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Abstract

Periodic approximations and spectral analysis of the Koopman operator: theory and

applications

by

Nithin Govindarajan

Modeling complex dynamical systems, with an eye towards accurate reconstruction

of individual trajectories, is an inherently difficult proposition. This difficulty, which

arises from exponential sensitivity to initial conditions, also makes it nearly impossible

to simulate long-term trajectories. Fortunately, in many applications, it is sufficient

if a reduced-order model is able to just capture the global invariant and quasiperiodic

structures which fall within the resolution of observation.

Koopman operator theory is a mathematical formalism which allows one to extract

these global structures. Many geometric notions in the state-space, as well as statistical

properties on the attractor, are characterizable in terms of the spectral decomposition

of this linear operator. The linearization of a system through the Koopman operator

is achieved by lifting the dynamics to the space of observables, making the technique

applicable to any system for which the flow map is well defined.

The generality of the Koopman formalism is specifically demonstrated here on a

nonsmooth system in which a pendulum is subjected to downward kicks at fixed angles.

In the absence of damping, it is shown that the fixed space of the operator yields a

characterization of the ergodic partition, whereas the set of limit cycles on the attractor

gives rise to a continuous spectrum. Under marginal damping, the continuous spectrum

is shown to disintegrate and the appearance of dissipative eigenvalues associated with the

transient dynamics of the stable fixed point can be related to a linear system by means

vii



of a semi-conjugacy.

Critical to the wide-scale application of Koopman operator theory are numerical

methods which are able to approximate the spectral decomposition of observables. Given

that any computational method must reduce the infinite-dimensional Koopman operator

to something finite, this dissertation specifically examines how the Koopman operators

of finite-state dynamical systems are related to their infinite dimensional counterparts.

A convergence result is proven here in which the class of continuous, measure-

preserving automorphisms on compact metric spaces is shown to be approximable by

periodic systems on a finite state-space. The Koopman operators of these so-called “pe-

riodic approximations” are shown to converge spectrally to that of the original operators

in a weak sense. Herein, it is demonstrated that even though the individual rank-one

spectral projectors are spurious, smooth weighted sums of these projectors applied to a

fixed observable are meaningful and converge to the quantities one would expect for their

infinite-dimensional counterparts.

The results are generalizable to handle measure-preserving flows through an interme-

diate time-discretization. For convergence of the spectra to occur, a sufficient condition

is derived requiring the spatial refinements in the periodic approximation to happen at

a faster pace than the temporal refinements. Peculiarly, this requirement is somewhat

opposite to what the CLF condition dictates for stability of finite difference schemes. Al-

beit, the periodic approximation may be interpreted as a specific semi-Lagrangian scheme

where additional “global” efforts are made to prevent two grid points from collapsing into

one.

Given the aforementioned approximation results, numerically convergent methods

for computing spectra of observables are formulated. The crucial part of the numerical

method is the construction of the periodic map, which in the general case can be done

by solving a bipartite matching problem. It is shown that for Lipschitz continuous maps,

viii



this process can be executed in roughly O(n3m/2) complexity, where m is the dimension

of the state-space and n the size of the partition in each dimension. Since the remainder

of the numerical method exploits the structure of permutation matrices and only requires

computing Discrete Fourier transforms, the entire scheme is numerically stable and “fast”,

hence yielding a viable method to compute the spectral decomposition of Koopman

operators for the measure-preserving case.
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Chapter 1

Introduction

The classical perspective towards the analysis and modeling of dynamical systems re-

lies on the so-called “state-space” representation. This geometric viewpoint of Poincaré

certainly had been very fruitful for the scientific community, and its applications are

unquestionable, particularly in the area of control theory. In recent times, an alternative

viewpoint to dynamical systems has been receiving a lot of attention. This viewpoint,

which is based on the “dynamics of observables” picture, considers the evolutions of

functions (i.e. observables) defined on the state-space through the framework of the

Koopman operator [1]. A remarkable feature to this approach is that the dynamics are

always linear in the space of observables, irrespective of the underlying properties of the

dynamical system in the state-space.

Within the state-space formulation, there has always been a “disparity of comprehen-

sibility” when it comes to the analysis of linear systems versus nonlinear ones, with the

latter being significantly more complex. Given the tools of spectral operator theory, the

Koopman operator allows one to treat nonlinear systems in a linear setting. This fact

even holds true for non-smooth systems which are characterized by discontinuous orbits.

The associated benefits of Koopman operator theory do however come at the price of
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Introduction Chapter 1

dealing with an infinite-dimensional system. Finite-dimensional approximations of an

operator and numerical approximation of its spectra are a delicate issue. Apart from

exploring the applicability of Koopman operator theory to nonsmooth/hybrid systems,

the main goal of this dissertation is to analyze these issues in greater depth.

1.1 The Koopman operator

Mathematically, the Koopman formalism can be expressed as follows. Let X ⊂ RN

denote the state-space and St : X 7→ X a flow map satisfying the (semi-)group properties:

St ◦ Ss(x) = St+s(x), S0(x) = x. Now consider an observable g : X 7→ C, for some fixed

t ∈ R, the Koopman operator is defined as the operation:

(
U tg
)

(x) := g ◦ St(x).

The Koopman formalism replaces the original system expressed by the tuple (X,St, t)

with the alternative representation expressed by (G,U t, t), where G denotes the space

of observables. It is easily verifiable that U t is a linear operator on G. This linear

description of a nonlinear, and possibly, non-smooth system is obtained through “lifting”

of the dynamics on the state-space to a higher, infinite-dimensional space of functions.

The linearity of U t allows one to exploit the machinery of spectral operator theory.

In particular, eigenfunctions may be defined for the operator. A nonzero function φλ ∈ G

is called a Koopman eigenfunction if it satisfies:

(
U tφλ

)
(x) = eλtφλ(x) (1.1)

for some eigenvalue λ ∈ C. Given the infinite-dimensional nature of the operator, U t may

also contain continuous spectrum. In that case, one can extend the notion of eigenfunc-

2
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tions in an appropriate weak sense using the concept of distributions. These generalized

objects, referred to as eigendistributions, satisfy the relation:

∫
X

(
U tφλ

)
(x)w(x)dµ = eλt

∫
X

φλ(x)w(x)dµ (1.2)

where w(x) is some arbitrary test function on X. Indeed, it follows that all eigenfunctions

are eigendistributions, but the converse does not hold true.

From a dynamical systems point of view, the interesting aspect of these eigenfunctions/-

distributions is that they are preserved under conjugacy. If St : X 7→ X, Rt : Y 7→ Y are

two topologically conjugate dynamical systems under the homeomorphism h : X 7→ Y ,

i.e. h ◦ St(x) = Rt ◦ h(x), and if φλ is an eigenfunction/eigendistribution of U tR, then so

should φλ ◦ h be an eigenfunction/-distribution of U tS. Also, the level sets of Koopman

eigenfunctions are directly related to many geometric state-space notions of a dynamical

system. That is, let:

Ψc
φλ

:= {x ∈ X : φλ(x) = c}

denote a specific level-set of an eigenfunction. Then the mapping of the set Ψc
φλ

forward

under the flow yields the relation:

St
(
Ψc
φλ

)
= Ψ

c exp(λt)
φλ

. (1.3)

The interpretation of (1.3) is that the level-sets of φλ characterize how specific ensembles

of initial conditions are propogated under the flow.

3
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1.2 Koopman analysis of hybrid systems

Analysis of nonlinear flow fields through the spectral properties of the Koopman

operator has already been carried out under various settings [1]. These approaches have

been particularly useful in describing dynamically relevant modes in fluid flows [2, 3],

coherency in power systems [4], and energy efficiency in buildings [5]. The wide-scale

applicability of Koopman analysis is primarily because the linearization holds true for any

system for which the flow map is well defined. The framework is even applicable piecewise-

smooth dynamical systems where the orbits are characterized by smooth evolutions,

interrupted by discrete jumps.

This dissertation, explores some applications of Koopman operator theory to hybrid

systems. This is done by studying a model problem of a pendulum which receives a

downward kick at certain fixed angles. It is shown that eigenfunctions for this system

can still be computed using the technique of taking weighted time averages of observable

traces [6]:

lim
t→∞

1

t

∫ t

0

e−λτ (U τg) (x)dτ (1.4)

Many of the connections of Koopman eigenfunctions to geometric quantities (e.g. invari-

ant partitions, isotables, isochrons) that have played a key role in the success of Koopman

operator theory for nonlinear systems, seem to naturally extend for this specific example

of a hybrid system.

In particular, one can use the eigenfunctions to establish a (semi-)conjugacy with a

linear system. As a consequence of the classical Hartman-Grobman theorem, a nonlinear

system is conjugate to a linear system around a small neigborhood of a stable fixed

point. In [7] it was shown that this conjugacy can be extended to the entire basin of

attraction. A remarkable1 aspect to this fact is that the result also applies to a system

1But perhaps unsurprising for those who are familiar with the proof technique of [7].

4
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with discontinuous orbits!

1.3 Numerical methods for Koopman analysis

An important avenue of research is the development of reliable numerical methods to

compute the spectral decomposition of the Koopman operator. A lot of work has already

been dedicated on this subject. The existing numerical methods can roughly be classified

into four categories:

1. Computing time-averages

2. The Krylov subspace approach (e.g. DMD)

3. Galerkin-type methods (e.g. Extended DMD, Ulam approximation)

4. Reconstruction of spectra from moment data

The first approach which involves computing time-averages are straightforward numerical

implementations of classical ergodic theorems such as Birkhoff’s and Wiener&Wintner’s

results on measure-preserving systems (see e.g. [8, 9, 10, 11]). Although the classical

ergodic theorems apply to only eigenvalues on the unit circle, in [6] it was shown that

dissipative eigenfunctions may also be constructed from the generalization of harmonic

averages in (1.4).

The second approach which relies on a truncated Krylov sequence to compute eigen-

values goes largely under the name of Dynamic Mode Decomposition (DMD) [3, 12].

Although DMD was originally formulated to extract spatial flow structures that evolve

linearly with time, the connections between DMD and Koopman modes were first es-

tablished in [3]. In [13], it was further shown that the eigenvalues and modes of DMD

converge to those of the Koopman operator for the given Krylov subspace.

5
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The third approach is based on classical Galerkin-type approximations of infinite-

dimensional operators using a truncated basis. A method which falls within this class

is Extended-DMD [14], where the goal is to obtain a finite-dimensional approximation

of the Koopman operator from a “dictionary of observables”. In [15], it was shown that

accumulation points of the spectra converge weakly to eigenvalues and eigenfunctions

of the Koopman operator for the Extended-DMD algorithm. Another method of the

Galerkin-type is the Ulam approximation which is used for the Perron-Frobenius operator

[16, 17], the adjoint of the Koopman operator. This specific kind of approximation has

a Markov chain interpretation where indicator functions are used as the dictionary of

observables.

The fourth approach one could take is to compute spectra from moment data. This

route was advocated in [18] for measure-preserving systems where the Christoffel-Darboux

kernel was used to reconstruct the spectral measure. A feature of this approach is that

it is capable of distinguishing the atomic and continuous parts of the spectrum.

1.3.1 Periodic approximations

This dissertation introduces a new method for computing the spectral decomposition

of the Koopman operator. The philosophy behind the proposed method differs slightly

from the Krylov or Galerkin-based approaches, in the sense that, the operator is not

approximated directly in the space of observables. Instead, a discrete approximation of

the dynamical system itself is seeked, yielding a discretization of the operator indirectly.

The method closely recognizes that any computer/numerical implementation of a dy-

namical system will involve some kind of a reduction to a finite-state model, i.e. a map

T : X 7→ X defined on a state-space X = {1, 2, . . . , N} with finite cardinality.

The main question adressed here is how such finite-state models relate spectrally with

6
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the underlying dynamical system from which they were obtained. The focus in this dis-

sertation is to particularly investigate this matter for the class of measure-preserving dy-

namical systems on compact domains. For this class of systems, the Koopman operator is

unitary in an appropriate Hilbert space. The discrete equivalent of a measure-preserving

system on a finite state-space is a bijective map. The trajectories of such a map are

periodic and the associated Koopman operator is a permutation. It will be shown that

measure preserving systems can be approximated arbitrarily well by periodic discrete

maps, and they in turn, may be used to efficiently compute spectra. These so-called

periodic approximations are closely related to the Ulam approximation, but instead of

assigning transition probabilities, one explicitly enforces a bijection on the state-space

partition so that the unitary structure of the operator is preserved.

1.3.2 Inherent challenges of computing spectra

The computation of spectral properties of an infinite-dimensional operators is ac-

companied with inherent challenges. A classical challenge in this domain is the issue of

spurious eigenvalues that may arise in the finite-dimensional truncation. This issue was

first discovered in model problems of Hydrodynamic stability [19] where one is faced with

eigenvalue problem such as:

Ψzzzz = λΨzz, −1 < z < 1

Ψ(±1) = Ψz(±1) = 0

The Chebyshev-tau method converts this infinite-dimensional problem to a generalized

eigenvalue problem of the form Ax = λBx. Apart from the close approximations of

the true eigenvalues, it was observed that the discretization also generated large positive

7
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eigenvalues. These spurious eigenvalues had nothing to do with those of the original

infinite-dimensional system (the true eigenvalues λ = −n2π2 were all negative). This

specific example shows that one always has to be cautious in the discretization of infinite-

dimensional operators.

Another challenge, more specifically related to Koopman operators, is the sensitivity

of certain spectral properties of a dynamical systems. For example, the map:

T (x) = (x+ ω) mod 1

has isolated eigenvalues if ω ∈ Q and a dense set of eigenvalues if ω /∈ Q. Another example

illustrating the sensitivity of the spectra is:

Tε(x) = (x1, x2 + ω + ε sin(2πx1)).

This map has a fully discrete spectrum at ε = 0 (and also isolated if ω ∈ Q), but an

absolutely continuous spectrum when ε 6= 0 (see e.g. [20] ). From a backward stability

analysis point of view, examples of this kind illustrate that the numerical approximation

of certain spectral quantities may be ill-posed if not formulated correctly.

1.4 The main contribution of this dissertation

The notion of a periodic approximation of a measure-preserving dynamical system is

not new [21, 22, 23, 24, 25, 26, 27]. It is well-known amongst specialists that the set of

measure-preserving automorphisms, which forms a group under composition, are densely

filled by periodic transformations under various topologies (see e.g. [21]). These earlier

periodic approximation results were useful in proving certain claims such as whether an

automorphism is “generically” ergodic or mixing. Katok and Stepin [25] also showed

8
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that the rate at which an automorphism admits a periodic approximation can be directly

related to properties of ergodicity, mixing, and entropy. Certain spectral results were also

proven in [25]. For example, it was shown that if T admits a cyclic approximation by

periodic transformations at a certain rate, then the spectrum of the Koopman operator

is simple.

Despite of these spectral results, the formulations proposed by ergodic theorists are

not suitable for the applications considered in this dissertation. This is because of the dif-

ficulty to construct periodic approximations of the kind suggested in [25] from a practical

sense. The focus of this earier work was more on answering certain deep theoretical ques-

tions concerning global properties of automorphisms, rather than the more engineering

oriented applications adressed in [28, 29].

With that stated, the main novelty of this dissertation is really the application of the

concept of periodic approximations for the purposes of computing spectral decomposi-

tions of observable dynamics.

1.5 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Hassan Arbabi, Louis

van Blargian, Timothy Matchen, Emma Tegling, and Igor Mezić. The work origi-

nates from the conference paper:

N. Govindarajan, H. Arbabi, L. van Blargian, T. Matchen, E. Tegling,

I. Mezić, “An operator-theoretic viewpoint to non-smooth dynamical sys-

tems: Koopman analysis of a hybrid pendulum”, 2016 IEEE 55th Con-

ference on Decision and Control (CDC) in Las Vegas.

2. The contents of the remaining chapter is the result of a collaboration with Ryan

9
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Mohr, Shivkumar Chandrasekaran, and Igor Mezić. Most of the work is summarized

in the papers:

N. Govindarajan, R. Mohr, S. Chandrasekaran, and I. Mezić, “On the ap-

proximation of koopman spectra for measure preserving transformations”,

arXiv preprint arXiv:1803.03920 (2018). (Submitted SIAM journal on

Applied Dynamical Systems)

and

N. Govindarajan, R. Mohr, S. Chandrasekaran, and I. Mezić, “On the

approximation of koopman spectra for measure preserving flows”, arXiv

preprint arXiv:1806.10296 (2018).
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Chapter 2

A case study: the hybrid pendulum

A considerable number of dynamical systems in engineering practice are essentially hy-

brid in nature. These systems typically model non-smooth phenomena such as impact,

collision, and switching between several discrete modes. Under the hybrid automaton

framework, these discontinuities are often expressed in terms of guard conditions, state

resets, and switching between several “system modes”. The imposition of such con-

ditions result in so-called piecewise-smooth dynamical systems of which the orbits are

characterized by smooth evolutions, interrupted by discrete jumps.

This chapter illustrates how Koopman analysis can be applied to certain classes of

hybrid systems consisting of a single discrete mode, but are subjected to guard conditions

and state resets. The emphasis is on a specific benchmark pendulum system that is

subjected to downward “kicks” under fixed angles. Overall, two cases are considered: (i)

the undamped case where the continuous part of the system is Hamiltonian, and (ii) a

damped case where the pendulum is exposed to viscous damping.

Remark 2.0.1. The notation and variables defined in this chapter are independent of the

forthcoming chapters. Some of the variables will be re-used later for different purposes.

11



A case study: the hybrid pendulum Chapter 2

2.1 A model of a kicked pendulum

Consider a mathematical pendulum with length l and mass m. In the absence of

damping or external forcing, the equations of motion for this system are formed by

defining x := (θ, ω) ∈ S1 × R =: X and f : X 7→ R2 such that:

ẋ = f(x) =

 ω

−(g/l) sin θ

 .
Now suppose that the pendulum experiences an instantaneous backwards “kick” when

passing through the given angles ±θ∗. This kick is modeled by an instantaneous change

in angular velocity ∆ω > 0. In the hybrid automaton notation, the kick is included in

the model as a reset map R : X 7→ X defined by,

R(θ, ω) =


(−θ∗, ω + ∆ω) if (θ = −θ∗) ∧ (ω < 0)

(θ∗, ω −∆ω) if (θ = θ∗) ∧ (ω > 0)

,

where, for ease of notation,the guard conditions are incorporated as well. Note that the

reset only occurs upon passing through±θ∗ from below, so that the kick is always directed

towards the stable equilibrium point of the pendulum. Note that in this formulation, no

resets occur when the pendulum only grazes the “kicking surfaces” at ±θ∗. The situation

is illustrated in fig. 2.1, where also the corresponding hybrid automaton representation

and state-space are shown.

12



A case study: the hybrid pendulum Chapter 2

Normalized equations

To simplify the analysis, it is convenient to normalize the state x by dividing the

angular velocity ω by the kick strength ∆ω, i.e.

θ̇
ṗ

 =

 µ1p

− (µ2
2/µ1) sin θ

 . (2.1)

and

R(θ, p) =


(−θ∗, p+ 1) if (θ = −θ∗) ∧ (p < 0)

(θ∗, p− 1) if (θ = θ∗) ∨ (p > 0)

, (2.2)

where p = ω/∆ω denotes the normalized momentum. The equations (2.1), (2.2), are

parametrized in terms of µ1 := ∆ω > 0 (the kick strength) and µ2 := ωn :=
√
g/l > 0

(the natural frequency of the linearized pendulum). Note that the continuous part of the

(undamped) hybrid pendulum is Hamiltonian. One can verify that the function:

H(θ, p) :=
1

2

(
µ1

µ2

p

)2

+ 1− cos θ (2.3)

constitute an invariant for the flow of (2.1). This particularly implies that, in between

state resets, the trajectories of the pendulum are confined to level sets of (2.3).

The damped case

The dynamics of the kicked pendulum will also be studied under the effects weak

viscous damping on the system. The continuous part of the hybrid system in that case

is replaced by θ̇
ṗ

 =

 µ1p

− (µ2
2/µ1) sin θ − kp

 (2.4)

13
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−θ∗ θ∗

θ, ω

ω −∆ωω + ∆ω

1 2ẋ = f(x)(θ = −θ∗) ∧ (ω < 0)

x := (−θ∗, ω + ∆ω)(θ = θ∗) ∧ (ω > 0)

x := (θ∗, ω −∆ω)

θ

ω

θ = θ∗

θ = −θ∗

Figure 2.1: The hybrid pendulum: (top) upon passing the angle ±θ∗ from below the
pendulum experiences a change in angular velocity by ∆ω, (middle) the corresponding
hybrid automaton representation, (bottom) the state-space of the system.

where k > 0 is the viscous damping coefficient.
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2.2 Classic geometric analysis of the kicked pendu-

lum

In this section, the pendulum is analyzed from a geometric perspective using classical

tools. The undamped case is covered at first, followed by damped case.

2.2.1 Geometric analysis of the undamped case

The Poincaré map

The trajectories of the freely oscillating pendulum are confined to the level sets of

(2.3). Through this observation, it is clear that for initial conditions belonging to the set

A1 := {(θ, p) ∈ X : H(θ, p) < H(θ∗, 0)} (2.5)

the behavior of the hybrid pendulum is exactly identical to that of the freely oscillating

pendulum.

The more distinctive behavior can be found only in the region: H(θ, p) ≥ H(θ∗, 0).

In this part of the state-space, the pendulum gets “kicked” at least once in its orbit for

almost any initial condition. The only initial conditions that never get kicked here are

those that lie exactly on the homoclinic orbit of the unstable fixed point, and additionally

satisfy θ > θ∗, p > 0 or θ < −θ∗, p < 0.

The dynamics of the kicked region can be fully understood from a discrete map

defined on the kicking surfaces. Given that the orbits between two consecutive impacts

are uniquely determined by the momentum at ±θ∗, a map can be defined to describe the

(normalized) momentum p
∣∣
θ=±θ∗ of the pendulum right before the next impact. To do

this thoroughly, at first the points on the kicking surfaces that directly get mapped into

15



A case study: the hybrid pendulum Chapter 2

the homoclinic orbit are described. Let:

pcr :=
µ2

µ1

√
2 + 2 cos θ∗ (2.6)

denote the critical momentum required to be on the homoclinic orbit and assign the

variable γ to be the state of the pendulum at the unstable fixed point. The Poincaré

map T : {R ∪ γ} 7→ {R ∪ γ} is defined by

T (p) =



p+ 1 p < −(pcr + 1)

|p+ 1| −(pcr + 1) < p ≤ 0

0 p = 0

−|p− 1| 0 < p < pcr + 1

p− 1 pcr + 1 < p

γ p = γ or p = ±(pcr + 1)

(2.7)

Asymptotic dynamics of the hybrid pendulum

To fully describe the asymptotic dynamics of the pendulum in the region: H(θ, p) ≥

H(θ∗, 0), the following result about the map (2.7) is stated first.

