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ABSTRACT OF THE DISSERTATION

Information and Incentives in Stochastic Games, Social Learning and
Crowdsourcing

by

J. Aislinn Bohren

Doctor of Philosophy in Economics

University of California, San Diego, 2012

Professor S. Nageeb Ali, Chair

My dissertation utilizes tools from game theory to derive novel economic in-

sights in a variety of settings, including social learning with biased information pro-

cessing beliefs, repeated games with persistent actions and contract design in crowd-

sourcing labor markets.

The first chapter explores how individuals learn from their predecessors when

they are subject to biased beliefs about the information processing capabilities of oth-

xi



ers. I consider a social learning environment in which individuals observe private

signals, and learning is asymptotically efficient in the absence of information process-

ing biases. Either underestimating or overestimating others’ information processing

capabilities can have important implications for the asymptotic efficiency of learning.

The second chapter studies a new class of stochastic games in which the actions

of a long-run player have a persistent effect on payoffs. The setting is a continuous time

game of imperfect monitoring between a long-run and a short-run player. The main

result of this paper is to establish general conditions for the existence of Markovian

equilibria and conditions for the uniqueness of a Markovian equilibrium in the class

of all Perfect Public Equilibria. The existence proof is constructive and characterizes,

for any discount rate, the explicit form of equilibrium payoffs, continuation values,

and actions in Markovian equilibria. Action persistence creates a channel to provide

intertemporal incentives, and offers a new and different framework for thinking about

the reputations of firms, governments, and other long-run agents.

The final chapter examines information and incentive issues in a novel labor

market setting: crowdsourcing. Our research focuses on how to optimally design labor

contracts and the marketplace in a crowdsourcing setting to facilitate efficient infor-

mation transmission between workers and firms. The structure of such contracts will

depend on the institutional features of the specific job, including how costly it is for a

worker to acquire information or how likely it is for the firm to observe when a worker

incorrectly completes a task.
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Chapter 1

Information-Processing Bias in Social

Learning

1.1 Introduction

Observational learning plays an important role in the transmission of informa-

tion, opinions and behavior. People may use a bestseller list to guide their purchase of

a book or a car. Observing high participation rates amongst co-workers may increase

the likelihood that a person contributes to their retirement plan. Social learning can

also influence behavioral choices, such as whether to smoke or exercise regularly, or

ideological decisions, such as which side of a moral or political issue to support. Given

the wide range of situations influenced by observational learning, it is important to un-

derstand how biases in information processing affect learning. This paper explores

how an information processing bias may interfere with the efficiency of social learn-

ing, and demonstrates that such biases can partially explain how inefficient choices can

persist even when contradicted by public information.

This paper extends standard herding models in the tradition of Banerjee (1992)

and Bikhchandani et al. (1992) to incorporate the idea of information-processing bias

1
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(BIP). In the standard model with binary actions and signals, individuals have common-

value preferences that depend on an unknown state of the world. Agents act sequen-

tially, observing a private signal and the actions of previous agents before choosing an

action. An information cascade occurs when it is optimal for an agent to ignore his

private signal and act only on the basis of the information contained in the actions of

previous agents. When this occurs, all subsequent agents follow suit and new infor-

mation ceases to aggregate. With positive probability, agents herd on the suboptimal

action and thus the equilibrium is inefficient.

A critical feature of this model is common knowledge of how individuals pro-

cess information. Agents understand exactly how preceding agents incorporated the

action history into their decision-making process, and are therefore aware of which

actions contain no information. Since the herd is based on only a few initial signals,

public beliefs about the state remain fragile and are easily reversed by the arrival of new

information. Thus, if some agents don’t observe prior actions and follow their private

signal, or if public information is released periodically, social learning is asymptoti-

cally efficient.

However, what happens if agents are unsure about the information-processing

capabilities of other agents? What if they believe the actions of previous agents reveal

more information about private signals than is actually the case during a cascade, or

what if they attribute too many actions to herding and are not sensitive enough to new

information? This paper examines how a behavioral bias in information processing,

which I refer to as information-processing bias (BIP), can interfere with optimal in-

formation aggregation even in settings where new information continues to arrive fre-

quently during a cascade. Individuals subject to BIP are biased in their perception of

the information-processing capabilities of others, and consequently fail to accurately

disentangle repeated and new information.

In particular, suppose that a fraction of individuals do not observe preceding ac-

tions and select an action solely based on their private information. These uninformed
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agents simply do not have access to all available information, or are boundedly rational

and unable to process multiple sources of information. Regardless of the justification

for their presence, these uninformed agents always reveal their private signal. Individ-

uals who incorporate the action history into their decision observe the full sequence

of preceding actions but are uncertain about the information-processing capabilities

of others. Consequently, these informed decision makers face an inferential challenge

when extracting information from the actions of others, and their behavior will hinge

on their beliefs about the population.

To fix ideas, suppose that each individual observes the history and is fully in-

formed with probability p, and with probability (1−p) is an uninformed type that only

observes his private signal. Each informed individual believes that any other individ-

ual is informed with probability p̂, where p̂ need not coincide with p. The difference

between p and p̂ may arise because even very sophisticated individuals may underesti-

mate or overestimate the information possessed by others, and so it is natural to allow

for the distinction.

When p̂ < p then an informed decision maker underestimates the fraction of

preceding informed individuals. Accordingly, when this decision maker observes a

series of identical actions, he incorrectly attributes too many of these actions to the

private signals of uninformed individuals. This effect leads him to overweight infor-

mation from the public history, and may allow public beliefs about the state to become

entrenched. On the other hand, when p̂ > p, then an informed decision maker un-

derweights the new information contained in correlated actions, rendering herds more

fragile to contrary information.

To understand how BIP affects eventual efficiency and learning requires careful

analysis of the rate of information accumulation. I characterize conditions that allow

a herd to persist with positive probability, and conditions that ensure a herd breaks.

Using these conditions and fixing the share of informed agents, I establish thresholds

on beliefs about the share of informed agents, p̂1 and p̂2, such that when p̂ < p̂1
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an incorrect herd can persist with positive probability and when p̂ > p̂2 a correct

herd will always break. When beliefs fall between these two thresholds, p̂ ∈ (p̂1, p̂2),

incorrect herds always break but correct herds can persist, so eventually a correct herd

will persist. Herding will be efficient in that informed agents will choose the optimal

action all but finitely often. Otherwise, there is positive probability that herding will

be inefficient and informed agents will choose the suboptimal action infinitely often.

Correct beliefs about agent types lead to efficient herding since p ∈ (p̂1, p̂2).

During a herd, beliefs continue to strengthen. When a herd persists in the long

run, public beliefs will converge to a point mass on the state matching the action agents

are herding on. Thus, if a correct herd persists, then learning is complete, while if an

incorrect herd persists, learning is fully incorrect. If no herd persists, then beliefs re-

main interior and fluctuate, and learning remains incomplete. Fully incorrect learning

or the perpetual fluctuation of beliefs are possible because the conditional public like-

lihood ratio is no longer a martingale when BIP is present. In fact, when p̂ < p, agents

overweight herding actions and the conditional public likelihood ratio in an incorrect

herd is a submartingale. This explains why fully incorrect learning is possible. On the

other hand, when p̂ > p, agents underweight herding actions. The conditional public

likelihood ratio is a supermartingale in incorrect herds and a submartingale in correct

herds. When beliefs are sufficiently incorrect, the submartingale diverges and both

types of herds to eventually break.

BIP in the context of a herding model has important implications. A failure to

recognize repeated information can confound learning by allowing an incorrect herd

to persist even when new information counteracts the incorrect herd, whereas a failure

to recognize new information can cause correct herds to continually break (as well as

incorrect herds). Every time a correct herd is broken, there is a chance that an in-

correct herd may form in its place. These results are robust to the inclusion of other

sources of new information, such as public signals, gurus (perfectly informed agents)

or continuous signals. Whenever BIP is severe enough that repeated information accu-
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mulates at a faster rate than new information, then incorrect herds persist with positive

probability.

To illustrate the relevance of this result, consider a public health campaign to

increase awareness about the risks of HIV. Agents need to decide if HIV is a threat

to them, and whether to take appropriate precautions. They observe public signals

from the government and other public health agencies, along with the actions of previ-

ous agents. If all agents are herding on the actions of a few initial agents who didn’t

believe that HIV was a significant threat, then the public health campaign should even-

tually overturn this herd. However, if agents are subject to BIP, then observing many

preceding agents who didn’t believe that HIV was a threat will lead to strong beliefs

that this is the case, making it less likely that the public health campaign will success-

fully overturn the herd.1 In this scenario, the best way to quash the false cascade is to

release public signals immediately and frequently. This contrasts with the case of no

BIP, in which the timing of public signal release is irrelevant.

Individuals may also use the history to learn about the information processing

capabilities of other agents. In Section 1.4, I examine what happens when agents can

also learn about p. Although fully incorrect learning is generally precluded in this

setting, incorrect herds may still persist with positive probability. Herding is more

likely to be efficient if several herds form and break before a herd persists or if a low

share of agents observe the history.

BIP relates to the notion of persuasion bias first introduced by DeMarzo et al.

(2001) in a model of opinion formation in networks. In their paper, decision makers

embedded in a network graph treat correlated information from others as being inde-

pendent, leading to informational inefficiencies. Although my paper studies a very

different environment than theirs, BIP provides a natural analogue for considering per-

suasion bias in social learning.

Banerjee (1992) and Bikhchandani et al. (1992) first modeled social learning in

1This example abstracts from the payoff interdependencies of HIV transmission.
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a sequential setting, as discussed above. Smith and Sorensen (2000) extend their mod-

els to include continuous signals. An unbounded signal space is sufficient to ensure

complete learning, eliminating the possibility of inefficient cascades. Acemoglu et al.

(2010) examines social learning in a general social network, which includes the se-

quential learning and uninformed agents networks as special cases. As such, BIP can

also be viewed as a boundedly rational extension of the uninformed agents network

topology in Acemoglu et al. (2010).

This paper is most closely related to concurrent work on social learning by

Eyster and Rabin (2009). They extend a sequential learning model with continuous ac-

tions and signals to allow for “inferential naivety”: players realize that previous agents’

action choices reflect their signals, but fail to account for the fact that these actions are

also based on the actions of agents preceding these players. While continuous actions

lead to full revelation of players’ signals in the absence of inferential naivety, infer-

ential naivety can confound learning by overweighing actions of the first few agents.

Although similar in nature, inferential naivety and information-processing bias dif-

fer in generality and interpretation. Inferential naivety considers the case in which

every repeated action is viewed as being independent with probability 1, whereas in

the BIP model, most decision makers are sophisticated and recognize that some re-

peated actions may stem from herding behavior, but misperceive the exact proportion

of repeated information. The analogue of inferential naivety in my environment corre-

sponds to p̂ = 0 and p = 1. As such, both papers provide complementary explanations

for the robustness of inefficient learning. Eyster and Rabin (2009) also embed in-

ferential naive agents in a model with rational agents. When every nth player in the

sequence is inferentially naive, rational agents achieve complete learning but inferen-

tially naive agents do not. Augmenting the BIP and inferentially naive models with

rational agents who do not know precisely which previous agents are also rational,

naive or uninformed, and perhaps are even uncertain about the share of each type of

agent is an interesting avenue left open for future research.
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Guarino and Jehiel (2009) explore boundedly rational information processing

in a sequential learning environment using the concept of analogy based expectation

equilibrium (ABEE), in which agents best respond to the aggregate distribution of ac-

tion choices. Learning is complete in a continuous action model - in an ABEE, the

degree to which agents overweigh initial signals increases in a linear fashion, prevent-

ing these initial signals from permanently dominating subsequent new information.

This contrasts with Eyster and Rabin (2009), the degree to which agents overweigh

initial signals doubles each period, allowing a few early signals to overwhelm all fu-

ture signals. As in the fully rational model, complete learning no longer obtains in an

ABEE when actions are discrete.

Earlier work by Eyster and Rabin (2005) on cursed equilibrium also examines

information processing errors. A cursed player doesn’t understand the correlation be-

tween a player’s type and his action choice, and therefore fails to realize a player’s

action choice reveals information about his type. A player with BIP understands the

correlation between a player’s type and their action choice, but incorrectly predicts the

distribution of action choices in equilibrium.

BIP also relates to the recent literature on initial response models, including

level-k analysis and cognitive hierarchy models.2 The premise of these models is that

agents best respond to their beliefs about how others act, but unlike equilibrium analy-

sis, these beliefs are not required to be correct. Consider level-k analysis in the context

of sequential learning. Anchoring level 0 types to randomize between the two possible

actions, level 1 types best respond by following their private signal - this corresponds

to uninformed types in the BIP model. Level 2 types believe all other agents follow

their private signal, and thus act as BIP informed agents with beliefs p̂ = 0. Conse-

quently, the main difference between the two models stems from the beliefs informed

agents have about other agents’ types - BIP informed agents can place positive weight

on other agents using a level 2 decision rule, whereas “informed agents” in a level k

2Costa-Gomes et al. (2009)Camerer et al. (2004)
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analysis believe that all other agents use a level 1 decision rule. BIP itself stems from

level 2 agents misperceiving the share of other agents who are level 2. There is no

such misperception in level k models, as all level k agents place probability 1 on other

agents being level k-1. The comparison to a cognitive hierarchy (CH) model is similar

- level 1 agents correspond to BIP uninformed agents, while level 2 agents act like BIP

informed agents with beliefs p̂ = 0, who also believe some previous actions convey

only noise (i.e. CH level 2 agents place positive probability on level 0 and level 1

types, but probability 0 on other level 2 types).

The organization of this paper proceeds as follows. Section 2.3 sets up the

model and explores the conditions under which learning is confounded in the presence

of BIP. Section 1.3 explores the robustness of the model to several extensions, includ-

ing public signals, continuous signals and private values. Section 1.4 allows agents

to also learn about p, while Section 1.5 discusses experimental evidence in support of

BIP and concludes. All proofs are in the Appendix.

1.2 Model

The basic set-up of this model mirrors the standard sequential learning model

with binary action and signal spaces. There are two payoff-relevant states of the world,

ω ∈ {L, R} with common prior belief P (ω = L) = πL ∈ (1/2, 1).3 Nature selects

one of these states at the beginning of the game. A countably infinite set of agents

T = {1, 2, ...} act sequentially and attempt to match the realized state of the world by

making a single decision between two actions, at ∈ {L,R}. They receive a payoff of 1

if their action matches the realized state, and a payoff of 0 otherwise: u(at, ω) = 1at=ω.

Before selecting an action, each agent privately observes a binary signal about

the state of the world, st ∈ {l, r}, which is i.i.d. conditional on the state with precision

3An asymmetric prior obviates the need for breaking indifference.
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πs ∈ (πL, 1).4 There are two types of agents. With probability p > 0, an agent is

a socially informed type who observes the prior action choices of other agents. This

agent uses her private signal and the action history to guide her action choice. The

public history observed by informed agents is represented as ht = (a1, ..., at−1). With

probability 1− p, an agent is a socially uninformed type who only observes his private

signal. An alternative interpretation for this uninformed type is a behavioral type who

is not sophisticated enough to draw inference from the action history. This type’s

decision is solely guided by the information contained in his private signal.

Informed agents may misperceive the information-processing capabilities of

others. Each informed individual believes that any other individual is informed with

probability p̂, where p̂ need not coincide with p. This captures the fact that there

is higher-order uncertainty over the level of information possessed by other agents,

which we will refer to as information-processing bias (BIP). The difference between

p and p̂ may arise because even very sophisticated individuals may underestimate or

overestimate the information possessed by others, and so it is natural to allow for the

distinction. Incorrect beliefs about p can persist because no agent ever learns what

the preceding agents actually observed or incorporated into their decision-making pro-

cesses. Consequently, these informed decision makers face an inferential challenge

when extracting information from the actions of others, and their behavior will hinge

on their beliefs about the population. This bias interferes with optimal information

aggregation if agents fail to accurately disentangle repeated and new information. An

informed agent believes that other agents also hold the same beliefs about whether pre-

vious agents are informed or uninformed. Although requiring agents to hold identical

misperceptions about others is admittedly restrictive, it is a good starting point to ex-

amine the possible implications of BIP. Extending the model to allow for heterogenous

biases is left for future research.

Agents use Bayes rule to formulate beliefs about the state of the world. Denote

4πs is defined such that P (st = l|ω = L) = P (st = r|ω = R) = πs
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public beliefs of informed agents at the beginning of period t by µt = P (ω = L|ht).

Public beliefs depend on the history and beliefs about the share of informed agents.

Denote private beliefs by µrt if agent t observes a private r signal and µlt if agent t

observes a private l signal. Private beliefs for informed agents depend on public beliefs

and their private signal realization, while private beliefs for agents who don’t observe

the history depend on only their private signal realization. Each agent maximizes

expected payoffs with respect to their private beliefs about ω. For the uninformed

type, this implies an agent chooses the action that corresponds to his private signal,

while for an informed type, an agent chooses the action that corresponds to the state

he believes is more likely, given his beliefs about p.

An information cascade occurs when it is optimal for an agent who observes

the history to choose the same action regardless of his private signal. Throughout the

paper, such an agent’s action choice is described as herding. When herding arises,

the agent’s action reveals nothing about his private information, and social learning is

impeded. An information cascade breaks when it becomes optimal for an informed

agent to follow his private signal (i.e. in an L-herd, it is optimal for an informed

agent to choose R if he receives an r signal). For a given sample path, we say the

information cascade persists in the limit if it persists in every period for t = 1, 2, ...

and the information cascade breaks if ∃τ < ∞ such that the information cascade

breaks at period τ . The probability that such sample paths occur will determine the

probability that a given information cascade persists or breaks.

This paper examines how the efficiency of information cascades depends on

the relationship informed agents perceive between prior actions and signals - that is,

their beliefs about the share of informed agents, p̂, which determines the accuracy of

the inference drawn from the history during a herd.
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1.2.1 Cascades in the Benchmark Model

In the benchmark model with common knowledge of no informed agents, inef-

ficient herding arises but the herds are not robust. To see this, consider the following.

Define ∆t as the difference between the number of L and R actions at the beginning

of time t. The unique Nash Equilibrium when p = p̂ = 1 is to herd on L whenever

∆t reaches 1, and to herd on R whenever ∆t reaches−2.5 An information cascade be-

gins with probability 1, and occurs on the suboptimal action with positive probability.

However, these cascades are very fragile - because new information ceases to aggre-

gate once a cascade begins, the cascade is easily reversed if additional information

becomes available. For example, a bounded public signal could overturn the herd.

Augmenting the benchmark model with uninformed agents allows information

from action choices to continue accumulating in a cascade.6 We will see in section

1.2.2 that in the absence of BIP, the addition of uninformed agents (p = p̂ < 1) leads

to complete learning. However, what if players are uncertain about the share of agents

who are informed? What if they believe the actions of previous agents reveal more in-

formation about private signals than is actually the case during a herd, or what if they

attribute too many actions to herding and are not sensitive enough to the new informa-

tion? The remainder of this section explores the conditions that allow an information

cascade to persist and the conditions that ensure an information cascade breaks, and

uses these conditions to examine the impact of BIP on learning.

5Note that the asymmetry in ∆t required for the formation of an L-herd versus R-herd stems from
the specification of the prior πL > 1/2.

6The conditions for a herd to begin in the presence of uninformed agents are identical to the condi-
tions in the benchmark case of p = 1, regardless of beliefs p̂. Before the formation of a herd, all agents
are following their signal regardless of whether they observed the history, and the public likelihood ratio
evolves in the same manner as in the benchmark case, leading to the same conditions for herd formation.
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1.2.2 How Does BIP Affect Learning?

Before a herd forms, all agents follow their private signal. Since the decisions

of informed and uninformed agents coincide, informed agents correctly infer that pre-

vious actions perfectly reveal private information and BIP doesn’t affect behavior prior

to the onset of a herd. However, BIP interferes with information aggregation during a

herd.

Suppose a herd has begun on action L. Each subsequent L action during the

herd is attributed to (i) an uninformed agent who followed his private signal with prob-

ability (1− p̂); and (ii) an agent who observed the history and followed the herd with

probability p̂. The public likelihood ratio following an L action is updated as follows:

µt
1− µt

=

(
p̂+ (1− p̂)πs

p̂+ (1− p̂)(1− πs)

)(
µt−1

1− µt−1

)
Thus, an action that follows the herd still reveals some information. When p̂ < p,

informed agents overweight the informativeness of this action, leading to an upward

bias in the likelihood ratio relative to correct beliefs. The opposite occurs when p̂ > p:

agents attribute too many L actions to herding rather than private signals, resulting

in a downward bias in the likelihood ratio. Let φh =
(

p̂+(1−p̂)πs
p̂+(1−p̂)(1−πs)

)
represent the

information accumulating from a supporting action, or an action that follows the herd.

When it is still optimal for informed agents to herd based on p̂ and the history,

a decision-maker will attribute a contrary action to an uninformed agent. In an L-herd,

each contrary action R is attributed to an agent who did not observe the history and

received a private r signal. The public likelihood ratio following anR action is updated

as follows:
µt

1− µt
=

(
1− πs

πs

)(
µt−1

1− µt−1

)
Let φc =

(
1−πs
πs

)
represent the information accumulating from a contrary action, or an

action that doesn’t follow the herd. Note that beliefs p̂ do not bias the informativeness



13

of an R action.

The public likelihood ratio increases with each supporting action and decreases

with each contrary action. Supporting actions are believe to reveal new information

with probability (1− p̂), whereas contrary actions reveal new information with proba-

bility 1. Therefore, a contrary action is more informative than a supporting action.

Without loss of generality, normalize to zero the period in which the action

that begins the herd is chosen, so the length of the herd at the beginning of period t

is equal to t. Let ∆t ∈ [0, 1] be the fraction of contrary actions chosen after the onset

of a herd.7 In an L-herd, ∆t = 1
t−1

∑t−1
s=1 1as=R represents the share of R actions and

1 − ∆t represents the share of L actions. In a herd, ∆t is a sufficient statistic for the

history when examining the evolution of the public likelihood ratio.

When Does a Herd Break?

A herd breaks when sufficient information accrues in favor of the alternative

state such that an agent who observes the history finds it optimal to follow her signal..

When contrary actions are possible (p < 1), this happens with positive probability

in any herd. A finite number of contrary actions can overturn a herd of any length.

When p = 1, no contrary actions occur and the herd will never break. Theorem 1

demonstrates these results.

Theorem 1. Suppose a herd is occurring in period t with contrary action share ∆t. If

p < 1 then there exists a set of sample paths that occur with positive probability along

which the herd breaks within a finite number of periods after t. Otherwise, the herd

will never break.

This Theorem demonstrates that every herd breaks with positive probability

when some agents don’t observe the history, and the result holds for any belief p̂.

7If p = 1 then no contrary actions are observed and ∆a
t = 0 ∀t.
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When Does a Herd Persist?

Given that a herd breaks with positive probability when p < 1, I now examine

when such a herd can also persist with positive probability, and when the herd breaks

with probability 1. Define the herd breaking threshold ∆∗t (p̂) as the minimum share

of contrary actions that will result in an agent following her private signal in period t.

Whenever the actual share of contrary actions is greater than this threshold, the cas-

cade will break. This threshold depends on informed agents’ beliefs about uninformed

agents.

The herd breaking threshold is calculated by finding the value of ∆t such that

the private likelihood ratio is equal to one when a contrary private signal is realized.

Consider an L-herd. If an informed agent’s private likelihood ratio remains greater than

1 when a private r signal is realized, then the agent will continue the herd. However,

if the realization of a private r signal will flip her private likelihood ratio below 1, then

the agent will choose action R when she receives an r signal and L when she receives

an l signal. Thus, her action choice reveals her signal and the herd is broken. Lemma

1 formally characterizes the herd breaking threshold.

Lemma 1. For each t > 1, the herd breaking threshold ∆∗t (p̂) can be represented as:

∆∗t (p̂) =
ln Λ0 + (t− 1) lnφh

(t− 1) lnφh − (t− 1) lnφc

where Λ0 depends on beliefs at the beginning of the herd, µ0. If ∆t crosses above

the threshold, the herd breaks, whereas if ∆t remains below the threshold, the herd

persists in period t.8

The herd breaking threshold depends on the relative rate of information accu-

mulation from supporting and contrary actions. This threshold rises with an increase

8When t = 1, the herd persists by definition. Recall that the definition of a herd beginning in period
0 is that the subsequent agent (i.e. agent 1) chooses the same action regardless of his signal.



15

in the relative informativeness of supporting actions, and falls when the relative infor-

mativeness of contrary increases. If the sample path ∆t lies above the herd breaking

threshold, then the herd will break, whereas if ∆t lies below, then the herd will persist.

To examine how the behavior of the herd evolves across periods, we need to

also characterize the limit behavior of the herd breaking threshold. Lemma 2 shows

that the herd breaking threshold monotonically converges to a finite limit.

Lemma 2. The herd breaking threshold ∆∗t (p̂) monotonically converges to a finite

limit, which can be represented as:

∆∗(p̂) =
lnφh

lnφh − lnφc

The actual share of contrary actions in a herd, ∆t, converges a.s. to its expected

value, which is finite and depends on the state, by the strong Law of Large Numbers.

Let ∆∞ = limt→∞∆t represent this limit. Comparing the expected share of contrary

actions to the limit of the herd breaking threshold allows us to determine whether the

herd breaking threshold is crossed with probability one.

Recall that during a herd, the share of contrary actions lies below the herd

breaking threshold. If the limit share of contrary actions lies above the limit of the

herd breaking threshold, and thus lies in the region where a herd is broken, then almost

surely every sample path {∆t}∞t=0 crosses the herd breaking threshold at some point as

it converges to its limit. When this is the case, a herd breaks with probability 1.

On the other hand, if the expected share of contrary actions lies below the limit

of the herd breaking threshold, then the information accumulating on average from

supporting actions outweighs the information accumulating on average from contrary

actions and a herd persists in the limit with positive probability. This result is due

to the Law of the Iterated Logarithm Sheu (1974), which bounds the rate at which

the sequence {∆t}∞t=0 converges to its expected value. The probability that {∆t}∞t=0

crosses outside this bound infinitely often is zero. This is used to show that there
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exists a set of sample paths of positive measure such that the actual share of contrary

actions never crosses the herd breaking threshold as it converges to its limit, and on

such sample paths the herd will never break.

Theorem 2 outlines the conditions under which a herd can persist with posi-

tive probability in the long run, and the conditions under which a herd almost always

breaks.

Theorem 2. Given state ω, suppose a herd has formed on action a. Let ∆∞ represent

the limit of the share of contrary actions.

(i) If beliefs p̂ are such that ∆∞ lies below the limit of the herd breaking threshold,

∆∞ < ∆∗(p̂)

where ∆∗(p̂) is as defined above, then there exists a set of sample paths ∆̃ that

occur with positive probability such that the herd breaking threshold is never

crossed: for {∆t}∞t=0 ∈ ∆̃, ∆t < ∆∗t (p̂) ∀t. On such sample paths, the herd is

never broken.

(ii) If beliefs p̂ are such that ∆∞ lies above the limit of the herd breaking threshold,

∆∞ > ∆∗(p̂)

then for almost every sample path {∆t}∞t=0, there exists a period τ such that the

herd breaking threshold is crossed at τ and the herd breaks: ∆τ > ∆∗τ (p̂). Thus,

the herd is broken with probability 1.

This result is illustrated in Figure 1 for an R-herd, using arbitrary parameter

values. The conditions outlining when a herd can persist and when a herd breaks

with probability one will be used in the next section to determine how BIP affects the

efficiency of herding.



17

Efficiency of Herding

The optimal action choice is the action that matches the state. Herding is effi-

cient when informed agents choose the optimal action for all but finitely many periods.

Thus far, the analysis has proceeded without specifying whether the herd is on the op-

timal action. In order to determine whether herding is efficient, it is now necessary to

consider incorrect and correct herds separately.

Suppose agents are herding on action a. If the herd is correct, then the limit of

the share of contrary actions is ∆ω=a
∞ = (1 − p)(1 − πs) and if the herd is incorrect,

the limit of the share of contrary actions is ∆ω 6=a
∞ = (1− p)πs. These limits combined

with Theorem 2 can be used to determine which herds persist. The expected share of

contrary actions is higher when the herd is incorrect, so if an incorrect herd persists

with positive probability then so does a correct herd, and if a correct herd almost always

breaks then so does an incorrect herd.9 It is precisely when incorrect herds break but

correct herds can persist that herding will be efficient.

The position of the herd breaking threshold depends on beliefs about the share

of informed agents, p̂. An increase in p̂ means less information is accumulating from

supporting actions. Beliefs that the herd is correct do not strengthen as quickly and a

lower share of contrary actions is required to overturn the herd. Therefore, the herd

breaking threshold shifts down as p̂ increases.

Define p̂1 as the cutoff point such that when p̂ > p̂1, the expected share of

contrary actions in an incorrect herd lies in the herd breaking region, causing incorrect

herds to break with probability 1, and when p̂ < p̂1, the expected share of contrary ac-

tions in an incorrect herd lies below the herd breaking region, allowing incorrect herds

persist with positive probability. At p̂1, ∆ω 6=a
∞ lies on the limit of the herd breaking

threshold, so p̂1 solves:
9Suppose ∆ω=a

∞ < ∆ω 6=a
∞ . Then ∆ω 6=a

∞ < ∆∗∞ ⇒ ∆ω=a
∞ < ∆∗∞ and if ∆ω=a

∞ > ∆∗∞ ⇒ ∆ω 6=a
∞ >

∆∗∞
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(1− p)πs = ∆∗(p̂1)

Likewise, let p̂2 be the cutoff point such that when p̂ > p̂2, the expected share of

contrary actions in a correct herd list in the herd breaking region, breaking a correct

herd with probability 1, and when p̂ < p̂2, the expected share of contrary actions lies

below the herd breaking region, allowing correct herds persist with positive probability.

Similarly, ∆ω=a
∞ lies on the limit of the herd breaking threshold at p̂2, so p̂2 solves:

(1− p)(1− πs) = ∆∗(p̂2)

Since (1 − p)(1 − πs) < (1 − p)πs for p ∈ [0, 1) and the limit of the herd breaking

threshold decreases with p̂, the cutoff point for correct herds to break is higher than the

cutoff point for incorrect herds to break (p̂2 > p̂1). Theorem 3 uses these cutoff points

to characterize the efficiency of herding for any beliefs p̂.

Theorem 3. Let p̂1 and p̂2 represent the cutoff points such that incorrect herds break

with probability 1 when p̂ > p̂1 and correct herds break with probability 1 when p̂ >

p̂2. Consider beliefs p̂ ∈ [0, 1)10:

(i) If p̂ < p̂1 then incorrect and correct herds both persist with positive probability.

There is positive probability that informed agents’ action choices converge on

the suboptimal action and herding is inefficient.

(ii) If p̂ ∈ (p̂1, p̂2) then incorrect herds break but correct herds persist with positive

probability. A correct herd forms and persists in the limit with probability 1, so

10In the case where p̂ = 1 and p < 1, observing contrary actions would be inconsistent with informed
agents’ beliefs. Therefore, interpreting this case necessitates assumptions on how informed agents
interpret contrary actions. For example, if agents attributed contrary actions to a crazy type, then they
would ignore these actions. A herd would always persist since no new information accumulates, but
learning would be incomplete.
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informed agents’ action choices converge to the optimal action with probability

1 and herding is efficient.

(iii) If p̂ > p̂2 then incorrect herds and correct herds both break with probability 1.

No herd persists in the limit, so informed agents choose the suboptimal action

infinitely often and action choices are inefficient.

(iv) Suppose p < 1. Then p ∈ (p̂1, p̂2) and herding is efficient when beliefs are

correct (p̂ = p).

Part (iv) of Theorem 3 demonstrates that when beliefs about the share of in-

formed agents are correct (p̂ = p), then herding is efficient. Informed agents attribute

the correct share of supporting actions to herding, and the correct share to new infor-

mation from uninformed agents. In an incorrect herd, agents don’t overestimate the

informativeness of supporting actions, and the public likelihood ratio doesn’t become

too extreme. This allows the incorrect herd to break. During a correct herd, agents

attribute enough supporting actions to private signals and the correct herd is not over-

sensitive to contrary actions, allowing a correct herd to form and persist in the long

run. This result is a special case of Theorem 4 of Acemoglu et al. (2010), which estab-

lishes complete learning for the network topology in which all agents are rational, and

some agents only observe their own signal.

