used the microclimate surfaces developed by Kearney et al (2014), which simulate temperature variation at different shade levels. Each 

method counted the number of hours spent at specific body temperature ranges, obtained either from laboratory gradient experiments or field 

observations: above preferred temperature (lab: Tpref=31.5°C, field: Tpref=32.6°C), between interquartile temperatures (lab: T50_lwr=26.7°C, 

T50_upr=36.6°C, field: T50_lwr=30.9°C, T50_upr=34.6°C) or between 90th quantile temperatures (lab: T90_lwr=12.4°C, T90_upr=47.2°C, field: 

T90_lwr=25.2°C, T90_upr=40.2°C). For the operative and microclim methods, we also created versions of the variables that simulate thermoregulation, 

by choosing whichever microhabitat allowed the most time of activity at each time step, instead of averaging across microhabitats. 

Name Method Temperature range Origin Thermoregulation 

sin_tp_lab Sinusoid Tb>Tpref lab pooled no 

sin_tp_lab_ind Sinusoid Tb>Tpref lab individual no 

sin_tp_field Sinusoid Tb>Tpref field no 

sin_t50_lwr_lab Sinusoid Tb>T50_lwr lab pooled no 
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sin_t50_lwr_lab_ind Sinusoid Tb>T50_lwr lab individual no 

sin_t50_lwr_field Sinusoid Tb>T50_lwr field no 

sin_t90_lwr_lab Sinusoid Tb>T90_lwr lab pooled no 

sin_t90_lwr_lab_ind Sinusoid Tb>T90_lwr lab individual no 

sin_t90_lwr_field Sinusoid Tb>T90_lwr field no 

sin_t50_upr_lab Sinusoid Tb>T50_upr lab pooled no 

sin_t50_upr_lab_ind Sinusoid Tb>T50_upr lab individual no 

sin_t50_upr_field Sinusoid Tb>T50_upr field no 

sin_t90_upr_lab Sinusoid Tb>T90_upr lab pooled no 

sin_t90_upr_lab_ind Sinusoid Tb>T90_upr lab individual no 

sin_t90_upr_field Sinusoid Tb>T90_upr field no 

sin_t50_lab Sinusoid T50_lwr<Tb<T50_upr lab pooled no 
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sin_t50_lab_ind Sinusoid T50_lwr<Tb<T50_upr lab individual no 

sin_t50_field Sinusoid T50_lwr<Tb<T50_upr field no 

sin_t90_lab Sinusoid T90_lwr<Tb<T90_upr lab pooled no 

sin_t90_lab_ind Sinusoid T90_lwr<Tb<T90_upr lab individual no 

sin_t90_field Sinusoid T90_lwr<Tb<T90_upr field no 

op_tp_lab_avg Operative Tb>Tpref lab pooled no 

op_tp_lab_ind_avg Operative Tb>Tpref lab individual no 

op_tp_field_avg Operative Tb>Tpref field no 

op_t50_lwr_lab_avg Operative Tb>T50_lwr lab pooled no 

op_t50_lwr_lab_ind_avg Operative Tb>T50_lwr lab individual no 

op_t50_lwr_field_avg Operative Tb>T50_lwr field no 
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op_t90_lwr_lab_avg Operative Tb>T90_lwr lab pooled no 

op_t90_lwr_lab_ind_avg Operative Tb>T90_lwr lab individual no 

op_t90_lwr_field_avg Operative Tb>T90_lwr field no 

op_t50_upr_lab_avg Operative Tb>T50_upr lab pooled no 

op_t50_upr_lab_ind_avg Operative Tb>T50_upr lab individual no 

op_t50_upr_field_avg Operative Tb>T50_upr field no 

op_t90_upr_lab_avg Operative Tb>T90_upr lab pooled no 

op_t90_upr_lab_ind_avg Operative Tb>T90_upr lab individual no 

op_t90_upr_field_avg Operative Tb>T90_upr field no 

op_t50_lab_avg Operative T50_lwr<Tb<T50_upr lab pooled no 

op_t50_lab_ind_avg Operative T50_lwr<Tb<T50_upr lab individual no 
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op_t50_field_avg Operative T50_lwr<Tb<T50_upr field no 

