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ABSTRACT OF THE THESIS 

 

 

Model Prediction for Lead-acid Batteries  

with Super-capacitor Anodes 

 

by 

 

Wendi Li 

 

Master of Science in Chemical Engineering  

University of California, Los Angeles, 2016  

Professor Yunfeng Lu, Chair 

 

 

The existing prediction models used in Battery Management Systems for lead-acid 

batteries have difficulty in applying to lead-acid batteries with changed structure or materials. 

Four different lifetime prediction models of lead-acid batteries to be mainly used as energy 

storage for PV systems, EV, and hybrid EV are examined. Equivalent full cycles to failure, 

“Rain flow” cycles were counting, the Schiffer weighted Ah-throughput model and recurrent 

Neural Network-based Model are discussed for the accessibility and availability of the 

lead-acid batteries with the supercapacitor anode (hybrid batteries). By examining the 
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mechanism, “Rain flow” cycles counting, the Schiffer weighted Ah-throughput model and 

recurrent Neural Network-based Model were three models could be used in hybrid batteries. 

By comparing the accuracy of these models in photovoltaic systems, the Schiffer weighted 

Ah-throughput model and recurrent Neural Network-based Model were selected to be the 

promising solutions. A modification of the Schiffer weighted Ah-throughput model is 

discussed based on the chemical mechanism. All possible effects are taking into account in 

the modified model based on the detailed analysis. Further estimations can be simply 

conducted through the factory data sheet of hybrid batteries.  
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Chapter 1  
Introduction 

1.1 Model prediction for batteries in Battery management 

systems 

Batteries are one of the largest energy storage devices that fulfill the daily demand of 

energy consumptions from human beings. To make batteries work more efficient and safe, 

the concept of Battery Management Systems (BMS) is introduced by scientists [1-5]. The 

standard definition of BMS is:  

“The primary task of a Battery Management System (BMS) is to ensure that optimum 

use is made of the energy inside the battery powering the portable product and that the risk of 

damage inflicted upon the cell is minimized. This is achieved by monitoring and controlling 

the battery’s charging and discharging process.” [3] 

Dating back to 1990s, BMS varied in performance and applications. Although BMS are 

much more complex in designing, we can directly address BMS into three categories: 

Distributed, Centralized and Modular. Distributed BMS need a board to install to each cell 

being the only communicator between cell and controller. Centralized BMS connect to whole 

cells by multiple wires while modular BMS contains a few controllers connecting to a 

particular number of cells [3].  

l In an individual application, the function of BMS can be divided into eight parts: 

l Data Management: Data is analyzed by BMS to improve performance by controllers. 

l Communication: Communication between BMS and each cell connected. 
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l Charge Management: Control the charge-discharge process in applications. 

l Protection: Shut down part of systems when dangers are detected. 

l Cell Balance Management: Control the temperature and pressure of different cells. 

l SOH: State of Health: The lifetime of cells. 

l SOC: State of Charge: The charge statues of cells. 

l SOB: State of Backup: The backup statues of the system. 

Although BMS always works a whole component, take electric vehicles as example (Fig. 

1) we can improve the performance of systems by increase the efficiency in terms of these 

functions. 

 

Fig. 1 A common circuit of electric vehicles 

The SOH and SOC are two key factors related to the lifetime of batteries. Because it is 

costly and difficult to measure the batteries in operating, most of BMS use simulation 
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approach in SOH and SOC part. Therefore, the model prediction is an important task in this 

area. 

To develop a useful BMS, especially more accuracy SOH and SOC prediction, it is 

essential to clarify the types, the operating conditions and the potential dangers of batteries. 

Hence, lets move on to introduce lead-acid batteries. 

1.2 Mechanisms of Lead-acid batteries and its applications 

The history of lead-acid batteries dates back to 1860, the Frenchman Gaston Planté 

(1834–1889) invented the first rechargeable battery that using lead material. The principle of 

this kind of batteries is one of the well-known lead-acid chemistry: Half-cell reactions are 

described as following [5,6]: 

For the positive plate:  

PbO2 + 3H
+ + HSO4

− + 2e− discharge⎯ →⎯⎯⎯ PbSO4 + 2H2O   
 
For the negative plate:  
 

Pb + HSO4
− discharge⎯ →⎯⎯⎯ PbSO4 + H

+ + 2e−  
 
The total cell reaction: 
 

PbO2 + Pb + 2H2SO4
discharge⎯ →⎯⎯⎯ PbSO4 + 2H2O  

And the reaction reverse when charging process. 

