
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Linear scaling 3D fragment method for large-scale electronic structure calculations

Permalink
https://escholarship.org/uc/item/7bx612v7

Author
Wang, Lin-Wang

Publication Date
2008-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bx612v7
https://escholarship.org
http://www.cdlib.org/


Linearly Scaling 3D Fragment Method for Large-Scale Electronic

Structure Calculations

Lin-Wang Wang, Byounghak Lee, Hongzhang Shan, Zhengji Zhao,
Juan Meza, Erich Strohmaier, David Bailey

Lawrence Berkeley National Laboratory
Berkeley, CA 94720 USA

April 14, 2008

Abstract

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large
scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer
approach, which incorporates a novel patching scheme that effectively cancels out the arti-
ficial boundary effects due to the subdivision of the system. As a consequence, the LS3DF
program yields essentially the same results as direct density functional theory (DFT) calcu-
lations. The fragments of the LS3DF algorithm can be calculated separately with different
groups of processors. This leads to almost perfect parallelization on tens of thousands of
processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39% of
the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy
calculation runs 400 times faster than a direct DFT calculation, even presuming that the di-
rect DFT calculation can scale well up to 17,280 processor cores. These results demonstrate
the applicability of the LS3DF method to material simulations, the advantage of using lin-
early scaling algorithms over conventional O(N3) methods, and the potential for petascale
computation using the LS3DF method.

1 Introduction

There are many material science and nanoscience problems involving thousands to tens of

thousands of atoms that can be accurately simulated only by ab initio self-consistent methods.

These include nanostructures such as quantum dots and wires, core/shell nanostructures, as well

as more conventional systems such as semiconductor alloys. For example, materials that have

separate electron states within the energy band gap (mid-band-gap states) have been proposed

as second-generation solar cells [1]. Such systems could increase theoretical solar cell efficiencies

from 40% to 63% [1]. One potential way to produce mid-band-gap state materials is to use

substitutional semiconductor alloys such as ZnTe1−xOx. For a small alloy percentage, (≈ 3%),
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the oxygen states will repulse the conduction band minimum (CBM) states of the ZnTe and

form a separate band inside the energy band gap of ZnTe. Preliminary experimental results

have shown that such mid-band-gap states do exist [2]. But the characteristics of these mid-

band-gap states are not known (i.e., whether they are spatially isolated or extended), nor is

it known whether there is a clear energy band gap between the oxygen induced state and the

CBM of ZnTe. If there is no gap, the electron from the ZnTe conduction band will be relaxed

into the mid-band-gap states through phonon emission, which will render the material unusable

for solar cell applications.

The above questions can be answered by ab initio density functional theory (DFT) cal-

culations [3, 4]. However, due to the small percentage of the oxygen atoms, large supercells

containing thousands of atoms must be used to describe the random distribution of these oxy-

gen atoms properly. This makes calculations using a direct DFT method impractical. For

example, using any of the O(N3) (here N refers to the system size in atoms) planewave DFT

codes (e.g., the Gordon Bell winning QBox code [5], the similar norm conserving pseudopoten-

tial codes Paratec [6] and PEtot [7], or the widely used ultrasoft pseudopotential code VASP [8])

to simulate the 13,824-atom system discussed in this paper would require between 4-6 weeks of

run time for a fully converged self-consistent result using 20,000 cores (processors). This reckon-

ing generously presumes that these codes achieve a high fraction of peak and scale perfectly in

performance to 20,000 cores for a single k-point calculation. In reality, of course, performance

scaling on such large numbers of cores is usually less than perfect, so that more than 4-6 weeks

would likely be required.

In order to solve such problems and to take full advantage of future computer systems now

on the drawing boards that will employ hundreds of thousands of cores, we have developed

a new linearly scaling method that also exhibits excellent parallel scalability. For the 13,824-

atom system mentioned above, this method is roughly 400 times faster than conventional O(N3)

methods (e.g., QBox, Paratec, PEtot, and VASP). This new scheme produces a fully converged

result within 2-3 hours, yet yields essentially the same numerical results as the conventional

O(N3) methods. Since it uses a divide-and-conquer scheme, this method is well-suited for

large-scale computations. As will be shown in this paper, the performance of the algorithm
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scales almost perfectly to 17,280 cores of the NERSC Cray XT4 (Franklin) machine, the largest

machine to which we presently have access. Based on our performance analysis, LS3DF will

scale to a much larger number of cores without any substantive algorithmic obstacles. On

the 17,280 core test run we describe below, our code achieved 35.1 TFlop/s or 39% of the

peak floating-point performance of the machine. To our knowledge, this makes LS3DF the first

variationally accurate linearly scaling ab initio electronic structure code that has been efficiently

parallelized to such a large number of processors.

