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ABSTRACT OF THE DISSERTATION 

 

Cryo-EM Structures and Biological Study of Pathogenic Alpha-Synuclein Fibrils 

 

by 
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Professor David S. Eisenberg, Co-Chair 

Professor Lin Jiang, Co-Chair 

 

Multiple neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy 

bodies (DLB), and multiple system atrophy (MSA) have been associated with the pathological 

aggregation of amyloid protein α-synuclein (αSyn). Similar to tau strains from different 

tauopathies, strains of αSyn have been demonstrated distinct cell-to-cell spreading. The distinct 

biological activity from each strain is encoded by the specific conserved conformation. However, 

we knew little about the atomic structures of αSyn fibril polymorphs. Our works revealed cryo-

EM structures of αSyn wild-type fibril polymorphs and αSyn fibril polymorphs with hereditary 

mutation (E46K and H50Q). We showed two types of kernel that can be found in all αSyn 

polymorphs, which is validated by the fibrils from MSA patients. We also found αSyn fibril 

polymorphs are differed by varying 1) folding of protofilament 2) number of protofilament 3) 
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binding interface between protofilaments, thus leads to distinct cellular toxicity, aggregation rate 

and seeding capacity. Furthermore, we extracted and characterized fibrils from patients with 

Parkinson’s disease, which formed a different polymorph. The study provides near-atomic 

insights about αSyn aggregation and enables future development of therapeutics. 
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OVERVIEW  

In 1912, Frederic Henry Lewey discovered Lewy bodies (LB) and Lewy neurites (LN) in 

substantia nigra of patients with Parkinson’s disease (PD)1. Later, filamentous alpha-synuclein 

(αSyn) came into the spotlight as the major constituent of LB from patients with PD or dementia 

with Lewy bodies (DLB) by immunochemistry2. The etiology linkage between αSyn and Lewy 

body diseases was further strengthened by the disease causal hereditary mutations3–9, duplication10 

and triplication11 of SNCA, the gene encoded for αSyn.  

The prion concept was introduced by Stanley Prusiner as proteinaceous infectious particles 

and linked to amyloid and neurodegenerative disease12,13. Since then, there has been accumulated 

evidence on how the αSyn aggregates spread from cell-to-cell in a prion-like manner. Braak et al. 

examined brains from PD patients with varied severity of symptoms and found the correlation 

between neuropathological damage and αSyn pathology along a predetermined sequence: from 

the lower brain stem spreading upwards to the neocortex14,15. Additionally, the grafted neurons 

placed into PD patients obtained LB over the years, indicating the αSyn pathology was transmitted 

from the neurons16,17. Another recent study on 47 multiple system atrophy (MSA) patients found 

out the glial cytoplasmic inclusions (GCIs) α-syn aggregation and the associated neuronal 

dysfunction spread in a different pattern18. This transmission was recapitulated in mouse: after 

injection of recombinantly expressed α-syn pre-formed fibrils into striatum, LB formed, spread 

across interconnected regions and reached substantia nigra pars compacta19,20.  

The prion-like strain properties have been characterized in tau and related 

neurodegenerative tauopathies, including Alzheimer’s disease (AD), corticobasal degeneration 

(CBD), Chronic traumatic encephalopathy (CTE) and Pick’s disease (PiD)21. Different tau strains, 
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derived from each tauopathy, can induce distinct endogenous tau propagation22–24. The strain-

specific property is believed to come from the distinct structural conformation of tau aggregation, 

and this is not confirmed until recent publications of high-resolution cryo-electron microscopy 

structures. Structures of tau filaments extracted from AD25, PiD26, CTE27 and CBD28 are all distinct 

from each other, and the filaments are identical between cases in either CTE or CBD. Similarly, 

αSyn strains from LB and GCI exhibited distinct characteristics. Peng et al. demonstrated the GCI- 

αSyn is 1000 times more potent in seeding than LB-αSyn and the oligodendrocytes can transform 

a misfolded αSyn into the GCI-like strain29. Recently, LB and MSA strains after amplification 

were differentiated by a dye-binding assay with 95% sensitivity, which supports that αSyn derived 

from LB and MSA strains correspond to different conformations30 

The structural study of αSyn is crucial for understanding the aggregation and template 

seeding. Various studies have been conducted using nuclear magnetic resonance (NMR), micro-

electron diffraction (micro-ED) and cryo-electron microscopy (cryo-EM). Vilar et al. identified 

multiple β-strands within residues 35–96 forming the aggregation fibril core using quenched 

hydrogen/deuterium exchange NMR31. Non-amyloid-beta component (NAC) region covers 

residues 61-95 was responsible for fibril aggregation32. From the peptide structures solved by 

micro-electron diffraction, Jose et al. found out not only a segment within NAC region (NACore 

residues 68-78), but also another segment preceding NAC region (preNAC residues 47-56) is 

crucial forming steric zipper responsible for the aggregation33. The preNAC segment associates 

with most of the reported hereditary single-point mutations of synucleinopathies, such as E46K5, 