Lemma 2.2.1. The map T : {R ∪ γ} 7→ {R ∪ γ} defined by (2.7) has the following

asymptotic properties:

(i) If p ∈ D := {p ∈ R : p = γ ∧ p = ±(pcr + k), k ∈ N}, then there exists M > 0, such

that:

T n(p) = γ, ∀n > M

16
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(ii) If p /∈ D, then there exists a M > 0, such that:

T n(p) ∈ [−1, 1] , ∀n > M

Proof. (i) can be established by computing the pre-images T−k({γ}) for k ∈ N. To show

that (ii) is true, observe at first that T ([−1, 1]) = (−1, 1), which shows that [−1, 1] is a

positively invariant set. Now consider any p /∈ D with |p| > 1, then |T (p)| = |p| − 1.

Using induction, it may be shown that:

|T n(p)| = |p| − n, |p| > n

from where it follows that T n(p) enters the interval [−1, 1] in a finite number of iterations.

Lemma 2.2.1 states that the interval [−1, 1] is an attracting set for (2.7). Furthermore,

it states that the trajectories enter the interval [−1, 1] in a finite number of iterations.

The interior of the attracting set is composed of:

(i) a fixed point at p = 0.

(ii) an uncountable family of period-2 cycles of the form:

{p1, p1 − 1}, p1 ∈ (0, 1) (2.8)

These results on the map (2.7) are related to the actual hybrid system in the following

way. The interval [−1, 1] from Lemma 2.2.1 corresponds to the set

A2 := {(θ, p) ∈ X : H− ≤ H(θ, p) ≤ H+, |θ| ≤ θ∗} (2.9)

17
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where:

H− := H (θ∗, 0) , H+ := H (θ∗, 1) . (2.10)

This set is foliated by an uncountable family of limit cycles. In correspondence with

the period-2 cycles of the map (2.7), the limit cycles can as well be parametrized by

{p1, p1 − 1}, p1 ∈ (0, 1). The following relationship can be obtained between the original

coordinates and the limit cycle in which the system is on:

p1(θ, p) =


µ2
µ1

√
2(H(θ, p)− 1 + cos θ∗) p ≥ 0

1− µ2
µ1

√
2(H(θ, p)− 1 + cos θ∗) p < 0

(2.11)

where (θ, p) ∈ A2. In summary, the following result follows.

Theorem 2.2.2. The trajectories of the hybrid pendulum, starting from almost every-

where in the region’: H(θ, p) ≥ H(θ∗, 0), enter into a discontinuous periodic orbit in finite

time.

Proof. Trajectories in the interior of the set (15) are already in a discontinuous periodic

orbit. From lemma 1 it follows that almost all other trajectories eventually enter one of

these periodic orbits. A measure zero set of trajectories get kicked into the homoclinic

orbit, hence the statement almost everywhere.

Basin of attraction

The basin of a specific limit cycle p1 can be found by repeatedly computing the pre-

images of the map (2.7). fig. 2.2 shows the basin of the limit cycle at p1 = 0.7 for three

different values of pcr.

18
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Figure 2.2: Basin of attraction for the limit cycle with p1 = 0.7. pcr = 1.65 (top),
pcr = 1.7 (bottom-left), pcr = 1.73 (bottom-right).

Action-angle coordinates

If the pendulum is released at θ = −θ∗ with an initial momentum p1 ∈ (0, 1), then

the time required to reach a certain θ ∈ [−θ∗, θ∗] is determined by the elliptic integral:

Γ[θ, p1] =

∫ θ

−θ∗

1

µ2

[
2

(
1

2

(
µ1

µ2

p1

)2

− cos θ∗ + cos ξ

)]− 1
2

dξ

The function Γ[θ, p1] permits us to define action-angle coordinates for the set (2.9).

The period of a specific limit cycle {p1, p1 − 1} is given by the formula:

P [p1] = Γ[θ∗, p1] + Γ[θ∗, 1− p1] (2.12)
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On every limit cycle {p1, p1 − 1}, a phase coordinate ψ ∈ [0, 2π) can be assigned such

that: ψ = 0 at (θ, p) = (−θ∗, p1). This is done as follows: let o(p1) denote the orbit of a

specific limit cycle, i.e.

o(p1) :=
{

(θ, p) ∈ X : St(−θ∗, p1) = (θ, p) for some t ≥ 0
}

Then, the phase on o(p1) can be defined as:

ψ =
1

P [p1]


Γ[θ, p1] p > 0

Γ[θ∗, p1] + Γ[θ∗ − θ, 1− p1] p < 0

(2.13)

where (θ, p) ∈ o(p1).

The formulas (2.13) together with (2.11) define action-angle coordinates for the in-

terior of the set (2.9). That is, under the coordinate transformation (I, ψ) = h(θ, p),

where:

h1(θ, p) = p1(θ, p) (2.14a)

h2(θ, p) =

1

P [p1(θ, p)]


Γ[θ, p1(θ, p)] p > 0

Γ[θ∗, p1(θ, p)] + Γ[θ∗ − θ, 1− p1(θ, p)] p < 0

(2.14b)

the set A2 is mapped onto the set

Y := (0, 1)× S1 (2.15)
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under which the flow is simply

Rt(I, ψ) = (I, (Ω[I]t+ ψ) mod 2π) (2.16)

where Ω[I] := 2π/P [I].

The kicked pendulum has an invariant measure whose support is restricted to the

set A2. In fact, under the bijection (2.14) the dynamics on the set A2 is conjugate to

the Lebesgue measure-preserving system in (2.16). Hence, if µY denotes the Lebesgue

measure for the domain (2.15), then

µA2 = µY ◦ h (2.17)

is an invariant measure for the hybrid system on (2.9).

2.2.2 Geometric analysis of the damped case

In this section, the damped hybrid pendulum is studied from the geometric perspec-

tive.

Poincaré map for the damped system

The asymptotic properties of the hybrid pendulum under viscous damping can again

be analyzed through the study of some discrete map. Because of dissipation, all trajec-

tories that start at H(θ, p) ≥ H(θ∗, 0) must eventually enter the set (2.9). Given that all

trajectories in A1 spiral into the stable fixed point of the pendulum, the analysis of what

happens in A2 is critical to determining the global properties of the system overall.

The analysis is pursued by viewing the system in terms of its energy stateH, which has

a one-to-one correspondence with the normalized momentum p if the inherent symmetry
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is exploited in the system. The discrete map that characterizes the dynamics inside A2 is

defined in reference to the value of the energy at the condition (±θ∗, p), where 0 ≤ p ≤ 1.

In the most general sense, the map takes the form:

H ′ = u (H) := f ◦ d(H) (2.18)

Here, u is a composition of two separate functions: d, which represents the energy dis-

sipated due to damping as the pendulum traverses from ±θ∗ to ∓θ∗, and f , which

represents the energy change related to the kicking of the pendulum at ±θ∗. By knowing

the change in momentum that occurs after a kick, and given (2.3), one can derive that:

f(H) = H −
(
µ1

µ2

)2

p(H) +
1

2

(
µ1

µ2

)2

(2.19)

where:

p(H) =
µ2

µ1

√
2(H + cos θ∗ − 1)

The dissipation function d, on the other hand, must be a monotonically increasing func-

tion and takes the form d (H) = r (H)H with 0 < r (H) < 1 for all H > 0. Based on

some numerical simulations (see figure 2.3), it is assumed that the dissipation function

is linear:

d(H) = rH, 0 < r < 1.

For the undamped case, the map (2.18) is defined on the domain [H−, H+] (see (2.10))

and has a neutrally stable fixed point at Hfp,0 = H(θ∗, 1/2). Furthermore, it has an

uncountable family of neutrally stable period-2 cycles , since f 2 := f ◦ f = Id. The

introduction of damping restricts the domain of the map (2.18) to [H0, H+], where H0 :=
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Figure 2.3: The dissipation function d computed for different viscous damping coeffi-
cients. The kick angle θ∗ is set to π/3 rad, µ1 = 1 rad/s, and µ2 = 1 rad/s.

H−/r. The range of (2.18) equals u([H0, H+]) = [H−, H+], hence a subset of initial

conditions will eventually get mapped outside the domain of u. The next theorem shows

that this subset is, in fact, the entire domain except for one specific point corresponding

to the unstable fixed point of u.

Theorem 2.2.3. Consider the map (2.18) and assume that the dissipation function is

linear. Furthermore, denote r = 1− δ, with δ > 0 sufficiently small. Then:

(i) there exists a unique fixed point Hfp(δ) > Hfp,0 which is unstable.

(ii) the map u := f ◦ d, defined by (2.18), has no period 2-cycles.

(iii) ∀H 6= Hfp(δ), ∃n > 0 s.t. un(H) /∈ [H0, H+]

Proof. For notational convenience, let us denote η := µ1
µ2

. To show that the fixed point

Hfp moves to the right and observe that it must belong to the graph of the implicit
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function:

s(H; δ) := δH − η2p((1− δ)H) +
1

2
η2 = 0

Since,

∂

∂δ
s(H; δ)

∣∣∣∣
δ=0,H=Hfp,0

= Hfp,0

(
1 +

1

p(Hfp,0)

)
= 3Hfp,0

> 0

the implicit function theorem guarantees that Hfp = Hfp(δ), such that s(Hfp(δ); δ) = 0

for a sufficiently small neighborhood around δ = 0. Furthermore,

Hfp(δ) = Hfp,0 + 3Hfp,0δ +O(|δ|2)

which shows that the fixed point moves to the right for δ > 0. The fixed point Hfp(δ),

δ > 0 is unstable. To show this, take note that u(H) = u(H; δ), and:

u′(H; δ) = (1− δ)
(

1− 1

p((1− δ)H)

)

Consider u′(Hfp(δ); δ), the fixed point is unstable if, and only if, |u′(Hfp(δ); δ)| > 1.

Given that u′(Hfp(0); 0) = −1, the following needs to be shown:

u′(Hfp(δ); δ) < u′(Hfp(0); 0) = −1
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Since,

d

dδ
u′(Hfp(δ), δ)

∣∣∣∣
δ=0

=
8

η2
(cos θ∗ − 1)

< 0, if θ∗ 6= 0

this is indeed the case, which completes the proof for (i).

To prove (ii), consider u2(H) := u◦u(H), it will be shown that for a sufficiently small

δ > 0,

d

dH
u2(H) = u′(u(H))u′(H) ≥ 1.

Since u2(Hfp) = Hfp with d
dH
u2(Hfp) > 1, the above inequality would imply that u2(H)

has no other fixed points, which proves the non-existence of period-2 cycles. To show

that the inequality is valid, observe at first that u′(H) = u′(H; δ) and that u′(u(H)) =

u′(u(H; δ); δ). Furthermore,

u′(H; δ) = u′(H; 0) +
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

δ +O(|δ|2)

u′(u(H; δ); δ) =
1

u′(H; 0)
+

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

δ +O(|δ|2)

So that for sufficiently small δ > 0:

d

dH
u2(H) = 1 +

(
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

δ

)(
1

u′(H; 0)

)
+(

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

δ

)
u′(H; 0) +O(|δ|2)

Hence, if it can be shown that:

k(H) :=
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

· 1

u′(H; 0)
+

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

u′(H; 0) ≥ 0

25



A case study: the hybrid pendulum Chapter 2

then d
dH
u2(H) ≥ 1. And indeed,

∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

= −u′(H; 0)− ηH

(ηp(H))3

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

= − 1

u′(H; 0)
− ηu(H; 0)

(η(1− p(H)))3

and after some algebraic manipulations:

k(H) = −2 +
1
2
η2p(H)(1− p(H)) + 1− cos θ∗

η2p(H)2(1− p(H))2

≥ −2 +
1

2

1

p(H)(1− p(H))

≥ −2 +
1

2
min

0<p<1

1

p(1− p)
= 0

which completes the proof for (ii).

The proof of (iii) follows directly from d
dH
u2(H) ≥ 1.

Corollary 2.2.4. For δ > 0 sufficiently small, the trajectories of the hybrid pendulum,

starting from almost everywhere, asymptotically reach the fixed at θ = 0.

2.3 Koopman analysis of the kicked pendulum

In this section, the kicked pendulum is analyzed from the Koopman operator theory

perspective. First, the undamped case is studied, followed by the damped case.
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Figure 2.4: Projections of observables onto the eigenspace of Koopman at λ = 0.
The boundaries of the set of limit cycles (2.9) is demarcated in black, µ1 = 1 rad/s,
µ2 = 1 rad/s, and θ∗ = π

3 rad. The top two figures are the results obtained with
the Hamiltonian function (2.3), whereas the bottom two are those obtained with the
signed Hamiltonian function (2.21). The figures on the right show a close up of the
results into the region [0,2] x [0,2]. .

2.3.1 Koopman analysis of the undamped case

Eigenspace of Koopman at λ = 0

The level sets of Koopman eigenfunctions at λ = 0 partition the state-space into

invariant sets. In fact, the characterization of the eigenspace at λ = 0 is directly related

to the ergodic partition [30, 28].

To describe this partition for the hybrid pendulum, consider at first the dynamics

on the invariant set (2.9). In section 2.2.1 it was shown that this set is foliated by an
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uncountable family of limit cycles. Given this property, one can verify that1

φ0(θ, p) = δ(h1(θ, p)− I0), I0 ∈ (0, 1) (2.20)

form a collection of eigendistributions at λ = 0, where h1 specifically refers to (2.14a). In

a certain sense, these distributions are the building blocks of all eigenfunctions at λ = 0.

That is, if c : (0, 1) 7→ C denotes a function on the open unit interval, then:

φ0(θ, p) =

∫ 1

0

c(I)δ(h1(θ, p)− I)dI = c(h1(θ, p))

is an eigenfunction at λ = 0.

The definition of φ0 can be extended to outside of A2 if all initial conditions belonging

to the basin of a particular limit cycle {p1, p1 − 1} are assigned the value c(p1). Clearly,

if c is a bijection, the level sets of φ0 describe the orbits of the system.

Eigenfunctions of the Koopman operator can be recovered by computing time-averages

of observable traces. These averages are projections of observables Pλg onto the eigenspace

at λ ∈ C. The top two figures in fig. 2.4 depict a high-resolution contour plot of a pro-

jection P0g, when g is set equal to the Hamiltonian function (2.3). In the figures, initial

conditions that have the same color belong to the same level set, and hence, fall under

the same equivalence class of long-term dynamical behavior. Note that for this particular

eigenfunction, these equivalence classes are not the actual limit cycles themselves, since

trajectories that end up in the limit cycles:

{p1, p1 − 1} and {1− p1,−p1}, p1 ∈ (0, 1/2)

have exactly the same time-average.

1δ denotes here the Dirac delta function
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To obtain a more refined partition, one generally needs to consider the product parti-

tion of multiple projections conjointly [31]. For the pendulum however, the time-average

of the observable:

g(θ, p) = sign(p)H(θ, p) (2.21)

can be determined, which gives the Hamiltonian a sign, depending on the direction in

which the pendulum is moving. This observable is capable of separating the limit cycles

{p1, p1 − 1} and {1− p1,−p1} from each other. The bottom two figures of fig. 2.4 show

contour plots of the projections obtained with this observable.

Spectral decomposition on the set of limit cycles

The hybrid pendulum is measure-preserving on the set (2.9). An invariant measure

is given by (2.17). Consequently, the Koopman operator is unitary on L2(A2, µA2). This

implies that the operator admits a spectral decomposition.

An expression for the spectral decomposition is most conveniently obtained by first

deriving the decomposition for the conjugate system (2.16) and then applying the fact

that eigendistributions are conserved under conjugacy [1]. The evolution of a square-

integrable function g(I, ψ) ∈ L2(Y, µY ) under the action of the Koopman operator is

given by, (
U tg
)

(I, ψ) = g(I, ψ + Ω[I]t mod 2π).
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By expanding the observables in a Fourier series:

(
U tg
)

(I, ψ) = U t
(∑
j∈Z

gj(I)eijψ

)
=

∑
j∈Z

gj(I)eijΩ(I)teijψ

=

∫ 1

0

g0(I)δ(s− I)ds+∑
j∈Z,j 6=0

∫
R
eijρtgj(I)eijψδ(jΩ(I)− ρ)dρ,

the spectral expansion can be written in the form:

(
U tg
)

(I, ψ) = g∗(I) +

∫
R
eiρtdS(ρ)g(I, ψ) (2.22)

where the time average g∗ only has dependence on I and where the projection-valued

measure dS(ρ) has the explicit expression:

dS(ρ)g(I, ψ) =
∑

j∈Z,j 6=0

gj(I)eijψδ(jΩ(I)− ρ)dρ.

Substitution of (2.14) into (2.22) will yield the spectral expansion in the original coordi-

nates. Notice that the spectrum of the operator is continuous.

2.3.2 Koopman analysis of the damped case

Eigenspace of Koopman at λ = 0

From corollary 2.2.4, it follows that almost all trajectories end up at the stable equilib-

rium of the pendulum as time approaches infinity. The introduction of damping therefore

severely simplifies the eigenspace at λ = 0, given that the only permissible eigenfunctions

are now those which are constant almost everywhere in X.
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Figure 2.5: The Koopman eigenfunction φλ(x) of theorem 2.3.1 shown for the regions
(2.5) and (2.9). The figures on the right display the eigenfunction at a cut: θ = −θ∗,
p ∈ (−1, 1). The viscous damping coefficient is set to k = 0.03. Top row: The modulus
|φλ(x)|. The phase ∠φλ(x).

Point spectrum of the operator

The addition of viscous damping turns the fixed point at θ = 0 into a spiral sink. In

terms of the Koopman operator, these changes give rise to point spectrum in the left-

half complex plane. The point spectra are products of the eigenvalues2 of the linearized

pendulum:

ẏ = Ay, A =

 0 1

−1 −k

 (2.23)

2This follows from the property Ug1g2 = (Ug1) (Ug2).
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where y =

[
θ p

]T
and whose eigenvalues are given by λ/λ̄ = −σ ± iη, with σ = 1

2
k,

η =
√

1− 1
4
k2.

Following the concepts discussed in [7, 32], one can show that an eigenfunction at λ

and λ̄ can be computed from the observables:

g1(θ, p) :=
1√
2

∥∥∥∥∥∥∥
[
v v̄

]−1

θ
p


∥∥∥∥∥∥∥

2

, (2.24)

g2(y) :=

[
1 0

] [
v v̄

]−1

θ
p


g1(θ, p)

(2.25)

where v, v̄ are the right eigenvectors of A.

Theorem 2.3.1. Consider the damped hybrid pendulum defined by (2.2), (2.4). Then,

φλ/λ̄(θ, p) = |φλ(p, θ)|e±i∠φλ(θ,p) (2.26)

with:

|φλ(θ, p)| := lim
t→∞

1

t

∫ t

0

eστ (U τg1) (θ, p)dτ (2.27a)

e±i∠φλ(θ,p) := lim
t→∞

1

t

∫ t

0

e±iητ (U τg2) (θ, p)dτ (2.27b)

are Koopman eigenfunctions at eigenvalues λ/λ̄ = −σ ± iη.

Proof. The claim follows by showing that the integrals (33) converge (to a non-zero value)

for all initial conditions on the basin. If (θ, p) ∈ A1, the dynamics are identical to that

of the conventional pendulum, and therefore by Theorem 2.3 in [7], there exists a C1-

diffeomorphism h : A1 7→ Y ⊂ R2 between the flows St and Rt. For all other initial
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conditions on the basin, one can infer from theorem 2 and corollary 1 that there exists a

T ∗ > 0 such that:

St(θ, p) ∈ A1, ∀t > T ∗

A change of variables may be used to prove convergence of the integrals in that case.

Figure 2.5 shows a contour plot of the eigenfunction in theorem 2.3.1. The functions

|φλ(θ, p)| and ei∠φλ(θ,p) have the following geometric interpretation. The level sets of

|φλ(θ, p)| define the so-called isostables [32] and describe the set of points that have

the same asymptotic convergence toward the fixed point. It can be observed that the

isostables blow up in the region that corresponds to the unstable periodic orbit (associated

with the fixed point in theorem 2.2.3). The level sets of ei∠φλ(θ,p) (or equivalently those

of ∠φλ((θ, p)), on the other hand, describe the set of points that simultaneously move in

phase around the fixed point.

The phase plots indicate that the kicking of the pendulum introduces a high level of

phase sensitivity [33] close to the unstable periodic orbit.

Overall, the eigenfunctions of theorem 2.3.1 can be used to describe a semi-conjugacy

with a linear system. Specifically, the modulus and phase form a map:

(θ, p) 7→ (|φλ(θ, p)|,∠φλ(θ, p))

such that under the new coordinates, the following simplified dynamics hold true:

d

dt
|φλ(θ, p)| = −σ|φλ(θ, p)|

d

dt
∠φλ(θ, p) = η.
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Chapter 3

The spectral decomposition of the

unitary Koopman operator

This section reviews the relevant spectral decomposition theorems of unitary Koopman

operators on a Hilbert space. The theorems are presented in order of increasing complex-

ity. At first, the spectral theory of one-to-one, finite-state dynamical systems is covered.

This is followed by a more general account of the spectral theorem applicable to invert-

ible, measure-preserving transformations on a compact state-space. Finally, the results

are further generalized to include continuous one-parameter families of unitary operators

that arise in the Koopman linearization of measure-preserving flows.

Although the spectral decomposition of finite-state dynamical systems is basic and

involves only knowing linear algebra, the theorems related to measure-preserving maps

and flows will require the more complex machinery of functional analysis. Nevertheless,

the results covered here on unitary operators are well-known and can be found in classical

texts such as [34].
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3.1 Spectral theory of finite-state systems

Consider a map T : X 7→ X on a finite state-space X = {1, 2, . . . , N}. Observables

g : X 7→ C associated with such a map are effectively equivalent to a finite-dimensional

vector1 g ∈ Cn. Under the assumption that T is one-to-one, the Koopman operator can

be expressed as a permutation matrix U ∈ RN×N given by

[U ]ij :=


1 if T (j) = i

0 otherwise

. (3.1)

Permutation matrices are a special class of unitary matrices and the propogation of an

observable g ∈ Cn can be decomposed as:

U lg =
N∑
k=1

eilθkvk(v
∗
kg) (3.2)

where θk ∈ [π, π) and vk ∈ CN (with vTk vl = 1 if k = l and zero otherwise) are respectively

the eigenfrequencies and eigenvectors of the matrix.

