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ABSTRACT OF THE DISSERTATION

Small Molecule Interaction With Biological Targets

by

Tyler William H Backman

Doctor of Philosophy, Graduate Program in Bioengineering
University of California, Riverside, December 2016

Dr. Thomas Girke, Chairperson

In this dissertation, I present several strategies to leverage experimental data

towards a quantitative understanding of small molecule bioactivity that can inform

the discovery of small molecule drugs.

First, I present ChemMine Tools, a web service which provides both programmable

and interactive online interfaces to a diverse set of analysis tools useful for analyz-

ing small molecule structural data. ChemMine Tools allows users to import small

molecule structures, compute pairwise compound similarities, search for similar com-

pounds, cluster compounds by structure or physical properties, and compute physic-

ochemical properties.

Second, I present bioassayR, a software package for large scale cross-target analysis

of small molecule bioactivity profiles. bioassayR systematically analyzes data from

thousands of screening experiments to identify target selective drug candidates and

druggable protein targets. By simultaneously leveraging data from both custom small

molecule screening efforts and public databases, bioassayR helps identify regions of the
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genome and proteome accessible to small molecule probes, elucidate novel mechanisms

of action for bioactive molecules, and predict off-target effects which currently lead

to a high attrition rate in drug discovery efforts.

Third, I present a systematic analysis of small molecule target selectivity against

druggable protein targets in large public bioactivity data. This study highlights a

large number of novel bioactivity patterns with the potential to inform the curation

of better drug discovery libraries. I demonstrate that a large fraction of the previously-

reported promiscuity of FDA approved drugs is due to cross-reactivity among protein

targets sharing common domains and/or Molecular Function annotations. I also

identify a large number of novel active targets for the FDA approved drugs, as well

as a large set of novel compounds active against potentially new therapeutic targets

with no evidence of druggability by FDA approved drugs.

Finally, I present a mathematical model of leptin transcytosis across the blood

brain barrier. This kinetic model extends current mathematical models of receptor

endocytosis to transcytosis, and behaves similar to the experimentally observed dy-

namics of this system. A computational model is provided which allows for in-silico

perturbation, to predict the potential effects of pathological states, or therapeutic

small molecules.
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Chapter 1

Introduction

This work presents three substantially different approaches towards the common

goal of quantitatively leveraging experimental data and biological understanding to-

wards the discovery and development of safe and effective medical therapies. First,

I present new software tools for the structural analysis of drug-like small molecules.

Second, I present new software tools for the large scale cross-target analysis of exper-

imentally obtained small molecule bioactivity data, along with an extensive analysis

of the bioactivity data that is publicly available. Lastly, I present a case study of

translating a qualitative understanding of a disease related biological process into a

quantitative model which can be computationally interrogated to identify druggable

nodes in a complex biological system, and to identify gaps in our knowledge that

make our current models inadequate to explain experimental observations. While

independently useful, the ultimate utility of these three methods will be realized as

they are further developed into a unified workflow.
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I first present ChemMine Tools, a computational environment for visualizing,

searching, clustering, and predicting physicochemical properties of small molecules[3].

This work provides both a web interface, and a programmable R language interface

embedded into the ChemMineR cheminformatics library[5]. There is also a standalone

version that users can run on a desktop computer or private server. A key feature of

ChemMine Tools is it’s modularity, as it provides a common API for developers to

easily contribute additional tools, which simultaneously become available to web and

R users. Users on both interfaces submit jobs to a queue, which runs a large number

of parallel jobs in the background, while maintaining a responsive interface. After a

job is completed, the results are returned in both a downloadable machine-readable

form, and in interactive plots and tables. Since the release of the current version,

ChemMine Tools has become a widely used foundational tool in drug discovery, and

has been cited in the discovery of a large number of small molecule drugs and chemical

genomics probes.

Second, I present bioassayR, a computational tool for large scale data mining

of small molecule bioactivity data from diverse sources. Despite a large and rapidly

growing body of small molecule bioactivity data, systematic leverage of these data as a

reference for identifying compounds with a desired bioactivity, and assessing the drug-

gability of protein targets are limited by informatics challenges stemming from the

large data volume, heterogenous experimental designs, sparseness, and noise. bioas-

sayR addresses these issues to enable simultaneous analysis of thousands of bioassay

experiments performed over a diverse and sparse set of compounds and biological tar-
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gets. bioassayR works with both public and user supplied data and is freely available

as an open-source R/Bioconductor package.

Organizing and systematically analyzing large bioactivity data presents a unique

set of technical challenges. As public bioactivity databases include hundreds of mil-

lions of compound-target activity outcomes, the data is too large to analyze efficiently

with standard data structures provided by existing software environments and instead

is better suited to a custom-engineered relational database, and/or sparse matri-

ces. Sparseness due to untested compound/target combinations presents challenges

in searching and clustering small molecules by their activity profile, as most such

algorithms are designed for working with a complete matrix. Structural similarity

amongst compounds are often represented by metrics such as the Tanimoto Coefficient

quantifying similar and distinct entries in a binary matrix representing the presence

or absence of specific features[6]. Comparing similarity of bioactivity profiles between

compounds requires statistical methods capable of handling data sparseness as many

molecule pairs have not been screened against a uniform set of targets. Signal to

noise ratio is also a major consideration, as the false positive and false negative rates

for bioassays are notoriously high[7]. bioassayR implements a large number of new

data mining strategies to address these challenges.

By leveraging the capabilities of bioassayR, I presents the results of a large-

scale data mining project analyzing small molecule bioactivity patterns across mil-

lions of compound vs protein target activity outcomes in the PubChem BioAssay

database[19]. The goal of this analysis is to identify patterns of small molecule target

selectivity and bioactivity that can inform the costly drug discovery and development
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process, which has a high attrition and recall rate[1, 16, 2, 15]. Historically, most

new pharmaceuticals have been discovered based on an observed phenotype in vivo,

however substantial advances have been made in target-based discovery, where small

molecule drugs are chosen based on patterns of bioactivity against protein targets

which influence disease-related processes. Target-based “rational” drug discovery has

led to the discovery of a substantial number of new pharmaceuticals, however the ef-

fectiveness and throughput of this process continues to lag behind in vivo phenotype

driven discovery, in producing safe and effective drugs that ultimately obtain FDA

approval[18, 17].

Many current FDA approved drugs were discovered by chance, or by screening

live organisms for a desired phenotype, and their exact mechanism of action remain

unknown[18]. A small subset of existing drugs were discovered using target based

strategies, where a desired molecular mechanism and target protein(s) are first iden-

tified, and experiments are performed to identify molecules with the desired activity.

Target based drug discovery approaches are severely limited by the lack of detailed

knowledge regarding the mechanisms of existing drugs. For example- do existing

drugs tend to bind to a single molecular target, multiple related targets, or many

different targets? This question is extensively explored in Chapter 5.

PubChem Bioassay was started in 2004 as part of the NIH’s Roadmap for Medical

Research Initiative, and is currently the largest repository of public domain bioac-

tivity data. In recent years, it has been expanded to also include the contents of

BindingDB and ChEMBL[20, 9, 13]. As of July 2016, PubChem Bioassay contains

the results of over 1.2 million bioassay experiments. About 70000 of these are defined
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target assays screening approximately 1 million distinct compounds against approx-

imately 6k distinct protein targets. These defined assay data are a useful reference

for determining patterns of small molecule binding activity, as a significant portion

(over 400k compounds) have been screened against at least 10 distinct targets, and

show activity against at least one protein target.

I build in part on the discoveries of three key PubChem BioAssay data mining

projects, which investigate the patterns of small molecule bioactivity across many

protein targets in large screening data. In 2009 Han et al. reported the distribution

of assay participation, and target selectivity in this data, and also found that over

50% of compounds are active only against sequence similar targets[10]. In 2013 Hu et

al. reported that most active compounds from biological screening have lower promis-

cuity than FDA approved drugs[11]. Recently, Jasial et al. found many surprising

new patterns, including the observation that most non-FDA approved bioactive com-

pounds from previous screens continue exhibiting low promiscuity as they become

more extensively assayed over time[12].

I provide additional context to the discoveries mentioned above, by analyzing a

larger set of data with new informatics tools, and identifying several patterns of bioac-

tivity with a potential to improve the curation of drug discovery compound libraries.

I find a large number of novel active targets for the FDA approved drugs, as well as a

large set of novel compounds active against potentially new therapeutic targets with

no evidence of druggability by FDA approved drugs. By quantifying the rate of agree-

ment between replicated compound-target activity outcomes, I estimate that less than

half of these novel outcomes are due to experimental and data curation errors. Using
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a statistical model of promiscuity, I demonstrate that a large fraction of the previously

reported high average level of promiscuity of FDA approved drugs is due to cross-

reactivity between related protein targets, and is not due to biased screening volume.

I show that a large fraction of these multi-target drugs exhibit cross-reactivity within

biclusters, where a common set of compounds are active against a common set of tar-

gets sharing related domains and molecular function annotations. I also identify the

set of highly screened compounds with strong experimental evidence for promiscuous

binding across many targets, and compare and contrast several common methods of

identifying promiscuous compounds, which often lead to problematic false positives

in drug discovery efforts. Aggregator assays identify a small number of highly promis-

cuous compounds, while PAINS substructures identify a larger set of somewhat less

promiscuous compounds[8, 14, 4]. I also report a large number of compounds with

strong experimental evidence of promiscuous binding that were not detected by either

method.

The systematic analysis of public domain bioactivity data in this dissertation pro-

vides insight into many outstanding questions regarding drug discovery and bioactiv-

ity. Simultaneously, the software tools I developed in the process address the compu-

tational challenges mentioned above, in a manner that will enable other researchers

to efficiently answer questions about patterns of small molecule target activity, and

to narrow the search space when identifying drug and small molecule probe candi-

dates. Organized information on the active targets of known drugs and drug like

small molecules, as well as the functional relationships between these active targets

will enable the identification of target selective small molecules, as well as multi-target
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drug candidates with potential to influence robust pathways and cellular networks.

Additionally, synergistic drug combinations may be predicted by combinatorial use

of highly target selective small molecules which together exhibit a desired activity

pattern.

Lastly, I present a mathematical model of transcytosis of the peptide hormone lep-

tin across the blood brain barrier. This serves as an example of taking a well developed

qualitative understanding of a biological process, and translating that understanding

into a system of differential equations that can be simulated computationally. I show

that this model can be fit to appropriate experimental data to infer specific values

of the underlying model parameters necessary to make predictions about the system

behavior under dynamic conditions. A similar method has been demonstrated to suc-

cessfully measure the unknown rate constants in receptor-mediated cellular uptake

of epidermal growth factor (EGF) by it’s receptor (EGFR)[21]. This model provides

several key scientific opportunities. First, a sensitivity analysis can systematically

identify which currently unknown aspects of the underlying system must be further

studied to enable meaningful predictions of the system behavior under diverse con-

ditions, and which can be safely ignored or approximated. Additionally, the same

process can identify nodes in the system (such as enzymatic proteins) that exhibit

potentially druggable sensitivity to perturbation, and other system nodes which ex-

hibit robustness to perturbation.
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Chapter 2

ChemMine Tools: an Online

Service for Analyzing and

Clustering Small Molecules

2.1 Abstract

ChemMine Tools is an online service for small molecule data analysis. It provides

a web interface to a set of cheminformatics and data mining tools that are useful for

various analysis routines performed in chemical genomics and drug discovery. The

service also offers programmable access options via the R library ChemmineR. The

primary functionalities of ChemMine Tools fall into five major application areas: data

visualization, structure comparisons, similarity searching, compound clustering and

prediction of chemical properties. First, users can upload compound data sets to

10



the online Compound Workbench. Numerous utilities are provided for compound

viewing, structure drawing and format interconversion. Second, pairwise structural

similarities among compounds can be quantified. Third, interfaces to ultra-fast struc-

ture similarity search algorithms are available to efficiently mine the chemical space

in the public domain. These include fingerprint and embedding/indexing algorithms.

Fourth, the service includes a Clustering Toolbox that integrates cheminformatic al-

gorithms with data mining utilities to enable systematic structure and activity based

analyses of custom compound sets. Fifth, physicochemical property descriptors of

custom compound sets can be calculated. These descriptors are important for as-

sessing the bioactivity profile of compounds in silico and QSAR analyses. ChemMine

Tools is available at: http://chemmine.ucr.edu.

2.2 Introduction

Cheminformatics tools for analyzing small molecule screening data play an impor-

tant role in many fields including chemical biology, chemical genomics, drug discovery

and agrochemical research [37, 17, 31]. Informatics resources in these areas are es-

sential for exploring the structure, properties and bioactivity of biologically relevant

molecules. To provide these capabilities, software tools are required for analyzing the

structural similarities, physicochemical properties and bioactivity profiles of natural

and synthetic compounds to gain insight into their modes of action in biological sys-

tems. This information is important for the development of effective small molecule

probes for studying the functions of protein and cellular networks in chemical ge-

11
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nomics and drug discovery research [11]. In addition, similar informatics resources

are required for identifying the structural and physicochemical relationships among

compounds from metabolic or signaling pathways [19, 23, 32]. The rapidly growing

relevance of chemical genomics approaches for modern biology research has signifi-

cantly increased demand for small molecule mining systems in academia [30].

Currently, the structures of over 30 million distinct small molecules are available

in open-access databases, including PubChem, ChemBank and many others [1, 34,

21, 13, 7, 22, 25]. In addition, preliminary bioactivity data from hundreds of high-

throughput screening (HTS) experiments against a wide spectrum of target sites have

become available for almost one million compounds in the bioassay sections of various

public databases (see below). To efficiently analyze these resources, the development

of novel compound data mining and cheminformatic web services is essential.

While there has been extensive development of public domain small molecule

databases in recent years [40, 21, 9, 1, 25, 34, 23, 27, 42, 10, 3, 24, 44, 7, 22, 14], the

number of open access web services for analyzing public or custom small molecule data

is extremely limited at this point [35, 45]. Thus far, most development has been fo-

cused on standalone software applications targeted toward computational rather than

experimental scientists. These include Open Babel [16, 29], the Chemistry Develop-

ment Kit [36, 15], the Chemical Descriptors Library [38] and JOELib [43]. Examples

of software designed for non-expert users in this field are Chembench [41] for online

QSAR modeling and KNIME [2] for designing data analysis pipelines.
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Figure 2.1: Illustration of the functionalities provided by ChemMine Tools.
The utilities of the five application domains (I-V) are listed in more detail in Table
2.1.

Functions Program Input Output Comments
(I) Compound Workbench
Structure import/export Open Babel mouse clicks SMILES/SDF one or many compounds
Format interconversions Open Babel SDF/SMILES SMILES/SDF one or many compounds
Bioactivity data import JavaScript/Ajax tabular data table/heat map SAR table
Structure depictions CACTVS SMILES/SDF Image file (GIF) one or many compounds
Structure drawing JME Molecular Editor mouse clicks SMILES/SDF single compound
Database import SOAP XML/SDF SMILES/SDF PubChem
Scriptable access from R ChemmineR* SDF, tabular data online viewing SAR table

(II) Similarity Toolbox
Fragment-based similarity Atom Pairs* SDF/SMILES Similarity coefficients pairwise comparisons
Maximum common substructure MCS* SDF/SMILES MCS (SDF), similarity coefficient pairwise comparisons

(III) Search Toolbox
Embedding and indexing EI Search* mouse clicks, SDF/SMILES ranked compound list database search
Fingerprint search PubChem PUG mouse clicks, SDF/SMILES ranked compound list database search

(IV) Clustering Toolbox
Binning clustering cmp.cluster* SDF/SMILES, custom table cluster table
Hierarchical clustering hclust SDF/SMILES, custom table tree, distance matrix optional heat map
Multidimensional scaling cmdscale SDF/SMILES, custom table scatter plot interactive

(V) Property Toolbox
Physicochemical descriptors JOELib SDF/SMILES property table 38 descriptors

Table 2.1: List of services provided by ChemMine Tools. The names of soft-
ware tools, libraries and environments are italicized. Programs developed by the
ChemMine Tools project are labeled with a star*. Acronyms defined in text.
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Here, we present ChemMine Tools as an online portal to a variety of chemin-

formatics, visualization, search and clustering tools for small molecule data. The

utilities provided by this service are useful for various analysis and data mining rou-

tines of small molecule screening experiments in chemical genomics and related areas.

An easy to use web interface makes these tools accessible to experimental scientists

without an extensive computational background.

2.3 Methods

Conceptually, the ChemMine Tools online service is divided into five application

domains (Figure 7.2; Table 2.1): (i) a Compound Workbench for data imports and

result management; (ii) a Structure Similarity Toolbox to quantify the similarities

among compounds; (iii) a Search Toolbox for retrieving similar compounds from Pub-

Chem; (iv) a Clustering Toolbox for accessing clustering and data visualization tools;

and (v) a Property Toolbox for predicting physicochemical properties of compounds.

To construct robust data analysis workflows, the back-end of the server employs a

modular design architecture with object-oriented methods and container classes assur-

ing compatible input/output flows and parameter settings among the different data

processing units. Currently, the server integrates over 30 cheminformatics and data

mining tools that were developed by this or related open source projects. The modu-

lar organization of the ChemMine Tools service has several advantages. For instance,

it maximizes the transparency and maintainability of the system, and simplifies the

addition of new features and analysis methods upon user request. The web inter-
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face of ChemMine Tools is written in Python using the object-oriented and highly

scalable Django web framework. Modern JavaScript/Ajax utilities are embedded to

generate interactive and customizable high-content web pages. Moreover, the Chem-

Mine Tools project is dedicated to an open access and resource sharing policy. All of

its online services and downloadable software components are freely available without

restrictions. The following subsections give a detailed description of the underlying

algorithms and software tools used by the individual ChemMine Tools services.

2.4 Discussion of Services

2.4.1 Compound Workbench

A central feature of ChemMine Tools is its Compound Workbench. It provides a

flexible online workspace to upload, manage and visualize small molecule data. Com-

pounds can be imported by reading them from local files, copy and paste, PubChem

queries (see Search Toolbox) or by interacting with the service through the Chem-

mineR library [4] within the statistical programming environment R. The latter is

an extension of the ChemMine Tools project to provide a programmable interface to

more advanced users. Alternatively, compounds can be drawn online with the JME

Molecular Editor [12] and then added to the Compound Workbench. Currently, the

import utility supports the structure data format (SDF) and simplified molecular in-

put line entry system (SMILES). After the import, one can organize and annotate the

compounds or view their structure images in single or batch modes. These images
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are generated in real time from the underlying structure definition data using the

structure depiction tool of the CACTVS software suite [21] which runs on the server

side. To revisit instances of compound sets, users can save their workbench for later

use by downloading the compounds to local files. The compound download function

also serves as a format conversion tool to interconvert structure representations be-

tween SDF and SMILES formats using utilities from the Open Babel project [16, 29].

Once the user has populated the Compound Workbench with structures, it serves as

a central submission system to all downstream analysis services.

2.4.2 Similarity Toolbox

In many small molecule screening data analysis routines it is important to compute

objective similarity measures among compounds as a means to compare and prioritize

structurally related lead compounds. To provide this functionality, ChemMine Tools

has implemented two algorithms for computing similarity coefficients among com-

pound structures. The first employs atom pairs as structural descriptors [8] and the

widely used Tanimoto coefficient as a similarity measure (see below for more details).

Alternatively, users can choose other similarity coefficients, such as Tversky or Dice

[20]. The second algorithm identifies the maximum common substructure (MCS)

shared among compound pairs [5]. Subsequently, the size of both compounds and the

size of their shared MCS is used to calculate the available similarity coefficients. The

underlying MCS algorithm often provides the most accurate and sensitive similarity

measure, especially for compounds with large size differences [33, 18].
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2.4.3 Search Toolbox

To efficiently mine much of the chemical structure and bioactivity space avail-

able in the public domain, the ChemMine Tools service provides text and struc-

ture similarity search methods that interface with the PubChem database [25] via its

SOAP-based Power User Gateway (PUG) data exchange feature. During an analysis

session, instantaneous search functionality is often important for retrieval of detailed

property and annotation information for compounds of interest, or to identify related

structures. In ChemMine Tools, structural similarity searches can be performed with

PubChem’s fingerprint search engine or via the EI Search method. The latter was

developed in house as part of this project to provide ultra-fast structure similarity

search functionality using an embedding/indexing (EI) algorithm [6]. When the fin-

gerprint method is chosen, the query is sent to PubChem, where the structure search

is performed and the results are returned to the compound workbench. In contrast

to this, EI Search is specific to the ChemMine Tools project and thus, runs locally

on its servers. These two tools possess complementary strengths and weaknesses in

identifying weak similarities among compounds[6].

2.4.4 Clustering Toolbox

Clustering of compounds by structural or property similarity can be a powerful

approach to correlating compound features with biological activity. Clustering tools

are also widely utilized for diversity analyses to identify structural redundancies and

other biases in compound libraries. ChemMine Tools’ clustering workbench provides
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an online interface to three clustering algorithms which include hierarchical clustering,

multidimensional scaling (MDS) and binning clustering [4]. The following provides

a short overview of these tools, while a more detailed outline of the underlying the-

ory and clustering schemes is available in the online tutorial. When clustering by

structural similarity, the required similarity measures are computed by first gener-

ating the atom pair descriptors (features) for each compound which are then used

to calculate a similarity matrix based on the common and unique features observed

among all compound pairs using the Tanimoto coefficient. The Tanimoto coefficient

has a range from 0 to 1 with higher values indicating greater similarity than lower

ones. For the subsequent clustering steps, the similarity matrix is converted into a

distance matrix by subtracting the similarity values from 1. The hierarchical and

MDS clustering methods provided by ChemMine Tools are based on the R programs

hclust and cmdscale, respectively; the third method utilizes an internally developed

C++ implementation. These three programs complement one another with respect to

their data outputs and visualization options. Hierarchical clustering organizes com-

pounds by similarity in a tree with branch lengths proportional to the item-to-item

(compound-to-compound) similarities, while the MDS output encodes this informa-

tion in a scatter plot. These two methods do not directly provide assignments of

compounds to discrete similarity groups; assignments are generated downstream of

the actual clustering process using various post-processing methods, such as tree cut-

ting approaches. The binning clustering output provides these groupings directly

for a user-definable similarity cutoff. For instance, if a Tanimoto coefficient of 0.6

is chosen then compounds will be joined into groups that share a similarity of this
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value or greater using a ‘single linkage’ rule for cluster joining. Final results are pre-

sented as interactive visualization pages to simplify the interpretation of the (often

complex) clustering results. The hierarchical clustering result page uses the Google

Maps API to generate zoom- and click-able trees aligned with molecular structure

images. Moreover, heat maps of user uploaded data containing compound property,

activity or other information can be viewed alongside the tree. A similar system is

used to present the MDS results as click-able scatter plots with cursor-over viewing

of compound structures. The binning clustering results are presented in a table view

containing (among other information) the cluster identifiers and the corresponding

compound depictions.

2.4.5 Property Toolbox

Predictions of small molecule physicochemical properties are important for as-

sessing their ‘druglikeness’ and ‘leadlikeness’ in silico [39, 28]. They are also useful

for enriching compound collections with desirable properties. For instance, the fa-

mous “Lipinski Rule of Five” [26] is often applied to enrich compound collections

with druglike candidates. This rule filters for compounds with ≤ 5 hydrogen bond

donors, ≤ 10 hydrogen acceptors, a molecular weight ≤ 500 daltons and an octanol-

water partition coefficient log P ≤ 5. Physicochemical property data are essential for

predicting bioactive and other properties of small molecules using modern machine

learning approaches. These data are fundamental to the development of quantitative

structure-activity relationship (QSAR) models [35]. ChemMine Tools provides an
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online interface to the property prediction module of the JOELib package [43]. This

service can calculate 38 physicochemical property values, including Lipinski descrip-

tors for custom compound sets. The resulting property tables can be downloaded

or further processed on ChemMine Tools by sending them to the Clustering Toolbox.

There, they can be used to cluster compounds by similar property profiles, as de-

scribed above, or the data can be visualized as a heat map next to the hierarchical

clustering trees.