In the discharge process, both sides of plates become PbSO4 and the electrolyte (H2SO4) 

converts to the water. This process passes two electrons from negative plate to the positive 

plate through the external circuit. 
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In the charge process, the reaction reverse and the negative plate consists of Pb while 

positive plate consists of PbO2. The electrolyte solution suffers dilution by the water. [7] 

In total, a regular single lead-acid battery can provide 2.1V-2.3V. It is easy to use a clear 

sketch to show a full battery:  

Fig. 2: Sketch of Charging and discharging process of lead-acid batteries.  

Lead-acid batteries have become one of the world largest consumptions in recent years 

due to the rapid development in vehicle and photovoltaic systems. Comparing to other 

batteries, lead-acid batteries have the following features: 

The advantages of lead-acid batteries  The disadvantages of lead-acid batteries 

Low cost. Very heavy and bulky. 

Reliable. Over 140 years of development. Danger of overheating during charging 

Robust. Tolerant to abuse; Tolerant to 

overcharging. 

Typical columbic charge efficiency only 70% 

(can be improved by special designs) 

Indefinite shelf life if stored without 

electrolyte 

Must be stored in a charged state once the 

electrolyte has been introduced  
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Low internal impedance. Typical cycle life 300 to 500 cycles 

Can deliver very high currents. Not suitable for fast charging 

Table 1. Features of lead-acid batteries 

As sketch shown in Fig.2, the structure of batteries can be demonstrated using sheet lead 

plates for electrodes and dilute sulfuric acid as electrolyte. Although the chemical process 

and structure of lead-acid batteries are simple, modeling a full-cell is still hard due to the 

ageing process happened in every part of batteries. In the modeling, we should select 

essential features from the certain application of batteries. [10,11] 

 Lead-acid batteries have tremendous usage in our daily life ranging from load leveling 

by electrical companies to small batteries used in hand tools. Common applications are: 

[a] Automotive and traction applications 

[b] Standby/Back-up/Emergency power for electrical installations 

[c] Submarines 

[d] UPS (Uninterruptible Power Supplies) 

[e] Lighting 

[f] High current drain applications 

[g] Sealed battery types available for use in portable equipment. 

[h] Grid scale energy storage 

A straightforward classification is “Deep” for that used for electric vehicles and “Float” 

for that used for emergency lighting applications. And a number of simulations are based on 

this rough classification. [11-14] 
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1.3 Motivation of the research – Lifetime issues of lead-acid 

batteries 

With the usage of lead-acid batteries, it is important to know the potential problems. One 

key factor causes explosion or failure of batteries is ageing. The most direct way to evaluate 

batteries and avoid dangers is measurement by experiments that is obviously time-consuming 

and costly. However, we couldn’t measure batteries all the time when they under operating 

conditions. Therefore, precise and low cost evaluation methods are needed.  

Thanks to the modern computing technologies, a promising way to avoid these potential 

dangers is modeling and simulation. With certain initial data or only a little measurement, 

one can predict the health of batteries by modeling. Note that the lifetime of batteries is a 

complicated result of working conditions that requires people to consider as much factors as 

possible to obtain the best prediction results. Hence we need to select the specific features 

happened within the battery carefully. [15,16] 

Along with the large applications of lead-acid batteries, series research developed 

comprehensive models for each application. [17-20] And some scientists reported analytical 

models for manufacturer’s data[21-24] while others considered better designed circuits in 

BMS. A number of scientists considered specific chemical mechanism in their model. [26-33] 

According to Ref.[25], the existing battery models have drawbacks such as requiring 

intensive computation due to high complexity or not applicable for electrical circuit design 

and simulation. According to proposed models, among different applications, potential 

problems encountered in lead-acid batteries include: 

Gassing: Gassing of the battery leads to safety problems and to water loss from the 
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electrolyte. The water loss increases the maintenance requirements of the battery since the 

water must periodically be checked and replaced. 

Electrode damage: The lead at the negative electrode is soft and easily damaged, 

particularly in applications in which the battery may experience continuous or vigorous 

movement. 

