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Abstract

Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

by

Michael Rousseas

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alex Zettl, Chair

This thesis is divided into two parts. In Part I, we examine the properties of thin sheets
of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets,
where the stretching and bending modes are considered in detail. The coupling between
stretching and bending modes is thought to play a crucial role in the thermodynamic stability
of atomically-thin 2D sheets such as graphene.

In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets
of graphene. We then study their mechanical resonances which are read via an optical
transduction technique. The frequency of the resonators was found to depend on their
temperature, as was their quality factor. We conclude by offering some interpretations of
the data in terms of the stretching and bending modes of graphene.

In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride
nanotubes. We examine the structure of the sheets using transmission and scanning electron
microscopy (TEM and SEM, respectively). We then show a technique by which one can
make sheets suspended over a trench with adjustable supports. Finally, DC measurements
of the resistivity of the sheets in the temperature range 600− 1400 ◦C are presented.

In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron
nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered,
after which the structure of graphene and boron nitride aerogels is examined using TEM
and SEM. Some models for their structure are proposed.

In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we
study the conversion of carbon structures of boron nitride via the application of carbothermal
reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of
morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic
graphite.

In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs).
In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and
introduce a new method involving injection of boron powder into an induction furnace. In
Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor
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generated in situ, either through the reaction of boron with metal oxides or through the
decomposition of metal borides.
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Part I
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Carbon and Boron Nitride
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Chapter 1

Elastic Properties of Sheets

Figure 1.1 shows a remarkable image; it is of a single atomic layer of sp2-bonded carbon, a
graphene membrane, suspended over an aperture 50 microns in diameter. Despite having a
tear in it, the membrane is able to support itself (and a good deal of polymer residue on its
surface) over a length 500,000 times its effective thickness. As discussed in Reference [1], the
membrane owes this exceptional aspect ratio to its elastic properties, i.e. its high Young’s
modulus and bending rigidity.

We begin our discussion with a brief overview of the elastic properties of 2D sheets.
Elastic theory is a beautiful subject, but unfortunately one that is no longer covered in
physics programs. The approach taken here is to get to the essential results we’ll need for
studying graphene resonators in the next chapter.

A 2D sheet differs from a 3D solid in that it can be bent as well as stretched. In the
parlance of the quantum theory of solids, these correspond to the out-of-plane and in-plane
phonon modes, respectively. In this regard, sheets are not purely 2D systems, in that they

Figure 1.1: A large-area suspended graphene membrane. Scale bar 5 microns. Adapted from
Reference [1].
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Figure 1.2: A stretched sheet.

have a third degree of freedom which affects their overall shape in 3D space. Anharmonic
coupling between the stretching and bending modes of graphene are thought to play an
important role in its overall thermodynamic stability, making sheets like those shown in
Figure 1.1 possible. We’ll touch briefly on this subject at the end of the chapter.

1.1 Stretching

Before considering the bending of a sheet, we’ll walk through a simple and familiar example,
that of calculating the amount of energy it takes to stretch an elastic sheet in one direction.
Let’s imagine we he have a sheet of material of width W and length L which is clamped at
one end and we stretch it an amount ∆L = εL in the x direction by applying a force F to the
other end, where ε is the strain. The situation is depicted in Figure 1.2. The force distributes
itself throughout the length of the sheet, and we expect that for small displacements ∆L,
that the material should act like a spring with stiffness k, so that the force obeys Hooke’s
law: F = kx. Intuitively, this stiffness should scale proportionally to the width and inversely
with the length, so that k = YW/L. The constant Y is a property of the material called the
2D Young’s modulus for obvious reasons; it has units of N/m.

When we stretch the sheet it contracts in the orthogonal direction by an amount ∆W =
νεW due to the Poisson effect, where ν is the Poisson ratio of the material. However, this
contraction is perpendicular to the applied force, so doesn’t affect the total energy. There is
a second-order effect since the length along which the force acts is shortened, but we ignore
this because the strain is generally assumed to be small.

The amount of energy it takes to stretch the sheet is then

Es =

∫ εL

0

Fdx =
YW

L

∫ εL

0

x dx =
YWLε2

2

We see that the total energy scales with the area of the sheet. The energy per unit area is
then

Es
A

=
1

2
Y ε2 (1.1)

where A = LW is the area of the sheet.
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If we follow this argument through with 3D elastic theory, with a material of Young’s
modulus E and thickness h and compare the answers, we find that

Y = Eh (1.2)

When we measure the Young’s modulus of the material like graphene, which is reported to
be around 1 TPa, what we’re actually measuring is the 2D Young’s modulus Y . To quote a
3D Young’s modulus, we have to put in some number for h, which is conventionally taken
to be the interlayer spacing of graphite, or about 0.335 nm, yielding Y ≈ 340 N/m (see
discussion below). This choice for h is, of course, completely arbitrary.

In the general case, where the strains in the sheet vary as a function of (x, y), we describe
the deformation of the sheet in terms of the vector ~u(x, y), which gives the displacement of
the area element at (x, y) under the deformation. For example, in the example above, we
have ~u(x, y) = ε(xx̂+ νyŷ). The stretching energy is then given by

Es =
1

2

∫∫
σijuijdxdy (1.3)

where the indices i and j are summed over x and y. The tensor uij is the strain tensor,
whose components are given by

uij =
1

2
(∂iuj + ∂jui) (1.4)

where ∂x = ∂/∂x, ∂y = ∂/∂y (formally, we reduce the equations of 3D elasticity by assuming
requiring that uz = 0 and that ux and uy are independent of z, which is referred to as plane
strain). The 2D stress tensor σij is given by

σ =
Y

1− ν2

(
uxx + νuyy (1− ν)uxy
(1− ν)uxy uyy + νuxx

)
(1.5)

Note here that in our notation we incorporate the thickness into the stress tensor, so that
it has units of N/m; that is, a surface stress or surface tension. An intuitive way to think
about the surface stress is to imagine that we cut a slit in the sheet; the surface stress is
then the force per unit length necessary to pull the sheet back together.

In the important case of biaxial strain, where ux = εx, uy = εy, we have

σxx = σyy = Y ε/(1− ν) (1.6)

so that
Es
A

=
Y ε2

1− ν
(1.7)

where the factor of 1 − ν in the denominator accounts for the extra energy required to
counteract the Poisson effect.
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Figure 1.3: A rippled sheet. The sheet lies more or less flat parallel to the xy plane, and its
height above the plane is described by z = f(x, y).

Membranes

Suppose now we have a sheet to which we apply a large biaxial stress, and we perturb it, so
that it comes out of the xy plane slightly by an amount f(x, y). The situation is depicted
in Figure 1.3. The sheet acquires a small additional strain on it, which can now vary along
the sheet. The corresponding energy is given by [2]

Es = const. +
σ

2

∫
|∇f |2 dA (1.8)

Using this energy, we can form a Lagrangian and find the equations of motion. We get

σ∇2f = ρ ∂2t f − P (1.9)

which is known as Poission’s equation, which is familiar from electrostatics. Here P is the
applied force per unit area on the sheet in the z direction. The boundary conditions can be
given by either specifying ∇f or f at the boundary of the sheet; we usually use f = 0 at the
boundary, since we usually draw sheets over a stable rim in order to apply the biaxial stress.

The solutions of course depend on the geometry of the rim and the nature of the surface
forces P . To begin with, we’ll ignore the surface forces and consider the free vibrations of
the membrane. We assume a time dependence e−iωt, which takes care of the time derivatives
to yield

σ∇2f + ρωf = 0

For a square rim with sides of length L, we have the solutions

fnm(x, y) = A sin(knx) sin(kmy) (1.10)
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where kn = nπ/L where n is a positive integer which serve to label the normal modes of the
system. Plugging this solution back into the equation of motion, we get the mode frequencies

ω =

√
σ

ρ
(k2n + k2m) (1.11)

For a circular memebrane of radius a, the solutions are

fmn(r, θ) = AJm(kmnr) cos(mθ) (1.12)

where Jm is the mth order Bessel function and kmn = bmn/a where bmn is the nth zero of the
mth order Bessel function. We list the mode frequencies for reference in Table 1.1.

m = 0 m = 1 m = 2 m = 3

n = 1 2.405
2πa

√
σ
ρ

1.594f01 2.136f01 2.653f01

n = 2 2.296f01 2.918f01 3.501f01 4.060f01

Table 1.1: Normal mode frequencies of a circular membrane. Adapted from Reference [3]

1.2 The 2D Young’s Modulus of Graphene

The 2D Young’s modulus of graphene was first measured directly by Lee et al. using a nano-
indentation technique. [4] Graphene flakes were exfoliated over circular trenches in a silicon
wafer, and an atomic force microscope (AFM) was used to measure the force vs. displacement
curves of the resulting membranes. The group determined a value of Y = 340± 50 N/m, as
quoted above. They also noticed that membranes fabricated in this manner tended to have
a remarkably high prestress, up to 0.74 N/m. In the same study, they determined a breaking
strength of 42 N/m, i.e. the maximum stress that could be applied to a pristine graphene
membrane before failure.

1.3 Bending

Now let’s consider our thin sheet of material, which is clamped at one end, and instead of
stretching, we bend it by appyling a torque to the end of the sheet, which analogously to the
stretched case, distributes itself evenly throughout the sheet. The situation is depicted in
Figure 1.4. We’ll assume without proof that the sheet describes a circular arc throughout the
bending. Again, there is a second-order correction which is necessary to keep the distance
from the clamp constant, but we again assume that the total angle Θ through which we
apply the torque, which is analogous to the strain, is generally small.

In analogy with the stretching of the sheet, we argue that the torque necessary to bend
the sheet through an angle θ is τ = c θ, and that the constant c, which here represents
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Figure 1.4: A bent sheet.

the bending stiffness, is likewise proportional to the width and inversely proportional to the
length: c = κW/L. The constant κ is called the bending rigidity or flexural rigidity of the
material; it has units of energy. The total energy necessary to bend the sheet through an
angle Θ = L/R is then

Eb =

∫ L/R

0

τ dθ =
κW

L

∫ L/R

0

θ dθ =
κLW

2R2

We see that the total bending energy scales with the area of the sheet, and is inversely
proportional to the square of the radius of curvature. The bending energy per unit area is

Eb
A

=
1

2
κS2 (1.13)

where S = 1/R is the curvature of the sheet.
As an example, let’s use this expression to consider the bending energy per unit length of

a carbon nanotube, which is often described as a rolled-up strip of graphene. The bending
rigidigy of graphene is somewhere in the neighborhood of 1.0 to 1.5 eV; we’ll discuss this
more below. For a nanotube of radius R, the total bending energy per unit length is then
Etube = πκ/R; for a nanotube of diameter 1 nm, this gives an bending energy of about 3.1 to
4.7 eV per nanometer of length. For the tube to be stable, this should be less than the energy
gained in the formation of the carbon-carbon bonds at the edges of the original graphene
strip, which have an energy of about 5.0 eV, or in the zig-zag direction, about 20 eV per
nanometer. Of course, for small diameter tubes, we expect that our linear assumptions will
eventually break down.
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Figure 1.5: A simply supported elastic sheet.

As another simple example, let’s consider a sheet of length L and width W that is laid
across two supports. We’ll ignore the effects of gravity here, except that it keeps the sheet on
the supports. Suppose we bend the sheet down at it center by an amount a � L as shown
in Figure 1.5. Assuming that the curvature is roughly constant, the radius of curvature of
the sheet is R ≈ L2/8a, so that the bending energy per unit area is

Eb
A

=
κ

2R2
≈ 1

2

64κ

L4
a2

which is similar to that of a harmonic oscillator displaced from its equilibrium by an amount
a. If ρ is the mass per unit area of the sheet, we expect the frequency of small vibrations to
go like

ω ∼ 8

L2

√
κ

ρ

which we’ll verify below.

Elastic Thickness

As in the case of stretching, the bending of the sheet can be described with appropriate
approximations using 3D elastic theory and a sheet of thickness h. The basic idea is that
the inside layers of the material are compressed upon bending, while the outside ones are
stretched. The result is that bending rigidity can be related to the Young’s modulus accord-
ing to [5]

κ =
Eh3

12(1− ν2)
(1.14)

There is also an analogy to the Poisson effect: bending in one direction induces bending in
the opposite direction, in a direction orthogonal to the applied torque, as you can verify by
bending a rubber eraser between your fingers. In 3D materials this follows from the Poisson
effect, since the layers on the inside of the curve expand along the axis of curvature, while
those on the outside contract.
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Figure 1.6: A bent and stretched sheet. The original length of the sheet is L, and a stress
applied to stretch it into a circular cylindrical arc with a height a above its original plane.

For a 2D material, we can use Equation 1.14 in combination with Equation 1.2 for the
2D Young’s modulus to define the elastic thickness

he ≡
√

12(1− ν2)κ
Y

(1.15)

For graphene, we have he ≈ 0.1 nm. In some sense, this defines the mechanical “thickness”
of a graphene sheet.

To understand the significance of the elastic thickness, consider a thin sheet of length L
clamped at two ends so that it is initially unstrained, and subject it to a constant curvature
S so that bulges out of its original plane by an amount a, as in Figure 1.6. If a � L, the
strain induced by the bulge is approximately ε ≈ 2a2/L2, meaning that the stretching energy
per unit area is Es/A ≈ 2Y a4/L4. The curvature of the surface is meanwhile S ≈ 8a/L2, so
that the bending energy density is Eb/A ≈ 32κa2/L2. The ratio of these two energies is then

Es
Eb
≈ Y a2

16κ
≈ a2

h2e

The stretching energy quickly dominates over the bending energy as the height of the bulge
grows past the elastic thickness, independent of the length of the sheet. On the other hand,
it means that a sheet will almost always bend out of plane to accommodate any strain.
Suppose we have a square sheet of area A and we heat it up so that it expands, causing a
thermal strain ε. If the sheet remains flat, its energy goes like Es ∼ AY ε2, while if it bends,
it goes like Eb ∼ κε, meaning that for ε & h2e/A, the sheet will bend instead of compress to
minimize its total energy.

General Bending

For the general case of bending in two orthogonal directions, the situation gets a bit more
complicated. To begin, it is intuitively clear that any such bending would require stretching



CHAPTER 1. ELASTIC PROPERTIES OF SHEETS 10

the sheet as well. We ignore this stretching energy for the time being; in the next section
we’ll consider it more carefully.

In the cases we’ll be interested in here, the bending of the sheet is generally slight, so
that the surface is mostly flat and contains ripples. The situation is identical to that of
the membrane, except that there is no applied biaxial strain. In these cases, we can lay
the surface generally parallel to the xy plane and describe its out of plane fluctuations
by a function f(x, y), which gives the height of the surface above the plane. The general
assumption is the that normal vector to the surface is roughly parallel to ẑ, so that we can
estimate the curvature by simply calculating the second derivatives of f(x, y) as we do in
elementary calculus. The expression for the bending energy is then given approximately by
[2]

Eb =
κ

2(1− ν2)

∫∫ (
∇2f

)2
dA (1.16)

where ∇2 = ∂2x+∂2y is the Laplacian operator. The integrand in the equation is the square of
the mean curvature of the surface at the point (x, y). Its geometric interpretation is that if
we take a point on the surface and consider all the vertical cross-sections of the curve, there
will be two cross-sections which are perpendicular to one another which have the greatest
and least curvature, respectively (they can also have the same curvature). These are called
the principle curvatures of the surface at that point. The mean curvature is just the average
of these two curvatures.

Finally, we mention that there is another term in the bending energy which we have not
included and is associated with the Gaussian curvature of the surface, which is the product of
the principle curvatures. It plays an important role in determining the boundary conditions
when we consider the equations of motion for sheets with a fixed boundary.

It is also important in the non-linear coupling between bending and stretching modes,
since regions of non-zero Gaussian curvature must necessarily be stretched as well as bent.
This is the content of the Gauss-Bonnett theorem, which has applications throughout physics;
for example, topological insulators.

1.4 Bending Rigidity of Graphene

The bending rigidity of multilayer graphene flakes was measured by Poot and van der Zant
using a nano-indentation technique and was found to comply with the h3 dependence given
by classical elastic theory.[6]. However, later studies by Lindahl et al. where the bending
rigidity is deduced from the snap-through instability of buckled, suspended few-layer sheets,
give a a different result and show that the bending rigidity of one to three layer sheets deviates
significantly from the classical result.[7] The authors stress, however, that the estimate is
very rough, and unreliable due to the small number of data points available. The analysis
is also rather indirect, and depends on a model of snap-through instability that may not be
applicable to ultrathin membranes.
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On the theoretical end, various calculations point to a value of κ ≈ 1.0 to 1.5 eV, which
is an order of magnitude lower than that expected from Equation 1.14 if extrapolated from
measurement of bulk graphite, using h ≈ 0.335 nm, the interlayer spacing of graphite. This
is not at all unexpected, since the derivation of Equation 1.14 depends of the fact that the
top layers of the material are stretched while those on the inside are compressed; for single-
layer graphene, there are no additional layers involved, and the rigidity instead derives from
the overlap of atomic orbitals on either side of the basal plane.[8]

In one approach, one looks at the phonon spectrum of the out-of-plane modes of graphite.
As shown below, the dispersion relation for these modes is quadratic it k, and the bending
rigidity can be deduced from the curvature.[9] This gives a bending rigidity of 1.2 eV. In
another approach, one can model directly the orbital overlap as function of the bond angles
and dihedral angles of the basal plane, which gives a prediction of 1.4 eV.[10]. Ab initio
calculations can also be done, which give similar values. [11]

To my knowledge there has been no direct measurement of the bending rigidity of
graphene. In the next chapter, we approach this problem from the study of the resonance
frequencies of untensioned graphene resonators, the equations of motion for which we turn
to next.

1.5 Bending Equations of Motion

If we can ignore the stretching energy, the equations of motion for a bent surface can be
found by performing a functional variation of the bending energy given by Equation 1.16.
The math is quite involved and can be found beautifully explained in Landau and Lifchitz.[5]
Including time dependence, the result is

κ∇4g(x, y, t) = P (x, y, t)− ρ ∂
2f

∂t2
(1.17)

where P is the applied force per unit area on the sheet in the ẑ direction and ρ is the mass per
unit area. The operator ∇4 = (∇2)2 = ∂4x+2 ∂2x ∂

2
y +∂4y is known as the biharmonic operator,

and Equation 1.17 as the biharmonic equation. On the surface, it closely resembles Poisson’s
equation for a membrane. However, since the equation is fourth-order in the derivatives,
we must specify boundary conditions both for the value and the derivatives of f at the
boundary. As mentioned above, these boundary conditions come from the variation of the
Gaussian term in the bending energy. Examples of boundary conditions are

• clamped, so that both f and ∇f = 0 at the boundary.

• simply supported, where f = 0; in this case, the boundary condition on ∇f is compli-
cated; for the simple case of a circular sheet, it simplifies to [5]

∂2f

∂r2
+
ν

r

∂f

∂r
= 0
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while for a square plate, we have [12]

∂2f

∂x2
+ ν

∂2

∂y2

where the derivatives are evaluated along the edge in the ŷ direction; a similar expres-
sion holds for those along the x̂ direction.

• free, where the plate is simply suspended or is held by a point at the center, like a
crash cymbal in a drum kit. The boundary conditions are even more complicated here;
see Reference [5]

For simplicity, we’ll take P (x, y) = 0 and consider oscillatory motion g(x, y, t) = f(x, y)e−iωt,
where ω is the circular frequency of the motion. The equation becomes

κ∇4f(x, y) = ω2ρf(x, y)

For a simply supported square plate with sides of length L, we try harmonic solutions

fmn(x, y) = Anm sin(nkx) sin(mky) (1.18)

where m and n are positive integers and k = π/L. The resulting dispersion relation is

ωmn = k2
(
m2 + n2

)√κ

ρ
(1.19)

Compared to a square membrane, the mode frequencies have a different spacing, and impor-
tantly, bending modes are dispersive, with a wavelength dependent velocity. When consider-
ing a 2D crystal, Equation 1.19 gives the dispersion relation of long-wavelength, out-of-plane
phonons. This is turn has important consequences when considering the thermal expansion
and overall stability of the crystal.