Two spectral quantities of interest are defined:

1. The spectral projection of an observable g ∈ CN on a interval D ⊂ S:

SDg =
∑
θk∈D

vkv
∗
kg (3.3)

1Notice that the vector quantity is expressed here with an “upright’ g in order to distinguish it from
the “function” g.
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2. The spectral density function2 of an observable g ∈ CN :

ρ(θ; g) =
N∑
k=1

δ(θ − θk)|v∗kg|2 (3.4)

The eigenvectors and eigenvalues of (3.2) are easily found for a permutation matrix.

The cycle decomposition, which decouples a permutation matrix into its cycles, plays

a critical role here. That is, associated to every permutation U ∈ RN×N there exists

another permutation matrix P ∈ RN×N such that by a similarity transformation:

PTUP = C, (3.5)

where C is given by:

C =


C(1)

. . .

C(s)

 , C(k)
n :=



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


∈ Rn

(k)×n(k)

,

n(1) + n(2) + . . .+ n(s) = N.

The decomposition of (3.1) into its cyclic subspaces is obtained as follows. Initialize

U1 := U and call:

P(1) :=

[
U1e1 · · · Un(1)

1 e1 en(1)+1 · · · eq(n)

]
, with Un(1)

1 e1 = e1.

2A slight abuse of language here, given that it really is a distribution!
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A similarity transformation yields:

U2 := P(1)TU1P(1) =

C(1)

Ũ1

 .
Repeating this process for all s cycles should result in Us = C and P = P(1) · · ·P(s).

It is well-known that the Discrete Fourier Transform (DFT) matrix diagonalizes any

circulant matrix. In particular, for C(k) ∈ Rn
(k)×n(k)

the decomposition reads:

C(k) = (DFT)∗n(k) Λn(k) (DFT)n(k) , (3.6)

where:

(DFT)n(k) =
1√
n(k)



1 1 1 · · · 1

1 ω ω2 · · · ωn
(k)−1

1 ω2 ω4 · · · ω2(n(k)−1)

...
...

...
. . .

...

1 ω1(n(k)−1) ω2(n(k)−1) · · · ω(n(k)−1)(n(k)−1)


,

Λn(k) =


ω0

. . .

ωn
(k)−1

 and ω = exp

(
2π

n(k)
i

)
.

By combining (3.5) with (3.6), the following explicit expression for the spectral decom-

position of (3.1) is obtained:

U = VΛV∗, (3.7)
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where:

V = P


(DFT)∗n(1)

. . .

(DFT)∗n(s)

 , Λ =


Λn(1)

. . .

Λn(s)

 .

3.2 Spectral theory for iterative maps

Let T : X 7→ X be a self-map on the compact, norm-induced metric space X ⊆ Rm.

Associate withX the measure space (X,M, µ), whereM denotes the Borel sigma-algebra

and µ is an absolutely continuous measure with its support equaling the state-space, i.e.

supp µ = X. The map T is given to be an invertible measure-preserving transformation

such that µ(B) = µ(T (B)) = µ(T−1(B)) for every B ∈M (also referred to as a measure-

preserving automorphisms).

The Koopman linearization of T can be defined on the following Hilbert space:

L2(X,M, µ) := {g : X 7→ C | ‖g‖ <∞} , ‖g‖ :=

(∫
X

|g(x)|2dµ(x)

) 1
2

.

The Koopman operator U : L2(X,M, µ) 7→ L2(X,M, µ), defined by:

Ug = g ◦ T (3.8)

is in this situation again unitary. The generalization of (3.2) requires machinery from

functional analysis and is known as the integral form of the spectral theorem [34]. The

evolution of an observable can be decomposed as:

Ukg =

∫
S
eiθkdSθg, k ∈ Z. (3.9)
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Here, Sθ is a self-adjoint, projection-valued measure on the Borel sigma-algebra B(S) of

the circle S parameterized by θ ∈ [−π, π). The projection-valued measure satifies the

following properties:

(i) For every D ∈ B(S),

SD :=

∫
D

dSθ

is an orthogonal projector on L2(X,M, µ).

(ii) SD = 0 if D = ∅ and SD = I if D = S.

(iii) If D1, D2 ∈ B(S) and D1 ∩D2 = ∅, then

〈SD1g,SD2h〉 :=

∫
X

(SD1g)∗ (x) (SD2h) (x)dµ(x) = 0

for every g, h ∈ L2(X,M, µ).

(iv) If {Dk}∞k=1 is a sequence of pairwise disjoint sets in B(S), then

lim
m→∞

m∑
k=1

SDkg = SDg, D :=
∞⋃
k=1

Dk

for every g ∈ L2(X,M, µ).

The quantities (3.3) and (3.4) can be generalized as follows:

• The spectral projection of an observable g ∈ L2(X,M, µ) on a interval D ⊂ S:

SDg =

∫
D

dSθg (3.10)

• The spectral density function of an observable g ∈ L2(X,M, µ), defined as the
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distributional derivative:

∫
S
ϕ′(θ)c(θ; g)dθ = −

∫
S
ϕ(θ)ρ(θ; g)dθ (3.11)

of the so-called spectral cumulative function on [−π, π):

c(θ; g) := 〈S[−π,θ)g, g〉,

where ϕ(θ) ∈ D(S) is some smooth test functions on the circle.

In essence, the Koopman operator still behaves as permutation matrix, albeit an infinite-

dimensional one. A method of computing numerical approximations to (3.10) and (3.11)

is the main focus of this dissertation, and will be developed in the upcoming chapters.

3.3 Spectral theory for flows

Let St : X 7→ X denote a Lipschitz continuous flow on a compact norm-induced metric

space X ⊆ Rm, with St satisfying the well-known group properties: St ◦ Ss(x) = St+s(x)

for any t, s ∈ R, and S0(x) = x. Again, associate with X the measure space (X,M, µ),

whereM denotes the Borel sigma-algebra, and µ an absolutely continuous measure with

full support on the state-space. The flow St is invariant with respect to the measure µ,

i.e. for every t ∈ R and B ∈M: µ(B) = µ(St(B)).

The Koopman linearization of a measure-preserving flow is again defined on:

L2(X,M, µ) := {g : X 7→ C | ‖g‖ <∞} , ‖g‖ :=

(∫
X

|g(x)|2dµ(x)

) 1
2

.
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One now obtains a continuous one-parameter family of Koopman operators:

(U tg)(x) := g ◦ St(x), t ∈ R. (3.12)

Since St is an invertible measure-preserving transformation for every t ∈ R, the family

of operators {U t}t∈R forms a continuous one-parameter unitary group. In other words,

(3.12) is an unitary operator for every fixed t ∈ R and satisfies the group properties:

U tU s = U t+s for t, s ∈ R, and U0 = I.

A detailed account on the spectral theorem for continuous one-parameter unitary

groups can again be found in [34]. The evolution of an oberservable g ∈ L2(X ,M, µ)

under (3.12) can be decomposed as:

U tg =

∫
R
eiωtdSωg, t ∈ R. (3.13)

In comparison to (3.9), notice that the integration is performed over the real line. Here,

Sω denotes a self-adjoint, projection-valued measure on the Borel sigma-algebra B(R) of

the real line R. The projection-valued measure satifies the following properties:

(i) For every D ∈ B,

SD :=

∫
D

dSθ

is an orthogonal projector on L2(X,M, µ).

(ii) SD = 0 if D = ∅ and SD = I if D = R.

(iii) If D1, D2 ∈ B and D1 ∩D2 = ∅, then

〈SD1g,SD2h〉 :=

∫
X

(SD1g)∗ (x) (SD2h) (x)dµ(x) = 0
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for every g, h ∈ L2(X,M, µ).

(iv) If {Dk}∞k=1 is a sequence of pairwise disjoint sets in B, then

lim
m→∞

m∑
k=1

SDkg = SDg, D :=
∞⋃
k=1

Dk

for every g ∈ L2(X,M, µ).

Similar to (3.10) and (3.11), the following quantities may be defined:

• The spectral projection of an observable g ∈ L2(X,M, µ) on a interval D ⊂ R:

SDg :=

∫
D

dSωg (3.14)

• The spectral density function of an observable g ∈ L2(X,M, µ), defined as the

distributional derivative:

∫
R
ϕ′(ω)c(ω; g)dω = −

∫
R
ϕ(ω)ρ(ω; g)dω (3.15)

of the so-called spectral cumulative function on R:

c(ω; g) := 〈S(−∞,ω)g, g〉.

where ϕ(ω) ∈ D(R) belongs to the space of smooth test functions (i.e. Schwarz

space).
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Periodic approximations - iterative

maps

Let T : X 7→ X be a self-map on the compact, norm-induced metric space X ⊆ Rm.

Associate with X the measure space (X,M, µ), where M denotes the Borel sigma-

algebra and µ is an absolutely continuous measure with its support equaling the state-

space, i.e. supp µ = X. The map T is assumed to be an invertible measure-preserving

transformation such that µ(B) = µ(T (B)) = µ(T−1(B)) for every B ∈M.

In this chapter, the unitary Koopman operator U : L2(X,M, µ) 7→ L2(X,M, µ)

associated with T is approximated by Koopman operators of one-to-one, finite-state

dynamical systems (i.e. permutation operators). This gives rise to the concept of periodic

approximations. The main result here is a spectral convergence theorem which relates

the spectra of these discrete Koopman operators to their infinite dimensional analogues.
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4.1 Discretization of the unitary Koopman operator

4.1.1 Why permutation operators?

The use of permutation operators as a means to approximate Koopman operator is

in many ways natural. Just like (3.8), permutation operators are unitary, and therefore,

its spectrum is contained on the unit circle. But the Koopman operator also satisfies the

following properties:

1. U(fg) = (Uf)(Ug).

2. U is Markov, i.e. Ug > 0 whenever g > 0.

3. The constant function, i.e. g(x) = 1 for every x ∈ X, is an invariant of the operator.

Permutation operators are (finite-dimensional) operators which satisfy the aforemen-

tioned properties as well.

4.1.2 The discretization procedure

The following discretization of the Koopman operator is proposed. Consider any

sequence of measurable partitions {Pn}∞n=1, where Pn :=
{
pn,1, pn,2, . . . , pn,q(n)

}
such

that:

1. Every partition element pn,j is compact, connected, and of equal measure, i.e.

µ(pn,j) =
µ(X)

q(n)
, j ∈ {1, 2, . . . , q(n)} (4.1)

where q : N 7→ N is a strictly, monotonically increasing function. Asking for

compactness, one gets that the partition elements intersect. By (4.1), it must

follow that these intersections are of zero measure.
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2. The diameters of partition elements are bounded by

diam(pn,j) := sup
x,y∈pn,j

d(x, y) ≤ l(n) (4.2)

where l : N 7→ R is a positive, monotonic function decaying to zero in the limit.

3. Pn is a refinement of Pm whenever n > m. That is, every pm,j ∈ Pm is the union

of some partition elements in Pn.

The main idea set forth in this chapter is to project observables g ∈ L2(X,M, µ) onto a

finite-dimensional subspace of indicator functions,

L2
n(X,M, µ) :=

gn : X 7→ C |
q(n)∑
j=1

cjχpn,j(x), cj ∈ C

 , χpn,j(x) =


1 x ∈ pn,j

0 x /∈ pn,j

by means of a smoothing/averaging operation:

(Wng)(x) = gn(x) :=

q(n)∑
j=1

gn,jχpn,j(x), gn,j =
q(n)

µ(X)

∫
X

g(x)χpn,j(x)dµ(x) (4.3)

and then replace (3.8) by its discrete analogue Un : L2
n(X,M, µ) 7→ L2

n(X,M, µ) given

by

(Ungn) (x) :=

q(n)∑
j=1

gn,jχT−1
n (pn,j)

(x) (4.4)

where Tn : Pn 7→ Pn is a discrete map on the partition.

The map Tn is chosen such that it “mimics” the dynamics of the continuous map

T . The condition is imposed that Tn has to be a bijection. By doing so, a periodic

approximation is obtained of the dynamics. Since every partition element is of equal

measure (4.1) and since Tn is a bijection, the resulting discretization is regarded as one
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which preserves the measure-preserving properties of the original map on the subsigma

algebra generated by Pn, i.e. µ(T−1(pn,j)) = µ(pn,j) = µ(T−1
n (pn,j)).

The discrete operators {Un}∞n=1 are isomorphic to a sequence of finite-dimensional

permutation operators. The spectra for these operators simplify to a pure point spec-

trum, where the eigenvalues correspond to roots of unity. Let vn,k =
∑

(vn,k)jχpn,j ∈

L2
n(X,M, µ) denote a normalized eigenvector, i.e.

Unvn,k = eiθn,kvn,k, ‖vn,k‖ = 1.

The spectral decomposition can be expressed as:

Ungn =

q(n)∑
k=1

eiθn,kSn,θn,kgn (4.5)

where Sn,θn,k : L2
n(X,M, µ) 7→ L2

n(X,M, µ) denotes the rank-1 self-adjoint projector:

Sn,θn,kgn = vn,k 〈vn,k, gn〉 = vn,k

(∫
X

v∗n,k(x)gn(x)dµ

)
= vn,k

µ(X)

q(n)

q(n)∑
j=1

v∗n,kjgn,j

 .

(4.6)

The discrete analogue to the spectral projection (3.10) may then be defined as:

Sn,Dgn =

∫
D

dSn,θgn =
∑
θn,k∈D

Sn,θn,kgn (4.7)

In addition, the discrete analogue to the spectral density function turns out to be:

ρn(θ; gn) =

q(n)∑
k=1

∥∥Sn,θn,kgn∥∥2
δ(θ − θn,k). (4.8)

An overview of the discretization process is given in fig. 4.1.
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continuous case:

L2(X, M, µ) := {g : X !→ C | ∥g∥ < ∞} , ∥g∥ :=
(∫

X |g(x)|2dµ
) 1

2

U : L2(X, M, µ) !→ L2(X, M, µ)

(Ug)(x) := g ◦ T (x)

Ug =

∫

S
e

iθ
dSθg

SDg =

∫

D
dSθg

discretization of the observable:

(Wng)(x) = gn(x) :=

q(n)∑

j=1

gn,jχpn,j
(x)

gn,j :=
q(n)
µ(X)

∫
X g(x)χpn,j

(x)dµ

discretization of the automorphism:

Tn : Pn !→ Pn

Tn is a periodic approximation

discrete case:

L2
n(X, M, µ) :=

{
gn : X !→ C | ∑q(n)

j=1 cjχpn,j
(x), cj ∈ C

}
, χpn,j

(x) =

{
1 x ∈ pn,j

0 x /∈ pn,j

Un : L2
n(X, M, µ) !→ L2

n(X, M, µ)

(Ungn) (x) :=

q(n)∑

j=1

gn,jχ
T

−1
n (pn,j)

(x)

Ungn =

q(n)∑

k=1

e
iθn,k Sn,θn,k

gn

Sn,Dgn =
∑

θn,k∈D

Sn,θn,k
gn

Figure 4.1: An overview of the discretization process.

4.2 Existence of a periodic approximation

It is possible to approximate the map T by a sequence of periodic discrete maps Tn,

as the following theorem suggests.

Theorem 4.2.1 (Existence of a periodic approximation). Let T : X 7→ X be a con-
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tinuous, measure-preserving automorphism with the invariant measure µ absolutely con-

tinuous w.r.t. the Lebesgue measure and supp(µ) = X. If {Pn}∞n=1 is a sequence of

measurable partitions on X which are refinements and satisfy the conditions (4.1) and

(4.2), then there exists a sequence of bijective maps {Tn : Pn 7→ Pn}∞n=1 that periodically

approximates T in an asymptotic sense. More specifically, for every fixed k ∈ N and

compact set A ∈M:

lim
n→∞

k∑
l=−k

dH(T l(A), T ln(An)) = 0 (4.9)

where dH(A,B) := max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} denotes the Hauss-

dorf metric, and

An :=
⋃

p∈Pn: p∩A 6=∅
p

is an over-approximation of A by the partition elements of Pn.

The proof of this result is postponed to the end of this subsection and will involve two

intermediate steps. From a numerical analysis standpoint, theorem 4.2.1 claims that one

can make the finite-time set evolution of Tn numerically indistinguishable from that of

the true map in both the forward and backward direction by choosing n ∈ N sufficiently

large. In fig. 4.2 the situation is sketched for one forward iteration of the map.

Note that the specific formulation of the periodic approximation used in this disser-

tation is more along the lines of that proposed by Lax [23], and also not equivalent to the

ones proposed by Katok and Stepin [25]. There, the quality of the approximation was

phrased in the measure-theoretic context, where the proximity of Tn to T is described in

terms of the one-iteration cost [25]:

q(n)∑
i=1

µ (T (pn,i)∆Tn(pn,i)) (4.10)
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An

A Tn

Tn(An)

T

T (A)

dH(T (A), Tn(An))

Pn

Figure 4.2: Shown is a partition Pn of a compact domain X into square boxes. The
set A is (over-)approximated by the partition elements with An. As a consequence of
theorem 4.2.1, the distance between the images: T (A) and Tn(An), must converge to
zero in the Haussdorf metric as the partition is consecutively refined.

with ∆ denoting the symmetric set difference, i.e. A∆B := (A\B) ∪ (B\A). It turns

out that a specific sequence of maps {Tn : Pn 7→ Pn}∞n=1 may converge in the sense of

theorem 4.2.1, while not converging in the sense of (4.10). Relatively simple examples

of such sequences may be constructed. Take for example the map T (x) = (x + 1
2
)

mod 1 on the unit-length circle and choose a partition Pn = {pn,1, pn,2, . . . , pn,rn} with

pn,i =
[
i−1
rn
, i
rn

]
and r being odd. The mapping:

Tn(pn,j) = pn,j∗ , j∗ =


j + b rn

2
c j + b rn

2
c ≤ rn

j + b rn
2
c − rn j + b rn

2
c > rn

,

is the best one can do in terms of the cost (4.10), yet

q(n)∑
i=1

µ (T (pn,i)∆Tn(pn,i)) = 1, ∀n ∈ N.

As further remark, note that the convergence results of the measure-theoretic formulation
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(see [21]) were stated for general automorphisms on Lebesgue spaces. Here, the analysis

is restricted to just automorphism which are continuous.

Lemma 4.2.2. Let T : X 7→ X satisfy the hypothesis stated in theorem 4.2.1. Then, for

any partition Pn that satisfies the condition (4.1), there exists a bijection Tn : Pn 7→ Pn
with the property:

T (pn,l) ∩ Tn(pn,l) 6= ∅ and T−1(pn,l) ∩ T−1
n (pn,l) 6= ∅, ∀l ∈ {1, 2, . . . , q(n)} .

(4.11)

Proof. It suffices to show that there exists a map Tn : Pn 7→ Pn with the property:

µ(T (pn,l) ∩ Tn(pn,l)) > 0 for all l ∈ {1, 2, . . . , q(n)}. This follows from the fact that

µ(A ∩B) > 0 implies A ∩B 6= ∅ for any A,B ∈M, and:

µ(T (pn,l) ∩ Tn(pn,l)) > 0, ∀l ∈ {1, 2, . . . , q(n)} ⇒

µ(T−1(pn,l) ∩ T−1
n (pn,l)) > 0, ∀l ∈ {1, 2, . . . , q(n)} .

The latter claim is easily verified by contraposition: suppose that T−1
n (pn,k) = pn,s and

µ(T−1(pn,k)∩T−1
n (pn,k)) = 0 for some k ∈ {1, 2, . . . , q(n)}, then µ(T (pn,s)∩Tn(pn,s)) = 0.

Let Gn = (Pn,P ′n, E) denote a bipartite graph where P ′n is a copy of Pn and

(pn,k, pn,l) ∈ E if µ(T (pn,k) ∩ pn,l) > 0. In order to generate a bijective map so that

µ(T (pn,l) ∩ Tn(pn,l)) > 0 for all l ∈ {1, 2, . . . , q(n)}, every element in Pn needs to be

uniquely paired with one in P ′n connected by the edges of Gn. Let this new graph be

called G̃n = (Pn,P ′n, Ẽ) (see fig. 4.3). To verify that such a graph assignment is possible,

it needs to be confirmed that Gn admits a perfect matching.

To show that this is indeed the case, let NG(B) ⊂ P ′n be the set of all vertices in P ′n
adjacent for some B ⊂ Pn. By Hall’s marriage theorem (see e.g. [35]), Gn has a perfect

matching if and only if the cardinality |B| ≤ |NG(B)| for any B ⊂ Pn. Since T is a
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Pn P ′
n Pn P ′

n

Gn = (Pn, P ′
n, E) G̃n = (Pn, P ′

n, Ẽ)

trim edges to
obtain bijectionpn,k

pn,l

pn,k

pn,l

Figure 4.3: Because of the measure-preserving property, the graph Gn satisfies Hall’s
marriage conditions, and hence admits a perfect matching.

measure-preserving automorphism and because of condition (4.1), it follows that for any

k ∈ {1, 2, . . . , q(n)}:

q(n)∑
l=1

µ(T (pn,k) ∩ pn,l) =
µ(X)

q(n)
, 0 ≤ µ(T (pn,k) ∩ pn,l) ≤

µ(X)

q(n)
.

Because of these properties, it can be deduced that:

|NG(B)| :=
∑
k∈B

 ∑
l:µ(T (pn,k)∩pn,l>0)

1


≥

∑
k∈B

q(n)

µ(X)

q(n)∑
l=1

µ(T (pn,k) ∩ pn,l)

=
∑
k∈B

1 = |B|

for any arbitrary B ⊂ Pn. Hence, Gn has a perfect matching.

The value of theorem 4.2.2 is that it can be used as a means to bound the distance

between the forward and inverse images of the partition elements in the Hausdorff metric.

Lemma 4.2.3. Let T : X 7→ X satisfy the hypothesis stated in theorem 4.2.1 and let

{Pn}∞n=1 be a sequence of measurable partitions that satisfy both the conditions (4.1) and
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(4.2). If {Tn : Pn 7→ Pn}∞n=1 is a sequence of bijective maps which satisfy the property

(4.11) for each n ∈ N, then

lim
n→∞

k∑
l=−k

max
p∈Pn

dH(T l(p), T ln(p)) = 0 (4.12)

for every k ∈ N.

Proof. This result is proven using induction. Set k = 1, if Tn : Pn 7→ Pn is a bijective

map satisfying the property (4.11), then:

dH(T (pn,j), Tn(pn,j)) ≤ diam(T (pn,j)) + diam(Tn(pn,j)) (4.13)

and

dH(T−1(pn,j), T
−1
n (pn,j)) ≤ diam(T−1(pn,j)) + diam(T−1

n (pn,j)).