2 Related Work

During the last 15 years there have been numerous developments in linearly scaling ab initio

methods [9]. Most of these methods use localized orbitals, and minimize the total energy as a

function of these orbitals. Unfortunately, the use of localized orbitals can introduce extraneous

local minima in the total energy functional, which makes the total energy minimization difficult.

On the computational side, such schemes are not well-suited for systems with thousands of

cores, because localized orbitals can have strong overlaps which make large-scale parallelization

a nontrivial task. As a result of these challenges and in spite of more than a decade of intense

research, no one has yet demonstrated an accurate linearly scaling code that can be efficiently

used on thousands of cores. Another O(N) approach, the Gordon Bell winning locally self-

consistent muliple scattering (LSMS) method [10], has been shown to scale to thousands of cores.

However this method has mainly been used to study metallic alloys and magnetic systems and

its accuracy for semiconductor systems has not yet been demonstrated. Although there are some

codes like SIESTA [11] that can be used to calculate 1000-atom semiconductor systems using

linearly scaling algorithms, the performance rates of these codes do not scale well to thousands

of cores. In addition, SIESTA is based on simple atomic orbital basis sets that are less accurate

than the planewave basis set that we are using here. The divide-and-conquer approach was

first proposed by W. Yang [12] and has been used for large system calculations [13]. Based

on a different partition scheme, these earlier works did not have the variational principles and

boundary effect cancellations of our method. As a result, they are less accurate than our scheme
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when compared with direct DFT calculations.

3 LS3DF Algorithm Description

A divide-and-conquer scheme is a natural approach for mapping the physical locality of a large

problem to the architectural locality of a massively parallel computer. Our method is based on

the observation that the total energy of a given system can be broken down into two parts: the

electrostatic energy and the quantum mechanical energy (e.g, the kinetic energy and exchange

correlation energy). While the electrostatic energy is long-range and must be solved via a global

Poisson equation, the computationally expensive quantum mechanical energy is short-range [14]

and can be solved locally. The idea is to divide the whole system into small fragments (pieces),

calculate the quantum mechanical energies of these fragments, and then combine the separate

fragment energies to obtain the energy of the whole system.

A critical issue in a divide-and-conquer scheme such as this is how to combine (patch) the

fragments. The core of our algorithm is a novel patching scheme that cancels out the artificial

boundary effects caused by the division of the system into smaller fragments. As a result of

this cancellation, our results are essentially the same as a direct calculation on the large system,

which typically scales as O(N3), where N is the size of the system in atoms. In our method, once

the fragment sizes are chosen to obtain a given numerical accuracy, the computational cost is

proportional to the number of fragments. Hence, we call our method the linearly scaling three-

dimensional fragment (LS3DF) method. Using a small group of cores to solve the quantum

mechanical part of each fragment independently, our method also scales in performance almost

perfectly with the number of cores. Only a small overhead is needed to patch the fragment

charge densities into a global charge density, and to solve the Poisson equation for the whole

system. As a result, our method can be employed on computer systems with tens of thousands

of cores.

Our divide-and-conquer scheme is illustrated in Figure 1, which uses a two-dimensional

system for clarity. In Figure 1, a periodic supercell is divided into m1 ×m2 small pieces. From

each grid corner (i, j) we can define four fragments, with their sizes S equal to (in units of
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the smallest piece): S = 1 × 1, 1 × 2, 2 × 1 and 2 × 2, respectively. Suppose we calculate

the quantum energy Ei,j,S and charge density ρi,j,S of all of these fragments. Then the total

quantum energy of the system can be calculated as E =
∑

i,j,S αSEi,j,S , and the total charge

density as ρ(r) =
∑

i,j,S αSρi,j,S(r). Here αS = 1 for the S = 1 × 1 and 2 × 2 fragments,

and αS = −1 for the S = 1 × 2 and 2 × 1 fragments. By allowing the usage of both positive

and negative fragments in the above summation, the edge and corner effects between different

fragments are canceled out, while one copy at the interior region of the fragment will be left

to describe the original large system. This scheme can be extended to three dimensions in a

straightforward way. The details of this method as well as some of its novel features have been

described in [15,16].