2.5 Conclusion and Further Development

ChemMine Tools is an online service for compound analysis in the chemical ge-

nomics field. The service is unique in that it integrates a large number of chemin-

formatic programs with clustering and visualization functionalities. Additional out-

standing features of ChemMine Tools include: (i) its commitment to publicly devel-

oped open source software throughout its infrastructure; (ii) its strong dedication to

the development of new cheminformatic tools and their free distribution in the com-

munity; and (iii) the integration of its many components into a unified online and

downloadable software infrastructure which maximizes their utility for diverse tasks

with different levels of complexity and customization needs. An intuitive web inter-

face makes these tools accessible to scientists with limited computational background,

while simultaneously providing a programmable interface for advanced users. To the

best of our knowledge, there are currently no related online services available that

provide a comparable suite of functionalities. Overlaps exist, however they are limited
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to isolated functionalities. For instance, ChemDB and VCCLab [7, 39] can be used

for property predictions and structure format interconversions of single compound

queries; and PubChem supports structure-based clustering for compounds retrieved

from its own database.

In the future, many additional utilities will be added to the ChemMine Tools

service including the addition of MCS-based search functionality within the Similar-

ity Toolbox to support more complex graph-based search strategies against custom

compound sets imported into the Compound Workbench. Existing functionalities for

analyzing bioactivity data will also be expanded by adding a Bioactivity Toolbox that

will contain regression, machine learning and QSAR modeling tools.
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Chapter 3

bioassayR: Cross-Target Analysis

of Small Molecule Bioactivity

3.1 Abstract

Despite a large and rapidly growing body of small molecule bioactivity screens

available in the public domain, systematic leverage of the data to assess target drugga-

bility and compound selectivity has been confounded by a lack of suitable cross-target

analysis software. We have developed bioassayR, a computational tool which enables

simultaneous analysis of thousands of bioassay experiments performed over a diverse

set of compounds and biological targets. Unique features include support for large-

scale cross-target analyses of both public and custom bioassays, generation of high

throughput screening fingerprints (HTSFPs), and an optional pre-loaded database

which provides access to a substantial portion of publicly available bioactivity data.

26



bioassayR is implemented as an open-source R/Bioconductor package available from

https://bioconductor.org/packages/bioassayR/.

3.2 Introduction

Diverse collections of small molecules have been screened over the past decade

against a wide array of distinct protein target families. The resulting high throughout

screening (HTS) data are available in community driven databases such as PubChem

Bioassay, ChEMBL, ZINC, ChemDB, and many others (list in table S1 of Supporting

Information)[41, 12, 21, 6]. As demonstrated by many data mining efforts, these

bioactivity resources provide an opportunity for studying the selectivity patterns and

molecular mechanisms of small molecule-target interactions on a broad scale[24, 44,

43, 16, 7, 41, 36, 35]. These insights have the potential to lead to the discovery of

drug candidates and protein target sites relevant for medical or chemical genomics

applications. The data can also be used to identify and exclude drug candidates

with largely unselective binding properties (e.g. promiscuous binders) which have

been found to be of limited use to most application areas [16, 28, 8]. Moreover, the

bioactivity data can be used to develop multi-target treatments specific to one or

several cross-connected pathways; to identify alternative uses for existing drugs; or

to predict potential side and toxic effects [34, 25, 26]. Data from single target screens

(i.e. a bioassay with a specific target protein) can also be helpful for prioritizing

potential target sites in multiplexed or high-content screens, where a specific target

protein is usually unknown. Furthermore, large-scale compound bioassay data can
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be used to create an inventory of molecular functions and proteins that are accessible

or resistant to perturbations by small molecules. These “druggability profiles” can

be used to guide decision processes in selecting the most efficient target sites for

a specific research application in drug discovery and other small molecule driven

research disciplines [9].

Most of the small molecule bioactivity data available in the above mentioned public

databases were generated by systematic screening efforts of the Molecular Libraries

Program (MLP), the Chemical Biology Program of the Broad Institute, and a variety

of smaller public efforts [1]. The online interfaces of these databases provide many

useful search and download options for focused analysis of a small number of molecules

or target proteins[41, 12]. While several projects have developed statistical methods

and sample scripts applicable to cross-target analysis, there is currently no general

purpose software infrastructure available to perform these tasks in a systematic and

fully customizable manner [13, 24, 44, 43, 16, 7, 8, 16].

To address this deficit, we have developed bioassayR, a computational package

for the statistical programming language R which enables simultaneous analysis of

numerous bioassay experiments performed across diverse compounds and biological

targets [32]. bioassayR is distinct from existing tools for analyzing high throughput

screening data in several important ways: (i) its focus on the simultaneous tracking

and comparative analysis of a large number of assays of distinct experimental de-

sign and source; (ii) its flexible data structures optimized for performance with large

data and interoperability with existing statistical software; (iii) its integration with

numerous R language cheminformatics and bioinformatics tools curated by the Bio-
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conductor and CRAN projects, including ChemmineR, ChemmineOB, rcdk, cellHTS,

fmcsR, and eiR [14, 32, 4, 15, 5, 40, 2]. For example, users can analyze their own HTS

data (e.g. processed with cellHTS) alongside public bioactivity data; or process bioac-

tivity fingerprints (HTSFPs) with functionalities provided by ChemmineR. HTSFPs

summarize the activity of compounds across many protein targets. Several studies

have demonstrated their effectiveness in predicting and categorizing bioactivity in

a manner complementing rather than overlapping with structure based predictions

[18, 30, 42, 33, 22, 23, 11]. In addition, they can be used as trainings data sets

for predicting active ligand-target pairs with supervised machine learning algorithms

[27, 37]. The HTSFP tools implemented in bioassayR will generate fingerprints for

any custom set of compounds and targets, optionally merge assays with similar or

identical targets, and compare activity profiles by either continuous z-scores or binary

active/inactive values. Z-score based HTSFPs exhibit greater predictive power in hit

expansion experiments, while binary HTSFPs require less computational overhead,

enabling all-against-all bioactivity profile comparison for hundreds of thousands of

compounds [33].

3.3 Methods and Implementation

3.3.1 Software design and workflow overview

bioassayR’s data model is designed around four interconnected data objects (R

language S4 classes), each with an internal structure optimized for different bioac-
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tivity analysis routines. They are introduced below in more detail and Figure 3.1

provides an illustration. In short, the bioassay data is organized in an SQL database

called bioassayDB; data from single and many assays are imported into bioassay and

bioassaySet objects, respectively; and the compound-target matrix summarizes the

compound vs. target activities from many assays. The bioassayDB serves as a large

data repository which can efficiently organize and query millions of assays simulta-

neously, while the other objects facilitate analysis of a subset of these data selected

to answer a specific biological question. Table S2 in Supporting Information lists

selected cross-target analysis functions which query the data within these objects.

Users can optionally use a pre-built bioassayDB database which contains publicly

available bioactivity data against a wide range of protein targets.

3.3.2 bioassay object: importing data

The bioassay object (Figure 3.1 section A) stores data from a single bioassay

experiment, and acts as a gateway for importing new assay data, as well as for editing

and investigating data from one assay at a time. This object stores the assay identifier

(aid), data source, assay type, target species, scoring method, target identifiers, target

categories, and activity scores.

bioassayR provides users with the option of performing analyses either on their

own bioactivity data, on a prebuilt database of public domain bioactivity data, or both

simultaneously. Four options exist for importing data as a bioassay object: (i) data in

the standard PubChem CSV and XML formats can be parsed with a built in function;
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Figure 3.1: Design overview and workflow. bioassayR stores bioactivity data in
four interconnected objects. A Data from a single bioassay experiment is imported
into a bioassay object. B Any number of bioassay objects can be loaded into the
bioassayDB SQL database which is optimized for time efficient searching. C Filter
and query methods are available to identify compounds or assays of interest. These
query results can be imported into a bioassaySet object which stores activity data
as a sparse matrix where columns represent compounds and rows assays (targets).
This organization facilitates many typical cross-target analysis routines, e.g. target
selectivity analyses. D To reduce both redundancy and sparseness in the data, assays
involving the same or similar targets can be collapsed into a single row using the
perTargetMatrix function.
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(ii) data already represented as an R data.frame or tabular file with activity values can

be directly converted into a bioassay object; (iii) raw screening data from a microtiter

plate reader can be analyzed using the cellHTS2 R package, and converted into a

bioassay object; (iv) extracting a single assay from an already existing bioassayR

database, such as the prebuilt PubChem BioAssay database described below[2]. All

four options are demonstrated with examples in the package documentation. Once

represented as a bioassay object, these data can be viewed, edited, or loaded into a

bioassayDB database for analysis alongside other assays.

3.3.3 bioassayDB object: multiple assay SQL database

The bioassayDB object (Figure 3.1 section B) stores a connection to a SQL

database optimized for efficient aggregate search-based analysis across multiple as-

says. Users can load, edit, or delete individual bioassay objects, and then query

these data. Many analysis and query functions are provided to investigate the data

within a bioassayDB object (see Table S2 in Supporting Information). The database

is contained within a single file that can be easily shared among users. Internally,

the database stores data from a large number of individual bioassay objects, in addi-

tion to target protein domain data, and target identifier mappings. Multiple types of

identifier mapping and annotation data can be stored, for example to translate tar-

get identifiers into those used by common databases such as UniProt, or to annotate

proteins by storing categorization data such as a sequence-similarity clustering bin

for each protein [39].
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3.3.4 bioassaySet object: storing multiple assays in a matrix

Query results from bioassayDB can be stored as a bioassaySet (Figure 3.1 section

C). This matrix-like object along with its accessor methods abstracts complicated

analysis tasks across large numbers of compounds and bioassays. By representing

bioactivity data as a compound vs. assay matrix, the full range of matrix operations

in R can be leveraged to analyze these data efficiently. For example, rows can be

compared to compute the similarity between the activity profiles of two molecules.

Sparse matrix compression is utilized to avoid unnecessary usage of system memory

by untested compound-target combinations. In a typical workflow, a user will first

query the database to find a list of compounds or assays of interest, and then extract

these into a bioassaySet for further analysis.

To address questions of compound vs. target bioactivity, bioassayR can transform

a bioassaySet into a compound-target matrix by merging assays which share common

or similar target proteins, such as close orthologs from different species. Replicates

and similar-target assays can be summarized into single values by either specifying a

custom summary statistic, or choosing among several provided. The compound vs.

target matrix can be generated from either discrete “active” or ”inactive” activity

categories, or from continuous activity scores to serve as either binary or continuous

numeric HTSFPs, respectively. The scaleBioassaySet function will scale and center

continuous scores to create a z-score fingerprint. Optionally, omitting inactive values

from the discrete activity categories will produce a matrix suitable for analysis with

binary matrix algorithms. This data structure can serve as a bipartite graph (or
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bigraph) connecting compounds and targets, allowing users to analyze these data with

the numerous graph and network analysis algorithms available for the R programming

language.

3.3.5 Pre-built PubChem BioAssay database

To enable efficient analyses across large numbers of compounds and protein tar-

gets, we provide downloadable instances of the bioassayDB database pre-loaded with

public bioactivity data. This frequently updated database file includes all screens from

PubChem BioAssay involving known target proteins. PubChem BioAssay data has

been chosen since it includes assays from many sources such as ChEMBL, and there-

fore represents a substantial portion of all publicly available bioactivity data. At the

time of this writing the data contains activity results from roughly 1.2 million struc-

turally distinct compounds tested against protein 6,339 targets. As many compound-

target combinations have not been tested, these data are sparse with roughly half

(572,947) of the compounds having screening results for at least 10 distinct protein

targets. Among these “highly screened" compounds, 895 are currently FDA approved

drugs. PubChem BioAssay provides bioactivity data both as continuous numeric

scores, and active/inactive categories.

To extend the utility of these data, we provide and include within the pre-built

database additional annotation details for each protein target. The database includes

both NCBI Protein GI numbers and UniProt identifiers for all protein targets, Pfam

domains identified with the HMMER software, and amino acid sequence similarity-
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based clustering performed with kClust[39, 31, 10, 17]. The UniProt identifiers allow

users to obtain further annotation details including Gene Ontology (GO) terms pro-

grammatically by connecting to external annotation databases [38]. The Pfam domain

mappings provide groupings for local similarities and across wider evolutionary dis-

tances, while the sequence similarity cluster are more suitable for identifying groups

of sequences sharing a defined degree of sequence similarity.

The included annotation data expand the usefulness of bioassayR for several ap-

plications. For instance, the annotations can be used for merging similar assays into

a compound-target matrix as described in the above “bioassaySet object” section.

When searching for compounds active against a desired protein, users can expand the

search to include compounds found active against protein targets that share sequence

similarity, domains, or GO terms with the query. This method can identify com-

pounds that are likely active against a target of interest, even if little or no screening

data exists for that specific target. In drug discovery experiments where a specific

protein target has not yet been identified, these data can help identify protein tar-

gets worth investigating based on presence of a specific protein domain, molecular

function, or orthologue that has been previously found to be involved in the desired

therapeutic effect.
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3.3.6 Identifying compounds with selective or promiscuous

bioactivity

Bioactive small molecules can be classified according to the quantity of distinct

molecular targets they are active against. Target selective compounds bind to a small

number of target proteins, whereas “promiscuous binders", indiscriminately bind to a

large number of targets. Patterns of target selectivity in widely used drugs can also

be used as a template for identifying drug candidates with similar selectivity profiles.

Several bioassayR functions facilitate identification of target selective compounds

and the reverse, compound selective targets, across a large set of bioassay experi-

mental results. The targetSelectivity function will return the target selectivity for a

query compound. To find compounds active against a target or a set of targets in

a pathway of interest, the function activeAgainst will return all active compounds,

while selectiveAgainst will return only compounds most selective against the speci-

fied target, along with a corresponding selectivity score for each. To consider only

compounds that have been tested in numerous assays, the screenedAtLeast function

will identify compounds that have participated in a specified minimum quantity of

screens. To find all targets of a query compound, the functions activeTargets and

inactiveTargets will return the list of active and inactive targets, respectively. The

crossReactivityProbability function uses a beta-binomial statistical model to estimate

the probability that a given compound is a promiscuous binder [8].
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3.3.7 Clustering small molecules by bioactivity profile

With bioassayR, large-scale screening data can be used to cluster small molecules

based on the similarity of their bioactivity profiles across many target proteins. To

cluster small molecules by bioactivity, it is necessary to choose an appropriate simi-

larity measure, such as correlation coefficients which are appropriate for continuous

activity data, and the Jaccard or Tanimoto coefficient for categorical or binary data

[19]. Next, the chosen similarity measure is used to compute a distance matrix (d) for

all possible pair-wise comparisons of bioactivity profiles, by subtracting the similarity

values (s) from one: d = 1 − s. The distance matrix can then be used as direct

input to a variety of clustering algorithms, including hierarchical clustering, k-means

or multiple dimensional scaling (MDS).

The bioassayR clustering workflow starts by generating a compound-target bioac-

tivity matrix, as described above, with either continuous or discrete category activity

scores. For continuous scores, several similarity functions available in R, such as the

base function cor can be used to create a distance matrix based on Pearson correla-

tion coefficients. The associated ChemmineR package will create a distance matrix

for binary bioactivity fingerprints generated by bioassayR. Comparisons among bi-

nary ChemmineR fingerprints have less CPU and memory overhead than continuous

z-score based comparisons, and therefore are suitable for all-against-all comparisons

of larger compound sets.

By default, the bioassayR HTSFPs features resolve missing (untested) activity val-

ues by assuming inactivity, where a ‘0’ is used for binary fingerprints, and a z-score
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of ‘0’ is used for continuous fingerprints. When computing the similarity between two

compound bioactivity profiles, this can lead to false negatives (lower than the true

similarity value) if the compounds share few common screened targets [33]. A more

accurate estimate of similarity can be obtained by using machine learning methods

which impute the missing values, however this introduces false positives which are

often less desirable than false negatives in drug discovery efforts [33]. The bioassayR

function screenedAtLeast can limit false negatives without introducing false positives

by including only highly screened compounds in the analysis. Alternatively, the com-

pound vs. target matrix can be subset with a biclustering algorithm to limit similarity

comparison to a densely screened subset of a larger sparse compound vs. target ma-

trix. Lastly, bioassayR also provides a similarity function (trinarySimilarity) which

avoids assuming inactivity for missing compound-target activity values by operating

on a trinary bioactivity matrix which uses a ‘0’ for untested or missing values, a ‘1’

for inactive values, and a ‘2’ for active values. This function computes similarity

based only on the mutually screened targets between two compounds, and returns

an “NA” if insufficient shared assays exist to make a meaningful comparison. The

strategy of performing the comparison only on mutually screened targets, with a

minimum threshold for informative data was inspired by the continuous score “Assay

Performance Profile Similarity” metric published by Dančík, V et al. [8]
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3.4 Results and Discussion

In Supporting Information, we highlight three example use cases demonstrating

the utility of bioassayR. First, we investigate the diversity of public screening data

provided by PubChem BioAssay, and show that these data contain compounds active

against a large number of novel protein targets that are not currently accessible with

FDA approved drugs. Second, we use bioassayR to cluster FDA approved drugs by

bioactivity profiles as well as molecular structure to demonstrate that many drugs

exhibit distinct bioactivity patterns that cannot be inferred from structure alone.

Third, we demonstrate how bioassayR can be used to enrich a screening library with

active compounds and how to guide the time consuming target site identification

processes in high-content screening. The vignette (user manual) of the package con-

tains additional examples including loading custom screening data, identifying target

selective compounds, and performing custom database queries.

It is important to point out that HTS data are noisy and error prone due to

several causes including experimental noise, and incorrect annotation. While public

bioactivity databases have implemented strategies to identify and reduce errors, we

caution bioassayR users to expect some level of error and mis-annotation depending

on the source and type of data used [29]. The impact of these errors on analysis results

can be minimized by incorporating replicates and confirmatory screening results from

different sources using the bioassayR functions described above. If appropriate, error

can also be reduced by limiting analysis to the subset of public bioactivity data

that has been manually curated and carefully annotated with a machine readable,
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non-ambiguous structured vocabulary from sources such as the BioAssay Research

Database (BARD) [20, 35].

The bioassayR package is a flexible computational environment for simultaneous

analysis of large numbers of high-throughput small molecule bioactivity screens. By

organizing large bioactivity data for rapid access and manipulation within the R

programming language, bioassayR leverages the substantial breadth of these data as

a reference to identify regions of the genome and proteome accessible to small molecule

probes, elucidate mechanisms of action for bioactive molecules, and identify off-target

effects which currently lead to a high attrition rate in drug discovery efforts [3].

bioassayR provides features to inform the design and analysis of bioactivity and drug

discovery experiments; for example to build compound libraries enriched for a desired

bioactivity, reducing the search space for effective drugs, druggable protein targets,

and chemical genetic probes. bioassayR has functions to identify compounds that

have demonstrated activity against targets and pathways of interest, or other targets

with sequence or annotation similarity to targets of interest. To build drug discovery

libraries with reduced chances of off-target effects, bioassayR will rank compounds

for selectivity against a desired target and exclude compounds which show activity

against a large number of other targets. To identify compounds or combinations of

compounds likely to exhibit a desired polypharmacology (activity against multiple

targets), bioassayR will identify all active compounds among a set of query targets.

To assess the potential druggability of protein targets, bioassayR will report the

quantity and target selectivity of known active drugs and other compounds. To

identify compounds with activity similar to existing drugs or other compounds with a
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known utility, the HTSFPs features enables clustering by cross-target activity profiles.

Custom screening data can also be analyzed side-by-side with public data to study

the selectivity profiles among newly identified actives across numerous targets, or to

assess the level of agreement with any public data that the custom assay replicates.

In addition to providing numerous analysis functions, bioassayR also serves as

a bridge to facilitate analysis of large screening data with other machine learning,

statistical inference, network analysis, and bioinformatics tools. Many of these tools

support the output formats produced by bioassayR with little or no changes. In

conclusion, bioassayR lowers the barrier to address questions related to the target

selectivity of small molecules with large-scale bioactivity data.

3.4.1 Abbreviations

HTSFPs, High Throughput Screening Fingerprints; HTS, High Throughput Screen-

ing
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Chapter 4

bioassayR: Supporting Information

Name (alphabetical) Url
BindingDB[11] http://www.bindingdb.org
BioAssay Research Database (BARD)[8] https://bard.nih.gov
CellMiner[15] http://discover.nci.nih.gov/cellminer/
ChemBank[14] http://chembank.broadinstitute.org
ChEMBL[5] https://www.ebi.ac.uk/chembldb/
ChemDB[3] http://cdb.ics.uci.edu
ChemMine[6] http://chemminedb.ucr.edu
DrugBank[19] http://www.drugbank.ca
PubChem[17, 18] http://pubchem.ncbi.nlm.nih.gov
Structural Biology Knowledgebase[4] http://sbkb.org
ZINC[9, 10] http://zinc.docking.org

Table 4.1: Small molecule databases. Here we provide links to several small
molecule structure and/or bioactivity databases that can potentially be used with
bioassayR. This list is not comprehensive.
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Function Name Description
activeAgainst Returns the active compounds for a query protein target
activeTargets Returns the active protein targets for a query compound
inactiveTargets Returns the inactive protein targets for a query compound
bioactivityFingerprint Creates ChemmineR compatible binary bioactivity fingerprints

(HTSFPs) for a list of compounds and targets [2]
crossReactivityProbability Uses a Bayesian model to compute the probability that a com-

pound is a promiscuous binder
crossReactivityPrior Computes a prior distribution of binding promiscuity for use

with crossReactivityProbability
getBioassaySetByCids Creates a bioassaySet compound vs. assay matrix for a list of

query compounds
getAssays Creates a bioassaySet compound vs. assay matrix for a list of

query assays
perTargetMatrix Creates a compound vs. target activity matrix merging repli-

cates as specified
queryBioassayDB Runs a custom SQL query on a bioassayDB bioactivity database
screenedAtLeast Returns a list of compounds screened against at least a specified

number of distinct targets
selectiveAgainst Returns compounds most selective for a query target
targetSelectivity Returns the target selectivity for a set of query compounds
translateTargetId Returns UniProt identifiers or other annotation details for a

query target protein
trinarySimilarity Compute similarity between bioactivity profiles by considering

only commonly screened targets
scaleBioassaySet Centers and/or scales continuous numeric activity scores, creat-

ing per-assay z-scores by default

Table 4.2: Selected cross-target analysis functions. Instructions and
examples are provided in the online package documentation available at
http://bioconductor.org/packages/bioassayR/.

4.1 Use case examples

The following presents three use cases illustrating bioassayR’s utility for perform-

ing cross-target analysis tasks. The vignette (user manual) of the package, avail-

able on the Bioconductor site, contains additional examples including loading cus-

tom screening data, identifying target selective compounds, and performing custom

database queries. For some assays cross-target analyses have to be limited to activity
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categories because continuous scores are not provided, or were obtained in a unique

manner not directly comparable to other assays. For this reason, we performed the

examples shown here with activity category data, however, for assays where suitable

data is available, analysis can be performed on continuous data.

4.1.1 Drug-target space analysis

To assess the diversity of the protein target space represented by PubChem BioAs-

say, we enumerated its small molecules and protein targets with bioassayR. Small

molecules were grouped into FDA approved drugs and all other compounds, and pro-

tein targets were organized by GO slim terms of the Molecular Function Ontology

(Figure 4.1) [16]. The PubChem BioAssay data was used to produce a compound-

target matrix as described in the “bioassaySet object” section of the manuscript. To

highlight the relative distribution of potentially novel compounds in the data, the GO

slim terms are ordered in Figure 4.1 according to decreasing numbers of active FDA

approved drugs.

As expected, a larger fraction of FDA approved drugs exhibit activity against

proteins annotated with GO slim terms than is the case for non-drug compounds.

Importantly, a substantial number of active non-drug compounds has been identified

within each GO category. Some categories (such as GTPase) have very few FDA

approved active drugs, but a large quantity of active non-drug compounds. The

FDA approved drugs show activity against 1789 protein targets, whereas the non-

drug compounds show activity against an additional 3020 protein targets. Of these
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Figure 4.1: Frequency of active PubChem BioAssay compounds across GO
slim categories. The target proteins represented in PubChem BioAssay have been
classified by GO slim terms of the Molecular Function Ontology (vertical axis). The
number of compounds with activity or inactivity against at least one target protein
within each protein class is plotted on the horizontal axis. The plot on the left gives
the numbers for FDA approved drugs, the one in the center for all other compounds,
and the one on the right gives the numbers of the corresponding protein targets
included in the assays. To distinguish between small and zero quantities of active
compounds, the active point is omitted for GO slim terms which have no active
compounds.