In fact, as long as p̂ is approximately correct, herding will be efficient. Al-

though agents slightly overestimate or underestimate the informativeness of herding

actions, when p̂ lies in the window of efficient herding then this bias is not significant

enough to outweigh the accurate information accumulating from uninformed agents.

An incorrect herd may persist for longer or a correct herd may break more often than

would have been the case if beliefs were correct, but ultimately a correct herd will form

and persist. The herding model is robust to perturbations of beliefs about the share of

informed agents, and efficient information aggregation is still achieved in the long run.
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When p̂ is too extreme in either direction, then efficient herding will no longer

obtain. If agents significantly underestimate the share of informed agents (part (i) of

Theorem 3), they overestimate the informativeness of supporting actions. The repeated

information from actions of agents who herded accumulates at a faster rate than the

new information from uninformed agents. If an incorrect herd forms, then it may

persist in the long run and agents will perpetually choose the suboptimal action.

On the other hand, if agents significantly overestimate the share of agents who

are informed (part (iii) of Theorem 3), they attribute new information from uninformed

agents to herding. Too little information accumulates from supporting actions, pre-

venting the herd from persisting. Both incorrect and correct herds form with positive

probability, so when a herd breaks, the next herd to form may be correct or incorrect.

Beliefs about the true state remain fragile, and agents oscillate between correct and

incorrect herds. Both types of cascades occur infinitely often, which results in agents

choosing both the optimal and suboptimal actions infinitely often. Figure 1.7 illustrates

the areas corresponding to parts (i) - (iii) of Theorem 3 for an R-herd.

The robustness of efficient herding depends on the actual share of informed

agents. When p is low, many agents reveal their private signal so accurate information

accumulates at a faster rate. Misinterpreting the informativeness of supporting actions

has a small impact on the public likelihood ratio, and the interval of efficient herding

is large. On the other hand, when the actual share of informed agents is large, most

agents are herding so new information accumulates slowly. The public likelihood ratio

is very sensitive to any information, and inaccurate information can have a significant

impact. Thus, efficient herding is robust to larger perturbations over beliefs when p

is small. Figure 1.7 shows how the regions of beliefs over agent types depend on the

share of informed agents.

Whenever a herd persists in the long run, public beliefs about ω will converge

to a point mass on the state matching the cascade action. Learning is complete if public

beliefs converge to a point mass on the true state, whereas learning is fully incorrect if
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public beliefs converge to a point mass on the incorrect state. If public beliefs about

the state remain interior (µt ∈ (0, 1)), then learning is incomplete. Corollary 1 demon-

strates that learning is complete when a correct herd persists in the limit, but learning

is fully incorrect when an incorrect herd persists in the limit. If no herd persists, then

the public likelihood ratio does not converge and learning is incomplete.

Corollary 1. Learning is as follows:

(i) If a correct herd persists, then learning is complete.

(ii) If an incorrect herd persists, then learning is fully incorrect.

(iii) If no herd persists, then the public likelihood ratio perpetually oscillates, and

learning is incomplete.

Usually, the conditional public likelihood ratio is a martingale and therefore

converges, preventing fully incorrect learning or perpetually fluctuating beliefs. How-

ever, this result hinges on correct beliefs about the share of informed agents. When

p̂ 6= p, the conditional public likelihood ratio is no longer a martingale. Suppose

ω = R and p̂ < p. In an incorrect L-herd, ΛR
t is a submartingale because agents

overweight L actions, and L actions increase the likelihood ratio. Therefore, when

the L-herd persists, ΛR
t diverges to infinity and learning is fully incorrect. In contrast,

in a correct R-herd, ΛR
t is a supermartingale because agents overweight R actions,

which decrease the likelihood ratio. Non-negative supermartingales converge, so ΛR
t

does converge in an R-herd. In fact, when an R-herd persists, ΛR
t converges to 0 and

learning is complete.

Now suppose that p̂ > p. In an incorrect L-herd, ΛR
t is now a supermartingale

because agents underweight L actions relative to R actions, so ΛR
t decreases in expec-

tation. Because ΛR
t > 1 in an L-herd, eventually ΛR

t crosses below 1 and the herd

breaks. The opposite happens in a correct R-herd. Agents underweight R actions, so

ΛR
t is a submartingale and increases in expectation. Provided beliefs are far enough
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away from the truth, the ΛR
t eventually crosses above 1, breaking the herd. Thus, both

types of herds break before the conditional public likelihood ratio can converge or di-

verge. Once a herd breaks, ΛR
t oscillates until another herd forms, at which point the

process repeats.

1.2.3 Numerical Example

The following example illustrates the potential for BIP to confound learning.

Consider a model where nature selects state L with probability πL = 0.51. With

probability p = 0.7, agents are “socially informed”, and with probability 1− p = 0.3,

agents are “socially uninformed” and do not observe the history. Both types of agents

observe a private binary signal which reveals the true state with probability πs = 2/3.

“Socially informed” agents hold a common belief p̂ that previous agents are “socially

informed”.

Suppose that an L herd has formed. In the case of an incorrect herd, the prob-

ability of a contrary R action is equal to the probability that the agent is uninformed

times the probability that this agent observes a correct signal: ∆ω=R
∞ = 0.2. If the herd

is correct, the probability of an R action is equal to the probability that the agent is un-

informed times the probability that this agent observes an incorrect signal: ∆ω=L
∞ = 0.2

We can use these parameters and Theorem 3 to characterize the efficiency of

herding. If p̂ < 0.59 then incorrect and correct herds both persist with positive prob-

ability. Learning may or may not be complete, depending on whether an incorrect or

correct herd persists. If p̂ ∈ (0.59, 0.79) then incorrect herds break, but correct herds

persist with positive probability. Eventually a correct herd will form and persist, lead-

ing to complete learning. If p̂ > 0.79 then beliefs about the true state are too fragile

- both incorrect and correct herds break, so learning is incomplete. Note that correct

beliefs about the share of informed agents (p̂ = 0.7) fall in the interval that leads to

complete learning, as established in Theorem 3.
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1.2.4 Comparative Statics

The precision of the private signal and the probability that agents are informed

affects the relative positions of the herd breaking threshold and the expected share of

contrary actions. Therefore, a change in any of these parameters will affect whether

an incorrect herd breaks or a correct herd persists.

An increase in the probability that agents are informed, p, reduces the fre-

quency of contrary actions since more agents observe the history and follow the herd.

This can move the limit of the sample path for a correct or incorrect herd into the herd

persisting region. In the former case, the increase is beneficial because it allows cor-

rect herds to persist, while in the latter case, the increase introduces inefficiency by

allowing incorrect herds to persist.

An increase in the precision of the private signal, πs, has an ambiguous effect.

This change affects information accumulation through two channels: the information

accumulating from each individual action, and the frequency of each type of action.

More informative contrary actions decreases the herd breaking threshold, which makes

it more likely that both types of herds break. The frequency of contrary actions de-

creases in a correct herd, and increases in an incorrect herd. Incorrect herds are less

likely to persist as there are more informative and more frequent contrary actions. The

overall impact on correct herds is ambiguous, as there are fewer contrary actions but

each of these actions have a larger impact on beliefs.

This comparative static presents an interesting insight: more precise informa-

tion may not always improve welfare. If more precise information increases the likeli-

hood that a correct herd breaks, then herding is more likely to be inefficient. However,

more precise information may also increase the probability that a correct herd forms

in the first place, which would increase the efficiency of herding. The tradeoff be-

tween the efficiency gains and losses from more precise information leaves open an

interesting question for future research.
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1.3 Extensions

Thus far, we have established how the efficiency of information cascades de-

pends on the relationship informed agents perceive between prior actions and signals.

These results are robust to different modifications of the benchmark model, several of

which are discussed informally below.

1.3.1 Public Signals

Suppose that in addition to learning from their own private information and the

actions of others, informed agents also observe a sequence of public signals. We allow

a public signal σt ∈ {l, r} of precision πσ ∈ (1/2, 1) to be released with probability

ε > 0 each period, and examine whether inefficient herding can still persist in the

presence of this infinite sequence of new information.

Now the public likelihood ratio evolves to incorporate new information from

action choices and public signal realizations. An r public signal multiplies the public

likelihood ratio by φσ =
(

1−πσ
πσ

)
, while an l public signal multiplies the likelihood

ratio by 1/φσ. Define the contrary public signal lead ∆σ
t ∈ [−1, 1] as the difference

between the share of contrary and supporting public signals. In an L-herd, ∆σ
t =

1
t

∑t
s=1 (1σs=r − 1σs=l) represents the difference between the share of r and l public

signals.11 In a herd, ∆t and ∆σ
t are sufficient statistics for the history when examining

the evolution of the public likelihood ratio.

Theorem 1 is still valid with the addition of public signals, so all cascades

break with positive probability.12 In a similar fashion to Section 2.3, we characterize

11The additive structure of information accumulating from public signals is due to equal precision of
signals across states. An l signal exactly cancels an r signal, so the difference between the number of r
and l signals is a sufficient statistic for the public signal history. In the case of unequal signal precision
across states, two variables would be necessary to keep track of the public signal history.

12With public signals, it is now possible for a herd to break even when p = 1, provided that the public
signal is more informative than a supporting action

(
πσ > p̂+(1−p̂)πs

1+p̂

)
. When agents correctly believe

all previous agents observed the history (p̂ = 1), this condition corresponds to πσ > 1/2 and a herd can
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when cascades can also persist with positive probability. When information accumu-

lates from two sources, the herd breaking threshold at time t is represented as a line in

(∆,∆σ) space, such that an agent will follow her private signal when (∆t,∆
σ
t ) lies in

the half-plane above this threshold. The slope of the herd breaking threshold is nega-

tive and independent of t, capturing the tradeoff between contrary public signals and

contrary actions: as the contrary public signal lead increases, fewer contrary actions

are necessary to reach the herd breaking threshold.

The actual contrary public signal lead converges to its finite expected value,

conditional on the state. Comparing (∆∞,∆
σ
∞, ) to the limit of the herd breaking

threshold allows us to determine whether the herd breaking threshold is crossed with

probability one. If (∆∞,∆
σ
∞) lies in the half-plane above the limit of the herd breaking

threshold, and thus lies in the region where a herd is broken, then almost surely every

sample path {(∆t,∆
σ
t )}∞t=0 crosses the herd breaking threshold at some point as it

converges to its limit and a herd breaks with probability 1. On the other hand, if the

limit (∆∞,∆
σ
∞) lies in the half-plane below the limit of the herd breaking threshold,

then a herd persists in the limit with positive probability. This result is due to the Law

of the Iterated Logarithm for two-dimensional processes, which bounds the sequence

{(∆t,∆
σ
t )}∞t=0 by a sequence of disks of decreasing radius, centered around the limit

(∆∞,∆
σ
∞).13 Figure 1.7 illustrates when a herd can persist.

As in the previous section, these conditions can be used to characterize the ef-

ficiency of herding by characterizing cut-off points. The results of Theorem 3 extend

directly to the case of public signals. Thus, although the addition of public signals may

reduce the scope for inefficient herding, it is not eliminated entirely. A formal charac-

terization of the results from this section is available in a Supplementary Appendix.

These results demonstrate that BIP in the context of a sequential learning model

break as long as the public signal isn’t pure noise. At the other extreme, if agents believe no preceding
agents observe the history (p̂ = 0), then the public signal needs to be more informative than the private
signal, πσ > πs, for a herd to break with positive probability.

13(Sheu, 1974)



26

with public signals has important implications. If agents overestimate the amount

of new information contained in the history, BIP can confound learning by allowing

an incorrect herd to persist even when public signals are released to counteract the

incorrect herd. In this scenario, the best way to quash a false herd is to release public

signals immediately and frequently, and a rumor may be near impossible to break once

it becomes entrenched. This contrasts with the case of no BIP, in which the timing of

public signal release is irrelevant - public information that breaks a cascade at time t

will also break the herd at time t+ τ for any τ .

1.3.2 Continuous Signals

In another variation on the model of Section 2.3, suppose that rather than re-

ceiving a binary private signal, agents receive a signal drawn from a continuous sup-

port. Smith and Sorensen (2000) show that allowing for unbounded continuous signals

eliminates the possibility of incomplete learning. I examine whether this result remains

true in the presence of BIP.

Let st = P (ω = L|σt) represent an agent’s private belief that ω = L after re-

ceiving signal σt, computed using Bayes rule. Conditional on the state, st is i.i.d. with

conditional distribution F ω(s).and support (0, 1), so private signals are unbounded but

no signal perfectly reveals the state. There exists a cutoff s∗(µ) = 1 − µ such that

an informed agent chooses L for s ≥ s∗(µ) and R for s < s∗(µ). Note s∗(µ) is de-

creasing in µ - an agent chooses action L for a broader range of private signals when

public beliefs are more in favor of state L. An uninformed agent, who only observes

her private signal, uses the cutoff s∗ = 1/2 to determine his action choice, independent

of current public beliefs.

An information cascade forms when informed agents choose the same action

for every signal in the support of F . With unbounded signals, there is always a sig-

nal that will overturn an interior public belief and cascades only occur in the limit.
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However, with continuous signals, informed and uninformed agents act differently

even when no herd is occurring. Repeated actions become less and less informative

as beliefs strengthen, because informed agents choose this action for a wider range of

private signals.

In order to establish how BIP influences the limiting properties of the public

likelihood ratio, I first consider how beliefs about the share of informed agents affects

the rate at which information accumulates from actions. When state L is more likely,

attributing more actions to uninformed agents dampers the impact of R actions and

raises the impact of L actions. AnR action from an uninformed type indicates a private

signal st < 1/2 while an R action from an informed type indicates a stronger private

signal st < 1 − µt < 1/2. On the other hand, an L action from an uninformed type

is more informative than an L action from an informed type as the former indicates a

private signal stronger that falls in the interval [1/2, 1), whereas the latter indicates a

private signal in the interval [1 − µt, 1), which is wider interval. The opposite is true

when state R is more likely.

For the remainder of the analysis, consider the case where ω = L and define

the likelihood ratio as Λt =
(

1−µt
µt

)
. Given that the signal space is unbounded, the

only stationary limit beliefs about the state are placing probability 1 on either state L

or state R. When p̂ 6= p, Λt is no longer a martingale and convergence may not obtain.

The following theorem characterizes which stationary limit points of Λt are reached

with positive probability, as a function of p̂.

Theorem 4. Let L represent the set of stationary limit points that Λt converges to with

positive probability. There exists cutoff points p̂1 and p̂2 such that

1. If p̂ < p̂1, then L = {0,∞}

2. If p̂ ∈ (p̂1, p̂2), then L = {0}

3. If p̂ > p̂2 then L = {∅}



28

where p̂2 ∈ (0, 1) for all p, and p̂1 ∈ (0, 1) for p > 1−2FL(1/2)
2(1−FL(1/2))

First consider the scenario when agents believe actions reveal more private

information than is actually the case. When beliefs favor L over R (Λ < 1), the

conditional likelihood ratio decreases in expectation and converges to 0 with positive

probability 0, so complete learning is possible. In the case where beliefs favor R over

L (Λ > 1), the conditional likelihood ratio increases in expectation. When p̂ is far

enough away from the truth, the conditional likelihood ratio also converges to infinity

with positive probability, and fully incorrect learning is also possible.

When agents believe actions contain less private information than is actually

the case, the results are flipped. If beliefs favor L over R, then the conditional like-

lihood ratio increases in expectation, and if beliefs favor R over L, the conditional

likelihood ratio decreases in expectation. When p̂ is far enough away from the truth,

the conditional likelihood ratio converges to infinity when it is less than 1, and con-

verges to 0 when it is greater than 1. Therefore, neither fixed point is stable and the

likelihood ratio perpetually fluctuates. Provided agents’ beliefs about the information

content of actions are approximately correct, 0 is the only stable fixed point of the

likelihood ratio and learning is correct. These results are presented formally in the

Supplemental Appendix.

1.3.3 Private Values Types

Suppose there are two private value types, θL and θR, who choose actions L

and R, respectively, regardless of the history, and let both types occur with positive

probability. The result: less information accumulates from both supporting and con-

trary actions, but the conclusions of Section 2.3 are still valid. In fact, allowing for

uncertainty over the share of private value types may lead to similar conclusions as

information-processing bias: if agents underestimate the share of private value types,

they will overestimate the informational content of actions; and if agents overestimate
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the share of private value types, they will underestimate the informational content of

actions.

1.4 Learning About BIP

In the previous section, agents begin with exogenous and possibly incorrect

beliefs about the information processing capabilities of other agents. Informed agents

use these beliefs and the history to update their beliefs about the state of the world.

This section will use a simple example to examine what happens when agents can also

learn about the information processing capabilities of other agents.

Suppose p is a random variable distributed according to a common prior. Upon

observing the history, informed agents use Bayes rule to update their beliefs about p.

Let g(p, ω) represent the common prior beliefs held by informed agents (after observ-

ing their own type). For this example, suppose there are two possible shares of in-

formed agents, p ∈ {0.4, 0.8}, and (p, ω) are independent of each other with marginal

distributions P (ω = L) = πL and P (p = 0.4) = πp. Let the precision of the private

signal be πs = 0.75.

I will examine whether incomplete learning is possible in the case where ω = L

and p = 0.8. Now informed agents will use the history to learn about both p and ω.

Let g(p, ω|ht) represent an agent’s joint probability distribution over p and ω after

observing history ht. Then the conditional likelihood ratio between (0.4, L) and any

other pair (ω, p) is a martingale, represented as:

Λt(p, ω) =
g(p, ω|∆R

t ,∆
L
t )

g(.8, L|∆R
t ,∆

L
t )

= Λt−1(p,R)

(
P (at|p, ω)

P (at|.4, L)

)
where ∆R

t is the share of contraryR actions observed in L-herds and ∆L
t is the share of

contrary L actions observed in R-herds as of time t. The probability of a given action

depends on which type of herd is occurring.



30

By the Martingale Convergence Theorem, this likelihood ratio converges.

Whether complete learning obtains depends on several factors, including whether there

are pairs (p, ω) that are indistinguishable from each other, the relative weight that the

prior places on these indistinguishable pairs, and the duration of previous herds on the

opposite action.

If a herd persists, then there are two realizations of (p, ω) that may be indis-

tinguishable. Consider an R-herd: if it persists, the share of L actions converges to

its expected value, ∆L
∞(0.8, L) = 0.15 (recall ∆L

∞ = (1 − p)πs in an incorrect herd).

There are two possible pairs (p, ω) that would give rise to this share of L actions, as

∆L
∞(0.4, R) is also equal to 0.15 (recall ∆L

∞ = (1− p) (1− πs) if the state is R). It is

impossible to distinguish between (0.8, L) and (0.4, R) in an R-herd since both of these

pairs result in the same expected share of contrary actions. Therefore P (at|0.4,R)
P (at|.8,L)

= 1

in an R-herd and no information is gained about the relative likelihood of these two

events. The probability of all other pairs (p, ω) converges to 0 when the R-herd per-

sists, since
(
P (at|p,ω)
P (at|.4,L)

)
6= 1 and zero is the only finite stationary point of Λt(p, ω) for

such pairs.

Next consider information from previous L-herds. The share of contrary R ac-

tions in previous L-herds also yields information about p, and these contrary R actions

help distinguish between (0.8, L) and (0.4, R). The only pair that is indistinguishable

from (0.8, L) in an L-herd is (0.93, R), which differs from the pair that is indistin-

guishable in an R-herd (and in this example, is not in the support of (p, ω)). Thus, the

true value of p would be identified if both expected shares are observed. Even a fi-

nite number of observations from a previous L-herd helps distinguish between (0.8, L)

and (0.4, R). Suppose previous L-herds occurred for τL periods and yielded a share

∆R contrary actions. Then the information gleaned from these L-herds multiplies the
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relative likelihood of (0.8, L) and (0.4, R) by

φτL =

[(
P (a = L|0.4, R)

P (a = L|0.8, L)

)(1−∆R)(P (a = R|0.4, R)

P (a = R|0.8, L)

)∆R
]τL

When ∆R is close to its expected value, ∆R
∞ = .05, this expression is less than 1, and

therefore increases the relative likelihood of (0.8, L) compared to (0.4, R)

We can now characterize the limit of Λt(0.4, R) in an R-herd:

Λ∞(0.4, R) = 3

(
πp

1− πp

)(
1− πL

πL

)
φτL

If Λ∞(0.4, R) > 3 then an R-herd can persist with positive probability. In the limit,

agents believe that state R is more likely even when they receive a private l signal.

Because Λt is a martingale, fully incorrect learning is not possible as in the previous

section.14 However, learning is incomplete and beliefs remain interior at Λ∞(0.4, R).

If Λ∞(0.4, R) < 3 then the R-herd breaks with probability 1 as agents will eventually

come to believe state Lmore likely and end the herd. Note that the duration of previous

L-herds affects whether a given herd can persist, as longer previous L-herds decrease

Λ∞(0.4, R).

In this simple example, there are no indistinguishable pairs in L-herds. Thus,

an L-herd always persists with positive probability, and learning will be complete when

this occurs. However, a more general prior over p allows the possibility of indistin-

guishable pairs in both correct and incorrect herds, precluding complete learning for

both cases. This section illustrates that, when agents can learn about others information

processing capabilities, the scope for inefficient herding is reduced and the possibility

of fully incorrect learning is generally eliminated.

14Fully incorrect learning about ω is not generally possible when agents can learn about p. This will
only occur if agents have a common posterior that puts no weight on the correct value of p.
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1.5 Discussion and Conclusion

This paper demonstrates that a bias about how others’ process information can

significantly affect the efficiency of learning. Particularly, it is possible for agents to

continue to choose the suboptimal action despite the release of new information contra-

dicting the herd. In the benchmark model, this would be impossible. Inefficient herd-

ing occurs because information ceases to aggregate; when even the smallest amount

of information continues to accumulate, inefficient herding no longer occurs. Experi-

mental evidence from Goeree et al. (2007) suggests that new information does indeed

continue to accumulate in a herd: regardless of how many previous agents chose the

same action, some agents still follow their private signal. In the benchmark model, this

off-the-equilibrium-path action would be ignored since it is not rational. However, it

seems plausible that subsequent agents would recognize these off-the-equilibrium-path

actions are likely to reveal an agent’s private signal, and therefore contain information.

Thus, BIP allows new information to continue to enter the model, and provides an

explanation for inefficient herding when this is the case. Inefficient herding occurs be-

cause the rate of information accumulation from repeated information outweighs the

rate of information accumulation from new information, and these herds can persist

even when contradicted by public information. Additionally, it explains how conver-

gence may fail to obtain even when public information is released that supports the

correct herd.

Experimental evidence from Koessler et al. (2008) supports the possibility of

BIP in an observational learning model. They examine the fragility of cascades in a

model where one agent receives a more precise signal than others. The unique Nash

equilibrium of such a model is for the high informed agent to follow her signal. Thus,

receipt of a contrary signal overturns a cascade. Koessler et al. (2008) find that highly

informed agents rarely overturn a cascade when equilibrium prescribes that they do

so. As the length of the cascade increases, highly informed agents become even less
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likely to follow their signal: highly informed participants break 65% of cascades when

there are two identical actions, but only 15% of cascades when there are 5 or more

identical actions. This phenomenon is likely explained by the evolution of participants’

beliefs. The evolution of elicited beliefs is similar to the belief process that would

arise if all agents followed their signal, and thus conveyed their private information.

In addition, Koessler et al. (2008) find that off-the-equilibrium-path play frequently

occurs, and these non-equilibrium actions are informative, providing support for the

actual presence of some uninformed agents, in addition to a strong belief about their

presence.

Kubler and Weizsacker (2004) also find evidence consistent with BIP. They

conclude that subjects do learn from their predecessors, but are uncertain about the

share of previous agents who also learned from their predecessors. Particularly, agents

underestimate the share of previous agents who herded, and therefore overestimate the

amount of new information contained in previous actions.

Another interesting consequence of BIP is that agents may actually be worse

off if more information accumulates than was expected. As p decreases, more private

information accumulates since fewer agents observe the history. However, if p is far

enough below p̂, correct herds will become too fragile and herding will be inefficient.

Conformity preferences is another bias that could make agents more likely to

herd as the length of the herd increases, but equilibrium play in such a model differs

significantly from a model with BIP and public signals. With BIP, if the contrary

public signal lead is high enough to break a herd of a given length, then subsequent

agents do not continue to herd. This model has a unique equilibrium where agents

choose whichever state that they believe is more likely based on the history and the

degree of BIP. However, with conformity preferences, if the preference to conform is

large enough, then it is irrelevant whether or not the contrary public signal lead is high

enough to make agents believe the alternative state more likely. Agents simply want to

choose the action that the majority of other agents will choose. So there are multiple
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equilibria where agents choose the state that they believe the majority of other agents

will choose, independent of the likelihood that this state is the true state.

This model leaves open interesting questions for future research on information

processing capabilities. Individuals may differ in their depth of reasoning and their

ability to combine different information sources. Such biases may have important

implications for the way information is aggregated. Examining the implications of

BIP in a more general model may yield interesting insights into this issue. While

the assumption of common beliefs over the informational content of the history is a

good starting point, a valid criticism is that this model requires implausible levels of

belief coordination. Thus, examining how the model fares with heterogenous beliefs

about the information processing capabilities of other agents is another avenue for

future research. Allowing partial observability of histories would be natural extensions

to generalize the model, while introducing payoff interdependencies would make the

model applicable to election and financial market settings.

I thank Vince Crawford, Ernesto Dal Bo, Frederic Koessler, Craig McKenzie,

Matthew Rabin, Joel Sobel, and especially Nageeb Ali for useful comments. I also

thank participants of the UCSD theory lunch for helpful feedback.

1.6 Appendix: Proofs

Proof of Theorem 1 on pp. 13

Let
(

µ0
1−µ0

)
represent public beliefs before the action that begins the herd.

Suppose p < 1. Let there be an L-herd in period t with y = (t − 1)(1 − 2∆t)

net L actions (i.e. the number of L actions minus the number of R actions). Each

R action decreases the likelihood ratio by a factor φc and each L action increases the

likelihood ratio by a factor φh. Observe φh ∗ φc ≤ 1, so the net effect of an R action

and an L action decreases the likelihood ratio. Then y > 0 R actions will outweigh

the y net L actions. Let κ be the greatest k such that
(

µ0
1−µ0

) (
πs

1−πs
)

(φc)k < 1. Then
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κ R actions outweigh initial public beliefs. Note κ is finite since
(

µ0
1−µ0

)
< ∞. Then

y + κ R actions will break this herd. The probability that the next y + κ actions are R

is:

[(1− p)(1− πs)]y+κ > 0 if the herd is correct

[(1− p)πs]y+κ > 0 if the herd is incorrect

This is a lower bound on the probability that the herd breaks. Similar analysis

yields the same results for R-herds. Q.E.D.

Proof of Lemma 1 on pp. 14

Let µ0 represent public beliefs before the action that begins the herd and sup-

pose agents are herding on action ah. Let Λt = P (ω=ah|ht)
P (ω 6=ah|ht) be the public likelihood ratio

of the probability that the herd is correct to the probability that the herd is incorrect, let

Λsc

t be the updated private likelihood ratio after a contrary private signal, and let Λsh

t

be the updated private likelihood ratio after a supporting private signal. In an L-herd,

Λ0 =
(

µ0
1−µ0

)
while in an R-herd, Λ0 =

(
1−µ0
µ0

)
. Note Λ0 > 1 by definition. Provided

it is still optimal for agents who observe the history to herd, the likelihood ratio in a

herd evolves as follows:

Λt = Λ0

(
πs

1− πs

)(
φh
)(t−1)(1−∆t)

(φc)(t−1)∆t

= Λ0

(
φh
)(t−1)(1−∆t)

(φc)(t−1)∆t−1

st = sc ⇒ Λsc

t = Λ0

(
φh
)(t−1)(1−∆t)

(φc)(t−1)∆t

st = sh ⇒ Λsh

t = Λ0

(
φh
)(t−1)(1−∆t)

(φc)(t−1)∆t−2
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The herd breaking threshold ∆∗t is calculated by finding the value of ∆t that

satisfies Λsc

t = 1, so the private likelihood is equal to one when a contrary private

signal is realized:

Λsc

t = 1

⇒ Λ0

(
φh
)(t−1)(1−∆∗t )

(φc)(t−1)∆∗t = 1

⇒ ln Λ0 + (t− 1)(1−∆∗t ) lnφh + (t− 1)∆∗t lnφc = 0

⇒ ∆∗t =
ln Λ0 + (t− 1) lnφh

(t− 1) lnφh − (t− 1) lnφc

Q.E.D.

Proof of Lemma 2 on pp. 15

∆∗∞ = lim
t→∞

∆∗t = lim
t→∞

ln Λ0 + (t− 1) lnφh

(t− 1) lnφh − (t− 1) lnφc
=

lnφh

lnφh − lnφc

Also note that ∆∗t monotonically decreases to its limit, a fact which will be

used in the proof of Theorem 2.

d

dt
∆∗t =

d

dt

[(
1

t− 1

)
∗ ln Λ0 + (t− 1) lnφh

lnφh − lnφc

]
=

(
1

t− 1

)2

∗ − ln Λ0

lnφh − lnφc
< 0

Q.E.D.

Proof of Theorem 2 on pp. 16

(a) Let ∆∞ < ∆∗.
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Define a numeric representation of the action choice space as an infinite se-

quence of spaces {Yi}, i = 1, 2, ... over which a probability measure is defined, where

Yi = {0, 1} ∀i. Let Y = Y1×Y2× ...×Yi× ... be the product of such spaces. Let {yi}
be an infinite sequence of mutually independent and identically distributed random

variables drawn from this space, with distribution function g(y) defined as follows,

depending on whether the herd is correct or incorrect:

Correct Herd Incorrect Herd
g(0) = p+ (1− p)πs g(0) = p+ (1− p)(1− πs)
g(1) = (1− p)(1− πs) g(1) = (1− p)πs

A supporting action corresponds to yi = 0, and a contrary action corresponds

to yi = 1. Let µy represent the expected value of yi and σ2
y represent the variance of

yi.The expected value and variance of yi are as follows:

Correct Herd Incorrect Herd
µy = (1− p)(1− πs) µy = (1− p)πs
σ2
y = (1− p)(1− πs)− (1− p)2(1− πs)2 σ2

y = (1− p)πs − (1− p)2(πs)2

Note the equivalence of
∑t

i=1 yi and t∆t+1, and therefore the equivalence of µy and

∆∞ = E[∆t]. Transform yi as follows:

yi = yi − µy

and calculate E[yi] = 0 and V ar(yi) = σ2
y and

∑t
i=1 V ar(yi) = tσ2

y . We have |yi|
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bounded above by 1, which is independent of t. So trivially,

sup
i≤t

l.u.b. |yi| = o

(
tσ2
y

log log tσ2
y

) 1
2

for each t as t→∞. The necessary assumptions for the law of the iterated logarithm

(LIL) applied to a one-dimensional independent random variable are satisfied.15 The

LIL can be used to bound
∑t

i=1 yi:

lim sup
t→∞

∑t
i=1 yi√

2tσ2
y log log tσ2

y

= 1 a.s.

Thus, for δ > 0.

P

[
t∑
i=1

yi ≥ (1 + δ)
√

2tσ2
y log log tσ2

y i.o.

]
= 0

Define

Bt = (1 + δ)

√
2σ2

y log log tσ2
y

t

This means that for almost all realizations of {yi}, there exist only finitely many t such

that 1
t

∑t
i=1 yi lies outside Θt = [µy +Bt, µy −Bt] Define

ζ =

{
{ŷi} |

1

t

t∑
i=1

ŷi > µy +Bt for some t

}
15The necessary assumptions are:

(i) y1, y2, ... is an infinite sequence of real-valued independent random variables of class L2

(ii) E[yi] = 0

(iii)
∑n
i=1 V ar(yi)→∞ as n→∞

(v) supi≤t(l.u.b. |yi||) = o
( ∑n

i=1 V ar(yi)

log log
∑n

i=1 V ar(yi)

) 1
2

for each n as n→∞
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as the set of realizations of {yi} such that 1
t

∑t
i=1 yi crosses its upper bound at least

once. To show that the measure of ζ is strictly less than 1, consider the following. For

each {ŷi} ∈ ζ , form a corresponding sample path {y′i} by changing ŷτ to y′τ = 0 for

each τ such that 1
τ

∑τ
i=1 ŷτ > µy + Bτ (for any {ŷi} ∈ ζ there are only finitely many

such τ ). Then each element in ζ has a unique corresponding element in Z \ ζ . So the

measure of the set Z \ ζ is at least as large as the measure of ζ and this implies that the

measure of ζ is strictly less than 1. Therefore, the measure of Z \ ζ is strictly positive.