Figure 1: The division of space and fragment pieces from corner (i, j)

In our implementation of the LS3DF method, we start with a 3D periodic supercell, and

divide it into anM = m1×m2×m3 grid. Each atom is assigned to one fragment depending on its

spatial location. The artificially created surfaces of the fragments are passivated with hydrogen

or partially charged pseudo-hydrogen atoms to fill the dangling bonds [17]. The wavefunctions
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of the fragments are described by planewaves within a periodic fragment box ΩF (which is the

square region plus a buffer region as shown by the dashed line in Figure 1). Norm conservation

pseudopotentials are used to describe the Hamiltonian. We use the all-band conjugate gradient

method to solve the fragment wavefunctions [7].

Our LS3DF method involves four important steps within each total potential self-consistent

iteration, as illustrated in Figure 2. First, a total input potential V tot
in (r) for the whole system is

provided. Secondly, the Gen VF routine generates for each fragment F , the potential VF (r) =

V tot
in (r) + ∆VF (r), r ∈ ΩF , where ∆VF (r) is a fixed passivation potential for the fragment.

Note that VF (r) is only defined in ΩF . Third, PEtot F solves Schrödinger’s equation on each

fragment for its wavefunctions ψF
i (r). After the fragment wavefunctions ψF

i (r) are solved for,

the fragment charge density is computed, ρF (r) =
∑

i |ψF
i (r)|2, and the charge density for the

overall system is patched together ρtot(r) =
∑

F αFρF (r) by subroutine Gen dens. In the final

step carried out by subroutine GENPOT, a global Poisson equation is solved using FFTs to

obtain the global potential V tot
out(r). After potential mixing from previous iterations, the modified

V tot
out(r) is used as the input for the next self-consistent iteration. Self-consistency is reached as

V tot
out(r) approaches V tot

in (r) within a specified tolerance.
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4 LS3DF Code Optimizations

LS3DF was developed specifically for large-scale parallel computation over the last one and

one-half years, although it builds on the previous O(N3) DFT code PEtot [7] that has been

in development for nearly ten years. The four major subroutines in LS3DF, namely Gen VF,

PEtot F, Gen dens, and GENPOT (Figure 2) were developed in steps. Initially, as a proof of

concept, they were developed as separate executables using file I/O to pass the data between

them. Later, these subroutines were integrated into a single executable. These codes are written

in Fortran-90, using MPI for parallel computation.

In the most recent phase of the development, which yielded the code that we used in this

study, we first focused on the PEtot F subroutine, which dominates run time. It ran at about

15% of peak performance in the earlier phases of development. PEtot F is derived from the

PEtot code, which uses the same planewave q-space parallelization as other standard codes,

such as Paratec and QBox. However, to save on memory requirements, it used a band-by-

band algorithm that contributed to its relative low performance rate. Detailed profiling and

analyses were carried out to increase the performance of PEtot F. Closer analysis revealed that

since PEtot F solved for one electron wavefunction at a time (band-by-band), the majority of

operations (for nonlocal pseudopotential and wavefunction orthogonalization) were performed

using BLAS-2 routines. The file I/O for communication also took a substantial amount of time.

Based on these analyses, we performed four major code optimizations to improve its perfor-

mance and scalability:

1. Within PEtot F, solve for all the electron wavefunction simultaneously (i.e., the all-band

scheme), instead of one wavefunction at a time (i.e., the band-by-band scheme). With this

approach, we can utilize BLAS-3 operations such as DGEMM, yielding higher performance

than is possible with BLAS-2 routines.

2. Implement a different algorithm for data communication between cores in Gen VF and

Gen dens to allow better scaling for large numbers of cores.