Let ε > 0 and note that T has a continuous inverse, since the map is a continuous

bijection on a compact metric space X. By compactness, there exist a δ > 0 such that:

diam(pn,j) < δ ⇒ diam(T (pn,j)) < ε/4, diam(T−1(pn,j)) < ε/4

Pick n ∈ N so that l(n) < min {δ, ε/4} to obtain:

dH(T−1(pn,j), T
−1
n (pn,j)) + dH(T (pn,j), Tn(pn,j)) <

ε

4
+ min

{
δ,
ε

4

}
+
ε

4
+ min

{
δ,
ε

4

}
≤ ε

Since ε and pn,j ∈ Pn are both arbitrary, (4.12) is proven for the case where k = 1.
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Now to prove the result for k > 1, note from the triangle inequality that:

dH(T k(pn,j), T
k
n (pn,j)) ≤ dH(T (T k−1(pn,j)), T (T k−1

n (pn,j)))+

dH(T (T k−1
n (pn,j)), Tn(T k−1

n (pn,j)))

Using the inductive hypothesis, assume that (4.12) is true for k − 1 so that the distance

dH(T k−1(pn,j), T
k−1
n (pn,j)) can be made arbitrarily small by choosing n ∈ N sufficiently

large. By uniform continuity of T , there exist a Na ∈ N sufficiently large, so that:

dH(T (T k−1(pn,j)), T (T k−1
n (pn,j))) ≤

ε

8
and dH(T (T k−1

n (pn,j)), Tn(T k−1
n (pn,j))) ≤

ε

8

for all n > Na. Analogously, there exists a Nb ∈ N so that:

dH(T−1(T−k+1(pn,j)), T
−1(T−k+1

n (pn,j))) ≤
ε

8

and

dH(T−1(T−k+1
n (pn,j)), T

−1(T−k+1
n (pn,j))) ≤

ε

8

for all n > Nb. Setting Nc = max {Na, Nb}, one gets:

dH(T−k(pn,j), T
−k
n (pn,j)) + dH(T k(pn,j), T

k
n (pn,j)) ≤

ε

2

for all n > Nc. Again, using the inductive hypothesis, there also exists a Nd ∈ N so that:

k−1∑
l=−k+1

dH(T l(pn,j), T
l
n(pn,j)) ≤

ε

2
, ∀n > Nc.
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By setting N = max {Nc, Nd}, one finally obtains:

k−1∑
l=−k+1

dH(T l(pn,j), T
l
n(pn,j)) + dH(T−k(pn,j), T

−k
n (pn,j)) + dH(T k(pn,j), T

k
n (pn,j)) ≤ ε

where ε > 0 and pn,j ∈ Pn was arbitrary.

Note that continuity of T plays a critical role in the proof of theorem 4.2.3. Further-

more, observe that T is assumed to have an absolutely continuous invariant measure with

supp(µ) = X, which ensures that both conditions (4.1) and (4.2) are satisfied, simulta-

neously. With theorems 4.2.2 and 4.2.3, the proof of theorem 4.2.1 can be completed as

follows.

Proof of theorem 4.2.1. Let {Tn : Pn 7→ Pn}∞n=1 be a sequence of bijective maps that sat-

isfies the property of theorem 4.2.2 for each n ∈ N. Set ε > 0 and note that An is

compact, since it is a finite union of compact sets. By the triangle inequality, it is known

that:

k∑
l=−k

dH(T l(A), T ln(An)) ≤
k∑

l=−k
dH(T l(A), T l(An)) +

k∑
l=−k

dH(T l(An), T ln(An))

It will be shown that each term above can be made arbitrarily small by selecting n

sufficiently large. From uniform continuity of T and that dH(A,An) is monotonically

decreasing to 0 as n → ∞, it follows that there exists a N1 ∈ N so that the first sum is

bounded by ε/2 for all n > N1. In order to find also a bound for the second sum, notice
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that:

k∑
l=−k

dH(T l(An), T ln(An)) =
k∑

l=−k
dH

 ⋃
p∈Pn,p∩A 6=∅

T l(p),
⋃

p∈Pn,p∩A 6=∅
T ln(p)


≤

k∑
l=−k

max
p∈Pn,p∩A 6=∅

dH(T l(p), T ln(p))

≤
k∑

l=−k
max
p∈Pn

dH(T l(p), T ln(p))

where repetitive use is made of the Haussdorf property:

dH(A ∪B,C ∪D) ≤ max {dH(A,C), dH(B,D)}

in the first inequality. From theorem 4.2.3, it follows that one can choose a n > N2 so

that the second sum is also bounded by ε/2. Setting N = max {N1, N2} completes the

proof.

4.3 Convergence of the operator

Whenever {Tn}∞n=1 is a sequence of periodic approximations converging to the T in the

sense of theorem 4.2.1, the associated discrete Koopman operators {Un}∞n=1 approximate

the operator (3.8) in some sense as well. To quantify this relationship, the following

lemma will be usefull.

Lemma 4.3.1. Let {An}∞n=1 be a sequence of compact sets converging monotonically to

the compact set A in the Haussdorf metric (i.e. limn→∞ dH(A,An) = 0) and suppose that

µ(An) = µ(A) for every n ∈ N. Then,

lim
n→∞

µ(A∆An) = 0 (4.14)
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Proof. By definition: µ(A∆An) = µ(A \An) + µ(An \A), and hence, to prove (4.14) one

must show that both of these terms go to zero in the limit. However, since µ(An) = µ(A),

and:

µ(An \ A) = µ(An)− µ(A ∩ An), µ(A \ An) = µ(A)− µ(A ∩ An)

it follows that µ(A \ An) = µ(An \ A), and therefore it sufficient to show that either

µ(A \ An) or µ(An \ A) tends to zero.

Consider µ(An \ A). Let Aε(n) :=
⋃
x∈ABε(n)(x) be the ε(n)-fattening of A where

ε(n) := dH(A,An). Observe that:

(An \ A) ⊂ (Aε(n) \ A) ⇒ 0 ≤ µ(An \ A) ≤ µ(Aε(n) \ A)

Since ε(n) is a monotonically decreasing sequence, from Theorem 1.19(e) in [36], it is

known that:
∞⋂
n=1

Aε(n) = A and µ(Aε(n))→ µ(A) as n→∞.

Therefore, µ(Aε(n) \ A)→ 0 as n→∞, leading to the desired result.

In addition to theorem 4.3.1, some properties on the averaging operation (4.3) must

also be identified. The operator (4.3) is an approximation of the identity and therefore

‖g − gn‖ → 0 as n→∞. This property can be verified by first establishing this fact for

continuous observables and then employ the fact that C(X) is dense in L2(X,M, µ). In

addition to being an approximation to the identity, (4.3) is an orthogonal projector which

maps observables g ∈ L2(X,M, µ) to their best approximations gn ∈ L2
n(X,M, µ). This

follows from the fact that Wn is idempotent and that 〈g −Wng,Wng〉 = 0.

Lemma 4.3.2. Let T : X 7→ X satisfy the hypothesis of theorem 4.2.1 and suppose that

{Tn : Pn 7→ Pn}∞n=1 is a sequence of discrete maps that periodically approximates T in the
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sense of (4.9). Define:

g =

q(m)∑
j=1

cjχpm,j ∈ L2
m(X,M, µ), m ∈ N

Then:

lim
n→∞

k∑
l=−k

∥∥U lg − U lngn∥∥2
= 0

for every k ∈ N.

Proof. For notational clarity, write A(j) := pm,j, g
(j) := χpm,j and g

(j)
n := Wng

(j). The

following can be derived:

k∑
l=−k

∥∥U lg − U lngn∥∥2
=

k∑
l=−k

∥∥∥∥∥∥
q(m)∑
j=1

cj(U lg(j) − U lng(j)
n )

∥∥∥∥∥∥
2

≤
k∑

l=−k

q(m)∑
j=1

|cj|
∥∥U lg(j) − U lng(j)

n

∥∥2

≤ M

q(m)∑
j=1

(
k∑

l=−k

∥∥U lg(j) − U lng(j)
n

∥∥2

)
, M =

q(m)∑
j=1

|cj|2

≤ q(m)M max
j=1,...,q(m)

(
k∑

l=−k

∥∥U lg(j) − U lng(j)
n

∥∥2

)

Hence, it suffices to show that:

lim
n→∞

k∑
l=−k

∥∥U lg(j) − U lng(j)
n

∥∥2
= 0, j = 1, . . . ,m. (4.15)

Since {Pn}∞n=1 are consecutive refinements, observe that g
(j)
n = g(j) for n ≥ m, which
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implies:

k∑
l=−k

∥∥U lgj − U lng(j)
n

∥∥2
=

k∑
l=−k

∥∥(U l − U ln)g(j)
∥∥2
, if n ≥ m

=
k∑

l=−k
µ(T−l(A(j))∆T−ln (A(j))).

By theorem 4.2.1,
{
T−ln (A(j)))

}∞
n=m

converges to T−l(A(j)) in the Haussdorf metric. Also,

since µ(T−l(A(j))) = µ(T−ln (A(j))) for n ≥ m, it follows from theorem 4.3.1 that:

k∑
l=−k

µ(T−l(A(j))∆T−ln (A(j)))→ 0 as n→∞.

Theorem 4.3.3 (Operator convergence). Let T : X 7→ X satisfy the hypothesis of theo-

rem 4.2.1 and suppose that {Tn : Pn 7→ Pn}∞n=1 is a sequence of discrete maps that periodi-

cally approximates T in the sense of (4.9). Then, {Un : L2
n(X,M, µ) 7→ L2

n(X,M, µ)}∞n=1

converges to U in the following sense:

lim
n→∞

k∑
l=−k

∥∥U lg − U lngn∥∥2
= 0 (4.16)

for every fixed k ∈ N and g ∈ L2(X,M, µ).

Proof. Let ε > 0 and define:

gm =

q(m)∑
j=1

cjχpm,j ∈ L2
m(X,M, µ), m ∈ N.
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The following manipulations are performed:

k∑
l=−k

∥∥U lg − U lngn∥∥2
=

k∑
l=−k

∥∥U l(g − gm + gm)− U ln(g − gm + gm)n
∥∥2

≤
k∑

l=−k

(
‖g − gm‖+ ‖Wn(g − gm)‖+

∥∥U lgm − U ln(gm)n
∥∥)2

≤
k∑

l=−k

(
2 ‖g − gm‖+

∥∥U lgm − U ln(gm)n
∥∥)2

≤

( k∑
l=−k

4 ‖g − gm‖2

) 1
2

+

(
k∑

l=−k

∥∥U lgm − U ln(gm)n
∥∥2

) 1
2

2

=

2 ‖g − gm‖+

(
k∑

l=−k

∥∥U lgm − U ln(gm)n
∥∥2

) 1
2

2

Since (4.3) is approximation of the identity, one can select a m ∈ N so that ‖g − gm‖ ≤
1
4

√
ε. Using theorem 4.3.2 further establishes that there exists a N ∈ N such that:

k∑
l=−k

∥∥U lgm − U ln(gm)n
∥∥ ≤ ε

4
, ∀n ≥ N.

Overall, the following can be established:

k∑
l=−k

∥∥U lg − U lngn∥∥2 ≤ ε,

which confirms (4.16).

4.4 Convergence of spectra

In this section, it will be analyzed how the spectral projectors (4.7) converge to (3.10)

in the limit.
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4.4.1 An illuminating example

Before proceeding to the general results, it is worthwhile to work out the details of a

periodic approximation for a basic example in order to clarify certain subtelties on weak

vs. strong convergence of the spectra. In particular, consider the map:

T (x) = (x+
1

2
) mod 1, x ∈ [0, 1),

which is rotation on the circle by a half.

For the partition Pn = {pn,1, pn,2, . . . , pn,rn} with pn,j =
(
j−1
rn
, j
rn

)
, j = 1, . . . , rn for

some integer r > 1, one may define the sequence of maps1:

Tn(pn,j) = pn,j∗ , j∗ =


j + b rn

2
c j + b rn

2
c ≤ rn

j + b rn
2
c − rn j + b rn

2
c > rn

,

which clearly is a periodic approximation to the original transformation in the sense of

theorem 4.2.1. The discrete Koopman operator associated with this map is isometric to

the circulant matrix. That is, the permutation matrices:

[Un]ij = 〈Unχpn,i , χpn,j〉,
1b·c denotes here the floor function.
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are equal to the circulant matrices:

Un =



d1 drn · · · d3 d2

d2 d1 drn d3

... d2 d1
. . .

...

drn−1
. . . . . . drn

drn drn−1 · · · d2 d1


, where db rn

2
c+1 = 1 and zero otherwise.

The spectral decomposition of a circulant matrix can be obtained in closed-form using

the Discrete Fourier Transform 2:

vn,k(x) =
1√
rn

rn∑
j=1

e2πi
(k−1)(j−1)

rn χpn,j(x), θn,k =


(−1)k+1

2
π r is even

(−1)k+1
2

π − k−1
rn
π r is odd

.

(4.17)

Recall that the spectra of the true (i.e. infinite-dimensional) operator consists of only

two eigenvalues located at 1 and −1. Yet, from the equations above, it can be seen that

this property is maintained for the discrete analogue when r is an even number. For an

odd r, the eigenvalues of the discrete Koopman operators seem to densely fill up the unit

circle as n→∞.

At first sight, this fragility of the spectrum in the discretization process appear as

a serious problem. However, if one weakens the notion of what it means for the dis-

cretizations to converge spectrally, this issue can be largely avoided. The ordering of

the eigenvalue-eigenvector pairs {θn,k, vn,k}r
n

k=1 in (4.17) provide clues on what approach

should be taken. Particularly, notice that the first set of eigenvalues (corresponding to

the slower oscillatory modes) are concentrated around the points θ = 0 and θ = π. One

may then ask which of the eigenvalue-eigenvector pairs actually play a significant role in

2The scaling 1/
√
rn here is required for normalization.
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the spectral approximation of a specific fixed observable. The following can be observed.

After application of the smoothing operator (4.3), any square-integrable observable

g ∈ L2
n(T,B(T), µ) on the circle (with µ being the standard Lebesgue measure in this

case), can be written in terms of the eigenvectors:

gn(x) =
rn∑
k=1

cn,kvn,k(x),

where vn,k ∈ L2
n(T,B(T), µ) are nothing else but the discrete analogues of the Fourier

harmonics (see (4.17)). Henceforth, one can show that for any ε > 0, there exists an

m = m(ε) ∈ N and a N ∈ N so that:

‖gn‖ − ε <
∑
k≤m
|cn,k|2 ≤ ‖gn‖ , ∀n ≥ N.

For this specific m which only depends on ε, the set {θn,k ∈ S : k ≤ m} is at most a

δ-distance separated from the eigenfrequencies θ = 0 and θ = π, where δ > 0 can be

made arbitrarily small by choosing sufficiently large n ∈ N.

In other words, as n approaches infinity, most of the “spectral energy” will get con-

centrated around the eigenvalues. From this perspective, the discrete analogues of the

Koopman operator do seem to approximate the infinite analogue spectrally. The situa-

tion described here is not something which holds true for only this basic example, but

applies more generally.
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4.4.2 Approximation of the spectral projectors

Consider any smooth test function ϕ ∈ D(S) on the circle, and define:

Sϕg =

∫
S
ϕ(θ)dSθg, Sn,ϕgn =

∑
θn,k∈S

ϕ(θn,k)Sn,θn,kgn.

The following can be established.

Theorem 4.4.1. Let T : X 7→ X satisfy the hypothesis of theorem 4.2.1 and suppose that

{Tn : Pn 7→ Pn}∞n=1 is a sequence of discrete maps that periodically approximates T in the

sense of (4.9). For any smooth test function ϕ ∈ D(S) and observable g ∈ L2(X,M, µ),

the following holds:

lim
n→∞

‖Sϕg − Sn,ϕgn‖ = 0.

Proof. Expand the smoothed indicator function ϕ(θ) by its Fourier series: ϕ(θ) =∑∞
l=−∞ ble

ilθ, and note that the series is uniformly convergent. Next, observe that:

Sϕg =

∫
S

( ∞∑
l=−∞

ble
ilθ

)
dSθg =

∞∑
l=−∞

bl

(∫
S
eilθdSθg

)
=

∞∑
l=−∞

blU lg,

where the last equality is a consequence of the spectral theorem of unitary operators [34].

Similarly, it also holds that:

Sn,ϕgn =
∞∑

l=−∞
blU lngn

Hence,

Sϕg − Sn,ϕgn =
∞∑

l=−∞
bl(U lg − U lngn)

Now let ε > 0 and choose k ∈ N such that:

∑
|l|>k
|bl| <

ε

4 ‖g‖
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This is possible, because the Fourier coefficients of ϕ(θ) are absolutely summable. Write:

‖Sϕg − Sn,ϕgn‖ ≤
∞∑

l=−∞
|bl|
∥∥U lg − U lngn∥∥

=
k∑

l=−k
|bl|
∥∥U lg − U lngn∥∥+

∑
|l|>k
|bl|
∥∥U lg − U lngn∥∥

≤ M

k∑
l=−k

∥∥U lg − U lngn∥∥+ 2 ‖g‖
∑
|l|>k
|bl|

≤ M
k∑

l=−k

∥∥U lg − U lngn∥∥+
ε

2

For a fixed k ∈ N, it follows from theorem 4.3.3 that there exist an N ∈ N so that3

k∑
l=−k

∥∥U lg − U lngn∥∥ ≤ ε

2M
, ∀n ≥ N.

This yields:

‖Sϕg − Sn,ϕgn‖ ≤ ε.

Remark 4.4.2. Note that in the proof of theorem 4.4.1, explicit use is made of the fact

that the discrete operators are unitary, which in turn is a consequence of the periodic

approximation. Therefore, the arguments in the proof would break down if the periodic

approximation was replaced with a many-to-one map.

Recall the spectral projectors (3.10) and (4.7), and notice that they may be re-

3Note that the squaring of the norms in theorem 4.3.3 is immatarial for a finite sum.
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expressed as:

SDg =

∫
S
χD(θ)dSθg, Sn,Dgn =

∑
θn,k∈S

χD(θn,k)Sn,θn,kgn,

where χD(θ) is an indicator function on the circle for the interval D. To avoid technical-

ities like having eigenvalues on the boundary of D, a smoothed version of the projectors

using summability kernels [37] will be considered. That is, for some 0 < α < 2π, define

ϕα : S× S 7→ R+:

ϕα(x, y) =


K
α

exp

(
−1

1−( d(x,y)α )
2

)
d(x,y)
α

< 1

0 otherwise

, (4.18)

where d(x, y) is the Euclidian metric on S and K = (
∫ 1

−1
exp( −1

1−x2 )dx)−1. Now replace

the indicator function with:

χDα(θ) =

∫
S
ϕα(θ, ξ)χD(ξ)dξ,

and define:

SDα =

∫
S
χDα(θ)dSθg, , Sn,Dαgn =

∑
θn,k∈S

χDα(θn,k)Sn,θn,kgn. (4.19)

The following corollary is obtained.

Corollary 4.4.3 (Convergence of spectral projectors). Given any 0 < α < 2π and

interval D ⊂ S, it follows that:

lim
n→∞

‖SDαg − Sn,Dαgn‖ = 0,
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where g ∈ L2(X,M, µ).

4.4.3 Approximation of the spectral density function

Recall the definitions of the spectral density function ρ(θ; g) ∈ D∗(S), along with its

discrete analogue (4.8):

ρn(θ; gn) =

q(n)∑
k=1

∥∥Sn,θn,kgn∥∥2
δ(θ − θn,k)

To assess the convergence of ρn(θ; gn) to ρ(θ; g), the summability kernels will again be

employed (4.18). The following result may be established.

Theorem 4.4.4 (Approximation of the spectral density function). Let:

ρα(θ; g) :=

∫
S
ϕα(θ, ξ)ρ(ξ; g)dξ, ρα,n(θ; gn) :=

∫
S
ϕα(θ, ξ)ρn(ξ; gn)dξ. (4.20)

Then:

lim
n→∞

ρα,n(θ; gn) = ρα(θ; g), uniformly.

Proof. To prove uniform convergence, two facts will be established: (i) ρα(θ; g)−ρα,n(θ; gn)

forms an equicontinuous family, and (ii) ρα,n(θ; gn) converges to ρα(θ; g) in the L2-norm.

Uniform convergence of ρα,n(θ; gn) to ρα(θ; g) is an immediate consequence of these facts.

Indeed, if this wasn’t the case, there would exist an ε > 0 and a subsequence nk such

that |ρα(θk; g) − ρα,nk(θk; gnk)| ≥ ε for all k ∈ N. But by equicontinuity, one can choose

a δ > 0 such that:

d (ρα(φ; g)− ρα,n(φ; gn), ρα(θ; g)− ρα,n(θ; gn)) < ε/2, whenever d(φ, θ) < δ.

This leads to a contradiction to (ii) as ||ρα(·; g)− ρα,nk(·; gnk)||2 ≥ ε/2
√
δ. What follows
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next is a derivation of the claims (i) and (ii):

1. To show that ρα(θ; g)− ρα,n(θ; gn) is an equicontinuous family, it suffices to verify

that the derivative ρ
′
α(θ; g)−ρ′α,n(θ; gn) is uniformly bounded. Consider the fourier

expansion of ρα(θ; g)− ρα,n(θ; gn):

ρα(θ; g)− ρα,n(θ; gn) =
1

2π

∑
l∈Z

bn(l; g)eilθ

where:

bn(l; g) :=

∫
S
e−ilθ (ρα(θ; g)− ρα,n(θ; gn)) dθ

According to the spectral theorem of unitary operators [34], it follows that:

a(l; g) :=

∫
S
e−ilθρ(θ; g)dθ = 〈g,U lg〉,

and

an(l; gn) :=

∫
S
e−ilθρn(θ; gn)dθ = 〈gn,U lngn〉, l ∈ Z.

The functions ρα(θ; g) and ρα,n(θ; gn) are defined as convolutions with a C∞ smooth

function, and recognizing that convolutions implies pointwise multiplication in the

Fourier domain, it follows that:

bn(l; g) = dα(l)(a(l; g)− an(l; gn)),

where:

dα(l) :=

∫
S
e−ilθϕα(θ, 0)dθ and |dα(l)| ≤ Cα

1 + |l|N for every N ∈ N.