So there exists a set of realizations of {yi} that occur with positive probability such

that 1
t

∑t
i=1 yi never crosses outside µy +Bτ .

Given that {rt} and {∆∗t} are monotonic with respect to t,

{Bt} → 0

{∆∗t} → ∆∗

∆∞ = µy < ∆∗

there are at most a finite number of periods k such that ∆∗t lies inside

Θt = [µy +Bt, µy −Bt]

The probability that ∆t doesn’t cross ∆∗t during these k periods is bounded below by

g(0)k > 0 (the probability of k supporting actions, which will never break a herd),

and thus is strictly positive. Once ∆∗t lies above Θt, all realizations in the set Z \ζ
never cross outside Θt, and therefore never cross ∆∗t . So there is a set of sample path

realizations that occur with positive probability such that the actual share of contrary

actions never crosses the threshold required to break the herd, allowing the herd to

persist with positive probability in the limit. QED. Hartman and Wintner (1941)

(b): Suppose ∆∞ > ∆∗. Then ∆∞ lies in the region that breaks a herd. By

the law of large numbers, almost all sample paths of {∆t}∞t=0 converge to ∆∞, so the
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threshold required to break the herd is crossed with probability 1. Thus the herd is

broken with probability 1. Q.E.D.

Proof of Theorem 3 on pp. 18

Recall φh =
(

p̂+(1−p̂)πs
p̂+(1−p̂)(1−πs)

)
. Note dφh

dp̂
= 1−2πs

(1−πs+p̂πs)2 < 0 and ln (φc) =

ln
(

1−πs
πs

)
< 0

d∆∗(p̂)

dp̂
=

− ln (φc) dφh

dp̂

φh (ln (φh)− ln(φc))2 < 0

(i) By definition, ∆ω 6=a
∞ = ∆∗(p̂1) so the limit of the sample path for an incor-

rect herd lies on the herd breaking threshold at p̂1. Since d∆∗(p̂1)
dp̂

< 0, and the limit

of the sample path doesn’t depend on p̂, for p̂ < p̂1, ∆ω 6=a
∞ = ∆∗(p̂1) < ∆∗(p̂) so

∆ω 6=a
∞ lies below the herd breaking threshold and incorrect herds persist with positive

probability, by theorem 2. Thus, there is positive probability that an incorrect herd

persists, and agents choose only the suboptimal action infinitely often. Correct herds

also persist with positive probability since ∆ω=a
∞ < ∆ω 6=a

∞ < ∆∗(p̂) ⇒ ∆ω=a
∞ also lies

below the herd breaking threshold. Thus, agents’ action choices also converge on the

optimal action with positive probability.

(iii) By definition, ∆ω 6=a
∞ = ∆∗(p̂2) so the limit of the sample path for a correct

herd lies on the herd breaking threshold at p̂2. Since dk(p̂)
dp̂

< 0, and the limit of the

sample path doesn’t depend on p̂, for p̂ > p̂2, ∆ω=a
∞ = ∆∗(p̂2) > ∆∗(p̂) so ∆ω=a

∞

lies above the herd breaking threshold and correct herds break with probability 1, by

theorem 2. Since ∆ω 6=a
∞ > ∆ω=a

∞ > ∆∗(p̂), incorrect herds also break with probability

1. Thus, no herd persists in the limit. Each time a herd breaks, correct and incorrect

herds both form with positive probability. A new herd will form if the same action

is played in the two periods subsequent to the herd breaking. The probability of two

correct actions is (πs)2 > 0 and the probability of two incorrect actions is (1− πs)2 >

0. Since neither type of herd persists in the limit, both correct and incorrect herds form

infinitely often. Therefore both the optimal and suboptimal action are chosen infinitely
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often, and herding is inefficient.

(ii) If p̂ ∈ (p̂1, p̂2) then ∆ω 6=a
∞ = ∆∗(p̂1) > ∆∗(p̂) and ∆ω=a

∞ = ∆∗(p̂2) < ∆∗(p̂)

so incorrect herds break with probability 1 but correct herds persist with positive prob-

ability. Let A represent the event where no herd is occurring. Let qC(µ) represent the

probability that a correct herd forms and qI(µ) represent the probability that an incor-

rect herd forms, given that no herd is occurring. Let rC(µ) represent the probability

that a correct herd persists in the limit. These probabilities depend on current public

beliefs, but all are positive. Suppose event A is occurring in period t; that is, in period

t, no herd is occurring. Then the probability that event A occurs again at some future

period is 1− qC(µt)rC(µt) < 1. Event A occurs again if (a) no herd forms in period t

(then A occurs in t+ 1) (b) an incorrect herd forms in period t (since this herd breaks

with probability 1) (c) a correct herd forms in period t and breaks. The periods that

A occur in form an increasing sequence τ1 < τ2 < ... and for each τk, the probability

that A occurs again is 1 − qC(µτk)rC(µτk) < 1. Thus, the probability that event A

occurs infinitely often is limn→∞
∏n

k=1 1 − qC(µτk)rC(µτk) = 0. So with probability

1, A occurs only a finite number of times. Thus, a correct herd forms and persists with

probability 1, and agents will choose only the optimal action infinitely often.

(iv) (a) First show that p > p̂1 by showing that the expected share of contrary

actions in an incorrect herd lies above the herd breaking threshold when p̂ = p i.e.

show ∆ω 6=a
∞ > ∆∗(p)

Consider the following equations:

f(p) =
(1− p)πs

(1− (1− p)πs)
ln

(
πs

1− πs

)
g(p) = ln(φh)

= ln

(
p+ (1− p)πs

p+ (1− p)(1− πs)

)
= ln

(
(1− πs)p+ πs

1− πs + πsp

)
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At p = 1

f(1) = g(1) = 0

At p = 0

f(0) =
πs

1− πs
ln

(
πs

1− πs

)
> g(0) = ln

(
πs

1− πs

)

since πs

1−πs > 1. Take the derivative of each expression with respect to p:

d

dp
f(p) = − πs

(1− πs + πsp)2
ln

(
πs

1− πs

)
< 0

d

dp
g(p) =

−(2πs − 1)

((1− πs)p+ πs)(1− πs + πsp)
< 0

Take the second derivative of each expressions with respect to p:

d2

dp2
f(p) =

2(πs)2

(1− πs + πsp)3
ln

(
πs

1− πs

)
> 0

d2

dp2
g(p) =

((1− πs)2 + (πs)2 + 2pπs(1− πs))(2πs − 1)

[((1− πs)p+ πs)(1− πs + πsp)]2
> 0

Given f(0) > g(0), f(1) = g(1) and both functions monotonically decrease at

a decreasing rate, we can conclude that f(p) > g(p) over the interval [0, 1).
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f(p) > g(p)

⇒ −(1− p)πs

(1− (1− p)πs)
ln (φc) > ln

(
φh
)

⇒ (1− p)πs >
ln
(
φh
)

ln (φh)− ln (φc)

⇒ ∆ω 6=a
∞ > ∆∗(p)

⇒ p > p̂1

Thus, p > p̂1 for all p ∈ [0, 1).

(b) Next show that p < p̂2 by showing that the limit of the realized sample path

for a correct herd lies below the herd breaking threshold limit when p̂ = p i.e. show

∆ω=a
∞ < ∆∗(p). Consider the following equations:

f(p) =
(1− p)(1− πs)

(1− (1− p)(1− πs))
ln

(
πs

1− πs

)
=

1− p− πs + πsp

(p+ πs − πsp)
ln

(
πs

1− πs

)
g(p) = ln(φh)

= ln

(
(1− πs)p+ πs

1− πs + πsp

)

At p = 1

f(1) = g(1) = 0

At p = 0
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f(0) =
1− πs

πs
ln

(
πs

1− πs

)
< g(0) = ln

(
πs

1− πs

)

since 1−πs
πs

< 1. Take the derivative of each expression with respect to p:

d

dp
f(p) =

−(1− πs)
(p+ πs − πsp)2

ln

(
πs

1− πs

)
< 0

d

dp
g(p) =

−(2πs − 1)

((1− πs)p+ πs)(1− πs + πsp)
< 0

Take the second derivative of each expressions with respect to p:

d2

dp2
f(p) =

2(1− πs)2

(p+ πs − πsp)3
ln

(
πs

1− πs

)
> 0

d2

dp2
g(p) =

((1− πs)2 + (πs)2 + 2pπs(1− πs))(2πs − 1)

[((1− πs)p+ πs)(1− πs + πsp)]2
> 0

Given f(0) < g(0), f(1) = g(1) and both functions monotonically decrease at

a decreasing rate, we can conclude that f(p) < g(p) over the interval [0, 1).

f(p) < g(p)

⇒ (1− p)(1− πs)
(1− (1− p)(1− πs))

ln

(
πs

1− πs

)
< ln

(
φh
)

⇒ (1− p)(1− πs) <
ln
(
φh
)

ln (φh)− ln(φc)

⇒ ∆ω=a
∞ < ∆∗(p)

⇒ p < p̂2

Thus, p < p̂2 for all p ∈ [0, 1). This illustrates that correct herds persist and
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incorrect herds break when p̂ = p. Q.E.D.

Proof of Corollary 1 on pp. 21

Suppose an L-herd forms and persists. In order for a herd to persist,

∆t < ∆∗t (p̂) ∀t

Let ∆t = ∆∗t − ct for some ct > 0. Note Λ0

(
φh
)(t−1)(1−∆∗t )

(φc)(t−1)∆∗t = 1 ∀t
since this represents beliefs at the herd breaking threshold. We can rewrite the public

likelihood ratio in an L-herd as:

µt
1− µt

= Λ0

(
πs

1− πs

)(
φh
)(t−1)(1−∆t)

(φc)(t−1)∆t

= Λ0

(
πs

1− πs

)(
φh
)(t−1)(1−∆∗t+ct)

(φc)(t−1)(∆∗t−ct)

= Λ0

(
πs

1− πs

)(
φh
)(t−1)(1−∆∗t )

(φc)(t−1)(∆∗t ) (φh)(t−1)ct
(φc)−(t−1)ct

=

(
πs

1− πs

)(
φh

φc

)(t−1)ct

Note
(
φh

φc

)
> 1.

(i) If the L-herd is correct, then learning is complete when the inverse public

likelihood ratio converges to zero. The limit of the public likelihood ratio is as follows:

lim
t→∞

1− µt
µt

= lim
t→∞

(
1− πs

πs

)(
φc

φh

)(t−1)ct

= 0

Similar analysis shows limt→∞
µt

1−µt = 0 in a correct R-herd. Thus, when a

correct herd persists, learning is complete.

(ii) If the L-herd is incorrect, then learning is fully incorrect when the public

likelihood ratio converges to infinity:
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lim
t→∞

µt
1− µt

= lim
t→∞

(
πs

1− πs

)(
φh

φc

)(t−1)ct

=∞

Similar analysis shows limt→∞
1−µt
µt

=∞ in an incorrect R-herd. Thus, learn-

ing is fully incorrect when an incorrect herd persists.

(iii) Suppose incorrect and correct L-herds both break. Then ∃τ s.t. ∆τ >

∆∗τ (p̂) and the public likelihood ratio falls below 1. If an L-herd forms again, this will

repeat whereas if an R-herd forms, then the public likelihood ratio eventually rises

above 1, at which point the R-herd breaks. Thus, the public likelihood ratio never

converges in either an L-herd or an R-herd and public beliefs remain interior, resulting

in incomplete learning. Q.E.D.

1.7 Figures
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Figure 1.1: The Herd Breaking Threshold
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Figure 1.2: When Can a Herd Persist?

Figure 1.3: Learning is complete when beliefs are approximately correct
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Figure 1.4: When Does a Herd Persist?



Chapter 2

Stochastic Games in Continuous Time:

Persistent Actions in Long-Run

Relationships

2.1 Introduction

A rich and growing literature on repeated games and reputation has studied

how the shadow of the future affects the present. Yet, in many instances, a long-run

player is influenced not only by considerations of its future but also by decisions it

has made in the past. For example, a firm’s ability to make high quality products

is a function of not only its effort today but also its past investments in developing

technology and training its workforce. A government’s ability to offer efficient and

effective public services to its citizens depends on its past investments in improving

its public services. A university cannot educate students through instantaneous effort

alone, but needs to have made past costly investments in hiring faculty and building

research infrastructure. In all of these settings, and many others, a long-run player

is directly influenced by choices it has made in the past: past actions influence key

50



51

characteristics of the long-run player’s environment, such as the quality of a firm’s

product or the level of a policy instrument; in turn, these characteristics play a central

role in determining current and future profitability. This paper studies a new class of

stochastic games in which the actions of a long-run player have a persistent effect on

payoffs, and studies how its incentives are shaped by its past and future.

In analyzing this class of stochastic games, the paper develops a new under-

standing of reputational dynamics. Since Kreps et al. (1982), the canonical framework

has modeled a long-run player’s reputation as the belief that others have that the firm

is a behavioral type that takes a fixed action in each period. This framework has been

very influential and led to a number of insights across the gamut of economics. Never-

theless, it is unclear across many settings that reputational incentives are driven exclu-

sively by the possibility that players may be non-strategic and are absent when there is

common knowledge that the long-run player is rationally motivated by standard incen-

tives. In contrast, my environment returns to a different notion of reputation as an asset

(Klein and Leffler, 1981) in which a firm’s reputation is shaped by its present and past

actions. Persistent actions not only capture an intuitive notion of reputation as a type

of capital, but also connect reputation to the aspects of a firm’s choices that are empir-

ically identifiable. This environment provides insights on important questions about

the dynamics of reputation formation, including: when does a firm build its reputation

and when does it allow it to decay; when do reputation effects persist in the long-run,

and when are they temporary; how does behavior relate to underlying parameters such

as the cost and depreciation rate of investment or the volatility of quality.

I study a continuous-time model with persistent actions and imperfect moni-

toring between a single long-run player and a continuum of small anonymous players.

At each instant, each player chooses an action, which is not observed by others; in-

stead, the long-run player’s action generates a noisy public signal, and the long-run

player observes the aggregate behavior of the short-run players. The stage game varies

across time through its dependence on a state variable, whose evolution depends on the
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long run player’s action through the public signal. This state variable determines the

payoff structure of the associated stage game, and captures the current value of past

investments by the long-run player.

When the long-run player chooses an action, it considers both the impact that

this action has on its current payoff and its continuation value via the evolution of the

state variable. For example, a firm may bear the cost of investment today, while reaping

the rewards through higher sales and prices tomorrow. This link between current play

and future outcomes creates intertemporal incentives for the long-run player. From

Faingold and Sannikov (2011) and Fudenberg and Levine (2007), we know that in

the absence of this state variable, intertemporal incentives fail: the long-run player

cannot attain payoffs beyond those of its best stage game equilibrium. I am interested

in determining when action persistence leads the firm to choose an action apart from

that which maximizes its instantaneous payoff, and thus investigate whether persistent

actions can be used to provide non-trivial intertemporal incentives in settings where

those from standard repeated games fail.

The key contributions of this paper are along three dimensions. The theoretical

contribution is to establish general conditions for the existence of Markovian equilib-

ria, and conditions for the uniqueness of a Markovian equilibrium in the class of all

Perfect Public Equilibria. An explicit characterization of the form of equilibrium pay-

offs, continuation values and actions, for any discount rate, yields insights into the rela-

tionship between the structure of persistence and the decisions of the long-run player.

An application of the existence and uniqueness results to a stochastic game without

action persistence shows that the long-run player acts myopically in the unique Perfect

Public Equilibria of this setting. Lastly, I use these results to describe several interest-

ing properties relating equilibrium payoffs of the stochastic game to the structure of

the underlying stage game.

The conceptual contribution of this paper is to illustrate that action persistence

creates a channel for effective intertemporal incentive provision in a setting where this
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is not possible in the absence of such persistence. A stochastic game has two potential

channels through which intertemporal incentives can be used to guide behavior. First,

the stage game varies across time in response to players’ actions, and thus a long

run player’s actions directly impact payoffs in future periods as well as the current

period. Second, as in repeated games, players can be rewarded or punished based on

the public signal: actions today can affect, in equilibrium, how others behave in the

future. In a Markovian equilibrium, intertemporal incentives can only flow through

this first channel, as the public signal is ignored. When the unique Perfect Public

Equilibria is Markovian, it precludes the existence of any equilibria that use the public

signal to generate intertemporal incentives via punishments and rewards. As such, the

ability to generate effective intertemporal incentives in a stochastic game of imperfect

monitoring stems entirely from the impact that action persistence has on future payoffs.

Lastly, the results of this paper have practical implications for equilibrium anal-

ysis in a wide range of applied settings known to exhibit persistence and rigidities,

ranging from industrial organization to political economy to macroeconomics. Marko-

vian equilibria are a popular concept in applied work. Advantages of Markovian equi-

libria include their simplicity and their dependence on payoff relevant variables to

specify incentives. Establishing that non-Markovian equilibria do not exist offers a

strong justification for focusing on this more tractable class of equilibria.

Additionally, this paper derives a tractable expression to construct Markovian

equilibria, which can be used to formulate empirically testable predictions about equi-

librium behavior. Equilibrium continuation values are specified by the solution to a

nonstochastic differential equation defined over the state space, while the long-run

player’s action is determined by the sensitivity of its future payoffs to changes in the

state variable (the first derivative of this solution). This result provides a tool that can

be utilized for equilibrium analysis in applications. Once functional forms are spec-

ified for the underlying game, it is straightforward to derive the relevant differential

equation, calibrate it with realistic parameters, and use numerical methods to estimate
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its solution. This solution is used to explicitly calculate equilibrium payoffs and ac-

tions, as a function of the state variable. Note these numerical methods are used for

estimation in an equilibrium that has been characterized analytically, and not to simu-

late an approximate equilibrium; an important distinction.

It may be helpful to describe the contributions of this paper and its relation-

ship to the existing literature using one application that can be studied with the tools

developed in this paper: the canonical product choice game. Consider a long-run firm

interacting with a sequence of short-run consumers. The firm has a dominant strategy

to invest low effort, but would have greater payoffs if it could somehow commit to high

quality (its “Stackelberg payoff”). Repeated interaction in discrete time with imper-

fect monitoring generates a folk theorem Fudenberg and Levine (1994), but the striking

implication from Faingold and Sannikov (2011) and Fudenberg and Levine (2007) is

that such intertemporal incentives are absent in continuous-time games. Since Fuden-

berg and Levine (1992), we know that if the firm could build a reputation for being a

commitment type that produces only high quality products, a patient normal firm can

approach these payoffs in every equilibrium. Faingold and Sannikov (2011) shows that

this logic remains in continuous-time games, but that as in discrete-time, these reputa-

tion effects are temporary: eventually, consumers learn the firm’s type, and reputation

effects disappear in the long-run (Cripps et al., 2007).1. Departing from standard re-

peated and reputational games, I consider a simple and realistic modification in which

the firm’s current product quality is a noisy function of past investment. Recent invest-

ment has a larger impact on current quality than investment further in the past, which

is captured by a parameter θ that can be viewed as the rate at which past investment

decays. Product quality, Xt, is modeled as a stochastic process:

1Mailath and Samuelson (2001) show that reputational incentives can also come from a firm’s desire
to separate itself from an incompetent type. Yet, these reputation effects are also temporary unless the
type of the firm is replaced over time.
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Xt = X0e
−θt + θ

∫ t

0

e−θ(t−s) (asds+ dZs)

given some initial value X0, investment path (as)s≤t and Brownian motion (Zs)s≤t.

The evolution of product quality can be derived using this stochastic process, and takes

the form:

dXt = θ (at −Xt) dt+ σdZt

When investment exceeds the current product quality, the firm is in a reputation build-

ing phase, and the product quality drifts upward (perturbed by a Brownian motion).

When product quality is high and the firm chooses a lower investment level, it enters a

period of reputational decay characterized by declining product quality. In this model,

I show that there is a unique Perfect Public Equilibrium, which is Markovian in product

quality. The firm’s reputation for quality will follow a cyclical pattern, characterized

by phases of reputation building and decay. Importantly, this cyclical pattern does not

dissipate with time and reputation effects are permanent; this contrasts with the tempo-

rary reputation effects observed in behavioral types models. The product choice game

is one of the many settings that can utilize the tools and techniques of this paper to

shed light on the relationship between persistent actions and equilibrium behavior.

This paper makes an important modeling choice by employing a continuous-

time framework. Recent work has shown that the continuous time framework often

allows for an explicit characterization of equilibrium payoffs, for any discount rate

(Sannikov, 2007); this contrasts with the folk-theorem results that typify the discrete

time repeated games literature, and characterize the equilibrium payoff set as agents

become arbitrarily patient Fudenberg and Levine (1994). Additionally, continuous

time allows for an explicit characterization of equilibrium behavior; an important fea-

ture if one wishes to use the model to generate empirical predictions and relate the

model to observable behavior. In discrete time, results in similar settings have gener-

ally been limited to identifying equilibrium payoffs.
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Related Literature: This paper uses tools developed by Faingold and Sannikov

(2011), and so I comment on how I generalize their insights. Their setting can be

modeled as a stochastic game in which the state variable is the belief that the firm

is a commitment type, and the transition function follows Bayes rule. Faingold and

Sannikov (2011) characterize the unique Markov equilibrium of this incomplete infor-

mation game using an ordinary differential equation. This paper extends these tools

to characterize conditions for the existence and uniqueness of Markov equilibria in a

setting with an arbitrary transition function between states, which can have a stochas-

tic component independent of the public signal, where the long run player’s payoffs

may also depend on the state variable and the state space may be unbounded or have

endpoints that are not absorbing states.

My work is also conceptually related to Board and Meyer-ter-Vehn (2011).

They model a setting in which product quality takes on high or low values and is re-

placed via a Poisson arrival process; when a replacement occurs, the firm’s current ef-

fort determines the new quality value. Consumers learn about product quality through

noisy signals, and reputation is defined as the consumers’ belief that the current prod-

uct quality is high. Realized product quality in their setting is therefore discontinuous

(jumping between low and high), and this discontinuity plays a key role in determining

intertemporal incentives. In the product choice application of my setting, the quality

of a firm’s product is a smooth function of past investments and its investment today,

and thus, the analysis is very different.

The role of persistence in intertemporal incentives can also be contrasted with

our understanding of other continuous-time repeated games. Sannikov and Skrzypacz

(2010) show that burning value through punishments that affect all players is not effec-

tive for incentives in settings with imperfect monitoring and Brownian signals, and that

in these cases, it is more effective to punish by transferring value from some players to

others. But in many settings, including those between long-run and myopic players, it
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would be impossible to avoid burning value and so intertemporal incentives collapse.2.

Fudenberg and Levine (2007) examine a product choice game between a long-run and

short-run player and demonstrate that it is not possible to earn equilibrium payoffs

above the payoffs corresponding to repeated play of the static Nash equilibrium when

the volatility of the Brownian component is independent of the long-run player’s ac-

tion. Thus, the intertemporal incentives that persistent actions induce could not emerge

with standard continuous-time repeated games.

The organization of this paper proceeds as follows. Section 2.2 explores two

simple examples to illustrate the main results of the model. Section 2.3 sets up the

model. Section 2.4.4 analyzes equilibrium behavior and payoffs, while the final section

concludes. All proofs are in the Appendix.

2.2 Examples

2.2.1 Persistent Investment as a Source of Reputation

Suppose a single long-run firm seeks to provide a continuum of small, anony-

mous consumers with a service. At each instant t, the firm chooses an unobservable

investment level at ∈ [0, a]. Consumers observe a noisy public signal of the firm’s

investment each instant, which can be represented as a stochastic process with a drift

term that depends on the firm’s action and a volatility term that depends on Brownian

noise

dYt = θatdt+ σdZt.

Investment is costly for the firm, but increases the likelihood of producing a high qual-

ity product. The stock quality of a product at time t, represented as Xt, captures the

link between past investment levels and current product quality. This stock evolves

2Sannikov and Skrzypacz (2007) show how this issue also arises in games between multiple long-run
players in which deviations between individual players are indistinguishable.
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according to a mean-reverting stochastic process where the change in stock quality at

time t is

dXt = θdYt − θXtdt

= θ (at −Xt) dt+ σdZt.

Stock quality is publicly observed. The expected change in quality is increasing when

investment exceeds the current quality level, and decreasing when investment is below

the current quality level. The parameter θ captures the persistence of investment: re-

cent investment has a larger impact on current quality than investment further in the

past. Thus, θ embodies the rate at which past investment decays: as it increases, more

recent investments play a larger role in determining current product quality relative

to investments further in the past. This stochastic process, known as the Ornstein-

Uhlenbeck process, has a closed form that gives an insightful illustration of how past

investments of the firm determine the current product quality. Given a history of in-

vestment choices (as)s≤t, the current value of product quality is

Xt = X0e
−θt + θ

∫ t

0

e−θ(t−s)asds+ σ

∫ t

0

e−θ(t−s)dZs,

given some initial value of product qualityX0. As shown in this expression, the impact

of past investments decays at a rate proportional to the persistence parameter θ and the

time that has elapsed since the investment was made.

Consumers simultaneously choose a purchase level bit ∈ [0, 10]. The aggregate

action of consumers, bt, is publicly observable, while individual purchase decisions

are not. The firm’s payoffs are increasing in the aggregate level of purchases by con-

sumers, and decreasing in the level of investment. Average payoffs are represented

as
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r

∫ ∞
0

e−rt(bt − ca2
t )dt

where r is the common discount rate and c < 1 captures the cost of investment.

Consumers’ payoffs depend on the stock quality, the firm’s current investment

level and their individual purchase decisions. As is standard in games of imperfect

monitoring, payoffs can only depend on the firm’s unobserved action through the pub-

lic signal. Consumers are anonymous and their purchase decisions have a negligible

impact on the aggregate purchase level. In equilibrium, they choose a purchase level

that myopically optimizes their expected flow payoffs of the current stage game, rep-

resented as

E
[
min

{
bi, 10

}1/2
[(1− λ)dY + λX]− bi

]
Marginal utility from an additional unit of product is decreasing in the current purchase

level, with a saturation point at 10, and is increasing in current investment and stock

quality. The parameter λ captures the importance of current investment relative to

stock investment.

This product choice game can be viewed as a stochastic game with current

product quality X as the state variable and the change in product quality dX as the

transition function, which depends on the investment of the firm. I am interested in

characterizing equilibrium payoffs and actions in a Markov perfect public equilibrium.

The firm is subject to binding moral hazard in that it would like to commit to

a higher level of investment in order to entice consumers to choose a higher purchase

level. However, in the absence of such a commitment device, the firm is tempted to

deviate to lower investment. This example seeks to characterize when intertemporal

incentives, particularly incentives created by the dependence of future feasible payoffs

on current investment through persistent quality, can provide the firm with endoge-

nous incentives to choose a positive level of investment. Note that in the absence of

intertemporal incentives, the firm always chooses an investment level of a = 0.
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In a Markov perfect equilibrium, the continuation value can be expressed as an

ordinary differential equation that depends on the stock quality. Let U(X) represent

the continuation value of the firm when Xt = X . Then, given equilibrium action

profile
(
a, b
)
U(X) = b− ca2 +

1

r

[
θ (a−X)U ′(X) +

1

2
σ2U ′′(X)

]
describes the relationship between U and its first and second derivatives. The continu-

ation value can be expressed as the sum of the payoff that the firm earns today, b− ca2,

and the expected change in the continuation value, weighted by the discount rate. The

expected change in the continuation value has two components. First, the drift of qual-

ity determines whether quality is increasing or decreasing in expectation. Given that

the firm’s payoffs are increasing in quality (U ′ > 0), positive quality drift increases the

expected change in the continuation value, while negative quality drift decreases this

expected change. Second, the volatility of quality determines how the concavity of the

continuation value relates to its expected change. If the value of quality is concave

(U ′′ < 0), then volatility of quality hurts the firm. The firm is more sensitive to neg-

ative quality shocks than positive quality shocks, and has a higher continuation value

at the expected quality relative to the expected continuation value of quality; in simple

terms, the firm is “risk averse” in quality. Positive and negative shocks are equally

likely with Brownian noise; thus, volatility has a net negative impact on the continua-

tion value. If the value of quality is convex (U ′′ > 0), then volatility of quality helps

the firm: the firm benefits more from positive quality shocks than it is hurt by negative

quality shocks. The continuation value is graphed in Figure 2.1.

The firm faces a trade-off when choosing its investment level: the cost of in-

vestment is borne in the current period, but yields a benefit in future periods through

higher expected purchase levels by consumers. The impact of investment on future

payoffs is captured by the slope of the continuation value, U ′(X), which measures the
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sensitivity of the continuation value to changes in stock quality. In equilibrium, in-

vestment in chosen to equate the marginal cost of investment with its future expected

benefit:

a(Xt) = min

{
θ

2cr
U ′(Xt), a

}
.

Marginal cost is captured by 2c,while the marginal future benefit depends on

the ratio of persistence to the discount rate. When θ is high, current investment will

have a larger immediate impact on future quality, and the firm is willing to choose

higher investment. Likewise, when the firm becomes more patient, it cares more about

the impact investment today continues to have in future periods, and is willing to

choose higher investment. It is interesting to note the trade-off between persistence

and the discount rate. When investment decays at the same rate as the firm discounts

future payoffs, these two parameters cancel. Thus, only the ratio of persistence to the

discount rate is relevant for determining investment; as such, doubling θ has the same

impact as halving the discount rate. Investment also depends on the sensitivity of the

continuation value to changes in quality; when the continuation value is more sensitive

to changes (captured by a steeper slope), the firm chooses a higher level of investment.

As θ approaches 0, stock quality is almost entirely determined by its initial level and

the intertemporal link between investment and payoffs is very small.

The boundary conditions that characterize the solution to U(X) dictate that

the slope of the continuation value converges to 0 as the stock quality approaches

positive and negative infinity. Thus, the firm has the strongest incentive to invest at

intermediate quality levels - a “reputation building” phase. When quality is very high,

the firm’s continuation value is less sensitive to changes in quality and the firm has a

weaker incentive to invest. In effect, the firm is “riding” its good reputation for quality.

The incentive to invest is also weak when quality is very low, and a firm may wait

out a very bad reputation shock before beginning to rebuild its reputation - “reputation

recovery”. For interior values of X , the slope of the continuation value is positive,
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and thus the intertemporal incentives created by persistent actions allows the firm to

choose a positive level of investment level.

In equilibrium, consumers myopically optimize flow payoffs by choosing a

purchase level such that the marginal utility of an additional unit of product is zero:

bi(a(X), X) =

0 if (1− λ)a(X) + λX ≤ 0
1
4

[(1− λ)a(X) + λX]2 if (1− λ)a(X) + λX ∈
[
0, 2
√

10
]

10 if (1− λ)a(X) + λX > 2
√

10

I show that there is a unique Perfect Public Equilibrium, which is Markovian in Xt; as

such, a(Xt) and bi(Xt), are uniquely determined by Xt, and are also continuous.

Note that (a(Xt), b
i(Xt)) is uniquely specified by and continuous in (Xt). Fig-

ures 2.2 and 2.3 graph equilibrium actions for the firm and consumers, respectively.

In this model, reputation effects are present in the long-run. Product quality is

cyclical, with periods of high quality characterized by lower investment and negative

drift, and periods of intermediate quality, where the firm chooses high investment and

builds up its product quality. Very negative shocks can lead to periods where the firm

chooses low investment and waits for its product quality to recover. Figure 2.4 illus-

trates the cycles of product quality across time. This contrasts with models in which

reputations come from behavioral types: as Cripps et al. (2007) and Faingold and San-

nikov (2011) show, reputation effects are temporary insofar as consumers eventually

learn the firm’s type, and so asymptotically, a firm’s incentives to build reputation dis-

appear. Additionally, conditional on the firm being strategic, reputation in these types

models has negative drift.

Lastly, I compare the firm’s payoffs in the stochastic game with action persis-

tence to the benchmark without action persistence. The static Nash payoff depends on
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the value of stock quality. Let

v(X) = min

{
10,

1

4
λ2 max {0, X}2

}
represent the static Nash payoff of the firm when the stock quality is at level X . This

payoff is increasing in the stock quality. In the absence of investment persistence (this

corresponds to θ = 0), the unique equilibrium of the stochastic game is to play the

static Nash equilibrium each period, which yields an expected continuation value at

time t of

V (Xt) = r

∫ ∞
t

e−rsEt [v(Xs)] ds

Note that this expected continuation value may be above or below the static Nash equi-

librium payoff of the current stage game, v(Xt), depending on whetherXt is increasing

or decreasing in expectation.