In the next chapter, we’ll want to also consider the case of circular clamped sheet. It’s
clear form the boundary conditions that the simple membrane solutions involving ordinary
Bessel functions won’t work, since the derivative cannot generally vanish at the boundary.
Instead, we must combine them with hyperbolic Bessel functions Im, so that the normal
modes become [3]

fmn(r, θ) = [AJm(kmnr) +BIm(kmnr)] cos(mθ) (1.20)

The frequencies of the first few modes are given for reference in Table 1.2.

1.6 Bending and Stretching

As mentioned above, stretching and bending are intimately coupled in a sheet, especially
when the amount of bending exceeds the elastic thickness. Formally, this coupling is
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m = 0 m = 1 m = 2 m = 3

n = 1 1.63
a

√
κ
ρ

2.08f01 3.41f01 5.00f01

n = 2 3.89f01 5.95f01 8.28f01 10.87f01

Table 1.2: Normal mode frequencies of a clamped circular sheet. Adapted from Reference [3]

expressed through the strain tensor. The displacement vector is written as ~u(x, y) =
ux(x, y)x̂+ uy(x, y)ŷ + f(x, y)ẑ, and in place of Equation 1.4 for the strain tensor, we have

uij =
1

2
(∂iuj + ∂jui + ∂if ∂jf)

Using both the stretching and bending energies given by Equations 1.3 and 1.16, we can
perform a functional variation and derive the equations of motion for elastic plates. The
additional terms in strain tensor involving the product of the derivatives of f account for the
additional strain due to bending; since this term is quadratic in the derivatives, it leads to
non-linear equations of motion. The results are known as the Foppl-von Karaman equations

κ∇4f − ∂j(σij∂if ) = P − ρ∂
2f

∂t2
(1.21)

∂jσij = 0 (1.22)

where the stress tensor σij is given by Equation 1.5. They are three coupled, non-linear
differential equations for the three components of the displacement vector ~u(x, y). In all
known cases, the equations have no known closed-form solution and approximations must
be made.

One approximation we can make is that the stresses are uniform, i.e. we use a biaxial
stress as in Section 1.1 and simply bring the term out from the derivative. The resulting
equation is

κ∇4f − σ∇2f = P − ρ∂
2f

∂t2
(1.23)

where σ = Y ε/(1 − ν), which automatically satisfies Equation 1.22. This equation can
describe, for example, a membrane which is slightly stiffened by its bending rigidity. Using
the solutions compatible for both a simply supported sheet and a membrane, we have the
dispersion relation

ω =

√
κ

ρ
k4mn +

σ

ρ
k2mn (1.24)

1.7 Thermodynamics of 2D Systems

Before leaving this topic, we mention briefly an important topic involving bending and
stretching modes in a 2D system. The story goes back to an argument first present by
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Landau and Peirles in the 1930’s, and later expanded by Mermin and Wagner, who argued
that 2D crystals are inherently unstable. The heart of the argument rests in the height-
height correlation function of the sheet, which can be calculated using the bending energy,
Equation 1.16. The result is [13]

〈h2〉 ∼ L2 (1.25)

where L is the sample size. This relation implies that the out-of-plane fluctuations of the
sheet grow with its size, which contradicts the basic assumption in writing down Equa-
tion 1.16 that the fluctuations are small. A similar situation emerges when one calculates
the normal-normal correlation function, which gives the fluctuations in the orientation of
different parts of the sheet.

〈n̂(0) · n̂(R)〉 ∼ logR (1.26)

where R is the separation between the parts of the sheet; this expression diverges with
growing sheet separation and again contradicts our basic assumption of small gradients.

The solution around this problem is to take into account the non-linear coupling between
the bending and stretching modes, which is captured in Equation 1.21. Nelson has argued
that the effect of the non-linear coupling is to stiffen the bending rigidity at large wavelengths,
according to

κR(~q) ∼
√
kBTK0

q
(1.27)

where kB is Boltzman’s constant, T is the temperature, andK0 is an elastic coupling constant.
[2] For graphene, K0 ≈ 0.218 eV/nm2. This expression is valid for small q. Using this
expression, one finds that the normal-normal correlation function remains finite at large
separations, but that the problem still remains with the height-height correlation function.
This topic is one of current interest in the thermodynamics of 2D systems. In the following
chapter, we offer one look at the bending rigidity that may offer some insight into this
problem.
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Chapter 2

Graphene Mechanical Resonators

In this chapter, we study the elastic properties of graphene via the modes of graphene
resonators. As discussed in the previous chapter, the elastic modulus of graphene can be
measured via nanoindentation of suspended graphene membranes. These membranes tend to
have large built-in strains, which makes the determination of the bending rigidity impossible.
We begin by outlining the fabrication technique used to make low-tension membranes. We
then outline a new process I developed for making large-area suspended graphene; though the
resulting resonators were not used in the subsequent study, the technique may prove useful
in future studies, especially in cases where one wishes to tailor the supports of the resonators
or study larger area sheets. Finally, we look at the modes of our resonators. In the case
of circular resonators particularly, we surmise that the modes are likely due to the bending
rigidity; we also present some preliminary data on temperature-dependent frequency shifts
in these devices, which may point the way to further studies of the interaction of stretching
and bending modes in graphene.

The work in the chapter was done in collaboration with Dr. Benjamin Aleman, a former
member of the Zettl group. Resonance studies were performed in collaboration with and in
the lab of Prof. Feng Wang.

2.1 Fabrication Techniques

Direct Transfer Method

The method used to fabricate graphene mechanical resonators used in our experiment was de-
veloped by William Regan and Benjamin Aleman in the Zettl group at Berkeley.[14] The pri-
mary difference with previous methods is that no polymers are used to transfer the graphene
to its supports, and neither does the graphene ever come into contact with a polymer via an
exfoliation process. Also, no solvents are needed to remove PMMA; this means that that the
graphene surfaces remain exceptionally clean, and that little or no tension is imparted to the
membrane. We describe the method here in detail, emphasizing the points not previously
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Schematic of direct transfer process for fabrication of graphene resonators. (a)
graphene (black) on is grown on both sides of a copper foil (orange); (b,c) graphene on one
side is removed and a a TEM grid (red) is attached with a drop of isopropanol (yellow); (d,e)
copper is removed with an etchant (blue); (f) grid is rinsed and removed and allowed to dry
face down

discussed which are important in describing the precise resonator structure we will study.
The method is outlined in Figure 2.1. Graphene is grown on the copper substrate at

around 1000 ◦C in a methane atmosphere. After growth, the graphene on one side of the
copper is removed via a short oxygen plasma treatment. This helps in subsequent etching
of the copper, and avoids free-floating graphene in the etchant solution.

The graphene is then transferred to a TEM grid which is coated with a thin amorphous
carbon layer with holes in it, referred to as “holey carbon” or by its trade name, Quantifoil.
We use two types of holey carbon: one with 7 micron square holes (SPI Quantifoil S 7/2),
and another with 2 micron diameter circular holes (SPI Quantifoil R 2/2). The holey carbon
is about 10 nm thick, and the holes have a “lip” around 5 nm in radius. This lip is likely
the result of the process used to fabricate the holey carbon, in which carbon is evaporated
onto a plastic form, which is subsequently dissolved.[15, 16] Additionally, the holey carbon
is very delicate, so in order to increase the yield of the resonators, the TEM grid has been
previously prepared by evaporating about 100 nm of gold onto its back side. This also adds
considerable mass to the supports for the graphene resonators.

We take our copper with graphene on it and cut out a small square, about 5 mm on a
side, so that a 3 mm diameter TEM grid will mostly cover the surface. A small drop of
isopropanol is placed on the side of the copper which still has graphene on it, and the grid is
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Figure 2.2: SEM image of 7 micron square graphene resonators.

placed with the holey carbon face down on top of the drop. As the isopropanol evaportates,
the holey carbon is drawn down onto the surface of the graphene; graphene is very ”sticky”
material owing to its vertical π orbitals, and so adheres strongly to the holey carbon film.
After the isopropnal has evaporated and the sample is dry, the copper square can now be
picked up and shaken gently, and the TEM grid will hold on.

Next, the copper is etched away by floating it with the grid face up on the surface of an
etchant solution; either iron chloride or sodium persulfate can be used here. After the copper
has been completely etched, which typically takes a couple of hours, the grid is picked up
with tweezers and floated on top of a bath of deionized water. Several baths can be used to
make sure that the etchant solution is totally diluted. It is important in all of these steps
that the grid stays on the surface of the water or etchant; dropping the grid into the bath
invariably destroys the suspended graphene portions.

After proper rinsing, the grid is removed with tweezers and kept face down as the re-
maining drop of water dries. In the process of evaporating, the drop only sees the continuous
surface of the graphene. Therefore, the film cannot be pulled down onto its supports via
surface tension, as is the case with films that have been immersed in acetone or another
solvent. Additionally, the curve of the lip of the graphene support prevents it from being
pulled tight via van der Waals forces.

Figure 2.2 shows an SEM images of some resulting 7 micron square graphene resonators.
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Figure 2.3: AFM height profile of a 2 micron diameter circular membrane. Data courtesy of
B. Aleman.

The contrast of the graphene in the SEM can be improved by operating the SEM at 1 kV
accelerating voltage. The resonators appear exceptionally clean, and the yield is acceptable
for the purposes of the experiment. Prior to conducting the resonance measurements, a
survey is taken of the grids in the SEM so that the location of the intact resonators can be
determined; the asymmetric mark in the center of the grid is used as a reference point.

Figure 2.3 shows an AFM profile taken from a 2 micron diameter circular resonator. The
graphene appears to be draped over the hole, and to be slightly buckled downward, forming
a bowl with a maximum depth of about 5 nm, which corresponds to a radius of curvature of
approximately 100 microns. The sharp edges on either side of the graphene are due to the
lip in the holey carbon. While some of the graphene has adhered to about 5 nm of the lip,
it comes off it before becoming fully tensioned. The indication is then that the graphene on
the circular holes is more or less slack, with little or no tension imparted to by its supports.

Patterned PMMA Method

In the course of the experiment, it was desirable to fabricate larger area resonators, both in
order to increase the amplitude of the vibrations hence increasing the signal strength, and
to be able to better isolate single resonators. Commercially available TEM grids have holes
only up to 5 microns in diameter, so a different approach was taken, where the holes were
made in a thin PMMA layer that was later adhered to a gold TEM grid.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Schematic of patterned PMMA method. (a) copper foil (orange) is mounted
onto a silicon chip (purple) using double-sided tape (grey); PMMA (green) is spun on and
a TEM grid (red) is placed on top before drying; (b) the copper foil is removed from the
chip and holes are patterned the the PMMA between the grid lines; (c,d) the copper foil is
removed with an etchant (blue); (e) the grid is glued to a copper foil with graphene (black)
grown on it with a hot plate (dark grey); (f) the copper is then etched, leaving the grid with
the graphene attached.

The process is outlined in Figure 2.4. First a small piece of copper was first attached to a
small silicon chip cut into a square about 1 cm on a side using double-sided tape. Following
a recommendation by Qin Zhou, a thick layer of PMMA was then spin coated onto copper
using A11 concentration with a spin rate of between 1500 and 2000 rpm. While the PMMA
was still wet, the gold TEM grid was laid on top with the flat side down. The PMMA was
then cured on a hot plate at 160 ◦C for 60 seconds, after which time the gold grid was firmly
embedded.

Next, the Nano-Pattern Generation System (NPGS) in an scanning electron microscope
(SEM) was programmed to pattern circles with diameters ranging from 2 microns to 32
microns. One hole was patterned in each cell of the grid. The PMMA was then developed and
the copper was etched away using sodium persulfate. Figure 2.5 shows an optical micrograph
of the resulting grid. The holes are well defined, although alignment of the NPGS system
was problematic, so that the larger holes tended to intersect the grid supports.

The next step was to attach the grid to a copper substrate onto which graphene had been
grown as discussed in the direct transfer method above. Various attempts were made at the
direct transfer method, however, the surface of the PMMA was generally not flat enough so
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Figure 2.5: Optical micrograph of PMMA holes patterned onto a 300 mesh gold TEM grid.

that van der Waals attraction was not sufficient to keep the grid on the copper. Instead,
the grid was placed on top of the copper and pressed flat between two microscope slides.
The grid was then placed on a hot plate and observed with a scope. The temperature on
the hot plate was set to around 160 ◦C and the sample watched carefully as it heated up.
Once it was clear that the PMMA was beginning to melt, it was quickly removed and cooled.
The grid was now firmly attached to the graphene surface. Figure 2.6 shows the grid after
attaching to graphene coated copper. It can be seen that the heating process distorts the
holes somewhat; this was particularly evident for thicker PMMA films. There is also a small
amount of PMMA that has spilled over into some of the holes.

Finally, the copper substrate was etched using the same process as described for the direct
transfer method above. After rinsing and proper drying, the holes were checked for suspended
graphene. Yield was rather low, however, some of the larger holes with diameter between
20 and 40 microns were found to be spanned by suspended graphene, albeit with a good
amount of contamination. The contamination actually helped to identify the graphene, as it
was clear something was holding it up. The presence of monolayer graphene was confirmed
using Raman spectroscopy and looking for the signature G and 2D peaks, with the absence
of a D peak.

It is quite remarkable that graphene can span such large holes, even supporting polymer
residues many thousands of times its own weight. Much of this is owing to its high 2D
Young’s modulus. It is interesting to speculate on how large graphene membranes can get.
Booth et al. have reported intact graphene membranes up to 50 microns in diameter, slightly
larger than those reported here.[1] It would be interesting to further develop and extend this
technique, particularly in finding a adhesive substrate to replace PMMA which would also
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Figure 2.6: Optical micrograph of PMMA holes attached to a graphene surface.

be compatible with electron microscopy.
Unfortunately, I was not able to perform further characterization of the membranes to

evaluate tension and surface morphology. This was done with membranes fabricated by
Benjamin Aleman using the direct transfer method, to which we turn next.

2.2 Optical Transduction Technique

We’ll first describe the optical transduction technique used to perform the resonance studies.
The basic idea is to form a Fabry-Perot cavity using the graphene as one of the walls. The
technique is similar to that used in previous studies of graphene resonators. [17] The Fabry-
Perot cavity is formed by taping the TEM grid onto a polished silicon chip, whose surface
acts as a stationary mirror. Since the reflection coefficient of graphene in the optical range
is quite small, we only consider single reflections in the cavity. If the incoming light ray has
intensity I0, the reflected intensity is then to a good approximation

I ≈ I0

(
T 2
GRSi + 2TG

√
RGRSi cos

(
4πd

λ

))
where RG ≈ 1.3×10−4 and TG ≈ 0.98 are the reflectivity and tranmissivity of graphene [18],
RSi ≈ 0.4 is the reflectivity of silicon (we use a 532 nm laser, see below), d is the distance
between the center of the graphene shell and the silicon, and λ is the wavelength of the probe
light. If we allow the shell to vibrate according to d(t) = d0 + A cosωt, and assuming that
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Figure 2.7: Schematic of the Fabry-Perot interferometer used to measure the spectrum of
graphene mechanical resonators.

A/λ is small, plugging in relevant numbers we have to a good approximation

I ≈ I0

(
0.38 +

0.17A

λ
sin

(
4πdo
λ

)
cosωt

)
The small time-dependent component of the reflected intensity can be picked up by a lock-in
amplifier referenced to the driving signal. Though we cannot control d0, we have lots of
resonators to choose from and can scan them until one with a measurable signal is found.

The setup is illustrated in Figure 2.7. We’ll walk through the alignment process, as it
was important in getting a good signal; this involves adding each element of the setup in
turn. First, the Fabry-Perot device is mounted inside of a vacuum chamber (in this case a
simple cross-junction) by taping it face-out to the back side of a view port. The chamber is
evacuated using a turbo-pumping station to about 1 microtorr. A green 532 nm diode laser
with an output of 100 microwatts, which serves at the probe which forms the interference
pattern, is reflected off an adjustable half-silvered mirror and directed onto the device after
passing through a second half-silvered mirror oriented at 45 ◦as shown. The vacuum chamber
is mounted on 3-axis stage; the light from the laser is allowed to fall on the wall of the lab
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and the tilt of the chamber is adjusted so that the spot reflected from the surface of the
view-port overlaps with the one reflected from the sample. A second diode laser, operating
at 420 nm with an adjustable output between 1 and 5 milliwatts, which will serve as the
pump to actuate the resonance, is then aligned with the first using a series of adjustable
mirrors (not shown). Its reflection from the second half-silvered mirror is directed towards
a photodiode, which measures its power; the light from the probe laser is filtered prior to
reaching the photodiode.

Next, an objective lens mounted onto a 3-axis stage is placed between the half-silvered
mirror and the sample so that the sample lies at its focal point. The optic axis of the
objective is adjusted until defocusing causes the laser spot to breathe in and out without
shifting position. The sample can be viewed by shining a white light into the sample chamber;
this was done with a retractable mirror between the two half-silvered mirrors (not shown).
The image is formed by placing a focusing lens with a 15 mm focal length about 30 cm down
the optic axis from the objective and is viewed with a CCD camera (not shown). The light
is shone into the camera via another retractable mirror after the focusing lens (not shown) .

To measure the resonances, the end of an optical cable is placed in the image plane of
the focusing lens. It was found that placing the fiber slighly to the side of the central spot
improved the quality of the signal; this is likely because as the graphene fluctuates, it comes
in and out of the focus of the laser. The laser light from the pump is filtered out, and the
signal from the probe is fed into an optical/electrical (O/E) converter whose output is fed
into the input of a lock-in amplifier. The pump laser’s power is modulated by about 100
microwatts through a function generator whose output is T’ed to the reference of the lock-in
amplifier. The reference frequency and output of the lock-in are read by a computer as the
function generator is swept over the relevant range of frequencies, here between 500 kHz and
2 MHz.

2.3 Actuation

When the laser falls on the graphene, it of course heats it up. Assuming the power is uniform
across the spot, we can solve the heat equation −k∇T = ~q, where k ≈ 5000 W/mK is the
thermal conductivity of graphene [19] to yeild the temperature profile

T (r) =
Iα

kha2l

(
a2 − r2

)
+ T0

where h = 0.35 nm is the “thickness” of graphene, I is the intensity of the laser, α is the
fine structure constant (the absorbance of graphene), a is the radius of the base of the shell,
al is the radius of the laser spot, and T0 is the temperature of the supports, assumed to be
at room temperature. To simplify the discussion, we’ll take the average of the temperature
over the shell.

∆T =
Iα

2kh

(
a

al

)2

(2.1)
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The increased temperature can have two effects on the resonators.

• it can cause a proportional strain in the graphene according to εT = αT∆T where αT

is the thermal expansion coefficient of graphene.

• It can cause a stiffening of the bending rigidity according to Equation 1.27.

In either case, the elastic properties of the sheet are changed. If we now allow the power
of the laser to fluctuate according to I(t) = I0 + Itcosωt, the bending rigidity and/or stress
fluctuates accordingly, and we expect that a resonance will occur when ω matches a resonance
frequency of the shell. The amplitude of the vibrations increases until they loose energy at
a rate consistent with the damping in the system. The phenomenon is that of parametric
resonance, where a periodic change in the parameters of the resonator act as an effective
driving force. A often-cited example is that of a child on a swing, where the effective length
of the swing changes as the child lift and lowers their legs.