3020 additional targets, 901 are substantially distinct both from one another and any

of the FDA approved drug targets at the amino-acid sequence level based on the

kClust clustering described in the “Pre-built PubChem BioAssay database” section

of the manuscript. This is a marked expansion of the protein target space currently

covered by FDA approved drugs, illustrating the utility of these data for identifying

drug candidates with unique properties potentially relevant for the development of

medical treatments.
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4.1.2 Clustering drugs by structure and bioactivity profile

Using the bioactivity clustering features described in the manuscript, we used

bioassayR to cluster all FDA approved drugs screened against at least 10 distinct

targets in the PubChem BioAssay data. For the resulting 895 compounds meeting

this requirement, we generated a binary HTSFP with the bioactivityFingerprint func-

tion, with a length of 2019 bits, each representing a screened protein target. While

bioassayR supports continuous z-score HTSFPs, binary HTSFPs were chosen for this

example to incorporate data from assays provided with activity categories but without

continuous numeric scores. ChemmineR was then used to produce a distance matrix

based on the Tanimoto similarity coefficient. The distances were used to project each

compound into two dimensional plane with MDS (Figure 4.2) where the points are

spaced proportionally to the similarity among the bioactivity profiles of each com-

pound [7]. A small random position jitter was applied to minimize overlap of closely

spaced points. To assess whether the compounds within bioactivity clusters share

structural similarities, the same compounds have also been clustered by structural

similarity with functionalities provided by ChemmineR. This structural clustering

employed atom pair fingerprints for structure comparisons, the Tanimoto coefficient

as similarity metric and single linkage hierarchical clustering with tree cutting at 0.6

to partition the compounds into discrete similarity groups.

The results in Figure 4.2 show several discrete groupings of drugs by bioactivity,

while others appear more evenly dispersed across the plane. To compare the results

with the outcome of the structure-based clustering, a subset of the structural clusters
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have been highlighted with distinct colors. Dots with identical colors in close prox-

imity identify groups of compounds sharing both similar structure and bioactivity

patterns. However, exceptions are common, where compounds of similar structure

are not located in close proximity. This separation can be due to two main reasons:

(i) true biological differences in their target binding profiles and/or (ii) a deflation of

the similarity coefficients of compound pairs caused by sparseness in their bioactivity

profiles. The latter false negatives are a common problem in bioactivity data that

has been discussed in the manuscript as well as in previous studies [13]. The results

in Figure 4.2 illustrate how analyzing bioactivity data with bioassayR provides addi-

tional information that cannot reliably be inferred from structural similarity alone.

This includes the systematic identification of both structurally distinct compounds

with similar bioactivity profiles, as well as compounds with similar structure but

distinct bioactivity.

4.1.3 Guiding high-content screens with reference data from

single target bioassays

Single protein target bioassay data can serve as a reference for guiding and in-

terpreting various aspects of high-content screens. For instance, they can be used to

assemble small molecule screening libraries enriched in bioactives targeting a biologi-

cal process of interest. This can be important for low-throughput assays where testing

a large number of compounds is not an option. In addition, single target bioassay

data can guide the often very time consuming process of identifying target sites in
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high-content screens. The following illustrates with an example how bioassayR can

facilitate these tasks.

The high-content screen chosen for this example is PubChem BioAssay #465

entitled “Primary HTS assay for chemical inhibitors antigen receptor-induced NF-

kappaB activation". It uses a luciferase reporter to measure NF-kappaB activation in

HEK-293 cells. This screen includes bioactivity data for 61,605 compounds. It was

chosen as a representative among 345 published high-content bioassays containing at

least 10,000 tested compounds.

To identify single target PubChem Bioassay data relevant for this screen, we

searched the Reactome database for all Homo sapiens entries annotated with either

“NF-kB" or “NFkB" [12]. This query returned 1,120 proteins. Of these, we used

bioassayR to identify 605 proteins with single target screening data in the PubChem

BioAssay database. A binary bioactivity matrix was generated from this data using

the bioassayR functions getBioassaySetByCids and perTargetMatrix. One dimension

of this matrix represented the 61,605 compounds from bioassay #465 and the other

dimension the single target bioactivity data from the 605 proteins associated with

NF-kappaB. We then summed the matrix to obtain the number of active targets for

each compound.

The high-content assay reported 128 actives out of a total of 61,605 compounds

(0.21% activity). Among the single-target assays, 1,749 out of the same 61,605 com-

pounds were found to be active against one to five NF-kappaB related targets. Table
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High-Content PubChem 1Total 2Active in N Single Target Assays
BioAssay #465 ≥1 1 2 3 4 5
N Compounds 61,605 1,749 1,276 447 19 5 2
N Actives 128 73 47 17 5 3 1
Percent Actives 0.21 4.12 3.68 3.8 26.32 60.0 50.0

Table 4.3: Results of a high-content screen compared to single target bioas-
says of the same pathway. 1The numbers of total and active compounds are given
for the high-content PubChem BioAssay #465. This assay screened for inhibitors of
antigen receptor-induced NF-kappaB activation. 2The same numbers are given for
the subset of compounds that have also been found active in single target assays where
the corresponding target protein is associated with NF-kappaB processes. Currently,
605 single target assays meet this requirement. The results are subdivided into the
number of compounds active in variable numbers of single target assays including ≥1
and 1-5.

4.3 summarizes the distribution. Among these 1,749 single-target active compounds,

73 were also active in the high-content assay (4.17% activity).

This example demonstrates that including the active compounds from relevant

single target assays can substantially enrich high-content screening libraries for ac-

tive compounds, and thus reduce the total number of compounds that need be tested

in primary screening efforts. Additionally, single target bioactivity data provides valu-

able information as it identified candidate target site(s) for 73 of the 128 actives (57%)

present in bioassay #465. This information can reduce time- and labor-intensive

target identification processes that are often an integral part of many high-content

screening efforts conducted in chemical genomics.
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Figure 4.2: Clustering small molecules by structure and bioactivity profile.
Multidimensional scaling (MDS) was used to embed small molecules into a two di-
mensional space (x- and y-axis). Each point represents an FDA approved drug. The
distance between the points is proportional to the similarity of the bioactivity profile
available for each drug. Structure-based clustering results are also indicated by col-
ors for 8 mid-size clusters, while the remaining compounds are shown in grey. The
latter clustering used atom pair fingerprints as similarity measure and hierarchical
clustering with tree cutting to assign compounds to discrete structure-based similar-
ity groups. Four example compounds are shown, which are members of the same
structural cluster (shown here in purple), which is comprised largely of steroid drugs.
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4.2 Time performance evaluation

The time performance of bioassayR functions can be divided into two categories:

database loading, and database querying. The former is only relevant to users plan-

ning to create a custom bioassayDB database file. In the case of database loading,

the major performance bottleneck involves parsing raw text files into a machine read-

able format (using regular expressions internally), and therefore is expected to scale

in roughly O(n) (linear) time with the number of compound-target activity results,

with limited dependence on the absolute number of assays, targets, and compounds.

In the case of database querying, the major performance bottleneck involves searching

the database file, which makes use of SQLite hash table indices engineered to match

their corresponding bioassayR query functions. In most cases these are expected to

scale in roughly O(log n) (logarithmic) time in proportion to the number of distinct

compound-target activity results stored in the database. For repeated queries of the

same type (such as finding the active targets for each compound in a large compound

library), each query will take a similar amount of time.

Function Total Compounds
1 10 100 1000 10000

Parse assay from raw files (parsePubChemBioassay) 0.01 0.01 0.02 0.09 0.86
Loading assay into SQL database (loadBioassay) 0.01 0.01 0.01 0.01 0.03
Finding all active protein targets (activeTargets) 0.01 0.06 0.52 5.77 60.77
Building bioassaySet by cids (getBioassaySetByCids) 11.28 18.52 27.14 61.62 144.13
Building HTSFP matrix (bioactivityFingerprint) 0.01 0.01 0.05 0.72 11.42
Binary fingerprint search (fpSim) 0.00 0.00 0.00 0.02 0.28
Trinary fingerprint search (trinarySimilarity) 0.00 0.00 0.02 0.20 2.44

Table 4.4: BioassayR function runtime. Total runtime in seconds for seven key
bioassayR functions over the range of 1-10,000 randomly selected compounds. Results
generated on a single cpu core of an AMD Opteron 6376 2.3 Ghz processor.
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Table 4.4 reports the total elapsed runtime for seven key bioassayR functions,

across compound libraries of size 1, 10, 100, 1000, and 10000. In order, these functions

represent the steps of a possible workflow involving loading a bioassayDB database,

identifying compounds of interest based on their active targets, and then generating

and analyzing two types of HTSFPs based on these compounds. These numbers were

generated in a single-threaded manner, using one core of a 16 core AMD Opteron

6376 2.3 Ghz processor on a modern rack-mount server running CentOS Linux. Assay

parsing and loading statistics were generated by loading subsets of PubChem Bioassay

assay aid 360 into an empty database file. The remaining (query based) benchmarks

were generated from the full pre-built PubChem BioAssay database, using a random

sample of highly screened (at least 10 distinct target assays) compounds. Binary

HTSFP searches were performed using the ChemmineR fpSim function [2]. The

slowest performing function (getBioassaySetByCids) involves translating bioactivity

data from the bioassayDB database file into an in-memory sparse matrix, and is

typically only used for a small subset of the available bioactivity data, relevant to a

specific analysis. Despite it’s runtime, it can be used for a large number of compounds

and targets, as it scales with less than linear O(n) time.

While not necessary for most analyses, users can optionally accelerate a large

analysis by running bioassayR in parallel across multiple cpu cores by dividing batch

queries into equally sized smaller jobs, and executing in parallel using the R library

foreach [1]. To enable this, it is preferable for each thread to open it’s own read-only

access to the same bioassayDB database file, stored on a commonly accessible ramdisk

or solid-state hard drive.
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Chapter 5

Large-scale Bioactivity Analysis of

the Druggable Proteome

5.1 Abstract

This study presents a large-scale analysis of the small molecule bioactivity profiles

across large quantities of diverse protein families represented in PubChem BioAssay

screening data. We compare the bioactivity profiles of FDA approved drugs to non-

FDA (other) compounds, and report several distinct patterns characteristic of the

approved drugs. We found that a large fraction of the previously reported higher tar-

get promiscuity among FDA approved compounds, compared to non-FDA bioactives,

is due to cross-reactivity within rather than across protein families. This trend is not

the result of more extensive assay testing of certain target classes. We identified 804

potentially novel protein target candidates for FDA approved drugs, as well as 901
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potentially novel target candidates with active non-FDA compounds, but no active

FDA approved drugs. We also identified 486348 potentially novel compounds active

against the same targets as FDA approved drugs, as well as 153402 potentially novel

compounds active against targets without active FDA approved drugs. By quanti-

fying the agreement among replicated screens, we estimate that more than half of

these novel outcomes are reproducible and likely to be correct. We used biclustering

to identify clusters of FDA approved drugs with enriched activity against a common

set of protein targets. We also infer compound promiscuity with a Bayesian statis-

tical model, and assess the sensitivity and specificity of two common methods for

identifying promiscuous compounds. Aggregator assays exhibit greater accuracy in

identifying highly promiscuous compounds, while PAINS substructures are able to

identify a much larger set of “middle range” promiscuous compounds. Additionally,

we report a large number of promiscuous compounds not identified as aggregators

or PAINS. In summary, the results of this study represent a rich reference for se-

lecting novel drug and target protein candidates, as well as for eliminating candidate

compounds with unselective activities.

5.2 Introduction

High throughput screening (HTS) is a key technology for identifying bioactive

small molecules for chemical genomics and drug discovery applications. The discovery

of small molecules exhibiting a high level of efficacy and specificity is confounded by

many challenges, including experimental noise in HTS experiments, and an extremely
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large search space. The potentially testable compound-protein target space consists

of nearly two trillion possible combinations, if we regard each of the over 91 million

small-molecules in the PubChem compounds database (at the time of writing) as

potential drug candidate, and each of the annotated protein coding genes in the

Homo sapiens genome (19950 genes according to GENCODE 25) as a potential drug

target [27, 16]. This search space becomes much larger if we consider alternative

splicing, non-protein biomolecule targets, and potential targets from other species,

e.g. microbiome targets and parasite targets. In recent years, a substantial number

of small molecule vs protein target assays have become available in the public domain,

which investigate a portion of this search space. At the time of writing, the PubChem

BioAssay database contains just over 230 million small molecule bioactivity outcomes,

over half of which involve activity against a clearly defined protein target [50]. It

includes most of the bioactivity data available in the public domain as it imports

assays from many sources such as ChEMBL, and also provides negative (inactive)

assay outcomes not reported in many databases[13]. This large data volume presents

an opportunity to systematically investigate small molecule-target interactions, with

the potential to provide insights relevant to future drug discovery efforts [25, 53, 51,

15, 5, 49, 50]. These data also have potential utility for identifying and excluding

drug candidates with undesirable binding properties (e.g. unselective promiscuous

binders), developing multi-target (polypharmacological) drug treatments, predicting

potential side and toxic effects of small molecules, and assessing the druggability of

novel target proteins [15, 36, 43, 29, 34, 21, 38, 14, 30, 18, 9]. The following gives a

brief overview of previous work in this field.
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Shortly after the NIH Molecular Library Roadmap Initiative made available large

public screening data in PubChem BioAssay, Han et al. reported the distribution

of assay participation, target selectivities, and target diversity in these data, while

Zhang et al. later reported bias in target and compound selection among these data

[55, 15, 56]. Hu and Bajorath quantified the distribution of active target proteins in

the PubChem, DrugBank, and ChEMBL databases, and found that 37.4% of FDA

approved drugs interact with more than five targets, while other active compounds

tend to interact with only 1-2 targets, with only a 7.6% probability of more than

five [20, 52, 13]. Recently, Jasial et al. analyzed compound promiscuity in PubChem

BioAssay and found a median of 2 active targets for non-FDA approved compounds

[24]. In comparison to previous work in this field, our study is unprecedented by

providing a broad in-depth analysis of the publicly available small molecule bioac-

tivity space, including target selectivity profiles within and across protein families

considering variable evolutionary distances.

The concept of target selectivity has been introduced in previous literature, in

order to quantify the number of distinct protein targets a compound exhibits activity

against. Two common metrics for quantifying target selectivity have been frequently

used. First, the total number of active targets across all participating assays, is

referred to simply as target selectivity [15]. Second, the fraction of actives out of

the total number of screened targets has been referred to as the hit ratio [8]. We

analyze target selectivity with both methods, as they have complementary strengths

and weaknesses.
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Figure 5.1: Bioactivity data mining strategy. Public bioactivity data was
first summarized in a compound-target bioactivity matrix (A). Protein targets and
small molecules were clustered by sequence (B) and structure (C) respectively, and
compound-target sets with shared bioactivity profiles were identified with bicluster-
ing (D). For small molecules, the distributions of (E) target selectivity (the number
of active targets) and (F) hit ratio (the fraction of screened targets that are ac-
tive) were quantified. For protein targets, enriched GO (Gene Ontology) terms (G)
among proteins with common bioactivity were identified, and a network (H) was
constructed which connects target proteins with similar bioactivity profiles. These
analyses highlight several interesting bioactivity patterns, identify promiscuous and
selective compounds, and identify druggable protein targets and protein domains.
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In this study, we mine large public bioactivity data to investigate many outstand-

ing questions about the patterns of target selectivity among small molecules. Fig

5.1 provides a visual overview of important steps in our data analysis strategy. To

investigate why FDA approved drugs on average exhibit activity against a greater

number of targets than non-FDA compounds, we computed the target selectivity of

small molecules against protein clusters obtained with three distinct methods that

classify protein sequences across increasingly large evolutionary distances. While the

FDA approved drugs have on average a greater number of targets, these targets more

frequently share sequence similarity than targets of non-FDA active compounds. We

also found that many of these multi-target FDA approved drugs fall into biclus-

ters, where a common set of drugs share activity against a common set of protein

targets that are enriched for common molecular function annotations, suggesting a

shared chemical mechanism leading to cross-reactivity. To determine which targets

are more accessible to small molecule perturbations than others, we quantified the

number of active compounds for targets grouped by shared protein domains, and

found active compounds for targets representing 32.4% of the domains present in

the H. sapiens proteome. Clustering the targets by similar amino acid sequences,

we found 9120 active target outcomes for FDA approved drugs not currently anno-

tated in drug databases. By quantifying the rate of agreement among millions of

replicated compound-target pairs across distinct assays, we estimate that over half of

these novel results are accurate bioactivity outcomes. To investigate the frequency of

highly promiscuous compounds, we used a statistical model to infer the hit ratio of

each compound, and report 1157 likely-promiscuous compounds not previously iden-
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tified by two common methods of identifying promiscuous compounds, aggregator

assays and PAINS substructures [36, 2].

5.3 Results and Discussion

5.3.1 Bioactivity Data

Bioactivity Data Curation and Overview

The bioactivity data analyzed by this study were downloaded from PubChem

BioAssay on April 6th, 2016. They included 1.2 million distinct small molecule struc-

tures tested against 5069 protein targets in 68029 assay experiments [50]. We were

able to utilize all experiments annotated with a single clearly defined protein target,

and reporting an active score for at least one small molecule. Assays with no active

scores, or no machine readable protein target annotation were excluded. Much of this

data summarizes the results from primary screening experiments which provide only

binary active/inactive results, but we also analyze confirmatory assays, if binary calls

are also provided.

As compounds were screened against variable numbers of targets, the compound vs

target bioactivity space obtained from PubChem BioAsssay is sparse. Currently, there

are 162 million compound-target activity records available, populating 2.6% of the

full bioassay matrix with at least one measurement. Within the explored bioactivity

space, active values are relatively rare (just over 2.3 million), representing just over

1.3% of total tested values, or about 0.027% of the total space. If we consider just the
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566983 “highly screened” compounds tested against at least 10 distinct targets, the

density of tested bioactivity outcomes increases to 6.1%. The patterns of bioactivity

among these “highly screened” compounds are the focus of this study, as they provide

information about bioactivity profiles across many targets. Collapsing the protein

target space by merging very similar sequences such as truncations, close orthologues,

and paralogues reduces these targets from 5069 protein targets to 2249 target clusters,

producing a smaller and more dense bioactivity matrix. This is described in more

detail in the Methods section (see “Clustering Protein Targets by Sequence”). A

subset of the bioactivity space is non-sparse, with a set of 81660 compounds by

247 target clusters that has been explored 100%, which we discuss in Supporting

Information and provide as a downloadable reference for users in S7 File.

To facilitate comparisons throughout this study among FDA and all other com-

pounds, we obtained a list of the 1173 FDA approved drugs with known PubChem

ids from the DrugBank database (version 4.2), and quantified the number of screened

targets for both categories[52]. Table 5.1 shows the distribution of total screened

protein targets for the compounds in PubChem BioAssay. The overall distribution is

also plotted in Fig 6.1 in Supporting Information. While a disproportionately large

fraction of non-FDA compounds were screened against a small number of targets,

the distribution of screening frequencies between highly screened FDA approved and

non-FDA compounds is similar. Highly screened FDA approved drugs were screened

against a mean of 242 targets (median 184), while highly screened non-FDA com-

pounds were screened against a mean of 224 (median 280) targets. Therefore, these

data allow us to compare patterns of target selectivity between many FDA approved
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and non-FDA compounds with similar assay participation profiles. Additionally, the

hit ratio statistical model we introduce below in the “Promiscuous Binders and Hit

Ratio Statistical Model” section provides a robust method of comparing target selec-

tivity across compound sets with varying assay participation.

Screened Protein Targets FDA Approved Drugs Non-FDA Compounds
1 31 359135
2-4 41 135786
5-9 27 151385
10-49 197 150202
50-99 128 51849
100-199 150 30277
200-299 85 69098
300-399 94 202225
400-499 106 63219
≥500 139 82

Table 5.1: Screening frequency of FDA approved and non-FDA compounds
against increasing numbers of protein targets. Data is included from all assay
experiments in PubChem BioAssay annotated with one clearly defined protein target,
and reporting an active score for at least one small molecule. Multiple assays against
the same target are counted only once.

When comparing the bioactivity profile and target selectivity among compounds,

we focus on compounds with evidence of activity against at least one protein target,

as active compounds are more likely to be of biological or medical interest. Of the

566983 “highly screened” compounds mentioned above, 312308 have also been found

active against one or more targets. Among the highly screened active compounds,

759 are FDA approved drugs, whose patterns of target selectivity we compare and

contrast with non-FDA highly screened active compounds.
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Data Quality and Reproducibility

Systematically analyzing public bioactivity data presents many data quality chal-

lenges stemming from experimental error, and missing or incorrect annotation. While

efforts such as the BioAssay Research Database (BARD) and BioAssay Ontology are

underway to curate a set of assays with detailed high quality annotations, these rep-

resent a very small subset of the publicly available bioactivity data [48, 19]. To assess

the reliability of the data, we estimate an error rate for compound-target combinations

tested multiple times in separate assays by quantifying how often the results agree

or disagree. This estimate combines all errors causing in vitro screening outcomes

from different primary screening assays to disagree, such as underlying experimen-

tal noise, data curation and annotation errors, as well as disagreement resulting from

unique experimental context or conditions for a particular assay, that are not provided

in a machine readable format. While we can quantify how often activity outcomes

disagree across different assays, the PubChem BioAssay data does not include infor-

mation about the exact cause of a disagreeing activity outcome, or in which assay

the error occurred in. As this data includes assays of variable design and robustness,

individual assays will have different error rates. However, our estimate represents the

probability of any individual compound-target activity outcome reporting an incor-

rect result when combined and analyzed in aggregate, as we do in this study.

Table 5.2 shows the number of distinct compound-target pairs that were screened a

given number of times. In Supporting Information we solve algebraically for the error

rate based on the frequency of agreeing or disagreeing sets among compound-target
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pairs tested in exactly two different assays. As explained and justified in Support-

ing Information, our estimate is an approximation which requires two simplifying

assumptions. First, we set the average false positive and false negative rates across

the entire dataset equal, and estimate an overall error rate e. Second, we assume that

the fraction of true active compound-target pairs in the total PubChem BioAssay

data is approximately the same for both the set with two replicates, and the larger

set of data with more or less than two replicates. Based on these assumptions, we

estimate an error rate of approximately 0.698%, representing the probability of any

individual bioactivity outcome reporting the opposite of its true result.

Times Screened Number of Compound-Target Pairs
2 21220270
3 3308744
4 726700
5 29610
≥6 376787

Table 5.2: Screening Frequency. The number of distinct compound-target combi-
nations screened in multiple assays, listed for increasing numbers of assays.

The high throughput screening experiments we analyze here require choosing a

hit threshold, which assigns a binary active or inactive outcome to each compound

tested, based on the magnitude of its experimentally measured activity level. The

specific hit threshold is a subjective choice of the experimentalist that balances the

acceptability of false positives and false negatives for a given purpose, and is not

provided to us in a machine readable manner. Thus, it is not feasible to provide here

a precise estimate of the fraction of actives which are true positives [35]. In many

drug discovery efforts, false positives are more problematic than false negatives. As
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a result, experimentalists are more likely to chose a stringent activity cutoff, biased

towards avoiding false positives. As such, these data suggest a rough estimate on

the lower bound of the fraction of active compound-target outcomes which are true

positives of approximately 66%, but it may be higher. Therefore, we expect that

despite a considerable error rate, more than half of the unreplicated positive activity

outcomes in these data are meaningful in the context they are used for in this study.

Protein Target Diversity

To assess the target protein diversity represented in PubChem BioAssay, we enu-

merated the number of distinct targets by three methods which group targets across

increasingly large evolutionary distances, including (i) unique protein identifiers, as

well as clustering (ii) by protein sequence similarity and (iii) by Pfam domains [41].

The 68029 assay experiments we analyzed grouped into 5069 clusters of assays shar-

ing an identical distinct GenBank Protein GI (Gene Identifier), each of which has a

unique amino acid sequence [40]. By clustering these targets together based on an

amino acid sequence identity of at least 60%, an E-value ≤ 10−4, and an alignment

coverage of at least 80% for the longer sequence, we identified 2249 distinct target

clusters. This method clusters together minor truncations engineered for screening

purposes, close orthologues, and close paralogues (see “Clustering Protein Targets by

Sequence” in Methods).