Stratification: Sulfuric acid is a heavy, viscous liquid. As the battery discharges, the 

concentration of the sulfuric acid in the elecotrolyte is reduced, while during charging the 

sulfiric acid concentratin increases. This cyclicing of sulfuric acid concentration may lead to 

stratification of the electrolyte, where the heavier sulfuric acid remains at the bottom of the 

battery, while the less concentrated solution, water, remains near the top. The close proximity 

of the electrode plates within the battery means that physical shaking does not mix the 

sulfuric acid and water. However, controlled gassing of the electrolyte encourages water and 

sulfuric acid to mix, but must be carefully controlled to avoid problems of safety and water 

loss. Periodic but infrequent gassing of the battery to prevent or reverse electrolyte 

stratification is required in most lead acid batteries in a process referred to as "boost" 

charging. 

Sulfation: At low states of charge, large lead sulfate crystals may grow on the lead 

electrode as opposed to the finely grained material which is normally produced on the 

electrodes. Lead sulphate is an insulating material. 

Loss of active materials: The loss of active material from the electrodes can occur via several 

processes. One process that can cause a permanent loss of capacity is the flaking off of the 

active material due to volumetric changes between lead and lead sulphate. In addition, 
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Improper charging conditions and gassing can cause shedding of active material from the 

electrodes, leading to a permanent loss in capacity. 

Corrosion: . Corrosion means a conversion of the lead grid of the positive electrode into 

different lead oxides that form a layer with a complex structure on the grid.  

Spillage of the sulfuric acid: If sulfuric acid leaks from the battery housing it poses a 

serious safety risk. Gelling or immobilizing the liquid sulfuric acid reduces the possibility of 

sulfuric acid spills. 

Freezing:  If the battery is at a low discharge level following the conversion of the 

whole electrolyte to water, then the freezing point of the electrolyte also drops. 

Depending on which one or more of the above problems is of most concern for a 

particular application, appropriate assumptions should be made when using different models.  

Most of these models are based on the simple traditional lead-acid batteries. Hence they 

are not suitable for the material or component change in the lead-acid batteries due to the 

internal and external features changes. Only Seldom focused on the state-of-art lead-acid 

batteries with improved structures or materials. [35,36]  

Hence, in this thesis, four promising models are described and modified according to the 

negative material change of lead-acid batteries. Two models are traditional models for the 

rough estimation and two others are more complicated by modeling in chemical and 

non-chemical way respectively. 
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Chapter 2  
Methods 

2.1 Target system 

As introduced in the above chapter, selecting specific target system is the first step of 

lifetime prediction. Conventional lead-acid batteries are studied well since the rapid 

development of vehicle industry. However, with increasing demand of safety and energy 

supply performance, new types of lead-acid batteries are developed within these years. 

Thanks to the state-of-art material engineering technology, scientists found that conventional 

anode or cathode material can be improved or replaced by other materials. 

One of the promising ways is to replace or add negative electrode by a supercapacitor. 

[33-35] And other components remain the same. It is normally called hybrid batteries due to 

the combination of lead-acid batteries and supercapactiors. A few applications have been 

published such as Ultrabattery [34] shows: 

 

Fig.3 Scheme of the Ultrabattery [35] 
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The ultra-battery is a hybrid energy-storage device, which combines an asymmetric 

supercapacitor, and a lead-acid battery in one unit cell, taking the best from both technologies 

without the need for extra electronic controls. The capacitor will enhance the power and 

lifespan of the lead-acid battery as it acts as a buffer in discharging and charging. [35] Some 

research analyzed this hybrid battery in different ways [37-38]. Most the hybrid batteries 

been subjected to a variety of tests. Some of results show that the discharge and charge power 

of the ultra-battery is about 50% higher and its cycle-life is at least three times longer than 

that of the conventional lead-acid counterpart. [36] Obviously, the performance of hybrid 

batteries is considered to be much better than single lead-acid batteries. Therefore, models 

that are suitable and accurate in traditional lead-acid battery may not fit hybrid batteries well. 

Although there are some proposed models for hybrid lead-acid systems. Most of them 

focus on the certain applications and operating modifications. It is essential to simplified this 

approach and find a general lifetime prediction model for this hybrid batteries. Therefore, a 

simple model are used in this thesis as figure 4 shows: 

 
Fig. 4: New type of lead-acid batteries. 

Comparing to conventional lead-acid batteries, we assume that this type of lead-acid 

batteries have the following features:  

Supercapacitor� PbO2�
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Flexible Voltage: Anode is a supercapacitor with voltage from -0.4V to 0.6V (vs SHE) 

while conventional one is about -0.36V.  

High Capacity: New type of batteries has the capacity of 100 mAh/g while conventional 

one is about the half (~70 mAh/g). 