2.4 Spectrum of Square Graphene Resonators

We begin by looking at the spectra of the 7 micron square resonators; example of two spectra
are shown in Figure 2.8. In both cases, we see a series of well-resolved Lorentzian peaks in
the frequency range 400 kHz to about 1.2 MHz. We assign the lowest frequency peak to the
fundamental (1,1) mode of the resonator, and work upwards. In the top spectrum, we see
that the degenerate (2,1) mode is split into two peaks, indicating that some asymmetric mass
and/or strain is present in that membrane. In the bottom spectrum, the (2,1) mode remains
unsplit, but a number of smaller peaks are present which cannot be assigned unambiguously
to the modes of the resonator; they are perhaps due to interactions with the modes of the
substrate.

In the membrane model, we can determine the strain in the resonator by using Equa-
tion 1.11 and using Equation 1.6 for the stress. We have

ε =
4f 2ρL2

Y (n2 +m2)
(2.2)

where f = ω/2π is the measured frequency in Hz. For the mass density ρ, we have to
consider the mass of impurities as well, which can be considerable, since the mass density of
graphene is small: ρG ≈ 7.6× 10−7 kg/m2. As a rough estimate, we can use TEM images by
Regan and Aleman using our direct transfer process to gauge the impurity level [14] and put
ρ ≈ 10−6 kg/m2. Using this and Y = 340 N/m, we have based on the (1,1) mode ε ≈ 10−6.
1 When considering the ratios of the mode frequencies, we see that in both cases, the higher
modes are somewhat upshifted compared to the expected ratios of membrane; for example,
the (2,1) mode should be

√
5/2 ≈ 1.58 times the fundamental, and the (2,2) modes should

be twice the fundamental. We can account for this by considering the bending rigidity of the
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Figure 2.8: Spectra of 7 micron square graphene resonators. The red line indicates a model
fit to Lorenztians. To the right of each spectrum the mode assignment and frequencies are
shown along with their ratios to the fundamental.

membrane. Using Equation 1.24, we can calculate the expected ratios of the higher modes
to the fundamental; after a bit of algebra, we get(

ωmn
ω11

)2

=
(n2 +m2)

[
(n2 +m2)

2
π2h2e + 12(1 + ν)L2ε

]
8π2h2e + 24(1 + ν)L2ε

(2.3)

where again he ≈ 0.1 nm is the elastic thickness. In the denominator, the first term is
negligible compared with the second (we ignore the rigidity in calculating the strain from the
fundamental mode for the same reason); however in the numerator, the strong dependence
on the mode numbers gives us a measurable correction. We find for example

ω21

ω11

≈ 1.62,
ω22

ω11

≈ 2.27

which is in better agreement with the observed ratios, particularly for the unsplit (2,1)
modes; it is possible that whatever causes the splitting of the degenerate modes may also be
responsible for the increased upshift in frequency.
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Figure 2.9: Amplitude and phase of a 7 micron square graphene resonator.

Figure 2.10: Spectrum of 2 micron diameter circular membranes.

We also examine the individual peaks by scanning over them slowly. The lock-in records
both quadratures of signal, so that both the amplitude and the relative phase between the
response and driving signal can be determined. Figure 2.9 shows the amplitude and phase
response of the fundamental mode of a 7 micron square graphene resonator. The peak is
fairly well matched to a Lorentzian; the center of the peak is at approximately 440 kHz, with
a full-width-at-half-maximum (FWHM) of about 10 kHz, giving a quality factor f/∆f ≈ 44.
The phase is seen to undergo a 180 degree shift as the driving frequency passes through the
resonance, as expected for a linear oscillator.

2.5 Spectrum of Circular Graphene Resonators

Figure 2.10 shows the spectrum of a 2 micron diameter circular resonator. Two peaks are
clearly resolved, which we assign to the (0,1) and (1,1) modes, respectively. If we treat the
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Figure 2.11: Amplitude and phase response of a 2 micron circular graphene resonator.

resonator as a membrane, using the values in Table 1.1 we arrive at strain of ε ≈ 10−10, which
is a very small number. Also, the ratios of the fundamental to the (1,1) mode do not match
up with those of a membrane. On the other hand, if we treat the resonator as a clamped
sheet with a finite bending rigidity, we have for the fundamental mode, from Table 1.2

f01 =
1.624

a2

√
κ

ρ
≈ 796 kHz

which comes very close to the measured value of the resonator; the discrepancy may have to
do with our approximation of the mass density. Moreover the ratio of the fundamental to
the first harmonic comes very close to the expected value, again from Table 1.2, of 2.08.

In general, the peaks measured from the circular resonators tended to be sharper and
more well-defined than those from the square resonators. Figure 2.11 shows the amplitude
and phase of the higher harmonic in Figure 2.10. The peak is much narrower, with a FWHM
of about 6.2 kHz, yield a quality factor of about 270, which is a great improvement over that
of the square membranes. The phase likewise shows a clear 180 degree phase shift as the
driving frequency is swept through the resonance, again indicating a good linear response.

2.6 Intensity-Dependent Frequency Shifts

As mentioned above, the mean power level of the pump laser could be varied between 0 and
5 milliwatts. We investigated the dependence of the spectra on the mean power, and found
that significant frequency shifts would occur. Figure 2.12 shows a series of spectra taken
at various power levels. The intensity has been normalized to that of the spectrum shown
in Figure 2.10. Both the fundamental mode and the higher harmonic shifted in proportion
to one another, maintaining their relative frequencies to within a few percent. The shift
was quite dramatic; at a relative intensity of about 100, the frequencies were both about
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Figure 2.12: Intensity-dependent resonance frequencies of a circular graphene resonator. The
red line shows the center frequency of the fundamental mode; the blue line shows that of the
(1,1) mode.

half of their initial value. The shifts themselves are approximately quadratic in the relative
intensity.

Another interesting feature of the shifts was the change in the quality factor of the
peaks. As the peaks shifted, their amplitude and widths also changed accordingly. The
dependence of the quality factor on the relative intensity is shown in Figure 2.13. At low
relative intensities, the quality factors tended to be quite high and would vary significantly.
At a relative intensity of about 45 and above they were uniformly around 50, or about the
same as those of the square membranes.

It is admittedly hard to make sense of this data. The increased intensity of course
heats up the resonators, so the effects are most likely a result of increased temperature.
One possibility is that there is some small amount built-in strain in the resonators which
is released as the temperature increases. This would imply that the thermal expansion
coefficient of the graphene is positive in this temperature range; while some studies has
pointed to this possibility, the evidence in the literature is far from conclusive. [13, 20]
Lastly, the behavior of the quality factor may indicate some kind of interaction between
the stretching and bending modes; it is possible that as the strain and/or bending rigidity
change with temperature, that coupling between these modes leads to changes in the loss
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Figure 2.13: Intensity-dependent quality factors of a circular graphene resonator. The red
line shows the quality factor of the fundamental mode; the blue line shows that of the (1,1)
mode.

mechanisms for the resonators.
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Chapter 3

Ultrathin Nanotube Sheets

Graphene is not the only ultrathin material we can make from sp2 bonded carbon. In this
brief chapter, we describe the fabrication of ultrathin nanotube sheets, some observations of
the their behavior in solvents, and some experiments conducted on Joule heating.

3.1 Fabrication

The fabrication technique I used was inspired by that of Wu and Chen. [21] Nanotubes
are first dispersed in a solution of 1% by weight sodium dodecyl sulfate (SDS), a common
surfactant used to suspend nanotubes in aqueous solutions. The type of nanotube was also
important; it was found that nanotube that had a macroscopic “fluffy” character, like HiPCo
single-walled tubes or NanotechLabs multi-walled tubes, tended to make much better films
as well; “sooty” materials like CoMoCat tubes tended to do very poorly. Low concentrations,
of a few mg/L, were generally used, resulting in a solution with a greyish tint. I avoided
ultrasonication as much as possible, as this tended to break the tubes us up and result in
lower strength film. The solution was instead heated to around 60 ◦C and stirred for a
several days, with brief sonication intervals of about 30 seconds every few hours to break up
large chunks.

Prior to fabricating the films, the solutions were allowed to settle for a few hours so that
larger chunks would precipitate out. A few milliliters of the solution was then pulled through
a vacuum-filtration system and the nanotubes were collected on a 25 mm diameter cellulose
filter. It was important to pull the solution through slowly, making sure that it was more or
less still throughout the process; a rate of about 0.5 mL/second was ideal.

After the solution was pulled through, the filter was checked visually to gauge the thick-
ness of the film. Thicker films tended to be a dark grey in appearance, while the thinnest
film were barely visible against the white background of the filter. Copious amounts of water
were then pulled through the film, again slowly to avoid disturbing the nanotubes, until it
was evident that most of the excess surfactant had been washed away. The filter was then
removed, and a small square, usually around 5 mm on a side, was cut out with a razor blade.
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To separate the film from the filter, a modification to Wu and Chen’s process was devel-
oped. A small splash of acetone was added to a petri dish and swirled around to just wet
the bottom of the dish. The filter paper was placed with the nanotubes facing up on the
wet surface until it just started to dissolve. A few more milliliters of acetone was added and
swirled vigorously until the film started to peel off. This takes some practice to get right. I
found the process to be easiest when the film was removed while the filter was still wet with
water from the filtration process. When then the film comes off, the dish was tilted, moving
the film to one side, and the half-dissolved filter paper was wiped up with a tissue.

Next, the petri dish was filled with acetone and covered, and the film was allowed to float
in the solvent for about one hour. Afterwards, the acetone was exchanged, and the process
repeated two to three times. Getting rid of most of the remaining cellulose on the filter is
important; for ultra-clean film, more exchanges with acetone are desirable.

Crumpling

As the films, especially the thinnest ones, floated in the acetone, they underwent an inter-
esting Browning-like motion. The films would fluctuate and fold on themselves occasionally,
and would unfold under slight agitation. In one set of informal experiments, I tried chang-
ing out the solvent to chloroform, and noticed that the film would flatten out considerably;
exchange to isopropanol would make the film crumple up. This is likely due to the varying
polarity of the solvents. Cholorform has relative polarity (to water) of 0.259, while those of
acetone and isopropanol are 0.355 abd 0.546m respectively. [22] As the polarity decreases, it
appears the the film becomes less crumpled; carbon nanotubes are nonpolar, so this crum-
pling may be an effect of the film wanting to decrease its surface area to avoid the polar
solvent. It would be interesting to check this behavior against film thickness as well as the
temperature of the solvent; it may be possible to observe a crumpling transition, as in the
theory of liquid membranes. [23] Here again, the interplay between the bending rigidity and
surface stress on the film comes into play.

3.2 Suspended Films

After being properly cleaned in solvents the films could be picked up onto apertures, resulting
in suspended nanotube films. I used a variety of apertures, though most precise and easiest
to work with were TEM aperture grids with holes ranging from 50 to 1000 microns (SPI).
Getting the film to lay flat across the apertures was tricky; I usually had to chase the film
around as it floated in the solvent for some time, and tease it with the end of my tweezers
to make it lay flat. The advantage of using TEM aperture grids was that the films could be
observed in the TEM.

Representative images are shown in Figure 3.1. At low magnification, we see that the
film has a good amount of residue; the film however is strong enough to support residues
that appear to be much thicker than the nanotubes themselves. Moreover, the tubes appear
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Figure 3.1: TEM images of a suspended carbon nanotube film.



CHAPTER 3. ULTRATHIN NANOTUBE SHEETS 33

Figure 3.2: CAD drawing of device used to make adjustable trenches in silicon.

to be rather well dispersed and uniform. At higher magnifications we see that the tubes
have largely been unbundled and form a disperse network. Residue can also be seen on the
surface of the nanotubes. This is likely residual SDS, which even with thorough rinsing is
difficult to remove completely.

3.3 Films Suspended over Adjustable Trenches

In another set of trials, I was able to suspend the films over trenches with an adjustable
width, formed by a crack in a silicon wafer. Electronic-grade silicon tends to cleave along
very straight lines and is easy to work with; the suggestion to use silicon to make precise
trenches was given to me by Dr. Jannik Meyer. To make precise cracks, I began by gluing
5 mm wide by 2 cm long silicon strips to the center of a glass slide. Before gluing, the back
side of a the silicon was scratched with a diamond scribe near its center. The slide was then
mounted into a custom-built “cracker” device that I made in the machine shop. It is similar
in design to devices used to make break junctions.

A CAD drawing of the device is shown in Figure 3.2. The glass slide is balanced on a
fulcrum made from two round-headed screws (shown as a wedge in the drawing). Torque is
applied to either end of the glass slide via #1 screws (72 turns per inch) that are inserted into
the threaded holes shown on the supports. For the initial crack, the slide was flipped over
so that the silicon chip was between the two fulcrum screws, and the end screws were slowly
tightened until a faint “click” could be heard; this was the result of a hairline fracture in the
silicon. The slide was then flipped over, and the crack observed in an optical microscope.
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With the right finesse, cracks with an equilibrium width as small as 1 micron with fairly
parallel edges could be produced in this manner. The width of the crack could then be
adjusted by tightening the screws on the supports.

To make suspended nanotube devices, a film of nanotubes was first made as described
above and picked up onto the silicon strip before it was mounted onto the glass slide. If
one is very careful, the crack could be produced in such a way that the nanotubes span the
resulting trench. Such a device could be used, for example, to study the effect of strain on
the nanotubes. It may also be possible to suspended graphene or few-layer boron nitride in
this manner, which would open the possibility of studying strain effects on these material
as well. Lastly, per a suggestion by Prof. Zettl, the slide could be replaced with a bimorph,
which is a bilayer piezoelectric device which bends upon an applied voltage. This would
allow for finer control of the trench width, and also allow for remote operation inside of
an SEM. Lastly, adding an insulating layer between the silicon and tubes would allow for
controlled transport measurements of the suspended material.

3.4 Joule Heating of Nanotube Films

In another experiment, I looked at Joule heating of nanotube films. In this experiment, I
fabricated thicker films which I suspended over tungsten wires, like the filament of a light-
bulb. The films were cleaned in solvent and then inserted into a a quartz tube which was
evacuated with a turbo pump to about 40 microtorr. An DC voltage between 0 and 20
volts was applied; the tungsten wires were about 1 cm apart, and the film was about 1 cm
wide. Typical resistance was around 60 Ω. As more and more current was run through the
device, the filament would eventually light up and the temperature could be measured with
an optical pyrometer.

Pure carbon films would typically survive up to around 1000 ◦C, after which they would
burn up. The power vs. T 4 for a single-walled carbon nanotube film is shown in Figure 3.3.
The material follows closely the Stephan-Bolzmann law, with as associated effective area of
0.16 cm2, assuming an emissivity of 1. The resistance vs. temperature of the film is shown
in Figure 3.4. Interestingly, the resistance declines roughly linearly with the temperature.

A film was also made with an even mixture of carbon and boron nitride nanotubes. The
power vs. T 4 is shown in Figure 3.5. The material follows closely the Stephan-Bolzmann law,
with as associated effective area of 0.29 cm2, assuming an emissivity of 1. The resistance
vs. temperature is more interesting, showing an exponential-like decline with increasing
temperature which appear to approach the value of 35 Ω in the limit of high temperature.

The temperature vs. resistance behavior of the films is suggestive of semiconducting be-
havior, where carriers are promoted across a band gap via thermal excitation. The expected
behavior of the resistance is in that case

R(T ) = Rae
Eg/2kBT (3.1)
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Figure 3.3: Power vs. T 4 for a single-walled carbon nanotube film.

where Eg is the band gap. In Figure 3.7 we plot the resistance vs. the inverse temperature
on a semilog axis, where the residual resistance of 35 Ω evident in Figure 3.6 has been
subtracted off. We see that there are two linear trend lines, one in the lower temperature
range which corresponds to a bandgap of 0.52 eV, and another in the higher temperature
range corresponding to a gap of 2.07 eV.

One comment we should make is that this data was taken only in one direction, as we
film was being heated. It is possible that some effects are due to annealing of the sample,
and that repeated sweeps may give different results. More well-defined geometries would
also be helpful, as would a clear determination of contact resistance. Further studies of this
interesting behavior may help clarify these issues. It is rare that semiconductors are studied
in this temperature range.
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Figure 3.4: Resistance vs. temperature for single-walled carbon nanotube film.
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Figure 3.5: Power vs. T 4 for a single-walled carbon-BN composite nanotube film.
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Figure 3.6: Resistance vs. temperature for a single-walled carbon-BN composite nanotube
film.
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Figure 3.7: Resistance vs. inverse temperature for a single-walled carbon-BN composite
nanotube film.
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Chapter 4

Graphene and Boron Nitride Aerogels

In this chapter, we look at porous 3D macroassemblies of graphene and boron nitride.
Macroassembiles of nanoscopic materials can be useful in practical applications; porous
carbon-based materials particularly are widely used in industry in applications such as fil-
tration systems and are finding increasing use in products such as supercapacitors and other
alternative energy technologies.[24, 25, 26, 27, 28] More recently, BN-based analogs of these
materials have been studied; owing to its increased oxidation resistance, BN can be use-
ful in applications such as catalysis and hydrocarbon cleanup, and the polar nature of the
BN bond, which changes the surface properties and can lead to enhanced gas adsorption
properties.[29, 30, 31]

The general term for a 3-dimensional, cross-linked network of elements is a gel. The
cross-linking can be through covalent bonds, or through weaker interactions such as hydrogen
bonds or van der Waals attraction. The process of creating the cross-links is called gelation.
The most familiar gels, such as those used to style hair, are made of polymers; they are
termed hydrogels since the space in between the polymers is filled with water.

Aerogels are gels that have air or some gas in between the elements; typically they
contain upwards of 90% gas by volume. For this reason, densities tend to be very low,
usually a few mg/cm3. They are also meso- or nano-porous, with specific surface areas (SSA)
typically several hundred m2/g. Aerogels are commonly made by first forming a hydrogel
and subsequently removing the water. Freeze drying or critical point drying in CO2 is most
often necessary in order to avoid collapse of the nano- and meso-pores via surface tension
forces.

The most common aerogels are made of silica and are often used as insulation on account
of their very low thermal conductivity. Carbon-based aerogels are new by comparison, but
also fall under the class of porous carbons, which have a long history of application dating
back to the Egyptians. Activated charcoal is traditionally used as a filter and an absorbent
owing to is high specific surface area (SSA), low cost and high availability. Assuming ad-
sorption of both sides of its basal plane, graphene has a theoretical SSA of 2,600 m2/g. On
the other hand, graphitizing carbon precursors, when used in traditional synthesis processes
for porous carbons, almost always result in predominately macroporous materials with very
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Figure 4.1: Schematic of the relationship between graphene oxide, graphene, and boron
nitride aerogels.

low SSA, making them much less useful. By taking a bottom-up approach, aerogels made
from carbon nanotubes and graphene may thus offer distinct advantages.

In a parallel vein, porous forms of boron nitride have attracted attention, particularly in
the field of hydrogen storage. As discussed in the introduction, the difference in electronega-
tivity between boron and nitrogen confers to the surface of BN electrical dipole fields, which
in turn can induce dipoles in adsorbant molecules, leading to an increase in binding energy.
While results remain inconclusive, some studies have indicated an improvement in hydrogen
storage capability over carbon based materials.[32, 33, 34, 35, 36, 37] Its excellent thermal
properties may also make porous BN a good ultra-high temperature thermal and electrical
insulator. High chemical inertness coupled with its thermal stability also makes porous BN
an excellent candidate for catalyst support.[38]

In the present chapter, I describe and analyze a set of experiments on aerogels composed
of atomically thin reduced graphene oxide, graphene, and boron nitride sheets. These differ
from typical aerogels in that the basic elements are 2D instead of 1D linear molecules; for
this reason, they exhibit unique surface morphologies and cross-linking structures, which we
will analyze using transmission electron microscopy (TEM).