To investigate target diversity at the domain level, we mapped Pfam-A domains

to each protein target with a distinct GI as described in the “Protein Annotations

and GO Enrichment” section of Methods. We quantify the distribution of screening
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participation by active and inactive compounds for the targets with different Pfam

domains in Fig 5.2, with all domains shown in the left panel, and the subset present

in the H. sapiens proteome shown in the right panel. In total there are 2838 distinct

Pfam domains represented in PubChem BioAssay that are associated with active

compounds, and therefore have evidence of druggability. In comparison, 32.4% of the

7431 distinct Pfam domains represented in the H. sapiens proteome are also repre-

sented in these bioassays and report active compounds, while 27.1% of them were

screened directly on H. sapiens proteins. Additionally, there are proteins with ac-

tive compounds in PubChem BioAssay which contain 433 Pfam domains not present

in the H. sapiens proteome, many of which are domains restricted to bacteria and

plants. There are 795 Pfam domains that are extremely highly screened, with activity

outcomes for over 200k compounds each. The number of domains with active com-

pounds is greater than inactive compounds, due to assays which do not report inactive

outcomes. While these are mostly small assays reporting few activity outcomes, they

substantially increase the information about the druggable space by reporting active

compounds for 792 domains not present in the other assays, 614 of which are present

in the human proteome. Because proteins often contain multiple Pfam domains, du-

plications are unavoidable with this type of protein family clustering. Nevertheless,

the results reported here are a reasonable approximation of the diversity of protein

families represented in PubChem BioAssay.

Fig 5.3A enumerates the relative abundance of active FDA approved drugs, active

non-FDA compounds, and total protein targets for the 35 domains with the largest
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Figure 5.2: Pfam domain screening participation. The quantity of Pfam do-
mains is plotted on the horizontal (x) axis whose protein targets have at least as
many active or inactive compounds as shown on the vertical (y) axis. The left panel
includes all Pfam domains in the PubChem BioAssay targets, while the right panel
includes just those domains also present in the H. sapiens proteome, including non-H.
sapiens targets which share a common domain with an H. sapiens protein.
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number of active FDA approved drugs. As can be seen by comparing column 1 (FDA

Approved Drugs) to column 2 (Non-FDA Compounds), the fraction of screened com-

pounds active against each domain is significantly higher for FDA approved drugs.

However, due to the much greater number of non-FDA compounds, the total number

of non-FDA actives is much higher than the number of FDA approved drugs. For

comparison, the number of proteins within each Pfam domain is given in Column 3

of Fig 5.3A for both proteins represented in PubChem BioAssay and those encoded

in the H. sapiens genome. In some cases, the number of targets in PubChem BioAs-

say exceeds those in the H. sapiens proteome because it includes targets from other

species, as well as engineered targets (e.g. truncations) developed for screening pur-

poses. The proteins targeted by the greatest number of FDA approved drugs include

rhodopsin-like GPCRs, cytochrome P450 enzymes, and nuclear hormone receptors,

with a large number of non-FDA compounds also targeting these proteins.

Several domains such as Tyrosyl-DNA phosphodiesterase and protein kinase have

a large number of active non-FDA compounds compared to the ordering of domains,

which is based on a decreasing number of FDA approved active compounds. In cases

such as kinases this may be explained by the large number of assays screening distinct

targets within a large protein family. However, in other cases such as Tyrosyl-DNA

phosphodiesterases there are a comparatively large number of active non-FDA com-

pounds despite relatively fewer target proteins screened within this much smaller

family. Overall, we found 486348 non-FDA compounds active against individual tar-
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Figure 5.3: Frequency of active PubChem BioAssay compounds across
protein target domains. The target proteins represented in PubChem BioAssay
have been classified by Pfam protein domains present in the H. sapiens proteome
(vertical axis). We report data for all proteins which encode a Pfam domain present
in the H. sapiens proteome, even if the assay was performed against a protein from
another species. We show here only domains with at least 100 amino acid residues
in the homology model, to avoid small repeats and domains unlikely to be drug
targets. The quantity of targets with each domain among the PubChem BioAssay
data, and within the H. sapiens proteome (all proteins, including those not screened
in PubChem BioAssay) are shown on the right in both plots. (A) The top 35 Pfam
domains with the greatest number of active FDA approved drugs, in decreasing order.
(B) The top 35 Pfam domains with the greatest number of non-FDA compounds, but
no active FDA approved drugs, in decreasing order. A full table with the number of
active compounds for each domain, including non-H. sapiens domains, and domains
with under 100 residues is provided in the S2 File of Supporting Information.
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gets (distinct GenBank GIs) that also have active FDA approved drugs, representing

a set of potentially novel compounds active against potentially therapeutic targets.

As we reported previously, the FDA approved drugs show activity against 1789

protein targets, whereas the non-drug compounds show activity against an additional

3020 protein targets, of which 901 are substantially distinct at the sequence level,

based on the clustering by sequence similarity mentioned above [1]. Fig 5.3B lists the

top 35 domains with no active FDA approved compounds, but the greatest number

of non-FDA compounds. These targets with domains not known to be accessible

to FDA approved drugs represent a greatly expanded space of potentially druggable

targets and small molecule drug candidates. In total, we found 153402 compounds

active against individual targets (distinct GenBank GIs) with no active FDA approved

drugs. While some of these compounds will be false positives due to experimental

noise, the magnitude of actives suggests a large quantity of truly active compounds.

We provide the number of active FDA approved and non-FDA compounds for the

full set of Pfam domains in the S2 File of Supporting Information.

5.3.2 Target Selectivity

Target Selectivity Distribution

Highly screened bioactive small molecules can be categorized according to target

selectivity, which is the number of distinct protein targets they show activity against.

By quantifying the distribution of target selectivities, we can identify highly selective

and less selective compounds, as well as compare the selectivities of FDA approved
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drugs to non-FDA compounds. To address this, we computed the distribution of tar-

get selectivities among the highly screened active compounds in PubChem BioAssay,

each of which were tested against 10 or more protein targets, and active against at

least one. We computed target selectivity based on the three types of protein clus-

tering methods mentioned in the previous section. “Target selectivity” counts each

target with a distinct amino acid sequence (distinct GenBank Protein Gene Iden-

tifiers) separately, while “cluster selectivity” counts the number of sequence-based

clusters a compound shows activity against. Third, “domain selectivity” counts ac-

tivity against any set of targets sharing a common Pfam protein domain only once.

Due to the existence of protein targets with multiple domains, we compute the num-

ber of domain clusters independently for each compound. For example, if a compound

is active against 5 targets, but 4 share a common domain, its domain selectivity is 2.

This is the same as counting the number of connected components in a graph where

each node represents an active protein target, and edges represent target pairs sharing

a common Pfam domain. The distribution of counts for all three clustering methods

is shown in Fig 5.4. Fig 5.4B includes a boxplot which highlights the quantiles for

each distribution, while in Fig 5.4A, counts are shown for values up to 20. There are

an additional 144 FDA approved drugs and 6285 non-FDA compounds with greater

than 20 individual active targets. These are not shown in Fig 5.4A as they represent

a very small fraction of the total compounds, and for highly promiscuous compounds,

may simply represent the number of screened targets instead of a biologically rele-

vant quantity. The “Promiscuous Binders and Hit Ratio Statistical Model” section

below quantifies and visualizes selectivity in a way that normalizes by assay partici-
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pation, allowing us to investigate selectivity distributions among highly promiscuous

compounds.
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Figure 5.4: Distribution of active proteins per compound. Both plots show
the distribution of target selectivity among PubChem BioAssay compounds, with se-
lectivity quantified by three methods which cluster protein targets across increasingly
large evolutionary distances, as described in the text. FDA approved drugs (red) are
shown separately from non-FDA compounds (blue). (A) Semi-log plot of the target
selectivity distributions, where horizontal (x) axis represents the number of active
protein targets and/or protein target clusters, while the vertical (y) axis represents
the fraction of each compound set that is active against a particular number of tar-
gets. (B) Box plot of the target selectivity distributions, with horizontal lines at the
25%, 50%, and 75% quantiles for each distribution. The vertical (y) axis represents
the number of active protein targets and/or protein target clusters. Whiskers extend
to 1.5 times the inter-quartile range, however we limit the vertical (y) axis to 16 in
order to zoom into the higher density region.

Interestingly, the FDA approved drugs show a much greater frequency of activ-

ity against many targets, and reduced frequency of activity against only one or two

targets as compared to non-FDA compounds, as shown in Fig 5.4. In Supporting
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Information we also provide a table with median, mean, and trimmed mean values

for all three clustering methods. We performed a one sided Mann-Whitney-Wilcoxon

test to determine if the FDA approved drugs have higher counts than the non-FDA

compounds vs. the null hypothesis that they have equal or lower counts. The val-

ues W were 180M, 173M, and 154M for target, cluster, and domain selectivity counts

respectively, with p-value < 2.2∗10−16 by normal approximation for all three compar-

isons. While this observation was reported in previous literature, we report an even

higher number of targets for the FDA approved compounds, based on the larger vol-

ume of data we analyze here[23, 20]. This higher number of active targets is unlikely

to be due to biased assay participation, because as discussed in the above “Bioactivity

Data Curation and Overview” section, non-FDA compounds were screened against a

higher median number of targets, yet show a lower median number of active targets.

Additionally, in the “Promiscuous Binders and Hit Ratio Statistical Model” section

below, we report that this trend is still present when analyzed with a statistical model

that accounts for the individual assay participation of each compound.

As shown in Fig 5.4, the target promiscuity of FDA approved drugs decreases

substantially as related targets are clustered across increasingly large evolutionary

distances, while the target promiscuity of non-FDA compounds decreases to a much

lesser extent. For the FDA approved drugs, the median selectivity drops from 7 to 4

when targets sharing common domains are clustered. The Mann-Whitney-Wilcoxon

test results in the previous paragraph also quantify the magnitude of this difference.

As this test is based on position in a ranked list, the result indicates that for a

large number of FDA approved compounds, there are a greater number of non-FDA
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compounds with higher domain selectivity counts, than the number of non-FDA com-

pounds with higher target selectivity counts. These results highlight a fundamental

difference in the overall trend of bioactivity between FDA and non-FDA compounds

active against many targets. While the FDA approved drugs tend to be active against

many more targets than non-FDA compounds, a greater fraction of these targets

share common Pfam domains and/or overall sequence similarity. While a substantial

fraction of the active targets of FDA approved drugs are closely related, the FDA

approved drugs also exhibit activity against a slightly higher number of unrelated

targets than do the non-FDA compounds. We further explore the selectivity against

distinct Pfam domain families in the next section. As a resource for readers, we report

the target selectivity, cluster selectivity, and domain selectivity for all highly screened

actives in the S2 File of Supporting Information.

Selectivity Across Pfam Domains

As the FDA approved drugs exhibit wide variation in target selectivity, with both

highly selective, and highly promiscuous compounds, we wanted to determine whether

promiscuous and selective compounds exhibit activity against different subsets of the

protein target space. To answer this question, we identified the highly screened com-

pounds exhibiting activity against the target proteins grouped by Pfam domains. We

then computed for each domain the median domain selectivity counts of the active

compounds. Domain selectivity is the same as introduced in the “Target Selectiv-

ity Distribution” section above, where active targets sharing a common domain are

counted only once. We performed this separately for the FDA approved, and non-
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FDA compounds, while excluding domains with less than 10 active compounds from

both sets. Table 5.3 quantifies the number of domains grouped into 8 bins of median

domain selectivity, showing an extremely wide variation of median domain selectivi-

ties, including both domains whose active compounds tend to be highly promiscuous,

and domains whose active compounds tend to be highly selective. Table 5.4 lists the

top 15 Pfam domain families whose active FDA approved drugs are most promiscuous

across proteins with different domains, while Table 5.5 lists the top 14 Pfam domain

families whose active FDA approved drugs are most selective across proteins with

different domains. Domains not present in the H. sapiens proteome are not shown in

Tables 5.4 and 5.5, but were included in the analysis and are available in the S2 File

of Supporting Information.

Bins of Median Domain Selectivity FDA Approved Domain Counts Non-FDA Domain Counts
2-4 6 113
5-7.5 80 169
8-10.5 119 81
11-13.5 71 16
14-16.5 63 7
17-19.5 29 3
20-22 17 2
23.5-25.5 6 0

Table 5.3: Frequency of Pfam domains binned by median domain selectivity
of active compounds. Each row represents a set of Pfam domains whose active
compounds (against targets with that domain) have a median domain selectivity in
the range specified. Domain selectivity is the same as introduced in the “Target Se-
lectivity Distribution” section above, where active targets sharing a common domain
are counted only once. The ranges are ordered from top to bottom by increasing
number of distinct domain active targets. We report bin counts separately for FDA
Approved and Non-FDA compounds.
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Domain Median Target Median Cluster Median Domain
Selectivity Selectivity Selectivity
FDA Approved/ FDA Approved/ FDA Approved/
non-FDA non-FDA non-FDA

PF11956 Ankyrin-G binding motif of KCNQ2-3 47/7 43/7 25.5/5
PF16178 Dimerisation domain of Ca+-activated chloride-channel, anoctamin 41/8 36/7 25/6
PF03520 KCNQ voltage-gated potassium channel 44.5/7 40/7 25/6
PF04547 Calcium-activated chloride channel 38/8 35.5/7 24/6
PF10488 Phosphatase-1 catalytic subunit binding region 49/14 46.5/14 23.5/12
PF10401 Interferon-regulatory factor 3 46.5/8 45.5/8 22/7.5
PF03165 MH1 domain 46.5/8 45.5/8 22/8
PF03166 MH2 domain 46.5/8 45.5/8 22/8
PF09038 Tumour suppressor p53-binding protein-1 Tudor 43.5/6 36.5/6 21/6
PF13520 Amino acid permease 33/7 31/7 21/6
PF15057 Domain of unknown function (DUF4537) 43.5/7 36.5/6 21/6
PF02518 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 36/12 31/12 21/10
PF13589 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 50/12 44/12 21/10
PF00183 Hsp90 protein 50/12 44/12 21/10
PF08605 Fungal Rad9-like Rad53-binding 43.5/7 36.5/6 21/6

Table 5.4: Top 15 Pfam domains with least selective active drugs. Only
domains present in the H. sapiens proteome are shown, and are sorted and selected by
decreasing domain selectivity among FDA approved drugs. We also excluded domains
with under 100 amino acid residues in the homology model, to avoid small repeats
and domains unlikely to be drug targets. To the left of the slash in each column is the
median target selectivity of FDA approved compounds active against this domain,
and to the right is the median selectivity of non-FDA compounds. Selectivity is
quantified by three methods of increasingly grouped protein targets as described in
the text. For example, the non-FDA approved compounds active against targets with
the PF00183 domain are active against a median of 12 targets with distinct GenBank
identifiers, so this domain has a 12 after the slash in the first column.

To determine whether functional activities are enriched within the individual se-

lectivity bins of Table 5.3, we used the Molecular Function Gene Ontology annotations

(MF GO) of the corresponding Pfam domains to perform a GO term enrichment test

based on the hypergeometric distribution (see “Protein Annotations and GO Enrich-

ment” Methods section) [45]. Since we were mostly interested in enrichments within

general functional categories, we restricted this analysis to the slim terms of the MF

GO. This allows us to identify functional categories that are more abundant within

the selectivity bins than one would expect by chance. Fig 5.5 shows the enriched GO

terms (p-value < 0.05) for each bin of target selectivity. We also show in the right
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Domain Median Target Median Cluster Median Domain
Selectivity Selectivity Selectivity
FDA Approved/ FDA Approved/ FDA Approved/
non-FDA non-FDA non-FDA

PF06512 Sodium ion transport-associated 7/4 5.5/4 3/2.5
PF11933 Cytoplasmic domain of voltage-gated Na+ ion channel 8/6 7/6 3/3
PF00144 Beta-lactamase 11.5/6 5.5/6 4/5
PF14580 Leucine-rich repeat 14/6 12/6 4/5
PF00324 Amino acid permease 14/7 7/7 5/6
PF00194 Eukaryotic-type carbonic anhydrase 18/11 12/6 5/2
PF01384 Phosphate transporter family 10/5 8/5 5/5
PF00787 PX domain 21/7 15/7 5/6
PF03522 Solute carrier family 12 13/7 7/7 5/6
PF01593 Flavin containing amine oxidoreductase 13.5/9 10/9 5.5/7
PF00135 Carboxylesterase family 10.5/6 8.5/5 5.5/4
PF02931 Neurotransmitter-gated ion-channel ligand binding domain 13/5 10/4 5.5/2
PF02932 Neurotransmitter-gated ion-channel transmembrane region 13/5 10/4 5.5/2
PF00078 Reverse transcriptase (RNA-dependent DNA polymerase) 10.5/8 8.5/8 5.5/7

Table 5.5: Top 14 Pfam domains with most selective active drugs. Only
domains present in the H. sapiens proteome are shown, and are sorted and selected by
increasing domain selectivity among FDA approved drugs. We also excluded domains
with under 100 amino acid residues in the homology model, to avoid small repeats
and domains unlikely to be drug targets. To the left of the slash in each column is the
median target selectivity of FDA approved compounds active against this domain,
and to the right is the median selectivity of non-FDA compounds. Selectivity is
quantified by three methods of increasingly grouped protein targets as described in
the text. For example, the non-FDA approved compounds active against targets with
the PF00144 domain are active against a median of 6 targets with distinct GenBank
identifiers, so this domain has a 6 after the slash in the first column.

column the total number of protein targets in PubChem BioAssay annotated with

each term.

Several target selectivity bins are enriched with a characteristic set of MF GO

terms. For example, FDA approved drugs active against oxidoreductase targets ap-

pear in a promiscuous bin (14-16.5), whereas drugs targeting binding proteins appear

in a more selective bin (5-7.5). Overall, this result demonstrates that the differ-

ent protein domains represented in PubChem BioAssay can be grouped into those

druggable primarily with selective compounds, and those druggable primarily with

promiscuous compounds. Interestingly, the patterns of term enrichment are different
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between the FDA approved and non-FDA compounds, with many of the top target

classes druggable by more promiscuous FDA-approved compounds having primarily

selective non-FDA active compounds and vice versa. This raises the question of if

the selectivity levels characteristic of FDA approved drugs are a necessary property

for those compounds therapeutic efficacy, or if more selective non-FDA compounds

may also include viable drug candidates with a reduced chance of off-target effects.

The highly enriched molecular function terms in some bins also raises the question of

if these compound-target interactions may share a characteristic selectivity due to a

shared chemical mechanism of bioactivity.

Stretched Exponential Distribution

The distribution of active targets for non-FDA compounds shown in Fig 5.4A

show a very regular pattern, with a slight curvature in semi-log space. We found that

this distribution is well described by the stretched exponential function shown in Eq

6.6 (R2 = 0.99912 for non-FDA cluster selectivity), including two fit parameters c and

x0. This is not due to the distribution of assay participation, as assay participation

has a very irregular pattern with a large number of compounds screened against

many targets as shown in Table 5.1 and Fig 6.1 in Supporting Information. Stretched

exponential functions are commonly observed in natural multiplicative processes, and

we report detailed methods and related citations for this observation in Supporting

Information[31].
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Figure 5.5: Molecular Function Gene Ontology (MF GO) slim Term En-
richment vs Domain Selectivity. Pfam domains are binned by the median domain
selectivity of active compounds against targets with these domains, as in Table 5.3.
The domains in each bin were computed separately based on FDA approved and
non-FDA compounds, shown here side by side. For each bin of domain selectivity,
the enrichment of MF GO slim terms against the background of all bins is shown.
Enriched terms are sorted increasingly by the lowest p-value obtained, with all terms
shown here having a p-value < 0.05. The right column dot plot shows the number of
protein targets in PubChem BioAssay annotated with each MF GO slim term.

P (x) = e−(x/x0)c (5.1)

Target Selectivity and Compound Complexity

We investigated the distribution of target selectivities across compounds of differ-

ent molecular sizes, and found that the overall distribution is similar, however very

large compounds tend to have fewer active targets, and FDA approved drugs are

slightly smaller on average than non-FDA compounds. The definition of molecular

85



size used here is the quantity of non-hydrogen atoms. The very largest FDA approved

drugs tend to be natural products, which have several distinct patterns of target selec-

tivity. For example, large antibiotics which evolved to inhibit prokaryotic ribosomal

RNA structures tend to be extremely selective or inactive against protein targets,

whereas many natural antimitotic and antiparasitic molecules are highly promiscu-

ous. We present additional results from the molecular size target selectivity analysis

in Supporting Information.

5.3.3 Promiscuous Binders and Hit Ratio Statistical Model

Hit Ratio Model

Cross-reactive or “promiscuous” compounds are regarded as problematic in drug

discovery efforts, as they show activity in a large fraction of HTS experiments, but

fail to exhibit selective activity against the desired biological target(s) [36, 2, 15, 8].

Here we model the probability of a compound being promiscuous by estimating the

hit ratio, θ with Bayes’ rule, based on it’s individual screening data. Hit ratio is

the expected fraction of active targets that would be found if a compound were

screened against the full target space represented in PubChem BioAssay. We model

hit ratio with a binomial distribution, using a beta distribution conjugate prior in the

manner developed by Dančík, V et al. (see “Hit Ratio Bayesian Model and Mixture

Distribution” Methods section) [8]. This method enables filtering, and comparative

ranking of compound promiscuity unbiased by individual assay participation.
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By taking an equal number of random samples from the hit ratio posterior distri-

butions for a set of compounds, we generate an equally weighted convex combination

of hit ratio probabilities. This represents the probability of any individual compound

from a set having a specific hit ratio, allowing us to compare the evidence for differ-

ent hit ratios across different compound sets. Here we investigate the promiscuity of

FDA approved drugs vs non-FDA compounds, and also investigate the ability of two

common methods of identifying promiscuous compounds, pan-assay interference com-

pound (PAINS) functional groups and promiscuous aggregator assays to distinguish

between compounds that show selective vs promiscuous behavior in large bioactivity

data [36, 2].

FDA Approved vs Non-FDA Compounds

In Fig 5.6A we plot the hit ratio probability distributions for FDA approved

and non-FDA compounds, computed as described above. The non-FDA compounds

have a high probability density at low hit ratios (left side of plot), whereas the FDA

approved drugs have much greater density at high hit ratios (middle and right of plot),

consistent with the greater number of active targets described in the above “Target

Selectivity Distribution” section. Quantitatively, for individual FDA approved drugs,

there is an 85% probability of having a hit ratio below 17.8% (P (θapproved < 0.178) =

0.85), while there is an 85% probability of a non-FDA drug having a hit ratio below a

much lower threshold of 3.27% (P (θother < 0.0327) = 0.85). We also performed a two-

sample Kolmogorov-Smirnov test, which measured a distance of D = 0.465 between

the two probability distributions, indicating that the FDA approved and non-FDA
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compounds have nearly half of their probability density at different hit ratios. This

test metric has a range between 0 and 1, indicating the maximum distance between

the cumulative sums of the two probability distributions. Both the FDA approved

drugs, and non-FDA compounds show a multimodal distribution dominated by highly

selective compounds (left side of plot, approximately θ ≤ 0.05), a tail of middle

range selective compounds (middle of plot, approximately 0.05 < θ ≤ 0.55), and a

portion of promiscuous binders (right side of plot, approximately 0.55 < θ). The

promiscuous binder tail among FDA approved compounds is dominated by drugs

with well known promiscuous activity such as dasatinib (active against 145 out of

204 screened targets in the PubChem BioAssay data), sunitinib (active against 272

out of 313 screened targets), and morphine (active against 15 out of 16 screened

targets) [44]. As cancers tend to exhibit robustness against inhibition of individual

kinases, compounds which exhibit broad polypharmacology across the kinases are

widely utilized in clinical oncology [28].