3. Store the data in memory (through an LS3DF global module), and communicate with MPI
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calls, rather than store the data on disk and communicating via file I/O as in the earlier

versions of the code. This change has resulted in a major improvement in scalability and

overall performance.

4. Eliminate the setup overhead during each self-consistent call for PEtot F and GENPOT

through storage of the relevant variables in the LS3DF global module.

With regards to the first item, the original PEtot F band-by-band algorithm has the ad-

vantage of requiring a rather modest amount of memory. But on the Cray XT4 system, with 2

GBbyte memory per core, we have enough memory to use the all-band method, which involves

matrix-matrix multiplication that can be performed using BLAS-3 routines. This optimization

required changes in the data layout and rearrangements of the loop structures. We have also

implemented a new orthogonalization scheme for the all-band method. Instead of imposing the

orthonormal condition for the wavefunction using a Gram-Schmidt scheme at each conjugate

gradient step, we only impose the orthonormal condition after a few conjugate gradient steps by

calculating an overlaping matrix. The use of the overlaping matrix instead of the Gram-Schmidt

algorithm also permits the use of BLAS-3 library routines such as DGEMM.

In the wake of this code optimization, the performance of the stand-alone PEtot code has

increased from 15% of the theoretical peak to 56% for large system calculations. This per-

formance ratio is close to that of the best planewave codes, such as Paratec and QBox. The

performance ratio of PEtot F for our small fragments is 45%, which is slightly slower than the

stand-alone code, probably due to the small size of the fragment. In a 2000-atom CdSe quan-

tum rod sample problem, after the final code optimization, for 8,000-core runs, the execution

times for the four subroutines of the code have been reduced to: Gen VF 2.5 seconds (from the

original 22 seconds), PEtot F 60 seconds (from the original 170 seconds), Gen dens 2.2 seconds

(from the original 19 seconds), and GENPOT 0.4 seconds (from the original 22 seconds). These

timings represent a factor of four overall improvement compared with the previous version. For

Gen VF and Gen dens, the improvement is a factor of 10, while for GENPOT, the improvement

is a factor of 50. The improvements for these three subroutines are critical for large-scale runs.

Although we are pleased with the performance and scalability of the present version, we
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do plan on making some additional improvements in the months and years ahead. Some pos-

sible steps in this direction include: (1) further improvements to Gen VF and Gen dens to

improve overall parallel scalability; (2) two-level parallelization in PEtot F, to achieve greater

parallelism; and (3) replacing DGEMM with a custom routine specialized for PEtot F.

5 Test Systems

In order to test the scaling and flop/s performance of the LS3DF code, we set up a series

of test problems involving ZnTe1−xOx alloy systems. These alloy systems are in a distorted

zinc blende crystal structure, with 3 percent of Te atoms being replaced by oxygen atoms.

Although the LS3DF method can be used to calculate the force and relax the atomic position,

for these particular systems we found that the atomic relaxation can be described accurately

by the classical valence force field (VFF) method [18]. Here we are more interested in the

charge density and electronic structure for a given atomic configuration which is relaxed using

VFF. These alloy systems are characterized by the sizes of their periodic supercells. The size

of a supercell can be described as m1 × m2 × m3 in the unit of the cubic eight-atom zinc

blende unit cell. Thus, the total number of atoms is equal to 8m1m2m3. We used a nonlocal

norm-conserving pseudopotential to describe the Hamiltonian, and we used a planewave basis

function with a 50 Ryd energy cutoff to describe the wavefunction. The real space grid for each

eight-atom unit cell is 40 × 40 × 40. The d-state electrons in Zn atom are not included in the

valence electron calculation. Thus in average, there are four valence electrons per atom.