The gels are related to one another through chemical processes of reduction and oxidation,
shown schematically in Figure 4.1: hydrothermal reduction is used to convert a graphene
oxide suspension to a reduced graphene oxide hydrogel, which is then super-critically dried
to form an aerogel; high temperature thermal reduction is used to convert the resulting
aerogel to a graphene aerogel; and carbothermal reduction of boron oxide – or alternately,
boro-thermal oxidation of graphene – followed by nitridation is used to convert the graphene
aerogel to boron nitride.

The work in this chapter was done in collaboration with Anna Goldstein and Dr. William
Mickelson at UC Berkeley’s Center of Intergrated Nanomechanical Systems, and with Drs.
Marcus Worsley and Leta Woo at Lawrence Livermore National Laboratory. Dr. Worsley
provided many of the original graphene aerogel samples. Dr. Mickelson performed much of
initial TEM work, as well as the EELS measurements. Ms. Goldstein worked closely with me
throughout the project, providing samples, conducting TEM investigations and porosimetry
measurements, and providing much useful insight.
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4.1 Graphene oxide and reduced graphene oxide

aerogels

Graphene is a relatively inert material owing to its planar structure and tight sp2 bonds;
however, the possibility of sp3 hybridization of all or part of the graphene surface does allow
it to be functionalized. Graphene oxide (GO) refers to a class of materials where graphite has
been subjected to strong oxidizers, resulting in hydrophillic, oxygen containing functional
groups covalently bound to the surface and edges of graphene’s hexagonal lattice . It was
first synthesized in 1840 by Schafhaeutl in the process of combining various minerals with
acids, in this case Kish graphite flakes with sulfuric and nitric acids.[39] The predominate
commercial process used today was first reported by Hummers and Offeman in 1958 and
results in a yellowish-brown, foam like substance.[40] Dreyer and Park offer an recent review
of graphene oxide chemistry.[41]

Structure of Graphene Oxide

The atomic level structure of GO has been the subject of a number of recent studies and
remained controversial for some time. The currently accepted model which has found con-
siderable experimental support was first proposed by Lerf and Klinowski in 1998.[42] On
the basis of nuclear magnetic resonance (NMR) studies and other data, they concluded that
GO contains separated regions of aromatic carbon and oxidized regions containing a com-
bination of sp3-bound hydrodyl groups and epoxides, which form a layer of oxygen atoms
above and below a 2D honeycomb layer. The structure is essentially nonstoichiometric, with
random domains of oxides interspersed throughout a sp2-bound graphitic backbone. Car-
boxyl groups are believed to attach primarily to the edges of the graphene oxide flakes, a
conclusion which was recently supported in a study by De Jesus [43]. Aberration-corrected
TEM studies by Pantelic [44] and Erickson [45] have provided atomic-scale imaging of the
segregation of aromatic and oxidized regions. A recent study by S. Zhou suggest a simple ki-
netic model, wherein the oxygen functionalities diffuse on the surface of the graphene lattice
and agglomerate by means of weak attractive potentials. [46]

The introduction of sp3 bonds into the basal plane of graphene leads to increased wrin-
kling of the GO sheets. AFM studies of GO on HOPG by Pandey indicate that the surface
has a roughness of approximately 1.1 nm and is dotted with 0.2 - 0.4 nm protrusions as well
as “meandering wrinkles” that appear as ridges up to 10 nm in height. [47]. In the case
of epoxy groups, Li has argued that conformational changes in the graphene sheet lead to
large strains which can be relaxed by forming linear oxidized structures. [48] Some evidence
for these can be found in both Pantelic and Erickson’s studies; the latter also indicated that
strain tended to be concentrated at the boundary of the aromatic regions. Upon thermal
reduction, these epoxide chains may leave behind defects which “iron in” the wrinkles.

It is interesting to note that in all of the above studies, the GO sheets are tied to a
surface, either a flat substrate or holes in a carbon film used in TEM imaging. This inevitably
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flattens the GO sheet with respect to its free-floating form; hence larger-range curvature is
possible in fully suspended sheets. An interesting recent study by Whitby indicates that it
is energetically favorable for single-layer GO to bend back on itself, particularly in high pH
environments. [49]. Their simulation suggest that the bending rigidity is lower in GO than
in pure graphene, owing mostly to the defects and functional groups on its surface. This
is the opposite of what occurs in most 3D metals, where increased dislocations and defects
tend to lead to increased stiffness. One also sees this is macroscopic 2D system, such a piece
of paper, which increases its bending rigidity upon crumpling.

Gelation through hydrothermal reduction

While the structural modifications in GO compromise some of the outstanding features
of graphite, such as mechanical strength and electrical conductivity, they confer a great
advantage in materials processing as it is trivial to make well-dispersed suspensions of the
material. The polar nature of these functional groups means that GO becomes hydrophillic,
and when dispersed in water, acquired a negative surface charge. Suspended GO flakes
tend to exfoliate into atomically thin sheets when lightly sonicated, leading researchers to
consider it early on as a precursor to forming monolayer graphene. The role of water in GO’s
structure was considered by Lerf and Klinowski, who concluded that it formed an integral
part of the GO structure, and were strongly bound to the epoxide and hydroxide groups; it
began to decouple from fully hydrated GO at 160 to 220 ◦C. [42]

The chemical reduction of GO in solution was explored early on by Stankovich et al.
through the use of hydrazine, usually resulting in a black powder which, upon losing a large
fraction of its oxygen functional groups, would precipitate to the bottom of the containing
vial. [50] Hydrazine, however, is highly toxic, making this approach problematic. In 2009,
Y. Zhou et al. reported on a “green”, hydrothermal process using only water. In their
experiment, aqueous GO solutions of 0.5 mg/mL were placed in a Teflon-lined autoclave
and heated to 180 ◦C for 6 hours. The solution turned visibly black and opaque from light
brown, indicating a change in optical conductivity, likely due to increased π-conjugation.
XPS spectra indicated an increase in the C/O ratio, from 1.8 to 5.6. A shift in the relative
intensity of Raman peaks also indicated an increase in graphene-like, sp2 bonding.

This technique of hydrothermal reduction was subsequently employed by Xu et al. to
produce monolithic rGO aerogels. [51] By simply increasing the initial concentration of GO
to around 2 mg/mL, they found that the recovery of aromatic structures in the constituent
sheets was accompanied by π-stacking between them, leading to cross-linking and hence
gelation. The process is illustrated in Figure 4.2. The initial structure is analogous to several
crumpled sheets of paper laying next to one another. Initial contact between the sheets occurs
at the areas of largest curvature, which correspond to the highly oxidized regions of GO.
The long-range interaction between the sheets may be facilitated by hydrogen bonding. [49]
As the sheets begin to lose functional groups, short-range van der Waals interactions can
cause the sheets to coalesce and fold together, forming a cross-linked 3D structure which
precipitates from the solution.
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Figure 4.2: Schematic of the gelation process for graphene oxide hydrogels. Initially, the
sheets are well separated and mostly covered with oxygen functional groups, indicated by
the blue lines. As reduction proceeds, graphitized areas being to π-stack, leading to agglom-
eration and precipitation from the solvent. The final cross-linked structure retains some
oxygen functional groups which retain the gels hydrophilic quality.

Concurrent with Xu’s experiments, efforts at synthesizing graphene aerogels from GO
suspensions were being pursued by Dr. Worsley et al. at Lawrence Livermore National
Lab. Initial approaches followed those used for carbon nanotube aeorgels, which involved
a solution of ricorcinol and formaldehyde as gelling agents. [52] It was subsequently found,
however, that these agents were not absolutely necessary, and that the addition of sodium
carbonate allowed for gelation to occur at 85 ◦C. [53] Alternately, ammonium hydroxide
was used as a geling agent. [54]. The reduced temperature allows for facile synthesis of the
aerogels by simply punching a hole in a rubber gasket, mounting it onto a microscope slide,
and filling it with the GO suspension. A second glass slide is then placed on top and clamped
together with binder clips. This results in disk-shaped gels having a high macroscopic surface
area to volume ratio, which facilitates gas diffusion and improves handling in subsequent
steps described below. Alternately, the gelation can occur in a sealed glass vial, resulting
in a cylidrically shaped hydrogel. The gels are then rinsed thoroughly in deionoized water,
which was finally exchanged with acetone. They were then supercritically dried until acetone
condensation in the exhaust of the drying ceased.

High temperature thermal reduction

Unique to Dr. Worsley’s approach was the further reduction of the reduced graphene oxide
aerogel via high temperature thermal annealing, which resulted in a significant increase in
graphitization. The graphene oxide aerogels were typically fired in an Ar or Ar/H2 atmo-
sphere at 1100 ◦C or 1600 ◦C. NMR studies of resulting graphene aerogels showed a near
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complete conversion of the material to sp2-bound carbon. We also conducted experiments
to study the effects of even higher temperatures, which we describe below.

High temperature annealing of GO in inert or reducing atmospheres has long been known
to eliminate oxygen functional groups and increase the aromaticity of the material. However,
it is also accompanied by large mass loss, owing to the evolution of carbon monoxide and
carbon dioxide; oxygen is not found in the decomposition gases. [42]. It is important to
note that pre-reduction of graphene oxide via the hydrothermal process described above is
essential in maintaining a gel structure. In a control experiment, I heated graphene oxide
foam directly in a nitrogen atmosphere at around 1700 ◦C; the sample was lost completely,
presumably from the development of CO2 and CO; this is very similar to a technique used in
early attempts to exfoliate and simultaneously reduce GO to form graphene. [55] These gases
not only carry off the carbon, but cause large pressures to build up between the graphene
oxide sheets, leading to their sudden expansion and getting carried off in the flow of nitrogen
gas. This direct approach also leads to highly degraded graphene flakes. This also suggests
that oxygen-containing groups in the cross-links of the gel have largely been eliminated
by the hydrothermal reduction process, since evolution of gas in between the sheets would
otherwise cause the graphene sheets to separate upon thermal reduction.

Meso-scale Structures

We conducted a series of SEM and TEM investigations in order to gain further insight into
the structure of the graphene aerogels. Samples were provided by Dr. Worsley using the
method described above; Ms. Goldsetin also produced samples using an adaptation of Xu’s
pure-water process. To make the SEM sample, double-sided carbon tape was mounted onto
an aluminum SEM mount; the gel was then pressed onto the opposite side of the tape and
pulled off, leaving a small amount of gel behind. They were examined in a Sirion SEM
operating at 5 keV.

On the meso-scale, the gel appears to be composed of aggregate layers of sheets arranged
like wrinkled tissues. In some regions, partial alignment of the sheets leads to slit-shaped
pores about 200 nm across. The structure differs significantly from that reported by Xu,
where large, circular pores are found between the sheets which have little overlap and appear
much smoother.

One explanation for the difference might be a difference in drying, i.e. freeze-drying
versus supercritical drying; similar structures to those of Xu are obtained, for example, in a
recent study by Sudeep who also employed freeze-drying. [56] Another difference with those
studies is our use of high-temperature annealing, which likely leads to enhanced π-stacking
between the sheets, leading to smaller pores. It would be instructive to perform further SEM
characterization of the gels as a function of annealing temperature and duration to confirm
this and further quantify this effect. The density of initial GO suspension may also play a
role.

The role of the exchange of acetone before supercritical drying may also play an important
role. An early study by Wen found that the exchange of water by acetone in aqueous
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Figure 4.3: SEM images of graphene aerogels.

dispersion of GO caused the sheets to crumple into a three-dimetional configuration, which
was attributed to the lowered polarity of the solvent. A follow-up study by Spector also found
that GO tends to crumple into compact objects upon dispersion in acteone, although the
crumpled phase was not observed for GO in a solution of sodium hydroxide. [57] Although
our GO sheets have been largely deoxygenated, some functional groups certainly remain, so
that the effects of solvent changing can still be significant.

Low-magnification TEM images were also taken to analyze the overall structure of the
wrinkled sheets making up the aerogel. Samples were prepared by simply rubbing the grids
against the sample. They were examined in a low-voltage DeLong TEM operating at 5
keV. Representative images are shown in Figure 4.4. In addition to the small wrinkles
which texture the surface of the sheets, larger folds with a length scale of several hundred
nanometers in length and about 50 nm in width can be seen. In the left image, the wrinkled
sheet has folded up into a triangular crease, the wall of which are oriented perpendicular to
the electron beam, resulting in much higher contrast. In the image on the right, two sheets
can be seen laying atop one another. A small hole, about 100 nm across, is also seen at the
edge of the top sheet.

The gels were also examined in high resolution TEM, operating at 80 kEV. Samples were
prepared by sonication in isopropanol and drop-casting onto lacey carbon grids. Figure 4.5
shows two representative images taken at 30k and 120k magnification, respectively. On the
left, two wrinkled sheets can be seen overlapping on the right side of the image where the
contrast undergoes an abrupt change; the addition of a second sheet also blurs the finer
structure of the wrinkles. Larger folds seen in the LVTEM can be seen in other images (not
shown). In the image on the right the smaller wrinkles, measuring about 2 nm across and
between 15 and 30 nm in length, can be made out more clearly. Some larger, wider winkles
can also be seen. The spacing between the smaller wrinkles is roughly uniform at around 15
- 20 nm.
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Figure 4.4: Low-voltage TEM images of graphene aerogels.

Figure 4.5: TEM images of graphene aerogels showing structure of the wrinkled sheets.
Samples were annealed at 1600 ◦C. Images by William Mickelson.
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Figure 4.6: Scaling relation between wrinkle width and length for graphene aerogels.

The appearance of wrinkles on multiple scales is interesting, and suggests a fractal-like
architecture for the gels. Figure 4.6 shows the scaling relation between the width and length
of the wrinkles in the graphene aerogel sheets. It is observed that the relation is roughly
linear, with a scaling exponent of approximately 1.04. This is different than what is expected
in the crumpling an elastic sheet like paper, where the relation R ≈ h1/3X2/3 is expected to
hold, where R is the width of the wrinkle, h is the sheet thickness, and X is it length.[58].
This may be related to the fact that the bending rigidity of graphene does not follow the
relation κ ∼ h3, from which the above relation is derived; the interlayer van der Waals forces,
which make graphene an adhesive elastic sheet, may also play a role.

Fine structure of graphene wrinkles

Figure 4.7 shows two high-magnification TEM images of edges of the sheet which show the
fine structure of the wrinkles. Dark fringes laying roughly parallel to one another indicate
vertically oriented portions of the atomic layers making up the sheet. Interlayer spacing
can be analyzed by taking a contrast profile across the fringes and fitting Gaussians to the
respective peaks. It is found to vary widely, ranging from 0.37 to 0.43 nm, and is consistently
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Figure 4.7: High magnification TEM images of graphene aerogels fired at 1600 ◦C under Ar.
Image by William Mickelson.

larger than 0.335 nm, which is that of highly crystalline hexagonal graphite.
In Figure 4.8 we show one region of a graphene aerogel in two different focal planes.

Comparison of the two images reveals that there are regions where the ridges and folds cross
one another; this indicates that the sheet in this region is at least two layers, with ridges
forming on either side. Many of these ridges are composed of three walls, indicating that
the wrinkle has folded up into an accordion-like structure. Figure 4.9 shows a sketch of a
possible model for the wrinkles observed in the graphene aerogels.
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Figure 4.8: High magnification TEM images of graphene aerogels at two focal planes. Image
by William Mickelson.

Figure 4.9: Model of a wrinkle in a graphene aerogel.
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Figure 4.10: SEM images of BN aerogels.

4.2 Boron Nitride Aerogels

As mentioned in the Introduction, boron nitride (BN) shares many of the characteristics of
graphene. The difference in electronegativity between boron and nitrogen, however, strongly
breaks the symmetry of the graphene lattice, making BN a wide band gap, optically trans-
parent insulator. This difference in electronegativity also accounts for some of BN’s most
interesting surface features. Of great interest in the research community is its enhanced
physisorption properties.

The conversion of graphene aerogels to BN is discussed below in Section 5.3. Here, we
look closely at the meso- and micro-level structure of the gels and compare them to the
graphene gels above.

Meso-scale structures

We examined the meso-scale architecture of the BN aerogels much as we did the graphene
aerogels. Figure 4.10 shows two SEM images of the gels; samples were prepared identically
to the graphene gels above. Since BN is an insulator, it tends to charge up in the SEM and
so imaging tend to be more problematic and at lower resolution. Similar structures to the
graphene aerogels can be seen; the morphology on the micron-level appears much the same,
with tissue-like sheets folded into each other forming slit-shaped macropores between them.

Low-voltage TEM images of the BN aerogels are shown in Figure 4.11. Significant dif-
ferences from the graphene gels can be seen in these samples. In many parts, the gels are
fractured, with small holes appearing between the wrinkles. The wrinkles themselves appear
much more faceted and strait. Some larger-scale folds can be seen, though there tended to
be fewer of these than in the graphene samples. It should be noted, however, that samples
were much less consistent than in the case of the graphene aerogles; while the macro-level
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Figure 4.11: Low-voltage TEM images of BN aerogel sheets.

material almost always turned white after the conversion process, microstructure tended to
vary significantly; see the discussion in Section 5.3. For example, in samples that tended
to have larger specific surface area and were more robust mechanically, the gels tended to
resemble the graphene gels more closely.

Figure 4.13 shows the scaling relation between the width and length of the crumples in
the BN aerogels. A very different behavior is seen from that of the graphene aerogels. Here,
the length of the crumples are nearly independent of the width at around 50 nm; the scaling
exponent is only 0.213, whereas in the graphene gel it was nearly unity.

Layering and Cross-linking structure

As with the graphene aerogels discussed above, the layering and cross-linking structure of
the BN aerogels were examined using TEM. Samples were prepared similarly to those of
the graphene aerogels. A representative image is shown in Figure 4.14. Compared to the
graphene aerogel shown in Figure 4.7, it is immediately evident that the facets of the sheet
are much straighter. Here, we can see atomically straight planes more than 40 nm in length,
as compared to the meandering fringes of the graphene aerogel.

The thickness of the sheets also appears to have increased, from two to three atomic
layers in the case of the graphene aerogels, to six to eight in the present case. This increase
in thickness is accompanied by an increase in the rigidity of the respective sheets, presumably
by a factor of eight, since the rigidity goes at h3, where h is the thickness of the sheet (see



CHAPTER 4. GRAPHENE AND BORON NITRIDE AEROGELS 53

Figure 4.12: Mid-magnification TEM images of BN aerogel sheets. Images by William
Mickelson.

earlier discussion). This likely accounts for the straighter walls observed in the BN sample
as compared to the graphene. The stronger inter-layer binding of BN may also contribute
to an increase in rigidity.

Nominally, if we assume the stoichiometry of carbothermal conversion, there should be
a roughly four-thirds increase in the number of unit cells, or layers. If the conversion of the
sheets is accompanied by a folding up the layers, we could then account for the observed
increase (3× 4/3× 2 = 8). We should note, however, that for graphene aerogels fired under
the same conditions but in the absence of boron oxide, wall thickness is indeed similar. The
increase in wall thickness may then simply be due to the increase in temperature. Controlled
experiments comparing converted gels pre-fired at various temperatures are necessary to
distinguish between these two effects.

The interlayer spacing between the BN planes was analyzed by taking contrast profiles
across the the wrinkles. The profiles were then analyzed using a Fourier-tranform technique.
Upon taking the discrete Fourier transform of the profile, a prominent peak was found super-
imposed on a 1/f background. The 1/f background is a result of the stochastic sampling in
the TEM. The peak corresponded to an interplanar spacing of 0.331± 0.0003 nm (the error
is associated with the width of the peak). It was found to be highly consistent throughout
the sample, indicating that the crystallinity was quite good. Deviations from this interpla-
nar spacing were found at the intersections and edges of the wrinkles. This improvement of
the crystallinity over the carbon percursor is consistent with other studies of carbothermal
conversion on carbon structures. [59]
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Figure 4.13: Scaling relation between wrinkle width and length for BN aerogels.