Promiscuous Aggregators

Promiscuous aggregators are small molecules that pose a significant challenge

to high throughput screening, as they form colloidal aggregates that nonspecifically

inhibit enzymes and other protein targets [36, 12]. To assess the ability of experimen-

tally identified aggregators to distinguish between compounds with a high vs low hit

ratio, we computed the hit ratio probability distributions separately for promiscuous

aggregators and non-aggregators, as shown in Fig 5.6B. To facilitate this, we obtained
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Figure 5.6: probability density of hit ratios (θ) Shown here is an equally
weighted convex combination of hit ratio probabilities for individual compounds,
which represents the probability of any individual compound from a set having a
specific hit ratio. Smoothing was applied to reduce sampling noise in low probability
regions. (A) Hit ratio distributions for FDA approved compounds vs non-FDA. (B)
Hit ratio distributions for aggregator compounds vs non-aggregators. (C) Hit ratio
distributions for PAINS vs non-PAINS.
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a list of 1185 highly screened active aggregators and 55248 highly screened active

nonaggregators previously identified by detergent-dependant inhibition of AmpC β-

lactamase as reported by Feng et al. (see “Promiscuous Aggregators” in Methods)

[12].

For aggregator compounds there is an 85% probability of having a hit ratio

below 3.18% (P (θapproved < 0.0318) = 0.85), while there is an 85% probability

of a non-aggregator having a hit ratio below a slightly lower threshold of 2.73%

(P (θother < 0.0273) = 0.85), showing that aggregators tend to be more promiscuous

across the PubChem BioAssay data, but by a small margin. The maximum dis-

tance between the hit ratio probability distributions in cumulative probability space

is D = 0.0596 as measured by a two-sample Kolmogorov-Smirnov test, demonstrat-

ing that a majority of aggregators and nonaggregators have a very similar overall

hit ratio distribution compared to the distance of 0.465 between FDA and non-FDA

drugs reported in the previous section. However, aggregators show high fidelity in

identifying highly promiscuous compounds, as shown in the upper range of hit ratios

in Fig 5.6B (right side of plot). This indicates that while most of the aggregators fail

to show promiscuous activity across the PubChem BioAssay data, a large fraction of

the most promiscuous compounds are identified as aggregators. We further investi-

gate the ability of aggregators to identify promiscuous compounds in the “Sensitivity

and Specificity of Aggregators and PAINS” section below.
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Pan-assay Interference Compound (PAINS)

Pan-assay interference compounds (PAINS) are small molecules with substruc-

tural features that have been found to exhibit promiscuous activity across many

high throughput screens, and may interfere with drug discovery efforts designed to

identify target selective compounds [2]. We computed the hit ratio probability dis-

tribution separately for PAINS vs non-PAINS as shown in Fig 5.6C. We used the

RDKit software library to identify 19988 PAINS compounds, and 298166 non-PAINS

compounds, among the set of highly screened actives in PubChem BioAssay (see

“Pan-Assay Interference Compounds” in Methods).

For individual PAINS compounds there is an 85% probability of having a hit ratio

below 6.60% (P (θapproved < 0.0660) = 0.85), while there is an 85% probability of a

non-PAINS compound having a hit ratio below a lower threshold of 3.08% (P (θother <

0.0308) = 0.85), showing that PAINS tend to be more promiscuous than non-PAINS.

The maximum distance between the hit ratio probability distributions in cumulative

probability space is D = 0.228 as measured by a two-sample Kolmogorov-Smirnov

test, demonstrating that PAINS have just under one quarter of their probability

density at different hit ratios than non-PAINS. However, compared to the aggregators

in Fig 5.6B, they show lower fidelity in identifying highly promiscuous compounds

represented in the upper range of hit ratios (see right side of both plots). This suggests

that promiscuous aggregators and PAINS may have mutually complementary utility

for informing the curation of drug discovery libraries, as we investigate further in the

next section.
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By comparing the probability distributions in Fig 5.6A and 5.6C, PAINS have a

hit-ratio distribution similar to, but somewhat less promiscuous than the FDA ap-

proved drugs. This raises a concern, as PAINS are most frequently used to eliminate

non-viable drug candidates. However, we find that PAINS have a mean target selec-

tivity count of 8.09 (median 4), but a median domain selectivity count only slightly

lower, at 6.72 (median 4). Therefore, for PAINS compounds which are active against

many targets, a substantially smaller fraction hit targets with common domains, as

compared to the FDA approved drugs, as described in the above “Target Selectivity

Distribution” section. This highlights a fundamental difference between PAINS and

FDA approved drugs. While both tend to have activity against many targets, PAINS

tend to be active against targets with unrelated sequences, while FDA approved drugs

tend to be active against related targets.

Sensitivity and Specificity of Aggregators and PAINS

The highly screened active compounds can be divided into promiscuous and non-

promiscuous categories based on the evidence in PubChem BioAssay, by choosing a

promiscuity probability cutoff where P (θ ≥ 0.25) > cutoff. The number of promis-

cuous compounds at each cutoff is shown in the lower panel of Fig 6.6 in Supporting

Information. For a given cutoff fraction, based on the public bioactivity data, our

model predicts that approximately this fraction of compounds classified as promiscu-

ous will have a true hit ratio above 0.25. We assessed the sensitivity (true positive

rate) and specificity (true negative rate) of both PAINS and aggregators to catego-

rize promiscuous compounds throughout a range of cutoffs from 0.01 to 0.9999. Here,
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sensitivity is defined as the fraction of compounds classified as promiscuous at a given

cutoff that are also identified as PAINS or aggregators respectively, while specificity

is the fraction classified as non-promiscuous that were also identified as non-PAINS

or non-aggregators respectively.

PAINS showed a maximum sensitivity of 21% at a cutoff of 0.08, and aggregators

showed a maximum sensitivity of 38% at a cutoff of 0.9996. Both non-PAINS and

non-aggregators had a nearly constant specificity throughout this range, with non-

PAINS having a specificity of 94%, and non-aggregators having a higher specificity

of 98%.

As shown in the upper panel of Fig 6.6 in Supporting Information, the two have

opposite trends where PAINS show decreasing sensitivity at increasing promiscuity

cutoffs, while aggregators show increasing sensitivity at higher cutoffs. This is con-

sistent with the probability distributions in Fig 5.6, in that both identify compounds

with high hit ratios, but the PAINS compounds are more enriched in the middle range

of hit ratios, while the aggregators tend to be highly promiscuous. While aggregators

show both higher sensitivity and higher specificity, they identify a much smaller sub-

set of promiscuous compounds that have extremely high hit ratios, and are not able

to identify the large number of compounds with middle-range hit ratios that PAINS

identifies.

Using a promiscuity probability cutoff of 0.5, our statistical model found 1409

promiscuous binders among the entire highly screened active PubChem BioAssay

compound set, as shown in the center of Fig 6.6 in Supporting Information. Of

these promiscuous binders, 1157 are not currently included among the set of PAINS
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or aggregators used here, and 75 are FDA approved drugs. The number of FDA

approved drugs reduces to 24 with a higher promiscuity probability threshold of

0.999. As a resource for readers, we include the computed promiscuity probabilities

P (θ ≥ 0.25) for all highly screened actives in Supporting Information S2 File, sorted

by decreasing probability of promiscuity. This also serves to rank the compounds

by target selectivity, with a ranking that is meaningful based on the experimental

evidence, despite varying levels of assay participation.

5.3.4 Comparison Between Annotated Drug Targets and Pub-

lic HTS Data

We systematically compared the bioactivity data in PubChem BioAssay with the

annotated targets of FDA approved drugs in DrugBank (version 4.2), in order to

assess the level of agreement between the two, and identify the number of potential

novel targets for the FDA approved drugs [52]. To enable this, we created a drug-

target matrix encoding both bioactivity data and target annotations in a directly

comparable manner. The rows represent the highly screened FDA approved drugs,

while the columns represent all of the PubChem BioAssay screened and DrugBank

annotated targets for these compounds. As many PubChem BioAssay activity results

were generated with truncations of endogenous proteins, or using close orthologues to

putative H. sapiens targets from other species, it was necessary to merge data from

very similar targets, as described in the “Clustered Compound-Target Matrix” meth-

ods section. This resulted in 1829 distinct protein target columns, of which 1416 have
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a H. sapiens representative UniProt identifier. Each compound-target pair (position)

in the matrix was assigned one of six possible values depending on it’s DrugBank

annotation (annotated vs. unannotated) and it’s PubChem BioAssay activity results

(untested, active, inactive). The resulting comparison between the BioAssay data

and DrugBank annotations is shown in Table 5.6. There is a high level of agree-

ment between the DrugBank target annotations and the PubChem BioAssay data,

with 1082 compound-target pairs in agreement, and only 83 compound-target pairs

in disagreement, where they are annotated as active in DrugBank but were found

inactive in PubChem BioAssay. While the matrix is very sparse, with the majority

of compound-target pairs both unscreened and unannotated, the PubChem BioAssay

data substantially increases the density of the compound-target matrix, with 7817

active compound-target pairs not present in the DrugBank annotation, representing

a new space of potential targets for these drugs. There are 867 protein target clusters

(751 H. sapiens) that are annotated as active within DrugBank, however an additional

804 protein target clusters (576 H. sapiens) show activity in PubChem BioAssay but

have no existing DrugBank annotation. Some of these active but currently unanno-

tated targets may represent new target space that can be used to repurpose existing

drugs for novel therapeutic purposes, or to explain currently unknown or unanno-

tated targets in existing therapies. We provide a full list of these potentially novel

drug-target pairs in S3 File of Supporting Information.

While the false positive rate of these PubChem BioAssay activity outcomes is

not precisely known, our estimate above using replicated assay pairs suggests that
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Unannotated in DrugBank Annotated Target in DrugBank
Untested in PubChem 1431855 (1111148 H. sapiens) 2097 (1900 H. sapiens)
Inactive in PubChem 153783 (115181 H. sapiens) 83 (83 H. sapiens)
Active in PubChem 7817 (6848 H. sapiens) 1082 (1008 H. sapiens)

Table 5.6: Comparison of PubChem BioAssay activity data to DrugBank
target annotations. All compound-target pairs for FDA Approved drugs are
grouped into one of six possible categories. Depending on the HTS results in Pub-
Chem BioAssay, a compound-target pair is annotated as either untested, inactive, or
active (rows in this table). Additionally, the compound-target pair is either annotated
or unannotated as a known active target in DrugBank (columns in this table). Counts
outside of parenthesis represent results against all protein targets, whereas counts to
the right in parenthesis represent results against the subset in which the representative
UniProt indentifer for each target cluster is from the H. sapiens proteome.

the number of false positives is less than, and of the same order of magnitude as

the number of true positives. Consequently, we predict that at least half of these

novel drug-target activity results are experimentally repeatable. Additionally, as we

demonstrate in the next section, many of these new currently unannotated active

values fall into dense biclusters, where the same compound has been found active

against a large number of closely related protein targets across many assays. As

these biclusters are highly enriched for a large number of active scores, these are

unlikely to be a result of random error. We provide a full list of these high confidence

biclusters in S4 File and S5 File of Supporting Information.

5.3.5 Drug-Target (DT) Biclustering Analysis

Biclustering Overview

To investigate the possibility of shared patterns of activity between sets of FDA

approved drugs and their protein targets, we created a drug-target binary activity
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matrix based on the drug-target matrix in the above section. Each drug-target com-

bination was assigned a value of 1 if active in PubChem BioAssay, or annotated as

a known target in DrugBank. Untested or inactive values are assigned a value of

0. The resulting bioactivity matrix has a total active in PubChem BioAssay and/or

annotated as active in DrugBank score density of 0.69%. We then clustered this ma-

trix using the BicBin sparse biclustering algorithm (see methods) [46]. This type of

clustering algorithm clusters rows and columns simultaneously allowing us to identify

both sets of compounds and targets sharing similar activity profiles within each di-

mension. BicBin was chosen among several biclustering algorithms as it finds sparse

biclusters with flexible options, scales to large matricies, and finds top-scoring clus-

ters first. We identified the 16 highest scoring biclusters which contained at least two

compounds and at least two targets as shown in Table 5.7. These biclusters had an

activity density substantially higher than the entire matrix, ranging from 31.46% to

92.19%. These biclusters contain 406 drugs, of which 136 appear in multiple biclusters

with a maximum of 6 biclusters per compound, and 346 unique representative protein

targets, of which 107 appear in multiple biclusters with a maximum of 4 biclusters

per protein. Fig 6.4 in Supporting Information shows the entire matrix represented as

a bipartite graph with compounds colored by their highest scoring bicluster (white if

unclustered), and protein targets in black. We found that the very sparsely connected

graph clusters into very densely connected biclusters where a sizable set of distinct

drugs has been found to be active against a sizable shared set of distinct targets. To

functionally annotate each bicluster, we identified the most common Pfam domains

present in their protein targets [41]. As shown in Table 5.7, in some biclusters most or
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all of the protein targets share a common domain that is the likely the target of these

compounds, e.g. 22 out of 27 targets in bicluster 1 share the rhodopsin-like receptor

domain (PF00001: 7 transmembrane receptor). Fig 5.7 visualizes the compound-

target activities in bicluster 1 as a heatmap. In other biclusters, only a small fraction

share a common domain such as bicluster 15 where only 6 out of 57 targets share

PF00001. These cases warrant deeper investigation as to why they share a common

activity pattern, but with a more heterogeneous domain composition. This questions

is investigated in the next section. As mentioned in the previous section, we provide

a full list of these biclusters in S4 File and S5 File of Supporting Information.

# Compounds Targets Top Pfam Domain W/ Domain Score
1 62 27 PF00001 7 transmembrane receptor (rhodopsin family) 22 13.35
2 130 5 PF00067 Cytochrome P450 5 11.61
3 119 9 PF00104 Ligand-binding domain of nuclear hormone receptor 6 9.52
4 53 18 PF00194 Eukaryotic-type carbonic anhydrase 9 7.28
5 4 97 PF00069 Protein kinase domain 89 7.28
6 10 24 PF00001 7 transmembrane receptor (rhodopsin family) 13 5.97
7 48 23 PF00001 7 transmembrane receptor (rhodopsin family) 15 5.61
8 63 28 PF00001 7 transmembrane receptor (rhodopsin family) 7 4.79
9 2 67 PF00069 Protein kinase domain 49 4.46
10 2 78 PF00001 7 transmembrane receptor (rhodopsin family) 10 4.05
11 8 8 PF00484 Carbonic anhydrase 6 4.76
12 6 13 PF00520 Ion transport protein 4 3.91
13 57 4 PF00001 7 transmembrane receptor (rhodopsin family) 2 4.36
14 18 5 PF00001 7 transmembrane receptor (rhodopsin family) 5 4.78
15 2 57 PF00001 7 transmembrane receptor (rhodopsin family) 6 3.89
16 12 16 PF00817 impB/mucB/samB family 3 3.84

Table 5.7: Top Pfam domains in each bicluster. Shown are the top 16 high-
est scoring drug-target biclusters with more than one compound and more than one
target. The number of drugs (cids) and targets is shown in columns 2 and 3, respec-
tively. The 4th and 5th columns give the name of the most abundant domain and its
frequency, respectively. The last (6th) column shows the BicBin score, representing
the density and size of the bicluster. The BicBin score is the negative exponent of
the Chernoff Bound. It is inversely proportional to the probability of each bicluster
occurring by random chance, as described in Methods.
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Figure 5.7: Bioactivity of drug-target bicluster 1. The vertical axis lists
the drugs in this bicluster by common name, and the horizontal axis represents the
UniProt names for the representative targets of each sequence-similar target cluster.
The compound-target pairs are colored according to one of six colors: untested in
PubChem BioAssay (black), inactive in PubChem BioAssay (grey), active in Pub-
Chem BioAssay (dark green), untested but annotated as active in DrugBank (green),
inactive in PubChem BioAssay but annotated as active in DrugBank (blue), and ac-
tive and also annotated as active in DrugBank (light green). Rows and columns are
sorted by bioactivity profile similarity.
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Drug-Target (DT) Bicluster GO Slim Analysis

To further categorize each bicluster by functional processes, we performed an

enrichment analysis of the Molecular Function GO Slim terms associated with the

representative protein targets within each bicluster. Most biclusters exhibit a dis-

tinct pattern of enriched GO terms, distinguishing them from other biclusters. For

example, bicluster 5 consists of four kinase inhibitor drugs with known broad kinase-

activity (Dasatinib, Sorafenib, Erlotinib, and Gefitinib), and a highly enriched kinase

GO term (PF00069, p-value 9.11∗10−64) present in the annotation of 89 out of a total

of 97 targets in this bicluster. Additionally if the entire drug-target network is colored

by the GO terms present in each target, a distinct regional pattern emerges, where

targets sharing active compounds also tend to share common GO terms as shown in

Fig 6.5 of Supporting Information. Overall the GO Slim annotations provide a more

informative functional summary of each bicluster than the Pfam annotations. This

is often the case because a greater portion of the targets in each bicluster tends to

share the most enriched GO term, but not necessarily a specific Pfam domain.

As the top scoring biclusters listed here include approximately half of the highly

screened active FDA approved compounds, they constitute specific examples which

partially explain the higher number of active targets among FDA approved drugs

compared to non-FDA compounds (consider Fig 5.4, as well as the greater probability

density at higher hit ratios in Fig 5.6A). In summary, a substantial fraction of the

FDA approved compounds show broad activity across a large set of related targets
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Figure 5.8: Molecular Function Gene Ontology Slim (MF GO Slim) term
enrichment for each drug-target bicluster. Enrichment measured by hypergeo-
metric test. Terms with p ≤ 0.05 are shown and sorted increasingly.

in the same bicluster, which are enriched for common Pfam domains and/or MF GO

slim terms.

Compound Structure vs Bioactivity Bicluster Analysis

In order to compare the compound structure vs bioactivity patterns among these

biclusters, we clustered the FDA approved drugs by structural similarity using atom

pair (AP) descriptors and the Tanimoto coefficient as similarity metric [4]. Fig 5.9

shows the compounds from the 11 largest bioactivity biclusters, positioned according
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to structural similarity, and colored according to their lowest numbered (densest

and/or largest) bioactivity bicluster. The structural distances were used to project

each compound into two dimensional plane with multi-dimensional scaling (MDS)

where the points (compounds) are spaced proportionally to the chemical structure

difference between the compounds, with more similar compounds closer together.

Visually, two distinct patterns can be identified where structurally similar compounds

(in close proximity) also cluster together with similar bioactivity (e.g. bicluster 1

shown in light blue, a cluster of primarily aromatic compounds active against G-

protein-coupled receptor targets). However, the opposite can also be observed, where

compounds with very similar bioactivity have diverse structures (e.g. bicluster 3

shown in light green, a cluster with many nuclear receptor targets).

To estimate the extent to which the structure-function principle (i.e. that sim-

ilar structures have similar bioactivities) applies to this data, we clustered the 406

compounds represented in the biclusters into discrete clusters using complete linkage

hierarchical clustering with subsequent tree cutting with k = 11. The latter value

matches the number of biclusters remaining when the compounds are each assigned

to a unique bicluster. To quantify the similarity among the structural clusters and

the bioactivity clusters from of the above biclustering section, we compared the num-

bers of identical and unique compound pairs appearing in the two clustering results

using the Jaccard index. The result indicated that 15.21% of compound pairs were

joined into clusters by both methods. If the structural clustering is replaced with a

random grouping into one of 11 clusters weighted by the cluster size distribution in

the structure clustering, we see a mean Jaccard index of only 11.10% (sd = 0.39%
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and permutation p-value 0.0001) across 10,000 random clusterings. This quantifies

what can be seen visually in Fig 5.9, that overall structural similarity correlates with

bioactivity similarity, but with a sizable number of exceptions.
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Figure 5.9: Bicluster (color) vs compound structure (position). Multidi-
mensional scaling (MDS) was used to embed small molecules into a two dimensional
space (x- and y-axis). Each point represents an FDA approved drug. A density map
colored by each bicluster is shown for the MDS principal coordinate 1 (on top) and
principal coordinate 2 (on right). The distance between the points is proportional
to the chemical similarity between the two compounds. Bioactivity-based bicluster-
ing results are also indicated by colors, with each compound assigned to it’s lowest
numbered (densest and/or largest) bicluster. Only the 11 biclusters with the largest
number of compounds are shown, to allow for a visually distinct color palette.
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5.3.6 Target-Protein (TP) Network

In order to extend the drug-target biclustering analysis shown above to the full set

of PubChem BioAssay bioactivity data, we created a Target-Protein (TP) network

where proteins are connected if they are targeted by over 50% of the same non-

promiscuous compounds (as described in Methods). This was inspired by the TP

network previously published by Yildirim et al., while adding a bioactivity similarity

threshold and excluding promiscuous compounds, in order to enable the incorporation

of large primary screening data while limiting spurious edges [54]. This graph approx-

imates the structure of a full compound-target binary activity matrix (or bigraph),

in a computationally efficient manner by excluding the small molecule nodes.

The final graph is shown in Fig 5.10. It has 2407 nodes (target proteins with at

least one edge) and 11317 edges. There are 176 connected components with the ma-

jority of nodes in the largest. The average degree is 9.40 with a graph density of 0.004.

In Fig 5.10, protein targets are colored according to the 11 most abundant Molecular

Function Gene Ontology Slim (MF GO Slim) terms among the PubChem BioAssay

protein targets, with nodes lacking any of these 11 terms labeled in black (other). If

a target is annotated with more than one of these 11 terms, the most specific term

was chosen as the representative color for that node. Fig 5.10 demonstrates a distinct

grouping of protein targets with shared bioactivity by MF GO terms. As the struc-

ture of the network was not informed with MF GO annotations, this indicates that

the overall pattern demonstrated above for the drug-target biclustering analysis also

extends to the full set of compounds and targets in the PubChem BioAssay data, in
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that targets sharing a common MF GO slim annotation tend to have a distinct but

shared set of active small molecules.

lipid binding

signal transducer activity

other

oxidoreductase activity

kinase activity

transmembrane transporter

ion binding

peptidase activity

nucleic acid binding

RNA binding

DNA binding

enzyme binding 

Molecular Function GO Term

18.45%

13.79%

10.76%

8.97%

8.35%

7.89%

8.02%

5.86%

5.4%

5.15%

3.7%

3.66%

Figure 5.10: Target-protein network and Molecular Function Gene On-
tology Slim (MF GO Slim). Each node represents a protein target, and edges
connect any two protein targets with greater than 50% bioactivity similarity across
non-promiscuous binding compounds. Targets are colored according to MF GO Slim
terms, with unannotated targets colored black. Shown are 2407 nodes (target proteins
with at least one edge) and 11317 edges representing shared bioactivity among the
mutually screened subset of the 1.2M compounds tested in the bioassays we analyze
in this study.
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5.4 Methods

Most analysis steps were performed with the open source software R, bioassayR

and ChemmineR. The latter two are Bioconductor packages developed by the authors.

Several of the bioactivity methods are described in Backman et al [1]. The full

source code of the analysis presented in this paper is freely available online at http:

//github.com/girke-lab/targetSelectivity

5.4.1 Bioactivity Database

We used the R package bioassayR to build a database which contains all small

molecule bioactivity screens from PubChem BioAssay which include at least one real

activity score (active or inactive) and have a single protein target specified. Both raw

numeric scores, and discrete active/inactive categories were parsed, and stored in the

database, however direct cross-comparison between the numeric scores is limited by

varying assay designs and scoring methods.

5.4.2 Clustering Protein Targets by Sequence

We used the kClust tool to cluster the non-redundant set of both the protein

targets in PubChem BioAssay as well as the protein targets interacting according

to DrugBank with FDA approved drugs [17, 52]. Stringent threshold settings were

chosen to merge very close orthologues, paralogs, and engineered proteins (e.g. trun-

cations performed for screening purposes). The parameters used were s = 2.93,

E-value ≤ 10−4, c = 0.8. For each resulting cluster, a single representative protein
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was chosen for annotation purposes. These representatives were chosen with the fol-

lowing order of precedence: an annotated H. sapiens drug target (from DrugBank),

any H. sapiens target with a known UniProt identifier, a non H. sapiens target with

a known UniProt identifer, and lastly a non H. sapiens target with only a GenBank

GI number and no known UniProt identifier.

5.4.3 Clustering of Compound-Target Matrix

We used bioassayR to generate a compound-target binary sparse matrix sum-

marizing a substantial fraction of the protein target bioactivity data in PubChem

BioAssay. Only compounds screened against at least 10 protein targets (distinct

GenBank GIs) were included, in order to avoid biasing the selectivity analysis by

compounds with too limited data. In order to reduce the sparseness and duplication

in these data, assays sharing identical protein targets, or targets falling into the same

sequence cluster (see above) were merged into a common column. The merging was

performed in a way where active scores take precedence over inactive scores. Each

column was annotated by a representative protein for that target cluster, as described

above.