We found that for our fragment calculations, a reciprocal q-space implementation of the

nonlocal potential is faster than a real-space implementation. Thus, we have used a q-space

nonlocal Kleinman-Bylander projector for the nonlocal potential calculation [19]. The accuracy

of LS3DF, as compared with the equivalent DFT computation, increases exponentially with

the fragment size. For the LS3DF calculation, we have used the eight-atom cubic cell as our

smallest fragment size, as shown in Figure 1. Using this fragment size, the LS3DF results are

very close to direct DFT calculated results. For example, the total energy differed by only a few

meV per atom, and the atomic forces differed by 10−5 a.u. [15]. For all practical applications,
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this means the LS3DF and the direct DFT results are essentially the same. To test the weak

scaling of the LS3DF code, we have chosen alloy supercells of dimensions m1×m2×m3, namely

3× 3× 3, 4× 4× 4, 6× 6× 6, 8× 6× 9, 8× 8× 8, 10× 10× 10, 12× 12× 12. These problems

correspond to 216, 512, 1728, 3456, 4,096, 8,000, and 13,824 atoms, respectively. To study the

physics of the oxygen induced states, large supercells are needed to properly describe the atomic

configuration due to the small oxygen percentages (e.g., 3%) used in laboratory experiments.

For the 3× 3× 3 system, we have also calculated the full system with a direct local density

approximation (LDA) method (using PEtot). The band gap and eigenenergy differences between

the direct LDA method and the LS3DF method are about 2 meV (for the LS3DF method, we

took its converged potential, then calculated the eigenenergy). Since the energy gaps we wish

to investigate are around a few tenths of an eV to a few eV, the LS3DF method is extremely

accurate for our study. In fact, it is numerically accurate enough for almost all material science

simulations in terms of reproducing the direct LDA results. For example, in a previous study we

used LS3DF to calculate thousand-atom quantum rods and their dipole moments [15]. These

calculated dipole moments differed from the direct LDA results by less than 1%.

6 Computational Results

To assess the optimizations implemented in LS3DF and to demonstrate the benefits of this new

code, we conducted several computational experiments. We executed LS3DF with a constant

problem size across the currently available range of concurrency at NERSC (i.e., “strong scal-

ing”). We evaluated the code performance for a variety of problem sizes (i.e., “weak scaling”).

We also compared code performance to other important DFT codes such as Paratec and VASP.

All these benchmark runs were done on the Franklin system at NERSC, which is a Cray XT4

system. This system has 9,660 compute nodes, each with two 2.6 GHz AMD Opteron cores

and 4 GByte main memory per node. Franklin has a theoretical peak performance rate of

101.5 TFlop/s. Code profiles and other performance data were generated using the CrayPat

performance tool. A summary of our performance results is given in Table 1.

To evaluate the strong scaling behavior of LS3DF, we chose a medium-sized problem with
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m1 ×m2 ×m3 atoms cores Tflop/s % peak
3× 3× 3 216 270 0.62 43.90
3× 3× 3 216 540 1.26 44.70
3× 3× 3 216 1080 2.54 45.20
4× 4× 4 512 1280 2.91 43.70
5× 5× 5 1000 2500 5.66 43.50
6× 6× 6 1728 4320 9.59 42.70
8× 8× 8 4096 2560 6.01 45.10
8× 8× 8 4096 10240 21.69 40.70
8× 6× 9 3456 1080 2.55 45.30
8× 6× 9 3456 2160 5.05 45.00
8× 6× 9 3456 4320 9.93 44.20
8× 6× 9 3456 8640 19.08 42.50
8× 6× 9 3456 17280 35.14 39.10

10× 10× 8 6400 2000 4.59 44.10
10× 10× 8 6400 16000 32.42 39.00
12× 12× 12 13824 17280 34.97 38.86

Table 1: Summary of test results. The percentage peak is computed as a fraction of the peak
performance for the corresponding number of cores used in each test.

3,456 atoms and a fragment grid size of m1 × m2 × m3 = 8 × 6 × 9. In this test, we used

Np = 40, where Np is the number of cores within each group used in PEtot F, and we increased

the number of groups Ng from 27 to 432. This change represents a 16-fold range of concurrency

levels from 1,080 cores to 17,280 cores. To estimate the run time, we executed two self-consistent

iterations of LS3DF and analyzed the times for the second iteration, since this is the iteration

which will be iterated several dozen times for a converged calculation. The first iteration has

some small additional overhead (due to array and index setups), while subsequent iterations

behave very similarly to each other. We confirmed this behavior during our full scientific runs

with 60 iterations.