The firm achieves higher equilibrium payoffs when its actions are persistent,

i.e. U(Xt) ≥ V (Xt) for all Xt. There are two complementary channels by which

action persistence enhances the firm’s payoffs. First, the firm chooses an investment

level that equates the marginal cost of investment today with the marginal future ben-

efit. Thus, in order for the firm to be willing to choose a positive level of investment,

the future benefit of doing so must exceed the future benefit of choosing zero invest-

ment and must also exceed the current cost of this level of investment. Second, the

link with future payoffs allows the firm to commit to a positive level of investment in

the current period, which increases the equilibrium purchase level of consumers in the

current period.
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2.2.2 Policy Targeting

Elected officials and governing bodies often play a role in formulating and

implementing policy targets. For example, the Federal Reserve targets interest rates,

a board of directors sets growth and return targets for its company, and the housing

authority targets home ownership rates. Achieving such targets requires costly effort

on behalf of officials, and moral hazard issues arise because the preferences of the

officials are not aligned with the population they serve. This example explores when a

governing body can be provided with incentives to undertake a costly action in order to

implement a target policy when the current level of the policy depends on the history

of actions undertaken by the governing body.

Consider a setting where constituents elect a governing body to implement a

policy target. The current policy takes on value Xt ∈ [0, 2], and a policy target of

Xt = 1 is optimal for constituents. In the absence of intervention, the policy drifts

towards its natural level d. Each instant, the governing body chooses an action at ∈
[−1, 1], where a negative action decreases the policy variable and a positive action

increases the policy variable, in expectation. The policy evolves over time according

to the stochastic process

dXt = Xt(2−Xt) [atdt+ θ(d−Xt)dt+ dZt]

Constituents also choose an action bit each period, which represent their cam-

paign contributions or support for the governing body. Constituents pledge higher

support to the governing body when the policy is closer to their optimal target and

when the governing body is exerting higher effort to achieve this target. I model the

reduced form of the aggregate best response of constituents as

b (at, Xt) = 1 + λa2
t − (1−Xt)

2
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in which λ captures the value that constituents place on the governing body’s effort to

achieve the policy target.

The governing body has no direct preference over the policy target; its payoffs

are increasing in the support it receives from the constituents, and decreasing in the

effort level it exerts.

g(a, bt, Xt) = bt − ca2
t

The unique Nash equilibrium of the static game is for the governing body to set a = 0

i.e. not intervene in reaching the desired policy, and for the constituents to support the

governing body based on the difference between the desired and current policy level,

b = 1 − (1 −X)2. Given the current policy level is X , this yields a stage game Nash

equilibrium payoff of

v(X) = 1− (1−Xt)
2

for the governing body. This payoff is concave in the state variable, and therefore the

highest PPE payoff in the stochastic game occurs at the value of the state variable that

maximizes the stage game Nash equilibrium payoff,X = 1, which yields a stage game

payoff of v(1) = 1. The highest PPE payoff is strictly less than the highest static game

Nash equilibrium payoff. Figure 4 plots the PPE payoff of the governing body, as a

function of the current policy level. This payoff is increasing in the policy level for

levels below the optimal target, and decreasing in the policy level for levels above the

optimal target.

The characterization of a unique Markovian equilibrium can be used to de-

termine the equilibrium effort level of the governing body. Let U(X) represent the

continuation value as a function of the policy level in such an equilibrium, which is

plotted in figure 2.5

The optimal effort choice of the governing body depends on the slope of the

continuation value, the sensitivity of the change in the policy level to the effort level,
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and the cost of effort.

at(X) =
Xt(2−Xt)

2rc
U ′(Xt)

When the current policy level is very far from its optimal target, the effort of the gov-

erning body has a smaller impact on the policy level, and the governing body has a

lower incentive to undertake costly effort. When the policy level is close to the op-

timal target, the continuation value approaches its maximum, and the slope of the

continuation value approaches zero. Thus, the governing body also has a lower incen-

tive to undertake costly effort when the policy is close to its target. Figure 2.6 plots

the equilibrium effort choice of the governing body as a function of the policy level.

As illustrated in the figure, the governing body exerts the highest effort when the pol-

icy variable is an intermediate distance from the optimal target. Figure 2.7 shows the

equilibrium constituent support, which is highest when the policy level is closest to its

optimal target.

2.3 Model

I study a stochastic game of imperfect monitoring between a single long run

player and a continuum of small, anonymous short-run players. I refer to the long run

player as the agency and the small, anonymous players I = [0, 1] as members of the

collective, with each individual indexed by i. Time t ∈ [0,∞) is continuous.

The Stage Game: At each instant t, the agency and collective members simul-

taneously choose actions at from A and bit from B, respectively, where A and B are

compact sets of a Euclidean space. Individual actions privately observed. Rather, the

aggregate distribution of the collective’s action, bt ∈ ∆B and a public signal of the

agency’s action, dYt , are publicly observed. The public signal evolves according to
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the stochastic differential equation

dYt = µY (at, bt)dt+ σY dZ
Y
t

where
(
ZY
t

)
t≥0

is a Brownian motion, µY : A × B → R is the drift and σY ∈ R is

the volatility. Assume µY is a Lipschitz continuous function. The drift term provides

a signal of the agency’s action and can also depend on the aggregate action of the

collective, but is independent of the individual actions of the collective to preserve

anonymity. The volatility is independent of players’ actions.

The Stochastic Game: The stage game varies across time through its depen-

dence on a state variable (Xt)t≥0 ,, which takes on values in the state space Ξ ⊂ R

and evolves stochastically as a function of the current state and players’ actions. The

path of the state variable is publicly observable. As the state variable is not intended

to provide any additional signal of players’ actions, its evolution depends on actions

solely through the available public information The transition of the state variable is

governed by the stochastic differential equation:

dXt = f1(bt, Xt)µY (at, bt)dt+ f2(bt, Xt)dt+ f1(bt, Xt)σY dZ
Y
t + σX(Xt)dZ

X
t

where f1 : B × Ξ → R, f2 : B × Ξ → R and σ2
X : Ξ → R are Lipschitz continuous

functions, and
(
ZX
t

)
t≥0

is a Brownian motion which is assumed to be orthogonal to(
ZY
t

)
t≥0

. The drift of the state variable has two components: the first component,

f1(bt, Xt)µY (at, bt), specifies how the agency’s action influences the transition of the

state, while the second component, f2(bt, Xt), is independent of the firm’s action and

allows the model to capture other channels that influence the transition of the state

variable. The volatility of the state variable depends on the volatility of the public

signal, f1(bt, Xt)σY dZ
Y
t , as well as a volatility term that is independent of the public

signal, σX(Xt)dZ
X
t . Note that the same function multiplies the drift and volatility of
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the public signal; this ensures that no additional information about the agency’s action

is revealed by the evolution of the state variable. Let {Ft}t≥0 represent the filtration

generated by the public information, (Yt, Xt)t≥0.3

I assume that the volatility of the state variable is positive at all interior points

of the state space. This ensures that the future path of the state variable is always

stochastic. Brownian noise can take on any value in R, and as such, this assumption

means that any future path of the state variable, (Xs)s>t can be reached from the cur-

rent state Xt ∈ Ξ. This assumption is analogous to a strong form of irreducibility,

since any state Xs ∈ Ξ can be reached from the current state Xt at all times s > t.

Assumption 1. For any compact proper subset I ⊂ Ξ, there exists a c such that

σI = inf
b∈B,X∈I

[
f1(b,X)2σ2

Y + σ2
X(X)

]
> c

Note that this assumption does not preclude the possibility that the state variable

evolves independently of the public signal, which corresponds to f1 = 0.

Define a state X as an absorbing state if the drift and volatility of the tran-

sition function are both zero. The following definition formalizes the conditions that

characterize an absorbing state.

Definition 1. X ∈ Ξ is an absorbing state if there exists an action profile b ∈ B such

that f1(b,X) = 0, f2(b,X) = 0 and σX(X) = 0.

Remark 1. The assumption that the volatility of the state variable is positive at all

interior points of the state space precludes the existence of interior absorbing points.

Given that Brownian motion is continuous, this is without loss of generality. To see

why, suppose that Ξ = [X,X] and there is an interior absorbing point X∗, and the

3The state space may or may not be bounded. It is bounded if (i) there exists an upper bound X
at which the volatility is zero and the drift is weakly negative, i.e. f1(b,X) = 0; σX(X) = 0, and
f2(b,X) ≤ 0 for all b ∈ B; and (ii) there exists a lower bound X < X such that the volatility is zero
and the drift is weakly positive, i.e. f1(b,X) = 0; σX(X) = 0 and f2(b,X) ≥ 0 for all b ∈ B.
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initial state is X0 < X∗. Then states X > X∗ are never reached under any strategy

profile, and the game can be redefined on the state space Ξ = [X,X∗].

Payoffs: The state variable determines the set of feasible payoffs in a given

instant. Given an action profile (a, b) and a state X , the agency receives an expected

flow payoff of g(a, b,X). The agency seeks to maximize its expected normalized

discounted payoff,

r

∫ ∞
0

e−rtg(at, bt, Xt)dt

where r is the discount rate. Assume g is Lipschitz continuous and bounded for all

a ∈ A, b ∈ ∆B and X ∈ Ξ. The dependence of payoffs on the state variable creates

a form of action persistence for the firm, since the state variable is a function of prior

actions.

Collective members’ have identical preferences, and each member seeks to

maximize its expected flow payoff at time t,

h(at, b
i
t, bt, Xt)

which is a continuous function. Ex post payoffs can only depend on at through the

public signal, dYt, as is standard in games of imperfect monitoring.

Thus, in the stochastic game, at each instant t, given the current state Xt, play-

ers choose actions, and then nature stochastically determines payoffs, the public signal

and next state as a function of the current state and action profile. The game defined

here includes several subclasses of games, including a game where the state variable

evolves independently of the agency’s action (f1(b,X) = 0), the state variable evolves

deterministically given the public signal (σX(X) = 0), or the agency’s payoffs only de-

pend on the state indirectly through the actions of the collective (g(a, b,X) = g(a, b)).

Strategies: A public strategy for the agency is a stochastic process (at)t≥0

with values at ∈ A and progressively measurable with respect to {Ft}t≥0. Likewise,
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a public strategy for a member of the collective is an action bit ∈ B progressively

measurable with respect to {Ft}t≥0.

2.3.1 Equilibrium Structure

Perfect Public Equilibria: I restrict attention to pure strategy perfect public

equilibria (PPE). A public strategy profile is a PPE if after any public history and for

all t, no player wants to deviate given the strategy profile of its opponents.

In any PPE, collective members choose bit to myopically optimize expected

flow payoffs each instant.4 Let B : A × ∆B × Ξ ⇒ B represent the best response

correspondence that maps an action profile and a state to the set of collective member

actions that maximize payoffs in the current stage game, and B : A × Ξ ⇒ ∆B rep-

resent the aggregate best response function. In many applications, it will be sufficient

to specify the aggregate best response function as a reduced form for the collective’s

behavior.

Define the agency’s continuation value as the expected discounted payoff at

time t, given the public information contained in {Ft}t≥0 and strategy profile S =

(at, b
i
t)t≥0:

Wt(S) := Et

[
r

∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]
The agency’s action at time t can impact its continuation value through two

channels: (1) future equilibrium play and (2) the set of future feasible flow payoffs.

It is well known that the public signal can be used to punish or reward the agency in

future periods by allowing continuation play to depend on the realization of the public

signal. A stochastic game adds a second link between current play and future payoffs:

the agency’s action affects the evolution of the state variable, which in turn determines

4The individual actions of a collective member, bit, has a negligible impact on the aggregate action
bt (and therefore Xt) and is not observable by the agency. Therefore, the model could also allow for
long-run small, anonymous players.
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the set of future feasible stage payoffs. Each channel provides a potential source of

intertemporal incentives.

This paper applies recursive techniques for continuous time games with imper-

fect monitoring to characterize the evolution of the continuation value and the agency’s

incentive constraint in a PPE. Fix an initial value for the state variable, X0.

Lemma 3. A public strategy profile S = (at, b
i
t)t≥0 is a PPE with continuation values

(Wt)t≥0 if and only if for some {Ft} −measurable process (βt)t≥0 in L

1. (Wt)t≥0 is a bounded process and satisfies:

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt

+rβ1t

[
dYt − µY (at, bt)dt

]
+rβ2tσX(Xt)dZ

X
t

given (βt)t≥0

2. Strategies (at, b
i
t)t≥0 are sequentially rational given (βt)t≥0. For all t, (at, b

i
t)

satisfy:

at ∈ arg max g(a′, bt, Xt) + β1tµY (a′, bt)

bit ∈ B (at, Xt)

The continuation value of the agency is a stochastic process that is measurable

with respect to public information, {Ft}t≥0. Two components govern the motion of

the continuation value, a drift term that captures the difference between the current

continuation value and the current flow payoff. This is the expected change in the

continuation value. A volatility term β1t determines the sensitivity of the continuation

value to the public signal: the agency’s future payoffs are more sensitive to good or

bad signal realizations when the volatility of the continuation value is larger. A second
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volatility term β2t captures the sensitivity of the continuation value to the stochastic

element of the state variable that is independent of the public signal.

The condition for sequential rationality depends on the process (βt)t≥0, which

specifies how the continuation value changes with respect to the public information.

Today’s action impacts future payoffs through the drift of the public signal, µY (a, b),

and the sensitivity of the continuation value to the public signal, β1, while it impacts

current payoffs through the flow payoff of the agency, g(a, b,X). A strategy for the

agency is sequentially rational if it maximizes the sum of flow payoffs today and the

expected impact of today’s action on future payoffs. This condition is analogous to the

one-shot deviation principle in discrete time.

A key feature of this characterization is the linearity of the continuation value

and incentive constraint with respect to the Brownian information. Brownian infor-

mation can only be used linearly to provide effective incentives in continuous time

(Sannikov and Skrzypacz, 2010). Therefore, the agency’s incentive constraint takes a

very tractable linear form, in which the process (βt)t≥0 captures all potential channels

through which the agency’s current action may impact future payoffs, including coor-

dination of equilibrium play and the set of future feasible payoffs that depend on the

state variable.

Remark 2. The key aspect of this model that allows for this tractable characterization

of the agency’s incentive constraint is the assumption that the volatility of the state

variable is always positive (except at the boundary of the state space), which ensures

that any future path of states can be reached from the current state. This assumption,

coupled with the linear incentive structure of Brownian information, ensures the con-

dition for sequential rationality takes the form in Lemma 3. To see this, consider a

deviation from at to ãt at time t. This deviation impacts future payoffs by inducing a

different probability measure over the future path of the state variable, (Xs)s>t, but

doesn’t affect the set of feasible sample paths. Given that all paths of the state vari-

able are feasible under at and ãt, the continuation value under both strategies is a
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non-degenerate expectation with respect to the future path of the state variable. Thus,

the change in the continuation value when the agency deviates from at to ãt depends

solely on the different measures at and ãt induce over future sample paths, and, given

the requirement that Brownian information is used linearly, this change is linear with

respect to the difference in the drift of the public signal, µY
(
ãt, bt

)
− µY

(
at, bt

)
.

Remark 3. It is of interest to note that it is precisely this linear structure with respect

to the Brownian information, coupled with the inability to transfer continuation pay-

offs between players, that precludes the effective provision of intertemporal incentives

in a standard repeated game between a long-run and short-run player. The short-run

player acts myopically, so it is not possible to tangentially transfer continuation values

between players. Using Brownian information linearly, but non-tangentially, results in

the continuation value escaping the boundary of the payoff set with positive probabil-

ity, and Brownian information cannot be used effectively in a non-linear manner. This

paper will illustrate that a stochastic game permits the provision of intertemporal in-

centives by introducing the possibility of linearly using Brownian information for some

values of the state variable.

The sequential rationality condition can be used to specify an auxiliary stage

game parameterized by the state variable and the process linking current play to the

continuation value. Let S∗(X, β1) =
{(
a, b
)}

represent the correspondence of static

Nash equilibrium action profiles in this auxiliary game, defined as:

Definition 2. Define S∗(X, β1) = Ξ × R ⇒ A × ∆B as the correspondence that

describes the Nash equilibrium of the static game parameterized by (X, β1) ∈ Ξ×R:

S∗(X, β) =

{
a ∈ arg maxa′ g(a′, b,X) + β1µY (a′, b)

b ∈ B(a,X)

}

In any PPE strategy profile (at, bt)t≥0 of the stochastic game, given some processes

(Xt)t>0 and (β1t)t>0, the action profile at each instant must be a static Nash equilibrium
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of the auxiliary game i.e. (at, bt) ∈ S∗(Xt, β1t) for all t. I assume that this auxiliary

stage game has a unique static Nash equilibrium with an atomic distribution over small

players’ actions. While this assumption is somewhat restrictive, it still allows for a

broad class of games, including those discussed in the previous examples.

Assumption 2. Assume S∗(X, β) is non-empty and single-valued for all (X, β) ∈
Ξ × R, Lipschitz continuous on any subset of Ξ × R, and the small players choose

identical actions bi = b.

Note that S∗(X, 0) corresponds to the Nash equilibrium of the stage game in the cur-

rent model when the state variable is equal to X .

Static Equilibria Payoffs: The feasible payoffs of the current stage game de-

pend on the state variable, as do stage game Nash equilibrium payoffs. The presence

of myopic players imposes restrictions on the payoffs that can be achieved by the long-

run player, given that the myopic players must play a static best response.

Define v : Ξ → R as the payoff to the agency in the Nash equilibrium of the

stage game, parameterized by the state variable, where v(X) := g(S∗(X, 0), X). The

assumption that the Nash equilibrium correspondence of the stage game is Lipschitz

continuous, non-empty and single-valued guarantees v(X) is a Lipschitz continuous

function. When the state space is bounded, Ξ = [X,X], v(X) has a well-defined

limit as it approaches the highest and lowest state. If the state space is unbounded, an

additional assumption is necessary to guarantee that v(X) has well-defined limits.

Assumption 3. If the state space is unbounded, Ξ = R, then there exists a δ such that

for |X| > δ, v(X) is monotonic in X .

This assumption ensures that v(X) doesn’t oscillate as it approaches infinity, a techni-

cal assumption that is necessary for the equilibrium uniqueness result. Represent the

highest and lowest stage Nash equilibrium payoffs across all states as:



75

v∗ = sup
X∈Ξ

v(X)

v∗ = inf
X∈Ξ

v(X)

These values are well-defined given that g is bounded.

This subsection illustrates the model and definitions introduced above.

Example 1. Pricing Quality: Consider a setting where a firm invests in developing

a product, and consumers choose the price they are willing to pay to purchase this

product. Each instant, a firm chooses an investment level at ∈ [0, 1] and consumers

choose a price bi ∈
[
0, B

]
. A public signal provides information about the firm’s

instantaneous investment through the process

dYt = atdt+ dZY
t

The state variable is product quality, which is a function of past investments

and takes on values in the bounded support Ξ = [0, X]. The change in product quality

is governed by the process

dXt = Xt(X −Xt)
(
atdt+ dZY

t

)
−Xtdt

which is increasing in the firm’s investment, and decreasing in the current product

quality. Note this corresponds to µY = at, σY = 1, f1 = Xt(X − Xt), f2 = −Xt

and σ2
X = 0. At the upper bound of product quality, investment no longer impacts

product quality and the process has negative drift. At the lower bound, investment also

no longer impacts product quality, and the process has zero drift. As such, X = 0 is

an absorbing state but X = X is not.

The firm earns the price the consumers are willing to pay for the product, and
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pays a cost of c(a) for an investment level of a, with c(0) = 0, c′ > 0 and c′′ > 0. Its

payoff function is

g(a, b,X) = b− c(a)

which is independent of product quality.

Consumers receive an instantaneous value of X + a from purchasing a unit

of the product. Their flow payoff is the difference between the purchase price and the

value of the product,

h(a, bi, b,X) = −
(
bi −X − a

)2

In equilibrium, consumers myopically optimize flow payoffs, and thus pay a price equal

to their expected utility from purchasing the product, which is increasing in the stock

quality and investment of the firm.5 The aggregate consumer best response function

takes the form

b (a,X) = X + a

In the static game, given a product quality of X , the unique Nash equilibrium is for

the firm to choose an investment level of a∗ = 0 and the consumers to pay a price

of b
∗
(0, X) = X for the good. This yields a stage game Nash equilibrium payoff of

v(X) = X for the firm, a maximum stage NE payoff of v∗ = X at X = X and a

minimum stage NE payoff of v∗ = 0 at X = 0.

In the stochastic game, the firm also considers the impact that current invest-

ment has on future product quality. Using the condition for sequential rationality

specified in Lemma 3, the firm chooses an investment level to maximize

a ∈ arg max
a′

X + a− c(a′) + βa′

5While it may seem unusual that the consumer receives negative utility when they pay a price lower
than the value of the product, this setting can be interpreted as the reduced for a monopolistic market in
which the firm captures all of the surplus from the product quality. Such a setting would yield the same
aggregate best response function, which is the only relevant aspect of consumer behavior for equilibrium
analysis.
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which yields an equilibrium action

a∗(X, β) = (c′)
−1

(β)

Equilibrium investment is strictly positive in the stochastic game when β > 0. Thus,

persistent investment allows the firm to overcome the binding moral hazard present in

the static game and earn a higher price for its product.

Note that

S∗(X, β) =
(

(c′)
−1

(β), X + (c′)
−1

(β)
)

which is non-empty, single-valued, unique and Lipschitz continuous for each (X, β).

2.4 Equilibrium Analysis

This section presents the main results of the paper, and proceeds as follows.

First, I construct a Markovian equilibrium in the state variable, which simultaneously

establishes the existence of at least one Markovian equilibria and characterizes equi-

librium behavior and payoffs in such an equilibrium. Next, I establish conditions for a

Markovian equilibrium to be the unique equilibrium in the class of all Perfect Public

Equilibria. Following is a brief discussion on the role action persistence plays in using

Brownian information to create effective intertemporal incentives. An application of

the existence and uniqueness results to a stochastic game without action persistence

shows that the agency acts myopically in the unique Perfect Public Equilibria of this

setting. Finally, I use the equilibrium characterization to describe several interesting

properties relating the agency’s equilibrium payoffs to the structure of the underlying

stage game.
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2.4.1 Existence of Markov Perfect Equilibria

The first main result of the paper establishes the existence of a Markovian equi-

librium in the state variable. The existence proof is constructive, and as such, charac-

terizes the explicit form of equilibrium continuation values and actions in Markovian

equilibria. This result applies to a general setting in which:

• The state space may be bounded or unbounded.

• The transition function governing the law of motion of the state variable is

stochastic and depends on the agency’s action through a public signal, as well as

the aggregate action of the collective and the current value of the state.

• There may or may not be absorbing states at the endpoints of the state space.

Theorem 5. Suppose Assumptions 1 and 2 hold. Then given an initial stateX0 and ac-

tion profile (a, b) = S∗(X,U ′(X)f1(b,X)), any bounded solution U(X) to the second

order differential equation:

U ′′(X) =
2r
[
U(X)− g(a, b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

−
2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)

referred to as the optimality equation, characterizes a Markovian equilibrium in the

state variable (Xt)t≥0 with

1. Equilibrium payoffs U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 uniquely specified by

S∗(X,U ′(X)f1(b,X)) ={
a = arg maxa′ rg(a′, b,X) + U ′(X)f1(b,X)µ(a′, b)

b = B(a,X)

}
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The optimality equation has at least one solution U ∈ C2(R) that lies in the range of

feasible payoffs for the agency U(X) ∈
[
g, g
]

for all states X ∈ Ξ. Thus, there exists

at least one Markovian equilibrium.

Theorem 5 shows that the stochastic game has at least one Markovian equi-

librium. Continuation values in this equilibrium are represented by a second order

ordinary differential equation. Rearranging the optimality equation as:

U(X) = g(a, b,X) +
1

r

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

+
1

2r
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
lends insight into the relationship between the continuation value and the transition

of state variable. The continuation value is equal to the sum of the flow payoff to-

day, g(a, b,X), and the expected change in the continuation value, weighted by the

discount rate. The second term captures how the continuation value changes with re-

spect to the drift of the state variable. For example, if the state variable has positive

drift (f1(b,X)µY (a, b) + f2(b,X) > 0), and the continuation value is increasing in

the state variable (U ′ > 0), then this increases the expected change in the continuation

value. The third term captures how the continuation value changes with respect to the

volatility of the state variable. If U is concave (U ′′ < 0), it is more sensitive to nega-

tive shocks than positive shocks. Positive and negative shocks are equally likely, and

therefore, the continuation value is decreasing in the volatility of the state variable. If

U is linear (U ′′ = 0), then the continuation value is equally sensitive to positive and

negative shocks, and the volatility of the state variable does not impact the continuation

value.

Now consider a value of the state variable that yields a local maximum U(X∗)

(note this implies U ′ = 0). Since the continuation value is at a local maximum, it must

be decreasing as X moves away from X∗ in either direction. This is captured by the
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fact that U ′′(X) < 0. Larger volatility of the state variable or a more concave function

lead to a larger expected decrease in the continuation value.

I now outline the intuition behind the proof of Theorem 5. The first step in

proving this existence is to show that if a Markovian equilibrium exists, then con-

tinuation values must be characterized by the solution to the optimality equation. In

a Markovian equilibrium, continuation values take the form Wt = U(Xt) for some

function U . Using Ito’s formula to differentiate U(Xt) with respect to Xt yields an ex-

pression for the law of motion of the continuation value in any Markovian equilibrium

dWt = dU(Xt), as a function of the law of motion for the state variable:

dU(Xt) = U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
In order for this to be an equilibrium, continuation values must also follow the law of

motion specified in Lemma 3, with drift

r
(
U(Xt)− g(at, bt, Xt)

)
dt

Matching the drifts of these two laws of motion yields the optimality equation, a sec-

ond order ordinary differential equation that specifies continuation payoffs as a func-

tion of the state variable.

The next step in the existence proof is to show that this ODE has at least one so-

lution that lies in the range of feasible payoffs for the agency. The technical condition

to guarantee the existence of a solution is that the second derivative of U is bounded

with respect the first derivative of U on any bounded interval of the state space. The

denominator of the optimality equation depends on the volatility of the state variable.

Thus, the assumption that the volatility of the state variable is positive on any open in-
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terval of the state space (Assumption 1) is crucial to ensure this condition is satisfied.

The numerator of the optimality equation depends on the drift of the state variable, and

the agency’s flow payoff. Lipschitz continuity of these functions ensures that they are

bounded on any bounded interval of the state space. These conditions are sufficient

to guarantee the optimality equation has at least one bounded solution that lies in the

range of feasible payoffs for the agency.

The final step of the existence proof is to construct a Markovian equilibrium

that satisfies the conditions of a PPE established in Lemma 3. The incentive constraint

for the agency is constructed by matching the volatility of the laws of motion for the

continuation value established in Lemma 3 with the volatility of the law of motion for

the continuation value as a function of the state variable, dU(Xt). Lemma 3 established

that the volatility of the continuation value must be

rβ1tσY dZ
Y
t + rβ2tσX(Xt)dZ

X
t

in any PPE. Thus, in a Markovian equilibrium

rβ1tσY = U ′(Xt)f1(bt, Xt)σY

rβ2tσX(Xt) = U ′(Xt)σX(Xt)

This characterizes the process (βt)t≥0 governing incentives, and as such, the incentive

constraint for the agency. This incentive constraint takes an intuitive form. The impact

of the current action on future payoffs is captured by the impact the current action has

on the state variable, f1(b,X)µ(a′, b), as well as the slope of the continuation value,

U ′(Xt),which captures how the continuation value changes with respect to the state

variable.
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Theorem 5 also establishes that each solutionU to the optimality equation char-

acterizes a single Markovian equilibrium. This is a direct consequence of the assump-

tion that the Nash equilibrium correspondence of the auxiliary stage game S∗(X, β)

is single-valued, Assumption 2, which guarantees that U uniquely determines equi-

librium actions. Note that if there are multiple solutions to the optimality equation,

then each solution characterizes a single Markovian equilibrium. The formal proof of

Theorem 5 is presented in the Appendix.

Markovian equilibria have an intuitive appeal in stochastic games. Advantages

of Markovian equilibria include their simplicity and their dependence on payoff rele-

vant variables to specify incentives. Theorem 5 yields a tractable expression that can

be used to construct equilibrium behavior and payoffs in a Markovian equilibrium.

The continuation value of the agency is specified by the solution to a second order dif-

ferential equation defined over the state space. The agency’s incentives are governed

by the slope of this solution, which determines how the continuation value changes

with the state variable. As such, this result provides a tool to analyze equilibrium be-

havior in a broad range of applied settings. Once functional forms are specified for the

agency’s payoffs and the transition function of the state variable, it is straightforward to

use Theorem 5 to characterize the optimality equation and incentive constraint for the

agency, as a function of the state variable. This constructs a Markovian equilibrium.

Numerical methods for ordinary differential equations can then be used to estimate

a solution to the optimality equation and explicitly calculate equilibrium payoffs and

actions. These calculations yield empirically testable predictions about equilibrium

behavior. Note that numerical methods are used for estimation in an equilibrium that

has been characterized analytically, and not to simulate an approximate equilibrium.

This is an important distinction.
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Example to illustrate Theorem 5

The following example illustrates how to use Theorem 5 to construct equilib-

rium behavior.

Example 2. Consider the persistent investment model presented in Section 2.2.1. The

state variable evolves according to:

dXt = θ (at −Xt) dt+ σdZt

which corresponds to f1 = 1, µY = θa, f2 = −θX, σY = σ and σX = 0, and the

firm’s flow payoff is:

g(a, b,X) = b− ca2

Using Theorem 5 to characterize the optimality equation yields

U ′′(X) =
2r

σ2

(
U(X)− b∗ + c (a∗)2

)
− 2θ

σ2
(a∗ −X)U ′(X)

The sequential rationality condition for the firm is

a = arg max
a′

b− ca2 + U ′(X)θa′

In equilibrium, the firm chooses action

a∗(X,U ′(X)) = min

{
σθ

2cr
U ′(Xt), a

}
This constructs equilibrium behavior and payoffs as a function of the current product

quality X and the solution to the optimality equation, U . Numerical methods can now

be used to estimate a solution U to the optimality equation. Calibrating the model

with a set of parameters will then fully determine equilibrium actions and payoffs as a

function of the current product quality. As discussed in 2.2.1, the empirical predictions
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of this application are:

1. The firm’s continuation value is increasing in the current product quality

2. The firm’s incentives to invest in quality are highest when the current product

quality is at an intermediate level. As such, the firm goes through phases of

”reputation building”, during which the firm chooses high investment levels and

product quality increases in expectation, and ”reputation riding”, during which

the firm chooses low investment levels and reaps the benefits of having a high

product quality.

The firm’s equilibrium payoff captures the future value of owning a product of a given

quality level, and as such, can be interpreted as the asset value of the firm.

2.4.2 Uniqueness of Markovian Equilibrium

The second main result of the paper establishes conditions under which there is

a unique Markovian equilibrium, which is also the unique equilibrium in the class of all

Perfect Public Equilibria. The first step of this result is to establish when the optimality

equation has a unique bounded solution. Recall that each solution to the optimality

equation characterized in Theorem 5 characterizes a single Markovian equilibrium.

Thus, when the optimality equation has a unique solution, there is a unique Markovian

equilibrium. The second step of the result is to prove that there are no non-Markovian

PPE, and as such, this unique Markovian equilibrium is the unique PPE.

The optimality equation will have a unique solution when its solution satisfies

certain boundary conditions as the state variable approaches its upper and lower bound

(in the case of an unbounded state space, as the state variable converges to positive or

negative infinity). The boundary conditions for the optimality equation depend on the

rate at which the drift and volatility of the state variable converge as the state variable

approaches its upper and lower bound. As such, the key condition that ensures a unique
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solution to the optimality equation is an assumption on the limiting behavior of the drift

and volatility of the state variable.