5.4.4 Protein Annotations and GO Enrichment

Pfam-A (version 29.0) domains were mapped to target proteins with HMMER3

(version 3.1b2) [41, 10]. An E-value ≤ 0.01 was used as domain reporting threshold.

The target proteins included all PubChem BioAssay targets, DrugBank annotated
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targets, and the H. sapiens reference proteome (proteome ID UP000005640) provided

by UniProt [6]. Gene Ontology annotations for protein targets were obtained from

UniProt, while Gene Ontology annotations for Pfam domains were obtained from

InterPro [37]. The subset of GO slim terms (Generic version) was obtained from the

GO Consortium. Hypergeometric GO term enrichment tests were performed using

the R language GOstats and GSEABase packages [11].

5.4.5 BicBin Biclustering Of Drug-Target Matrix

The BicBin algorithm was used to identify bioclusters iteratively using the param-

eters α = 0.6, β = 0.6, representing no bias between adding compounds or targets

[46]. These thresholds were chosen to find the largest possible biclusters, without

merging biclusters that share little or no overlapping activity. The BicBin bicluster-

ing algorithm used here finds dense biclusters of compound-target activity by scoring

them with the multiplicative version of the Chernoff Bound applied to the Binomial

distribution, which estimates the upper limit of the probability of these clusters oc-

curring by random chance [46]. The bicluster scores shown in Table 5.7 represent the

negative exponent of the Chernoff bound, and therefore higher scores correspond to

lower probabilities, and therefore larger and denser biclusters. Biclusters were found

and scored iteratively, by first zeroing out the previous biclusters.
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5.4.6 Hit Ratio Bayesian Model and Mixture Distribution

We model hit ratio θ of each compound with a binomial distribution, using a beta

distribution conjugate prior in the manner developed by Dančík, V et al [8]. For a

given number of active targets n, out of N screened targets, we assume that n has a

binomial distribution, as in Eq 5.3. We then apply Bayes’ rule (Eq 5.2) to compute

the posterior P (θ|n) with a beta distribution conjugate prior as in Eq 5.4. The values

of α and β are computed from the mean µ and standard deviation σ of hit ratios

among all active compounds screened against at least 20 distinct targets, using the

bioassayR function crossReactivityPrior and Eqs 5.5 and 5.6. We found a prior hit

ratio mean of 0.0186, with a standard deviation of 0.0349.

P (θ|n) = P (θ)P (n|θ)
P (n) (5.2)

P (n|θ) =
(
N

n

)
θn(1− θ)N−n (5.3)

P (θ|α, β) = Γ(α + β)
Γ(α)Γ(β) θ

α−1(1− θ)β−1 (5.4)

α = µ2
(

1− µ
σ2 − 1

µ

)
(5.5)

β = α

(
1
µ
− 1

)
(5.6)

We then compute the probability of a compound being a promiscuous binder

P (θ ≥ 0.25) with the bioassayR function crossReactivityProbability, and can obtain
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random samples from the posterior distribution of each compound with the R lan-

guage function rbeta. To obtain an equally weighted convex combination of hit ratios

for a compound set, we took an equal number of samples with rbeta for each com-

pound, and then took one million unbiased samples without replacement from these.

To plot this distribution we used the geom_density function of the ggplot2 software

library with the option adjust = 3 to smooth sampling noise in the tails.

The Bayesian hit ratio model is based on an underlying assumption that the avail-

able activity data for a given compound represents activity against a random sample

with replacement of the screenable protein target space. While this is a reasonable

approximation for compounds screened against a large number of diverse targets, in

many cases compounds screened against a small number of targets are likely to have

substantial bias in their target set. Therefore, there is a strong possibility that a

compound with only one or two active targets is highly selective, or is an inactive

compound with a false positive, resulting in overfitting that would make the com-

puted hit ratio an overestimate. As reported by Jasial et al., these compounds with

a small number of active targets are unlikely to exhibit undiscovered promiscuity or

activity against many additional targets as they are screened in an increasing number

of assays [24]. For this reason, here we model hit ratio primarily to identify com-

pounds with a large number of active targets (polypharmacological and promiscuous

compounds), while looking at the absolute number of active targets when investi-

gating highly selective compounds, as shown in the “Target Selectivity Distribution”

section. Additionally, by using only highly screened compounds, we avoid both many

cases of overfitting, and avoid plotting probability distributions for compounds with
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highly uninformative data, that would result in a non-localized probability density

function.

5.4.7 Promiscuous Aggregators

We obtained a list of known promiscuous aggregator and nonaggregator small

molecule PubChem compound identifiers (cids) by referencing PubChem BioAssay

assays #584 and #585 as described by Feng et al.[12] These assays together identify

detergent-dependant inhibitors of AmpC β-lactamase. We obtained the list of promis-

cuous aggregators by identifying compounds marked as active in the assay without

detergent (#585), but inactive in the assay with detergent (#584). The list of nonag-

gregators includes both inhibitors active in both assays, and noninihibitors inactive

in the assay without detergent. We excluded from consideration all compounds which

obtained an inconclusive result in either assay, or were not highly screened, having

been tested in PubChem BioAssay against less than 10 distinct targets. We also

excluded compounds without activity against at least one protein target in PubChem

BioAssay. This resulted in a list of 1185 promiscuous aggregators, and 55248 nonag-

gregators.

5.4.8 Pan-Assay Interference Compounds (PAINS)

We used the RDKit software library (version 2016.03.1) SMARTS based PAINS fil-

ters to identify compounds classified by the PAINS filters A, B, or C. These SMARTS

filters are based on the SMARTS conversion published by Saubern et al. based on the
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SLN format filters originally published by Baell et al. [42, 2] This identified 19988

PAINS compounds, and 298166 non-PAINS compounds, among the set of highly

screened actives in PubChem BioAssay. 68 of the compounds we identified as PAINS

are also FDA approved drugs. An additional 7814 compounds had structures we

could not parse with RDKit and were excluded.

5.4.9 Target-Protein (TP) Network and Network Visualiza-

tions

Targets were connected by bioactivity profile similarity using the trinarySimilar-

ity function of bioassayR, with default options. This computes Tanimoto similarity

coefficients between bioactivity profiles, by considering only commonly tested com-

pounds. The Tanimoto, as computed here, is the size of the intersection divided by

the size of the union of active compounds between the two targets. If the pair of tar-

gets did not share at least 12 mutually screened compounds, or at least 3 actives, we

categorized this pair as having insufficient evidence, and assigned a similarity value

of 0. The similarity matrix was converted to a binary connection matrix based on

a similarity value of at least 0.50, and then converted to a graph object with the R

package igraph [7]. All network visualizations were generated with Gephi using the

ForceAtlas2 layout algorithm [3, 22]. Because the layout engine itself was not pro-

vided with any annotation information (color), the color based groupings are solely

based on the level of connectivity.
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We did not exclude infrequently screened compounds as in the other sections in

this study, as this analysis was able to make meaningful use of those compounds. We

found the overall structure of the graph is roughly the same at different similarity

thresholds, however we chose this higher cutoff to reduce the number of edges in

the visualization. This high evidence threshold also avoids spurious edges resulting

from false positive activity outcomes. Despite such a high cutoff, the majority of the

graph is highly connected, showing that a large number of target pairs share very

similar activity profiles across a large number of small molecules. Compounds were

excluded if their probability of promiscuous binding was greater than 50% (P (θ ≥

0.25) > 0.5). This resulted in the exclusion of 29179 compounds. As this analysis

was not limited to highly screened compounds, this is a much higher number than

the quantity of highly screened promiscuous compounds reported above. Out of all

protein targets in PubChem BioAssay, only 2249 had at least one edge. Removing

this small fraction of promiscuous binding compounds (2.52% of total compounds)

substantially reduced the number of edges in the network. The number of node pairs

(edges) with a computable similarity (enough shared actives or mutually screened

targets) above 50% dropped from 283353 to 194444 and the number of highly similar

node pairs we connected with edges dropped from 84298 to 9854.

5.5 Conclusion

By systematically analyzing a large volume of public bioactivity data, we highlight

several new patterns of bioactivity that may prove useful for informing drug discovery
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efforts. We also provide additional context to the previously reported finding that

FDA approved drugs are, on average, active against a greater number of targets

than non-FDA approved active molecules identified by HTS methods[20, 24]. We

show that this greater number of targets is not due to biased assay participation,

both by using a statistical model which considers the evidence for each compound

individually, and by looking at the mean and median assay participation. While still

noticeable, the difference in the number of active targets between FDA approved and

non-FDA compounds decreases substantially if proteins sharing very similar amino

acid sequences, or common domains are not counted separately.

As demonstrated by the high number of previously unannotated active targets

(Table 5.6), and the high density of drug-target activity biclusters (Table 5.7 and

Fig 5.8), several sets of FDA approved drugs exhibit activity across a shared set of

related targets. Previous literature suggests several plausible explanations for how

these drugs may have similar or identical bioactivity profiles, while inducing distinct

therapeutic phenotypes in-vivo. For example, it has been demonstrated that several

common drug target receptor families exhibit biased signaling, where a given receptor

can activate a large number of downstream processes, in different ratios unique to a

given ligand structure, tissue, and organism state [47, 26]. Additionally, bioavailability

and biological compartmentalization can limit the in vivo access of a small molecule

drug to only a small fraction of the targets it many show activity against in vitro [33].

Complex network effects and biological feedback can also cause a drug interacting with

multiple targets to exhibit functional selectivity. For example, Lehar et al. (2009)

published an analysis of synergistic drug combinations, showing that combinations of
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multiple drugs acting against different targets in the same pathways tend to induce

a phenotype at lower doses, with lower incidence of off-target effects [32]. Lastly,

binary active/inactive HTS data may fail to resolve different receptor binding kinetics

that would cause a drug to exhibit target selectivity in the context of a specific

dosage level. For example, drugs are often classified and evaluated according to

therapeutic index (TI), or the ratio between the dose that results in toxicity to the

dose that produces a desired efficacy [39]. For low TI drugs where the desired effect

and toxicity are mediated with different receptors that have only slightly different

binding affinities, binary active/inactive data could be expected to report activity for

both the therapeutic and toxic targets.

This cross-reactivity we observe in FDA approved drugs raises the question and

possibility of exploiting this pattern to identify viable drug candidates in noisy and

error prone HTS data. With false positives occurring at the same order of magnitude

as true positive bioactivity outcomes, it is likely that a substantial fraction of singular

active values are due to experimental error. For some drug discovery efforts against

target classes where the FDA approved drugs tend to show cross-reactivity within a

protein family, it may be appropriate to regard targets sharing a common Pfam do-

main or molecular function annotation as replicates, and libraries can be enriched for

broad activity within this category, while removing both highly-selective compounds,

and promiscuous binders active against a large fraction of the screened targets.

We demonstrate that these data contain a large number of novel active targets

for FDA approved drugs, a large number of novel compounds active against known

drug targets, and a large set of novel compound-target pairs with no evidence of
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druggability by FDA approved drugs. By quantifying the rate of agreement between

replicated pairs of compound-target activity outcomes, we estimate that less than

half of these novel outcomes are due to experimental and data curation errors, and

therefore may represent a valuable resource for further drug discovery efforts.

Additionally, we use the statistical model mentioned above to score all highly

screened active compounds in PubChem BioAssay by their probability of being promis-

cuous binders given the available data, and assess the ability of PAINS and aggre-

gators to identify the most experimentally promiscuous compounds. We find that

both methods offer mutually complementary strengths at identifying different sets of

promiscuous binders, and we also report 1157 compounds with a greater than 50%

chance of being promiscuous, that were not included among the sets of known PAINS

or aggregators we used for our analysis. We provide the promiscuity probability val-

ues for all highly screened active compounds, as well as the source code and results

for these analyses as a reference to readers, with the hope that they will contribute

to the discovery of medically and biologically useful small molecules.

5.6 Supporting Information

S1 File. Target selectivity, cluster selectivity, domain selectivity, and

promiscuity probability P (θ ≥ 0.25) for all highly screened active com-

pounds. This is a zipped Excel readable tab separated text file with PubChem

compound ids (cid) for each compound in the first column. Compounds are sorted in

116



order from most promiscuous, to most selective. This also serves as a ranked list of

target selectivity in reverse order.

S2 File. List of Pfam domains including median target, cluster, and do-

main selectivities for FDA approved and non-FDA compounds. This is a

zipped Excel readable tab separated text file with Pfam identifiers for each domain in

the first column. This is the full data shown in tables 5.4 and 5.5, including non-H.

sapiens domains. All domains with at least one active compound are included.

S3 File. Potentially novel targets for FDA-approved drugs. This is a zipped

Excel readable tab separated text file with PubChem compound ids (cids) for each

compound in the first column, and a representative UniProt protein target identi-

fier for each sequence-similar target cluster in the second column. These represent

compound-target pairs reported as active in PubChem BioAssay, but not represented

among the DrugBank annotated targets list. Several targets had no UniProt trans-

lation and include a GenBank GI number instead, prefixed with “gi_”.

S4 File. FDA approved drug biclusters. This is a zipped Excel readable tab

separated text file with PubChem compound ids (cids) for each compound in the first

column, and a bicluster for each compound in the second column corresponding to

the drug-target biclusters described in the text.

S5 File. Protein target biclusters. This is a zipped Excel readable tab separated

text file with a representative UniProt protein identifier for each sequence-similar
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target cluster in the first column, and a bicluster for each in the second column

corresponding to the drug-target biclusters described in the text. Several targets had

no UniProt translation and include a GenBank GI number instead, prefixed with

“gi_”.

S6 File. Target-protein network. This is a Gephi readable zipped GML (Graph

Modeling Language) formatted file, which contains the target-protein network de-

scribed in the manuscript. Each node (protein) is labeled with a GenBank GI number

and a Molecular Function GO slim term.

S7 File. Fully screened compound vs target cluster binary matrix. This

is a zipped Excel readable tab separated text file with PubChem compound ids (cid)

for each compound in the first column. The first (header) line contains a unique

representative UniProt identifier for each sequence-similar protein target cluster. Six

targets had no UniProt translation and include a GenBank GI number instead, pre-

fixed with “gi_”. Zero values represent inactive compound-target activity outcomes,

while values of one represent active outcomes.
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Chapter 6

Supporting Information for

Large-scale Bioactivity Analysis of

the Druggable Proteome

6.1 Target Selectivity Distribution

Median Selectivity Mean Selectivity Trimmed Mean Selectivity
Compounds Target Cluster Domain Target Cluster Domain Target Cluster Domain
FDA Approved 7 6 4 13.7± 19.6 10.6± 14.3 5.8± 6.5 6.9± 5.1 6.4± 5.0 4.9± 5.2
Non-FDA 2 2 2 4.1± 5.8 4.0± 5.4 3.5± 4.1 3.5± 3.5 3.4± 3.4 3.2± 3.2

Table 6.1: Distribution of active proteins per compound. Selectivity is quan-
tified by three methods which cluster protein targets across increasingly large evolu-
tionary distances, as described in the text. Mean values include a standard deviation
after the ± symbol. Trimmed mean represents the mean of compounds with values
of 20 or fewer. We include a trimmed mean, as mean selectivities are highly skewed
by a small number of highly promiscuous compounds, whose selectivity counts reflect
the screening data volume rather than the bioactivity profiles.
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6.2 Fully Screened Sub-Matrix

As the assay participation for individual compounds is heavily biased, with both

very highly screened and infrequently screened compounds (Table 5.1 and Fig 6.1),

we sought to identify the largest fully screened sub-matrix of compounds and targets

within these data. The size of this sub-matrix quantifies the magnitude of screening

bias towards a specific region of the compound-target space, and can also serve as

a computational resource for bioactivity analysis methods which cannot accommo-

date a sparse matrix. Identifying this sub-matrix is a complex nonlinear optimization

problem, and simply taking the combination of the most highly screened compounds

and targets will not reliably identify the largest bicluster. We chose the BicBin al-

gorithm (set to find non-sparse clusters) for practical reasons, as it scales to large

matricies, and finds top-scoring clusters first [16]. As such, we used the BicBin bi-

clustering algorithm to identify the largest fully screened sub-matrix with at least

one active outcome in each row and column within the clustered compound-target

matrix, as described in the “Fully Screened Sub-Matrix Methods” section of this

document. The resulting fully screened matrix had dimensions of 65204 compounds

by 260 target clusters, where 23 of the compounds are FDA approved drugs. This

number of compounds represents the size of the intersection among the large com-

pound libraries used across many large-scale screening experiments. For example, at

the time of writing, PubChem BioAssay contains 128 protein target assays deposited

by the NIH Chemical Genomics Center (NCGC) high-throughput screening center

that each contain over 70000 compounds. This matrix had an overall activity density
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(fraction of active scores) of 0.94%, which is very close to the fraction of actives in

the full set of PubChem BioAssay protein target data.
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Figure 6.1: Distribution of distinct protein target assay participation. Data
is included from all assay experiments in PubChem BioAssay annotated with one or
more clearly defined protein targets, and reporting an active score for at least one
small molecule. The dashed vertical line is drawn at 10 targets, which is the minimum
value we categorize in this study as a “highly screened” compound.

This sub-matrix is useful as a representative data set for many data mining tech-

niques. For example, patterns of target selectivity, and compound-target network

connectivity can be investigated without introducing bias from varying compound

assay participation as is present in the full PubChem BioAssay data. This reference

can also be used to train and cross-validate machine learning and imputation meth-

ods, in order to assess there performance at imputing missing values from a sparse

bioactivity matrix. Lastly, it can be used as a reference for designing custom re-
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duced dimensionality high throughput screening bioactivity fingerprints (HTSFPs),

e.g. with Principal Component Analysis that still encode a defined portion of the

overall variation in bioactivity profiles present in the larger set of public bioactivity

data. This matrix is provided as a downloadable resource in Supporting Information,

however the full (sparse) bioactivity matrix is used for all analysis in this study, in

order to make use of as much relevant data as possible.

6.2.1 Fully Screened Sub-Matrix Methods

We used the BicBin biclustering algorithm to identify the largest fully screened

sub-matrix from the clustered compound-target matrix described in the main text,

where all values are represented as conclusively active or inactive. We then removed all

rows and columns without at least one active experimental outcome. The options α =

0.5 and β = 0.8 were used to bias the result towards including more protein targets,

such that the resulting bicluster would include multiple target clusters, instead of

summarizing only one or a small number of extremely large assays. We ran the BicBin

algorithm enough times to reliably converge on a stable best-scoring bicluster.

6.3 Error Rate Estimate

For those compound-target pairs screened 2-4 times, the quantity of agreement

among replicates is shown in Table 6.2. We quantify the number of times replicated

sets are all active, all inactive, or have varying levels of disagreement. The error

rate in these data was estimated from the pair data (compound-target pairs screened
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in exactly two assays) by solving the system of equations 6.1, 6.2, and 6.3 below.

As the results can be represented by three independent equations, we can solve for

three unknowns. In this case we solve algebraically for the number of true positives,

true negatives, and error rate. This analysis makes the simplification that the false

positive and false negative error rates are identical, as additional information such as

a gold standard reference would be necessary to compute these separately.

Times Screened 0 Inactives 1 Inactive 2 Inactives 3 inactives 4 inactives
2 181758 292274 20746238
3 22740 34868 92323 3158813
4 8510 11922 20328 31672 654268

Table 6.2: Disagreement and agreement among compound target pairs
screened 2-4 distinct times. Shown are the number of pairs that had a given
number of inactive (vs active) results in these replicates. For example if a given pro-
tein target pair was screened in two assays (Times Screened = 2) and both results
were inactive it’s count would be added to the “2 Inactives” column. If the two as-
says disagree and one showed active and the other inactive, it is counted in the “1
Inactive” column.

The count of double inactives shown in Equation 6.1 represents the sum of two

truly inactive results, plus the number of double false negatives. Here p is the number

of true positives, n is the number of true negatives, e is the error rate, I1 is the set of

result pairs where the first was inactive, and I2 is the set were the second is inactive.

Ic
1 is the set of result pairs where the first was active, and Ic

2 is the set were the

second is active. The order of I1 and I2 is irrelevant. The count of single inactives

shown in Equation 6.2 represents the sum of inactive pairs with one false positive, and

active pairs with one false negative. The count of zero inactives shown in Equation
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6.3 represents the sum of two truly active results, plus the number of double false

positives.

two inactives count︷ ︸︸ ︷
|I1 ∩ I2| =

double true negatives︷ ︸︸ ︷
n(1− e2) +

double false negatives︷︸︸︷
pe2 (6.1)

one inactive count︷ ︸︸ ︷
|I14I2| =

one false positive︷︸︸︷
2ne +

one false negative︷︸︸︷
2pe (6.2)

zero inactives count︷ ︸︸ ︷
|Ic

1 ∩ Ic
2| =

double true positives︷ ︸︸ ︷
p(1− e2) +

double false positives︷︸︸︷
ne2 (6.3)

Solving for e based on the data in the first row of Table 6.2 yields an estimated error

rate of approximately e = 0.00698, or roughly 0.7% with approximately p =181k true

positives, and approximately n =20.7M true negatives. If the false positive and false

negative rates were identical, this would represent a fraction of true active compound-

target outcomes of about 0.86%, which is somewhat lower than the 1.3% of values

which are active in the entire PubChem BioAssay protein target data we analyze

in this study. If we additionally make the approximation that the fraction of true

positives in this replicated data is close to that in the larger non-replicated set, we

estimate that the overall fraction of active results which are true positives is roughly

100 ∗ 0.86/1.3 = 66%, ignoring the negligible false negatives. This error rate is low

enough that only a small portion (roughly 0.56%) of the double positive (0 inactives)

results are likely to be double false positives rather than true positives, while most of

the single inactive results among replicated pairs are a result of false positives.
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6.4 Target Selectivity by Molecular Size

To investigate the possibility of a relationship between target selectivity and

molecular size, we quantified the distribution of molecular sizes for compounds with

different numbers of distinct sequence active targets, i.e. cluster selectivity. The defi-

nition of molecular size used here is the quantity of non-hydrogen atoms. We analyzed

these data to identify both general trends of selectivity in relation to molecular size,

as well as look for distinct patterns among the largest and smallest compounds. All

highly screened compounds with between 1 and 10 active targets are shown in Fig

6.2. Many of the very largest compounds in PubChem BioAssay with over 300 heavy

atoms were screened in a large number of assays but reported inconclusive results

in most or all, and were excluded here. This suggests that there may be technical

limitations to these assay methodologies with regard to extremely large compounds.

Non-FDA compounds have a slightly higher mean molecular size than FDA approved

drugs (Table 6.3 and Fig 6.2). While the overall distribution of molecular size is

roughly the same across compounds with differing numbers of active targets, the

largest and smallest compounds show greater target selectivity (fewer targets) than

non-FDA compounds, as can be seen in the tail lengths of Fig 6.2. While these com-

pounds vary in size from 1 to 302 heavy atoms, all compounds with a size under 3 or

over 190 (a total of 4 and 8 respectively) have 3 or fewer active targets. Compounds

with greater than 10 active protein targets show approximately the same distribution

of size shown here for 7-10 active targets, and were excluded from the plot due to

space considerations.

130



Compounds Mean±SD Size Size Range
FDA Approved 23.0± 9.3 4− 87
Other 26.3± 7.0 2− 302

Table 6.3: Variation in molecular size for FDA approved and non-FDA com-
pounds. FDA approved compounds have a slightly lower mean size than non-FDA
compounds. Only highly screened active compounds were included in this calculation.

The target selectivity of the 40 largest highly screened active FDA approved drugs

is shown in Table 6.4, along with the common name and therapeutic utility (annota-

tion from DrugBank). A majority of these compounds are either natural products or

semi-synthetic drugs derived from natural products. It has been reported in previous

literature that approximately half of naturally discovered drugs violate the Lipinski

Rule of Five in terms of molecular size, and number of rotatable bonds, despite the

fact that effective and bioavailable synthetic drugs rarely violate these rules [9, 13].