67



Periodic approximations - iterative maps Chapter 4

Now examining the derivative ρ
′
α(θ; g)−ρ′α,n(θ; gn) more closely, it can be seen that:

∣∣∣ρ′α(θ; g)− ρ′α,n(θ; gn)
∣∣∣ =

∣∣∣∣∣ 1

2π

∑
l∈Z

ilbn(l; g)eilθ

∣∣∣∣∣
≤ 1

2π

∑
l∈Z

|l||bn(l; g)|

=
1

2π

∑
l∈Z

|l||dα(l)| |a(l; g)− an(l; gn)|

=
1

2π

∑
l∈Z

|l||dα(l)|
∣∣〈g,U lg〉 − 〈gn,U lngn〉∣∣

≤ ‖g‖2

π

∑
l∈Z

Cα|l|
1 + |l|N ,

which is a convergent sum for N ≥ 3. Notice that summability is possible because

the constant Cα only depends on α and is independent of n.

2. To show that ρα,n(ω; gn) converges to ρα(ω; g) in the L2-norm, Parseval’s identity

can be used to confirm that the sum:
∑

l∈Z |bn(l; g)|2 can be made arbitrarily small.

At first, note that:

a(l; g)− an(l; gn) = 〈g,U lg − U lngn〉 − 〈g − gn,U lngn〉

By the triangle inequality and Cauchy-Schwarz, it follows that:

|a(l; g)− an(l; gn)| ≤ ‖g‖
∥∥U lg − U lngn∥∥+ ‖g − gn‖

∥∥U lngn∥∥
≤ ‖g‖

(∥∥U lg − U lngn∥∥+ ‖g − gn‖
)
.

Let ε > 0, and choose k ∈ N such that:

∑
|l|>k
|dα(l)|2 ≤ ε. (4.21)
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This is always possible, because ϕα(θ, 0) is a C∞ smooth function, and therefore

also square-integrable. The following upper bound can be established:

∞∑
l=−∞

|bn(l; g)|2 =
∞∑

l=−∞
|dα(l)|2|a(l; g)− an(l; gn)|2

≤
∞∑

l=−∞
|dα(l)|2

(
‖g‖

(∥∥U lg − U lngn∥∥+ ‖g − gn‖
))2

≤ ‖g‖2 max
−k≤l≤k

|dα(l)|2
k∑

l=−k

∥∥U lg − U lngn∥∥2
+ 16 ‖g‖2

∑
|l|>k
|dα(l)|2

+ ‖g‖2 ‖g − gn‖
∞∑

l=−∞
|dα(l)|2

(
2
∥∥U lg − U lngn∥∥+ ‖g − gn‖

)
.

Now apply (4.21) and theorem 4.3.3 to complete the proof.
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Periodic approximations -

generalization to flows

Let St : X 7→ X denote a Lipschitz continuous flow on a compact norm-induced metric

space X ⊆ Rm, with St satisfying the well-known group properties: St ◦ Ss(x) = St+s(x)

for any t, s ∈ R, and S0(x) = x. Associate with X the measure space (X,M, µ), where

M denotes the Borel sigma-algebra, and µ is an absolutely continuous measure with full

support on the state-space, i.e. supp µ = X. The flow St is assumed to be invariant with

respect to the measure µ, i.e. for every t ∈ R and B ∈M: µ(B) = µ(St(B)).

In this chapter, the concept of periodic approximations is generalized for the unitary

Koopman family U t : L2(X,M, µ) 7→ L2(X,M, µ) associated with St. A specific con-

dition is derived on the spatial and temporal discretization so that the spectra can be

approximated in a similar manner as in chapter 4.
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5.1 Discretization of the Koopman operator family

The discretization of the Koopman operator family can be broken-down into two

steps: a temporal discretization and a spatial discretization.

5.1.1 The temporal discretization

Let {τ(n)}∞n=1 ⊂ R+ denote a monotonically decreasing sequence converging to zero.

The first step in the discretization process is to convert the flow to an automorphism by

considering τ(n)-map Sτ(n) : X 7→ X. By doing so, one obtain the discrete one-parameter

group: {Skτ(n)}k∈Z along with its Koopman linearization:

{
Ukτ(n) : L2(X,M, µ) 7→ L2(X,M, µ)

}
k∈Z

,

where:

(Ukτ(n)g)(x) = g ◦ Skτ(n)(x), k ∈ Z. (5.1)

According to the spectral theorem [34], (5.1) admits the decomposition:

Ukτ(n)g =

∫
S
eikθdŜτ(n)

θ g, k ∈ Z. (5.2)

Here, Ŝτ(n)
θ is a self-adjoint, projection-valued measure on the Borel sigma-algebra of the

circle B(S), parameterized by θ ∈ [−π, π). The projection-valued measure on the circle

can be mapped on the real line by introducing Sτ(n)
ω such that:

Sτ(n)
ω = Ŝτ(n)

θ , whenever θ = (τ(n){ω}) ∩ [−π, π).
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By doing so, (5.2) can be rewritten as:

Ukτ(n)g =

∫
R
eikωτ(n)dSτ(n)

ω g =

∫ ω̂(n)

−ω̂(n)

eikωτ(n)dSτ(n)
ω g, k ∈ Z. (5.3)

where ω̂(n) denotes the spectral bandwith:

ω̂(n) = π/τ(n). (5.4)

For any interval D = [a, b) ⊂ [−ω̂(n), ω̂(n)) contained within the spectral bandwith,

consider the spectral projection:

Sτ(n)
D g :=

∫
D

dSτ(n)
ω g. (5.5)

By comparison of (5.3) with (3.13) and using the fact that eiθ = eiθ+2π, the following

relationship between (5.5) and (3.14) can be established:

Sτ(n)
D g = SDng, Dn =

⋃
l∈Z

D(l)
n , D(l)

n = [a+ 2lω̂(n), b+ 2lω̂(n)) . (5.6)

The equality (5.6) is a consequence of aliasing. Hence, to approximate the spectral

projection (3.14) through the τ(n)-map Sτ(n) will involve taking into account the errors

introduced by the sets D
(l)
n for l 6= 0.

In practical calculations, this implies that τ(n) has to be chosen small enough, so

that the spectral bandwith of the selected observables are suffciently captured. Conse-

quently, observables with high frequency spectral content will require small time-steps.

The conditions on the time discretization are very similar to the Nyquist-Shannon sam-

pling theorem, which imposes restrictions on the sample rate of a continuous-time signal

so that it can be properly reconstructed.
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Figure 5.1: The change that the spectral density function undergoes due to aliasing
(5.6). The top figure shows the original density plot, the bottom figure shows the
density plot after the time discretization.

5.1.2 The spatial discretization

The second step in the discretization process is to convert the map Sτ(n) : X 7→ X

on a “continuous” state-space to a periodic map S
τ(n)
n : Pn 7→ Pn with periodicity ζ(n)

on a “discrete and finite” state-space. The spatial discretization is performed in exactly

the same manner as in chapter 4, and the partitions {Pn}∞n=1 satisfy the same properties

as in section 4.1.2.

The operators in (5.1) is replaced by the finite group:

{
Ukτ(n)
n : L2

n(X,M, µ) 7→ L2
n(X,M, µ)

}
k∈Z/ζ(n)

defined by the permutation operators:

(
Ukτ(n)
n gn

)
(x) :=

q(n)∑
j=1

gn,jχS−kτ(n)n (pn,j)
(x), k ∈ Z/ζ(n). (5.7)

73



Periodic approximations - generalization to flows Chapter 5

where gn ∈ L2
n(X,M, µ) is obtained from averaging operator (4.3). The eigenfunctions

of (5.7) can be expressed in terms of the basis elements of L2
n(X,M, µ), i.e.

vn,k(x) =

q(n)∑
j=1

vn,kjχpn,j(x)

where ‖vn,k‖ = 1. The associated eigenvalues of (5.7) are roots of unity:

Ukτ(n)
n vn,k = eiωn,kkτ(n)vn,k, ωn,k := θn,k/τ(n).

Henceforth, the spectral decomposition of an observable gn ∈ L2
n(X,M, µ) under the

action of (5.7) can be expressed as:

Ukτ(n)
n gn =

q(n)∑
k=1

eikτ(n)ωn,kSτ(n)
n,ωn,k

gn, (5.8)

where Sτ(n)
n,ωn,k : L2

n(X,M, µ) 7→ L2
n(X,M, µ) denotes the rank-1 self-adjoint projector:

Sτ(n)
n,ωn,k

gn = vn,k 〈vn,k, gn〉 = vn,k

(∫
X

v∗n,k(x)gn(x)dµ

)
= vn,k

µ(X)

q(n)

q(n)∑
j=1

v∗n,kjgn,j

 .

(5.9)

Let D = [a, b] ⊂ [−ω̂(n), ω̂(n)). The fully discrete analogue to the spectral projection

(3.14) (both in time and space) is defined as:

Sτ(n)
n,D gn :=

∫
D

dSτ(n)
n,ω gn =

∑
ωn,k∈D

Sτ(n)
n,ωn,k

gn. (5.10)

Additionally, the discrete analogue of the spectral density function (3.15) is given by:

ρn(ω; gn) =

q(n)∑
k=1

∥∥∥Sτ(n)
n,ωn,k

gn

∥∥∥2

δ(ω − ωn,k). (5.11)
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Remark 5.1.1. The periodic approximation S
τ(n)
n : Pn 7→ Pn already inherits the measure-

preserving properties of the original flow on the subsigma algebra generated by Pn, i.e.

µ(S−τ(n)(pn,j)) = µ(pn,j) = µ(Sτ(n)(pn,j)). However, if the underlying flow comes from

a Hamiltonian vector field, additional constraints may be imposed so that the periodic

approximation also preserves the symplectic form.

5.1.3 Overview

The discretization of the Koopman operator of a measure preserving flow is split into

stages. In the time-discretization, a continuous one-parameter group is replaced by a

discrete one-parameter group:

{
U t : L2(X,M, µ) 7→ L2(X,M, µ)

}
t∈R
→
{
Ukτ(n) : L2(X,M, µ) 7→ L2(X,M, µ)

}
k∈Z

.

In the spatial discretization, the discrete one-parameter group is replaced by a finite

one-parameter group:

{
Ukτ(n) : L2(X,M, µ) 7→ L2(X,M, µ)

}
k∈Z
→{

Ukτ(n)
n : L2

n(X,M, µ) 7→ L2
n(X,M, µ)

}
k∈Z/ζ(n)

.

An overview of the discretization process is given in fig. 5.2.

5.2 Existence of a periodic approximation for flows

In chapter 4 it was shown that for a measure-preserving automorphism T : X 7→ X,

one could construct a sequence of periodic approximations {Tn : Pn 7→ Pn}∞n=1 such

that the dynamics T is closely mimiced for longer periods of time after each consequtive
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refinement. More specifically, given a compact set A ∈M and k ∈ N, it was shown that

the set evolution of A converges in the Haussdorf metric in the following sense:

lim
n→∞

k∑
l=−k

dH(T l(A), T ln(An)) = 0, (5.12)

where:

An :=
⋃

p∈Pn: p∩A 6=∅
p and dH(A,B) := max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

An analogous statement along the lines of (5.12) can also made for measure-preserving

flows. In this section, it will be shown that it is possible to construct a sequence of periodic

approximations {Sτ(n)
n : Pn 7→ Pn}∞n=1 to the flow St : X 7→ X, such that for every t ∈ R:

lim
n→∞

∫ t

−t
dH
(
Ss(A), Sξn(s)

n (An)
)

ds = 0, (5.13)

where:

ξn(t) = sign(t)

⌈ |t|
τ(n)

⌉
τ(n). (5.14)

In order for (5.13) to hold true, certain conditions on the spatial and temporal dis-

cretizations need to be satisfied. Recall that S
τ(n)
n : Pn 7→ Pn is defined as a periodic

approximation of the automorphism Sτ(n) : X 7→ X. But since Sτ(n) tends to the identity

map as n→∞, it is necessary that the refinements in {Pn}∞n=1 happen at a sufficiently

fast rate, so that the dynamics of the flow are properly captured.
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5.2.1 Example: translational flow on the circle

To illustrate this technicality, consider a simple example of a translation flow on the

circle:

St(x) = (x+ Ωt) mod 1, Ω ∈ R, x ∈ [0, 1).

Suppose the following temporal and spatial discretizations are chosen for the flow:

τ(n) =
γ

Ωwn
, Pn = {pn,1, pn,2, . . . , pn,rn} with pn,j =

(
j − 1

rn
,
j

rn

)
,

where w, r > 1 are integers and γ > 0 a positive real constant. It is not hard to derive

that the mapping1:

Sτ(n)
n (pn,j) = pn,j∗ , j∗ =

⌊(
j − 1 + γ

( r
w

)n)
mod rn

⌉
+ 1, n = 1, 2, . . . ,

(5.15)

forms a sequence of “optimal” periodic approximations that minimizes the cost:

J = max
pn,j∈Pn

dH(Sτ(n)(pn,j), S
τ(n)
n (pn,j)).

The sequence of maps (5.15) can be interpreted as an exact discretization of the flow:

Ŝtn(x) = (x+ Ω̂(n)t) mod 1, Ω̂(n) =
⌊
γ
( r
w

)n⌉Ω

γ

(w
r

)n
. (5.16)

That is,

dH(Ŝξn(t)
n (pn,j), S

ξn(t)
n (pn,j)) = 0, t ∈ R.

Whether (5.15) satisfy the convergence criteria (5.13) depends on the ratio of r
w

. Overall,

three different situations can be distinguished:

1b·e denotes nearest integer function, where it was chosen to always round upwards for half-integers.
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• Case r
w
< 1. In this scenario, the temporal discretization is refined faster than the

spatial discretization. Notice that S
τ(n)
n is matched to the identity map as soon

as n ∈ N is large enough to make γ
(
r
w

)n
< 1

2
. Henceforth, lim

n→∞
Ω̂(n) = 0 and

convergence in the sense of (5.13) will not occur.

• Case r
w

= 1. In this scenario, the temporal discretization is refined at the same

rate as the spatial discretization. The (normalized) frequency mismatch is equal

to:

lim
n→∞

∣∣∣∣∣Ω− Ω̂(n)

Ω

∣∣∣∣∣ = 1− bγe
γ
.

• Case r
w
> 1. In this scenario, the spatial discretization is refined faster than the

temporal discretization. In this situation,

lim
n→∞

∣∣∣∣∣Ω− Ω̂(n)

Ω

∣∣∣∣∣ = lim
n→∞

1−
⌊
γ
( r
w

)n⌉1

γ

(w
r

)n
= 0.

Hence, convergence in the sense of (5.13) must occur.

Since the Koopman operator converges spectrally only when limn→∞ Ω̂(n) = Ω̂, the

conditione r
w
> 1 is critical in applications of spectral computations.

5.2.2 The general case: an asymptotic requirement on the tem-

poral and spatial discretizations

The analysis of the translation flow on the circle is a specific case of a more general

phenomenon that needs to be adressed in the discretization of flows. The following

technical result will be used which is a consequence of Grönwall inequality.

Lemma 5.2.1. Let St denote a lipschitz continuous flow on a compact metric space X.
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Then for some L > 0,

d
(
St(x), St(y)

)
≤ eL|t|d(x, y), t ∈ R and x, y ∈ X. (5.17)

Proof. By compactness and Lipschitz continuity of the flow, it follows that

d (St+s(x), St(x)) ≤ L
2
|s| and d (St+s(y), St(y)) ≤ L

2
|s| for some constant L > 0. By

combining these facts, one can deduce that:

d
(
St+s(x), St+s(y)

)
≤ (1 + L|s|)d

(
St(x), St(y)

)
.

By repeated application of this inequality, one can show that for any n ∈ N:

d
(
St+s(x), St+s(y)

)
≤
(

1 +
L|s|
n

)n
d
(
St(x), St(y)

)
.

Taking limits as n→∞ yields d (St+s(x), St+s(y)) ≤ exp(L|s|)d (St(x), St(y)).

The following theorem will be proven.

Theorem 5.2.2. Let St : X 7→ X be a measure-preserving flow on a compact metric

space preserving the absolutely continuous measure µ with support supp µ = X. Recall

from (4.2) that diam(pn,j) ≤ l(n). If:

lim
n→∞

l(n)

τ(n)
= 0, (5.18)

then there exists a sequence of periodic approximation {Sτ(n)
n : Pn 7→ Pn}∞n=1 such that

(5.13) holds:

lim
n→∞

∫ t

−t
dH
(
Ss(A), Sξn(s)

n (An)
)

ds = 0

for every fixed t ∈ R and compact set A.
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The asymptotic condition (5.18) is sufficient for convergence to occur, although it is

not necessary as it was noticable in the example of section 5.2.1.

Proof of theorem 5.2.2. By the triangle inequality:

∫ t

−t
dH
(
Ss(A), Sξn(s)

n (An)
)

ds ≤
∫ t

−t
dH
(
Ss(A), Sξn(s)

n (A)
)

ds+∫ t

−t
dH
(
Sξn(s)(A), Sξn(s)

n (An)
)

ds

Since the first term will tend to zero because of continuity of the flow St, it suffices to

show that:

lim
n→∞

∫ t

−t
dH
(
Sξn(s)(A), Sξn(s)

n (An)
)

ds = 0.

The following can be further established:

∫ t

−t
dH
(
Sξn(s)(A), Sξn(s)

n (An)
)

ds ≤ εn(t) +

∫ t

−t
dH
(
Sξn(s)(An), Sξn(s)

n (An)
)

ds

= εn(t) +

∫ t

−t
dH
(
Sξn(s)(An), Sξn(s)

n (An)
)

ds

= εn(t) +

∫ t

−t

dH

 ⋃
p∈Pn: p∩A 6=∅

Sξn(s)(p),
⋃

p∈Pn: p∩A 6=∅
Sξn(s)
n (p)

 ds

≤ εn(t) +

∫ t

−t
max

p∈Pn: p∩A 6=∅
dH
(
Sξn(s)(p), Sξn(s)

n (p)
)

ds,

≤ εn(t) +

∫ t

−t
max
p∈Pn

dH
(
Sξn(s)(p), Sξn(s)

n (p)
)

ds,

where:

εn(t) :=

∫ t

−t
dH
(
Sξn(s)(A), Sξn(s)(An)

)
ds and lim

n→∞
εn(t) = 0.
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Let {Sτ(n)
n : Pn 7→ Pn}∞n=1 denote a sequence of periodic approximations generated from

a maximum cardinality matching of the bipartite graphs (which are all perfect matchings

as per theorem 4.2.2):

Gn = (Pn,P
′
n, E), (pn,k, p

′
n,l) ∈ E if µ(Sτ(n)(pn,k) ∩ pn,l) > 0. (5.19)

To prove the theorem, it will be shown that {Sτ(n)
n }∞n=1 satisfies:

lim
n→∞

∫ t

−t
max
p∈Pn

dH
(
Sξn(s)(p), Sξn(s)

n (p)
)

= 0.

First of all, observe that for any p ∈ Pn, the following bound can be obtained:

dH
(
Sτ(n)(p), Sτ(n)

n (p)
)
≤ diam (Sτ(n)(p)) + diam (Sτ(n)

n (p))

≤ (eLτ(n) + 1)l(n)

≤ (eLτ(n) + 1)
l(n)

τ(n)
eLτ(n)τ(n).

By employing the inequality:

dH
(
Slτ(n)(p), Slτ(n)

n (p)
)
≤ dH

(
Sτ(n)

(
S(l−1)τ(n)(p)

)
, Sτ(n)

(
S(l−1)τ(n)
n (p)

))
+

dH
(
Sτ(n)

(
S(l−1)τ(n)
n (p)

)
, Sτ(n)

n

(
S(l−1)τ(n)
n (p)

))
, l ∈ N,

and using theorem 5.2.1: dH(St(A), St(B)) ≤ eL|t|dH(A,B), the following recursive rela-

tion can be derived:

dH
(
Slτ(n)(p), Slτ(n)

n (p)
)
≤ eLτ(n)dH

(
S(l−1)τ(n)(p), S(l−1)τ(n)

n (p)
)
+(eLτ(n)+1)

l(n)

τ(n)
eLτ(n)τ(n).
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dH
(
Slτ(n)(p), Slτ(n)(p)

)
≤ (eLτ(n) + 1)

l(n)

τ(n)

(
eLτ(n) + . . .+ eLlτ(n)

)
.

Letting s > 0, this may be conveniently be re-expressed into a Riemann-Stieltjes notation:

dH
(
Sξn(s)(p), Sξn(s)

n (p)
)

(eLτ(n) + 1)
l(n)

τ(n)

∫ ξn(s)

0

eL|ξn(σ)|dσ.

Following an identical procedure for negative time values, one obtains:

dH
(
Sξn(−s)(p), Sξn(−s)

n (p)
)
≤ (eLτ(n) + 1)

l(n)

τ(n)

∫ 0

ξn(−s)
eL|ξn(σ)|dσ.

Combining the results yields:

∫ t

−t
max
p∈Pn

dH
(
Sξn(s)(p), Sξn(s)

n (p)
)
≤
(
eLτ(n) + 1

)( l(n)

τ(n)

)(∫ t

−t

∫ ξn(s)

ξn(−s)
eL|ξn(σ)|dσds

)
.

Indeed, by taking limits:

lim
n→∞

∫ t

−t
max
p∈Pn

dH
(
Sξn(s)(p), Sξn(s)

n (p)
)
≤ (2)

(
lim
n→∞

l(n)

τ(n)

)(
4(−1 + eLt − Lt)

L2

)
,

and noting the condition (5.18), the desired result has been established.

Remark 5.2.3. In practice, Sτ(n) : X 7→ X is typically not known explicitly. Instead, one

has access to an order-s integrator S̃τ(n) : X 7→ X which acts as an approximator to

the flow. Assuming that the integrator preserves the invariant measure of the flow, the

question arises whether replacing S
τ(n)
n : Pn 7→ Pn with S̃

τ(n)
n : Pn 7→ Pn would still allow

theorem 5.2.2 to fall through. The answer to this question is affirmative. This follows

from the fact that d(Sτ(n)(x), S̃τ(n)(x)) = O(τ s+1(n)) and the triangle inequality:

dH(Sτ(n)(p), S̃τ(n)
n (p)) ≤ dH(Sτ(n)(p), S̃τ(n)(p)) + dH(S̃τ(n)(p), S̃τ(n)

n (p)).
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Remark 5.2.4. Notice that the condition on the spatial and temporal discretizations (5.18)

is different than, and in some sense opposite to the Courant-Friedrichs-Lewy (CFL)

condition which typically arises in finite difference schemes of Hyperbolic PDEs. In

section 5.5, this matter will be discussed in greater detail.