Figure 3 shows the speedup of LS3DF and the PEtot F component for the range of cores

evaluated. Speedup and parallel efficiency figures for the 17,280-core runs (using the 1,080-core

run as baseline), were 15.3 and 95.8% for the PEtot F portion, and 13.8 and 86.3% for LS3DF,

both of which are excellent. Overall, LS3DF achieved a performance rate of 35.14 TFlop/s on

17,280 cores. All computations are performed on 64-bit floating-point data.
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We analyzed the results of our strong scaling experiment with Amdahl’s Law:

Pp = Ps

(
n

1 + (n− 1)α

)
(1)

Here Pp is parallel performance, Ps is the serial performance, n is the number of cores, and α is

the fraction of serial work in the code. In particular, we employed least-squares fitting to deter-

mine the parameters Ps and α. The resulting formula fits our performance data extremely well,

with an average absolute relative deviation of the fitting, namely
∑

n |(Pfitted/Pmeasured − 1)| /n,

of only 0.26% and a single maximal deviation of 0.48%. Fitted values for the single core per-

formance are 2.39 GFlop/s for the effective single core performance and hypothetical fractions

of the remaining serial work components of 1/362,000 for PEtot F and 1/101,000 overall for

LS3DF. Figure 4 shows the extrapolation of LS3DF and PEtot F based on our analysis up to

100,000 Cray XT4 cores. This figure illustrates the excellent scaling potential of our code up

to 100,000 cores, even for a modest-size problem such as the ones studied here.

The slowdown of LS3DF compared to the PEtot F for very highly parallel run, as noted

in Figure 4, is mainly due to Gen VF and Gen dens, which are dominated by large volume

data communication and local data movement. The concurrencies for these two subroutines
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and GENPOT (which is an order of magnitude less expensive than Gen VF and Gen dens) are

determined by the m1×m2×m3 grid and the total density/potential grid size. For future very

large (100,000+ core) runs, it should be possible to improve Gen VF and Gen dens by taking

advantage of increased data sparsity in the density mapping from fragment to the global grid.

In Figure 5 we show computational efficiencies for a variety of problems and different code

execution paramters. Overall, the excellent scalability demonstrated in our strong scaling ex-

periment is confirmed. The small variations in code performance for a given concurrency level

appear to depend, to first order, on code execution parameters such as the size Np of proces-

sor groups working on individual fragments. Increasing Np from 10 cores to 40 cores actually

improves the sustained-to-peak ratio by up to 2% in some cases (possibly due to improved

cache performance). We also notice that for a given concurrency, the computational efficiency

is almost independent of the size of the physical system studied.

On our sustained test run, we achieved convergence on the 8×6×9 system with 60 iterations,

using 17,280 cores of Franklin. This run required one hour run time, with one minute per

iteration. The total sustained performance rate is 35.1 TFlop/s, which is 39% of the theoretical

peak rate (89.9 Tflop/s) on 17,280 cores.

To demonstrate the advantages of LS3DF over conventional O(N3) method, we also per-

formed comparable calculations with commonly used DFT codes, including VASP and Paratec,

which have self-consistent convergence rates similar to that of LS3DF [15]. We calculated the

3× 3× 3 and 4× 4× 4 systems with Paratec, stand-alone PEtot and VASP. The performences

of Paratec and stand-alone PEtot are very close, within 5% of each other. From the execu-

tion times for these two systems, we can see that the O(N3) regime is already reached by the

4× 4× 4 system. For Paratec, we used the same pseudopotentials, energy cutoff, and number

of conjugate gradient steps for each self-consistent iteration, as in LS3DF. Paratec required 340

seconds for one self-consistent iteration using 320 cores. For VASP, one iteration required about

200 seconds. But the direct comparison with VASP is clouded by the fact that it uses different

pseudopotential and planewave cutoff values, and it has fewer conjugate gradient (or residual

minimization) steps per self-consistent iteration. But the key fact here is that the Paratec and

VASP have similar times within a factor of two. From the O(N3) scaling of Paratec, we can
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deduce that its computation time will cross with the LS3DF time at about 600 atoms. For the

13,824-atom problem we have calculated using LS3DF, we estimate Paratec will be 400 times

slower, even under the generous presumption that its performance scales perfectly to 17,280

cores. In other words, while LS3DF requires only three hours to perform a fully converged

calculation for such a physical system, the O(N3) codes would require roughly six weeks, which

makes them impractical for most research purposes. This large ratio (400) will be even more

dramatic as we consider runs on even larger physical configurations, e.g., for dislocation or grain

boundary problems.