As discussed by Ganesan, this may in part be due to naturally evolved synthetic

processes that allow large molecules to maintain low hydrophobicity and intermolec-

ular H-bond donating potential, as well as the ability of natural products to mimic

endogenous metabolites allowing them to utilize active transport systems [9]. Over-

all this subset shows activity against a greater number of targets than most FDA

approved compounds (median 12.5 vs 7 for all drugs), however there is substantial

variation by drug class. Several of the most selective large molecules such as strepto-

mycin and amikacin are natural antibiotics evolved to specifically inhibit prokaryotic

ribosomal RNA structures, which are not among the screening targets in our analysis

[2, 3]. Many of the least selective large molecules are highly promiscuous cytotoxic
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compounds (such as Suramin) which have dual utility as cancer chemotherapy agents

and as antiparasitic drugs [17, 4, 14].
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Figure 6.2: Target selectivity by molecular size. Violin plot with horizontal
lines drawn at the 0.25, 0.5, 0.75 quantiles with tails trimmed to the range of data.
Molecule size is quantified here by the number of non-hydrogen (heavy) atoms. (A)
Target selectivity vs. molecular size across the entire range (y axis) of variation in
these data. (B) Target selectivity vs. molecular size zoomed in on the y-axis to show
more detail.
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Name PubChem CID Size Active Targets Tested Targets Description
Cisatracurium Besylate 62886 87 1 59 muscle relaxant
Suramin 5361 86 22 63 antiparasitic
Amphotericin B 5280965 65 3 71 antifungal
Paclitaxel 36314 62 20 293 antimitotic
Rifabutin 6323490 61 9 228 antibiotic
Vincristine 5978 60 17 57 antimitotic
Vinblastine 241903 59 4 25 antimitotic
Docetaxel 148124 58 9 33 antimitotic
Rifaximin 6436173 57 2 15 antibiotic
Digitoxin 441207 54 28 229 cardiac glycoside
Erythromycin 12560 51 19 330 antibiotic
Posaconazole 147912 51 5 28 antifungal
Atazanavir 148192 51 6 36 antiretroviral protease inhibitor
Ritonavir 392622 50 26 243 antiretroviral protease inhibitor
Itraconazole 55283 49 15 34 antifungal
Lopinavir 92727 46 14 76 antiretroviral protease inhibitor
Rescinnamine 5280954 46 10 260 antihypertensive
Tubocurarine 6000 45 2 61 neuromuscular blocker
Lercanidipine 65866 45 3 39 antihypertensive
Indinavir 5362440 45 10 10 antiretroviral protease inhibitor
Reserpine 5770 44 28 339 antipsychotic
Ergotamine 8223 43 38 42 vasoconstrictor
Dihydroergotamine 10531 43 31 88 vasoconstrictor
Bromocriptine 31101 43 37 77 dopamine agonist
Irinotecan 60838 43 11 22 antimitotic
Nonoxynol-9 72385 43 1 44 surfactant
Benzonatate 7699 42 2 322 antitussive
Deserpidine 8550 42 11 24 antihypertensive
Etoposide 36462 42 22 273 antimitotic
Zafirlukast 5717 41 42 229 leukotriene receptor antagonist
Ouabain 439501 41 19 298 cardiac glycoside
Montelukast 5281040 41 25 28 leukotriene receptor antagonist
Hexafluronium 9434 40 3 14 neuromuscular blocker
Streptomycin 19649 40 1 34 antibiotic
Amikacin 37768 40 1 43 antibiotic
Nelfinavir 64143 40 27 321 antiretroviral protease inhibitor
Lapatinib 208908 40 17 166 tyrosine kinase inhibitor
Deferoxamine 2973 39 5 182 chelating agent
Doxorubicin 31703 39 30 43 antitumor antibiotic
Telmisartan 65999 39 15 289 antihypertensive

Table 6.4: Target selectivity of the 40 largest highly screened active FDA
Approved Drugs. Sorted by decreasing size (non-hydrogen atom count). The
description column represents one common clinical use of each compound, but may
not represent its only known therapeutic utility.

6.5 Stretched Exponential Selectivity Distribution

As a curvature can be seen in the semi-log plot space for each of the target selec-

tivity distributions shown in S6 Fig, these data have a regular pattern that cannot be
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described fully by an exponential probability mass distribution. To model the distri-

bution of target selectivity we fit the distinct sequence target data to three probability

density function models, the exponential (equation 6.4), power law (equation 6.5), and

stretched exponential function (equation 6.6) where x represents the number of active

targets, and each function includes two fit parameters. While the number of active

targets for each compound is a discrete value suggesting a probability mass function,

here we fit a continuous function to approximate it. The exponential and power law

functions fit with roughly opposite sign residuals (R2 = 0.99131 and R2 = 0.97916

respectively), and the stretched exponential, which is a composite of the other two,

fit the data closely (R2 = 0.99912) as shown in Fig 6.3.
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Figure 6.3: Selectivity function fit. The distribution of distinct sequence targets
for non-FDA approved compounds, along with best fit lines using two-parameter
versions of the exponential, power law, and stretched exponential functions.
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P (x) = fe−( x
g

) (6.4)

P (x) = axb (6.5)

P (x) = e
−( x

x0
)c

(6.6)

The stretched exponential fit the non-FDA cluster selectivity distribution for 1-

20 targets with best fit parameters c = 0.6423 and x0 = 0.9487. Fitting the FDA

approved drug data to the stretched exponential (equation 6.6, R2 = 0.9033) yielded

best fit parameters c = 0.2445 and x0 = 0.06681. The FDA approved distribution was

fit slightly better by an exponential distribution, and exhibits much less curvature

in semi-log space. The fact that the exponential function fits relatively well suggests

that the distribution of active targets for each compound approximately follows an

exponential underlying process. That is, each compound-target interaction can be

seen as an independent event of roughly equal probability. However, if these were

singular independent outcomes with the same probability we would expect the expo-

nential function to fit better than the stretched exponential, but as shown that is not

the case for the non-FDA compounds.

Stretched exponential probability distributions have been documented in a large

number of natural and artificial processes, many of which have been shown to fol-

low this probability distribution due to an underlying multiplicative process, where a

series of chained events, each with different probabilities is involved in the resulting
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outcome quantified [11, 8, 15, 10]. For example, they can be observed in the distribu-

tion of binding times for single molecule enzyme-substrate combinations, and protein

structural relaxation times [5, 6, 1, 12, 7]. This lends a possible physical interpretation

to the two fit parameters in these processes. The value of the exponent, c describes

the curvature in semilog space, and arises from the underlying multiplicity of the

process. In a stretched exponential, the exponent c is always smaller than one, with

a value inverse to the number of generations, m = 1
c
in the underlying multiplicative

cascade [11]. Further investigation will be necessary to elucidate the nature of the

possible key underlying multiplicative steps involved in compound-target interactions

suggested by this analysis.

6.5.1 Stretched Exponential Selectivity Distribution Meth-

ods

Numeric fit was computed with the nls (Nonlinear Least Squares) function in the

R programming language. Each function included two fit parameters.

6.6 Additional Figures
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Figure 6.4: Drug-Target (DT) bipartite network biclusters. Protein targets
are shown in black, with FDA approved drugs shown in color, based on their bioac-
tivity bicluster. Unclustered compounds are shown in grey. No color key is provided,
as some colors were reused in order to visualize a large number of biclusters. Node
position is based on connectivity, with the same positions as in Fig 6.5.
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Figure 6.5: Drug-Target (DT) bipartite network Gene Ontology (GO). FDA
approved drugs are shown in black, with protein targets show in color based on the
most specific Molecular Function GO Slim term for each target. Unannotated targets
are shown in white. No color key is provided, as some colors were reused in order to
visualize a large number of GO terms. Node position is based on connectivity, with
the same positions as in Fig 6.4.
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panel shows the number of promiscuous compounds at each cutoff value.
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Chapter 7

Receptor-Mediated Leptin

Transcytosis: a Model of the

Blood-Brain Barrier as a

Lipostatic Regulatory Interface

7.1 Background and Introduction

The leptin molecule (coded for by the mouse ob gene and it’s human orthologue)

has been identified as a critical protein hormone in the physiological regulation of

energy homeostasis in mammals[31]. This hormone is produced by adipose tissue,

and serum leptin levels correlate positively with adipose mass implicating it as a po-

tential “adipostat” signal to the hypothalamus[7]. Decreased blood leptin levels in ob
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knockout mice are correlated with decreased energy expenditure, and increased food

consumption[31]. This discovery led to initial enthusiasm amongst researchers and

health professionals as a route for the development of novel treatments for obesity

and associated metabolic disorders by increasing serum leptin concentration[10]. Un-

fortunately, it was later discovered that increasing blood leptin levels in both obese

humans and rats fails to alter energy homeostasis as leptin levels in the brain and cere-

bral spinal fluid (CSF) remain roughly unchanged[20]. In animal models of obesity,

administration of leptin directly to the central nervous system (CNS) alters energy

homeostasis, while administration into the blood fails to do so[25]. This implicates

reduced leptin transport across the blood-brain barrier and blood-CSF barrier as a

potential factor in leptin resistance, consistent with the identification of a saturable

receptor-mediated transport system for leptin[3].

The “lipostasis” hypothesis posits that the hypothalamus regulates energy balance

in order to maintain adipose mass within a narrow range. There are two theorized

processes by which the “adipostat” signal provided by leptin could be interrupted

and cause the hypothalamus to defend a higher adipose mass: (1) inflammation in

hypothalamus leading to decreased leptin sensitivity, and (2) deficient transport of

leptin from the blood to the central nervous system [30, 20]. Evidence that supports

the existence of such a mechanism in humans includes: increasing caloric expenditure

(exercise) leads to a corresponding increase in hunger, adipose mass loss due to forced

calorie restriction partially reverses if restriction is ceased, and adipose mass gain

partially reverses if forced overfeeding ceases[13, 26, 6]. The term “leptin resistance”
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refers to a pathological condition which leads to the hypothalamus defending a higher

adipose mass.

The blood-brain and blood-CSF barriers typically block the transport of large

molecules such as leptin from entering the central nervous system. Rat brain capil-

laries at the blood-brain barrier exhibit high expression of a shortened form of the

leptin receptor (ObRa), which (unlike the long form ObRb) have not been related

to any intracellular signal transduction pathways but has been demonstrated to be

capable of unidirectional leptin transport in vitro[4, 9]. This suggests a mechanism

by which leptin could gain access to the brain. Other receptor isoforms also exist,

but have unknown function[27].

Several factors have been demonstrated as modulators of leptin transport at the

blood brain and and blood-CSF barriers, and consequently as potentially important

factors in both the pathophysiology and treatment of leptin resistance. These include

serum triglycerides, lipopolysaccharides, and soluble leptin receptors which decrease

transport, and α1 adrenergics which increase leptin transport[1, 2, 23].

Here I first develop a quasi-steady-state mathematical model of the ObRa lep-

tin transport system which predicts saturable behavior consistent with experimental

data. I then extend the model to incorporate receptor population and accommodate

time varying behavior in response to external factors. Lastly, I propose a series of

experiments to measure unknown rate constants in this extended model, which rep-

resents a “high throughput hypothesis” incorporating several potential biochemical

mechanisms by which leptin transport could be impaired. Fitting this model compu-

tationally to data from a carefully designed series of in vitro experiments comparing
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cells transporting (or endocytosing) leptin by the ObRa receptor with and without

known factors which impair leptin transport will measure the unknown rate constants

for both systems, and help to refine the hypothesis of how the transport mechanism

is being modified in cases of pathological leptin resistance.

Similar experiments in the past have proven capable of independently measuring

the unknown rate constants of several natural receptor mediated endocytosis mecha-

nisms. Currently the best characterized receptor-mediated transport system is the cel-

lular uptake of epidermal growth factor (EGF) by it’s receptor (EGFR). Researchers

were able to accurately measure the unknown rate constants in this mechanism by

fitting it’s dynamic in vitro behavior to mathematical models[28, 29]. To the best of

my knowledge this technique has not yet been extended to elucidate the biochemical

mechanism by which various factors influence receptor mediated transcytosis.

7.1.1 Transport Physiology

Six distinct isoforms (splice variants) of the mouse and human leptin receptor

(ObR gene) have been identified. All six of these isoforms are capable of binding to the

leptin molecule (Ob gene) and localizing on the exterior of cellular membranes. The

long isoform (ObRb) is preferentially expressed in the hypothalamus and is capable of

intracellular signal transduction via MAPK and Jak-Stat signaling cascades, where it

inhibits appetite and alters other factors related to energy homeostasis [15]. Five short

isoforms have been identified (ObRa, ObRc, ObRd, ObRe, and r-ObRf) which lack

motifs associated with signal transduction[27]. ObRa has been identified as playing

145



appears not to express gp60 (Schnitzer 1992).
Similarly, the neonatal receptor for IgG that binds
Fc domains (FcRn) also appears to traffick IgG and
indeed IgG Fc fusion proteins, across polarized cells of
the intestinal epithelium and also respiratory epi-
thelium (Lencer and Blumberg 2005). In the BBB,
FcRn expression is recognised but appears to mediate
the transport of IgG from brain to blood (Schlachetzki
et al. 2002). Unless endocytosed material is selectively
retrieved from early endosomes, it is delivered via
transport vesicles through multivesicular bodies and
to late endosomes (pH 5.5–6.0). Without selective
retrieval at this stage, material will be delivered to
lysosomes (pH , 5.0) and be exposed to the full
hydrolytic activity of at least 40 hydrolytic enzymes,
including proteases, nucleases, glycosidases, lipases,

phospholipases, phosphatases and sulphatases; a well
established human lysosome marker is lysosome
associated membrane protein 1 (Lamp-1). For a
detailed review of the dynamics of endosomal sorting,
see Mellman (1996) and Bishop (2003).

Targeting and fusion of endocytic vesicles

The targeting and fusion of endocytic vesicles with
other internal membranes is tightly regulated and
mediated mainly through two classes of proteins:
SNAREs and the targeting GTPases, Rabs. Broadly,
SNARE proteins provide specificity in vesicle–vesicle
interaction and in catalysing the fusion of vesicle to
target membrane. Rabs interact with other proteins to

Figure 2. Schematic diagram of the early events of intracellular vesicle budding and trafficking during endocytosis with particular reference
to clathrin pathways. Proteins are recruited to clathrin coated pits following multiple protein–protein and protein–lipid interactions. Adaptin-

2, which binds various cell surface receptors and the clathrin heavy chain, recruits receptors into clathrin pits. Subsequent invagination and

budding processes, directed by dynamin, leads to intracellular vesicles. Shortly after internalization the clathrin coat is removed under the
direction of an uncoating ATPase (heat shock protein Hsp70). The uncoated vesicle is then directed to an early endosome where endocytosed

material may be recycled back to the original membrane or trafficked to late endosomes for further sorting resulting in degradation in

lysosomes, retrograde transport to the trans-Golgi or transcytosis to the opposing plasma membrane domain.
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Figure 7.1: Illustration of a generalized clarathrin-dependent receptor me-
diated transcytosis mechanism. Figure reprinted from Smith and Gumbleton
2006 with permission from the publisher[21].
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an essential role in transport and lysosomal degradation of leptin with internalization

mediated by a clathrin-coated pit endocytosis mechanism[24].

Unidirectional transport of large protein molecules by clathrin-coated pit mecha-

nisms at the blood-brain and blood-CSF barriers involve expression of the receptor

on the blood plasma side of the endothelial membrane which consists of polarized

cells. Transport receptors diffuse along the surface, and are capable of binding to

ligands freely diffusing in plasma. Once bound to a ligand, the bound complex may

either dissociate or locate to a clathrin-coated pit (which make up a portion of the

membrane) for endocytosis. Some receptors undergo a conformational change after

binding which increases the probability of coated-pit localization, but this does not

seem to occur for ObRa. Coated pits regularly form vesicles and internalize, and

any receptors bound to them at this time will become entrapped and internalized

in the resulting vesicle. This vesicle may also contain unbound receptors and other

molecules from blood plasma.

After internalization, clathrin will dissociate from the vesicle transforming it into

an early endosome which experiences a drop in pH due to ion pumps on its mem-

brane. This drop in pH causes the receptors and ligands to dissociate and sort by an

unknown mechanism inside what is now a late endosome. After this sorting occurs,

the late endosome splits in two, where one half contains mostly receptors, and other

half mostly ligand. A fraction of both the receptor and ligand portions of the late

endosome merge with lysosomes resulting in lysosomal degradation. The fraction

of receptors that escape degradation are recycled back to the cell surface while (in
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the case of transcytosis) the remaining ligand rich portions of the late endosome are

released on the opposite side of the cell (see figure 7.1).

7.2 Methods (Transport Kinetics)

7.2.1 Quasi-steady-state Transport Rate

Leptin transport is hypothesized to occur via a clarathrin-dependent receptor

mediated transport mechanism with general steps of binding and dissociation on

the cell surface, internalization, and both transport and lysosomal degradation of

internalized leptin. Such a mechanism is represented as follows:

Lep+ObRa

Dissociation︷︸︸︷
k−1
�
k1︸︷︷︸

Binding

LepObRa →
k2︸︷︷︸

Internalization

Lepi

Transport and Degradation︷︸︸︷→
k3

Lepd + Lept

(7.1)

Where [Lep] is blood leptin concentration, [ObRa] is the number of unbound

surface transport receptors on the blood side of the barrier, [LepObRa] is the number

of leptin-receptor complexes on the surface, [Lepi] is the number of internalized leptin

molecules within the cell(s), [Lepd] is the number of leptin molecules delivered for

lysosomal degradation, and [Lept] is the number of leptin molecules transported across

the membrane.

Applying conservation of mass to the leptin molecule for each step in this mecha-

nism yields the following differential equations for leptin concentration in each phase:

d[LepObRa]
dt

=
Binding︷ ︸︸ ︷

k1[Lep][ObRa]−
Dissociation and Internalization︷ ︸︸ ︷
(k2 + k−1)[LepObRa]
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d[Lepi]
dt

=
Internalization︷ ︸︸ ︷
k2[LepObRa]−

Transport and Degradation︷ ︸︸ ︷
k3[Lepi] (7.2)

d[Lepd + Lept]
dt

=
Transport and Degradation︷ ︸︸ ︷

k3[Lepi] (7.3)

For a quasi-steady-state where blood leptin and receptor population are constant

(d[Lep]/dt = 0,d([LepObRa] + [ObRa])/dt = 0) and the system is at equilibrium

(t >> t0) then the bound ligand/receptor complex, and internal leptin levels will also

reach constant values:

k1[Lep][ObRa] = (k2 + k−1)[LepObRa] (7.4)

k2[LepObRa] = k3[Lepi]

This simplification allows for the elimination of [Lepi] from the model:

d[Lepd + Lept]
dt

= k2[LepObRa]

d[Lept]
dt

= k2(1− fL)[LepObRa] = k4[LepObRa] (7.5)

Where k4 ≡ k2(1−fL), with fL being the fraction of leptin sorted for lysosomal degra-

dation (also constant at steady state). Substituting the constant receptor population

([ObRa]0 = [LepObRa] + [ObRa]) into equation (7.4) yields the following:

k1[Lep]([ObRa]0 − [LepObRa]) = (k2 + k−1)[LepObRa]
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Which can be solved algebraically for [LepObRa]:

[LepObRa] = [Lep][ObRa]0
k2+k−1
k1

+ [Lep]

Substituting into equation (7.5) yields an equation for the rate of transport:

d[Lept]
dt

= k2(1− fL) [Lep][ObRa]0
k2+k−1
k1

+ [Lep]
= k4

[Lep][ObRa]0
k4/(1−fL)+k−1

k1
+ [Lep]

This has the same mathematical form as the Michaelis-Menten equation of enzyme

kinetics, which exhibits saturable behavior:

v0 = vmax[Lep]
kM + [Lep] (7.6)

Where v0 is the rate of transport for a given [Lep], vmax is the maximum rate of

transport at saturation, and kM is a constant at quasi-steady-state:

v0 ≡
d[Lept]
dt

vmax ≡ k4[ObRa]0

kM ≡
k4/(1− fL) + k−1

k1

7.2.2 Diffusion vs Transport Rate

The above model of transport behavior considers the rate of transport relative to

concentration of leptin at the blood-brain and blood-CSF barrier surface, but does not
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Figure 7.2: Equation (7.6): Unit-less saturable response of transport rate to
serum leptin levels.

consider the possibility of a leptin concentration gradient forming in the capillaries,

which would limit the real world maximum transport rate via diffusion rather than

the above calculated vmax. For purposes of understanding leptin resistance I am

concerned primarily with factors which could suppress real world vmax at brain regions

of rapid uptake, and therefore inhibit leptin sensitivity within the higher ranges of

physiologically relevant leptin levels. Therefore, estimating the relative contribution

of diffusion and transcytosis at the blood-CSF barrier in adult rats is representative,

as this is the site of most rapid leptin transport under physiological conditions[32].

The Damköhler number (Da) is a unit-less comparison of the rate of transport (vmax)

to the rate of leptin diffusion (DC/L).

vmax ≤ 0.2 ng

g ∗min
1min
60s

1g
1ml

0.58ml
75cm2 = 2.57 ∗ 10−5 ng

s ∗ cm2 (7.7)
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Da = vmaxL

DC
≤

2.57 ∗ 10−5 ng
s∗cm2 ∗ 2 ∗ 10−4cm

0.061 ∗ 10−5 cm2

s
∗ 0.6 ng

cm3

≈ 0.014 << 1

Figure 7.3: Diagram of diffusion vs
transport in the rat brain capillary.
vmax represents the maximal rate of trans-
port, D the binary diffusion coefficient of
leptin in blood, C the serum leptin concen-
tration, and L the capillary radius. Figure
adapted from Hicks et al. 1983 with per-
mission from Elsevier[8].

Where vmax is the rate of leptin trans-

port at receptor saturation per unit area

( ng
s∗cm2 ), L is the characteristic length

(length over which a concentration gra-

dient may occur), D the binary diffusion

coefficient of leptin in blood, and C is

the serum leptin concentration (see fig-

ure 7.3). Each of these parameters can

occur over a wide range in vivo, so an at-

tempt was made to use maximal values

for estimating parameters in the numer-

ator, and minimal values in the denomi-

nator to err on the side of overestimating

the Damköhler number.

vmax was estimated by taking the measured vmax at the site of fastest transport

within the “rapid uptake” portions of the brain per in vivo rat models which is

vmax ≤ 0.2 ng
g∗min into cerbero-spinal fluid[32]. This value was converted to a mass flux

(equation 7.7) by using published parameters on the average ratio of cerebrospinal

fluid (CSF) to choroid plexus surface area in the adult rat brain[11, 14]. CSF has a

density of roughly 1 gram per ml[19]. The intricate geometry of the choroid plexus
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accounts for the huge surface area relative to such a small fluid volume. Serum leptin

concentration C was estimated from the low end of physiological leptin concentrations

(C ≥ 0.6 ng
cm3 )[32]. The binary diffusion coefficient of leptin is unknown, but is assumed

to be of the same order of magnitude as albumin (D ≈ 0.061∗10−5 cm2

s
) [5]. Since the

estimated Damköhler number is much less than unity, diffusion is unlikely to limit

the rate of transport and will be omitted from the model presented herein.

7.2.3 Dynamic Behavior and Receptor Regulation

The leptin transport receptor ObRa occurs on the cell surface at varying pop-

ulation levels. The following reaction represents the mechanism by which surface

receptors are hypothesized to undergo synthesis, binding, internalization, surface re-

cycling, and lysosomal degradation:

→
S︸︷︷︸

Receptor Synthesis

ObRa+ LepObRa

Recycling︷ ︸︸ ︷
krec(1−fR)

�
k2︸ ︷︷ ︸

Internalization

ObRai

Degradation︷ ︸︸ ︷→
kdegfR

ObRad (7.8)

Where S is the rate of receptor synthesis, [ObRa+ LepObRa] is the total surface

receptor population (unbound and bound), k2 is the rate of internalization, krec is the

rate of receptor recycling to the cell surface, fR is the fraction of internal receptors

sorted for lysosomal degradation, [ObRai] is the population of internal receptors, kdeg

is the rate of lysosomal degradation, and [ObRad] is the quantity of receptors that

has undergone degradation.
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Applying conservation of mass to the receptor population for each step in this

mechanism yields the following differential equations for receptor population in each

phase:

d[ObRa]
dt

=
Dissociation︷ ︸︸ ︷

k−1[LepObRa]−
Binding︷ ︸︸ ︷

k1[Lep][ObRa]−
Internalization︷ ︸︸ ︷
k2[ObRa]

+
Recycling︷ ︸︸ ︷

krec(1− fR)[ObRai] +
Receptor Synthesis︷︸︸︷

S

(7.9)

d[LepObRa]
dt

=
Binding︷ ︸︸ ︷

k1[Lep][ObRa]−
Dissociation︷ ︸︸ ︷

k−1[LepObRa]−
Internalization︷ ︸︸ ︷
k2[LepObRa] (7.10)

d[ObRai]
dt

=
Internalization︷ ︸︸ ︷

k2([LepObRa] + [ObRa])−
Recycling︷ ︸︸ ︷

krec(1− fR)[ObRai]−
Degradation︷ ︸︸ ︷

kdegfR[ObRai] (7.11)

These unknown rate constants represent steps in the receptor regulation process

which could be influenced by external factors known to alter leptin transport rate.