Another prominent feature seen in TEM images of the BN aerogels is the presence of
rounded termination edges; an example can be seen at the end of the dark linear feature
in Figure 4.14. The only possible explanation of such a feature is that it forms the edge of
vertically oriented facet of the sheet.

One possible geometry that explains these vertical facets is that of the developable cone,
or d-cone. An example of such a structure is shown in Figure 4.15. Such structures are
thought to arise in the wrinkling of elastic sheets as a result of the coupling between the
stretching and bending modes of the material.[60]

Finally, we found that, especially in areas where two sheets overlap, junctions between
wrinkles could be found. A couple of examples are shown in Figure 4.16. We see that
the facets of the gel split in parts, with some walls following one facet or another. The
gel therefore appears to a type of interlaminated structure, where atomic planes are shared
between the various sheets.
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Figure 4.14: High magnification TEM image of a BN aerogel. Image by William Mickelson.
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Figure 4.15: A developable cone. Adapted from Reference [60]

Figure 4.16: Examples of cross-linking structures in BN aerogels.
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Part II

Synthesis of Boron Nitride
Nanostructures
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Chapter 5

Conversion of Carbon to Boron
Nitride

5.1 Carbothermal reduction and simultaneous

nitridation

Perhaps one of the oldest high temperature chemical processes known to man, carbothermal
reduction refers to the general class of reactions wherein carbon is combined with an oxide
to recover the pure element; the most ubiquitous example is the reaction of ore with coke
in a blast furnace to produce pig iron. In the case of boron, the oxide is usually reduced
with magnesium instead; this is because the reaction is more thermodynamically favorable
at lower temperature and the byproducts are easier to remove. The direct reduction of boron
oxide with carbon in an atmosphere of noble gas leads instead to boron carbides.

On the other hand, the carbothermal reduction of boron oxide can be immediately fol-
lowed by nitridation when performed in an atmosphere of diatomic nitrogen. The overall
reaction is given by

B2O3 + N2 + 3 C −−→ 2 BN + 3 CO (5.1)

This reaction was first reported by Wöhler and Sainte-Clare Deville in 1857; a commer-
cial process was subsequently developed by Lindblad in 1919.[61] According to the classical
Elligham diagram, the primary reduction of the boron oxide becomes thermodynamically
favorable at around 1500 ◦C; at lower temperatures, the product tends to contain larger
fractions of boron oxide and boron carbide.[62] This continues to be one of the predominate
processes used today in the production of BN powder, where graphite or similar carbon
sources are fired through a hot zone of a furnace together with boron oxide in a flow of ni-
trogen; excess boron oxide can be easily washed away with water, and the resulting powder
is also burned in air at temperatures above 600 ◦C to oxidize any remaining carbon.[63]

Owing to the commercial usefulness of this chemistry, much development has been done
in private corporations and little information is available in the open literature. There are
however some limited studies available. An interesting study by Bartnitskaya et al., which
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looked at the conversion process on fine-grained graphite particles under varying amounts
of boron oxide, revealed that the reduction of boron oxide occurs on the surface of the
carbon structure, with the result that the rough morphology of the original carbon structure
is maintained.[64]. Another useful study by Aydoğdu concluded that the conversion likely
occurs in the vapor phase, and is again surface-limited.[62]

Crucible design for vapor-phase conversion

One of the conclusions of both Aydogdu and Bartnitskaya in their studies of carbothermal
reduction of boron oxide was that the reaction most likely occurred in the vapor phase. In
many previous reports on the conversion of nanostructured carbons to BN (see below), the
starting material would be placed on top of the boron oxide and heated together. Boron
oxide melts at relatively low temperatures (around 450 ◦C) and easily wets both graphite
and BN; the carbon material to be converted thus gets suspended in them melt, and is not
exposed to the nitrogen gas.

Additionally, if not all the boron oxide was evaporated in a given run, the carbon/BN
sample would remain embedded in a hard, brittle boron oxide glass, making retrieval very
problematic. To avoid these problems, as well as any damage to the sample due to surface
tension forces from liquid boron oxide, I designed a crucible assembly for use in a radio-
frequency induction furnace which would keep the carbon material to be converted separate
from the boron oxide melt. A schematic and CAD drawing of the crucible is shown in
Figure 5.1. All parts are machined from high-density molded graphite. The central stem
delivers nitrogen gas to the bottom of the crucible, where a melt of boron oxide is heated
and slowly vaporized.

The design ensures that the boron oxide vapor mixes well with the nitrogen, and is
carried upward through the perforated cup which holds the carbon sample to be converted.
Owing to the nature of induction heating, it is also likely (though hard to measure directly)
that the sample cup is at a slightly higher temperature than the surrounding crucible. This
ensures that boron oxide vapor does not condense on the sample, possibly damaging the
pore structure of the material.

Under normal operation, the crucible was held in the center of the induction coil of the
furnace by means of graphitized carbon fiber insulation. Typically, a section of 1/8 ”-thick
insulation was cut into a section 18 ” wide by 3 ’ long and rolled tightly around around a
2 ” diameter cylinder, such that the outside diameter of the resulting tube was slightly less
than 4 ”. This was then slipped inside the quartz tube forming the chamber of the induction
furnace. A smaller piece of insulation was then rolled up to make a 2 ” diamter by 4 ” tall
cylinder, which was wedged into the bottom of the larger tube of insulation; when mounted
into the furnace, this formed a cavity into which the crucible was placed.

The sample was then added to the cup in the central stem, and lowered into the crucible
using long tweezers. Finally, a second roll of insulation, 2 ” in diameter with a 1/2 ” hole
in the center was slipped over the top, such that the central stem protruded through the
hole about 1 ”. This top piece of insulation was essential to maintain adequate temperatures
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in the furnace. The lid of the furnace was then put in place, and an alumina tube was
lowered and fit into the top of the protruding stem. In some designs the top of the stem was
flared and the central hole slightly widened with a size ”F” drill to facilitate insertion of the
alumina tube. It was important, however, to not widen the hole too much, as the thermal
expansion of the alumina at operating temperatures was used to ensure an air-tight fit.

Conversion of crucible and standard operation

To prepare the crucible for use, it was found to be advantageous to first use the conversion
process to line the interior with BN. This would ensure uniformity of conversion for small-
mass samples from run to run. To this end, about 10 grams of coarse boron oxide power
was added to the crucible before insertion into the furnace, and the central stem was loaded
without a sample. The chamber was evacuated to around 1 inHg and flushed with nitrogen
three times.

It was often found necessary to dry out the insulation in the furnace, as well as dehydrate
the boron oxide. To this end, the pressure was then lowered to about 15 inHg under a flow
of around 1500 sccm nitrogen. The crucible was first heated at 10% power (about 1.25 kW),
resulting in a temperature of approximately 600 ◦C. Temperature measurements via optical
pyrometry were difficult owing to limited optical access to the crucible, and the fact that any
small holes proving such access would quickly become occluded with boron oxide condensate.

After about 10 minutes, the system is dry, and the conversion process can take place.
Power is usually raised to around 35%, or about 4.3 kW. The crucible rapidly heats up to a
bright red; estimated temperatures for the center of the crucible are 1600 - 1800 ◦C. A wisp
of white smoke usually emerges around the central stem, and the cold walls of the quartz
begin to cloud with boron oxide. This progresses for approximately five to ten minutes, or
until all the boron oxide has evaporated. The power is then turned off and the crucible
allowed to cool, which usually takes about two hours. The result is that the interior lining
of the crucible is converted to BN.

5.2 Conversion of activated carbon

The conversion process had been studied in 2004 on activated charcoal by Han et al. in the
Zettl group using a horizontal high-temperature furnace. [65]. This usually resulted in a an
intermediate boron nitride/carbon product which was subsequently purified by burning off
the carbon in air at 600 ◦C. The experiments on activated carbon were reproduced by myself
and Dr. Brian Kessler in 2010. These experiments were also useful as calibration and test
runs for the induction furnace before attempts were made with more scarce samples such as
graphene aerogels (see below). They also allow one to gauge the effectiveness of new crucible
designs.

In a typical run, about 1 g of activated charcoal (Calgon brand) with a grain size of
about 1 mm was placed in the sample cup. About 10 g of boron oxide was loaded into the
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Figure 5.1: (left) Schematic of conversion crucible used to convert carbon nanostructures;
red arrows indicate flow of nitrogen, blue arrows are boron oxide vapor, and purple arrows
are a mixture of the two; black represents graphite. The carbon sample to be converted is
placed in the central perforated cup.(right) CAD drawing of a similar crucible, where the
cup has been replaced by a disk. Both grey and black represent graphite; the grey parts are
one unit which can be loaded separately into the furnace. Drawing is to scale. The crucible
is 2” outer diameter with 1/4 ” thick walls. The central stem in 1/2 ” outer diameter, 1/4 ”
inner diameter and is composed of three parts: the central section, about one inch long, is
tapped with 1/2 ” − 18 threads into which the top and bottom sections are screwed in; the
cup and cap are held in place between the top and bottom parts of the stem, respectively.
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bottom of the crucible, and the process described in the above section was run. Typically,
products had a ”salt and pepper” look, with some grain converting completely, while others
remained largely greyish. To obtain purer BN samples, it was easy (though time-consuming)
to simply pick out the white grains from the rest.

5.3 Conversion of graphene aerogels

The conversion of the graphene aerogels to BN was far more sensitive to the experimental
conditions than for activated carbon. General discussion and detailed microanalysis of the
graphene and BN aerogels is presented above in Section 4.2. Here we give details of the
conversion process itself, and also analyze the crystalline and chemical composition of the
material using X-ray diffractrometry (XRD), resonant Raman spectrosopy, and electron
energy loss specrometry (EELS).

Details of Conversion Process

We used the crucible described above for the conversion process. We note from the outset
that the conversion of graphene aerogels was far more sensitive to experimental conditions
that for activated carbon, particularly if a high-quality, high surface area gel was desired.
First, it was important to pre-melt the boron oxide powder into a solid mass. Separate
observations of the heating of the boron oxide powder in a box furnace at 500 ◦C indicated
that, upon melting, the powder mass would often froth up to many times its initial volume.
This was presumably due to gas which was caught underneath a skin of viscous boron oxide,
which would subsequently bubble out. This large volume increase would inevitably lead
to the boron oxide touching the sample; in the case of the aerogels, this could be rather
destructive owing to their fragile pores, which would collapse upon evaporation of a highly
viscous fluid such as boron oxide.

Secondly, the positioning of the crucible was found to be important. It needed to be
placed directly in the center of the coil. Otherwise, conversion would often result in very low
surface area gels that did not at all resemble the initial graphene aerogel under microscopic
analysis; for example, they would often be composed of plate-like particles, and would be
extremely fragile. This may be because of unfavorable temperature gradients that would be
established under these conditions.

The amount of boron oxide used also seemed to play a role. In a set of control experiments,
I used one, three and ten grams of boron oxide, respectively. The first two cases resulted in
gels that were slightly grey; the last was completely white. The grey is presumably due to
residual, unconverted carbon.

Figure 5.2 shows a photograph of a starting graphene aerogel next to a converted BN
aerogel. The complete change of color for converted aerogels, when appropriate amounts
of boron oxide was used, was quite striking. If the gel is broken open, it is found that the
interior is also completely white. The complete conversion of the gel is likely owing to the
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Figure 5.2: Photograph of a graphene aerogel and a converted BN aerogel. Scale bar is 5
mm. Photograph by Anna Goldstein.

extremely high surface area of the starting materia. As discussed above, the conversion
process is surface-passivated, so using a carbon material which is composed of only one to
two layers of graphene exposes all the carbon to the reactive gases.

X-ray Diffractometry

XRD analysis of the sample was conducted by Anna Goldstein using a diffractometer in the
lab of Dr. Peidong Yang in the Department of Chemistry. Figure 5.3 shows the resulting
spectrum. The peaks in the XRD spectrum corresponding to spacing of the dominant lattice
planes in the sample according to the Bragg formula

2d sin θ = nλ (5.2)

where d is the interplanar spacing, n is an integer, and λ is the wavelength of the inci-
dent radiation; here we use Cu-Kα radiation with a wavelength λ = 0.154 nm. The wide
peak centered at 2θ ≈ 27◦thus corresponding to an interplanar spacing of approximately
0.330± 0.006 nm, which is consistent with the interplanar spacing of sp2-bonded BN sheets
of rhomohedral or hexagonal BN. The breadth of the peak can be due to several effects. [66]

• Instrumentation broadening. It was found that the spectrum depended sensitively on
the height of the sample in the diffractometer.

• Non-uniform strain in the sample. As we saw in Section 4.2, the planes of BN are bent
into folds, which can causes a variation in the interplanar spacing.
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Peak Center Peak Width Assignment

26.982 0.722 rBN, hBN
38.299 0.066 Al (substrate)
41.623 0.126 hBN
42.861 0.114 rBN
43.980 0.136 hBN
44.595 0.123 Al (substrate)
45.406 0.074 rBN

Figure 5.3: X-ray diffraction spectrum of a BN aerogel. Blue line shows data, red line
shows a Levenberg-Marquardt fit using a Gaussian basis. Peak assignments are listed in the
corresponding table. Data collected by Anna Goldstein.

• Finite crystallite size. Again, as seen in Section 4.2, the sheets of the aerogel are five
to eight atomic layers thick. The Sherrer equation relates the broadening of peaks to
finite crystallite size,

β =
Kλ

τ cos θ
(5.3)

where β is the FWHM of the diffraction peak, K ≈ 0.9 is a shape factor, and τ is the
crystallite size.

For our observed sheet thickness, the Sherrer equation gives β ≈ 0.08, so does not account
for most of the broadening of the interlayer peak; we are left to conclude that it is due either
to instrumental broadening, or asymmetric strain in the sample due to bending of the BN
sheets.
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Figure 5.4: Resonant Raman spectrum of a BN aerogel. Peak center is at 1365.8 cm−1 with
a FWHM of 13.23 cm−1

Resonant Raman spectroscopy

As in the case of graphene aerogels above, Raman spectroscopy can be used to analyze the
cyrstalline structure of our BN aerogels. The Raman active modes of BN were first measured
and analyzed by Geick et al. in 1966, who found that BN has one bright, active Raman
active phonon mode, E2g, at 1370 cm−1. This is the same anti-symmetric, in-plane mode
that is responsible for the G band in graphene. Later studies on pyrolytic BN established
this peak at 1366.2 cm−1 with a natural linewidth of 9.1 cm−1.

Figure 5.4 shows a resonant Raman spectrum of a BN aerogel, taken with a 514 nm
excitation laser. A background of about 1000 counts has been subtracted from the signal. A
sharp peak centered at 1365.8 cm−1 is clearly evident. A Lorentzian fit using a Levenberg-
Marquardt algorithm gives a FWHM of 13.23 cm−1.

The slight broadening of the Raman peak is worth considering in detail. The very close
fit of the spectrum to Lorentian suggests that this broadening is not due to disorder. It
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may instead be due to finite phonon lifetimes, as is often found in the Raman spectrum of
nanoparticles.

A study by Nemanich et al. studied the effects of finite cystalline size on the Raman
spectrum of graphite and BN.[67] They found that the peak in BN exhibited both a shift
in peak position and a broadening as the size of the cystallites decreased. Empirically, the
FWHM of the E2g peak was found to be Γ1/2 = (141.7/La + 8.70) cm−1, where La is the
crystallite size in nm. For our measured FWHM, this corresponds to La = 31.3 nm. This is
roughly the size of the wrinkles that we see in our TEM images. It is plausible that the folds
in the BN sheets effectively divide the crystal into small crystallites, hence shortening the
lifetimes of the in-plane phonons, and giving rise to the observed broadening of the Raman
peak. Interestingly, we do not observe a corresponding shift in the peak position.

Electron Energy Loss Spectroscopy

The high quality of the Raman spectrum shown above is a strong indication of sp2 bonding
in the atomic layers of the BN aerogel. Further support, as well as a quantitative measure
of the chemical purity of the sample, can be found using electron energy loss spectroscopy
(EELS).

As electrons in the TEM pass through the sample, they can scatter inelastically with
the electrons occupying the orbitals of the constituent atoms, losing a characteristic amount
of energy in the process. The electrons emerging for the sample are then passed through a
magnetic prism and continue onto the detection apparatus, in our case, the CCD camera used
for imaging. The microscope used in our experiment is also equipped with a Gatan imaging
filter, which contains a series of electromagnets which compensate for geometrical distortions
due to projection onto the flat surface of the CCD and enhance the energy resolution of the
instrument. The image formed on the CCD is a series of bands; the brightness of the bands
is measured along a contour and plotted, showing the spectrum of the collected electrons.

This spectrum always has a characteristic zero-loss peak due to non-interacting electrons
and elastic scattering, followed by a series of peaks indicative of the types of atoms in the
sample. The signal-to-noise of an EELS spectrum is thus proportional to the ratio of inelastic
to elastic scattering, which is roughly C/Z, where C is a constant dependent on the incident
electron energy (about 20 for the 80 keV electrons we use in our experiment), and Z is the
atomic number of the atom. Hence, scattering is most effective for low-Z elements such as
boron, carbon and nitrogen, making EELS a particularly effective tool for our samples.

For low-Z elements, inelastic scattering is dominated by excitation of the core K-shell
electrons, resulting in sharp edges. Past the ionization threshold Ea, the scattering cross
section for inner shell electrons can be approximated by a simple power law,

dσa
dE
∼
{

0 if E < Ea
E−s if E ≥ Ea

(5.4)

where typically 2 < s < 6, giving rise to saw-tooth like spectral features. The differential
scattering cross-section of course has a strong angular dependence, meaning that the direction
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Figure 5.5: Electron energy loss spectrum of a BN aerogel. The features evident near
188 eV are due to K-shell excitation of boron; the sharp triple-peak is indicative of sp2

bonding. The peak near 400 eV is due to K-shell excitation of nitrogen. Spectrum taken
by William Mickelson at the National Center for Electron Microscopy, Lawrence Berkeley
National Laboratory.

of the incident electrons, collection angle, etc. are important in a full analysis. We will
ignore these detail here for simplicity. Reference [68], Electron Energy-Loss Spectroscopy in
the Electron Microscope by Egerton, from which this discussion is adopted, provides and
excellent and detailed overview of the subject.

Figure 5.5 shows an EELS spectrum of a BN aerogel taken over a probe radius of about 50
nm. The distinct features near 200 eV are due to K-shell excitation of boron. The peak near
400 eV is likewise due to K-shell excitation of nitrogen. Notably absent is any appreciable
peak due to carbon, which would normally appear around 284 eV. This is further proof that
the aerogel has been completely converted to BN.

Since the thickness of our aerogels sheets are less than the mean free path of the incident
electrons, they only scatter once as they pass through the sample. This greatly simplifies
the quantitative analysis of our EELS spectrum, since we need not deconvolve separate
scattering events. For single-event scattering, the differential scattering intensity from from
an element is given by

Ja(E) = NaI0
dσa
dE

(5.5)
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where Na is the is number of atoms of element a per unit area and I0 is the incident electron
flux. By resolving the measured scattering intensity into components based Equation 5.4,
the atomic ratios of the elements making up the sample can be measured with some degree
of accuracy. For our spectrum, the B/N ratio was determined to be 0.97 ± 0.14, while the
carbon content was less than 5%.