op_t90_lab_avg Operative T90_lwr<Tb<T90_upr lab pooled no 

op_t90_lab_ind_avg Operative T90_lwr<Tb<T90_upr lab individual no 

op_t90_field_avg Operative T90_lwr<Tb<T90_upr field no 

op_tp_lab_min Operative Tb>Tpref lab pooled yes 

op_tp_lab_ind_min Operative Tb>Tpref lab individual yes 

op_tp_field_min Operative Tb>Tpref field yes 

op_t50_lwr_lab_max Operative Tb>T50_lwr lab pooled yes 

op_t50_lwr_lab_ind_max Operative Tb>T50_lwr lab individual yes 

op_t50_lwr_field_max Operative Tb>T50_lwr field yes 

op_t90_lwr_lab_max Operative Tb>T90_lwr lab pooled yes 
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op_t90_lwr_lab_ind_max Operative Tb>T90_lwr lab individual yes 

op_t90_lwr_field_max Operative Tb>T90_lwr field yes 

op_t50_upr_lab_min Operative Tb>T50_upr lab pooled yes 

op_t50_upr_lab_ind_min Operative Tb>T50_upr lab individual yes 

op_t50_upr_field_min Operative Tb>T50_upr field yes 

op_t90_upr_lab_min Operative Tb>T90_upr lab pooled yes 

op_t90_upr_lab_ind_min Operative Tb>T90_upr lab individual yes 

op_t90_upr_field_min Operative Tb>T90_upr field yes 

op_t50_lab_max Operative T50_lwr<Tb<T50_upr lab pooled yes 

op_t50_lab_ind_max Operative T50_lwr<Tb<T50_upr lab individual yes 

op_t50_field_max Operative T50_lwr<Tb<T50_upr field yes 
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op_t90_lab_max Operative T90_lwr<Tb<T90_upr lab pooled yes 

op_t90_lab_ind_max Operative T90_lwr<Tb<T90_upr lab individual yes 

op_t90_field_max Operative T90_lwr<Tb<T90_upr field yes 

mc_tp_lab_avg Microclim Tb>Tpref lab pooled no 

mc_tp_lab_ind_avg Microclim Tb>Tpref lab individual no 

mc_tp_field_avg Microclim Tb>Tpref field no 

mc_t50_lwr_lab_avg Microclim Tb>T50_lwr lab pooled no 

mc_t50_lwr_lab_ind_avg Microclim Tb>T50_lwr lab individual no 

mc_t50_lwr_field_avg Microclim Tb>T50_lwr field no 

mc_t90_lwr_lab_avg Microclim Tb>T90_lwr lab pooled no 

mc_t90_lwr_lab_ind_avg Microclim Tb>T90_lwr lab individual no 
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mc_t90_lwr_field_avg Microclim Tb>T90_lwr field no 

mc_t50_upr_lab_avg Microclim Tb>T50_upr lab pooled no 

mc_t50_upr_lab_ind_avg Microclim Tb>T50_upr lab individual no 

mc_t50_upr_field_avg Microclim Tb>T50_upr field no 

mc_t90_upr_lab_avg Microclim Tb>T90_upr lab pooled no 

mc_t90_upr_lab_ind_avg Microclim Tb>T90_upr lab individual no 

mc_t90_upr_field_avg Microclim Tb>T90_upr field no 

mc_t50_lab_avg Microclim T50_lwr<Tb<T50_upr lab pooled no 

mc_t50_lab_ind_avg Microclim T50_lwr<Tb<T50_upr lab individual no 

mc_t50_field_avg Microclim T50_lwr<Tb<T50_upr field no 

mc_t90_lab_avg Microclim T90_lwr<Tb<T90_upr lab pooled no 
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mc_t90_lab_ind_avg Microclim T90_lwr<Tb<T90_upr lab individual no 

mc_t90_field_avg Microclim T90_lwr<Tb<T90_upr field no 

mc_tp_lab_min Microclim Tb>Tpref lab pooled yes 

mc_tp_lab_ind_min Microclim Tb>Tpref lab individual yes 

mc_tp_field_min Microclim Tb>Tpref field yes 

mc_t50_lwr_lab_max Microclim Tb>T50_lwr lab pooled yes 

mc_t50_lwr_lab_ind_max Microclim Tb>T50_lwr lab individual yes 

mc_t50_lwr_field_max Microclim Tb>T50_lwr field yes 

mc_t90_lwr_lab_max Microclim Tb>T90_lwr lab pooled yes 

mc_t90_lwr_lab_ind_max Microclim Tb>T90_lwr lab individual yes 

mc_t90_lwr_field_max Microclim Tb>T90_lwr field yes 

mc_t50_upr_lab_min Microclim Tb>T50_upr lab pooled yes 



 

 