7.2.4 Computational Model

I developed a computational model (named “leppRedict”) of leptin endocytosis

which can be fit to experimental data to allow the isolation and measurement of

the unknown rate constants related to receptor regulation. Since the purpose of this

model is the interpretation of in vitro experimental data, it was designed to model

single compartment endocytosis rather than transcytosis. This is likely to exhibit re-

duced endocytosis in the presence of the same factors which impair transcytosis while

reducing the complexity and difficulty of the experiment. If an in vitro endocytotic

154



experiment fails to reproduce a steady state change in endocytosis rate in response to

known mediators of transcytosis, it will be necessary to expand this model to consider

full transcytosis by adding equation (7.3) to the model.

Of the six differential equations developed herein to model leptin transport and

receptor regulation in vivo, only four (equations 7.2, 7.9, 7.10, 7.11) are necessary to

model endocytosis in vitro, plus one additional equation to account for the varying

leptin concentration in solution:

d[Lep]
dt

=
Dissociation︷ ︸︸ ︷

k−1[LepObRa]−
Binding︷ ︸︸ ︷

k1[Lep][ObRa]

This system of five differential equations is solved numerically in the R program-

ming language, using the “deSolve” library[17, 22]. This allows for predicting the

dependent variables of bound, unbound, and intracellular receptors and free, bound,

and internalized leptin for any arbitrary time course, initial conditions, and rate con-

stants. By comparing each data point in this prediction to measured experimental

values a “cost function” represents the distance between the prediction and reality:

Cost =
∑

[predicted data− experimental data]2

The R library “subplex” is utilized to find a set of rate constants which represent a

global minimum of the cost function, using Tom Rowan’s subspace-searching simplex

algorithm[12, 18]. leppRedict then outputs these predicted rate constants and plots

the time-course solution of the system of differential equations with these predicted

values (see figure 7.4 for an example fit to artificial data with random error).
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This software can be applied simultaneously to any arbitrary combination of treat-

ment vs non-treatment dynamic in vitro leptin endocytosis experiments, to predict

which rate constant(s) are being modified by the treatment.
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Figure 7.4: An example fit of the leppRedict computational model to ar-
tificial data over a one hour time course beginning with all initial leptin
bound to surface receptors. Dots represent artificial data with random error
applied, and solid lines show the model behavior as fit to these data. This figure
illustrates the ability of the model to fit and visualize arbitrary data (and eventually
experimental data); not a prediction of the system behavior.
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7.3 Results and Discussion

7.3.1 Quasi-steady-state Behavior

Equation (7.6) predicts that this system will exhibit hyperbolic sensitivity of leptin

transport rate (d[Lept]/dt) to blood leptin concentration ([Lep]) if the generalized

mechanism of clarathrin-dependent receptor mediated transport (equation 7.1) from

which it’s derived accurately explains the underlying physiology. This prediction

correlates closely with experimental data measuring unidirectional influx of radio-

labeled 125I − leptin across the blood-cerebrospinal fluid and blood-brain barriers

using in vivo rat models[32]. Zlokovic et al. measured rapid but saturable uptake at

physiological levels with a low vmax into the CNS at three sites (CSF, hypothalamus,

and choroid plexus) and slow saturable uptake with a high vmax at above physiological

levels in the hippocampus, cortex, and caudate nucelus (see figure 7.5 and table

7.1)[32]. This indicates significant differences in receptor expression and/or other

factors involved in transport (such as abundance and internalization rate of clathrin-

coated pits) at these sites.

According to the model presented herein, leptin levels must approach kM for

significant transport to occur. Human data suggests that plasma leptin levels in

obese humans occur in the range of around 0 − 40ng/ml (20.3 ± 5.8 for women,

5.8± 0.8 for men in ng/ml; P = 0.001)[20]. If the pattern of slow vs rapid transport

is conserved between rats and humans, it is likely that significant transport for the

purposes of lipostasis in living humans occurs only at sites of rapid transport (CSF,
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Figure 7.5: Saturable response of transport rate to serum leptin levels at
six sites from in vivo rat models. Sites of slow uptake are unlikely to contribute
significantly to leptin transport under physiological conditions. Figure republished
from Zlokovic et al. 2000 with permission from the Endocrine Society[32].
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Region kM vmax
(ng/ml) (ng/g/min)

CSF 1.10± 0.07α 0.20± 0.007α
Hypothalamus 0.23± 0.04 0.014± 0.003
Hippocampus 88± 10α 2.97± 0.56α

Cortex 130± 27α 6.20± 0.50
Caudate Nucelus 345± 29 10.80± 2.60
Choroid Plexus 2.57± 0.48 0.23± 0.014

Table 7.1: Saturable response of transport rate to serum leptin levels at six
sites from in vivo rat models. Choroid Plexus data represents binding to tissue
rather than direct transport. Data from Zlokovic et al. 2000 [32].

Hypothalamus, Choroid Plexus), and therefore these sites are where deficient leptin

transport pathophysiology is likely to occur.

7.3.2 Dynamic Behavior

The quasi-steady-state model of leptin transport presented herein predicts that

transport rate could be mediated through mechanisms which affect either receptor-

ligand affinity KD = k−1/k1, rate of internalization (and therefore kM), or regulation

of short-form (transport) receptor expression [ObRa]0 (and therefore vmax). Devia-

tions from the hypothetical mechanism could also affect transport rate.

Applying conservation of mass to the hypothesized mechanism of ObRa receptor

expression (production, internalization, recycling, and degradation) yields a system

of differential equations which depend on unknown rate constants to describe the

possible range of behavior within the context of this hypothesis. This system of si-

multaneous equations can be solved numerically with computer software (leppRedict)
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and fit to in vitro experimental data to estimate the values of these unknown rate

constants.

While the underlying mechanism by which physiological factors (such as serum

triglycerides, lipopolysaccharides, soluble leptin receptors, and α1 adrenergics) medi-

ate leptin transport are unknown, experimental data demonstrates a mathematical

relationship between these factors and blood to cerebral spinal fluid (CSF) leptin con-

centration ratio[1, 2, 23]. Statistically significant relationships, such as a linear rela-

tionship between serum triglycerides and brain/serum leptin ratio (r = −0.860, P <

0.05, n = 6) have already been identified in literature but not yet synthesized into

predictive models[2]. Since these data represent changes in the quasi-steady-state

transport rate, they do not yield any insight into which step(s) in the biochemi-

cal mechanism of leptin transcytosis that they interact with, and therefore further

experiments are necessary.

By comparing the dynamic behavior of the transport system in the presence and

absence of the aforementioned factors known to influence leptin transport rate the

altered rate constants can be identified and measured. This will provide new infor-

mation about how these factors interact with the transport system.

7.4 Further Work

As described in the Background section, dynamic in vitro experiments were able

to elucidate the underlying mechanism and rate constants for the epidermal growth

factor (EGF) receptor-mediated endocytosis system[28]. I propose designing and
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conducting a similar series of experiments using existing laboratory cell lines which

express the ObRa receptor (such as Madin-Darby canine kidney cells) to measure the

underlying rate constants for both normal leptin transcytosis (as a control) and leptin

transcytosis in the presence of a treatment compound known to mediate transport

rate (such as free triglycerides)[9]. This could consist of either a two-compartment

transcytosis experiment or a single-compartment endocytosis experiment depending

on practical considerations. As with the EGF system, it will be necessary to stress

the ObRa transport system under a variety of dynamic situations which have differing

abilities to isolate specific rate constants in the reaction. For example, in the EGF

system it was found that experiments that begin with cells incubated with ligand such

that all initial ligand is bound to the cell surface are able to isolate and measure the

dissociation rate constant, whereas experiments beginning with all ligand free in solu-

tion are more able to isolate and measure the binding rate constant. Both procedures

were equally capable of measuring the rate of internalization[28]. After performing

these experiments, a sensitivity analysis can be performed with existing software li-

braries (such as the R package “sensitivity”)[16]. Sensitivity analysis systematically

iterates the rate constants found by minimizing the cost function, to determine if the

current solution is unique, or if the model could equally well be fit to the experimental

data using a different set of rate constants. In the latter case, further experiments

or refinements to the mathematical model would be necessary to isolate which rate

constant(s) are being affected by the treatment protocol.

A better understanding of the underlying biochemical mechanism of known leptin

transport mediators could aid in designing in vitro and in vivo experiments with mam-
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malian tissue to confirm the underlying relationship, or to inform the development of

metabolic syndrome therapies which influence these known mediators.
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Chapter 8

Conclusion and Future Vision

8.1 Overview

At first glance, the conceptual continuity between the chapters of this disserta-

tion may not be readily apparent, but they can be seen as different aspects of a single

long-term goal, of integrating relevant biological data from diverse sources together in

a machine readable manner, and leveraging it towards the problem of identifying safe

and effective small molecule therapies. This goal entails leveraging small molecule

structures, bioactivity data, and complex systems data about the target organism to-

gether in a meaningful way. The chapter on ChemMine Tools represents an effort to

make small molecule structural analysis tools widely available, in a manner that can

be used to identify chemical features with therapeutic relevance. These tools provide

both a web interface, and a programmable R language interface, to make them avail-

able to a diverse user base. The chapters on bioassayR represent a complementary
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effort to enable large scale cross-target analysis of small molecule High Throughput

Screening (HTS) results from large data resources such as PubChem BioAssay[28].

The chapter on target selectivity demonstrates how bioassayR can be leveraged to

systematically analyze these activity data, and identify patterns of drug-likeness that

can inform drug discovery efforts. Lastly, the chapter on leptin biotransport demon-

strates a method to integrate experimental knowledge into a coherent mathematical

model of a potential target pathway, that captures the underlying dynamics of the

system. An accurate dynamic model of a disease related pathway presents an op-

portunity to identify druggable targets in silico, and rank candidates identified from

HTS data by there predicted efficacy against the dynamic system. Each chapter in

this dissertation contains a detailed discussion of it’s findings, but here I review them

again in the context of there contributions towards the long-term goal of a unified

drug discovery workflow.

8.2 ChemMine Tools

While most of the work in this dissertation is focused on experimental bioactivity

profiles, structural similarity based small molecule hit expansion by methods such

as those provided by ChemMine Tools has shown complementary effectiveness with

bioactivity based hit expansion, producing a largely different yet accurate set of hit

predictions[25, 22, 8, 5]. Additionally, in silico structural analysis has a much lower

barrier to entry, as it doesn’t require large quantities of high throughput screening

data, and can therefore be practically performed earlier in a drug discovery pipeline.
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ChemMine Tools is a modular web framework for analyzing small molecule struc-

tures. The tools all share a simple workflow that takes a set of small molecule struc-

tures and user options as input, and produces an output file with the results of this

analysis. As most cheminformatics software tools can fit into a workflow of this type,

adding new tools trivially involves writing a short YAML formatted text file that

describes the input and output formats of each tool. From this data, the ChemMine

Tools framework automatically generates an appropriate job submission form, and

links the output to a web viewer appropriate for each output format, to visualize

the results. For R language users, an example function call is automatically created

for launching the job, and the results are translated back into a standard R object.

Consequently, this substantially lowers the previously labor intensive barrier to entry

in running complex cheminformatics pipelines, without the need for end users to in-

dividually develop converters and report generators for each step. It also allows users

free access to the powerful compute resources that host ChemMine Tools.

The functionalities provided by ChemMine Tools integrate into a drug discovery

pipeline in many ways. For example, the Compound Workbench allows users to cre-

ate, organize, and explore an in silico compound library, while adding or removing

small molecules based on the results of other tools. The Clustering Workbench pro-

vides many different ways to cluster and organize compounds by similarity, including

the ability to view structural clusterings alongside heatmaps of user uploaded activ-

ity data, and visually identify patterns. The Properties Toolbox provides access to

a wide array of physicochemical property calculators, and can be used to correlate

these properties with experimental results, or to filter a compound library based on
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desired properties such as the Lipinksi Rule of Five[17]. The Similarity Workbench

provides pairwise similarity comparisons that can be both visually and quantitatively

explored to, for example, identify the common shared substructure between a set of

small molecules that are known to both induce a desired phenotype. Lastly, the Search

Toolbox provides two powerful algorithms for rapidly identifying small molecules sim-

ilar to a desired query. These tools search the entire PubChem compound structure

database, and provide an automated import feature, where the small molecule results

of a search can be retrieved from the PubChem servers remotely, and added to a users

Compound Workbench[15].

8.3 bioassayR

bioassayR is an open source R language software package distributed through the

Bioconductor project, which analyzes data from a large number of screening exper-

iments to identify target selective drug candidates, druggable protein targets, and

patterns of bioactivity that lead to drug-likeness[9]. By simultaneously analyzing

data from both users custom small molecule assays and public databases, bioassayR

can identify protein targets accessible to small molecule perturbation, elucidate novel

mechanisms of action for bioactive molecules, and predict undesirable off-target ef-

fects.

bioassayR provides a large number of functions that can contribute to drug dis-

covery workflows by informing them with large bioactivity data. For example, given a

protein target or pathway of interest, bioassayR will provide a list of candidate small
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molecules active and/or selective against these targets. If no screening data exists for

the targets of interest, bioassayR can identify small molecules active against targets

which share common protein domains and/or sequence similarity to those of interest.

The fingerprint features in bioassayR allow users to cluster compounds by bioactivity

patterns, and also to perform bioactivity based hit expansion, which identifies com-

pounds sharing cross-target activity patterns with a set of query compounds that are

known to have desirable bioactivities. bioassayR also provides a Bayesian statisti-

cal model of target selectivity, which can be used to rank, and filter compounds by

selectivity or it’s inverse (promiscuity) in a manner that limits the bias induced by

compounds screened against differing quantities of different targets.

The “results of a high-content screen compared to single target bioassays of the

same pathway” table in the bioassayR Supporting Information chapter provide strong

validation of the capabilities bioassayR provides to predict in vivo bioactive molecules

from large in vitro bioactivity data. Out of a library of 61605 compounds, bioassayR

predicts 1749 actives likely to exhibit activity in an assay which uses a luciferase

reporter to measure NF-kappaB activation in HEK-293 cells. Of these, 73 were

experimentally active showing a prediction rate of 4.12%, compared to only 0.21% in

the entire library of 61605 compounds. Additionally, bioassayR provides candidate

protein targets for the in vivo active compounds.
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8.4 Large-scale Bioactivity Analysis of the Drug-

gable Proteome

The systematic bioactivity analysis of “highly screened” small molecules in Pub-

Chem BioAssay identifies many surprising patterns of bioactivity for both exist-

ing FDA approved drugs, and other compounds which can potentially inform fur-

ther drug discovery efforts. For example, there is significant debate in the existing

literature about how the concept of polypharmacology should be applied to drug

discovery[12, 3, 10, 20, 30, 16, 18, 1, 11]. Given that existing FDA approved drugs

tend to show activity against a large number of targets on average, does this mean

that these drugs mostly act by polypharmacological mechanisms? If so, this raises the

question of which drug discovery strategy to utilize going forward, i.e. should we look

for highly selective molecules which interact with a single therapeutic target, or look

for polypharmacological compounds which interact with many nodes in a complex

biological network?

The results of this analysis provide several interesting observations, including new

information that may help lead to a more nuanced view of these polypharmacological

questions. First, while FDA approved drugs tend to exhibit activity a median of 7

targets, vs 2 for other bioactive compounds, this number decreases substantially to

4 targets when targets sharing common protein domain families are merged, while

the median number of actives for other compounds remains at 2. Additionally, when

the bioactivities of the FDA approved drugs are stored in a compound-target binary

matrix, a biclustering analysis yields many dense biclusters, where a common set of
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drugs are active against a common set of targets which share common domains and

molecular function annotations. This shows that many of the FDA approved drugs

with a large number of active targets are not selective at the individual protein target

level, but exhibit selectivity for a class of related proteins. While this provides a par-

tial explanation for the observed multi-target activity of FDA approved drugs, further

analysis is necessary to determine to what extent some of these compounds may also

be targeting multiple nodes in a target system, via a pharmacological mechanisms of

drug action. This analysis may become more practical in the future, as the dynamics

and connections of these target systems are better understood.

Additionally, the FDA approved drugs exhibit a wide range of target selectivities

due to many different mechanisms of activity, which is highlighted by the analysis

which individually looks at the selectivity of compounds active against distinct protein

domains. While proteins with some domains tend to have highly selective active small

molecules, others tend to have highly promiscuous active compounds. Individually

looking at drugs by class shows many diverging trends of target selectivity based on

the therapeudic strategy of each drug. For example, large natural antibiotics such as

streptomycin exhibit high selectivity for bacterial ribosomal RNA and tend to show

no or very limited activity against protein targets. Conversely, many chemotherapy

drugs such as broad spectrum kinase inhibitors show activity against nearly all tested

targets. As such, taking the average or mean target selectivity of drugs with such

widely different strategies of activity may provide limited insights into how to treat

a particular disease.
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This chapter includes a Bayesian probablistic model of cross-reactivity, which

yields a probability distribution over the expected hit ratios for a large number of

compounds. The hit ratio is the expected fraction of actives, if a compound were

screened against an entire proteome, or large number of active targets. Using this

model, we quantify and visualize the fact that the FDA approved drugs exhibit a

much higher hit ratio than other compounds, demonstrating that they are enriched

for activity against many targets. We also compare the hit ratio probabilities for two

common methods of determining promiscuous compounds, which often interfere with

high throughput screening efforts by exhibiting non-selective activity. We find that

Pan Assay Interference Compounds (PAINS) accurately identify compounds with

a much higher average hit ratio, while promiscuous aggregators had only a sightly

higher hit ratio overall, but showed greater ability to identify the most promiscuous

compounds[2, 7, 19]. We also build a Target Protein (TP) network, where all protein

targets are represented as nodes, as are connected if they share a high percentage

of active compounds. By leveraging the probabilistic cross-reactivity model, it is

possible to remove a small number of the most promiscuous compounds which results

in the removal of a comparatively large number of likely spurious nodes in the network.

This suggests that the cross-reactivity model has the potential to improve the quality

and utility of bioactivity profile comparisons, by removing activity outcomes from

unselective compounds.

We also find that the distribution of target selectivities (total active targets) for

individual small molecules follows a stretched exponential distribution as commonly

observed in many natural multiplicative processes, suggesting the hypothesis that
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active drug-target pairs may result from a large number of different thermodynamic

barriers, each with different probabilities. While many of these barriers may involve

already well understood and studied mechanisms, it also opens the possibility of com-

putationally screening for computable physicochemical properties which may identify

novel barriers, with potential utility for finding additional predictors of bioactivity

which are computable in silico.

8.5 Leptin Transcytosis

This chapter provides an example of extracting a detailed qualitative explanation

of a biochemical mechanism from existing literature, and translating this system into

a machine readable system of differential equations. I use apply information about

the physical structure and chemical kinetics of this system to make simplifications

and idealizations that render the model computationally tractable. For example, by

estimating the The Damköhler number I show that the rate of transport is not limited

by diffusion, and therefore diffusion terms can be eliminated from the model without

negatively affecting the resulting predictions.

The model predicts saturable transport consistent with the Michaelis-Menten

equation of enzyme kinetics, which agrees with experimental data collected from

model organisms. This quantitative model provides two key opportunities to further

study the process of leptin resistance, which may lead to obesity. First, it can inform

the design of simple biochemical experiments that, when fit to the model, will esti-

mate currently unknown parameters in this system, such as reaction rate constants.

175



Secondly, it can make predictions regarding the downstream effects of system pertur-

bation such as a small molecule drug which inhibits a specific enzyme in the system.

This allows for the possibility of in silico small molecule drug screening informed by

the dynamics of the system.

8.6 Future Vision

The best material model of a cat is another, or preferably the same, cat.

Norbert Wiener and Arturo Rosenblueth[27]

Natural discovery is fundamentally a process of modeling, if only in the narrow

technical sense that we perceive natural phenomenon, construct a mental image of how

the process works, and then leverage that understanding to perform experiments and

observations that further update our understanding. As our understanding of biology

becomes more complex and quantitative, it will become increasingly necessary to

formalize our understanding in mathematical and computer models that can translate

our current state of knowledge into predictions that are not intuitively obvious. As

George E. P. Box said, “all models are wrong but some are useful”[4]. When working

with a mental model of a natural process, we can be careful to keep in mind the

limitations of our model which result from limited understanding and evidence. This

presents a serious challenge when translating this understanding into a concrete,

deterministic set of formulas as in the Leptin Transport chapter of this dissertation.

To run this type of model, we must choose one specific discrete explanation and set
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of parameters for the underlying system. This results in a model that doesn’t truly

reflect our understanding of the system, as it discards one of the most important

categories of knowledge- where the gaps in our understanding lie. Bayesian probability

theory provides a unique approach to this problem as it rigorously extends discrete

logic into the realm of continuous probability[13]. This allows us to build models

which incorporate uncertainty about the underlying system. If our knowledge about

a biological system is encoded as a probability distribution over different possible

models and model parameters, the outcome of the computer model is a probability

distribution over expected system behaviors that can be experimentally verified, and

used to further improve our knowledge[24]. This has been understood since the time

of Pierre-Simon Laplace, but recent advances in computing power have extended it’s

potential utility to a much larger set of problems. This framework provides several key

opportunities: (i) we can systematically identify which currently missing information

would be most valuable at increasing our ability to make meaningful predictions; (ii)

we can simultaneously inform our model with experimental data from a wide range

of sources, represented in a standard way as probability distributions; (iii) we can

use Monte Carlo algorithms to estimate the posterior distribution of complex models;

(iv) we can model phenomena to which the concept of frequency is not applicable.

Many advances have been recently made towards increasingly accurate computer

simulation of biomolecular feedback systems, stochastic biochemical kinetics, and

metabolic fluxes[26, 6, 23]. These modeling approaches have also been integrated into

multi-level whole-cell microbial models which make accurate phenotypic predictions[14].

Software systems such as TherapySim have also demonstrated the potential of dy-
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namic target system models to make novel therapeutic target and small molecule

drug predictions[21]. As shown in the Bayesian compound promiscuity probability

model of the cross-target analysis chapter, I have endeavored to curate the available

bioactivity data in a machine readable manner, as probability distributions reflecting

our uncertainty due to missing data and experimental error. This includes both the

probability that a given compound-target active score is a “true positive” as well as

a continuous probability distribution over the hit ratio θ, representing the expected

fraction of actives among the untested protein targets for each compound. These

probabilities can be further improved by adding additional complexity and nuance

to the underlying model, e.g. treating protein target families independently, while

considering the level of correlations between them, as well as estimating sensitivity

and specificity separately and individually for each assay or assay type. These dis-

tributions can then be sampled in combination with models of target systems and

living cells, providing a posterior probability distribution over the space of inducible

phenotypes. These probabilistic models, along with the uncertainty present in the

underlying bioactivity data will allow us to rank and quantify drug candidates based

on the probability of inducing a desired phenotype, as well as identify which new

experiments are likely to be most informative. In an appropriate context, it may

also become possible to discriminate between inert, adverse, and desirable patterns

of polypharmacology, in the context of a molecules predicted effects on a biological

control system. I hope that this will enable the discovery of safer and more effective

drug candidate predictions, which incorporate an increasingly accurate understanding

of the dynamics that emerge from complex biological systems. Despite a large body
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of existing work, developing this type of probabilistic in silico drug screening will be

extremely challenging and will require a deeper understanding of cell biology, as well

as a large number of new computational and mathematical tools[29]. Nevertheless, it

is a bright future with manifold implications for improving human health, that I am

excited to work towards.
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