Energy Loss Near Edge Structure

Beyond atomic ratios, the EELS spectrum can reveal details of the bonding structure of
an element through the exact shape of the ionization edge, known in the literature as the
energy loss near edge structure (ELNES). This is particularly evident in our sample in the
case of the boron edge, which is enlarged in Figure 5.6 to show the details of the ELNES.
As is well known from quantum mechanics, the scattering cross-section is dependent on the
availability of final states in a particular energy (i.e. Fermi’s Golden Rule),

dσa
dE
∼ |Mab|2%(E) (5.6)

where Mab is the matrix element connecting the two states (which may depend on direction
as well as energy), and %(E) is the density of final states per unit energy. For sp2-bonded
BN, the bottom of the conduction band is made up of π∗ anti-bonding orbitals, and lies at
or around the vacuum level, meaning that electrons ionized from the core K (i.e. 1s) shell
may transition to these states, giving rise to the sharp peak at the left end of the boron
edge. The σ∗ band is relatively flat and lies a few eV above the π∗ band; transitions to this
band account for the second prominent peak in the ELENS spectrum. The exact calculation
of the ELNES spectrum is somewhat more involved, but this gives the general idea. This
particular edge structure differs significantly from that of sp3-bonded boron, as is found in
cubic BN, which would exhibit more widely separated primary peaks.

5.4 Surface conversion of carbon fibers

In the present section, we describe the conversion process as applied to carbon fibers. Carbon
filaments derived from organic material such as cellulose were first used in incandescent
lamps in the late 19th century. Modern carbon fibers were developed by the Union Carbide
Corporation during World War II, with further development and commercial availability
the late 1950s and early 1960s.[69, 70] Worldwide production of carbon fibers was nearly
100,000 metric tons in 2011, and continues to grow rapidly.[71] Most commercial carbon
fibers are derived from polyacylonitrile (PAN) precursors and subsequently graphitized at
high temperatures. These fibers find applications in structural parts ranging from bicycle
frames to airliners. Less common are pitch-based fibers, which usually have a lower tensile
strength but a higher elastic modulus. Carbon fibers and filaments can also be made from
the pyrolysis of hydrocarbons in the presence of a metal catalyst, though these are rare,
expensive and of limited application.[70]
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Figure 5.6: Near-edge fine structure of the boron peaks from Figure 5.5. The first peak to
the left is referred to as π∗ since it is due to excitations away from the the π orbitals. The
second large peak is likewise termed σ∗.

PAN based fibers can contain up to 10% nitrogen by weight, with the carbon taking a
forms from graphitic to amorphous. However, the exterior skin of both pitch and PAN based
fibers does tend to be graphitic. The orientation of the layers on the skin can vary from
radial to spiral to circumferential depending of the method of production.[70]

BN fibers, though far less common and much more expensive, have also been developed.
They are usually made via preceramic precursors, either through the reaction of boron oxide
fibers with ammonia,[72] or spun directly from polyborylborazine [73] or poly-borazinylamine
precursors.[74] The corrosion resistance of BN fibers makes them attractive in many applica-
tions, as well as their white color, which broadens their applicability in textiles and consumer
products. However, these fibers tend to have lower tensile strengths and modulus than car-
bon fibers. BN coatings on carbon and ceramic fibers have also been reported.[75] Below
we detail a new method using the BN conversion process for creating such coatings which is
complete, scaleable, and low cost compared to previous methods.

Pitch-based fibers

The conversion was first tried on pitch-based fibers. These were in fact begin used already
as insulation for the furnace. After a conversion attempt of carbon nanotubes (see below),
I noticed that some of the fibers appeared purple. I attributed this to a transparent coating
on their surface. I surmised that this must be BN, and decided to examine the phenomenon
in more detail under more controlled conditions.

Pitch-based carbon fibers are typically less expensive than PAN fibers (see below), being
commonly used in insulation for furnaces and in carbon-carbon composites such as airline
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Figure 5.7: SEM images of partially converted (left) fully converted (right) pitch-based
carbon fibers after heating at 1 hr at 750 ◦C in air.

brakes where high modulus is preferred over high tensile strength. The fibers we used are
Kreca C from the Kureha Corp. in Japan. In a typical run, about 1 g of fibers was drawn
from a mat and arranged in the conversion cup. About 10 g of boron oxide was used, and
typically about 3 kW of power applied for 1 hour.

Most runs resulted in a combination of purely white fibers – which were very fragile –
interspersed with black fibers, many of which attained a purple sheen. They were both tested
for oxidation resistance; neither sample displayed any appreciable change or mass loss after
being heated for 1 hour at 750 ◦C in air.

The samples were then examined in the SEM; two representative micrographs are shown
in Figure 5.7. The partially converted fiber on the left shows two distinct phases in its
cross section. The brighter contrast of the exterior shell indicates an insulating material.
EDS measurements shown in the left panel of Figure 5.8 indicate that the shell was largely
composed of stoichiometric amounts of boron and nitrogen, with low carbon and no oxygen
signal. The grains of the shell appear to be radially oriented, and the conversion has pene-
trated about 2 microns towards the center. The total radius of the tubes is unchanged from
the starting material. On the exterior, knob-like particles can been seen protruding from
the body of the fiber. The central five microns of the fiber remain unconverted, with an
EDS signal, shown in the right panel of Figure 5.8, indicating increasing amounts of carbon
and diminished boron and nitrogen signals as one moves inwards toward the fiber axis. The
oxidation treatment in air appears to have slightly hollowed out the end of the carbon core.

The fully converted fiber on the right displays a distinct morphology from that on the
left. Here, the grains on the outside appear much more coarse, and larger knobs as protrude
from the fiber surface as well as small ones. EDS measurements show a roughly uniform
BN stoichiometry throughout the cross section of the fiber, with no measurable carbon or
oxygen content. Overall fiber diameter is roughly the same as the partially converted and
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Figure 5.8: EDS spectra of converted pitch-based carbon fibers. (left) Spectrum taken from
the exterior shell of the fibers showing a pure BN signal. (right) Spectrum from the center
of the fibers, showing a residual carbon signal.

unconverted fibers.

Hollow Boron Nitride Microtubules

Inspired by the small amount of burning found in the fibers treated at 750 ◦C in air for
1 hour, it seemed plausible that it would be possible to continue the process longer and
hollow out the BN-converted fibers completely. A sample of converted pitch-based fibers
was chopped up finely with a razor blade into short segments about 1 mm long. They were
then baked at 750 ◦C in air for 12 hours, after which time they acquired a glass fiber-like
appearance, with little remaining black carbon material.

Figure 5.9 shows two SEM images of the hollowed out BN microtubules. This hollowing
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Figure 5.9: SEM images of hollowed out BN-converted pitch fibers, forming hollow BN
microtubules.

out exhibits the uniformity of the surface conversion, showing a fairly uniform shell about
600 - 800 nm thick in most cases. The grains appear to be mostly radially oriented, forming
a stable structure much like a Roman arch. Both interior and exterior of the shells are dotted
with protrusions, which show pure BN stoichiometry under EDS analysis. Various shapes
are also possible, depending on the cross-section of the original carbon fiber.

Graphitized ex-PAN fibers

In another set of experiments, the conversion was attempted on the graphitized ex-PAN
fibers which formed the other type of insulation used in the induction furnace. These were
generally very short, on the order of a few millimeters, and pressed into a mat, which was easy
to break apart manually. About 1 g of fibers was typically loaded into the conversion cup
along with 10 g of boron oxide and run at high power, or about 3.75 kW for approximately
30 minutes. Macroscopically, the material would turn a light to medium grey and was fairly
homogeneous. In all other respects is looked identical to the starting material.

Figure 5.10 shows SEM micrographs of the fibers before and after conversion. The start-
ing fibers have a wrinkled skin, and are about 20 microns in diameter. Cross sections were
fairly uniform; graphitic planes were somewhat visible but appear to have no particular
orientation.

After conversion, the skin of the fiber lit up under the electron beam, likely due to
the insulating layer of BN now covering its surface. The wrinkled appearance of the skin
appears to have been preserved. Judging from the images, the skin layer was about 300 -
500 nm thick. The cross-section of a typical fiber was also highly non-uniform, with some
sides experiencing far more conversion than others. This appears to be due to the lack of a
specific initial orientation of the graphitic planes; the areas where the conversion penetrated
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Figure 5.10: SEM images of ex-PAN graphitzied carbon fibers. (left) untreated fiber (right)
fiber after high temperature conversion.

the fiber more completely tended to correspond with more axially-oriented graphitic planes.

Woven PAN fiber mats

The most successful and spectacular conversion was achieved by using mats and tows of
commercial PAN fibers. These type of fibers are by far the most common in manufacturing
and product development. The fibers themselves are spun from their polymer precursor and
chemically stabilized at moderate temperatures, at around 180 to 300 ◦C. Usually the fiber
is stretched at this stage, which helps align the aromatic regions along the fiber axis. After-
wards, they are carbonized at high temperature in an inert environment; high temperature
treatment in nitrogen up to around 1500 ◦C is used for relatively inexpensive fibers, while
treatment up to 3000 ◦C in argon is used for more expensive, high-performance applications.

Surface treatment of the fibers is essential for handling and incorporation into composites.
Oxidative treatment is often used to functionalize the surface of the fibers so as to improve
adhesion to matrix polymers. The fibers are then usually coated in a resin, termed sizing
in the industry, to keep them from breaking. While these fibers possess incredibly high
tensile strength and modulus, the are indeed very brittle, and can be easily cut with a
pair of scissors. The are then grouped into a bundle of several thousand called a tow and
either spun onto spindles or woven into mats. The latter form is the most common in the
manufacture of parts such as bicycle frames and airline wings.

We acquired a few yards of woven PAN fiber from Applied Polyeramic in Benicia, Cali-
fornia, as part of an informal collaborative effort to develop BN-based materials. To perform
conversion on these mats, a new crucible was designed with slight modifications to the one
described above. A schematic of the crucible is shown in Figure 5.11. The sample cup was
removed, and the stem went directly towards the bottom. The upper portion of the crucible
was bored to a slightly larger radius, forming a 3 mm ”shelf” near the bottom. The fiber
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Figure 5.11: CAD drawing of the crucible used for PAN fiber conversion. Measurements are
in inches.
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Figure 5.12: Photograph of a section of BN-converted PAN fiber mat, showing the change
in color.

mats were then cut into 4” wide strips and about 3’ long. These were rolled up and set
directly into the crucible; the mat was arranged loosely and the crucible inserted into the
furnace; the stem was then added as normal.

In a typical run, 10 g of boron oxide was used, with nitrogen flows between 1000 and 1500
sccm. Power was usually high, at around 3 kW. As the crucible heated up, a greenish-yellow
vapor would rise and condense on the cold parts of the quartz; this was presumably the resin
sizing burning off the surface. The process was typically run for about 1 hour.

Figure 5.12 shows a photograph of a mat after conversion. In the photo, the top of the
mat has a thin white section which was closest to the boron oxide melt during the process;
this white material is extremely brittle and composed of highly degraded fibers which have
been completely converted to BN. As we move across the strip, there is an obvious color
gradient, going from red for the fibers nearer to the boron oxide melt to purple/black for
fibers furthest away. This color is most likely due to a thin-film interference effect: light
reflecting of the surface of fiber interferes with light passing through the transparent BN
coating and off of the carbon interior. For light at normal incidence, and given that multiple
rainbow patterns are not observed, the thickness is then simply t = λ/2n, where λ is the
dominant wavelength of the reflected light and n = 1.8 is the optical index of refraction of
BN; this gives a thickness of between 100 and 200 nm.

This estimation of the thickness of the coating is corroborated by SEM images of the
converted fibers. Figure 5.13 shows converted PAN fibers (left) and several converted fibers
(right). As in the case of pitch fibers and highly graphitzied ex-PAN fibers, the conversion
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Figure 5.13: SEM images of original PAN-derived carbon fibers (left) and BN-converted
PAN-derived fibers (right).

results in an insulating skin layer which appears brighter in the SEM. In this case, how-
ever, the skin layer is remarkably uniform, a there are very few instances of the conversion
penetrating deep into the fiber interior. This may confer greater mechanical strength to
the resulting material, making it more useful in the composite applications. The complete
coating may also be useful in composite applications, particularly when increased oxidation
resistance is needed. Further tests on the strength and modulus of the fibers is needed to
evaluate their usefulness.

5.5 Conversion of carbon nanotubes

The conversion process was first applied to multi-walled carbon nanotubes by Han et al.
in the Bando group at the National Institute of Materials Science in Tsukuba, Japan.[59]
Because the reaction occurs on the surface, however, it becomes quickly passivated, with the
result that the conversion to BN occurs mostly on the exposed surfaces of the tubes. The
result is a phase-separated BN/C nanotube, which resembles is some ways a nanowire with
a sheath of insulation.

I reproduced much of Han’s work using the new crucible design, with some significant
improvements. Various types of tubes were used, including

• HiPCO single walled tubes

• Nanotech labs multiwalled tubes (ferrocene derived)

• CNI double-walled tubes
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with varying results. Owing to the gas flows associated with loading and unloading the
crucible, many of these materials can pose problems as they become airborne and thus
hazardous or get lost altogether. It is important to implement and follow proper safety
procedures, handling these materials inside of a fume hood if necessary.

Even if loose tubes were successful loaded, they would often become lost in the synthesis
gas flows. It was found very advantageous to aggregate the tubes somehow. In one approach,
tubes were compressed into small chips about 5 mm across, by either compressing them
between two plates in a small vice, or by simply pressing them against their container with
a metal spatula. Samples tended to be somewhat inhomogeneous, with some chips partly
converting and others completely or not at all. Additionally, the interior of thicker chips
tended not to convert.

In another approach, I mixed the tubes vigorously in IPA to created a semi-homogeneous
suspension of tube bundles about 100 microns across. Sonication was avoided to prevent
tube breakage. This suspension was then pulled through an vacuum-filtration setup using
an alumina filter, resulting in a thick, wet cake of nanotubes about 5 mm thick. The cake
was allowed to dry in air for several minutes, and then placed in a vacuum furnace at around
100 ◦for half an hour. The resulting material held together decently well, while providing
large macropores for exchange of synthesis gases. This tended to result in fairly homogeneous
samples.

Parameters

In a typical run, between 1 and 10 mg of tubes are loaded into the central perforated cup.
Flow rates of nitrogen range between 750 and 1500 sccm. Power ranges are between 3 and
5 kW. Between 1 and 10 grams of boron oxide were used. Under these conditions, the
evaporation rate of boron oxide can vary widely, between 50 mg and 2 grams per minute,
indicating that the internal temperature, which is not possible to measure accurately in our
setup, also varies by several hundred degrees. Running time ranged from 20 minutes to 2
hours, depending on the applied power.

It was found that the resulting samples depended strongly on the amount of power
applied, and less so on the reaction time and amount of precursors used. At lower power
(1 to 2 kW), there was no obvious change in the CNTs; at medium power (2 to 3 kW),
the product was grey, or a mixture of white and grey; at higher powers (above 3 kW), the
conversion was often complete.

Single and Double-Walled Tubes

The conversion of single-walled carbon nanotubes (SWCNTs) is of particular interest, as the
corresponding single-walled boron nitride nanotubes are rare and could serve as interesting
samples for fundamental investigations. Little success was had, however, in these attempts.
Both Alpha Alesar and HiPCO tubes were used, and in no cases did any retrievable sample
remain. This may be been due to the sample getting swept away in the furnace gases. It may
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Figure 5.14: TEM images of converted double-walled carbon nanotubes.

be advantageous to attempt the conversion on buckypaper made from SWCNTs to prevent
this. On other hand, previous reports of SWCNT conversion by the Golberg group seemed
to confirm that SWCNTs rarely survive.[76] It may be, therefore, that the conversion process
requires more than one layer to proceed.

Much more success was had in the conversion of double-walled carbon nanotubes (DWC-
NTs), even when the samples were placed loosely in the conversion cup. The macroscopic
product was generally pure white and had the same fluffy consistency of the starting material.

Figure 5.14 shows two TEM images of converted double-walled nantobues. Wall thickness
appears to have increased to around 5 or 6 layers in some cases. The overall crystallinity
of the tubes was preserved. In some cases, however, an unraveling of the tubes could be
seen, as in the left panel of Figure 5.14. This effect was particularly pronounced when the
conversion ran at higher temperatures.

Multiwalled Tubes

Most attempts at conversion were on multi-walled carbon nanotubes (MWCNTs) sourced
from CheapTubes, Inc (20-50 nm diameter). These tubes initially have a great deal of disor-
der, fractured walls, and are often segmented. They are however an inexpensive alternative
to higher quality tubes, and are particularly useful for testing out ranges of synthesis param-
eter. Usually about 10 mg of tubes could be converted at once using about 10 g of boron
oxide. Power could be kept moderately low, at around 20%, and still get appreciable results.
Material would often convert completely around the holes in the cup, while turning a light
grey away from the holes. Pure white material could be easily collected and anlayzed.
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Figure 5.15: TEM images of converted multi-walled carbon nanotubes.

Figure 5.15 shows TEM images of the converted material. As with many BNNTs, end
terminations tended to be angular. Compared to the starting material, the converted tubes
also appear more ”cleaned up”, as is found with many other examples of conversion, where
the degree of cyrstallinity tends to improve. No appreciable increase in the average thickness
of the tubes could be found. While overall crystallinity improved, the tubes are still relatively
disordered. Interestingly, rounded edge terminations, where two or more walls have coupled
to form an end cap, are common in these samples, as is seen in the center of the right panel
of Figure 5.15.

When higher power (3.5 kW and above) was used, the product, while turning completely
white, also exhibited a larger degree of morphological changes. Figure 5.16 shows two TEM
images from such a sample. While some tubes with well-defined wall structure remain,
many of them have unraveled into nanoribbons and nanocyrstallites. Also evident was the
formation of large, micron-scale crystallites that appear from their degree of contrast to be
much thicker.

Higher temperature treatments also tended to result in onion-like BN particles, which
can be seen in right panel of Figure 5.16. Figure 5.17 shows high magnification TEM images
of one such structure, measuring about 50 nm across. The walls of the onion are composed
of about 25 atomic layers. Similar structures have been reported in previous studies of
MWCNT conversion [64], and were also observed in the conversion of graphene aerogels,
particularly when excess boron oxide was used.
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Figure 5.16: TEM images of multi-walled carbon nanotubes converted at high temperature.
Tubes tend to unravel and also form larger plate-like structures, as well as onions.

Figure 5.17: TEM images of onion particles formed in the high temperature conversion of
multi-walled carbon nanotubes to boron nitride.
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Figure 5.18: TEM images of converted ferrocene-derived multi-walled carbon nanotubes.

Ferrocene-Derived Multiwalled Tubes

Conversion was also attempted on ferrocene-derived MWCNTs. Such tubes are characterized
by inclusion of iron nanoparticles in their interiors. Similar tubes derived from nickelocene
or cobaltecene contain nickel and cobalt particles, respectively. Some interesting work was
done in our group in the past by K. Jensen, who shows that by running a current through
the tubes, the iron can be made mobile; in the process, carbon is dissolved in the particle
and can precipitate out as a newly-formed nanotube, often improving the crystallinity of the
starting material.[59]

Conversion of such tubes effectively encapsulates the iron particles in an inert, insulating
sheath of BN. It was found that, in order to preserve tube morphology, lower temperatures
were advantageous, and tended to result in well-defined wall structures. Microscopically, the
resulting material was greyish. Interestingly, the grey color remained after baking out in
air at 750 ◦C for one hour, while a control sample of completely unconverted tubes burned
completely in that time. The sample did acquire a slightly reddish tint, presumably from
the oxidation of some of the iron.