5.3 Convergence of the operator for flows

In this section, operator convergence is established for a sequence of periodic approxi-

mations to a flow. Since the proofs are very similar to the discrete-time case, most details

of the proof are left out.

Lemma 5.3.1. Suppose that
{
S
τ(n)
n : Pn 7→ Pn

}∞
n=1

is a sequence of discrete maps that

periodically approximates St : X 7→ X in the sense of theorem 5.2.2. For some m ∈ N,

define:

g =

q(m)∑
j=1

cjχpm,j ∈ L2
m(X,M, µ).

Then, for any fixed t ∈ R:

lim
n→∞

∫ t

−t

∥∥U sg − U ξn(s)
n gn

∥∥2
ds = 0.

Proof. Again, by continuity it suffices to just show:

lim
n→∞

∫ t

−t

∥∥U ξn(s)g − U ξn(s)
n gn

∥∥2
ds = 0.
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For notational clarity, write A(j) := pm,j, g
(j) := χpm,j and g

(j)
n :=Wng

(j).

∫ t

−t

∥∥U ξn(s)g − U ξn(s)
n gn

∥∥2
ds ≤

q(m)

q(m)∑
j=1

|cj|2
 max

j=1,...,q(m)

(∫ t

−t

∥∥U ξn(s)g(j) − U ξn(s)
n g(j)

n

∥∥2
ds

)
.

Since {Pn}∞n=1 are consecutive refinements, observe that g
(j)
n = g(j) for n ≥ m, which

implies:

∫ t

−t

∥∥U ξn(s)g(j) − U ξn(s)
n g(j)

n

∥∥2
ds =

∫ t

−t
µ
(
Sξn(s)(A(j))∆Sξn(s)

n (A(j))dξn(s)
)

ds, if n ≥ m.

The proof proceeds in a similar way as in the discrete time case.

Theorem 5.3.2 (Operator convergence). Suppose that
{
S
τ(n)
n : Pn 7→ Pn

}∞
n=1

is a se-

quence of discrete maps that periodically approximates St : X 7→ X in the sense of

theorem 5.2.2. Then, for every fixed t ∈ R:

lim
n→∞

∫ t

−t

∥∥U sg − U ξn(s)
n gn

∥∥2
ds = 0, (5.20)

where g ∈ L2(X,M, µ) and ξn(s) is defined by (5.14).

Proof. The proof is very similar to discrete time case. One can pick a

gm =

q(m)∑
j=1

cjχpm,j ∈ L2
m(X,M, µ)

that approximates g ∈ L2(X,M, µ) arbitrarily well in the norm-wise sense by choosing

a sufficiently large m ∈ N.

84



Periodic approximations - generalization to flows Chapter 5

5.4 Convergence of spectra for flows

In this section, results related to spectral convergence are established. In particular,

it will be examined how (5.10) converges to (3.14).

5.4.1 Approximation of the spectral projectors

Consider any smooth test function ϕ ∈ D(R) on the reals, and define:

Sϕg =

∫
R
ϕ(ω)dSωg, Sτ(n)

n,ϕ gn =
∑
ωn,k∈R

ϕ(ωn,k)Sτ(n)
n,ωn,k

gn.

The following theorem will be proven.

Theorem 5.4.1. Suppose that
{
S
τ(n)
n : Pn 7→ Pn

}∞
n=1

is a sequence of discrete maps that

periodically approximates St : X 7→ X in the sense of theorem 5.2.2. For any smooth

test function ϕ ∈ D(R) and observable g ∈ L2(X,M, µ):

lim
n→∞

∥∥Sϕg − Sτ(n)
n,ϕ gn

∥∥ = 0.

Proof. Express the test function in terms of its Fourier transform: ϕ(ω) =
∫∞
−∞ b(τ)eiτωdτ,

and note that
∫∞
−∞ |b(τ)|dτ <∞. It can be seen that:

Sϕg =

∫
R

(∫ ∞
−∞

b(τ)eiτωdτ

)
dSωg =

∫ ∞
−∞

b(τ)

(∫
R
eiτωdSωg

)
dτ =

∫ ∞
−∞

b(τ)U τgdτ,

where the last equality follows from the spectral theorem of unitary one-parameter groups

[34]. Similarly, it also holds that:

Sτ(n)
n,ϕ gn =

∫ ∞
−∞

b(τ)U ξ(τ)
n gndτ
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Hence,

Sϕg − Sτ(n)
n,ϕ gn =

∫ ∞
−∞

b(τ)(U τg − U ξ(τ)
n gn)dτ

Now let ε > 0 and choose t ∈ R such that:

∫
|τ |>t
|b(τ)|dτ < ε

4 ‖g‖

Noting that:

‖Sϕg − Sn,ϕgn‖ ≤ M

∫ t

−t

∥∥U τg − U ξ(τ)
n gn

∥∥ dτ +
ε

2
,

and using theorem 5.3.2 the proof can be completed.

Just as in the discrete-time case, smoothen the indicator function χD(ω) using the

summability kernel, i.e.

χDα(ω) =

∫
S
ϕα(θ, ξ)χD(ξ)dξ,

where ϕα : R× R 7→ R+:

ϕα(x, y) =


K
α

exp

(
−1

1−( |x−y|α )
2

)
|x−y|
α

< 1

0 otherwise

, (5.21)

for some α > 0 and K = (
∫ 1

−1
exp( −1

1−x2 )dx)−1. Define:

SDαg =

∫
R
χDα(ω)dSωg, Sτ(n)

n,Dα
gn =

∑
ωn,k∈R

χDα(ωn,k)Sn,ωn,kgn. (5.22)

The following corollary holds.
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Corollary 5.4.2 (Convergence of spectral projectors). Suppose that{
S
τ(n)
n : Pn 7→ Pn

}∞
n=1

is a sequence of discrete maps that periodically approximates St :

X 7→ X in the sense of theorem 5.2.2. Given any α > 0 and interval D ⊂ R, it follows

that:

lim
n→∞

∥∥∥SDαg − Sτ(n)
n,Dα

gn

∥∥∥ = 0,

where g ∈ L2(X,M, µ).

5.4.2 Approximation of the spectral density function

Recall the definition of the spectral density function along with its discrete analogue in

(5.11). To assess the convergence of ρn(ω; gn) to ρ(ω; g), again use is made of summability

kernels (5.21).

Theorem 5.4.3 (Approximation of the spectral density function). Let:

ρα(ω; g) :=

∫ ∞
−∞

ϕα(ω, ξ)ρ(ξ; g)dξ, ρα,n(ω; gn) :=

∫ ∞
−∞

ϕα(ω, ξ)ρn(ξ; gn)dξ.

It follows that:

lim
n→∞

ρα,n(ω; gn) = ρα(ω; g), uniformly.

Proof. To prove uniform convergence, the following two facts will be established: (i)

ρα(ω; g) − ρα,n(ω; gn) forms an equicontinuous family, and (ii) ρα,n(ω; gn) converges to

ρα(ω; g) in the L2-norm.

(i) To show that ρα(ω; g)−ρα,n(ω; gn) is an equicontinuous family, it sufffices to confirm

that the derivative ρ
′
α(ω; g)− ρ′α,n(ω; gn) is uniformly bounded. Write:
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continuous-time, continuous-space:

L2(X, M, µ) := {g : X !→ C | ∥g∥ < ∞} , ∥g∥ :=
(∫

X |g(x)|2dµ
) 1

2

Ut : L2(X, M, µ) !→ L2(X, M, µ)

(Utg)(x) := g ◦ St(x), t ∈ R

Utg =

∫

R
eiωtdSωg

SDg =

∫

D
dSωg

discretization of the flow:

Sτ(n) : X !→ X

Sτ(n) is an automorphism

discrete-time, continuous-space:

L2(X, M, µ) := {g : X !→ C | ∥g∥ < ∞} , ∥g∥ :=
(∫

X |g(x)|2dµ
) 1

2

Uτ(n) : L2(X, M, µ) !→ L2(X, M, µ)

(Ukτ(n)g)(x) := g ◦ Skτ(n)(x), k ∈ Z

Ukτ(n)g =

∫
π/τ(n)

−π/τ(n)
eikτ(n)ωdSτ(n)

ω g

SDg =

∫

D
dSωg

discretization of the observable:

(Wng)(x) = gn(x) :=

q(n)∑

j=1

gn,jχpn,j
(x)

gn,j :=
q(n)
µ(X)

∫
X g(x)χpn,j

(x)dµ

discretization of the automorphism:

S
τ(n)
n : Pn !→ Pn

S
τ(n)
n is a periodic approximation

discrete-time, discrete-space:

L2
n(X, M, µ) :=

{
gn : X !→ C | ∑q(n)

j=1
cjχpn,j

(x), cj ∈ C
}

, χpn,j
(x) =

{
1 x ∈ pn,j

0 x /∈ pn,j

Uτ(n)
n : L2

n(X, M, µ) !→ L2
n(X, M, µ)

(
Ukτ(n)

n gn

)
(x) :=

q(n)∑

j=1

gn,jχ
S

−kτ(n)
n (pn,j)

(x), k ∈ Z/p(n)

Ukτ(n)
n gn =

q(n)∑

k=1

e
ikτ(n)ωn,k Sτ(n)

n,ωn,k
gn

Sn,Dgn =
∑

ωn,k∈D

Sτ(n)
n,ωn,k

gn

Figure 5.2: An overview of the discretization process.
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ρα(ω; g)− ρα,n(ω; gn) =
1

2π

∫ ∞
−∞

bn(τ ; g)eiτωdτ

where:

bn(τ ; g) :=

∫ ∞
−∞

e−iτω (ρα(ω; g)− ρα,n(ω; gn)) dω.

According to the spectral theorem of unitary operators [34], it follows that:

a(τ ; g) :=

∫ ∞
−∞

e−iτωρ(ω; g)dθ = 〈g,U τg〉

and

an(τ ; gn) :=

∫ ∞
−∞

e−iτωρn(ω; gn)dω = 〈gn,U ξn(τ)
n gn〉, τ ∈ R.

The functions ρα(ω; g) and ρα,n(ω; gn) are defined as convolutions with a function

belonging to the Schwartz space. Recognizing that convolutions implies pointwise

multiplication in Fourier domain, note that:

bn(τ ; g) = dα(τ)(a(τ ; g)− an(τ ; gn)),

where:

dα(τ) :=

∫ ∞
−∞

e−iτωϕα(ω, 0)dω and |dα(τ)| ≤ Cα
1 + |τ |N for every N ∈ N.

Now examining the derivative ρ
′
α(ω; g) − ρ

′
α,n(ω; gn) more closely, it can be seen
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that:

∣∣∣ρ′α(ω; g)− ρ′α,n(ω; gn)
∣∣∣ =

∣∣∣∣ 1

2π

∫ ∞
−∞

itbn(τ ; g)eiτωdτ

∣∣∣∣
≤ 1

2π

∫ ∞
−∞
|τ ||dα(τ)|

∣∣〈g,U τg〉 − 〈gn,U ξn(τ)
n gn〉

∣∣ dτ
≤ ‖g‖2

π

∫ ∞
−∞

Cα|τ |
1 + |τ |N dτ,

which is a convergent sum for N ≥ 3.

(ii) To show that ρα,n(ω; gn) converges to ρα(ω; g) in the L2-norm, Parseval’s identity

can be employed to confirm that the integral:
∫∞
−∞ |bn(τ ; g)|2 dτ can be made arbi-

trarily small. At first, note that:

a(τ ; g)− an(τ ; gn) = 〈g,U tg − U ξn(τ)
n gn〉 − 〈g − gn,U ξn(τ)

n gn〉

By the triangle inequality and Cauchy-Schwarz, one obtains:

|a(τ ; g)− an(τ ; gn)| ≤ ‖g‖
(∥∥U τg − U ξn(τ)

n gn
∥∥+ ‖g − gn‖

)
.

Let ε > 0, and choose t ∈ R+ such that:

∫
|τ |>t
|dα(τ)|2dτ ≤ ε. (5.23)

This is always possible, because ϕα(θ, 0) is a C∞ smooth function, and therefore
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also square-integrable. The following upper bound can be established:

∫ ∞
−∞
|bn(τ ; g)|2 τ =

∫ ∞
−∞
|dα(τ)|2|a(τ ; g)− an(τ ; gn)|2dτ

≤
∫ ∞
−∞
|dα(τ)|2

(
‖g‖

(∥∥U τg − U ξn(τ)
n gn

∥∥+ ‖g − gn‖
))2

dτ

≤ ‖g‖2 max
−t≤τ≤t

|dα(τ)|2
∫ t

−t

∥∥U τg − U ξn(τ)
n gn

∥∥2
dτ +

16 ‖g‖2

∫
|τ |>t
|dα(l)|2dτ +

‖g‖2 ‖g − gn‖
∫ ∞
−∞
|dα(τ)|2

(
2
∥∥U τg − U ξn(τ)

n gn
∥∥+ ‖g − gn‖

)
dτ.

Now apply (5.23) and theorem 5.3.2 to complete the proof.

5.5 Some remarks on the simulation of advection

equations

The generator of the associated Koopman unitary group is the operator f(x)·∇, where

f(x) is the vector field that generates the measure-preserving flow St(x) . Subsequently,

the time evolution of an observable under the flow St(x) is equivalent to the solution of an

advection equation associated with the vector field f(x). Henceforth, the discretization

(5.7) is an approximate solution propagator to the advection problem:

((
∂

∂t
− G

)
φ

)
(t, x) = 0 (5.24a)

(Aφ) (t, x) = φ0(x), (5.24b)
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where:

Gφ(t, x) := f(x) · ∇φ(t, x), (Aφ) (t, x) := φ(t, x)|t=0 .

Within the Computional Fluid Dynamics (CFD) community, there is already some fa-

miliarity on the concept of periodic approximation. Specifically, McLachan [38] coined

the term “cell rearrangement model” to describe such approximation schemes. In the

previous sections, it was shown that these methods are convergent both in a spectral

sense and operator sense. That is, if φn(t, x) := U ξn(t)
n Wnφ0(x), then for any fixed t ∈ R:

(i). lim
n→∞

‖φ(t, x)− φn(t, x)‖ = 0, (ii). lim
n→∞

∥∥Sϕφ(t, x)− Sτ(n)
n,ϕ φn(t, x)

∥∥ = 0.

The advection equation is a hyperbolic PDE which has been heavily studied in the

literature. A whole plethora of alternative numerical schemes can be used to solve system

(5.24). A simple finite-difference scheme can already exhbibit very different convergence

properties than the periodic approximation approach. Consider the translation flow on

the circle which was examined in section 5.2.1. The generator G in this case equals Ω ∂
∂x

and is spatially invariant. Recall the temporal and spatial discretizations which were

used in the periodic approximation:

l(n) =
1

rn
, τ(n) =

γ

Ωwn
.

A first-order upwind finite-difference scheme yields a sequence of discretizations of the
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Koopman operators, whose matrix representation is of the type:

Û ξn(t)
n =



1− γ
(
r
w

)n
γ
(
r
w

)n
γ
(
r
w

)n
1− γ

(
r
w

)n
. . . . . .

γ
(
r
w

)n
1− γ

(
r
w

)n



ξn(t)
τ(n)

. (5.25)

For a periodic approximation, weak convergence of the spectra was guaranteed when

r
w
> 1 (see again section 5.2.1). For the upwind scheme discretization, this is no longer

true:

• Case r
w
< 1. In this situation, (5.25) converges to the identity map. However, unlike

the periodic approximation, the limit is never achieved and only holds true in the

asymptotic sense. Weak convergence in the spectra is nevertheless not achieved.

• Case r
w

= 1. In this situation, (5.25) is reduced to:

Û ξn(t)
n =



1− γ γ

γ 1− γ
. . . . . .

γ 1− γ



ξn(t)
τ(n)

. (5.26)

In the case when 0 < γ ≤ 1, (5.26) is the time evolution of a doubly-stochastic,

circulant matrix. In fact, the operator can be interpreted as an Ulam approximation

(see e.g. [16]) of the τ(n)-map for the underlying flow:

Tn(x) =

(
x+

1

γwn
Ω

)
mod 1.

As illustrated in fig. 5.3, the parameter γ ∈ (0, 1] signifies the probability of jumping
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to next partition interval. For the special γ = 1, the operator is equivalent to a

periodic approximation. Nevertheless, the eigenvalue-eigenfunction pairs of the

discretized operator (5.26):

(
Û ξn(t)
n vn,j

)
(x) = eλj,nξn(t)vn,j(x)

for j = 1, . . . , rn can be found explicitly,

λn,j = (2πκn(j)Ω) i+
Ωrn

γ
log

(
1− γ + γe

2πκn(j)
rn

i

eγ
2πκn(j)
rn

i

)

and

vn,j(x) =
rn∑
k=1

e
2πκn(j)(k−1)

rn
iχpn,j(x),

where:

κn(j) =

(
j − 1− rn

2

)
mod rn − rn

2
.

In fig. 5.4 the location of eigenvalues are plotted for varying γ > 0 and n ∈ N.

The eigenvalues only remain on the imaginary axis in the special case γ = 1 when

(5.26) reduces to a periodic approximation. If 0 < γ ≤ 1 (the CLF condition for

the upwind scheme), the eigenvalues deflect off to the left-half plane, whereas for

γ > 1 they deflect off to right-half plane. Although refinements on the partition

do push eigenvalues corresponding to slow modes closer to the imaginary axis, the

eigenvalues corresponding to fast modes always either get dissipated or amplified.

• Case r
w
> 1. The entries in (5.25) grow unboundedly. Hence, it is impossible to

have any operator or weak spectral convergence in this scenario.
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Figure 5.3: The “Ulam interpretation” to the discretized operator (5.26).

Figure 5.4: Eigenvalues of (5.26) for r = w = 2 and varying γ > 0 and n ∈ N.
Eigenvalues for n = 7 and varying γ > 0 (left). Eigenvalues for γ = 0.75 and varying
n ∈ N (right).
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In general, statements on the spectral convergence properties of a finite diffference

schemes are harder to make. The generator is typically not spatially invariant and there

is no longer a specific structure to exploit other than the sparsity. The uniqueness of the

periodic approximation is that the discretization preserves the unitary structure of the

underlying operator. In [38], McLachan indicated that periodic approximations surpress

the formation of spurious oscillations in simulations. The restriction of the spectra to the

imaginary axis may play a critical role here, since it prevents instabilities and artificial

damping.
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Numerical methods

In the previous two chapters, a procedure was introduced in which the class of measure-

preserving maps and flows were approximated using periodic transformations on a dis-

cretized state-space. It was shown that the Koopman operators of these periodic maps

converge spectrally to that of original operator in a weak-sense. This method of dis-

cretization gives rise to a numerical method in which the spectral content of observables

can be computed.

In this chapter, the details of the numerical method are broken-down. Overall, the

method involves two steps. The first step consists of the actual construction of the

periodic approximation. The second step consists of evaluating the spectral projections

and density functions. What follows next is a detailed exposition for each of these steps.

The emphasis here will be on computing spectra for maps. In the last section, a few

pointers are given on how the methods is generalized for flows.
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6.1 Constructing the periodic approximation

A periodic approximation can be obtained either through explicit construction or by

analytic means. At first, the details of general algorithm will be discussed.

To keep the analysis simple, only volume-preserving maps on the m-torus will be

treated. Extensions to other domains and invariant measures are more involved and a

topic of further study. Henceforth, unless otherwise stated, in this chapter X = Tm with:

d(x, y) := max
k∈{1,...,m}

min{|xi − yi|, |1− xi − yi|} (6.1)

and T : Tm 7→ Tm refers to an invertible, continuous Lebesgue measure-preserving trans-

formation on the unit m-torus.

6.1.1 General algorithm for constructing periodic approxima-

tions

The algorithm proposed here differs from the method proposed in [39], although in

essence they follow the same principle, given that a bipartite matching problem has to

be solved one way or the other. In particular, it will be shown that the construction can

be done “fast” if the underlying map is Lipschitz continuous.

Discretization of the m-torus Call:

pn,̂ :=

[
̂1 − 1

ñ
,
̂1
ñ

]
×
[

̂2 − 1

ñ
,
̂2
ñ

]
× . . .×

[
̂m − 1

ñ
,
̂m
ñ

]
(6.2)

where:

ñ = Can, C, a ∈ N, (6.3)
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and ̂ = (̂1, ̂2, . . . , ̂m) is a multi-index with ̂i ∈ {1, . . . , ñ}. To simplify the notation

in some cases, it is useful to alternate between the multi-index ̂ and single-index j ∈

{1, 2, . . . , ñm} through a lexicographic ordering whenever it is convenient. Consider a

partitioning of the unit m-torus (with µ(Tm) = 1) into the m-cubes:

Pn = {pn,j}q(n)
j=1 , q(n) = ñm

and note that this set is isomorphic to Nm
ñ := {̂ ∈ Nm : 0 < ̂i ≤ ñ, i = 1, . . . ,m}.

The sequence of partitions {Pn}∞n=1 of the m-torus form a collection of refinements

which satisfy the properties:

µ(pn,j) =
1

ñm
and diam(pn,j) =

√
m

ñ
, j ∈ {1, 2, . . . , ñm} ,

where ñ is defined as in (6.3). It is clear from these properties that {Pn}∞n=1 is a family

of equal-measure partitions which meet the conditions: µ(pn,j)→ 0 and diam(pn,j)→ 0

as n→∞.

The bipartite matching problem A bipartite graph G = (X, Y,E) is a graph where

every edge e ∈ E has one vertex in X and one in Y . A matching M ⊂ E is a subset

of edges where no two edges share a common vertex (in X or Y ). The goal of the

bipartite matching problem is to find a maximum cardinality matching, i.e. one with

largest number of edges possible. A matching is called perfect if all vertices are matched.

A perfect matching is possible if, and only if, the bipartite graph satisfies the so-called

Hall’s marriage condition:

for every B ⊂ X implies |B| ≤ |NG(B)|
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where NG(B) ⊂ Y is the set of all vertices adjacent to some vertex in A (see e.g. [35]).

Bipartite matching problems belong to the class of combinatorial problems for which

well-established polynomial time algorithms exist, e.g. the Ford-Fulkerson algorithm may

be used to find a maximum cardinality matching in O(|V ||E|) operations, wheareas the

Hopcroft-Karp algorithm does it in O(
√
|V ||E|) (see e.g. [40, 41]).

The algorithm In the previous chapters, it was shown that the solution to the bipar-

tite matching problem of the graph1:

Gn = (Pn,Pn, En), (pn,s, pn,l) ∈ En if µ(T (pn,s) ∩ pn,l) > 0 (6.4)

has a perfect matching. This fact played a key role in proving theorem 4.2.1. In practice,

it is not advisable to construct this graph explicity since it requires the computation of

set images.