Assumption 4. 1. If the state space is bounded, Ξ = [X,X], then as X ap-

proaches its upper and lower bound
{
X,X

}
, the functions governing the tran-

sition of the state variable satisfy the following limiting behavior:

(a) The drift of the state variable converges to zero at a linear rate, or faster:

f2(b,X) and f1(b,X) are O(X∗ −X) as X → X∗ ∈
{
X,X

}
.

(b) The volatility of the state variable converges to zero at a linear rate, or

faster: 1/f1(b,X)σY (b) + σX(X) is O(1/ (X∗ −X)) as X → X∗ ∈{
X,X

}
.

2. If the state space is unbounded, Ξ = R, then as X approaches positive and neg-

ative infinity, the functions governing the transition of the state variable satisfy

the following limiting behavior:

(a) The drift of the state variable grows linearly, or slower: f2(b,X) and

f1(b,X) are O(X) as X → {−∞,∞}.

(b) The volatility of the state variable is bounded: f1(b,X)σY (b) + σX(X) is

O(1) as X → {−∞,∞}.

When the support is bounded, this assumption requires that the upper and lower

bounds of the state space are absorbing points. The drift and volatility of the state vari-

able must converge to zero at a linear rate, or faster, as the state variable approaches its

boundary. When the support is unbounded, these assumptions require that the drift of

the state variable grows at a linear rate, or slower, as the magnitude of the state becomes

arbitrarily large, and that the volatility of the state variable is uniformly bounded. The

role this assumption plays in establishing equilibrium uniqueness is discussed follow-

ing the presentation of the result.
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Remark 4. When the endpoints of the state space are absorbing points, whether the

state variable actually converges to one of its absorbing points with positive proba-

bility will depend on the relationship between the drift and the volatility as the state

variable approaches its boundary points. It is possible that the state variable con-

verges to an absorbing point with probability zero.

The following theorem establishes the uniqueness of a Markovian equilibrium

in the class of all Perfect Public Equilibria.

Theorem 6. Suppose Assumptions 1, 2, 3 and 4 hold. Then, for each initial value of

the state variable X0 ∈ Ξ, there exists a unique perfect public equilibrium, which is

Markovian, with continuation values characterized by the unique bounded solution U

of the optimality equation, yielding equilibrium payoff U(X0).

1. When the state space is bounded, Ξ = [X,X], then the solution satisfies the

following boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

2. When the state space is unbounded, Ξ = R, then the solution satisfies the fol-

lowing boundary conditions:

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

I briefly relate the boundary conditions characterized in Theorem 6 to equilib-

rium behavior and payoffs, and then outline the intuition behind the uniqueness result.

These boundary conditions have several implications for equilibrium play. Recall the

incentive constraint for the agency from Theorem 5. The link between the agency’s
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action and future payoffs is proportional to the slope of the continuation value and the

drift component of the state variable that depends on the public signal, U ′(X)f1(b,X).

The assumption on the growth rate of f1(b,X) ensures that U ′(X)f1(b,X) converges

to zero at the boundary points (in the unbounded case, as the state variable approaches

positive or negative infinity). When this is the case, the agency’s incentive constraint

is reduced to the myopic optimization of its instantaneous flow payoff at the boundary

points. Thus, at the upper and lower bound of the state space (in the limit for an un-

bounded state space), the agency plays a static Nash equilibrium action. Additionally,

continuation payoffs are equal to the Nash equilibrium payoff of the static game at the

boundary points.

I next provide a sketch of the proof for the existence of a unique PPE, which

is Markovian. The first step in proving this result is establishing that the optimality

equation has a unique solution. This is done so in two parts: (i) showing that any

solution to the optimality equation must satisfy the same boundary conditions, and (ii)

showing that it is not possible for two different solutions to the optimality equation to

satisfy the same boundary conditions.

I discuss the boundary conditions for an unbounded state space; the case of a

bounded state space is analogous. Suppose U is a bounded solution to the optimality

equation. The U , and its first and second derivative, must satisfy the following set of

boundary conditions. U will have a well-defined limit at the boundary points when

the static Nash equilibrium payoff function has a well-defined limit, which is guaran-

teed given the Lipschitz continuity of the Nash equilibrium correspondence and the

agency’s payoff function. The boundedness of U coupled with the assumption that the

static Nash equilibrium payoff function is monotonic for large X ensures that the first

derivative of U converges to zero, and does so faster than 1/X .6 This establishes the

6The monotonicity assumption on the static Nash equilibrium payoff function, v(X), (Assumption
3) plays a key role in ensuring the limit of the first derivative exists. It is possible for a bounded function
to converge to a finite limit, but have a derivative that oscillates. This assumption guarantees that U
is monotonic for large X , and prevents U ′ from oscillating. A similar assumption is not necessary in
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boundary condition on U ′ presented in Theorem 6,

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

The boundedness of U also ensures that the second derivative, U ′′, doesn’t converge to

a constant.7 The optimality equation in Theorem 5 specifies the relationship between

U and its first and second derivative. This relationship, coupled with Assumption 4 is

used to establish the boundary condition for U . From the optimality equation,

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 2r

[
U(X)− g(a, b,X)

]
−2
[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

Consider the limit of the optimality equation as the state variable approaches positive

infinity. Under the assumption that the drift of the state variable has linear growth (f1

and f2), the second term on the right hand side converges to zero, and the flow payoff

g(a, b,X) converges to v∞. (Recall that the agency plays a myopic best response at

the boundaries, which yields a flow payoff equal to the static Nash equilibrium payoff

v∞). Then when the volatility of the state variable, f1(b,X)2σ2
Y +σ2

X(X), is bounded,

as is assumed in Assumption 4, U must also converge to v∞ to prevent the U ′′ from

converging to a constant. This establishes the boundary condition on U presented in

Theorem 6,

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

Given Assumption 4, any solution to the optimality equation must satisfy these

boundary conditions. Showing that it is not possible for two different solutions U1 and

U2 to both satisfy these boundary conditions concludes the proof that the optimality

equation has a unique solution. This establishes the existence of a unique Markovian

the bounded state space case, as the Lipschitz continuity of v is sufficient to ensure the limit of U ′ is
well-defined.

7The boundedness of U ensures that U ′′ either converges to zero, or oscillates around zero.
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equilibrium.

The second step in proving the existence of a unique PPE is showing that there

are no non-Markovian PPE, and as such, this unique Markovian equilibrium is the

unique PPE. The intuition behind this result, and its relationship with the continuous

time literature, is discussed in depth following an example to illustrate Theorem 6.

Example to illustrate Theorem 6

I next illustrate that the persistent investment example satisfies the assumptions

for Theorem 6 and has a unique PPE, which is Markovian.

Example 3. In the persistent investment model, the state variable evolves according

to:

dXt = θ (at −Xt) dt+ σdZt

The drift of the state variable is θ (at −Xt), which grows linearly as |X| approaches

infinity. The volatility of the state variable is σ, which is bounded uniformly with re-

spect to X , since it is constant. This example satisfies Assumption 4. As characterized

in Section 2.2.1, the unique stage game Nash equilibrium is for the firm to choose

zero investment, and consumers to choose a purchase level of b = 3 when X > 3/λ.

This ensures the monotonicity assumption of the static Nash payoffs, Assumption 3,

is satisfied. Section 2.4.1 established that this example satisfies the other required as-

sumptions for Theorem 6. Therefore, this example has a unique Markovian equilibrium

that satisfies the following boundary conditions:

lim
X→∞

U(X) = 3 and lim
X→−∞

U(X) = 0

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

In this equilibrium, the firm’s action converges to the static Nash best response of zero

investment as the product quality becomes large, and the firm receives an equilibrium
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payoff of 3, the highest feasible payoff for the firm.

Intertemporal Incentives in Stochastic Games

The fact that the unique PPE is Markovian yields an important insight on the

role action persistence plays in generating intertemporal incentives. In a stochastic

game of imperfect monitoring, intertemporal incentives can be generated through two

potential channels: (1) conditioning future equilibrium play on the public signal and

(2) the effect of the current action on the set of future feasible payoffs via the state

variable. Equilibrium play in a Markovian equilibrium is completely specified by the

current value of the state variable, and the public signal is ignored. As such, the sole

source of intertemporal incentives in a Markovian equilibrium is from the impact that

the current action has on the set of future feasible payoffs. When this equilibrium is

unique, it precludes the existence of any equilibria that use the public signal to generate

intertemporal incentives via continuation play. As such, the ability to generate effective

intertemporal incentives in a stochastic game of imperfect monitoring stems entirely

from the effect of the current action on the set of future feasible payoffs via the state

variable.

This insight relates to equilibrium degeneracy results from the continuous time

repeated games literature, which show that it is not possible to provide effective in-

tertemporal incentives in an imperfect monitoring game between a long-run and short-

run player. In a standard repeated game, conditioning future equilibrium play on the

public signal is the only potential channel for generating intertemporal incentives, and,

as is the case in the stochastic game, this is not an effective channel for incentive pro-

vision. Thus, the introduction of action persistence creates an essential avenue for

intertemporal incentive provision, and the ability to create effective intertemporal in-

centives in the stochastic game is entirely due to this additional this channel.

I next comment on the features of a stochastic game that allow Brownian in-

formation to be used to effectively provide intertemporal incentives. First consider the
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intuition behind why coordinating future equilibrium play is not an effective channel

for incentive provision in a game between a short-run and long-run player. As dis-

cussed following lemma 3, Brownian information must be used linearly. Given this

restriction, consider what happens when the long-run player’s continuation value is

at its upper bound. Using Brownian information linearly in a direction that is non-

tangential to the boundary of the equilibrium payoff set will result in the continua-

tion value escaping its upper bound with positive probability, a contradiction. Using

Brownian information linearly in a tangential manner is precluded by the presence of

myopic short-run players. Thus, it is not possible to linearly use Brownian informa-

tion to structure incentives at the long-run player’s highest continuation payoff, and

both the long-run player and short-run player will play a myopic best response at this

point. But this is precisely the definition of a static Nash equilibrium, and therefore

long-run player’s highest continuation payoff is bounded above by the highest static

Nash equilibrium payoff.

Now consider the introduction of action persistence. The firm’s incentive con-

straint and the evolution of the continuation value is still linear with respect to the

Brownian information, as captured by the process (βt)t≥0 that governs incentives and

the volatility of the continuation value. However, it is possible to characterize this pro-

cess in a manner that depends on the state variable, and ensures the continuation value

has zero volatility at states that yield the highest continuation payoff. This prevents

the continuation value from escaping its upper bound with positive probability. Note

this also implies that the long-run player must be playing a myopic best response at

the state that yields the highest continuation payoff. However, for other states, it is

possible to structure incentives such that the firm plays a non-myopic action.

Recall the characterization of (βt)t≥0 in Theorem 5, where βt is the volatility

of the agency’s continuation value and also governs the agency’s incentive constraint:

β1t = U ′(Xt)f1(bt, Xt)
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Suppose an interior state yields the highest continuation value. Then the slope of the

continuation value is zero at this point, U ′(Xt) = 0, which ensures the volatility of

the continuation value is zero at its upper bound. Suppose that a boundary of the state

space yields the highest continuation value. Then the boundary conditions character-

ized in Theorem 6 ensure that β1t converges to zero at this boundary, and therefore the

continuation value has zero volatility at its upper bound. However, for states that do not

yield the highest or lowest continuation value, it is possible for |β1t| > 0, which allows

intertemporal to be structured in a manner such that the agency plays a nonmyopic

action.

2.4.3 Stochastic Games without Action Persistence

Suppose that the state variable evolves independently of the public signal. This

removes the link between the agency’s action and evolution of the state variable, cre-

ating a stochastic game without action persistence. This section establishes that the

unique PPE in this setting is one in which the firm acts myopically and plays the static

Nash equilibrium of the current stage game.

Given an initial state X0, define the average discounted payoff from playing

the static Nash equilibrium action profile in each state as:

VNE(X0) = E

[
r

∫ ∞
0

e−rtv(Xt)dt

]
and the expected continuation payoff from playing a static Nash equilibrium action

profile as:

WNE(Xt) = Et

[
r

∫ ∞
t

e−rsv(Xs)dt

]
where these expectations are taken with respect to the state variable, given that the

state evolves according to the measure generated by the static Nash equilibrium action

profile S∗(X, 0) = (a(X, 0), b(X, 0))X∈Ξ. This expression defines the stochastic game
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payoff that the agency will earn if it myopically optimizes flow payoffs each instant. It

is important to note that repeated play of the static Nash action profile is not necessarily

an equilibrium strategy profile of the stochastic game; this is a general property of

stochastic games.

The following Corollary establishes that in a stochastic game without action

persistence, repeated play of the static Nash action profile is an equilibrium strategy

profile; in fact, it is the unique equilibrium strategy profile, and yields the firm an

equilibrium payoff of VNE(X0). The corollary also directly characterizes VNE(X0) as

the solution to a non-stochastic second order differential equation (recall that VNE(X0)

is an expectation with respect to the state variable).

Corollary 2. Suppose that the transition function of the state variable is independent

of the public signal, f1 = 0, for all X , and suppose Assumptions 1 and 2 hold. Then,

given an initial state X0, there is a unique perfect public equilibrium characterized by

the unique bounded U(X) solution to:

U ′′(X) =
2r
[
U(X)− g(a, b,X)− f2(b,X)U ′(X)

]
σ2
X(X)

This solution characterizes a Markovian equilibrium with:

1. Equilibrium payoff U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 uniquely specified by the static Nash equilibrium

action profile, for each X:

S∗(X, 0) =

{
a = arg maxa′ g(a′, b,X)

b = B(a,X)

}

Additionally, this equilibrium payoff and the continuation values correspond
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to the expected payoff from playing the static Nash equilibrium action profile,

U(X0) = VNE(X0) and (U(Xt))t≥0 = (WNE(Xt))t≥0.

This result is a direct application of Theorem 5. The equilibrium character-

ization in Theorem 5 is used to characterize the optimality equation and incentive

constraint for the firm when f1 = 0. In the absence of a link between the agency’s

action and the state variable, the firm plays a static best response each instant.

It is interesting to note that the uniqueness result in a game without action

persistence stems directly from the existence characterization in Theorem 5, and does

not require the additional assumptions (Assumptions 3 and 4) necessary for Theorem

6. To see why, note that the incentive constraint is independent of the solution U to the

optimality equation. As such, any solution to the optimality equation yields the same

equilibrium action profile - namely, the action profile in which the agency plays a static

best response each instant. Thus, all Markovian equilibrium action profiles induce the

same measure over the path of the state variable. When a static best response is played

each period, the continuation value in any Markovian equilibrium evolves according

to the expected payoff from playing the static Nash equilibrium action profile in each

state:

Wt = Et

[
r

∫ ∞
t

e−rsv(Xs)ds

]
= WNE(Xt)

where the expectation is taken with respect to the measure over the state variable.

Given that this measure over the state variable is the same in any Markovian equilib-

rium, any solution to the optimality equation must yield the same continuation values

(U(Xt))t≥0 = (WNE(Xt))t≥0 for all X ∈ Ξ. Therefore, this solution must be unique.

The solution to the optimality equation in Corollary 2 can be used to explicitly charac-

terize the expectation VNE(X0) and .WNE(Xt).

The existence of a solution to the optimality equation requires that the volatility
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of the state variable is bounded away from zero at interior points (Assumption 1).

Note that when the state variable does not depend on the public signal, this assumption

requires σ2
X(Xt) to be bounded away from zero to ensure that the state variable evolves

stochastically.

Although Assumption 4 and 3 are not required to establish the existence of a

unique PPE in the stochastic game without action persistence, if they do hold, then

Theorem 6 can be used to characterize continuation payoffs at the boundary points

of the state space. As established in Theorem 6, as the state variable approaches its

boundary points (when the state space is unbounded, positive and negative infinity),

then continuation payoffs approach the static Nash equilibrium payoff at the bound-

ary points. Thus, the expected payoff from repeated play of the static game Nash

equilibrium action profile approaches the payoff of the static Nash equilibrium at the

boundary point of the state space.

Corollary 3. Suppose Assumptions 3 and 4 also hold. Then if the state space is

bounded,

lim
X→X

WNE(X) = v(X) and lim
X→X

WNE(X) = v (X)

and if the state space is unbounded

lim
X→∞

WNE(X) = v∞ and lim
X→−∞

WNE(X) = v−∞

This result is a direct implication of Theorem 6.

The degeneracy result of this section relates to the discussion of intertemporal

incentive provision in Section 2.4.2. When the state variable evolves independently of

the agency’s action, this removes the second channel for intertemporal incentives that

links the agency’s action to the set of future feasible payoffs. Therefore, the only po-

tential channel for intertemporal incentive provision is the coordination of equilibrium

play, and, as discussed in 2.4.2, it is not possible to effectively structure incentives via

this channel. The agency plays myopically in the unique equilibrium of this setting.
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2.4.4 Properties of Equilibrium Payoffs

This section uses Theorem 5 and 6 to describe several interesting properties

relating the agency’s equilibrium payoffs to the structure of the underlying stage game.

The main results of this section are to provide an upper and lower bound on the PPE

payoffs of the stochastic game across all states and characterize how the PPE payoff

of the agency varies with the state variable

First, I examine properties of the highest and lowest PPE payoffs across all

states, represented by W and W , respectively. Incentives for agency to choose a non-

myopic action in the current period are provided through the link between the agency’s

action, the transition of the state variable and future feasible payoffs. When the con-

tinuation value is at its upper or lower bound, then the continuation value must have

zero volatility so as not to escape its bound. The volatility of the continuation value

is proportional to βt, which also determines the incentive constraint for the agency.

If the continuation value doesn’t respond to the public signal, then the agency will

myopically best respond by choosing the action that maximizes current flow payoffs.

Therefore, the action profile at the set of states that yield the highest and lowest PPE

payoffs across all states must be a Nash equilibrium of the stage game at that state.

At its upper bound, the drift of the continuation value must be negative. Using

the law of motion for the continuation value characterized above, this means that the

current flow payoff must exceed the continuation value. The current flow payoff in any

stage Nash equilibrium is bounded above by v∗, the highest stage Nash equilibrium

payoff across all states. Thus, the highest PPE payoff across all states is bounded

above by the highest static Nash equilibrium payoff across all states. Similar reasoning

applies to showing that the lowest PPE payoff across all states is bounded below by

the lowest static Nash equilibrium payoff.

Theorem 7. W ≤ v∗ and W ≥ v∗

If there is an absorbing state X in the set of states that yields the highest stage
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Nash equilibrium payoff, then it is possible to remain in this state once it is reached.

Thus, the highest PPE payoff across all states arises from repeated play of this stage

Nash equilibrium, and yields a continuation value of W = v∗. By construction, this

continuation value occurs at the state X that yields the highest static payoff. An anal-

ogous result holds for the lowest PPE payoff.

This result has an intuitive relation to reputation models of incomplete infor-

mation. Recall that the state variable in this model is the consumers’ beliefs about

the firm’s type. Therefore, X = 0 and X = 1 are absorbing states. When X = 0,

consumers place probability one on the firm being a normal type, and it is not possi-

ble for the firm to earn payoffs above the static Nash equilibrium payoff of the game

with complete information. Provided the firm’s payoffs are increasing in the belief it

is a behavioral type, the lowest PPE payoff occurs at X = 0 and is equal to the Nash

equilibrium payoff of the complete information game, v∗. Conditional on the firm

being a normal type, the transition function governing beliefs has negative drift, and

beliefs converge to the absorbing state X = 0. This captures the temporary reputa-

tion phenomenon associated with reputation models of incomplete information. Once

consumers learn the firm’s type, it is not possible to return to a state X > 0. Note

that although X = 1 is also an absorbing state, but conditional on the firm being the

normal type, the state variable never converges to X = 1

In the current model, if either endpoint is an absorbing state, and the state

variable converges to this endpoint, then the intertemporal incentives created by the

stochastic game will be temporary. Once this absorbing state is reached, the dynamic

game is reduced to a standard repeated game and the unique equilibrium involves re-

peated play of the static Nash equilibrium. On the other hand, if neither endpoint is

an absorbing state, or if the state variable doesn’t converge to its absorbing states with

positive probability, then the intertemporal incentives created by the stochastic game

are permanent. As noted in the above discussion, it is possible to have an absorbing

state that the state variable converges to with probability zero.
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The second main result on PPE payoffs relates how the continuation value of

the agency changes with the state variable to how the stage Nash equilibrium of the

underlying stage game varies with the state variable.

Theorem 8. Assume 1, 2, 3 and 4. The following properties show how PPE payoffs

change with the state variable:

1. Suppose v(X) is increasing (decreasing) in X.Then U(X) is also increasing

(decreasing) inX . The state that yields the highest static Nash payoff also yields

the highest PPE payoff; likewise, the state that yields the lowest static Nash

payoff also yields the lowest PPE payoff.

2. Suppose v(X) has a unique interior maximum X∗, and v is monotonically in-

creasing (decreasing) forX < X∗ (X > X∗). ThenU(X) has a unique interior

maximum at X∗,and U is monotonically increasing (decreasing) for X < X∗

(X > X∗). The state that yields the highest static Nash payoff also yields the

highest PPE payoff, whereas and the state that yields the lowest PPE payoff is a

boundary point.

3. Suppose v(X) has a unique interior minimum X∗, and v is monotonically de-

creasing (increasing) forX < X∗ (X > X∗). Then U(X) has a unique interior

minimum at X∗,and U is monotonically decreasing (increasing) for X < X∗

(X > X∗). The state that yields the lowest static Nash payoff also yields the

lowest PPE payoff, whereas and the state that yields the highest PPE payoff is a

boundary point.

If the stage Nash equilibrium payoff of the agency is increasing in the state

variable, then the PPE payoff to the agency is also increasing in the the state variable.

The state that yields the highest PPE payoff to the agency corresponds to the state that

yields the highest stage Nash equilibrium payoff, and the state that yields the lowest

PPE payoff to the agency corresponds to the state that yields the lowest PPE payoff.
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Stochastic games differ from standard repeated games in that it is not necessarily pos-

sible to achieve an equilibrium payoff of the stochastic game that is equal to the stage

Nash equilibrium payoff. Thus, for intermediate values of the state variable, the PPE

payoff may lie above or below the static Nash equilibrium payoff. A symmetric re-

sult holds if the stage Nash equilibrium payoff of the agency is decreasing in the state

variable.

If the stage Nash equilibrium payoff of the agency is concave in the state vari-

able, then the PPE payoff will be increasing over the region that the stage Nash equi-

librium payoff is increasing, and decreasing over the region that the stage Nash equi-

librium payoff is decreasing. The maximum PPE payoff will occur at the state that

yields the maximum Nash equilibrium payoff of the stage game, and this PPE payoff

will lie below maximum stage Nash equilibrium payoff, W < v∗. The state that yields

the lowest PPE payoff will occur at either endpoint of the state space. If the endpoint

that yields the lowest stage Nash equilibrium payoff is an absorbing state, then this

state also yields the lowest PPE payoff and W = v∗. Otherwise, the endpoint that

yields the lowest stage Nash equilibrium payoff will depend on the transition function.

A symmetric result holds if the stage Nash equilibrium payoff of the agency is convex

in the state variable.

This result characterizes properties of the PPE payoff as a function of the state

variable for several relevant classes of games. More generally, if the stage game Nash

equilibrium payoff is not monotonic or single-peaked in the state variable, then the

highest and lowest PPE payoffs of the stochastic game may not coincide with the

states that yield the maximum or minimum stage game Nash equilibrium payoffs.

2.5 Conclusion

Persistence and rigidities are pervasive in economics. There are many situa-

tions in which a payoff-relevant stock variable is determined not only by actions cho-
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sen today, but also by the history of past actions. This paper shows that this realistic

departure from a standard repeated game provides a new channel for intertemporal in-

centives. The long-run player realizes that the impact of the action it chooses today

will continue to be felt tomorrow, and incorporates the future value of this action into

its decision. Persistence is a particularly important source of intertemporal incentives

in the class of games examined in this paper; in the absence of such persistence, the

long-run player cannot earn payoffs higher than those earned by playing a myopic best

response.

The main results of this paper are to establish conditions on the structure of the

game that guarantee existence of Markovian equilibria, and uniqueness of a perfect

public equilibria, which is Markovian. Markovian equilibria have attractive features

for use in applied work. These results not only provide a theoretical justification for

restricting attention to such equilibria, but also develop a tractable method to charac-

terize equilibrium behavior and payoffs in a Markovian equilibrium. The equilibrium

dynamics can be directly related to observable features of a firm, or other long-run

player, and used to generate empirically testable predictions.

This paper leaves open several interesting avenues for future research. Contin-

uous time provides a tractable framework for studying games of imperfect monitoring.

Ideally, equilibria of the continuous time will be robust in the sense that nearby discrete

time games will exhibit similar equilibrium properties, as the period length becomes

small. Faingold (2008) establishes such a robustness property in the context of a repu-

tation game with commitment types. Whether the current setting is robust to the period

length remains an open question.

Often, multiple long-run players may compete for the support of a fixed pop-

ulation of small players. For instance, rival firms may strive for a larger consumer

base, political parties may contend for office, or universities may vie for the brightest

students. These examples describe a setting in which each long-run player takes an ac-

tion that persistently affects its state variable. Analyzing a setting with multiple state
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variables is technically challenging; if one could reduce such a game to a setting with

a single payoff-relevant state, this simplification could yield a tractable characteriza-

tion of equilibrium dynamics. For example, perhaps it is only the difference between

two firms’ product qualities that guide consumers’ purchase behavior, or the differ-

ence between the platform of two political parties that determines constituents voting

behavior.

Additionally, examining other classes of stochastic games, such as games be-

tween two long-run players whose actions jointly determine a stock variable, or games

with different information structures governing the state transitions, remain unex-

plored.

I thank David Miller, Paul Niehaus, Joel Sobel, Jeroen Swinkels, Joel Watson

and especially Nageeb Ali for useful comments. I also thank participants of the UCSD

theory seminar and graduate student research seminar for helpful feedback.

2.6 Appendix

2.6.1 Proof of Lemma 3

Evolution of the continuation value

Let Wt(S) be the firm’s continuation value at time t given Xt = X , where

S = (at, bt)t≥0, and let Vt(S) be the average discounted payoff conditional on info at

time t.

Vt(S) : = Et

[
r

∫ ∞
0

e−rsg(as, bs, Xs)ds

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S)

Lemma 4. The average discounted payoff at time t, Vt(S), is a martingale.
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Et[Vt+k(S)] = Et

[
r

∫ t+k

0

e−rsg(as, bs, Xs)ds+ e−r(t+k)Wt+k(S)

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds

+Et[r

∫ t+k

t

e−rsg(as, bs, Xs)ds

+e−r(t+k)Et+k

[
r

∫ ∞
t+k

e−r(s−(t+k))g(as, bs, Xs)ds

]
]

= r

∫ t

0

e−rsg(as, bs, Xs)ds

+e−rtEt[r

∫ t+k

t

e−r(s−t)g(as, bs, Xs)ds

+r

∫ ∞
t+k

e−r(s−t)g(as, bs, Xs)ds]

= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S) = Vt(S)

Lemma 5. In any PPE, the continuation value evolves according to the stochastic

differential equation

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+rβ1t

[
dYt − µY (at, bt)dt

]
+rβ2tσX(Xt)dZ

X
t

Take the derivative of Vt(S) wrt t :

dVt(S) = re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S)

By the martingale representation theorem, there exists a progressively measurable pro-

cess (βt)t≥0 such that Vt can be represented as:

dVt(S) = re−rt
[
β1tσY dZ

Y
t + β2tσX(Xt)dZ

X
t

]
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Combining these two expressions for dVt(S) yields the law of motion for the continu-

ation value:

re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S)

= re−rt
[
β1tσY dZ

Y
t + β2tσX(Xt)dZ

X
t

]
⇒ dWt(S) = rWt(S)dt− rg(at, bt, Xt)dt

+rβ1tσY dZ
Y
t + rβ2tσX(Xt)dZ

X
t

⇒ dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt

+rβ1t

[
dYt − µY (at, bt)dt

]
+ rβ2tσX(Xt)dZ

X
t

Q.E.D.

Sequential Rationality

Lemma 6. A strategy (at)t≥0 is sequentially rational for the agency if, given (βt)t≥0,

for all t:

at ∈ arg max g(a′, bt, Xt) + β1tµY (a′, bt)

Consider strategy profile (at, bt)t≥0 played from period τ onwards and alterna-

tive strategy (ãt, bt)t≥0 played up to time τ . Recall that all values of Xt are possible

under both strategies, but that each strategy induces a different measure over sample

paths (Xt)t≥0.

At time τ , the state variable is equal to Xτ . Action aτ will induce dYτ =

µY (aτ , bτ )dτ + σY dZ
Y
τ whereas action ãτ will induce dYτ = µY (ãτ , bτ )dτ + σY dZ

Y
τ .

Let Ṽτ be is expected average payoff conditional on info at time τ when follows ã

up to τ and a afterwards, and let Wτ be the continuation value when the firm follows

strategy (at)t≥0 starting at time τ .

Ṽτ = r

∫ τ

0

e−rsg(ãs, bs, Xs)ds+ e−rτWτ
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Consider changing τ so that firm plays strategy (ãt, bt) for another instant: dṼτ is the

change in average expected payoffs when the firm switches to (at)t≥0 at τ +dτ instead

of τ . Note

dWτ = r
(
Wτ − g(aτ , bτ , Xτ )

)
dτ

+rβ1t

[
dYτ − µY (aτ , bτ )dτ

]
+rβ2τσX(bτ , Xτ )dZ

X
τ

when firm switches strategies at time τ .

dṼτ = re−rτ
[
g(ãτ , bτ , Xτ )−Wτ

]
dτ + e−rτdWτ

= re−rτ
[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ

+re−rτβ1τ

[
dYτ − µY (aτ , bτ )dτ

]
+re−rτβ2τσX(bτ , Xτ )dZ

X
τ

= re−rτ


[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ

+re−rτrβ1τ

[
µY (ãτ , bτ )dτ − µY (aτ , bτ )dτ + σY dZ

Y
τ .
]

+re−rτβ2τσX(bτ , Xτ )dZ
X
τ


There are two components to this strategy change: how it affects the immediate flow

payoff and how it affects future public signals Yt, which impacts the continuation value

(captured in process β). The profile (ãt, bt)t≥0 yields the firm a payoff of:

W̃0 = E0

[
Ṽ∞

]
= E0

[
Ṽ0 +

∫ ∞
0

dṼt

]
= W0 + E0

[
r

∫ ∞
0

e−rt

{
g(ãt, bt, Xt) + β1tµY (ãt, bt)

−g(at, bt, Xt)− βtµY (at, bt)

}
dt

]

If

g(at, bt, Xt) + β1tµY (at, bt) ≥ g(ãt, bt, Xt) + β1tµY (ãt, bt)
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holds for all t ≥ 0, Then W0 ≥ W̃0 and deviating to S = (ãt, bt) is not a profitable

deviation. This yields the condition for sequential rationality for the firm.

Q.E.D.