Figure 5.18 shows TEM images of the converted material after bake-out. By all appear-
ances, it resembles closely the untreated nanotubes. The outer walls are in remarkably good
shape despite the high temperature oxidation treatment. In some small details it differs
from the untreated nanotubes, such as the increased presence of angular edges detailed in
the right panel, which as discussed above, are more common in BN-based as compared to
carbon-based nano-materials.



CHAPTER 5. CONVERSION OF CARBON TO BORON NITRIDE 82

Figure 5.19: TEM images of a BN nanotube aerogel synthesized by conversion of a carbon
nanotube aerogel.

5.6 Conversion of carbon nanotube aerogels

The success with converting graphene aerogels and the observation that sample homogeneity
and arrangement tended to facilitate carbon nanotube conversion suggested that conversion
of carbon nanotube aerogels would prove fruitful.

Carbon nanotube aerogels were provided by Dr. Worsley from Lawrence Livermore Na-
tional Laboratory in the form of a large, monolithic cylinder, about 2 cm in diameter by
approximately 5 cm tall. They were synthesized from highly purified carboxylated tubes us-
ing formaldehyde and resorcinol as gelling agents; sodium carbonate was used as a catalyst.
[77] After gellation in water, they were super-critically dried and pyrolized in nitrogen at
1050 ◦C, resulting in a conductive carbon “glue” which coated the nanotubes and reinforces
inter-tube cross-links. Microscopically, the material was ”squishy”: highly elastic and robust
against large deformations.

A small section was cut from this cylinder, and together with Thang Pham, the conversion
was run on the sample. 5 g of boron oxide was used under a flow of 1500 sccm nitrogen;
induction power was high, at around 4 kW. The process was run for 30 minutes. The resulting
gel converted completely and uniformly, to an off-white color. Mechanical properties were
robust. Quantitative assessment was not undertaken, however on a qualitative basis, the
original texture and elasticity of the carbon aerogel was preserved, as well as the overall
morphology of the individual pieces.

Figure 5.19 shows two TEM images of the resulting aerogel. Sample were prepared by
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briefly sonicating the converted aerogel in isopropanol and dropping it onto a copper mesh
TEM grid coated in lacey carbon. As with the many other examples of converted carbons in
this chapter, the BN aerogels have a ”cleaned up” morphology in comparison to the carbon
nanotube aerogel precursors; compare for example to Figures 1c and 1d in Reference [77].
Tubes were around 10 nm in diameter and of fairly good crystallinity. Whereas before the
conversion, individual tube wall could not be made out owing to the carbon ”glue” coating,
the walls and atomic layers of the BN converted gel were easily resolved. It appears that
much of the original amorphous carbon was crystallized in the process of conversion; similar
effects have been reported in conversion of multiwalled carbon nanotube powders as well as
other forms of nanostructured carbon. Also, round particles, about 15 - 20 nm in diameter,
which were visible in the precursor gel, also appear to have reformed, sometimes into large,
hexagonally faceted nano-crystallites.

5.7 Surface conversion of Highly Oriented Pyrolytic

Graphite

Highly-oriented pyrolytic graphite, or HOPG, is a fascinating material which is used ex-
tensively in research and industry as a calibration standard, owing to its high degree of
crystalline order and neutral electronic surface. It can be easily cleaved with a piece of
Scotch tape to reveal clean, flat planes of graphite. The orientation of the graphitic planes
of high quality HOPG vary by less than 0.5 ◦.

Converting the surface of HOPG to BN would confer interesting advantages. BN forms,
for example, an ideal surface of graphene-based electronics.[78] The mobility of electrons
of in graphene resting on atomically flat BN substrates have been shown to rival those of
suspended devices. The slight lattice mismatching between graphene and BN also intro-
duces a superlattice structure; if orientation angle is controlled carefully, this could lead to
interesting electronic effects.[79]

Growth of BN thin films on substrates was extensively pursued in the 1980’s.[38] These
processes generally involved dangerous precursors such as diborane or boron halides, making
these approaches difficult in our lab. Recently, a new chemical vapor deposition (CVD)
technique has been developed where thin layers of BN are grown on copper using borazine
or ammonia borane as a precursor gas.[80] Here, I explore another approach, where the top
layers of HOPG are converted to BN via carbothermal reduction.

The basic procedure is similar to those outlined above. HOPG in the form or small
disks (3 mm diameter, SPI 425HP-CA) or 5 mm x 5mm x 1 mm squares (SPI 479HP-AB)
were loaded into the induction furnace along with boron oxide using a custom-built stage,
where the conversion cup was replaced with a graphite disk with some holes in it to hold the
sample. The power to the induction furnace was varied from run to run, between 2 kW and
5 kW.

Figure 5.20 shows two low-magnification optical images of the HOPG disks. The image
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Figure 5.20: Optical micrographs of an untreated HOPG 3 mm disk (left) and one subjected
to high temperature BN conversion (right).

Figure 5.21: High magnification optical micrographs of HOPG 3 mm disks subjected to lower
temperature BN conversion.

on the left is the original disk, and that on right has been converted at around 5 kW. A
dramatic change int he surface properties is evident. The blue sheen on the surface was
confirmed to be BN via EDS. Parts of the disk also turned a flaky white color. Pock-marks
were also evident.

This experiment demonstrated that surface conversion on HOPG was possible. However,
the sample was badly damaged, and it was desirable to see if a thinner layer of BN could
be synthesized via this method. Figure 5.21 shows two high-magnification optical images of
similar disks subjected to lower power conversion, at around 3 kW. The bluish areas are not
concentrated in small pock-marks, as shown on the image on the left. The varying colors
seem to indicate a varying depth of BN conversion; if due to a simple thin-film interference
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effect, the thickness of the layer would be around 100 - 200 nm. It is unknown if the flat
surface was also converted; EDS did not indicate a strong BN signal, but would not be
expected to for few-layer samples. In the image on the right, some step edges in the HOPG
are seen where the conversion takes hold more readily.

Figure 5.22 shows two SEM images of a 5 mm square HOPG sample which has been
subjected to low power conversion (about 3 kW). The sample was partly cleaved prior to
insertion into the microscope to expose fresh graphite planes; an image of the edge of the
cleft is shown in the top image. The difference in contrast in indicative of a chemical change
on the surface of the HOPG, with the more insulating surface lighting up brighter due to
charging effects. Again, EDS measurements did not clearly indicate the presence of BN, but
this may be due to the fact that the layer is exceptionally thin.

In the bottom image shows close-up of the (supposed) BN region. The crystalline grains
on the surface of the HOPG appear in high contrast; similar grains can be seen on freshly
cleaved HOPG, though the contrast between the grains is considerably less. Streaks and
cracks also appear on the grains which are not generally present on freshly cleaved HOPG
samples.

Suggestions for Further Research

Refining this process was somewhat difficult, as the high and uncontrolled temperatures in
the induction furnace make turning of the synthesis parameters difficult. Moving forward,
it would be advantageous to attempt this conversion in the more controlled environment of
a horizontal resistance furnace. HOPG itself can also be joule-heated, so it may be possible
to simply put boron oxide on its surface and heat it in a controlled nitrogen environment.
Making clean samples of thin BN on HOPG might offer an exciting and useful platform for
further studies of the electronic properties of BN/graphene electronics and heterostructures.
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Figure 5.22: Scanning electron micrographs of BN converted HOPG. (left) border between
a freshly cleaved port on the left hand side, and a converted section on the right. (right)
converted section, showing granular patches about 20 microns in diameter.
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Chapter 6

Boron Nitride Nanotubes via
Nitridation of Boron Droplets

The simplest imaginable approach to BN synthesis is through the direct combination of
boron with nitrogen. In the presence of nitrogen, the reaction proceeds nominally according
to

2 B + N2 −−→ 2 BN (6.1)

This synthesis path was first reported by Moissan in 1892.[61] This reaction can proceed
even when boron is in its solid phase, at temperatures exceeding 1200 ◦C. This chemistry is
often employed in the high-temperature synthesis of boron nitride nanotubes (see discussion
below). Even before this discovery it was found by Wöhler and Sainte-Clare Deville in 1857
that ammonia may be used as the nitrogen source.[61]

2 B + 2 NH3 −−→ 2 BN + 3 H2 (6.2)

Liquid boron is one of the most reactive substances known; for example, there is no known
container for liquid boron and studies of this material must be conducted by levitating a
droplet in a stream of noble gas while heating it with a laser.[81] I conducted some exploratory
experiments using a high temperature induction furnace to melt boron in a graphite crucible,
and found that the boron would actually melt through the graphite, forming a saturated
boron carbide and continuing through the bottom of the crucible. Therefore, in order to
form boron vapor and hence droplets, it is necessary to either ablate a stationary target, or
to shoot powder through a hot zone.

We begin this chapter by discussing some previous methods for the synthesis of BNNTs
via the boron droplet method; these involved the ablation of BN or boron targets with
either an electrical arc or a laser. We then describe some attempts at synthesizing BNNTs
by feeding boron powder through an electrical arc; these were unfortunately not successful.
Finally, we describe a novel technique which was successful, which involved shooting boron
powder through the hot zone of an induction furnace.
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6.1 Previous Studies

Arc Ablation

Carbon nanotubes were first discovered in the residue of arc ablation experiments involving
graphite electrodes, intended for the synthesis of fullerenes.[82] In the search for synthetic
routes to BN nanotubes, the insulating nature of BN made this route problematic. As early
as 1994, composite BCN nanotubes and sheets were synthesized by Stephan by filling carbon
electrodes with amorphous boron;[83] we reproduce that experiment below in Section 6.2.

However, pure BN tubes remained elusive. The solution was to embed BN inside of
a hollow tungsten electrode; this resulted in the first synthesis of pure BN nanotubes by
Chopra.[84] This technique was further developed by Cumings using metal-doped boron
electrodes, resulting in predominately double-walled BN nanotubes arranged in an intriguing
web-like macrostructure.[85] The metal doping was necessary to increase the conductivity
of the boron so that an arc could be established. Ablation in these experiments occurs at
temperatures around 5000 ◦C, and it is believed that nanotubes condense from the resulting
atomized vapors in various stages; droplet condensation is thought to play an important role.

A variation in this technique is to use a DC plama torch, and to shoot the reactant
powders into the superheated gas.[86] This allows for continuous production and a much
larger choice of solid precursors. The quality of the results, however, was not very good. I
made some attempts at reproducing and modifying this method, which I describe below.

Laser Ablation

Laser ablation was initially used in the production of BN nanotubes by Golberg and Lee.[87,
88] The technique involves aiming a high-powered laser onto a BN target in an argon atmo-
sphere, or a boron target in a nitrogen atmosphere. Recently, a group at NASA modified this
technique by placing the target in a hyperbaric chamber operating at several atmospheres of
nitrogen.[89] This resulted in relatively high yields of long, tangled BN nanotubes. Essential
to this process was the condensation of boron droplets around a tungsten wire, which sub-
sequently react with the nitrogen to form nanotubes. The high pressures not only increase
the concentration of nitrogen and favors the precipitation of solids, but also provides a large
buoyant force for the droplets.

The mechanism proposed by Arenal et al. in their study of BNNT synthesis via laser
ablation is reproduced in Figure 6.1. The BN is thought to form on the surface of a boron
droplet, and condense out as a tube as the droplet moves through the reactive nitrogen
atmosphere in a root-growth mechanism. [90]

6.2 DC Arc Ablation of Boron

The DC arc chamber is a simple apparatus used for achieving very high temperatures in
a controlled atmosphere. Figure 6.2 shows a schematic of the chamber and electrodes. It
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Figure 6.1: Proposed BNNT formation mechanism. Reproduced from Reference [90].

Figure 6.2: Schematics of DC arc apparati. (left) Schematic of arc chamber; black parts are
steel, blue is water jacked, orange is copper electrodes, arrows indicate direction of motion
of bottom electrode, both top and bottom electrodes are water-cooled. (center) Detail of
boron-packed graphite electrode, dark grey is graphite, brown is amorphous boron powder,
both electrodes are water-cooled. (right) Detail of powder-feeding electrode, arrows indicated
flow of carrier gas, brown dots represent boron powder, both electrodes are water-cooled.
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is composed of a water-cooled, 6” inner diameter by 24” tall cylindrical vessel with several
“arms” jutting out in various directions. These arms provide ports for insertion of electrodes,
viewing glasses and other peripherals.

Connections include both O-rings and copper flanges. Electrodes are introduced from the
top and bottom of the chamber. The bottom electrode is attached to a stepper motor with
a feed screw that allows it to be moved up and down at a controlled rate. Both electrodes
are water cooled. Gas was introduced through one of the side ports, and let out through
the bottom; a vacuum system was attached to the outlet as well, which had a throttle valve
to control the pressure inside the chamber. The chamber was typically operated at around
one-third of an atmosphere of nitrogen or helium.

Two designs were used for the bottom electrode. In the first case, for the attempted
synthesis of BCN nanotubes, a 0.250” diameter graphite tip was drilled with a 0.187” hole
and packed with amorphous boron powder. This was attached to the bottom electrode via
a small notch at the top, as shown in the center of Figure 6.2. This design proved stable
and reliable; results are presented below.

In the right panel of Figure 6.2 we show an alternate design, where amorphous powder
was fed continuously through a specially built electrode which consisted of three concentric
copper tubes: an exterior jacket (0.250” outer diameter), a water return tube (not shown),
and a powder bore (0.125” inner diameter) through which the powder was injected. The
large bore was selected to keep the powder from clogging inside the electrode. The electrode
was hard-soldered together. This design proved very problematic, as the solder often leaked.
Furthermore, it was very difficult to sustain a stable arc. Even when an arc was maintained,
the cold gas flowing through the center bore tended to repel the hot plasma, meaning that
none of the injected powder would actually run through the superheated parts and melt.
For this reason, no results were obtained using this device.

In both cases, the power to the electrodes was supplied through a commercial welding
powder supply operating at around 150 amps. For the powder feeding setups, the pow-
der was fed using a commercial Mark XV powder feeder; more information is available at
http://powderfeed.net/MARKXVspecs.html.

Procedure

The chamber was evacuated and flushed three times with nitrogen; it was stabilized at about
10 bar. Next, the power supply was struck and the electrodes touched and separated slightly.
It was very difficult to maintain a stable arc. The boron filling at the end of the electrode
quickly melted and formed a liquid ball which usually hung to the side of the electrode. It
is likely that it contained a significant fraction of carbon as well. The arcing continued for
about one minute, after which the ball of liquid boron/carbon was gone, having been used
up or fallen off to the side of the electrodes.

After the system was allowed to cool somewhat, the chamber was opened. A large amount
over very low-density material coated the water-cooled walls of the chamber. Care had to be
taken to prevent this material from becoming airborne. It was collected with a spatula into
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Figure 6.3: SEM images of boron arc material.

glass vials. It had a brownish-black appearance, and tended to form in needle-like, dendritic
structures.

Results

Figure 6.3 shows two SEM images of the resulting material. The low density of the material
can be understood from the fractal-like microstructure. The material consists mostly of
rounded particles that are likely composed of boron carbide. Linear features several microns
long and several tens of nanometers wide can be seen in the image on the right.

TEM images of the same material are shown in Figure 6.4. The low magnification image
on the left shows both the ball-like material and a pair of tubes that are mixed in. The
material has been sonicated in IPA for 1 min in order to prepare the TEM sample. Small
round balls about 50 nm in diameter show up in high contrast; these may be composed of
copper which has ablated off of the counter-electrode. The smaller, lower contrast balls are
likely some form of boron or boron-carbide. The two linear feature are fond to be multiwalled
nanotubes, about 20 – 30 nm in diameter, and consisting of about 15 – 20 walls; a detail is
shown on the right.

Suggestions for Research

This line of research is worth pursing, as the arc ablation approach is the only known way to
make consistently high quality double-walled BNNTs. Our electrode makeup, however, was
rather difficult to work with, and hard to make consistent. Moreover, carefully tuning the
carbon composition through the electrodes may offer an approach to BCN stoichiometry.
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Figure 6.4: TEM images of boron arc material. Scale bars are 500 nm (left) and 10 nm
(right). Images by W. Mickelson.

Pure Boron, Heated Electrodes

One way to improve these results might be to use heated, pure boron electrodes. The work of
Cumings[85] was very similar to this approach where the boron electrodes were doped with
metals to increase their conductivity. The drawback of this approach was that the ingots
were hard and expensive to make, and were irregularly shaped and impossible to machine,
meaning that the voltages required to sustain the arc varied greatly. On the other hand, the
electrical conductivity of pure boron is highly dependent of temperature. Instead of metal
doping, the electrodes could instead be pre-heated, allowing them to sustain an arc. This
would also allow for use of commercially available boron sources, greatly reducing the cost.

Hyperbaric Chamber

Another approach for improvement may be to allow for hyperbaric operation. As mentioned
above, increased pressure has been shown to be advantageous in the laser ablation approach
and may also benefit the arc-ablation approach. Such chambers would be easy to build and
operate safety, and would be much cheaper to use and maintain than laser ablation systems.
Additionally, increased pressures would lead to improved arc stability, and possibly allow for
a wider range of current and voltage settings.
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Figure 6.5: Schematics of DC plasma torches. (left) custom-built torch, dark grey is graphite,
light grey is BN, orange is copper, electrodes are water-cooled (right) adapated commercial
plasma cutter, light green is plastic, light grey circles are O-rings, black outline is connector
and top of arc chamber

6.3 Powder Injection into a DC Plasma Torch

Owing to the difficulties in getting boron powder to melt in an open arc, an alternate design
was developed using a DC arc torch. These are used commonly in plasma spray systems,
where oxide powders are heated in a stream of superheated gas and sprayed onto various
substrates, forming protective coatings. The reactivity of liquid boron, however, may render
such systems unsuitable for synthesis. To get around these problems, I custom-designed
and built two DC arc torches, described below. A similar approach has been reported in
literature.[86]

In the first instance, I built the torch myself from scratch by machining graphite and
boron nitride parts, shown schematically in the left panel of Figure 6.5. The assembly was
mounted inside of the arc chamber described above using one side port and one bottom
port for the electrodes. The bottom electrode (anode) was mounted with a 0.250” diameter
graphite rod, and the cathode had a 0.375 inch inner diameter. A 0.125 inch copper tube
was intended to inject powder through the assembly.

There were several issues with this design, namely that ignition was difficult to attain and
thermal stresses often caused the parts to crack. The plasma plume was also rather unstable.
Typically, about 150 amps were run through the device using a commercial welding power
supply. The device would heat up to a bright white glow relatively quickly. This prevented
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Figure 6.6: Product from adaptation of commercial plasma cutter.

me from conducting many experiments feeding powder with this design.
To deal with some of these problems, I decided to try modifying a commercial 20 amp

plasma cutter system. A schematic of the design is shown in the right panel of Figure 6.5.
A small hole was drilled into the side of the counter-electrode in order to allow for powder
feeding. The plastic housing of the torch was set into to a vacuum fitting and mounted to
the top port of the arc chamber. This tended to disturb the plume significantly, particularly
when carrier gas flow rates through this hole were high, but the plume was still stable enough
to conduct experiments.

Results

Despite considerable effort and time spent, these experiments unfortunately did not result in
synthesis of any BN nanotubes. I was however able to melt some powder using the adaptation
of the commercial plasma cutter. An SEM image of the product is shown in Figure 6.6. The
elemental composition is uncertain, and it may be that the particles come from ablation of
the electrodes.

6.4 Powder Injection into an Induction Furnace

By far the most successful synthesis of BNNTs was obtained via the direct injection of boron
powder into an inductively heated graphite cylinder. The induction heating was performed in
the furnace described in the previous chapter using the same basic quartz and flange system.
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Figure 6.7: Photograph of graphite cylinder with insulation used for BNNT synthesis.