7 Science Results

As mentioned above, we have achieved fully converged results for the m1×m2×m3 = 8×6×9

system. This physical system has 3,456 atoms, and requires 60 self-consistent iterations (the

outer loop in Figure 2) to achieve full convergence. Using 17,280 processors, the run requires

one minute for each iteration, and thus one hour for the entire calculation. The self-consistent

convergence of the system can be measured by the difference between the input Vin(r) and

output Vout(r) potentials, as shown in Figure 2. This difference
∫
|Vin(r) − Vout(r)|d3r as a

function of self-consistent iteration is shown in Figure 6. As one can see, overall this difference

decays steadily. However, there are a few cases where this difference jumps. This is typical

in the potential mixing method, since there is no guarantee that this difference will decrease

at every step. But overall, the convergence rate is satisfactory, and the final 10−2 potential

difference is considered to be very good.

The converged potential V (r) is then used to solve the Schrödinger equation for the whole

system for only the band edge states. This was done using our folded spectrum method (FSM)

[20]. Since not all the occupied eigenstates are calculated, the FSM method scales linearly with

the size of the system. Overall this step does not take much time and it can be considered

as a fast post-process of the LS3DF calculations. There is a well-known LDA band gap error

that can be corrected using a modified nonlocal pseudopotential for the s, p, d states [18]. The

calculated CBM state is shown in Figure 7(a), while the highest oxygen induced states is shown
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Figure 6: LS3DF convergence: Input and output potential difference as a function of self-
consistent iteration steps.

in Figure 7(b). Between the CBM and the highest oxygen induced state, there is a 0.2 eV band

gap. This should prevent the electron in CBM from falling down to the oxygen induced states.

Thus, the ZnTe0.97O0.03 alloy could be used for solar cell applications.

One interesting point is that the oxygen induced states form a very broad band (0.7 eV)

inside the band gap of ZnTe. As a result, its theoretical maximum efficiency of a solar cell made

from this alloy will be smaller than the 63% estimated based on a narrow mid-band-gap [1].

Also, as shown in Figure 7(b), the oxygen induced states can cluster among a few oxygen atoms.

Such a clustering is more localized in the high energy states than in the lower energy states,

which will significantly reduce the electron mobility (i.e., conductivity) in those states.

8 Conclusions

In summary, we have developed and deployed a fundamentally new approach to the problem

of large-scale ab initio electronic structure calculations. Our approach targets systems with a

band gap and that require highly accurate planewave based calculations. It can be applied to

nanostructures, defects, dislocations, grain boundaries, alloys and large organic molecules. It

simultaneously addresses the two critical issues for any large-scale computer simulation: the
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(a) Bottom of conduction band state (b) Top of O band state

Figure 7: Isosurface plots (yellow) of the electron wavefunction squares for the bottom of
conduction band (a), and top of oxygen-induced band (b). The small grey dots are Zn atoms,
the blue dots are Te atoms, and the red dots are oxygen atoms.

scaling of the total computational cost relative to the size of the physical problem, and the

parallel scaling of the computation to very large numbers of processor cores. Unlike some

other recent Gordon Bell prize papers, our paper represents not merely an adaptation and

improvement of an existing code to a newly available large computer system. Instead, we have

designed a new algorithm to solve an existing physical problem with petascale computation in

mind from the beginning.

One of our test computations achieved fully converged results for them1×m2×m3 = 8×6×9

ZnTeO system. This physical system has 3,456 atoms, and requires 60 self-consistent iterations

(the outer loop in Figure 2) to achieve full convergence. Using 17,280 cores, the run required

one minute for each iteration, and thus one hour for the complete calculation. The sustained

performance of this run, as measured by the CrayPat performance tool, was 35.1 Tflop/s (these

are 64-bit floating-point operations). In another test computation, namely a 13,8240-atom