2.6.2 Proof of Theorem 5: Characterization of Markovian Equi-

librium

Theorem 9. Suppose Assumptions 1 and 2 hold. Then given X0, any solution U(X)

to the second order differential equation,

U ′′(X) =
2r
[
U(X)− g(a, b,X)

]
f 2

1 (b,X)σ2
Y + σ2

X(X)
−

2
[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

f 2
1 (b,X)σ2

Y + σ2
X(X)

referred to as the optimality equation, characterizes a unique Markovian equilibrium

in the state variable (Xt)t≥0 with

1. Equilibrium payoffs U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (at, bt)t≥0 =
(
a∗(Xt), b

∗
(Xt)

)
t≥0

uniquely specified by

S∗(X,U ′(X)f1(b,X)) ={
a = arg maxa′ rg(a′, b,X) + U ′(X)f1(b,X)µ(a′, b)

b = B(a,X)

}

The optimality equation has at least one solution U ∈ C2(R) that lies in the

range of feasible payoffs for the agency U(X) ∈
[
g, g
]

for all X ∈ Ξ. Thus,

there exists at least on e Markovian equilibrium.
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Proof of form of Optimality Equation:

Lemma 7. If a Markovian equilibrium exists, it takes the following form:

1. Continuation values are characterized by a solution U(X) to the optimality

equation:

U ′′(X) =
2r
(
U(X)− g(a, b,X)

)[
f1(b,X)2σ2

Y + σ2
X(X)

] − 2
[
f1(b,X)µY (a, b) + f2(b,X)

][
f1(b,X)2σ2

Y + σ2
X(X)

] U ′(X)

2. Given solution U(X), the process governing incentives for the agency is char-

acterized by:

rβ1 = U ′(X)f1(b,X)

rβ2 = U ′(X)

Look for a Markovian equilibrium in the state variable Xt. In a Markovian

equilibrium, the continuation value and equilibrium actions are characterized as a

function of the state variable as Wt = U(Xt), at = a(Xt) and bt = b(Xt). Note

that ZY
t and ZX

t are orthogonal. By Ito’s formula, in a Markovian equilibrium, the

continuation value will evolve according to

dWt = U ′(Xt)dXt +
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

= U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
Also, given players are playing strategy

(
at, bt

)
t≥0

and the state variable evolves ac-
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cording to the transition function dXt, the continuation value evolves according to:

dWt = r
(
Wt − g(at, bt, Xt)

)
dt+ rβ1tσY dZ

Y
t + rβ2tσX(Xt)dZ

X
t

We can match the drift of these two characterizations to obtain the optimality equation:

r
(
U(X)− g(a, b,X)

)
= U ′(X)

[
f1(b,X)µY (a, b) + f2(b,X)

]
+

1

2
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
⇒ U ′′(X) =

2r
(
U(X)− g(a, b,X)

)[
f1(b,X)2σ2

Y + σ2
X(X)

]
−

2
[
f1(b,X)µY (a, b) + f2(b,X)

][
f1(b,X)2σ2

Y + σ2
X(X)

] U ′(X)

for strategy profile (a, b) = (a(X), b(X)), which is a second order non-homogenous

differential equation. Matching the volatility characterizes the process governing in-

centives:

rβ1t = U ′(Xt)f1(bt, Xt)

rβ2τ = U ′(Xt)

Plugging these into the constraints for sequential rationality yields

S∗(X,U ′(X)f1(bt, Xt)) = (a, b) s.t.

a = arg max rg(a′, b,X) + U ′(X)f1(b,X)µ(a, b)

b = B(a,X)

which are unique by Assumption 2.

Q.E.D.
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Prove existence of bounded solution to optimality equation

Linear Growth

Lemma 8. The optimality equation has linear growth. Suppose Assumption 1 holds.

For all M > 0 and compact intervals I ⊂ Ξ, there exists a KI > 0 such that for all

X ∈ I ,
(
a, b
)
∈ A×B, u ∈ [−M,M ] and u′ ∈ R,

u′′ =
r
[
u− g(a, b,X)

]
−
[
f1(b,X)µY (a, b) + f2(b,X)

]
u′[

f1(b,X)2σ2
Y + σX(X)2

] ≤ K (1 + |u′|)

Follows directly from the fact that u ∈ [−M,M ], g, f1, µY and f2 are Lipschitz

continuous, the bound on f1(b,X)2σ2
Y + σ2

X(X), and X ∈ I.
Q.E.D.

Existence for Unbounded support

Theorem 10. The optimality equation has at least one solution U ∈ C2(R) that lies

in the range of feasible payoffs for the agency i.e. for all X ∈ R

inf g(a, b,X) ≤ U(X) ≤ sup g(a, b,X)

The existence proof uses the following theorem from Schmitt, which gives suf-

ficient conditions for the existence of a bounded solution to a second order differential

equation defined on R3. The Theorem is reproduced below.

Theorem 11. Let α, β ∈ R be such that α ≤ β, E = {(t, u, v) ∈ R3|α ≤ u ≤ β} and

f : E → R be continuous. Assume that α and β are such that for all t ∈ R

f(t, α, 0) ≤ 0

f(t, β, 0) ≥ 0
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Assume that for any bounded interval I , there exists a positive continuous function

φI : R+ → R that satisfies ∫ ∞
0

sds

φI(s)
=∞

and for all t ∈ I , (u, v) ∈ R2 with α ≤ u ≤ β,

|f (t, u, v)| ≤ φI(|v|)

Then the equation u′′ = f (t, u, v) has at least one solution on u ∈ C2(R) such that

for all t ∈ R,

α ≤ u(t) ≤ β

Let g = sup g(a, b,X) and g = inf g(a, b,X), which are well defined since g is

bounded. Applying the above theorem with α = g and β = g to h(X,U(X), U ′(X))

yields

h(X, g, 0) =
2r[

f1(b,X)2σ2
Y + σ2

X(X)
] (g − g(a, b,X)

)
≤ 0

h(X, g, 0) =
2r[

f1(b,X)2σ2
Y + σ2

X(X)
] (g − g(a, b,X)

)
≥ 0

for all X. For any bounded interval I , define

φI(v) =
2r

σ2
I

(
g − g

)
− 2µI

σ2
I

v

where σI = infb∈B,X∈I
[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

which is positive by assumption.and

µI = supb∈B,X∈I f1(b,X)µY (a, b) + f2(b,X), which are well-defined given f1 , f2 ,

µY , σY and σX are Lipschitz continuous and B is compact. Note∫ ∞
0

sds

φI(s)
=∞
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and for all X ∈ I, (u, v) ∈ R2 with g ≤ u ≤ g

|h(X, u, v)| =

∣∣∣∣∣∣
2r

f1(b,X)2σ2
Y +σ2

X(X)

(
u− g(a(X), b(X), X)

)
−2[f1(b,X)µY (a,b)+f2(b,X)]

f1(b,X)2σ2
Y +σ2

X(X)
v

∣∣∣∣∣∣
≤ φI(|v|)

Additionally, h(Xt, U(Xt), U
′(Xt)) is continuous given that f1, f2, µY , σY and

σX are Lipschitz continuous and g(a(X), b(X), X) is continuous. Thus, h(X,U(X),

U ′(X)) has at least one solution on U ∈ C2(R) such that for all X ∈ R,

g ≤ U(X) ≤ g

Q.E.D.

Existence for Bounded support

Theorem 12. The optimality equation has at least one solution U ∈ C2(R) that lies

in the range of feasible payoffs for the agency i.e. for all X ∈ Ξ

inf g(a, b,X) ≤ U(X) ≤ sup g(a, b,X)

The existence proof utilizes standard existence results from de Coster and Ha-

bets (2006) and an extension in Faingold and Sannikov (2011), applied to the current

setting. The optimality equation is undefined at X and X , since the volatility of X is

zero. Therefore, an extension of standard existence results for second order ODEs is

necessary. The main idea is to show that the boundary value problem has a solution Un
on X ∈

[
X + 1/n,X − 1/n

]
for every n ∈ N, and then to show that this sequence of

solutions converges pointwise to a continuously differentiable function U defined on(
X,X

)
.
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Given the boundary value problem has a solutionUn for every n ∈ N, withX =

0 and X = 1, Faingold and Sannikov (2011) show that when the second derivative of

the ODE has quadratic growth, then a subsequence of (Un)n≥0 converges pointwise to

a continuously differentiable function U defined on (0, 1).

In this model, the second order derivative has linear growth, and therefore a

similar argument shows existence of a continuously differentiable function U defined

on
(
X,X

)
.

The existence results that are relevant for the current context are reproduced

below:

Lemma 9. Let E = {(t, u, v) ∈ Ξ×R2} and f : E → R be continuous. Assume that

for any interval I ⊂ Ξ,there exists a KI > 0 such that for all t ∈ I , (u, v) ∈ R2 with

α ≤ u ≤ β,

|f (t, u, v)| ≤ KI (1 + |v|)

Then the equation u′′ = f (t, u, v) has at least one solution on u ∈ C2(R) such that

for all t ∈ Ξ,

α ≤ u(t) ≤ β

Consider the optimality equation h(X,U(X), U ′(X)). Let g = sup g(a, b,X)

and g = inf g(a, b,X), which are well defined since g is bounded. By 8, for any

bounded interval I and u ∈
[
g, g
]
, there exists a KI such that

|f (t, u, v)| ≤ KI (1 + |v|)

Additionally, h(Xt, U(Xt), U
′(Xt)) is continuous given that f1, f2, µY , σY and σX are

Lipschitz continuous and g(a(X), b(X), X) is continuous. Let α = g and β = g. Then

h(X,U(X), U ′(X)) has at least one solution on U ∈ C2(R) such that for all X ∈ Ξ,

g ≤ U(X) ≤ g
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Q.E.D.

Construct a Markovian equilibrium

Suppose the state variable initially starts at X0 and U is a bounded solution to

the optimality equation. The action profile satisfying (a, b) = S∗(X,U ′(X)f1(b,X))

is unique and Lipschitz continuous in X and U . Thus, given X0, U and (at, bt)t≥0 =[
S∗(Xt, U

′(Xt)f1(bt, Xt))
]
t≥0

, the state variable uniquely evolves according to the

stochastic differential equation

dXt =
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt+ f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

yielding unique path (Xt)t≥0 given initial state X0. Given that U(Xt) is a bounded

process that satisfies

dU(Xt) = U ′(Xt)
[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
dt

+
1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
= r

(
U(Xt)− g(at, bt, Xt)

)
+ U ′(Xt)

[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
this process satisfies the conditions for the continuation value in a PPE characterized

in Lemma 3. Additionally, (at, bt)t≥0 satisfies the condition for sequential rationality

given process (βt)t≥0 =
(
U ′(Xt)f1(bt, Xt), U

′(Xt)
)
t≥0

. Thus, the strategy profile

(at, bt)t≥0 is a PPE yielding equilibrium payoff U(X0).

Q.E.D.
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2.6.3 Proof of Theorem 6: Characterize Unique Markovian Equi-

librium

Theorem 13. Suppose 4, 2 and 1 hold. Then, for each X0 ∈ Ξ, there exists a

unique perfect public equilibrium with continuation values characterized by the unique

bounded solution U of the optimality equation, yielding equilibrium payoff U(X0).

1. If Ξ = [X,X] then the solution satisfies the following boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

2. If Ξ = R then the solution satisfies the following boundary conditions:

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

Boundary Conditions

Boundary Conditions for Unbounded Support

Theorem 14. Any bounded solutionU of the optimality equation satisfies the following

boundary conditions

lim
X→∞

U(X) = v∞ and lim
X→−∞

U(X) = v−∞

lim
X→∞

XU ′(X) = lim
X→−∞

XU ′(X) = 0

lim
X→∞

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

lim
X→−∞

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

The proof proceeds by a series of lemmas.
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Lemma 10. If U is a bounded solution of the optimality equation, then limX→∞ U(X)

and limX→−∞ U(X) are well-defined.

Proof: Assume Assumption 3. This guarantees limX→∞ v(X) exists. U is

bounded, and therefore limX→∞ supU(X) and limX→∞ inf U(X) are well-defined.

Suppose limX→∞ supU(X) 6= limX→∞ inf U(X). Then there exists a sequence

(Xn)n∈N that correspond to local maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0.

Given the incentives for the agency, a stage nash equilibria is played when U ′(X) = 0,

yielding flow payoff v(X). From the optimality equation, this implies v(Xn) ≥
U(Xn). Likewise, there exists a sequence (Xm)m∈N that correspond to local min-

ima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0. This implies v(Xm) ≤ U(Xm). Thus,

limX→∞ sup v(X) 6= limX→∞ inf v(X). This is a contradiction, as limX→∞ v(X) is

well-defined. Thus, limX→∞ U(X) exists. The case of limX→−∞ U(X) is similar.

Q.E.D.

Lemma 11. If U(X) is a bounded solution of the optimality equation, then there exists

a δ such that for |X| > δ, U(X) is monotonic.

Proof: Assume Assumption 3. Suppose that there does not exist a δ such that

for X > δ, U is monotonic. Then for all δ > 0, there exists a Xn > δ that corresponds

to a local maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0 and there exists a Xm > δ

that corresponds to a local minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0, by the

continuity of U . Given the incentives for the agency, a stage nash equilibria is played

when U ′(X) = 0, yielding flow payoff v(X). From the optimality equation, this

implies v(Xn) ≥ U(Xn) at the maximum and v(Xm) ≤ U(Xm) at the minimum.

Thus, the oscillation of v(X) is at least as large as the oscillation of U(X). This is a

contradiction, as there exists a δ such that for X > δ, v(X) is monotonic.The case of

−X > δ is similar. Q.E.D.

Lemma 12. Given a function f(X) that is O(X) as X → {−∞,∞}, then any

bounded solution U of the optimality equation satisfies
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1.

lim
X→∞

inf f(X)U ′(X) ≤ 0 ≤ lim
X→∞

sup f(X)U ′(X)

lim
X→−∞

inf f(X)U ′(X) ≤ 0 ≤ lim
X→−∞

sup f(X)U ′(X)

2.

lim
X→∞

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→∞

sup f(X)2U ′′(X)

lim
X→−∞

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→−∞

sup f(X)2U ′′(X)

Note this is trivially satisfied if f(X) is O(1).

1. Suppose f(X) is O(X) and limX→∞ inf |f(X)U ′(X)| > 0. Given f(X) is

O(X), there exists an M ∈ R and a δ1 ∈ R such that when X > δ1, |f(X)| ≤
M |X| Given limX→∞ inf |f(X)U ′(X)| > 0 , there exists a δ2 ∈ R and an

ε > 0 such that when X > δ2, |f(X)U ′(X)| > ε. Take δ = max {δ1, δ2}.
Then for X > δ, |U ′(X)| > ε

|f(X)| ≥
ε

MX
. Then the antiderivative of ε

MX
is

ε
M

lnX which converges to∞ as X →∞. This violates the boundedness of U .

Therefore limX→∞ inf f(X)U ′(X) ≤ 0. The proof is analogous for the other

cases.

2. Suppose f(X) is O(X) and limX→∞ inf |f(X)2U ′′(X)| > 0. Given f(X) is

O(X), there exists an M ∈ R and a δ1 ∈ R such that when X > δ1, |f(X)| ≤
MX and therefore, f(X)2 ≤ M2X2. There also exists a δ2 ∈ R and an ε > 0

such that when X > δ2, |f(X)2U ′′(X)| > ε. Take δ = max {δ1, δ2}. Then

for X > δ, |U ′′(X)| > ε
f(X)2

> ε
M2X2 . Then the antiderivative of ε

M2X2 is
−ε
M2 lnX which converges to −∞ as X →∞. This violates the boundedness of

U . Therefore limX→∞ inf |f(X)2U ′′(X)| ≤ 0. The proof is analogous for the

other cases.



116

Q.E.D.

Lemma 13. Given a function f(X) that is O(X) as X → {−∞,∞}, then any

bounded solution U of the optimality equation satisfies

lim
X→∞

f(X)U ′(X) = lim
X→−∞

f(X)U ′(X) = 0

Assume Assumption 3. By Lemma 12,

lim
X→∞

inf XU ′(X) ≤ 0 ≤ lim
X→∞

supXU ′(X)

. Suppose, without loss of generality, that limX→∞ supXU ′(X) > 0. By Lemma

11, there exists a δ > 0 such that U(X) is monotonic for X > δ. Then for X > δ,

U ′(X) doesn’t change sign and therefore, XU ′(X) doesn’t change sign. Therefore, if

limX→∞ supXU ′(X) > 0, then limX→∞ inf XU ′(X) > 0. This is a contradiction.

Thus, limX→∞ supXU ′(X) = 0. By similar reasoning, limX→∞ inf XU ′(X) = 0,

and therefore limX→∞XU
′(X) = 0. Suppose f(X) is O(X). Then there exists an

M ∈ R and a δ1 ∈ R such that when X > δ1, |f(X)| ≤ M |X|. Thus, for X > δ1,

|f(X)U ′(X)| ≤ M |XU ′(X)| → 0. The case for limX→−∞ f(X)U ′(X) = 0 is

analogous. Note this result also implies that

lim
X→∞

U ′(X) = lim
X→−∞

U ′(X) = 0

Q.E.D.

Lemma 14. Let U be a bounded solution of the optimality equation. Then the limit of

U converges to the limit of the stage Nash equilibrium payoffs as X → {−∞,∞}

lim
X→∞

U(X) = v∞

lim
X→−∞

U(X) = v−∞
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Proof: Assume Assumption 2, 3, and 4. By 10, limX→∞ U(X) = U∞ ex-

ists. Suppose U∞ < v∞, where v∞ is the limit of the stage game Nash equilibrium

payoff at positive infinity. The function f1 is O(X), and therefore by Lemma 13,

limX→∞ U
′(X)f1(b,X) = 0 and S∗(X,U ′(X)f1(b,X)) →

(
aN∞, b

N

∞

)
which is the

stage Nash equilibrium as X →∞. Thus, limX→∞ g(a(X), b(X), X) = v∞.

By Lemma 13 and the assumption that (f1µY + f2) is O(X)

lim
X→∞

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X) = 0

By the assumption that f1σY + σX is O(1), there exists an M > 0 and a δ such that

when X > δ1, then f1(b,X)2σ2
Y + σ2

X(X) ≤M .

Plugging the above conditions in to the optimality equation yields

lim sup
X→∞

U ′′(X) = lim sup
X→∞

[
2r
(
U(X)− g(a, b,X)

)
f1(b,X)2σ2

Y + σ2
X(X)

−

2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)]

≤ 2r (U∞ − v∞)

M
< 0

which violates Lemma 12, and therefore U is unbounded. This is a contradiction.

Thus, U∞ = v∞. The proof for the other cases is analogous.

Q.E.D.

Lemma 15. Any bounded solution U of the optimality equation satisfies

lim
X→∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

lim
X→−∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

Note this also implies U ′′(X)→ 0.
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Applying the squeeze theorem to the optimality equation yields

lim
X→∞

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣
= lim

X→∞

∣∣2r (U(X)− g(a, b,X)
)
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

∣∣
= 0

by applying Lemmas 13 and 14 and the assumption that
[
f1(b,X)µY (a, b) + f2(b,X)

]
is O(X).

Q.E.D.

Boundary Conditions for Bounded Support

Theorem 15. Any bounded solutionU of the optimality equation satisfies the following

boundary conditions:

lim
X→X

U(X) = v(X) and lim
X→X

U(X) = v (X)

lim
X→X

(X −X)U ′(X) = lim
X→X

(X −X)U ′(X) = 0

lim
X→X

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

lim
X→X

(
f1(b,X)2σ2

Y + σ2
X(X)

)
U ′′(X) = 0

The proof proceeds by a series of lemmas.

Lemma 16. Any bounded solutionU of the optimality equation has bounded variation.

Suppose not. Then there exists a sequence (Xn)n∈N that correspond to local

maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0. Given the incentives for the agency, a

stage nash equilibria is played when U ′(X) = 0, yielding flow payoff v(X). From the

optimality equation, this implies v(Xn) ≥ U(Xn). Likewise, there exists a sequence

(Xm)m∈N that correspond to local minima of U , so U ′(Xm) = 0 and U ′′(Xm) ≥ 0.



119

This implies v(Xm) ≤ U(Xm). Thus, v also has unbounded variation. This is a

contradiction, since v is Lipschitz continuous.

Q.E.D.

Lemma 17. Given a function f(X) that is O(a−X) as X → a ∈
{
X,X

}
, then any

bounded solution U of the optimality equation satisfies

1.

lim
X→X

inf f(X)U ′(X) ≤ 0 ≤ lim
X→X

sup f(X)U ′(X)

lim
X→X

inf f(X)U ′(X) ≤ 0 ≤ lim
X→X

sup f(X)U ′(X)

2.

lim
X→X

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→X

sup f(X)2U ′′(X)

lim
X→X

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→X

sup f(X)2U ′′(X)

Note this is trivially satisfied if f(X) is O(1).

1. Suppose f(X) is O(X − X) as X → X and limX→X inf |f(X)U ′(X)| > 0.

There exists an M ∈ R and a δ1 > 0 such that when
∣∣X −X∣∣ < δ1, |f(X)| ≤

M
∣∣X −X∣∣. Given limX→X inf |f(X)U ′(X)| > 0 , there exists a δ2 ∈ R and an

ε > 0 such that when
∣∣X −X∣∣ < δ2, |f(X)U ′(X)| > ε. Take δ = min {δ1, δ2}.

Then for
∣∣X −X∣∣ < δ, |U ′(X)| > ε

|f(X)| ≥
ε

M|X−X| . Then the antiderivative

of ε

M|X−X| is ε
M

ln
∣∣X −X∣∣ which diverges to −∞ as X → X . This violates

the boundedness of U . Therefore limX→X inf f(X)U ′(X) ≤ 0. The proof is

analogous for the other cases.

2. Suppose f(X) is O(X −X) and limX→∞ inf |f(X)2U ′′(X)| > 0. There exists

an M ∈ R and a δ1 > 0 such that when
∣∣X −X∣∣ < δ1, |f(X)| ≤ M

∣∣X −X∣∣
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and therefore, f(X)2 ≤M2
(
X −X

)2
. There also exists a δ2 ∈ R and an ε > 0

such that when
∣∣X −X∣∣ < δ2, |f(X)2U ′′(X)| > ε. Take δ = min {δ1, δ2}.

Then for
∣∣X −X∣∣ < δ, |U ′′(X)| > ε

f(X)2
> ε

M2(X−X)
2 . Then the second an-

tiderivative of ε

M2(X−X)
2 is −ε

M2 ln
(
X −X

)
which converges to∞ as X → X .

This violates the boundedness of U . Therefore limX→∞ inf |f(X)2U ′′(X)| ≤ 0.

The proof is analogous for the other cases.

Q.E.D.

Lemma 18. Given a differentiable function f(X) that isO(X∗−X) asX →
{
X,X

}
,

then any bounded solution U of the optimality equation satisfies

lim
X→X

f(X)U ′(X) = lim
X→X

f(X)U ′(X) = 0

By Lemma 17, limX→X inf(X−X)U ′(X) ≤ 0 ≤ limX→X sup(X−X)U ′(X).

Suppose, without loss of generality, that limX→X sup(X −X)U ′(X) > 0. Then there

exist constants k and K such that (X − X)U ′ crosses the interval (k,K) infinitely

many times as X approaches X . Additionally, there exists an L > 0 such that

|U ′′(X)| =

∣∣∣∣∣2r
[
U(X)− g(a, b,X)

]
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

f1(b,X)2σ2
Y + σ2

X(X)

∣∣∣∣∣
≤

∣∣∣∣∣L1 − L2

(
X −X

)
U ′(X)(

X −X
)2

∣∣∣∣∣
≤

∣∣∣∣∣ L1 − L2k(
X −X

)2

∣∣∣∣∣ =
L(

X −X
)2
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Therefore,

∣∣∣[(X −X)U ′(X)
]′∣∣∣ ≤ |U ′(X)|+

∣∣(X −X)U ′′(X)
∣∣

=

(
1 +

∣∣∣∣(X −X)
U ′′(X)

U ′(X)

∣∣∣∣) |U ′(X)|

≤
(

1 +
L

k

)
|U ′(X)|

where the first line follows from differentiating
(
X −X

)
U ′(X) and the subadditivity

of the absolute value function, the next line follows from rearranging terms, the third

line follows from the bound on |U ′′(X)| and (X −X)U ′(X) ∈ (k,K). Then

|U ′(X)| ≥

∣∣∣[(X −X)U ′(X)
]′∣∣∣(

1 + L
k

)
Therefore, the total variation of U is at least K−k

(1+L
k )

on the interval (X − X)U ′(X) ∈

(k,K), which implies that U has unbounded variation near X . This is a contradiction.

Thus, limX→X sup(X−X)U ′(X) = 0. Likewise, limX→X inf(X−X)U ′(X) = 0, and

therefore limX→X(X−X)U ′(X) = 0. Then for any function f(X) that is O(X−X),

|f(X)U ′(X)| ≤M1

∣∣(X −X)U ′(X)
∣∣→ 0, and therefore limX→X f(X)U ′(X) = 0

Q.E.D.

Lemma 19. Let U be a bounded solution of the optimality equation. Then the limit of

U converges to the limit of the stage Nash equilibrium payoffs as X →
{
X,X

}
lim
X→X

U(X) = v(X)

lim
X→X

U(X) = v (X)

Suppose not. By 16, limX→X U(X) = U
(
X
)

exists. Suppose U
(
X
)
< v(X),

where v(X) is the limit of the stage game Nash equilibrium payoff at X . The func-
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tion f1 is O(X − X), and therefore by Lemma 18, limX→X U
′(X)f1(b,X) = 0 and

S∗(X,U ′(X)f1(b,X)) →
(
aN
X
, b
N

X

)
which is the stage Nash equilibrium as X → X .

Thus, limX→X g(a(X), b(X), X) = v(X).

By Lemma 18 and the assumption that f1µY + f2 is O(X −X)

lim
X→∞

(
f1(b,X)µY (a, b) + f2(b,X)

)
U ′(X) = 0

By the assumption that 1/ (f1σY + σX) is O(1/(X −X)), there exists an M > 0 and

a δ such that when
∣∣X −X∣∣ < δ1, then 1/ (f1σY + σX) ≤M/(X −X)

Plugging the above conditions in to the optimality equation yields

lim sup
X→X

U ′′(X) = lim sup
X→X

2
[
f1(b,X)µY (a, b) + f2(b,X)

]
f1(b,X)2σ2

Y + σ2
X(X)

U ′(X)

≤
2r
(
U
(
X
)
− v(X)

)
M(X −X)2

< 0

which violates Lemma 17, and therefore U is unbounded. This is a contradiction.

Thus, U
(
X
)

= v(X). The proof for the other cases is analogous.

Q.E.D.

Lemma 20. Any bounded solution U of the optimality equation satisfies

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣ = 0
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Applying the squeeze theorem to the optimality equation yields

lim
X→X

∣∣(f1(b,X)2σ2
Y + σ2

X(X)
)
U ′′(X)

∣∣
= lim

X→X

∣∣2r (U(X)− g(a, b,X)
)
− 2

[
f1(b,X)µY (a, b) + f2(b,X)

]
U ′(X)

∣∣
= 0

by applying Lemmas 18 and 19.

Q.E.D.

Uniqueness of Solution to Optimality Equation

This proof builds on a result from Faingold and Sannikov (2011). They prove

that the optimality equation characterizing a Markovian equilibrium in a repeated game

of incomplete information over the type of the long-run player has a unique solution.

The key element of this proof is that all solutions have the same boundary conditions

when beliefs place probability 1 on the long-run player being a normal or behavioral

type. This result also applies to the optimality equation characterized in this paper,

given that all solutions have the same boundary conditions. An extension of this result

is necessary for the case of an unbounded state space. The proof proceeds by two

lemmas.

The first lemma follows directly from Lemma C.7 in Faingold and Sannikov

(2011).

Lemma 21. If two bounded solutions of the optimality equation, U and V , satisfy

U(X0) ≤ V (X0) and U ′(X0) ≤ V ′(X0), with at least one strict inequality, then

U(X) ≤ V (X) and U ′(X) ≤ V ′(X) for all X > X0. Similarly if U(X0) ≤ V (X0)

and U ′(X0) ≥ V ′(X0), with at least one strict inequality, then U(X) < V (X) and

U ′(X) > V ′(X) for all X < X0.
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The proof is analogous to the proof in Faingold and Sannikov (2011), defining

X1 = inf
{
X ∈ [X0, X) : U ′(X) ≥ V ′(X)

}
for Ξ = [X,X], and

X1 = inf {X ∈ [X0,∞) : U ′(X) ≥ V ′(X)}

for Ξ = R.

Q.E.D.

Lemma 22. There exists a unique solution U to the optimality equation.

Suppose U and V are both bounded solutions to the optimality equation, and

assume U(X)− V (X) > 0 for some X ∈ Ξ.

First consider Ξ = R. Given that limX→∞ U(X) = limX→∞ V (X) = v∞,

for all ε > 0, there exists a δ such that for X ≥ δ, |U(X)− v∞| < ε/2 and

|V (X)− v∞| < ε/2. Then for X ≥ δ, |U(X)− V (X)| < ε.

Take an interval X ∈ [X1, X2], and suppose U(X) > V (X) for some X ∈
[X1, X2]. Let X∗ be the point where U − V is maximized, which is well-defined

given U and V are continuous functions on a compact interval. Suppose the max-

imum occurs at an interior point X∗ ∈ (X1, X2). Then U ′(X∗) = V ′(X∗). By

Lemma 21, U ′(X) ≥ V ′(X) for all X > X∗, and this difference is strictly increas-

ing, a contradiction. Suppose the maximum occurs at an endpoint, X∗ = X2, and

let U(X2) − V (X2) = M > 0. Then it must be the case that U ′(X2) ≥ V ′(X2).

By Lemma 21, U ′(X) ≥ V ′(X) for all X > X2, and this difference is strictly in-

creasing for X > X2. But then for ε < M , there does not exists a δ such that

|U(X)− V (X)| < ε when X > δ. This violates the boundary condition. The ar-

gument is analogous if the maximum occurs at X∗ = X1. Thus, it is not possible to

have U(X) > V (X).
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The proof forΞ = [X,X] is similar, using [X1, X2] = [X,X], and the fact that

the boundary conditions at [X,X] ensure the point where U − V is maximized is an

interior point.

Q.E.D.

Uniqueness of Markovian Equilibrium in class of PPE

Let X0 be the initial state, and let U be a bounded solution to the optimality

equation. Suppose there is a PPE (at, bt)t≥0 that yields an equilibrium payoff W0 >

U(Xo). The continuation value in this equilibrium must evolve according to

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt

+rβ1t

[
dYt − µY (at, bt)dt

]
+rβ2tσX(Xt)dZ

X
t

for some process (βt)t≥0 and by sequential rationality, (at, bt) = S∗(Xt, βt) for all t.

The process U(Xt) evolves according to

dU(Xt) = U ′(X)
[
f1(b,X)µY (a, b) + f2(b,X)

]
dt

+
1

2
U ′′(X)

[
f1(b,X)2σ2

Y + σ2
X(X)

]
dt

+U ′(Xt)
[
f1(bt, Xt)σY dZ

Y
t + σX(Xt)dZ

X
t

]
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Define a process Dt = Wt − U(Xt) with initial condition D0 = W0 − U(Xo) > 0.

Then dDt evolves with drift

r
[
Wt − g(at, bt, Xt)

]
− U ′(Xt)

[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
−1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

= rDt + r
[
U(Xt)− g(at, bt, Xt)

]
− U ′(Xt)

[
f1(bt, Xt)µY (at, bt) + f2(bt, Xt)

]
−1

2
U ′′(Xt)

[
f1(bt, Xt)

2σ2
Y + σ2

X(Xt)
]

= rDt + d(at, bt, Xt)

and volatility

f(b,X, β) =
rβ1tσY

rβ2tσX(Xt)
−

U ′(Xt)f1(bt, Xt)σY

U ′(Xt)σX(Xt)

Lemma 23. For every ε > 0, there exists a δ > 0 such that for all
(
a, b,X, β

)
satisfy-

ing the condition for sequential rationality

a ∈ arg max rg(a′, b,X) + rβ1µY (a, b)

b ∈ B(a,X)

either d(at, bt, Xt) > −ε or
∣∣f(b,X, β)

∣∣ > δ.

Proof:

Suppose the state space is unbounded, Ξ = R.

Step 1: Show that if
∣∣f(b,X, β)

∣∣ = 0, then d(a, b,X) = 0. (i.e. when the

volatility of Dt is 0, the Markovian action profile is used in both equilibria)

Let
∣∣f(b,X, β1)

∣∣ = 0. Then rβ1 = U ′(X)f1(b,X) and for each X , there is a

unique action
(
a, b
)

profile that satisfies
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a ∈ arg max rg(a′, b,X) + U ′(X)f1(b,X)µY (a, b)

b ∈ B(a,X)

This action profile corresponds to the actions played in a Markovian equilibrium, and

therefore d(at, bt, Xt) = 0, by the optimality equation.

Step 2: Fix ε. Show if d(at, bt, Xt) ≤ −ε, then there exists a δ > 0 such that∣∣f(b,X, β1)
∣∣ > δ for all

(
a, b,X, β

)
such that the sequential rationality condition is

satisfied.

Step 2a: Show there exists an M > 0 such that this is true for

(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| > M }

U ′(X)f1(b,X) and U ′(X) are bounded, so there exists an M > 0 and m > 0

such that
∣∣f(b,X, β)

∣∣ > m for all |β| > M .

Step 2b: Show that there exists an X∗ such that this is true for

(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| ≤M and |X| > X∗}

Show if r
(
v∞ − g∞(a, b)

)
≤ −γ then there exists a η2 > 0 such that |β| >

η2. Let limX→∞ g(a, b,X) := g∞(a, b) be the limit flow payoff for actions (a, b),

and limX→∞ B(a,X) := B∞(a). These limits exist, since g and B(a) are Lipschitz

continuous and bounded. Consider the set Φ =
(
a, b, β

)
that satisfies

a ∈ arg max rg∞(a′, b) + rβ1µY (a, b)

b ∈ B∞(a)

with |β| < M . Suppose r
(
v∞ − g∞(a, b)

)
≤ −γ. Then there exists a η2 > 0 such
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that |β| > η2. Thus, limX→∞
∣∣f(b,X, β)

∣∣ = r |β| > rη2.