8
0
 

mc_t50_upr_lab_ind_min Microclim Tb>T50_upr lab individual yes 

mc_t50_upr_field_min Microclim Tb>T50_upr field yes 

mc_t90_upr_lab_min Microclim Tb>T90_upr lab pooled yes 

mc_t90_upr_lab_ind_min Microclim Tb>T90_upr lab individual yes 

mc_t90_upr_field_min Microclim Tb>T90_upr field yes 

mc_t50_lab_max Microclim T50_lwr<Tb<T50_upr lab pooled yes 

mc_t50_lab_ind_max Microclim T50_lwr<Tb<T50_upr lab individual yes 

mc_t50_field_max Microclim T50_lwr<Tb<T50_upr field yes 

mc_t90_lab_max Microclim T90_lwr<Tb<T90_upr lab pooled yes 

mc_t90_lab_ind_max Microclim T90_lwr<Tb<T90_upr lab individual yes 

mc_t90_field_max Microclim T90_lwr<Tb<T90_upr field yes 
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Table A2. Published papers containing data on Tropidurus torquatus reproduction timing. All locations are in Brazil include the initials for 

the state it is located. 

Location Longitude Latitude Reproductive Non-Reproductive Reference 

Trancoso, BA -39.1833 -16.4333 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Prado, BA -39.2167 -17.3000 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Guriri, ES -39.7333 -18.7500 Nov – Mar Apr – Oct (Kiefer et al., 2008)  

Setiba, ES -40.4500 -20.5833 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Praia das Neves, ES -40.9667 -21.2500 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Grussai, RJ -41.0333 -21.7333 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Jurubatiba, RJ -41.6833 -22.2833 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Grumari, RJ -43.5000 -23.0833 Nov – Mar Apr – Oct (Kiefer et al., 2008) 

Santa Maria, RS -53.8736 -29.6269 Sep – Jan Feb – Aug (Arruda, 2009) 

Juiz de Fora, MG -43.5921 -21.8076 Aug – Dec Jan – Jul (Gomides, Ribeiro, Peters, & Sousa, 2013) 
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Alegrete, RS -55.4164 -29.9783 Sep – Dec Jan – Aug (Vieira, Felappi, Caruccio, & Verrastro, 2011)  

Barra de Marica, RJ -42.8333 -22.9500 May – Dec Jan – Apr (Van Sluys, Martelotte, Kiefer, & Rocha, 2010) 

Corrientes, Argentina -58.7467 -27.4306 Jul – Feb Mar – Jun (Ortiz, Álvarez, Boretto, Ibargüengoytía, & 

Piantoni, 2014) 

Brasília, DF -47.9167 -15.7833 Aug – Feb Mar – Jul (Wiederhecker et al., 2002) 

Exu, PE -40.0167 -7.4167 Aug – Jan Dec – Jul (Vitt & Goldberg, 1983) 

Arraial D'Ajuda, BA -39.0833 -16.6500 Nov - Jul Aug – Oct (Freitas, Teixeira, & Ferreira, 2012) 

 
 

Table A3. Published papers containing data on Ameiva ameiva reproduction timing. All locations in Brazil include the initials for the state 

it is located. 

Location Longitude Latitude Reproductive Non-Reproductive Reference 

Barra de Maricá, RJ -42.8333 -22.9500 Jun – Jan Feb – May (Carlos Frederico Duarte Rocha, 

2008)  

Exu, PE -39.7167 -7.5167 Dec – Oct Nov (Vitt, 1982; Vitt & Colli, 1994) 
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Brasilia, DF -47.9167 -15.7833 Oct – Apr May – Sep (Colli, 1991; Vitt & Colli, 1994) 

Jaru, RO -62.4500 -10.4333 Jun – Jul,  

Oct – Nov 

(Vitt & Colli, 1994) 

Boa Vista, RR -60.6667 2.8167 Jul  (Vitt & Colli, 1994) 

Altamira, PA -52.2000 -3.2000 Jan  (Vitt & Colli, 1994) 

Santa Rita do Araguaia, GO -53.2000 -17.3167 Feb, Mar, Jul (Vitt, 1991; Vitt & Colli, 1994) 

Macapá, AP -51.0500 0.0333  Sep – Oct (Vitt & Colli, 1994) 

Humaitá, PA -63.0333 -7.5167  Oct – Nov (Vitt & Colli, 1994) 

Santa Cecília, Ecuador -76.9925 0.0850 May – Dec Jan – Apr (Simmons, 1975) 

Tabajara, MG -41.7626 -19.5865 Mar  (Costa et al., 2010) 

Alter do Chão, PA -55.0000 -2.5000 Oct – Jun Jul – Sep (Magnusson, 1987) 

Recife, PE -34.8770 -8.0476 Apr – Oct Nov – Mar (Gillett & da Cruz, 1981) 
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Iquitos, Peru -73.25 -3.7333 Jan-Dec  (Dixon & Soini, 1986) 

 