ZnTeO alloy calculation, our code ran roughly 400 times faster than would be possible with any

of the other planewave research codes currently in use, mostly because of the linearly scaling

algorithm of our method, as compared with the O(N3) algorithms of most other methods. Our

code is the first variationally accurate linearly scaling ab initio electronic structure code which

has been efficiently parallelized to tens of thousands of processors.
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Our simulation yielded substantive scientific results. First, we found that there is a 0.2 eV

band gap between the ZnTe conduction band and the oxygen induced band, implying that this

alloy can be used for solar cell application. Secondly, we found that the oxygen induced states

form a very broad band (0.7 eV) inside the band gap of ZnTe. As a result, our simulations

predict that the theoretical maximum efficiency of solar cells made from this alloy will most

likely be lower than the 63% figure estimated based on a narrow mid-band-gap. Also, as shown

in Fig. 7(b), the oxygen induced states can cluster among a few oxygen atoms. Such clustering

will have an impact on the mobility of the electrons in those states.

Lastly, based on our performance analysis, we believe our current code can scale up to

100,000 cores with a performance rate beyond 100 TFlop/s. We plan to carry out these tests on

the quad-core Cray XT4 Jaguar machine in NCCS and the IBM BlueGen/P Intrepid machine

at the ALCF in the next few months as soon as the facilities become generally available.

Acknowledgements This work was supported by the Director, Office of Science, Basic
Energy Sciences, and Division of Material Science, and the Advanced Scientific Computing
Research Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
It used the resources at the National Energy Research Scientific Computing Center (NERSC)
at LBNL, and National Center for Computational Sciences (NCCS).

References

[1] A. Luque and A. Marti. Increasing the efficiency of ideal solar cells by photon induced
tansitions at intermediate lavels. Phys. Rev. Lett., 78:5014, 1997.

[2] K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpulla, O.D. Dubon,
and P. Becta. Diluted ii-vi oxide semiconductors with multiple band gaps. Phys. Rev. Lett.,
91:246403, 2003.

[3] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.

[4] W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140:A1133, 1965.

[5] F. Gygi, E. Draeger, B. R. de Supinski, R. K. Yates, F. Franchetti, S. Kral, J. Lorenz, C. W.
Ueberhuber, J. Gunnels, and J. Sexton. Large-scale first-principles molecular dynamics
simulations on the bluegene/l platform using the qbox code. ACM, 2005.

[6] http://www.nersc.gov/projects/paratec.

[7] L.-W. Wang. Parallel planewave pseudopotential ab initio package,
http://hpcrd.lbl.gov/ linwang/petot/petot.html, 2004.

18



[8] http://cms.mpi.univie.ac.at/vasp/.

[9] G. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys, 71:1085, 1999.

[10] http://www.psc.edu/general/software/packages/lsms/.

[11] http://www.uam.es/departamentos/ciencias/fismateriac/siesta.

[12] W. Yang. Direct calculation of electron density in density-functional theory. Phys. Rev.
Lett., 66:1438, 1991.

[13] F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta. Embedded divide-and-conquer
algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based
on linear-scaling density functional theory. Comput. Phys. Commun., 167:151, 2005.

[14] W. Kohn. Density functional and density matrix method scaling linearly with the number
of atoms. Phys. Rev. Lett., 76(17):3168–3171, 1996.

[15] L.-W. Wang, Z. Zhao, and J. Meza. Linear scaling three-dimensional fragment method for
large-scale electronic structure calculations. Phys. Rev. B, 77:165113, 2008.

[16] Z. Zhao, J. Meza, and L.-W. Wang. A divide and conquer linear scaling three dimensional
fragment method for large scale electronic structure calculations. J. Phys. Cond. Matter,
2008.

[17] L.-W. Wang and J. Li. First-principles thousand-atoms quantum dot calculations. Phys.
Rev. B, 69:153302, 2004.

[18] J. Schrier, D.O. Demchenko, L.W. Wang, and A.P. Alivisatos. Optical properties of zno/zns
and zno/znte heterostructures for photovoltaic applications. NanoLett., 7:2377, 2007.

[19] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Iterative mini-
mization techniques for ab initio total-energy calculations: molecular dynamics and conju-
gate gradients. Rev. Mod. Phys., 64:1045, 1992.

[20] L.W. Wang and A. Zunger. Solving schrodinger’s equation around a desired energy: Ap-
plication to silicon quantum dots. J. Chem. Phys., 100:2394, 1994.

19