Note limX→∞ d(a, b,X) = r
[
g(a, b)− g(aN , b

N
)
]
. Then there exists an X1

such that for X > X1,
∣∣∣d(a, b,X)− r

[
g(a, b)− g(aN , b

N
)
]∣∣∣ < ε/2. Consider the set

Φ =
(
a, b,X, β

)
that satisfy the condition for sequential rationality, with |β| ≤M and

|X| ≥ X1, and d(a, b,X) ≤ −ε. ForX > X1,
∣∣∣d(a, b,X)− r

[
g(a, b)− g(aN , b

N
)
]∣∣∣ <

ε/2. Then r
(
v∞ − g∞(a, b)

)
≤ −ε/2. Then there exists a η2 such that |β| > η2.

Thus, limX→∞
∣∣f(b,X, β)

∣∣ = r |β| > rη2. Then there exists an X2 such that for

X > X2,
∣∣f(b,X, β)− rβ

∣∣ < rη2/2. Then
∣∣f(b,X, β)

∣∣ > rη2/2 := δ2. Take

X∗ = max {X1, X2}. Then on the set

(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| ≤M and |X| > X∗}

if d(at, bt, Xt) ≤ −ε then
∣∣f(b,X, β)

∣∣ > δ2.

Step 2c: Show this is true for

(
a, b,X, β

)
∈ {A×B × Ξ×R : |β| ≤M and |X| ≤ X∗}

Consider the set Φ =
(
a, b,X, β

)
that satisfy the condition for sequential ratio-

nality, with |β| ≤ M and |X| ≤ X∗, and d(a, b,X) ≤ −ε. The function d is contin-

uous and {A×B × Ξ×R : |β| ≤M and |X| ≤ X∗} is compact, so Φ is compact.

f is also continuous, and therefore achieves a minimum on Φ.This minimum η1 > 0

since d(at, bt, Xt) < −ε. Thus,
∣∣f(b,X, β)

∣∣ > η1 for all
(
a, b,X, β

)
∈ Φ.

Take δ = min {η1, δ2,m}. Then when d(a, b,X) ≤ −ε,
∣∣f(b,X, β)

∣∣ > δ.

The proof for a bounded state space is analogous, omitting step 2b.

Q.E.D.

This lemma implies that whenever the drift of Dt is less than rDt − ε, the

volatility is greater than δ. Take ε = rD0/4 and suppose Dt ≥ D0/2. Then whenever

the drift is less than rDt − ε > rD0/2 − rD0/4 = rD0/4 > 0, there exists a δ
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such that
∣∣f(b,X, β)

∣∣ > δ. Thus, whenever Dt ≥ D0/2 > 0, it has either positive

drift or positive volatility, and grows arbitrarily large with positive probability. This

is a contradiction, since Dt is the difference of two bounded processes. Thus, it

cannot be that D0 > 0. Likewise, it is not possible to have D0 < 0. Thus, in any

PPE with continuation values (Wt)t≥0, it must be the case that Wt = U(Xt) for all

t. Therefore, it must be that
∣∣f(b,X, β)

∣∣ = 0, and actions are uniquely specified by

S∗(X,U ′(X)f1(bt, Xt)).

Q.E.D.

2.6.4 Proofs: Equilibrium Payoffs

Theorem 16. The highest PPE payoff across all states is bounded above by the highest

static Nash equilibrium payoff across states,W ≤ v∗ and the lowest PPE payoff across

all states is bounded below by the lowest static Nash equilibrium payoff across states

W ≥ v∗.

Let W = supΞ U(X) be the highest PPE payoff across all states. Suppose

W = U(X) occurs at an interior point. Then U ′(X) = 0 and U ′′(X) ≤ 0. From the

optimality equation,

U ′′(X) =
2r
[
W − v(X)

]
f1(b,X)2σ2

Y + σ2
X(X)

≤ 0

and therefore W ≤ v(X) ≤ v∗. Suppose the state space is bounded and W = U(X)

occurs at an endpoint. Suppose, without loss of generality, that W occurs at X. Then

by the boundary conditions, W = v(X) ≤ v∗. Suppose the state space is unbounded

and there is no interior maximum with U(X) = W . Then U(X) must converge to W

at either∞ or −∞. Suppose limX→∞ U(X) = W . Then W = v∞ ≤ v∗. The proof

for W ≥ v∗ is analogous.

Q.E.D.
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Theorem 17. Assume 1, 2, 3 and 4. The following properties show how PPE payoffs

change with the state variable:

1. Suppose v(X) is increasing (decreasing) in X.Then U(X) is also increasing

(decreasing) inX . The state that yields the highest static Nash payoff also yields

the highest PPE payoff; likewise, the state that yields the lowest static Nash

payoff also yields the lowest PPE payoff.

2. Suppose v(X) has a unique interior maximum X∗, and v is monotonically in-

creasing (decreasing) forX < X∗ (X > X∗). ThenU(X) has a unique interior

maximum at X∗,and U is monotonically increasing (decreasing) for X < X∗

(X > X∗). The state that yields the highest static Nash payoff also yields the

highest PPE payoff, whereas and the state that yields the lowest PPE payoff is a

boundary point.

3. Suppose v(X) has a unique interior minimum X∗, and v is monotonically de-

creasing (increasing) forX < X∗ (X > X∗). Then U(X) has a unique interior

minimum at X∗,and U is monotonically decreasing (increasing) for X < X∗

(X > X∗). The state that yields the lowest static Nash payoff also yields the

lowest PPE payoff, whereas and the state that yields the highest PPE payoff is a

boundary point.

1. Suppose v(X) is increasing in X , but U(X) is not increasing in X . Thus,

U ′(X) < 0 for some X ∈ Ξ. Let (X1, X2) ⊂ Ξ be a maximal subinterval

such that U ′(X) < 0 for all X ∈ (X1, X2). Note limX→−∞ U(X) = v∗ ≤
limX→∞ U(X) = v∗ since v is increasing in X , so U ′(X) is not strictly decreas-

ing on Ξ. Without loss of generality, assume U(X) is increasing on (−∞, X1).

Then X1 is an interior local maximum with U ′(X1) = 0 and U ′′(X1) ≤ 0. Then
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by the optimality equation,

U ′′(X1) =
2r[

f1(b,X1)2σ2
Y + σ2

X(b,X1)
] (U(X1)− v(X1)) ≤ 0

which implies U(X1) ≤ v(X1). Then

lim
X→X2

U(X2) < U(X1) ≤ v(X1) ≤ v∗ = lim
X→∞

U(X)

Thus, since U(X2) < U(X1) by definition, it must be that X2 < ∞ and X2 is

a local minimum with U ′(X2) = 0 and U ′′(X2) ≤ 0. Then by the optimality

equation,

U ′′(X2) =
2r[

f1(b,X2)2σ2
Y + σ2

X(b,X2)
] (U(X2)− v(X2))

≤ 2r[
f1(b,X2)2σ2

Y + σ2
X(b,X2)

] (U(X2)− v(X1)) < 0

which implies X2 is a local maximum. This is a contradiction. The proof for

U(X) decreasing is analogous.

2. If v(X) has a unique interior maximum X̂ such that v′(X) > 0 for X < X̂

and v′(X) < 0 for X > X̂ . Assume U ′(X) < 0 for some X < X̂ . Let

(X1, X2) ⊂ (−∞, X̂) be a maximal subinterval such that U ′(X) < 0 for all

X ∈ (X1, X2). First suppose X1 > ∞ and X2 < X̂ . Then X1 is a local

maximum with U ′(X1) = 0 and U ′′(X1) ≤ 0, and by the optimality equation,

U(X1) ≤ v(X1). Also, X2 is a local minimum with U ′(X2) = 0 and U ′′(X2) ≥
0, and by the optimality equation, U(X2) ≥ v(X2). This implies:

U(X1) ≤ v(X1) ≤ v(X2) ≤ U(X2)
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which is a contradiction. Thus, (X1, X2) must include a boundary point of

(−∞, X̂). Next suppose U is decreasing over (−∞, X2) and X2 < X̂ . Thus,

X2 is a local maximum. Given that limX→−∞ U(X) = limX→−∞ v(X), this

implies:

lim
X→−∞

U(X) = lim
X→−∞

v(X) ≤ v(X2) ≤ U(X2)

which is a contradiction. Thus, it can only be that (X1, X2) = (−∞, X̂).

Likewise, if U ′(X) > 0 for some X > X̂ , then it must be the case that any

maximal subinterval (X1, X2) on which U ′(X) > 0 is (X1, X2) = (X̂,∞).

Suppose U ′(X) < 0 on (−∞, X̂) and U ′(X) > 0 on (X1, X2) = (X̂,∞). Then

X̂ is a global minimum, which implies:

U(X) > U(X̂) ≥ v(X̂) = v∗

But this is a contradiction, since U(X) ≤ v∗ for all X .

3. The proof is analogous to part 2.

Q.E.D.

2.7 Figures
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Figure 2.1: Equilibrium Payoffs

Figure 2.2: Firm Equilibrium Behavior
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Figure 2.3: Consumer Equilibrium Behavior

Figure 2.4: Product Quality Cycles
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Figure 2.5: Equilibrium Payoffs

Figure 2.6: Government Equilibrium Behavior
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Figure 2.7: Constituent Equilibrium Behavior



Chapter 3

Incentives in Crowdsourcing

3.1 Introduction

A clothing manufacturer wants to create an online database tagging each indi-

vidual attribute of its products; a public website must review and remove objectionable

postings; a secretarial service needs to transcribe the recorded minutes from a company

meeting. Traditionally, these tasks were performed by conventional in-house employ-

ees or outsourced workers tied to the firm via a long-term contract. Crowdsourcing

offers a dynamic and flexible alternative to complete these tasks.

Crowdsourcing is the process of delegating work to an undefined group of peo-

ple (a crowd) through an open call. Workers answering the call are not presumed to

have any relationship with the crowdsourcing firm either preceding or following the

short-lived job. Coined officially in 2006, the term crowdsourcing has become a port-

manteau for many types of related sourcing protocols spanning intrinsic to extrinsic

motivations. We focus on the problem posed to firms facing exclusively financially-

motivated workers or, equivalently, offering work lacking non-pecuniary benefits.

The environment we consider is plagued by unobservable effort. The costly

exertion of effort cannot be contractually specified and, since there is no expectation

137
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of future employment with the firm, traditional reputation mechanisms have no bite.

The firm must guard against shirking, but how? The key insight here is that the firm

hires multiple workers and conditions wage payment on a comparison of the output

they produce. Workers are paid only when their output matches. This mechanism

is wasteful compared to the observable effort benchmark: not only must additional

workers be hired, but each must be paid a wage greater than their cost of effort.

We study the problem from a principal-agent perspective in which a firm offers

agents a contract to induce workers to exert costly effort. A contract consists of an as-

signment of tasks to be completed, a protocol specifying how many workers are to be

employed, a verification technology to review the agent’s output, and a payment sched-

ule. Our problem differs from standard principal-agent settings in that the firm cannot

draw probabilistic inferences about an agent’s effort on the basis of any observed data.1

Our first result is that the firm must hire a second worker with nontrivial prob-

ability. Although virtual monitoring is feasible when there is no limit on the size of

potential jobs, the unboundedly large wage payments required to enforce effort with

virtual monitoring preclude its optimality. Next, the firm must decide how to organize

the workers. The firm has the option of informing a worker that his job is to verify the

output of another worker. Doing so reduces the informed worker’s incentive to shirk

since, effectively, the uninformed worker is serving as his monitor. An uninformed

agent then knows his output may not be checked and the wage required to prevent him

from shirking is higher. We show that the firm optimally treats workers symmetrically

instead of creating a hierarchy in which there are informed and uninformed agents.

As the number of tasks assigned to an agent increases, the firm reduces its mon-

itoring probability. This leads to fewer workers being hired but each is paid a higher

wage. For a given job size, the effect of decreasing the monitoring probability on the

wage bill is non-monotonic. Along the optimal path, however, the reduction in the

1For example, the seller of a house can form beliefs about how hard his listing agent worked from
the quantity and quality of received offers.
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expected number of workers employed outweighs the increased per-worker wage and

the firm’s wage bill decreases monotonically (along with the monitoring probability)

as jobs grow in size.

We consider two environmental conditions. The analysis begins with a firm

hiring all workers simultaneously at the outset. Next we suppose the firm may instead

move sequentially and hire additional workers conditional on the output of existing

workers. Here a surprising result obtains. Suppose a particular state of the world

is more likely than another. Then a worker who shirks hopes to match his fellow

worker’s output by following the prior. The firm responds by monitoring this output

less: if the firm were to hire an additional worker with a higher probability when the

output confirms the prior, the second agent’s incentive to work evaporates since his

posterior belief over the first agent’s output is even more pronounced. We treat the

two settings – hiring all workers at once or sequentially – separately since they impose

quite different burdens upon the firm.

The paper proceeds as follows. After summarizing the related literature, we

begin with a brief overview of the crowdsourcing marketplace. Next, we introduce our

model, characterize the feasible set of contracts and develop optimal implementation

plans. The model we present captures the salient features of the crowdsourcing envi-

ronment and enables us to best communicate our main insights. We then extend our

model to more general settings and examine the robustness of our findings. These theo-

retical results are followed by a discussion about implementing the plans in the current

marketplace and some avenues for future research. The final section concludes.

3.1.1 Related Literature

Our model is similar to Rahman (2012). Rahman (2012) characterizes fea-

sible contracts, while we are interested in optimal contracts. Rahman (2012) paper

establishes when ”virtual monitoring” is feasible (in the context of our model, hiring
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a second agent with probability epsilon). While virtual monitoring is always feasible

in our model, we establish that it is generally not optimal since it requires much larger

wage payments. Gershkov and Szentes (2009) characterize what information is opti-

mal to hide from agents in a common values setting with costly signals. Similar to

the contract we consider with uninformed or informed monitoring positions, Gershkov

and Szentes (2009) find it optimal to keep an agent’s position unknown.

This paper also relates more broadly to the auditing literature. Townsend

(1979) and Gale and Hellwig (1983) seek to characterize the optimal mechanism in

a model with costly state verification. These models assume that one agent privately

observes the state of the world, while it is costly for the second agent (an auditor) to

observe the state.

3.2 Marketplace Overview

Of the dozens of work exchanges where firms (known as requesters) can hire

workers (providers), Amazon’s Mechanical Turk (AMT) is the most prominent. Cre-

ated in-house in 2005 to find duplicates among the company’s product webpages, the

service rapidly expanded and by 2007 comprised a pool of more than 100,000 work-

ers in over 100 countries completing various types of tasks (New York Times, artificial

intelligence article). Quickly, the platform was found to be useful for tasks like tran-

scribing podcasts, rating and tagging images, and writing/rewriting sentences. Wage

payments typically range from one cent to $10 per task.

The current paid crowdsourcing market has grown considerably since AMT’s

founding. A sampling of 10 work exchanges that publish statistics tallies well over 2

million registered workers and gross payments nearing a billion dollars (Frei, 2009).

The revenues of vendors connecting firms with workers are estimated at 500 million

dollars per year (Frei, 2009).

Though the marketplace is rapidly evolving, we have recent data on the com-
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position of the crowdsourcing workforce from a paid survey conducted on AMT in

February 2010.2 Workers report 68 different countries of origin with the United States

being most prevalent at 45% followed by India at 34%. Young workers are overrep-

resented, even when compared to the general population of Internet users. (The skew

towards youth is even more pronounced for workers from India.) Self-reported educa-

tion levels are also greater than those of the general populations.

Most workers spend a day or less working on AMT, completing 20-100 jobs

and earning $20 or less per week. There exists a high-end of the income distribution

with workers earning more than $1,000 per month. More than 20% of Indian workers

report AMT as their primary source of income (10% of American workers), with an

additional 35% using AMT as a secondary source of income (60% for American work-

ers). Correspondingly, women are roughly twice as common as men among American

workers while the reverse holds for the Indian subpopulation. Two-third of American

workers reported incomes below $60,000 (compared to 45% for the US Internet popu-

lation) and more than 55% of Indian workers claim incomes below $10,000.3 Finally,

the primary motivation for working on AMT is to earn cash while spending free time

fruitfully (60% of American workers and 70% of Indian workers). Almost all of the

remaining workers participate because the tasks are fun while very few workers use

AMT to simply kill time.

Field experiments carried out on AMT suggest workers respond to economic

incentives in a predictable fashion. Rational choice theory is borne out by findings

that workers complete more tasks as the wage increases or the task difficulty decreases

(Mason and Watts, 2009). The same experiments also test whether subjects reveal

an expectation of being paid regardless of their performance. Explicitly informing

workers that the accuracy of their responses is being measured and used to determine

whether payment for their work would be provided has no discernible effect on either

2The data we report here are from a posting on March 9, 2010 from the blog “Behind Enemy Lines”
(http://behind-the-enemy-lines.blogspot.com/2010/03/new-demographics-of-mechanical-turk.html).

3Less than a third of workers are unemployed or hold only a part-time job.
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the quality or quantity of output: participants appear to treat their pay as necessar-

ily performance dependent (Mason and Watts, 2009). One main departure from the

rational choice model is that many workers resemble threshold earners (Horton and

Chilton, 2010). These workers set an earnings target and appear otherwise unrespon-

sive to financial incentives.

3.3 Model

A firm with access to an infinite stream of independent, identically structured

tasks wants to hire agents to complete the work. For example, as new images are

uploaded to a social networking or auction site each day the site needs to moderate

the content of the images. Or, an online retailer wants to categorize attributes of its

products. Individual tasks are bundled together to form a job. We first describe the

stage game for a task and then model the employment contract for a job.

Each task is characterized by an unknown state of the world that the firm seeks

to discover. A state can be thought of as whether an image is objectionable, a product

bears a certain attribute, or a sentence is translated faithfully. The realized state for

task j is denoted as ωj ∈ Ω. The state for each task is independently and identically

distributed. All agents share a common prior belief over Ω. To simplify exposition we

consider a binary state space. This restriction is without loss of generality assuming the

firm can divide non-binary tasks into binary constituent components. Let Ω = {y, n}
and denote the prior belief the state reflects an innocuous image as π = Pr(ωj = n) ∈
(1/2, 1).

A worker i hired to complete task j chooses whether to exert low or high effort,

eij ∈ {0, 1}. High effort perfectly reveals the task’s state to the worker and costs c,

while low effort yields no information about the state and is costless. Workers’ effort

choices are unobservable by the firm. After choosing an effort level and potentially

learning the state, worker i sends a message mi
j ∈ M to the firm about the state
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for task j. We will often refer to a worker’s message(s) as his output. As messages

acquire meaning only in equilibrium, the message space corresponds to the state space:

M = Ω.

The firm must decide on a labor contract for each task. An implementation

plan, Pj , for task j is an algorithm specifying a probability distribution over the num-

ber of workers to hire for each history of the game. We distinguish two types of imple-

mentation plans. A simultaneous implementation plan selects (perhaps randomly) how

many workers to hire at the beginning of the task, whereas a sequential implementation

plan specifies the probability of hiring an additional worker conditional on the current

history.4 More formally, let Hk ≡ ΠkM represent the space of message profiles when

k agents have completed task j. Define H ≡
⋃∞
k=0H

k as the set of all possible mes-

sage profiles for task j with h as an element ofH .5 Let FX = {fX} represent the set of

all probability measures over discrete support X , with representative element fX .6 In

the simultaneous case, X = N and for sequential implementation plans X = {0, 1}.
When acting simultaneously, the firm chooses a probability measure specifying the

distribution over the number of workers to hire at the beginning of the task. When act-

ing sequentially, the firm chooses a sequence of probability measures specifying the

probability of hiring an additional worker for a given realized history h. A simultane-

ous implementation plan is then represented as Pj : H0 → FN and a sequential plan as

Pj : H → F{0,1}.

An additional piece of notation will prove helpful. Denote as ∆(q) the proba-

bility measure over N that places probability 1 − q on N = 1, q on N = 2, and zero

4As the subsequent analysis shows, a simultaneous implementation plan can be viewed as an op-
timal sequential implementation plan subject to additional restrictions. We treat the two types of im-
plementation plans separately to better connect our theoretical findings with the actual crowdsourcing
marketplace. Implementing a sequential plan is informationally more intensive and operationally more
complicated than implementing a simultaneous plan.

5We represent the history for a task before any messages have been received as H0.
6The probability measure assigning all mass to x is denoted δ(x).
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everywhere else.7 Thus,

∆(q) = fN(N) =


N = 1, with probability 1− q;
N = 2, with probability q;

N 6= {1, 2}, with probability 0.

Let Nj represent the realized number of workers hired to complete task j and

mj = (m1
j , ...,m

Nj
j ) the realized profile of messages. Upon observing this message

profile, the firm takes an action Aj : {mj} → A. As the firm wants to match the state,

let A = Ω.

Multiple tasks are bundled together as a job. We assume technological con-

straints prevent the firm from assigning arbitrarily many tasks to a worker. Each job is

limited to J ≤ J tasks.

The firm forms a contract to offer to prospective workers consisting of an im-

plementation plan for each task in the job and a schedule of transfers. The transfer for

worker i, represented as ti : m→ R, is conditional on the message profile for all tasks

in the job, m = (m1, ...,mJ). For clarity of exposition, we normalize the transfer to

consider a per-task wage payment of wi(m) = ti(m)/J .

Given a contract < J ; {Pj}Jj=1;wi(m) >, we can now specify payoffs. A

worker’s utility is independent of the state: his payoffs depend solely on any transfers

received from the firm and the cost of his exerted effort. The utility of worker i on a

given job is represented as:

ui(m, ei) = J · wi(m)− c ·
J∑
j=1

eij

where ei = (ei1, ..., e
i
J) represents the effort choices of the worker. Note that worker i’s

payoffs depend on the entire profile of messages from all workers.

7With this notation ∆(0) = δ(1) the Dirac measure on N = 1.



145

The firm seeks to choose an action that matches the realized state of the world.

It receives a payoff of 1 if successful and 0 otherwise. This specification of payoffs

is inappropriate for many of the situations we consider. It is more reasonable for

the firm’s payoffs for matching the state to differ depending on the state: removing

objectionable content likely yields larger payoffs for the firm than allowing permissible

content (and likewise for failing to remove content). The specification we consider

here has no substantive impact on our results since it only affects the firm’s individual

rationality constraint. We allow firm payoffs for success or failure to differ by state in

3.5. When the firm chooses Aj = n it permits the image while Aj = y means the firm

disallows the posting.

The firm must pay each agent the specified transfer for their employment. Its

payoffs per task are represented as:

uFj = 1Aj=ωj −
Nj∑
i=1

wi(m).

Firm payoffs for a job are simply the sum of payoffs from the tasks making up the job:

uF (A,ω) =
J∑
j=1

uFj =
J∑
j=1

(
1Aj=ωj −

Nj∑
i=1

wi(m)
)

where A = (A1, ..., AJ) and ω = (ω1, ..., ωJ).

Before proceeding we must discuss a few points about the regulatory envi-

ronment. We assume limited liability on the part of workers so that a firm selecting

the wrong action on the advice of a worker cannot seek restitution. We also rule out

the possibility of fraudulent behavior of the firm by adopting the notion of a strong

intermediary or work exchange. The firm submits its contract as an algorithm to an

intermediary, like AMT, to execute. The intermediary prevents the firm from seeing

the workers’ output, rejecting it so that no workers are compensated, and then using
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the output to inform its action choice anyway.8 The job, implementation plan and pay-

ment schedule are executed by the intermediary. Worker messages are submitted to the

intermediary, who reveals them to the firm only if workers are compensated according

to the payment schedule.9

3.4 Analysis

We begin by establishing the contractible effort benchmark. When effort is

contractible, the firm simply hires one worker and pays him the cost of his effort. The

state of the world is fully revealed and the firm captures the entirety of the surplus from

the transaction. Per-task payoffs are uFj = 1−c for the firm and uij = 0 for the worker.

The firm optimally bundles as many tasks as possible to form a job.

Theorem 18 (Contractible Effort Benchmark). When effort is contractible, the firm

optimally offers contract < J ; {∆(0)}Jj=1;w(m) = c ∀m > with the maximum pos-

sible job size, hiring one worker for each task and compensating him exactly for his

effort. Worker payoffs are ui = 0 while firm payoffs are uF =
∑J

j=1(1−c) = J(1−c).

Even when effort is contractible, the firm has the option to select its action

blindly without hiring any worker to uncover and reveal the state. The firm prefers

the contract from Theorem 18 when the expected payoffs from hiring the worker are

greater than those from guessing the state: 1 − c ≥ π. Thus, with contractible effort

the firm will hire a worker whenever c ≤ 1− π.

The contractible effort benchmark is unattainable when effort is noncontractible

since an isolated worker’s message reveals no information about his effort choice. As

8This is not an academic concern. Consider the situation of a firm soliciting architectural renderings
for a proposed new building. Before deciding which – if any – submission to use as a blueprint, the firm
observes all submissions. We are assuming the firm cannot reject all submissions as unsatisfactory and
then base their new building off of one of the submissions anyway.

9Optimal implementation when the firm can behave fraudulently is the subject of ongoing compan-
ion research.
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the firm cannot ascertain the worker’s effort, the worker will shirk if presented with

this contract. The firm must hire additional workers with positive probability in order

to induce effort. The additional workers duplicate tasks assigned to the first worker.

The firm then compares the output across all agents and generates incentives for high

effort by conditioning payment upon matching output.

The firm must hire more than one worker, at least sometimes, in any high-effort

equilibrium. We begin with two lemmas. The first establishes that the firm will never

assign more than two workers to each task; the second shows the firm requires agents’

output to match on all jointly assigned tasks.

Lemma 24 (No more than two workers in equilibrium). No more than two workers

are assigned to any task in equilibrium.

Proof. In a high-effort equilibrium, each agent is exerting effort and learning the state

on every task he’s assigned. Since there is positive probability that an agent’s output

is compared to that of another worker, the agents’ message choices will report the

realized state. Thus, the firm is learning the true state for each task. Assigning more

than two agents to a task does not affect worker incentives to report truthfully and

serves only to increase the expected wage bill. Q.E.D.

Lemma 25 (Output must match on all applicable tasks). In equilibrium the firm re-

quires agents’ output to match on all tasks assigned to multiple agents.

Proof. Suppose agent k is exerting effort on all tasks he is assigned and that the firm

requires i’s output to match k’s output on fraction γ < 1 of the L tasks they are jointly

assigned. Without loss of generality we may assume the firm requires i to match k’s

output on an integer number of tasks: suppose γL is a non-integer. Then the firm is

effectively requiring i to match k on some integer l of the L tasks jointly assigned,

where l is the smallest integer greater than γL. Agent i will not exert effort on all tasks

since exerting effort on J − (L− l) tasks results in the same probability of being paid

while reducing i’s costs of working. Q.E.D.
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Our theoretical framework distinguishes between simultaneous and sequential

implementation plans. This distinction is not a priori artificial. As the subsequent

analysis shows, an optimal simultaneous plan can be viewed as the optimal sequential

plan subject to additional restrictions; however, this relationship does not hold out

of equilibrium. In addition to being theoretically more accurate, we believe treating

the cases distinctly is valuable since the practical considerations for implementing a

sequential plan are more burdensome than those for implementing a simultaneous plan.

We begin by considering simultaneous implementation plans.

3.4.1 Simultaneous Implementation Plans

Consider a J-task contract with a simultaneous implementation plan where

two agents are hired for a task with probability q ∈ (0, 1], and one agent is hired with

probability 1 − q. That is, consider the simultaneous implementation plan ∆(q). We

first focus on the case in which the firm treats agents symmetrically instead of offering

each agent a different contract.

The contract specifies a transfer of w · J to a worker if his message choice

matches the other agent’s message on all tasks assigned to two agents. Otherwise,

he receives no transfer. If the per-task wage w is set high enough, exerting effort

is incentive compatible for the worker. The following theorem characterizes the set

of feasible symmetric contracts that implement high effort in equilibrium for J tasks

using monitoring probability q.

Theorem 19 (Feasible Symmetric Simultaneous Implementation). Let J ∈ N and

q ∈ (0, 1] be given. The contract

< J ; {∆(q)}Jj=1;w(m) =
c

1−
[

1−q+2qπ
1+q

]J if m1
j = m2

j∀j s.t. Nj = 2, w(m) = 0 otherwise >
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induces a high-effort equilibrium for c ≤ 1−π
1+q

(
1−

[
1−q+2qπ

1+q

]J)
and yields expected

per-task payoffs for the firm of

uFj = 1− (1 + q)w.

Proof. Suppose agent k is exerting effort on all tasks he’s assigned. Let ξ be the

number of tasks agent i exerts effort on. Agent i will exert effort on J tasks if

Pr(paid|ξ = J)Jw − Jc ≥ Pr(paid|ξ = n)Jw − nc

w ≥
(
J − n
J

)
c

Pr(paid|ξ = J)− Pr(paid|ξ = n)

∀n = 0, 1, ..., J − 1.

Agent i is paid with certainty if he exerts effort on all tasks: Pr(paid|ξ = J) =

1. When considering shirking, what matters for incentives is the probability the agent’s

output is checked. Since output is necessarily unchecked when a task is only assigned

to one agent, a worker needs to calculate the probability the firm is employing an

additional worker on any task he’s assigned. While the probability that a second agent

is hired is q, this is not the probability that a worker believes he is in a two-worker

pool on any given task. Let m represent the number of workers who are assigned to

the task. Then

Pr(m = 1) =
1− q
1 + q

Pr(m = 2) =
2q

1 + q

and the probability a worker matches on an individual task when he shirks is

Pr(m = 1) + Pr(m = 2)π =
1− q
1 + q

+

(
2q

1 + q

)
π.
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The probability an agent expects to be paid for a job when exerting effort on n of the

tasks in the job is

Pr(paid|ξ = n) =

[
1− q + 2qπ

1 + q

]J−n
.

For any n, the offered wage must dissuade the worker from exerting effort on

only n tasks. This means the wage must satisfy

w ≥ J − n
J

c

1−
[

1−q+2qπ
1+q

]J−n .
Letting v = 1−q+2qπ

1+q
and x = J − n, this can be rewritten as w ≥ c

J
x

1−vx . The right-

hand side is increasing in x since the sign of ∂
∂x

( x
1−vx ) is given by 1− vx + vx ln(vx),

which is positive. Thus, the wage must be large enough to dissuade shirking on all

tasks. So a high-effort equilibrium for given J and q requires w ≥ c

1−
[

1−q+2qπ
1+q

]J .

The firm selects the lowest wage able to induce the agent to exert effort:

w(q, J) =
c

1−
[

1−q+2qπ
1+q

]J
The firm is willing to offer this contract if it outperforms its expected payoffs

from hiring no workers and selecting its action blindly. Thus, the firm will employ

workers if

1− (1 + q)

 c

1−
[

1−q+2qπ
1+q

]J
 ≥ π,

which is equivalent to c ≤ 1−π
1+q

(
1−

[
1−q+2qπ

1+q

]J)
. Q.E.D.

The requirement c ≤ 1−π
1+q

(
1−

[
1−q+2qπ

1+q

]J)
implies there exists effort costs

for which the firm would undertake an employment contract were effort contractible
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but not when effort is non-contractible. In particular, whenever

c ∈ [1− π, 1− π
1 + q

(
1−

[
1− q + 2qπ

1 + q

]J)
)

the firm will not employ any workers despite it being efficient to do so were shirking

not a concern.

The comparative statics on the wage required to induce effort, collected in

co:statics, are immediate. The incentives to shirk are reduced as the job size, J , and

monitoring probability, q, increase. As agents are required to complete more tasks

per job or are monitored more frequently, it becomes more difficult for them to meet

the criteria for payment when they shirk. Thus, the wage required to induce high

effort is decreasing in the number of tasks bundled into a job and in the monitoring

probability. Changes toward more pronounced priors have the opposite effect. As the

prior becomes more skewed towards one state, agents are more likely to be paid when

shirking and a higher wage is required to induce effort. Indeed, as π → 1 the required

wage to induce effort goes to infinity for each J .