H50Q4, G51D34, A53E8, A53V7 and A53T35. Around the same time, the first full-length αSyn PFF 

structure was solved by solid state NMR36. The structure reveals a hydrophobic core in a Greek-

key motif formed by single protofilament assembly. Later, we used cryo-EM and discovered two 
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double-protofilament polymorphs using the same fibril core (Chapter 1)37. One of the polymorphs 

was confirmed by two other studies38,39. To link the structures with the disease, we found new 

polymorph structures of αSyn fibril due to hereditary mutation H50Q (Chapter 3)40 and E46K 

(Chapter 4)41. Not until most recently, the cryo-EM structure of αSyn fibril from MSA was solved 

by Schweighauser et al42. The new double-protofilament polymorphs showed resemblance to the 

fibril core of PFF structure.  

My doctoral work encompassed in this dissertation studies on the structures and biological 

activities of pathogenic αSyn fibrils: 

Chapter 1 is reprinted from an article published in Nature Communications37. In the work, 

we presented near-atomic structures of two distinct full-length recombinant αSyn fibril 

polymorphs solved by cryo-EM. The fibrils are physiologically relevant due to its toxicity and 

seeding capacity in cells. Both two polymorphs contain a pair of β-sheet protofilaments sharing a 

conserved kernel consisting of a bent β-arch motif. Different packings of the same protofilaments 

at steric homo-zipper cores of the preNAC and NACore lead to distinct fibril polymorphs. We 

examined six hereditary mutations (E46K, H50Q, G51D, A53E, A53T, and A53V) located at the 

preNAC region and the initial analysis suggested potential contributions of different polymorphs 

in the complex pathogenesis of synucleinopathies.   

 Chapter 2 is a draft of a manuscript in submission. We presented an additional polymorph 

termed striated ribbon based on previous structural information. This new polymorph showed 

different cytotoxicity, seeding capacity in cells and distinct spreading patterns in mouse brain 

comparing with the previous polymorphs. The results indicate a necessary consideration of all 
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concurrent fibril polymorphs in development of therapeutics targeting neurodegenerative disease 

with high structural polymorphism.   

 Chapter 3 is a reprint of an article published in Nature Structural & Molecular Biology40. 

We determined two cryo-EM structures of αSyn fibrils containing hereditary mutation H50Q. 

Two new polymorphs, narrow and wide fibrils, are formed from one or two protofilament 

respectively. Impacted by the point mutation, previous known interfaces observed in wild-type 

structure are abolished. While the fold of the mutant structures resembles the fold of the wild-

type structures, new structural elements are observed. The unique features of H50Q polymorphs 

help elucidate the faster aggregation, higher cytotoxicity and seeding capacity comparing with 

wild-type polymorphs.   

 Chapter 4 is a reprint of a published article that revealed the structure of αSyn fibrils 

carrying the hereditary E46K mutation41. The fibril structure contains a pair of protofilament that 

adopts a vastly rearranged, lower energy comparing to wild-type fibril structures. Based on 

energy prediction, this is due to the abolished E46-K80 salt bridge, which serves as a kinetic trap 

that prevents wild-type fibrils from folding into a more stable and pathogenic E46K fibril 

structure.  

 Chapter 5 includes the results from the structural study of αSyn fibrils extracted from PD 

patients. Unlike the fibrils from MSA, they formed predominantly the non-twisting ribbon 

polymorph, which poses a challenge for current cryo-EM structural determination.  
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CHAPTER 5 
 

Structural exploration of α-synuclein fibril from Parkinson’s disease 
 

Brain seeded αSyn fibrils  

Dr. Virginia Lee’s lab at University of 

Pennsylvania kindly provided the brain 

extracted seeded aSyn fibrils. Resembling to 

previously characterized recombinant αSyn 

fibrils using EM, the brain seeded fibrils 

showed similar 5nm and 10 nm width (Fig. 

1a). However, non-twisting ribbon appeared 

to be the major fibril polymorph, unlike the 

recombinant wildtype αSyn fibrils, where 

twisting fibrils (twister and rod) consisted of 

major species. To further elucidate the 

structural details of the brain seeded fibrils, 

180,000 fibril particles extracted from 7000 

cryo-EM micrographs yielded major 2D 

classes (Fig. 1b). In fact, none of the 

discernible 2D class showed any twist. This 

further confirmed the non-twisting nature of 

the major species with symmetry units 

aligned along the perfect two-one screw axis. Although the ribbon polymorph is not uncommon 

in the recombinant fibrils, it was significantly enriched in the brain seeded fibrils.  