I describe below the adaptations of the setup specific to this experiment. The suggestion to
shoot powder through the induction furnace was given to me by Dr. William Mickelson.

Apparatus

The arrangement of the graphite cylinder and the insulation is shown in Figure 6.7. A
1” diameter by 7” long graphite cylinder is simply wrapped in a blanket of insulation, and
inserted snugly into the quartz tube of the induction furnace. A schematic of the arrangement
is shown in Figure 6.8. In this setup, I used Kreca pitch-based carbon fiber insulation. In
some runs, carbon yarn was used to tie the insulation snugly around the cylinder. In some
runs, a BN tube was used to guide powder from the alumina injection tube up towards
the graphite cylinder; however, this tended to result in lower temperatures, as the BN tube
would also act as a heat conductor.

Powder was fed via an alumina tube coming in through the bottom flange of the induction
furnace; the exhaust came out the top. I also attempted an inversion of the setup according
to a suggestion by Prof. Zettl, where the powder was fed from the top and the exhaust came
out the bottom. Similar results were obtained using both configurations.

Procedure

If the setup had not been used for a while, an argon flow would be introduced and the
chamber pumped down to about 10 kPa while being heated at around 1 kW; this would
cause adsorbed water to boil off and eventually evaporate. After all the water was dried
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Figure 6.8: Schematic of graphite cylinder with quartz tube and inlets used for BNNT
synthesis.
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(about 20 minutes), the setup is then heated rapidly at the maximum available power given
our load, about 7 kW. The estimated temperature at the center of the graphite cylinder is
in excess of 2000 ◦C. Again, temperatures in the induction furnace are hard to determine
accurately; in this case, it was important that all parts be covered in insulation, so that even
optical pyrometry was not possible. The estimated temperature is deduced from the fact
that the boron became liquid, and that even alumina parts far from the center of the hot
zone would occasionally melt.

Powder is injected from the bottom at a rate of about 100 mg/min, with a carrier gas
flow of argon at around 2000 sccm, and ammonia is injected from the top at around 1500
sccm. In principle, it should be possible to use diatomic nitrogen as the reactive source;
however, we found that yields tended to be very low in this case. This may be different if
higher pressures or temperatures could be achieved.

Results

After a run of about one minute, the cylinder was allowed to cool under nitrogen flow and
was removed along with the insulation and unwrapped. In successful runs, a white substance
would coat the insulation on the downstream end of the graphite cylinder. Figure 6.9 shows
two photographs of the setup after it has been removed and unwrapped. Depending on the
flow of carrier gas, the white substance formed either directly above the cylinder or further
downstream which was found to contain a large concentration of BNNTs (see below). Higher
quality material tended to be collected when the material would condense about 3 cm from
the end of the cylinder. It was also possible to stuff additional insulation into the setup
downstream from the cylinder to provide more places for the nanotubes to condense.

The tubes were invariably deposited on the carbon fibers of the insulation. The fibers were
examined in an optical microscope; a typical result is shown in Figure 6.10. An iridescent,
crystal-like material covers the carbon fibers, and has small black dots, from 0.5 to 2 microns
in diameter, embedded in it.

Figure 6.11 shows a series of SEM images of the white product collected from the in-
sulation. In the upper left, we see an insulation fiber which has been covered completely
in fibers, which appear to grow like fur on its surface. It is likely that the fiber acts as a
condensation point for the boron vapor that passes by it; the low temperature wake of the
fiber causes small boron droplets to form, which in turn react with the ammonia atmosphere
to form BN nanotubes. Another detail of the mat of tubes is shown in the upper right panel.

The lower panels show higher magnification images of the tube mats. Round particles,
presumably of boron, are found at the tips of tubes which jut out from the central fiber
from which they appear to condense. Larger boron particles are also present, indicating that
perhaps these simply get caught up in the tube mats; they may also play a role in the tube
formation process. It is evident in these images that the tubes are approximately 50 microns
long.

Figure 6.12 shows additional high-magnification SEM images of the BN product. The
presence of small, round particles is ubiquitous. In many cases, they are seen decorating the
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Figure 6.9: Photographs of BNNTs deposited the downstream end of the graphite tube.
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Figure 6.10: Optical microscope image of carbon fiber covered with BNNTs.

sides of the tubes, indicating that they adhered after tube formation. In other cases (lower
right) they can be attached to the ends of the tubes, indicating that they may be the particle
from which the tube formed.

The synthesis products were also examined in TEM. In order to avoid breaking the tubes,
samples were prepared by rubbing a TEM grid covered in lacey carbon across the carbon
fibers coated in BN nanotubes. Figure 6.13 shows low-magnification TEM images of the BN
nanotubes. On the left, the first 20 microns of a 50 micron tube is shown. The tubes in this
sample tended to have a tapered structure, starting with a thickness of about 100 nm and
thinning out considerably as they went along. The start of one such tube is shown in the
right panel. Contrast was much higher at this end, and there appeared to be a filling inside
the tube, likely boron.

These images suggest the condensation mechanism proposed in a number of previous
studies [91, 85] namely, that as the boron particle moves through the reactive environment
(nitrogen or ammonia), it leaves behind a “tail” that forms a BN nanotube. The rate of
formation may depend on the speed and size of the boron particle, but it appears in this case
that a narrow tube may emanated from a larger particle, since the particle would presumably
shrink as it moved along and gave off more and more boron. On the other hand, it may be
the reduction in speed and/or temperature of the particle plays an important role in halting
tube growth. The ambient vapor pressure of boron may also play an important role, in which
case the particle could possibly grow rather than shrink as it moved further away from the
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Figure 6.11: Low magnification SEM images of carbon fiber covered with BNNTs.

hot zone. Further studies and modeling are necessary to elucidate this process.
Figure 6.14 shows a series of high-magnification TEM images of the same nanotubes.

The crystallinity of the tubes is good; the walls are composed of roughly 6 to 12 well-ordered
concentric BN layers. In the upper panels, smaller boron particles of about 5 nm diameter
are evident. In some cases, there are also hollow, presumably BN spheres, that may have
formed through the nitridation of small boron particles.

The lower panels show two “clean” BN tubes. The dark fringes are typical of highly
crystalline BN nanotubes, and may indicate a degree of internal stress and/or facets on the
surface of the tube. The tubes are about 15 nm in diameter, and sometimes have a layer of
amorphous material on their outsides.

Hyperbaric Operation

By attaching nuts to the threaded rods which support to top flange of the induction setup,
it was possible to run the system at slightly elevated pressures. Safety concerns, however,
limited our operation to around 2 atm. The tubes in this case tended to be slightly longer,
and the sizes of the round particles slightly smaller. The elevated pressures also were advan-
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Figure 6.12: High magnification SEM images of BNNTs synthesized via powder injection
into an induction furnace.

Figure 6.13: TEM images of BNNTs synthesized via powder injection into an induction
furnace.
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Figure 6.14: High magnification TEM images of BNNTs synthesized via powder injection
into an induction furnace.
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Figure 6.15: SEM images of BNNTs synthesized via powder injection into an induction
furnace under hyperbaric pressures.

tageous for powder feeding, as the powder feeder tends not to clog up as much under these
conditions. SEM image of some typical results are shown in Figure 6.15.

Suggestions for Improvement

As indicated above, elevated pressures tended to improve the quality and quantity of tubes.
However, the quartz reaction chamber we use in our induction furnace limits the amount of
pressure that can be applied safely. An alternative might be to enclose the system inside of
a metal chamber with the induction coil inside; similar systems have been used in the past
for attaining a combination of high temperatures and pressures in synthesis systems.

Additionally, the fibers on which the tubes form appear to be important in the tube
formation process. It would be worthwhile to model the flow dynamics carefully, and consider
the design of a condenser system which would facilitate tube growth. Such a system would
also be useful if production were to scale up, making product collection more efficient.

Lastly, the length of the hot zone in the furnace likely plays an important role in the
synthesis process. I believe that a longer zone might benefit tube formation by keeping the
boron droplets hotter for longer. The hot zone could be tailored by use of longer, custom-
designed susceptors, insulation, and a careful understanding of the convective flows inside of
the chamber.
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Chapter 7

Boron Nitride Nanotubes via Metal
Oxides and Metal Borides

In this final chapter, we will look at another interesting route to the synthesis of boron
nitride nanotubes, involving the nitrdation of boron synthesized in situ via the reduction of
metal oxides or decomposition of metal borides. In the former case we will concentrate on
the reaction of magnesium oxide with boron, which subsequently reacts with ammonia to
form BN.

7.1 Metal Oxide Reduction by Boron

In this approach, a metal oxide undergoes a solid-solid reaction with boron at high tem-
peratures. The approach was first reported by Tang and Bando [92] which they term the
BOCVD method. In their experiment, boron powder and magnesium oxide in equal soichio-
metric amounts is mixed together in a mortar, and heated in a BN crucible under a stream
of argon; the stream of reactive gas lets out into another BN crucible which is saturated with
ammonia; upon mixing, BNNTs about 60 nm in diameter and several microns long can be
collected by scarping a small amount of material off the side of the BN crucible in which the
reaction takes place.

The chemistry of the reaction proposed by Tang and Bando is that the oxide forms a
diboron-dioxide molecule, which subsequently reacts with the ammonia for form BN accord-
ing to the reactions

2 MgO + 2 B −−→ 2 B2O2 + 2 M (7.1)

B2O2 + 2 NH3 −−→ 2 BN + 2 H2O + H2 (7.2)

A good recent review of the BOCVD method can be found in Reference [93].
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Figure 7.1: Schematic of silicon chip method for synthesis of BNNTs via BOCVD. White
solid is BN; brownish material is MgO/B precursor powder; blue is silicon; green arrows
indicate ammonia flow.

Silicon Chip Method

The method described by Tang and Bando uses an induction furnace. It is rather complicated
setup, and not very reliable; many attempts were made at making a reliable crucible, but
consistency was very hard to achieve. Drs. David Okawa and Shaul Aloni developed a very
facile alternative setup for synthesis of BNNTs based on the BOCVD method. A schematic
of the setup in shown in Figure 7.1. A open-faced boat is machined from 15 mm square
stock of pyrolitc BN. The Mg/O powder is packed into the bottom of the boat, and a strip
of silicon is cleaved to fit in a groove at the top of the boat. The assembly is placed in a 25
mm OD quartz tube, which is heated in a horizontal tube furnace to 1200 ◦C under a flow
of argon. When the synthesis temperature is reached, the gas is switched to ammonia. The
powders react and diffuse upward towards the chip. Gas flowing past the boat reacts in the
region between the precursor powder and the silicon, and BNNTs grow on the surface of the
chip. The reaction is run for about 15 minutes, after which the furnace is allowed to cool.

Upon removal, the chip is coated with a hard white substance which tends to be thicker
along the upstream edge.Figure 7.2 shows an SEM image of the resulting chip. The white
substance is composed of a hard layer of disordered magnesium oxide from the top of which
BNNTs protrude. The tubes are about 10 - 50 microns long and approximately 50 -60
nm wide. TEM images (not shown) show good crystallinity, though significant amounts of
magnesium oxide contaminants tend to be present. The diameter and degree of magnesium
oxide contaminants vary along the chip, and it is important to examine the sample in the
SEM to find the best quality tubes. The method is very reliable, and almost always results
in some good tubes which can be useful in single-tube experiments if they can be properly
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Figure 7.2: SEM images of BNNTs grown via the silicon chip method.
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Figure 7.3: Schematic of sprinklerhead method for synthesizing BNNTs via the BOCVD
method.

separated from the contaminants.

Sprinklerhead Method

One of the points stressed by Tang and Bando is that, in order to get good results, the
ammonia and the precursor powder should be well separated. In the above process, the
powder is exposed to the ammonia which tends to passivate it quickly. In an effort to
improve the synthesis, I designed a new setup where the powder is kept in a separate BN
tube and is carried into an ammonia region, as in Tang and Bando’s original process.

Figure 7.3 shows a schematic of the apparatus. A blind 3/8” cavity is first machined from
a 1/2” diameter BN rod; the blind end is drilled through with a 1/16” hole, and on the exterior
face a 1/8” counterbore is drilled to allow for insertion of an alumina rod which delivers an
inert carrier gas to the cavity. Small holes are drilled into the sides of the vessel out of which
the reactive gases flow. The precursor powder is placed inside the cavity and the open end
is capped off with a BN plug.

The assembly is placed in slipped into a quartz tube mounted in a horizontal resistance
furnace, and the carrier gas is flowed at around 25 sccm while the temperature is raised to
1200 ◦C. Then, a flow of ammonia at around 40 sccm is introduced into the quartz, and
reaction run for about 15 minutes. It is useful to monitor the pressure of the carrier gas, as
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Figure 7.4: TEM image of BNNTs synthesized via the sprinklerhead method.

the small holes through which the reactive gases escape the cavity can easily become clogged
up with magnesium oxide.

On successful runs, a fine, silky white material will condense on the exterior of the small
holes in the vessel, which can be scraped off carefully with a spatula. It was found that in
the most successful run, the precursor material remains a brownish-black color, indicating
that no ammonia is able to diffuse into the cavity. The flow rate of the carrier gas needs to
a adjusted appropriately in order to achieve this.

Figure 7.4 shows a TEM image of the resulting material. It is composed almost exclu-
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sively of multiwalled BNNTs with good crystallinity. The concentration of contaminants
is relatively low. The alternating dark fringes are thought to be indications of a faceted
structure on the surface of the tubes.[93]

7.2 Decomposition of Metal Borides

An alternative route is to consider the decomposition of metal borides, which can release
boron upon decomposition. For example, in the case of iron boride, we have

FeB −−→ Fe + B (7.3)

The boron can then subsequently react with ammonia via Equation 6.2 to form BN. The
synthesis route was suggested by Dr. Zhengzong Sun, together with whom I conducted some
experiments synthesizing BNNTs in this manner.

The approach was simply to take iron boride powder and heat it to high temperatures
in the induction furnace under a flow of ammonia. The iron boride was sprinkled onto a
2” diameter graphite disk, which was placed in the center of the induction furnace chamber
under sufficient insulation; the chamber was flushed with inert gas several times, after which
about 5 kW of power was supplied. Induction heating heats the disk non-uniformly, with
the exterior edge receiving a larger amount of powder. After reaching high temperature, a
flow of about 200 sccm of ammonia was introduced, and the reaction was run for about 10
minutes. Upon cooling, the disk is removed and examined. A white fluffy substance can be
found on the rim of the disk, while in the center, small iron particles remain.

Figure 7.5 shows an SEM image of BNNTs synthesized via decomposition of iron boride.
It is evident that a large number of contaminants, presumably iron, boron, or iron boride
particles decorate the tubes. The tubes are up to 10 microns long and are found tangled in
bunches.

Figure 7.6 shows a TEM image of a BNNT from the same sample. The tube has fairly
good crystalline quality, and is about 15 nm in diameter. The square end cap is typical of
BNNTs.
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Figure 7.5: SEM image of BNNTs synthesized via decomposition of iron boride.
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Figure 7.6: TEM image of a BNNT synthesized via decomposition of iron boride.
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Margins of Continuum Mechanics”. In: Physical Review Letters 106.25 (June 2011),
p. 255503. issn: 0031-9007. doi: 10.1103/PhysRevLett.106.255503. url: http:
//link.aps.org/doi/10.1103/PhysRevLett.106.255503.

[9] R Nicklow, N Wakabayashi, and HG Smith. “Lattice dynamics of pyrolytic graphite”.
In: Physical Review B 5 (1972), pp. 4951–4962. url: http://prb.aps.org/abstract/
PRB/v5/i12/p4951\_1.



BIBLIOGRAPHY 113

[10] Qiang Lu, Marino Arroyo, and Rui Huang. “Elastic bending modulus of monolayer
graphene”. In: Journal of Physics D: Applied Physics 42.10 (May 2009), p. 102002.
issn: 0022-3727. doi: 10.1088/0022-3727/42/10/102002. url: http://stacks.iop.
org/0022-3727/42/i=10/a=102002?key=crossref.7b9cd79ee1443d013bc3d9c215937c03.

[11] Konstantin Kudin, Gustavo Scuseria, and Boris Yakobson. “C2F, BN, and C nanoshell
elasticity from ab initio computations”. In: Physical Review B 64.23 (Nov. 2001),
p. 235406. issn: 0163-1829. doi: 10.1103/PhysRevB.64.235406. url: http://

link.aps.org/doi/10.1103/PhysRevB.64.235406.

[12] Rudolph Szilard. Theories and Applications of Plate Analysis. Hoboken: John Wiley
& Sons, Ltd., 2004.

[13] Konstantin V. Zakharchenko. “Tempeature effects on graphene: from flat cystal to 3D
liquid”. PhD thesis. 2011. isbn: 9789081732901. arXiv: arXiv:0903.3847.

[14] William Regan et al. “A direct transfer of layer-area graphene”. In: Applied Physics
Letters 96 (2010), p. 113102. doi: 10.1063/1.3337091.

[15] Eugen Ermantraut, Klaus Wohlfart, and Willem Tichelaar. “Perforated support foils
with pre-defined hole size, shape and arrangement”. In: Ultramicroscopy 74.1-2 (July
1998), pp. 75–81. issn: 03043991. doi: 10.1016/S0304- 3991(98)00025- 4. url:
http://linkinghub.elsevier.com/retrieve/pii/S0304399198000254.

[16] Joel Quispe et al. “An improved holey carbon film for cryo-electron microscopy.” In:
Microscopy and microanalysis 13.5 (Oct. 2007), pp. 365–71. issn: 1431-9276. doi: 10.
1017/S1431927607070791. url: http://www.ncbi.nlm.nih.gov/pubmed/17900388.

[17] Robert a Barton et al. “High, size-dependent quality factor in an array of graphene
mechanical resonators.” In: Nano letters 11.3 (Mar. 2011), pp. 1232–6. issn: 1530-6992.
doi: 10.1021/nl1042227. url: http://www.ncbi.nlm.nih.gov/pubmed/21294522.

[18] R R Nair et al. “Fine structure constant defines visual transparency of graphene.” In:
Science (New York, N.Y.) 320.5881 (July 2008), p. 1308. issn: 1095-9203. doi: 10.
1126/science.1156965. url: http://www.ncbi.nlm.nih.gov/pubmed/18388259.

[19] Alexander a Balandin et al. “Superior thermal conductivity of single-layer graphene.”
In: Nano letters 8.3 (Mar. 2008), pp. 902–7. issn: 1530-6984. doi: 10.1021/nl0731872.
url: http://www.ncbi.nlm.nih.gov/pubmed/18284217.

[20] Nicolas Mounet and Nicola Marzari. “First-principles determination of the structural,
vibrational and thermodynamic properties of diamond, graphite, and derivatives”. In:
Physical Review B 71.20 (May 2005), pp. 1–14. issn: 1098-0121. doi: 10 . 1103 /

PhysRevB.71.205214. url: http://link.aps.org/doi/10.1103/PhysRevB.

71.205214.

[21] Zhuangchun Wu et al. “Transparent, conductive carbon nanotube films.” In: Science
305.5688 (Aug. 2004), pp. 1273–6. issn: 1095-9203. doi: 10.1126/science.1101243.
url: http://www.ncbi.nlm.nih.gov/pubmed/15333836.



BIBLIOGRAPHY 114

[22] Christian Reichardt. Solvents and Solvent Effects in Organic Chemistry. 3rd. Wiley-
VHC Publishers, 2003.

[23] M Paczuski, M Kardar, and DR Nelson. “Landau theory of the crumpling transition”.
In: Physical review letters 60.25 (1988), pp. 2638–2640. url: http://adsabs.harvard.
edu/abs/1988PhRvL..60.2638P.

[24] C. Moreno-Castilla and F.J. Maldonado-Hódar. “Carbon aerogels for catalysis appli-
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