Corollary 4 (Comparative Statics). As the monitoring probability q increases, the job

size J increases, or the prior π decreases, a lower wage is required to induce an agent

to exert effort. Moreover, as q increases, J increases or π decreases, the firm is able

to induce agents with higher costs of effort to exert effort.

Proof. Immediate from consideration of w(q, J) = c

1−[ 1−q+2qπ
1+q ]

J and

c ≤ 1−π
1+q

(
1−

[
1−q+2qπ

1+q

]J)
. Q.E.D.

As stated in the proof of 19, the monitoring probability q has a subtle effect

upon a worker’s probability of being paid when shirking. Consider a given task. A

worker’s probability of being paid when shirking depends on whether the task is as-

signed to a second agent as well (which happens with probability q). The worker is



152

necessarily paid if he is the only worker assigned the task. For a worker asked to

complete a task when the monitoring probability is q, the probability a worker is com-

pleting a task assigned to two workers is not q but, rather, 2q
1+q

.10 What matters for

incentives is the probability of being in a two-worker pool and not, simply, the prob-

ability a task is assigned to two workers. This will loom prominently in subsequent

results.

Corollary 5 (Wage is convex in the monitoring probability). The wage w(q, J) re-

quired to induce high-effort is convex in the monitoring probability q.

Proof. Withw(q, J) = c

1−[ 1−q+2qπ
1+q ]

J , ∂
∂q

(w(q, J)) < 0 and ∂2

∂q2
(w(q, J)) > 0. Q.E.D.

Theorem 19 shows that there exists an incentive compatible transfer scheme

such that high effort is an equilibrium for any monitoring probability and job size.

Rahman (2012) studies virtual monitoring contracts where a second agent is hired

with arbitrarily small probability. According to Theorem 19, such contracts are feasi-

ble. However, the required wage to implement a virtual monitoring apparatus tends to

infinity.

[Virtual monitoring requires unbounded wage payments] For job size J < ∞
virtual monitoring is feasible only with unboundedly large wage payments.

Proof. For fixed job size J , the wage required to induce effort is given by w(q, J) =

c

1−[ 1−q+2qπ
1+q ]

J for monitoring probability q. As q → 0, w(q, J)→∞. Q.E.D.

We now seek to characterize the optimal implementation plan for the firm for a

given job size. Lemmas 24 and 25 already constrain the determination of such a plan.

Lemma 24 establishes that in a high-effort equilibrium the firm need only monitor

a given worker with at most one additional worker per task. Requiring a worker to

10A concrete example helps clarify the distinction. Consider a job of J = 10 tasks with monitoring
probability q = .30. In total, 13 workers are expected to be hired. On average, seven of the ten tasks will
be assigned to only one agent. So 7 of the 13 worker-tasks have only one employee while 6 worker-tasks
have two employees. The probability of being in a two-worker pool is 2q

1+q = 6
13 >

3
10 = q.
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match the output of more than one other worker has no bearing on the probability

of the worker being paid when shirking and only increases the expected number of

workers paid. Lemma 25 shows that the firm provides wage payment for a worker

only if his message matches his partner’s on all tasks assigned to two agents.

A higher monitoring probability results in a lower required wage to induce

high effort, but it also leads to the firm paying more workers in expectation. Since the

wage required to induce high-effort is convex in the monitoring probability. At low

monitoring probabilities, the wage is very sensitive to the monitoring probability and a

small increase in monitoring lowers the required wage significantly. At high monitor-

ing probabilities, the required wage is not as sensitive. On the other hand, the expected

number of agents paid by the firm always changes linearly with the monitoring proba-

bility. The next result shows that when a job consists of a single task, the firm should

hire a second agent with probability one. For jobs with more than one task, the two

effects trade-off and an interior monitoring probability is better for the firm.

[Probabilistic monitoring is optimal] The firm increases her payoff by making

jobs as large possible (J = J) and choosing q∗ ∈ (0, 1) for J > 1 and q∗ = 1 for

J = 1.

Proof. It is obvious that firm payoffs are increasing in J since wages are decreasing as

the job size grows larger.

As for the monitoring probability, the firm’s expected payoff per task is:

E[uFj ] = 1− (1 + q)

 c

1−
[

1−q+2qπ
1+q

]J
 .

The best contract for a given job size J maximizes this payoff with respect to
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q. Denoting v = 1−q+2qπ
1+q

, the first-order condition stipulates

c ·
[
− 2J(π − 1)vJ + vJ + (2π − 1)q(vJ − 1)− 1

]
[(2π − 1)q + 1][vJ − 1]2

= 0,

which requires

− 2J(π − 1)vJ + vJ + (2π − 1)q(vJ − 1)− 1 = 0. (1)

Noting that v = 1 when q = 0 and v = π when q = 1, it is clear that q = 1

satisfies this condition when J = 1. For J > 1, when q = 0 the left-hand side of the

expression is greater than zero. It is less than zero when q = 1. To see this, note that

the left-hand side reduces to −2JπJ+1 + 2JπJ + 2πJ+1 − 2π. So optimality requires

−JπJ + JπJ−1 + πJ = 1. The sum −JπJ + JπJ−1 + πJ is strictly increasing in π,

equals unity at π = 1, and is less than unity for π < 1. Thus, the left-hand side of

e:FOC is less than zero when q = 1. Since e:FOC is continuous in q, it is satisfied with

equality at some interior q∗ by application of the intermediate value theorem. Q.E.D.

The firm’s payoffs are increasing in the job size J so the firm should set J = J .

Given J , the firm trades off the benefits and costs of higher monitoring probabilities.

For an idiosyncratic task – where a job can consist of only that task – the optimal

monitoring probability is to necessarily hire two agents. Again, as Theorem 19 shows,

interior monitoring probabilities – including virtual monitoring – are feasible here, but

Theorem 3.4.1 shows they are not optimal.

When J > 1, an interior monitoring probability is superior. As we now show,

the firm’s optimal monitoring probability is decreasing in J . Further, the lemma estab-

lishes that if the firm is able to bundle arbitrarily large numbers of tasks together into

a job, the monitoring probability approaches zero.

Lemma 26 (Optimal monitoring probability is decreasing in job size). The optimal

monitoring probability q∗ is decreasing in the job size J . Moreover, as the maximum
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job size J increases without bound, the optimal monitoring probability goes to zero.

Proof. Denote v = 1−q+2qπ
1+q

. From the proof of 3.4.1, the optimal monitoring proba-

bility q must satisfy

−2J(π − 1)vJ + vJ + (2π − 1)q(vJ − 1) = 1,

which can be rearranged to yield

JvJ

1− vJ
− 1− q + 2qπ

2(1− π)
= 0. (3.1)

The partial derivative of the left-hand side of e:FOC2 with respect to J is

vJ(−vJ + J ln(v) + 1)

(vJ − 1)2

The sign of this derivative is governed by 1 − vJ + J ln(v) ≡ 1 − x + ln(x) where

x = vJ . The sum 1− x + ln(x) is increasing over x ∈ (0, 1], so it is increasing in vJ .

Since limx→1 1 − x + ln(x) = 0, 1 − vJ + ln(vJ) is negative. Thus, the derivative of

the FOC with respect to J is negative. Since the derivative of the FOC with respect to

q is negative, the optimal monitoring probability is decreasing in the job size.

Since q∗(J) is decreasing and is bounded below, q̂ = limJ→∞ q
∗(J) exists. To

see that the limiting monitoring probability is zero, consider fixed π < 1 and suppose

q̂ > 0. Define v∗(J) = 1−q∗(J)+2πq∗(J)
1+q∗(J)

and since q̂ exists, v̂ = limJ→∞
1−q∗(J)+2πq∗(J)

1+q∗(J)

exists.

The first-order condition−2J(π−1)v∗(J)J+v∗(J)J+(2π−1)q∗(J)(v∗(J)J−
1) = 1 must hold at each J , which means limJ→∞ Jv

∗(J)J must converge to a finite

value, implying limJ→∞ v
∗(J)J = 0.

Then, for J sufficiently large, 2J(1 − π)v∗(J)J − (2π − 1)q∗(J) ≈ 1 and so

limJ→∞ Jv
∗(J)J = limJ→∞

1−q∗(J)+2πq∗(J)
2(1−π)

= limJ→∞
1+q∗(J)
2(1−π)

v∗(J) and beginequa-

tion* JlimJ→∞ v
∗(J)J−1 = limJ→∞

1+q∗(J)
2(1−π)
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Let ε > 0 be given. Since v∗(J) is convergent, for J large (J − 1)v∗(J −
1)J−1 > (J − 1)v∗(J)J−1 − ε

2
. Likewise, since Jv∗(J)J is convergent, it is Cauchy

convergent and there exists J sufficiently large so that (J−1)v∗(J−1)J−1−Jv∗(J)J <

ε
2
. Thus

ε

2
> (J − 1)v∗(J − 1)J−1 − Jv∗(J)J

> (J − 1)v∗(J)J−1 − ε

2
− JV ∗(J)J

=
1 + q∗(J)

2(1− π)
− v∗(J)J−1 − Jv∗(J)J − ε

2

=
1 + q∗(J)

2(1− π)
− v∗(J)J−1 − 1 + q∗(J)

2(1− π)
v∗(J)− ε

2

=
1 + q∗(J)

2(1− π)
[1− v∗(J)]− v∗(J)J−1 − ε

2
.

So for J sufficiently large, ε > 1+q∗(J)
2(1−π)

[1 − v∗(J)] − v∗(J)J−1. But since

v∗(J)J → 0, this means 1 = limJ→∞ v
∗(J) = limJ→∞

1−q∗(J)+2πq∗(J)
1+q∗(J)

. Recalling that

π < 1 was given, this requires q∗(J)→ 0. This contradicts the maintained hypothesis

that q̂ > 0 and the limiting monitoring probability is zero. Q.E.D.

Theorem 3.4.1 indicates that an interior monitoring probability is optimal for

J > 1. The intuition here can be seen by considering the per-task wage bill as a func-

tion of the monitoring probability for a given job size. co:statics establishes that the

wage required to induce effort is decreasing in the monitoring probability. An increase

in the monitoring probability, however, increases the expected number of agents be-

ing paid. Decreasing the monitoring probability, on the other hand, pays fewer agents

in expectation but each is compensated with a higher wage. 3.6 shows that for low

monitoring probabilities the reduction in the wage associated with an increase in the

monitoring probability outweighs the expected effect of paying more agents; as the

monitoring probability increases the effect of the decreased wage is eventually out-

weighed by the greater expected number of agents being paid. For any J > 1, the per-
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task wage bill is U-shaped in the monitoring probability, at first decreasing and then

increasing. At an optimum, the effects trade-off non-trivially and an interior monitor-

ing probability is optimal.

Lemma 26 establishes that the optimal monitoring probability is decreasing in

the job size. As is the case outside of the optimal monitoring probability, the effect on

the expected wage bill is unclear. In addition to showing that the shape of the wage

bill as a function of the monitoring probability for a given job size is non-monotonic,

3.6 also shows that the per-task wage bill at the optimum decreases monotonically in

the job size. The firm clearly prefers to make jobs as large as possible.

Rahman (2012) studies virtual monitoring in a principal-agent framework. Al-

though such an implementation plan is always feasible (with unboundedly large wage

payments), as can be seen clearly in 3.4, it is optimal only in the limit of bundling arbi-

trarily many tasks into a job. Rahman (2012) can then be thought of as either studying

one particular contract in the space of feasible contracts or the optimal implementa-

tion plan when jobs are arbitrarily large. The reason virtual monitoring is optimal for

arbitrarily large job sizes is that as J → ∞, the wage required to induce high effort

approaches the cost of effort c. Compared to the contractible effort benchmark, the

per-task efficiency loss from unobservable effort decreases as jobs grow larger. How-

ever, it is only when jobs are unboundedly large that virtual monitoring is optimal and

unobservable effort leads to no efficiency loss.

[Per-task efficiency loss compared to contractible effort benchmark goes to

zero as job size increases] The per-task efficiency loss from non-contractible effort

goes to zero as the maximum job size grows unboundedly large.

Proof. For any q 6= 0, 1−q+2πq
1+q

< 1 and
[

1−q+2πq
1+q

]J
→ 0 as J →∞. The result follows

since w(q∗(J), J)→ c and (1− c)− (1− (1 + q∗(J))w(q ∗ (J), J))→ 0. Q.E.D.
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3.4.2 Hierarchy

Thus far, the firm has treated each agent it hires similarly (what we call sym-

metrically). This need not be the case. On a task in which two agents are hired, the firm

could inform one of the agents that two workers have been assigned to the task. (The

firm cannot inform both agents since, then, a worker would realize the absence of such

notice implies they are the only worker assigned to the task and incentives for high

effort would be impossible to generate.) The worker who is informed that two agents

have been hired knows his probability of being paid when shirking is lower than in the

symmetric case and a lower wage is required to induce him to exert effort. Conversely,

the uninformed worker knows the probability he is the only worker hired for a task is

greater than in the symmetric case and a higher wage is required for inducement. We

now investigate whether creating such a hierarchy of informed and uninformed agents

is good for the firm.

Suppose two agents are hired for a task with probability q ∈ (0, 1], and one

agent is hired with probability 1 − q. The agents are offered transfers w1 6= w2 and

each must complete a job consisting of J tasks. The agents will be paid wi · J if their

output matches the other agent’s output on all tasks assigned to two agents, otherwise

the agent receives a transfer of zero. The following theorem characterizes the set of

feasible contracts that implement high effort in equilibrium for a given number of tasks

J and monitoring probability q when agents are presented with different information.

Theorem 20 (Feasible Asymmetric Simultaneous Implementation). Let J ∈ N and

q ∈ (0, 1] be given. When the principal offers contract

J, {∆(q)}Jj=1,
(
w1, w2

)
=

(
c

1− [1− q + qπ]J
,

c

1− πJ

)
if m1

j = m2
j∀ j s.t. Nj = 2

there exists a high effort equilibrium for c ≤ (1 − π)
[

1
1−(1−q+qπ)J

+ q
1−πJ

]−1

which
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yields expected per-task payoffs

uFj = 1− w1 − qw2

for the firm.

Proof. Now we need to consider separate incentive constraints for each worker. De-

note by i = 2 the worker who is informed that he’s in a two-agent pool; in our de-

scription above this is the second agent hired. Let i = 1 be the other worker who is

uninformed about whether he is part of a one-worker or two-worker pool. First con-

sider worker 1 and suppose worker 2 is exerting effort on all tasks that he’s assigned.

Let ξ1 be the number of tasks that agent 1 exerts effort on. As before, agent 1 is paid

with certainty if he exerts effort on all tasks:

P (paid|ξi = 1) = 1

If agent 1 shirks on some tasks, then his probability of being paid depends on the

probability he is monitored on this task. Let m represent the number of workers who

are assigned to the task with the current worker. Agent 1 believes his work will be

checked with probability q:

Pr(m = 1) = 1− q

Pr(m = 2) = q.

The probability agent 1 is paid on a job when he exerts effort on n tasks is:

Pr(paid|ξi = n) = [1− q + qπ]J−n

and, once again, the most profitable deviation for a worker is to exert effort on no tasks.

In an equilibrium with agents exerting effort, the principal chooses the lowest
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price that satisfies the worker’s incentive constraint, and so the firm sets the wage so

that the worker is just indifferent between exerting effort on all tasks and exerting effort

on no tasks:

w1 =
c

1− [1− q + qπ]J
.

By a similar analysis, the incentive compatible wage for worker 2 is:

w2 =
c

1− πJ
.

The firm prefers this implementation to guessing the state blindly if 1 − w1 −
qw2 ≥ π. Q.E.D.

As before, the wages required to induce a high-effort equilibrium are increasing

in the prior and decreasing in both the job size and the monitoring probability. The

following corollary of Lemma (3) allows us to fully characterize the optimal contracts

for the firm for a given job size.

Theorem 21 (Symmetric implementation outperforms asymmetric). Treating agents

symmetrically is better for the firm than the asymmetric implementation in which some

workers are informed and some are uninformed.

Proof. First consider the case in which agents are treated symmetrically. If a sec-

ond agent is hired for a task with probability q, each worker believes he is in a pool

with another worker with probability 2q
1+q

. The optimal wage given J and q is w =

c

1−
[

1−q+2qπ
1+q

]J .

With monitoring probability q, in expectation 1 + q agents are hired for a given

task. Since with probability 1 − q a second agent is not hired and with probability q

a second agent is hired, a worker hired for a given task believes he is the first agent

(in the parlance of asymmetric implementation) with probability q
1+q

+ 1−q
1+q

= 1
1+q

and the second agent with probability q
1+q

. (Of the fraction 2q
1+q

of workers toiling in
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a two-worker pool, half can be treated as the first agent and half as the second agent

hired.)

When evaluating a decision to exert effort or shirk, a worker must calculate the

probability he obtains payment even if he shirks. This probability depends on whether

the agent’s output is going to be compared to that of another agent. The probability an

agent’s output is checked is given by

Pr(work checked) = Pr(work checked|2nd agent)Pr(2nd agent)

+Pr(work checked|1st agent)Pr(1st agent)

= 1 · q

1 + q
+ q · 1

1 + q

=
2q

1 + q

Now consider the asymmetric situation in which the second agent is informed

that he is the second agent on a given task. This agent knows his output is neces-

sarily compared to that of another agent, and so Pr(work checked) = 1 and w2 =

c
1−πJ . The agent who is informed that he is the first agent hired on a given task has

Pr(work checked) = q and w1 = c
1−[1−q+qπ]J

.

Whether in the symmetric or asymmetric case, an agent’s wage depends on the

probability he is able to obtain payment when shirking: the general form of an agent’s

wage is w = c
Pr(paid|effort)−Pr(paid|shirking) . In a high-effort equilibrium, the probabil-

ity an agent is paid when exerting effort is unity. We may rewrite the probability an

agent expects payment when shirking as

Pr(paid|shirking) = Pr(work checked)π + Pr(work unchecked)

= Pr(work checked)π + 1− Pr(work checked)

= 1− (1− π)Pr(work checked)
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If we denote x = Pr(work checked), we may then rewrite the general form of an

agent’s wage as w = c
1−Pr(paid|shirking) = c

1−[1−(1−π)x]J
. The wage is convex in the

probability an agent is paid when shirking: ∂
∂x

(w) < 0 and ∂2

∂x2
(w) > 0.

All that remains to be shown is that the probability an agent’s work is checked

in the asymmetric case is a mean-preserving spread of the probability an agent’s work

is checked in the symmetric case. We have already established that the probability

an agent believes his output will be checked is 2q
1+q

in the symmetric case. In the

asymmetric case, fraction 1
1+q

agents are first-agents and q
1+q

are second agents. First

agents have their output checked with probability q while second agents necessarily

have the output checked. Thus, the overall probability an agent’s work is checked

in the asymmetric case is also 2q
1+q

. Since the wage is convex in this probability, the

asymmetric case results in a higher wage bill for the firm. Q.E.D.

We have now established the optimal contracts for the firm to implement a

high-effort equilibrium. We state this as 22.

Theorem 22 (Optimal Simultaneous Implementation). When J tasks are available

to bundle into a job, the firm should offer each of two agents the following contract:

< J ; {∆(q∗(J))}Jj=1;w(m) = c

1−
[
1−q∗(J)+2q∗(J)π

1+q∗(J)

]J if m1
j = m2

j ∀j s.t. Nj = 2, w(m) =

0 otherwise >.

Proof. Follows from previous Theorems. Q.E.D.

3.4.3 Sequential Implementation Plan

Section 3.4.1 considered a firm choosing an implementation plan at the outset

of the job. In particular, the firm does not change its behavior in light of the workers’

output. This specification is appropriate for settings in which the firm is either unable

or unwilling to observe worker output in real-time on a task-by-task basis. For many

of the applications of crowdsourcing this is accurate. One of the attractions of the
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medium is that workers are able to complete tasks at their own discretion, free of the

bounds of normal business hours or turn-around times. But this need not be the case,

especially if firms are able delay compensating a worker upon observing his output.11

Now suppose the firm can condition the probability of hiring a second worker

on the first worker’s action. If m1
j = y, then hire a second worker with probability qy

and if m1
j = n, then hire a second worker with probability qn. As we have already

shown, hiring at most two workers is sufficient to induce a high-effort equilibrium.

Thus, we can ignore consideration of sequential implementation plans calling for more

than two workers. This means that the simultaneous plans we considered in 3.4.1 can

be implemented as a sequential plan subject to the additional restriction that qn = qy.

It is therefore immediate that the optimal sequential implementation plan is (weakly)

superior to the optimal simultaneous implementation plan. This superiority, however,

comes at the cost of more burdensome demands upon the firm implementing the plan.

We begin by establishing the space of feasible sequential implementation plans.

Theorem 23 (Feasible Sequential Implementation). There exist a continuum of equi-

libria parameterized by (qn, qy) such that all workers exert effort. In equilibrium,

workers are paid wage

w1(qn, qy) =
c

min {qn(1− π), qyπ}

w2(qn, qy) =
c [πqn + (1− π)qy]

min {qy(1− π), qnπ}

contingent upon matching actions when two workers are hired.

Proof. See Appendix. Q.E.D.

The prior favors action n, so a shirking agent 1 will choose m1 = n. The

firm must monitor action n more frequently to reduce the incentive to shirk for agent
11Then, in this case, the firm could utilize a sequential implementation plan by having one agent

complete an entire job and using the agent’s output to carry out the specified monitoring probabilities.
All workers would then be compensated after the completion of all work, not just their own.



164

1. However, this comes at the cost of increasing the incentive to shirk for agent 2.

Conditional on being hired, agent 2 knows m1 = n is very likely and therefore must

be paid a high wage w2 to incentively effort. In fact, in the optimal contract, the

firm prefers to monitor message m1 = y more frequently. This contract reduces the

incentives to shirk for agent 2 at the expense of increasing incentives to shirk for agent

1. The firm maximizes its payoffs by giving the monitor the least incentive to shirk,

and paying the monitor a lower wage than the initial worker.

Theorem 24 (Optimal Sequential Implementation). Consider the class of contracts

parameterized by sequential monitoring probabilities (qy, qn). The optimal equilibria

in this class is

(q∗n, q
∗
y) = (q∗n, 1)

where q∗n solves

2π2q3
n + 2π(1− π)q2

n = 1

Proof. See Appendix. Q.E.D.

By the argument preceding the Theorem statement of 23 we immediately have

the optimal implementation plan among all simultaneous and sequential plans.

Theorem 25 (Optimal Implementation). This sequential contract is optimal relative

to any simultaneous contract with q = qy = qn

3.5 Extensions

3.5.1 More General Firm Payoffs

In Section 3.4, the firm’s payoff was 1 for matching the state and 0 for failing

to match the state. Allowing the firm’s payoffs for matching (and failing to match) the

state to depend on the state changes little of the results of Section 3.4. Suppose the firm
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suffers greater disutility from permitting an objectionable image to be posted on its site

compared to disallowing the upload of a harmless image. Let αω ≥ 0 be the firm’s

payoff from matching the state when the state is ω and βω ≤ 0 be the firm’s payoff

from failing to match state ω. So αn (βn) corresponds to permitting (prohibiting)

harmless content to be shared and αy (βy) represents removing (failing to remove) an

objectionable item.

Firm optimization remains as before. The sole change to the results of Sec-

tion 3.4 is to the firm’s individual rationality constraint used to establish the space of

feasible contracts. The final step in the proofs of Theorems 19 and 23 is to show the

firm prefers the proposed contract to guessing the state blindly. With payoffs αω and

βω, the firm’s expected payoff from selecting Aj = y (Aj = n) without hiring any

workers is (1 − π)αy + πβn (παn + (1 − π)βy). The proposed contract must exceed

both of these values, so the firm’s simultaneous implementation individual rationality

constraint becomes

παn+(1−π)αy−(1+q)

 c

1−
[

1−q+2qπ
1+q

]J
 ≥ max{(1−π)αy+πβn; παn+(1−π)βy},

which is equivalent to c ≤ min{π(αn−βn);(1−π)(αy−βy)}
(1+q)

(
1−

[
1−q+2qπ

1+q

]J)
.

When min{π(αn−βn); (1−π)(αy−βy)} > 1−π, the feasible space is larger

than in 3.4. co:statics shows that as the prior flattens (π decreases), the firm is able to

induce agents with higher costs of effort to exert effort. This remains the case when

an uninformed firm follows the prior so that the default option is to allow questionable

postings to be uploaded. Since the optimal monitoring probability did not depend on

the payoffs from successfully matching the state, all other results remain unchanged.
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3.5.2 More General State Spaces

Section 3.4 considers a binary state space Ω = {y, n} to make the exposition

cleaner. First, for the applications most relevant to the analysis of our model, it is

reasonable to presume tasks can be subdivided into binary choices: instead of asking

workers to reveal whether a product is a “white, long-sleeve blouse,” the firm can

instead structure the tasks so that workers separately categorize whether the item is

“white,” “long-sleeve,” and a “blouse.”

Even without the possibility of such a subdivision process, the results presented

in Section 3.4 continue to apply with more general state spaces. Let Ω = {ω1, ω2, ...}
and redefine π = maxk Pr(ωj = ωk). From the firm’s perspective, only the most

likely state (in terms of having the highest prior probability) matters for inducing an

agent to exert effort, and so all of the results in Section 3.4 carry-through unchanged.

This would also remain the case with an uncountably infinite state space as long as

there is a discrete jump in probability at some ω ∈ Ω. (The analysis is uninteresting

when Pr(ωj = ω) = 0 for all ω since a worker’s probability of obtaining payment

when shirking is zero.)

3.5.3 Imperfect Signals

The assumption of perfect signals limits the scope of the present paper. The

main purpose of assuming perfect signals, however, is to separate inducing effort from

learning as the firm’s motivation for hiring multiple workers: when signals are noisy,

there is a learning justification for the firm hiring multiple workers even when effort is

contractible. In other words, with noisy signals the underlying signal structure induces

an additional justification for hiring multiple agents, and this justification holds regard-

less of whether effort is contractible. With perfect signals, there is a wedge between the

contractible effort and non-contractible effort settings and the learning justification for

hiring multiple agents arises only when effort is non-contractible and the equilibrium
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specifies shirking.

3.6 Conclusion

Crowdsourcing is a new and non-traditional means of completing work. It

offers the promise of a fast, flexible and scalable workforce available at a moment’s

notice. But it also presents some unique difficulties. Workers have no relationship with

the firm for which they are working, so conventional reputation mechanisms have no

bite. Effort is non-contractible, so the costly exertion of it must be achieved through

incentives. We show that despite these pitfalls, effort can be induced and valuable in-

formation communicated. The mechanisms we design to achieve this rely upon hiring

multiple workers to complete the same tasks and making payment conditional upon

workers producing the same output. We consider two types of implementation tech-

nologies, studying both feasible and optimal contracts within each technology. The

mechanisms we put forth are simple enough to be easily implemented by crowdsourc-

ing firms yet they offer tangible improvements upon those currently used in practice.

I especially thank Troy Kravitz for his role as coauthor on this chapter. I also

thank Nageeb Ali, David Miller, Joel Sobel, Joel Watson and participants of the UCSD

theory seminar and the 2011 North American Summer Meeting of the Econometric

Society.

3.7 Appendix

Firm chooses (qL, qR) to minimize:

min
qL,qR

1

min {qL (1− π) , qRπ}
+

(πqL + (1− π) qR)2

min {πqL, (1− π) qR}

1. Suppose qR <
(

1−π
π

)
qL (⇒ qR < qL).
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Best shirking action is a1 = R and a2 = L

w2 =
c (πqL + (1− π) qR)

(1− π) qR

w1 =
c

qRπ

Firm:

min
qL,qR

1

qRπ
+

(πqL + (1− π) qR)2

(1− π) qR

s.t.qR ∈
[
0,

(
1− π
π

)
qL

]
and qL ∈ [0, 1]

or qR ∈
[
0,

(
1− π
π

)]
and qL ∈

[(
π

1− π

)
qR, 1

]

Fix qR. Optimal qL(qR) is to minimize qL, since qL only appears in numerator.

Therefore, to satisfy constraint,

q∗L(qR) =

(
π

1− π

)
qR

and agent 1 is indifferent between L and R when shirking. Now find q∗R :

min
qR

1

qRπ
+

(
π2 + (1− π)2)2

(1− π)3 qR

FOC :
1

πq2
R

=

(
π2 + (1− π)2)2

(1− π)3

q∗R =

√√√√ (1− π)3

π
(
π2 + (1− π)2)2 ≤ 1 (MATLAB)

2. Suppose qR ∈
[(

1−π
π

)
qL,
(

π
1−π

)
qL
]
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Best shirking action is a1 = L and a2 = L

w1 =
c

qL (1− π)

w2 =
c (πqL + (1− π) qR)

(1− π) qR

Firm:

min
qL,qR

1

qL (1− π)
+

(πqL + (1− π) qR)2

(1− π) qR

s.t.qR ∈
[(

1− π
π

)
qL,min

{(
π

1− π

)
qL, 1

}]
and qL ∈ [0, 1]

Boundary conditions:

• never need to worry about qL = 0 or qR = 0 since pushes term to infinity

• qL = 1, qR =
(

1−π
π

)
(x)

• qL = 1, qR = 1 (x)

• qL =
(

1−π
π

)
, qR = 1 (x)

Fix qR and find q∗L(qR)

FOC :
1

q2
L (1− π)

=
2π2qL + 2π (1− π) qR

(1− π) qR

qR = 2π2q3
L + 2π (1− π) qRq

2
L

qR =
2π2q3

L

[1− 2π (1− π) q2
L]

q∗L(qR) = no closed form
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Now find q∗R

***********

Fix qL and find q∗R(qL)

FOC : 2 (1− π)2 (πqL + (1− π) qR) qR = (πqL + (1− π) qR)2 (1− π)
d

dqR
< 0 for qR <

π

1− π
qL so want to make qR as big as possible

q∗R(qL) = min

{(
π

1− π

)
qL, 1

}

Now find q∗L

min
qR

1

qL (1− π)
+ 4πqL

FOC :
1

q2
L (1− π)

= 4π

q∗L =
1

2
√
π (1− π)

≥ 1

Boundary condition binds:

q∗R(qL) = 1

q∗L =

(
1− π
π

)

Firm profit:

π

(1− π)2 + 4 (1− π)

Reoptimize for q∗L at q∗R = 1
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min
qL

1

qL (1− π)
+

(πqL + (1− π))2

(1− π)

FOC :
1

q2
L (1− π)

=
2π2qL + 2π (1− π)

(1− π)

2π2q3
L + 2π(1− π)q2

L = 1

Note qL =
(

1−π
π

)
does not solve this equation and neither does qL = 1 (unless

π = 1/2).

Reoptimize for q∗R at q∗L = 1

min
qR

(π + (1− π) qR)2

(1− π) qR

FOC : 2 (1− π)2 qR (π + (1− π) qR) = (1− π) (π + (1− π) qR)2

q∗R(q∗L = 1) =
π

1− π
> q∗L

3. Suppose qR >
(

π
1−π

)
qL

Best shirking action is a1 = L and a2 = R

w1 =
c

qL (1− π)

w2 =
c (πqL + (1− π) qR)

πqL
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Firm:

min
qL,qR

1

qL (1− π)
+

(πqL + (1− π) qR)2

πqL

s.t.qR ∈
[(

π

1− π

)
qL, 1

]
and qL ∈

[
0,

(
1− π
π

)]
or qR ∈ [0, 1] and qL ∈

[(
1− π
π

)
qR, 1

]

Fix qL. Optimal qR(qL) is to minimize qR, since qR only appears in numerator.

Therefore, to satisfy constraint,

q∗R(qL) =

(
π

1− π

)
qL

and agent 1 is indifferent between L and R when shirking. Now find q∗L :

min
qL

1

qL (1− π)
+ 4πqL

FOC :
1

(1− π) q2
L

= 4π

q∗L =
1

2
√
π(1− π)

≥ 1

Boundary condition binds

q∗R = 1

q∗L =

(
1− π
π

)

3.8 Figures



173

Figure 3.1: Feasible wages as a function of the monitoring probability

Figure 3.2: Feasible wages as a function of the job size
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Figure 3.3: Feasible wages as a function of the prior

Figure 3.4: Optimal monitoring probability as a function of the job size
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Figure 3.5: Optimal wage as a function of the job size

Figure 3.6: Per-task wage bill as a function of the monitoring probability
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Figure 3.7: Per-task efficiency loss as a function of the job size
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