Fortunately, a periodic approximation may be obtained from solving a related bi-

partite matching problem for which set computation are not necessary. Consider the

partition Pn and associate to each partition element pn,̂ ∈ Pn a representative point:

xn,̂ = ψn(pn,̂) :=

(
̂1 − 1

2

ñ
, . . . ,

̂m − 1
2

ñ

)
∈ pn,̂. (6.5)

Define:

ϕn(x) =

(
ñx1 +

1

2
, . . . , ñxm +

1

2

)
. (6.6)

to be the function that maps the representative points onto the lattice Nm
ñ := {̂ ∈ Nm :

0 < ̂i ≤ ñ, i = 1, . . . ,m}, i.e. ̂ = ϕn(xn,̂). Let b·c (d·e) denote the floor (resp. ceil)

1Note that the partition elements pn,s ∈ Pn are interpreted here as vertices in a bipartite graph.
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function, and define the following set-valued map:

F (t)(x) = {̂ ∈ Nm
ñ : bϕn(xi)c − t+ 1 ≤ ̂i ≤ dϕn(xi)e+ t− 1, i = 1, . . . ,m} (6.7)

to introduce the family of neighborhood graphs:

Ĝ(t)
n := (Pn,Pn, Ê(t)

n ), (pn,̂s, pn,̂l) ∈ Ê(t)
n if l̂ ∈ F (t)(T (xn,̂s)) (6.8)

The proposal is to find a maximum cardinality matching for the bipartite graph Ĝ
(t)
n .

Notice that Ê
(t)
n ⊆ Ê

(s)
n whenever s ≥ t. Hence, if no perfect matching is obtained

for some value of t, repeated dilations of the graph eventually will. The algorithm is

summarized below.

Algorithm 6.1.1. To obtain a periodic approximation, do the following:

1. Initialize t = 1.

2. Find the maximum cardinality maching of Ĝ
(t)
n .

3. If the matching is perfect, assign matching to be Tn. Otherwise set t ← t + 1 and

repeat step 2.

Theorem 6.1.1 (Algorithmic correctness). Algorithm 6.1.1 terminates in a finite number

of steps and yields a map Tn : Pn 7→ Pn with the desired asymptotic property described

in (5.12).

Proof. For large enough t, the graph Ĝ
(t)
n eventually becomes the complete graph. Hence,

the algorithm will terminate in a finite number of steps. However, one needs to show that

the algorithm terminates way before that, yielding a map with the asymptotic property

(5.12).
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In [42], it was proven that for any Lebesgue measure-preserving map T : Td 7→ Td,

there exists a periodic map for which:

sup
pn,̂∈Pn

inf
x∈Td

max{d(x, ψn(pn,̂)), d(T (x), ψn(Tn(pn,̂)))} ≤
1

2ñ
, (6.9)

where d(·, ·) refers to the metric defined in (6.1). By virtue of this fact, if one is able to

construct a bipartite graph G̃n = (Pn,Pn, Ẽn) for which:

(pn,̂s, pn,̂l) ∈ Ẽn if inf
x∈pn,̂s

d(T (x), ψn(pn,̂l)) ≤
1

2ñ
,

then this bipartite graph, or any super-graph, should admit a perfect matching. Indeed,

if one were to assume the contrary, then this would imply that one is required to con-

struct a periodic approximation Tn for which d(T (x), ψn(Tn(pn,̂))) ≥ 1
2ñ

, an immediate

contradiction of (6.9).

This fact has implications on the graph Ĝ
(t)
n . As soon as t hits a value for which

Ê
(t)
n ⊇ Ẽn, the graph Ĝ

(t)
n is gauranteed to have a perfect matching (although it may

occur even before that). Notice that by compactness of the m-torus, T admits a modulus

of continuity ω : [0,∞) 7→ [0,∞) with d(T (x), T (y)) ≤ ω(d(x, y)). An upper bound on

the value of t for which Ĝ
(t)
n becomes a supergraph of G̃n is given by:

t∗ = dñω(1/ñ) +
1

2
e ≤ (ñ+ 1)

(
ω(1/ñ) +

1

2ñ

)
.

That is, the algorithm should terminate for t ≤ t∗.

By assuming that the algorithm terminates at t∗, a worst-case error bound can be
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established for any map generated from the bipartite graphs. It can be seen that:

sup
pn,̂∈Pn

d(ψn(Tn(pn,̂)), T (ψn(pn,̂))) ≤
t∗

ñ
≤ ñ+ 1

ñ

(
ω(1/ñ) +

1

2ñ

)
.

Next, using the inequality:

dH(T (pn,̂), Tn(pn,̂)) ≤ diam(Tn(pn,j)) + d(ψn(Tn(pn,̂)), T (ψn(pn,̂))) + diam(T (pn,j)),

it follows that:

lim
n→∞

dH(T (pn,̂), Tn(pn,̂)) ≤ lim
n→∞

1

ñ
+
ñ+ 1

ñ

(
ω(1/ñ) +

1

2ñ

)
+ ω(1/ñ) = 0.

From here onwards, one can proceed in the same fashion as the proofs of he proofs of

theorem 4.2.3 and theorem 4.2.1 to show that {Tn}∞n=1 indeed satisfies the convergence

property (5.12).

Complexity of Algorithm 6.1.1 Since the number of edges in Ĝ
(t)
n is proportional

to the number of nodes for small t-values, the Hopcroft-Karp algorithm will solve a

matching problem in O(ñ
3m
2 ) operations. If additionally, the map T is assumed to be

Lipschitz, i.e. ω(d(x, y)) = Kd(x, y), the algorithm terminates before t∗ = dK + 1
2
e,

i.e. independently of the discretization level ñ. Hence, O(ñ
3m
2 ) is also the overall time-

complexity of algorithm. Note that memory storage of a periodic map has O(ñm) in

complexity. Ideally, it is desirable to obtain a formulaic expression for Tn.

6.1.2 Analytic constructions of periodic approximations

With the boxed partition of the m-torus (6.2), a sub-class of maps may be periodically

aproximated analytically through simple algebraic manipulations (see e.g. [43]). In
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addition to some purely mathematical transformations, this also includes maps which

arise in physical problems. In fact, any perturbed Hamiltonian twist map like Chirikov’s

Standard Map [44], or certain kinds of volume preserving maps such as Feingold’s ABC

map [45] belong to this category.

A key observation is that these Lebesgue measure-preserving transformations consists

of compositions of the following basic operations:

1. A signed permutation:

T (x) =


ξ(1)xσ(1)

...

ξ(m)xσ(m)

 , with σ(·) a permutation and ξ(·) ∈ {−1, 1}. (6.10)

which is periodically approximated by:

Tn(pn,̂) = ψ−1
n ◦ ϕ−1

n ◦



ξ(1)̂σ(1)

...

ξ(m)̂σ(m)

 mod ñ

 ◦ ϕn ◦ ψn(pn,̂).

2. A translation:

T (x) =


x1 + ω1

...

xm + ωm

 mod 1. (6.11)

which is periodically approximated by:

Tn(pn,̂) = ψ−1
n ◦ ϕ−1

n ◦




̂1 + bϕn(ω1)e
...

̂m + bϕn(ωm)e

 mod ñ

 ◦ ϕn ◦ ψn(pn,̂).
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where b·e denotes the nearest-integer function.

3. A shear:

T (x) =



x1

...

xi + f(x1, . . . , xi−1, xi+1, . . . , xm)

...

xm


(6.12)

which is periodicaly approximated by:

Tn(pn,̂) = ψ−1
n ◦ ϕ−1

n ◦



̂1
...

̂i + bϕn(f(ϕ−1
n (̂1), . . . , ϕ−1

n (̂i−1), ϕ−1
n (̂i+1), . . . , ϕ−1

n (̂m)))e
...

̂m


mod ñ


◦ϕn◦ψn(pn,̂)

Any map which is expressable as a finite composition of these operations can be peri-

odically aproximated through approximation of each its component That is, the T (x) =

Ts ◦ · · · ◦T1(x) is approximated by Tn(x) = Ts,n ◦ · · · ◦T1,n(x). It is not hard to show that

this would lead to a sequence of approximations that satisfy (5.12). Examples of maps

which may be approximated in this manner are:
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• Arnold’s Cat map [46]:

T (x) =

2 1

1 1


x1

x2

 mod 1, (6.13)

which is the composition of a permutation and shear map:

T (x) = T2 ◦ T1 ◦ T2 ◦ T1(x)

where:

T1(x) =

0 1

1 0


x1

x2

 , T2(x) =

1 0

1 1


x1

x2

 .
• Anzai’s example [47] of a skew product transformation:

T (x) =

 x1 + γ

x1 + x2

 mod 1, (6.14)

which is the composition of a shear map and a translation:

T (x) = T2 ◦ T1(x)

where:

T1(x) =

1 0

1 1


x1

x2

 , T2(x) =

x1 + γ

x2

 .
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• Chirikov Standard map [44]:

T (x) =

x1 + x2 +K sin(2πx1)

x2 +K sin(2πx1)

 mod 1, (6.15)

which is the composition of two distinct shear maps in orthogonal directions:

T (x) = T2 ◦ T1(x)

where:

T1(x) =

 x1

x2 +K sin(2πx1)

 mod 1, T2(x) =

1 1

1 0


x1

x2

 mod 1.

• The ABC-map of Feingold [45] which is the composition of 3 shear maps:

T (x) = T3 ◦ T2 ◦ T1(x),

where:

T1(x) =


x1 + A sin(2πx1) + C cos(2πx3)

x2

x3

 ,

T2(x) =


x1

x2 +B sin(2πx1) + A cos(2πx3)

x3

 ,
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T3(x) =


x1

x2

x3 + C sin(2πx2) +B cos(2πx1)

 .

6.2 Evaluating the spectral projections and density

functions

Once a periodic approximation is obtained of a map, it may be used to compute

spectral projections and spectral density plots of observables. First the observable needs

to discretized as well.

6.2.1 Discretizating the observable

The operator (4.3) is an orthogonal projector which maps observables in L2(Tm,B(Tm),

µ) onto their best approximations in L2
n(Tm,B(Tm), µ) . In practice, it makes no sense

to explicitly evaluate this projection since typically one is only interested in computing

the spectra of well-behaved functions. A discrete representation of the observable may

also be obtain by simply sampling the function at the representative points (6.5). The

averaging operator (4.3) is replaced with:

(W̃ng)(x) = g̃n(x) :=

q(n)∑
j=1

g(xn,j)χpn,j(x).

Indeed, for observables that are continuous, it is not hard to show that ‖gn − g̃n‖ → 0

as n→∞.
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6.2.2 Computing the spectral projection

Let gn ∈ Cq(n) and Sn,Dα ∈ Cq(n)×q(n) respectively denote:

[gn]j =
〈
χpn,i , gn

〉
, [Sn,Dα ]ij :=

〈
χpn,i ,Sn,Dαχpn,j

〉
,

then from (3.7) it is straightforward to show that:

Sn,Dαgn = VnχDα(log Λn)V∗ngn, (6.16)

where:

χDα(θ) =

∫
S
ϕα(θ, ξ)χD(ξ)dξ.

The evaluation of (6.16) will involve finding the cycle decomposition (3.5), which in

turn requires traversing the cycles of the permutation matrix Un ∈ Rq(n)×q(n). This

requirement is equivalent to traversing the trajectories of the discrete map Tn : Pn 7→ Pn.

The following algorithm is obtained.

Algorithm 6.2.1. To compute the spectral projection, do the following:

1. Initialize a vector f ∈ Rq(n) of all zeros and set j = 1 and k = 1.

2. Given some j ∈ {1, . . . , q(n)}, if [f ]j = 1 move on to step 4 directly. Otherwise,

traverse the trajectories of the discrete map until it has completed a cycle, i.e.

pn,j(l) = T ln(pn,j(1)), l = 1, 2, . . . , n(k),

where:

j(1) = j and pn,j(1) = T n
(k)

n (pn,j(1)).

To demarcate visited partition elements, set [f ]j(l) = 1 for l = 1, 2, . . . , n(k).
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3. Denote by ω = exp
(

2π
n(k) i

)
. Apply the FFT and inverse-FFT algorithms to evaluate:

[Sn,Dαgn]j(l) =
1

n

n(k)∑
t=1

χDα

(
2π(t− 1)

n(k)

)
ω(l−1)(t−1)

n(k)∑
r=1

ω(t−1)(r−1)g(ψ(pn,j(r)))


for l = 1, 2, . . . , n(k). Increment k ← k + 1.

4. Move on to the next partition element pn,j ∈ Pn, i.e. j ← j + 1, and repeat step 2

until all partition elements have been visited.

Complexity of Algorithm 6.2.1 The most dominant part of the computation is

the application of the FFT and inverse-FFT algorithms on the cycles. Hence, the time-

complexity of the algorithm is O(
∑s

l=1 n
(l) log n(l)). In the worst-case scenario, it may

occur that the permutation (3.1) consist of one single large cycle (possible for ergodic

systems). In that case, the conservative estimate O(ñd log ñ) is obtained. Note that

the evaluation of the spectral projections may be further accelerated using sparse FFT

techniques. This is true especially for projections wherein the interval D ⊂ S is small,

leading to a highly rank-deficient Sn,Dα ∈ Cq(n)×q(n).

6.2.3 Step 3b: Computing the spectral density function

By modifying step 3 of the previous algorithm, one may proceed to compute an

approximation of the spectral density function (4.20):

ρα,n(θ; gn) :=

∫
S
ϕα(ξ, θ)ρn(ξ; gn)dξ,
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where:

ϕα(x, y) =


K
α

exp

(
−1

1−( d(x,y)α )
2

)
d(x,y)
α

< 1

0 otherwise

, ρn(θ; gn) =

q(n)∑
k=1

∥∥Sn,θn,kgn∥∥2
δ(θ−θn,k).

If (4.20) needs to evaluated at some collection of points {θr}Rr=1 ⊂ S, the algorithm would

look as follows:

Algorithm 6.2.2. To evaluate the spectral density function on {θr}Rr=1 ⊂ S, do the follow-

ing:

1. Initialize a vector f ∈ Rq(n) of all zeros and also initialize ρα,n(θr; gn) = 0 for r =

1, . . . , R. Furthermore, set j = 1 and k = 1.

2. Given some j ∈ {1, . . . , q(n)}, if [f ]j = 1 move on to step 4 directly. Otherwise,

traverse the trajectories of the discrete map until it has completed a cycle, i.e.

pn,j(l) = T ln(pn,j(1)), l = 1, 2, . . . , n(k),

where:

j(1) = j and pn,j(1) = T n
(k)

n (pn,j(1)).

To demarcate visited partition elements, set [f ]j(l) = 1 for l = 1, 2, . . . , n(k).
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3. Denote by ω = exp
(

2π
n(k) i

)
. Apply the FFT algorithms to update:

ρα,n(θr; gn)← ρα,n(θr; gn)+

K

nα

n(k)∑
t=1

exp


−1

1−

d

(
2π(t−1)

n(k) ,θr

)
α

2


∣∣∣∣∣∣
n(k)∑
l=1

ω(t−1)(l−1)g(ψ(pn,j(l)))

∣∣∣∣∣∣
2

(6.17)

for r = 1, 2, . . . , R. Increment k ← k + 1.

4. Move on to the next partition element pn,j ∈ Pn, i.e. j ← j + 1, and repeat step 2

until all partition elements have been visited.

Complexity of Algorithm 6.2.2 Since α > 0 is typically small, the most dominant

part of the computation wil again be the application of the FFT algorithm in step 3. As-

suming that R << n(k), the time-complexity of the algorithm will be O(
∑s

l=1 n
(l) log n(l)),

reducing to O(ñd log ñ) in the worst-case scenario of a cyclic permutation.

6.3 Extending the numerical method for flows

The numerical methods described in this section are easily extended for flows. A pe-

riodic approximation is obtained in almost the same manner. In the case of a brute force

construction, one of course needs to keep in mind the consequences of condition (5.18)

in theorem 5.2.2. Analytic constructions of periodic approximations can be obtained in

some cases using symplectic lattice maps [48]. Symplectic lattice maps are integer arith-

metic implementation of symplectic integrators that leave a lattice in the state-space

invariant. It can shown that these integer dynamics are related to a symplectomorphism
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of a nearby time-dependent Hamiltonian of the original system. If the trajectories of

this nearby Hamiltonian are bounded for a given domain, then a periodic approximation

is also obtained for that region. For a planar hamilonian system with bounded energy

curves this is always the case: a small time-dependent pertubation of the Hamiltonian will

not destroy these energy curves. For higher dimensional Hamiltonians, time-dependent

perturbations may introduce Arnold diffusion causing the trajectories not to return to

their starting points.
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Examples

In this chapter, the numerical method of the previous chapter is demonstrated on a

set of examples. At first, the method is tested on three canonical examples of Lebesgue

measure-preserving transformations: the translation map, Arnold’s cat map, and Anzai’s

skew-product transformation. These examples permit an easy closed form expression of

both the spectral projectors and density functions, making them a good test bed to

illustrate the workings of the numerical method. Next, the method is applied on the

Chirikov standard map which is a classical example of a perturbed twist map. After

this, the spectra is computed of two planar Hamiltonian systems: the simple pendulum

and the Duffing oscillator. This is followed by an analysis of the spectra of a quadruple

gyre which is contructed from a stream function with periodic forcing. The final example

considered is the volume-preserving Arnold-Beltrami-Childress flow.

7.1 Canonical examples on the 2-torus

In this section, the spectra is analyzed of the translation map (6.11), Arnold’s cat

map (6.13), and Anzai’s skew-product transformation (6.14). The examples cover the
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full range of possible “spectral scenario’s” that one may encounter in practice: the first

map has a fully discrete spectrum, the second one has a fully continuous spectrum1, and

the third map has a mixed spectrum.

7.1.1 Translation on the m-torus

Consider a translation on the torus (6.11):

T (x) =


x1 + ω1

...

xm + ωm

 mod 1.

This is the type of map one would typically obtain from a Poincare section of an integrable

Hamiltonian expressed in action-angle coordinates. Denote by k = (k1, . . . , km) ∈ Zm

and ω = (ω1, . . . , ωm) ∈ Rm. The map (6.11) is ergodic if and only if k · ω /∈ Z for all

k ∈ Zm and k 6= 0.

Singular and regular subspaces

The Koopman operator associated with (6.11) has a fully discrete spectrum. More-

over, the Fourier basis elements turn out to be eigenfunctions for the operator, i.e.

Ue2πi(k·x) = e2πi(k·ω)e2πi(k·x).

The singular and regular subspaces are respectively:

Hs = span{e2πi(k·x), k ∈ Zm}, Hr = ∅.
1Expect for the trivial eigenvalue at 1
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Spectral density function

The spectral density function for observables in the form:

g =
∑
k∈Zm

ake
2πi(k·x) ∈ Lm(Tm,B(Tm), µ),

is given by the expression:

ρ(θ; g) =
∑
k∈Zm

|ak|2δ(θ − 2π(k · ω) mod 2π). (7.1)

Noteworthy to mention is that the spectra of the operator for the map (6.11) can switch

from isolated to dense with arbitrarily small perturbations to ω ∈ Rm.

Spectral projectors

Given an interval D = [a, b) ⊂ S, the spectral projectors can be expressed as:

SDg =
∑

2π(k·ω) mod 2π∈D
ake

2πi(k·x).

Numerical results

In fig. 7.1, the spectral density function (3.11) is plotted for the case when d = 1,

ω1 = 1/3, and:

g(x) =
sin(4πx)

1 + cos2(2πx) + sin(7πx)
. (7.2)

As the partitions are refined, it is evident from fig. 7.1 that the energy becomes pro-

gressively more concentrated around the eigenvalues of the true spectra at ei
2π(k−1)

3 , with

k = 1, 2, 3.

In fig. 7.2, the case when d = 2 and (ω1, ω2) = (1
2
, 1

3
) is examined. The trajectories
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of this map are all 6-periodic, and eigenvalues are also located 6th roots of unity (i.e.

ei
2π(k−1)

6 , with k = 1, 2, . . . , 6). Shown are spectral projections (5.10) of the observable:

g(x) = sin(2πx1) cos(2πx2) + sin(πx2) +
1

sin2(πx1) + 1
− 1 (7.3)

around narrow intervals of these eigenvalues.

7.1.2 Arnold’s cat map

Consider the area-preserving map T : T2 7→ T2, defined in (6.13):

T (x) =

2 1

1 1


x1

x2

 mod 1.

Arnold’s cat map (6.13) is a well-known example of a Anosov diffeomorphism, in which

the dynamics are locally characterizable by expansive and contractive directions. The

map (6.13) has positive Kolmogorov entropy, is strongly mixing, and therefore also er-

godic.

Singular and regular subspaces

The Koopman operator associated with Arnold’s cat map is known to have a “Lebesgue

spectrum” (see e.g. [46]). A Lebesgue spectrum implies the existence of an orthonormal

basis for L2(T2,B(T2), µ) consisting of the constant function and {ϕs,t}s∈I,t∈Z, I ⊆ N,

such that:

U lϕs,t = ϕs,t+l, l ∈ Z.

It follows from such a basis that the eigenspace at λ = 1 is simple, i.e. consisting only

the constant function, with the remaining part of the spectrum absolutely continuous. In
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the case of the Cat map, the basis {ϕs,t}s∈I,t∈Z is just a specific re-ordering of the Fourier

elements {e2πi(k1x1+k2x2)}(k1,k2)∈Z2 . Indeed, by applying the Koopman operator (3.8) onto

a Fourier element, the following transformation is observed:

Ue2πi(k1x1+k2x2) = ei2π(k′1x1+k′2x2),
k′1 = 2k1 + k2

k′2 = k1 + k2

, (k1, k2) ∈ Z2. (7.4)

Partitioning Z2 into the orbits of (7.4), i.e. Z2 = ξ0 ∪ ξ1 ∪ ξ2 ∪ ξ3 . . ., notice that all

orbits, except for ξ0 = {(0, 0)}, consists of countable number of elements. The singular

and regular subspaces are respectively:

Hs = span{1}, Hr = span{ei2π(k1x1+k2x2) : (k1, k2) 6= 0}.

Spectral density function

The spectral density function (4.20) of a generic observable is found by solving the

trigonometric moment problem [34]:

dl := 〈U lg, g〉 =

∫
T2

(
U lg
)∗

(x)g(x)dµ =

∫
S
eilθρ(θ; g)dθ, l ∈ Z.