Fig. 5.1 Cryo-EM images (a) of and 2D 
classifications (b) of αSyn fibrils seeded by patient 
extracted aggregates. 
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One might argue that the difference in fibril growing condition may contribute to the contrasting 

fibril polymorphs (wildtype fibrils: 15 mM tetrabutyl-phosphonium bromide; brain seeded 

fibrils: 50 mM Tris-HCl pH 7.4, 750 mM NaCl, 10 mM NaF, 5 mM EDTA). Although no αSyn 

fibril structure determination was conducted using the exact same buffer condition, some 

experiments may provide some hints. Y. Li. et al.,’s fibril structure was solved in 50mM Tris-

HCl 150mM KCl, with the structure almost identical to our rod polymorph. Another cryo-EM 

structure from Guerrero-Ferreira et al., also revealed a rod polymorph using high-salt (2.66 mM 

KCl, 1.47 mM KH2PO4, 137.93 mM NaCl, 8.06 mM Na2HPO4). Therefore, neither the Tris 

buffer nor high salt condition would contribute to the all ribbon polymorphs found in the brain 

seeded fibrils.  

Brain extracted αSyn fibrils  

Pathological αSyn fibrils were extracted from the brain tissue of PD patients provided by 

Virginia Lee Lab at UPenn and CNDR brain bank. In order to improve the fibril quality, rounds 

of optimizations in each step were performed to reach the highest possible extraction turnover 

(Fig. 2). Handling brain extracted fibrils were tricky comparing recombinant fibrils. The brain 

extracted fibrils 

were unstable. 

High pulse of 

probe sonication 

was essential to 

break the 

inclusion 

aggregates in Fig. 5.2 Protocol of αSyn fibril extraction from PD brain 
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order to release fibrils, but long duration of sonication could break the fibrils into unworkable 

smaller pieces. Proteinase K treatment was less controllable and cannot replace the sonication. 

Unlike the recombinant fibrils, the brain extracted fibrils could disintegrate at room temperature, 

so the sample was always kept on ice and stored in freezer.  

Brain extracted fibrils are 10 nm wide and 80 nm long on average (Fig. 3ab). The 2D 

classification resulted in non-twisting ribbon polymorphs (Fig. 3c), which is comparable with the 

brain seeded fibrils (Fig. 1b). On the 2D classes with structural details, the aSyn repeats relate by 

a perfect 21 screw symmetry with a typical 2.4 Å rise of amyloid fibril.  

Preferred Orientation Problem 

All the previous aSyn structures 

determined by cryo-EM have 

helical pitch ranging from ~400 

Å to ~900 Å, which is relative to 

the box size of the 2D 

classification. This helicity 

provides sufficient information of 

protein unit in every orientation, 

necessary to guide the 3D 

reconstruction. Lack of helicity 

poses a challenge for structural 

reconstruction of amyloid fibril. 

To circumvent the inherent 

problem, we collected another 

Fig. 5.3 Cryo-EM data of αSyn fibrils extracted from PD patients. 
Negative-stained (a) and cryo-EM (b) images. (c) 2D classification of 
non-twisting ribbon polymorph.  (d) Preferred-orientation problem of 
the ribbon polymorph hinders a reasonable reconstruction. 
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cryo-EM dataset with a 40° tilt. The idea is to combine the tilt dataset with the untilt dataset in 

reconstruction, hoping to gain more information with the angle. However, this attempt was not 

able to produce a reasonable 3D map (Fig 4d).  

Due to the limitation of current cryo-EM methodology, solving the structure of amyloid fibril 

with non-twisting ribbon polymorph remains challenging. Here to suggest a few possible 

solutions that can be explored in the future. Seuring et al., demonstrated the presence of salt may 

induce the flat ribbon species while absence of salt would produce twisted fibrils. Despite of 

different morphologies, the monomer structure remains the same in both conditions1. If the 

extracted fibrils could be turned into a twisting polymorph with the same protofilament structure, 

it would solve the problem. However, the buffer condition was tested during in vitro fibril 

growth, which may or may not apply to the extraction of preexisted brain fibrils. Another 

possibility is to process current dataset with the guidance of cryo-electron tomography (cryo-

ET). The advancement in cryo-ET has pushed the resolution to 12 Å in biological application2. 

Obtaining a fibril structure in similar range would serve as an initial model to guide the 3D 

reconstruction of the cryo-EM data, possibly revealing the high-resolution structure of non-

twisting ribbon.  
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