If the observable consists of a single Fourier element, note that: (i) (k1, k2) = (0, 0)

implies dl = 1, ∀l ∈ Z which leads to ρ(θ; 1) = δ(θ) (i.e. Dirac delta distribution), (ii)

(k1, k2) 6= (0, 0) implies dl = 0 ∀l 6= 0 and d0 = 1, leading to ρ(θ; ei2π(k1x1+k2x2)) = 1
2π

(i.e.

a uniform density). By virtue of these properties, the spectral density function (4.20) of

a generic observable in the form:

g = a0 +
∑
s∈N

∑
t∈Z

as,tϕs,t ∈ L2(T2,B(T2), µ), |a0|2 +
∑
s∈N

∑
t∈Z

|as,t|2 <∞, (7.5)
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can be expressed as:

ρ(θ; g) = |a0|2δ(θ) +
1

2π

∑
l∈Z

(∑
s∈N

∑
t∈Z

a∗s,t−las,t

)
eilθ. (7.6)

Spectral projectors

For an interval D = [c − δ, c + δ) ⊂ S, one can use the Fourier series expansions of

the indicator function:

χD =
∑
l∈Z

bl(D)eilθ, bl(D) := 1
2π

∫
S
e−ilθχD(θ)dθ =

1

2π


i
l
e−icl(e−iδl − eiδl) l 6= 0

2δ l = 0

.

(7.7)

to obtain an approximation of the spectral projector with the help of functional calculus.

Using the Lebesgue basis in (7.5), the following expression for the spectral projection can

be obtained:

SDg =
∑
l∈Z

bl(D)U lg = a0ν(D) +
∑
l∈Z

bl(D)

(∑
s∈N

∑
t∈Z

as,tϕs,t+l

)

where the singular measure ν(D) = 1 whenever 0 ∈ D. The frequency content of the

projection increases drastically as the width of the interval is shrinked. This is because

the Lebesgue basis functions ϕs,t become increasingly oscillatory for larger values of t,

and reducing the width of the interval places more weight on these higher frequency

components.
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Numerical results

For observables that consist of only a finite number of Fourier components, a closed-

form expression of the spectral density function can be obtained. For example:

g1(x) = e2πi(2x1+x2)

g2(x) = e2πi(2x1+x2) +
1

2
e(2πi(5x1+3x2))

g3(x) = e2πi(2x1+x2) +
1

2
e(2πi(5x1+3x2)) +

1

4
e2πi(13x1+8x2)

yields

ρ(θ; g1) =
1

2π

ρ(θ; g2) =
1

2π

(
5

4
+ cos θ

)
ρ(θ; g3) =

1

2π

(
21

16
+

10

8
cos θ +

1

2
cos 2θ

) (7.8)

In fig. 7.3, the spectral densities of these observables are approximated with (4.20)

using the proposed method. Clearly, the result indicate that better approximations are

obtained by increasing the discretization level. In fig. 7.4, the spectral projections for the

first observable are plotted. As expected, shrinkage of the interval leads to more noisy

figures.

7.1.3 Anzai’s skew-product transformation

One can use skew-products of dynamical systems to construct examples of maps that

have mixed spectra [47]. An example of such a transformation is the map (6.14):

T (x1, x2) = (x1 + γ, x1 + x2) mod 1, (7.9)
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for which γ ∈ [0, 1). The map (6.14) is the composition of a translation and a shear. The

transformation is ergodic whenever γ ∈ R is irrational.

Singular and regular subspaces

The mixed spectrum of the operator is recognized by examining the cyclic subspaces

generated by the Fourier basis elements. Essentially, Fourier elements that solely depend

on the coordinate x1 behave as if the dynamics of the map are that of a pure translation,

whereas the remaining Fourier elements do observe a shear and belong to a cyclic subspace

of infinite length. The singular and regular subspaces of the operator are respectively

given by:

Hs = span{σt := e2πi(tx1), t ∈ Z}

and

Hr = span{ϕs,t,w := e2πi((t+sw)x1+sx2), s, w ∈ Z, t ∈ N with s 6= 0, t < |s|}.

Spectral density function

Application of the Koopman operator yields:

U lσt = e2πiltγσt and U lϕs,t,w = e
2πil

(
t+s

(
w+

l−1
2

))
γ
ϕs,t,w+l.

Solving the trigonometric moment problem for observables expressed in the form:

g =
∑
t∈Z

atσt +
∑

s∈Z,s 6=0

∑
t∈N,t<|s|

∑
w∈Z

cs,t,wϕs,t,w ∈ L2(T2,B(T2), µ),
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yield the density function:

ρ(θ; g) =
∑
t∈Z

|at|2δ(θ − 2πγt mod 2π)+

1

2π

∑
l∈Z

 ∑
s∈Z,s 6=0

∑
t∈N,t<|s|

(∑
w∈Z

e
−2πil

(
t+s

(
w+

l−1
2

))
γ
c∗s,t,w−lcs,t,w

) eilθ. (7.10)

Spectral projectors

For the interval D = [c − δ, c + δ) ⊂ S, an expression for the spectral projection is

given by:

SDg =
∑

2πtγ mod 2π∈D
atσt+

∑
l∈Z

bl(D)

 ∑
s∈Z,s 6=0

∑
t∈N,t<|s|

∑
w∈Z

e
2πil

(
t+s

(
w+

l−1
2

))
γ
cs,t,wϕs,t,w+l

 ,

where the coefficients bl(D) are defined as in (7.7).

Numerical results

Now set γ = 1/3 and consider the observable:

g(x1, x2) =
1

20
e2πix1 +

1

20
e4πix1 +

1

5
e6πix1 + e2πix2 +

1

2
e(2πi(x1+x2)) (7.11)

The spectral decomposition is given by:

ρ(θ; g) =
1

400

(
δ(θ) + δ(θ − 2π

3
)

)
+

1

25
δ(θ − 4π

3
) +

1

2π

(
5

4
+ cos θ

)

In section 7.5, the spectral density function is plotted for different discretization levels.

Convergence of the spectra is observed by refinement of the grid. In section 7.5, spectral

projections of the observable are shown for small intervals centered around the eigenvalues
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ei
2π(k−1)

3 , with k = 1, 2, 3. Note that the exact eigenfunctions are not recovered due to

the presence of continuous spectra which is interleaved in the projection. In section 7.5,

projections are shown in a region where only continuous spectrum is present.

7.2 The Chirikov standard map

In this section, the Koopman spectra is analyzed for the family of area-preserving

maps introduced by Chirikov (6.15):

T (x) =

x1 + x2 +K sin(2πx1)

x2 +K sin(2πx1)

 mod 1

Unlike the examples of the previous section, finding an explicit expression of the spectra

is highly non-trivial (except for the case when K = 0). In figs. 7.6 to 7.10 the spectral

properties of the standard map are examined for K-values ranging between 0 and 0.35.

In fig. 7.6, approximations of the spectral density functions (4.20) are plotted for the

observable:

g(x) = ei4πx1 + ei3πx1 + 0.01ei2πx2 (7.12)

It can be seen that sharp peaks form at locations other than eigen-frequency θ = 0. These

peaks illustrate that the purely continuous spectra disintegrate, with the rise of discrete

spectra for the operator. Eigenfunctions of (3.8) may be recovered from the spectral

projections by means of centering the projection on narrow intervals around the respective

eigenfrequency. In figs. 7.7 to 7.10, this is done for respectively θ = 0, π, 2π/3, π/2. The

eigenfunction at θ = 0 yields an invariant partition of the state-space, the eigenfunctions

of the other frequencies θ = π, 2π/3, π/2 provide periodic partitions of period 2,3 and 4,

respectively (see also [9, 10]).
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7.3 Planar Hamiltonian systems

Hamiltonian systems are defined on unbounded domains. But in many situations,

the trajectories belonging to a sub-level set of energy surfaces are bounded. Hence,

for that subdomain of the state-space, periodic approximations may be constructed to

compute spectra. For a separable, one degree-of-freedom Hamiltonian systems, periodic

approximations can be obtained readily from a symplectic lattice map (see discussion in

section 6.3). What follows next is an analysis of the spectra of the simple pendulum and

the duffing oscillator.

7.3.1 Simple pendulum

Consider the simple pendulum:

ẋ1

ẋ2

 =

 x2

− sinx1

 , (7.13)

restricted to the domain:

X =
{
x1 ∈ [0, 2π), x2 ∈ R : 1

2
x2

2 − cos(x1) ≤ 1
2
π2 + 1

}
.

Apart from the single eigenvalue at λ = 0, it was shown in [49] that the spectra of (7.13)

is fully continuous. In fig. 7.11, the spectra is plotted of the observable:

g(x1, x2) =
1

2
x2

2 − (cosx1) . (7.14)

In fig. 7.12, spectral projections are shown for various intervals.
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7.3.2 Duffing oscillator

Consider the duffing oscillator:

ẋ1

ẋ2

 =

 x2

−bx1 − ax3
1

 , (7.15)

restricted to the domain:

X =
{
x1 ∈ R, x2 ∈ R : 1

2
x2

2 + 1
2
bx2

1 + 1
4
ax4

1 ≤ 1
2
π2 + 1

2
bπ2 + 1

4
aπ4
}
.

Set b = −1, a = 1 and consider the observable:

g(x1, x2) =
1

2
x2

2 −
1

2
x2

1 +
1

4
x4

1 (7.16)

In fig. 7.13 the spectra is plotted and in fig. 7.14 projections are shown.

Let us fix a = 1 and vary the coefficient b from negative to positive values. In figs. 7.15

and 7.16, the spectral density is plotted of the observable:

g(x1, x2) =
1

2
x2

2 + i

(
1

2
x2

1

)
. (7.17)

When b = 0, the system undergoes a pitch-fork bifurcation. In fig. 7.15, the spectral

density is plotted for small perturbations of b, i.e. around the bifurcation point. From a

topological point of view, the duffing oscillator clearly undergoes a sudden transition with

the birth of two new fixed points. But from a spectral sense, this transition is however

smooth and unnoticable. The smooth transitation can be clarifed by the close proximity

of the new fixed points during the bifurcation. Noticable changes in the spectra occur

only when b is modified signifanctly, as evident in fig. 7.16. Since the bifurcation does not
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induce immediate global topological changes, from a spectral point of view, the transition

will remain smooth as the Koopman framework inherently incorporates finite resolution

in measurement and observation.

7.4 The quadruple gyre

Next, consider a variation to the double gyre dynamics introduced in [50]. The

quadruple gyre dynamics are described by the differential equations:


ẋ1

ẋ2

ẋ3

 =


πA sin(πf1(x1, x3)) cos(πf2(x2, x3))df1(x1,x3)

dx1

−πA cos(πf1(x1, x3)) sin(πf2(x2, x3))df2(x2,x3)
dx2

1

 (7.18)

on the domain X = [0, 1]× [0, 1]× [0, 1), with:

f1(x1, x3) = 4ε sin(2πx3)x2
1 + (2− 4ε sin(2πx3))x1,

and

f2(x2, x3) = 4ε sin(2πx3)x2
2 + (2− 4ε sin(2πx3))x2.

The system (7.18) arises from a time-periodic stream function. In fact, the variable x3

is periodic and equal to the time (modulo the period).

In fig. 7.18, the spectral density function is plotted for the observable:

g(x1, x2, x3) = i(sin(4πx1) sin(4πx2)) + 4ψ(x1, x2), (7.19)
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where:

ψ(x1, x2) =


exp

 −1

1−1
2

√
(x1−1

2
)2+(x2−1

2
)2

 (x1 − 1
2
)2 + (x2 − 1

2
)2 ≤ 1

4

0 (x1 − 1
2
)2 + (x2 − 1

2
)2 ≤ 1

4

.

The computations are performed for A = 1/(2π) and ε = 0.05. A spatial partition of

700 × 700 × 100 was used and the time step was set to τ = 0.01. As evident from

fig. 7.18, it appears that the quadruple gyre has a mixed spectrum for these parameters.

The location of the discrete spectra correspond to resonant frequencies of the KAM tori

islands shown in fig. 7.17. This is also noticable in figs. 7.19 to 7.21, where spectral

projections are shown for certain intervals of interest.

7.5 The Arnold-Beltrami-Childress flow

Finally, consider the Arnold-Beltrami-Childress (ABC) flow on the unit 3-torus, i.e.

X = [0, 1)3. The motion is described by the differential equations:


ẋ1

ẋ2

ẋ3

 =


A sinx3 + C cosx2

B sinx1 + A cosx3

C sinx2 +B cosx1

 . (7.20)

For small τ -values, the flow Sτ of (7.20) can be approximated by:

S̃τ (x) = S̃
τ/3
1 ◦ S̃τ/32 ◦ S̃τ/33 (x) (7.21)
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where:

S̃
τ/3
1 (x) =


x1 + τ

3
(A sinx3 + C cosx2)

x2

x3

 , S̃
τ/3
1 (x) =


x1

x2 + τ
3
(B sinx1 + A cosx3)

x3

 ,

S̃
τ/3
1 (x) =


x1

x2

x3 + τ
3
(C sinx2 +B cosx1)

 .
This approximate volume-preserving τ -map is called the ABC map [45] and is the com-

position of three shear maps. A periodic approximation of (7.21) is obtained readily by

periodically approximating each of the shear maps separately. In fig. 7.22, the spectral

density function is plotted for the observable:

g(x1, x2, x3) = exp(4πix2) + 2 exp(6πix1) + exp(2πix3) (7.22)

The computations are performed for A =
√

3/(2π), B =
√

2/(2π), C = 1/(2π). A spatial

partition of 400×400×400 was used and the time step was set to τ = 0.025. In figs. 7.23

and 7.24, spectral projection are shown onto various intervals.
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Figure 7.1: Approximations of the spectral density function (3.11) for the translation
map (6.11) with m = 1 and ω1 = 1/3. Spectra is approximated for the observable
(7.2) with α = 2π/500. The black curve is approximation and the red curve is the
true density.

Figure 7.2: Results obtained for the translation map (6.11) with m = 2 and
(ω1, ω2) = (1

2 ,
1
3). Computations were performed for the observable (7.3) at a spa-

tial discretization of ñ = 1000. Shown are spectral projections of the observable at
narrow interval around the eigenvalues θk = 2π(k−1)

6 .
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Figure 7.3: Approximations of the spectral density function of the cat map (6.13) for
the observables in (7.8). The spectral resolution is set to α = 2π/500. The black
curves denote the approximations and the red curve is the true density. The first row
shows approximations of ρ(θ; g1), the second row shows ρ(θ; g2) and the third row
shows ρ(θ; g3).
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Figure 7.4: The spectral projections of cat map (6.13) for the first observable in (7.8).
Projections were computed at the discretization level ñ = 2000.
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Figure 7.5: Results obtained for Anzai’s skew product transformation (6.14) with
γ = 1/3 and observable (7.11). Spectral projections were computed at a discretization
level ñ = 2000. The top row shows approximations of the spectral density function at
different discretization levels. The spectral resolution is set to α = 2π/500. The black
curves denote the approximations and the red curves are the true density. The middle
row shows spectral projections computed at narrow intervals around the eigenfrequen-
cies θ = 0, 2π/3. The bottom row shows spectral projections computed at intervals
that contain only continuous spectra.
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Figure 7.6: Evolution of the spectral density function of the Chirikov map (6.15) for
the observable (7.12). Results for ñ = 2000 and α = 2π/500.
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Figure 7.7: Spectral projections computed for the Chirikov map (6.15) at the in-
terval D = [−0.02, 0.02] with ñ = 2000. The depicted projection approximates the
eigenfuncions at θ = 0, which generates an invariant partition of the state-space.
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Figure 7.8: Spectral projections computed for the Chirikov map (6.15) at the interval
D = [π − 0.02, π + 0.02] with ñ = 2000. The depicted projection approximates the
eigenfuncions at θ = π, which generates an period-2 partition of the state-space.
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Figure 7.9: Spectral projections computed for the Chirikov map (6.15) at the interval
D = [2π/3 − 0.02, 2π/3 + 0.02] with ñ = 2000. The depicted projection approxi-
mates the eigenfuncions at θ = 2π/3, which generates an period-3 partition of the
state-space.
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Figure 7.10: Spectral projections computed for the Chirikov map (6.15) at the interval
D = [π/2−0.02, π/2+0.02] with ñ = 2000. The depicted projection approximates the
eigenfuncions at θ = 2π/3, which generates an period-3 partition of the state-space.
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s

Figure 7.11: The spectral density function (α = 0.1) for the observable (7.14).

Figure 7.12: Spectral projections for the observable (7.14) on the invervals
D = [−0.3, 0.3) (top-left), D = [1.5, 2.0) (top-right), D = [4.0, 4.5) (bottom-left),
and D = [7.5, 8.0) (bottom-right).
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Figure 7.13: The spectral density function (α = 0.1) for the observable (7.16).

Figure 7.14: Spectral projections for the observable (7.16) on the invervals
D = [−0.3, 0.3) (top-left), D = [2, 2.5) (top-right), D = [4.5, 5) (bottom-left), and
D = [7.5, 8.0) (bottom-right).
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Figure 7.15: The spectral density function (α = 0.1) for the observable (7.17).

Figure 7.16: The spectral density function (α = 0.1) for the observable (7.17).
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Figure 7.17: Cross-section of trajectories at x3 = 0 for the quadruple gyre with
A = 1/(2π) and ε = 0.05. Clearly noticable in the plot are the KAM tori islands aong
with the chaotic region.

Figure 7.18: The spectral density function (α = 0.01) for the observable (7.19).
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Figure 7.19: Spectral projection of the observable (7.19) onto the interval
D = [−0.4, 0.4). Top-left: x3 = 0, top-right x3 = 0.25, bottom-left: x3 = 0.5,
bottom-right: x3 = 0.75.

Figure 7.20: Spectral projection of the observable (7.19) onto the interval
D = [6.5, 10.0). Top-left: x3 = 0, top-right x3 = 0.25, bottom-left: x3 = 0.5,
bottom-right: x3 = 0.75.
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Figure 7.21: Spectral projection of the observable (7.19) onto the interval
D = [11.1, 11.4). Top-left: x3 = 0, top-right x3 = 0.25, bottom-left: x3 = 0.5,
bottom-right: x3 = 0.75.

Figure 7.22: The spectral density function (α = 0.01) for the observable (7.22).
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Figure 7.23: Spectral projection of the observable (7.22) onto the interval D = [−0.3, 0.3).

Figure 7.24: Spectral projection of the observable (7.22) onto the interval D = [7.36, 7.56).
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Conclusions

The spectral properties of the Koopman operator are closely related to the geometric

properties of a dynamical system in the state-space. In this dissertation, these rela-

tionships were specifically explored for a nonsmooth dynamical system characterized by

discontinuous orbits. By considering an example of a kicked pendulum, it was illus-

trated that many of the geometric concepts associated with Koopman eigenfunctions

(e.g. isostables, isochrons, invariant partitions, conjugacies, etc.) apply to nonsmooth

systems as well. While the fixed space of the operator gave a description of the ergodic

partition, the eigenfunctions associated with eigenvalues in the left-half complex plane

established a (semi-)conjugacy to a linear system.

Given the central role of the spectral decomposition in Koopman-based analysis of

dynamical systems, the focus of this dissertation was to advance the development of

numerical methods to compute them. The emphasis was placed on computing spectral

decompositions directly from a discretization of the dynamics. Herein, it was recognized

that any computer simulation of a dynamical system would always involve some type of

a reduction to a finite-state model. Given this observation, it was explored how these

models can be used to approximate spectral quantities.
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As a result, a new procedure was introduced to discretize the unitary Koopman

operator of an invertible, measure-preserving transformation on a compact metric space.

The method relied on the construction of a periodic approximation of the dynamics,

wherein the measure-preserving system was approximated by a one-to-one map on a

partitioning of the state-space. The action of the Koopman operator was thereby reduced

to a permutation, yielding a discretization of the operator that preserved its unitary

structure.

The unitary discretizations were shown to approximate the spectral decomposition

of the Koopman operator in a weak sense. These weak convergence results showed that

the individual eigenvalues and spectral projectors of a finite dimensional approximation

may have very little to do with the original infinite-dimensional operator. However, when

smooth weighted sums of these projectors were applied on some fixed observable, control

on the approximation error was achieved in the average sense under the L2-norm. This

convergence results did not require any specific assumptions on the spectral type of the

operator and treated systems with continuous or discrete spectra all under same the lens,

i.e. measure-preserving transformations with continuous spectra can be approximated

arbitrarily well by periodic systems with a fully discrete spectrum.

The concept of periodic approximations was generalized to measure-preserving flows.

In order for weak convergence of the spectra to still occur, it was shown that a condition

must be satisfied requiring the spatial refinements to happen at a faster rate than the

temporal refinements in the discretization process. It was observed that this condition

is somewhat opposite to the CLF condition required for finite difference schemes. This

was however expected, given that the periodic approximation more closely resembles a

semi-Lagrangian scheme.

The entire discretization procedure was constructive and allowed for the development

of numerical methods to compute spectra. It was shown that a periodic approximation
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can generally be obtained from solving a bipartite matching problem, although in special

cases, a direct analytic construction was also possible. The general algorithm did not

require the evaluation of set propagations (i.e. as in the Ulam approximation) and was

shown to have roughly O(n3m/2) complexity, where m is the dimension of the state-

space and n the size of the partition in each dimension. Once a periodic approximation

was obtained, the computation of the spectral projections and density functions become

straightforward. The permutation structure of the discretization gave way for a fast

evaluation (i.e. with O(mnm log n) complexity) of these spectral quantities using the

FFT algorithm.

In reflection, the proposed numerical method turns out to be very closely related to

taking harmonic averages of observable traces. Instead of approximating the harmonic

averages of a generic (hence typically aperiodic) system, the averages were computed of a

“near-by” periodic system. For periodic systems, these averages are effectively reducible

to the Discrete Fourier Transform. In the end, only smooth weighted sums of these

averages turn out to have any “spectral meaning”. It is generally hard to assess how a

finite-state model approximation of a dynamical system, in combination with an infinite

series truncation, may affect the computation of time averages. This dissertation has

shown that, in the special case of measure-preserving systems, these concerns are fully

addressed if one uses a periodic approximation.

There are still several open questions which remain. The most important question is

how the current method can be generalized to include dissipative dynamical systems. One

approach would be to extend the notion of periodic approximation with an “eventually

periodic” approximation: whereas the attractor is discretized by a union of cycles, the

basin is approximated by a union of trees. It is not immediately clear how to obtain such

an approximation correctly in practice, neither is it clear how the Jordan blocks of the

transient dynamics are spectrally related to the infinite-dimensional operator.
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