 Anti-Corrosion: Replace lead plate with anti-corrosion material can reduce the aging 

danger of batteries hence increase the lifetime. 

 Stable Material: The negative electrode is replaced by stable materials resulting in less 

sulfation process occurs. Hence the degradation process reduced in electrode. 

 Half-cell reaction: Only PbO2 reaction happened: 

PbO2 + 3H
+ + HSO4

− + 2e− discharge⎯ →⎯⎯⎯ PbSO4 + 2H2O  
  None reaction happens in negative electrode with supercapacity function: 

Supercapaciter discharge⎯ →⎯⎯⎯ 2e−  

 
Full cell reaction reduces to: 
 

Supercapaciter + PbO2 + H2SO4
discharge⎯ →⎯⎯⎯ PbSO4 + 2H2O

 

 As mentioned at the end of last chapter, many models can be applied to traditional 

lead-acid batteries. However, few of them aim at a system with replaced electrode (for 

example: anode). This gives opportunities to us discover if we can predict the lifetime using 

conventional model. Even though only one component of batteries changed, features we used 

in the prediction may change a lot. Traditional models that fit lead-acid batteries well may 

not work anymore on this type of batteries. 

 In this thesis, we tried to model the new type of lead-acid batteries with modified 
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conventional models, taking into account the changes on the anode (voltage, capacity, 

corrosion, structure etc.) Additionally, we gave suggestions to the future study on this type of 

batteries according to the preliminary prediction results. 

We will discuss these differences and challenges in the 2.3 sections. 

2.2 Methodology 

The ageing mechanisms of lead-acid batteries have been published in some previous 

studies. Models vary with different assumptions and principles, specifically, vary with the 

definition of lifetime (we will discuss it in the next sections). 

Most commonly, batteries lose their “life” because of the loss of capacity that caused by 

the ageing processes. The main aging processes can be described as five parts [46-48]:  

1. Corrosion: Corrosion means a conversion of the lead grid of the positive electrode into 

different lead oxides that form a layer with a complex structure on the grid.  

 2. Acid stratification: Acid stratification builds up during charging and discharging and 

results in a gradient of the acid concentration. Acid stratification itself is not an ageing 

effect, but it accelerates ageing.  

 3. Gassing: Gassing is by far the most important side-reaction in lead- acid batteries. It 

occurs when the cell voltage is so high that hydrogen evolves at the negative electrode 

and oxygen at the positive electrode.  

 4. Sulfation: Lead sulfate (PbSO4) is created during discharging at both the positive and 

the negative electrode. During charging, the crystals are converted back to the respective 

active material. Crystals that cannot be removed during standard charging cannot 
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contribute any longer to the capacity of the battery.  

 5. Degradation: Degradation is a general term for processes that result in a capacity loss 

due to changes in the active mass structure and composition.  

Although all five effects happen since battery started to work, external parameters have 

great effects on these processes as following table shows: 

 

Table 2: Relations between external and internal processes. 

Hence, we should consider carefully when we taking all effects into account. Note that in 

some models one or more effects are ignored due to the modeling mechanism. 

 In the next section, we will discuss different modeling methods and its principles. 

Certain modification will be made according to our target systems. 

2.3 Models for lifetime prediction 

In this work, four different methods to estimate the lifetime of the batteries have been 

considered. They are explained in the following sections: 

 

Gassing� Corrosion� Sulfation� Acid 
Stratification�

Degradation�

Temperature� X� X� X�

Charge 
Method�

X� X� X� X� X�

DoD� X� X�
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2.3.1 Equivalent full cycles to failure 

This method is introduced as a good simulation and optimization tools in batteries (not 

only lead-acid batteries) [37]. Instead of conventional SOH lifetime, a new definition of the 

end of the battery lifetime is described. It uses specific number of cycles [38] replacing IEC 

standard one [39]. 

 The lifetime consists of adding the charge cycling: 

 
Z(t + Δt) = Z(t)+

| Idischarge(t) | iΔt
C  

Where the Idischarge(t) is the absolute value of the discharge current,C is the nominal 

capacity of the single battery. The lifetime is the time when Z(t) reached ZIEC. 

This is the most straightforward way to estimate lifetime that only using discharge 

current data.  

2.3.2  “Rain flow” cycles counting 

This model is more complex than previous one. This algorism is introduced by 

Downing[40]. It also called “rain flow” because of the method of counting cycles. It was 

further developed in the later research [41].  

This model uses the Depth of Discharge (DOD) as main factor to count charge/discharge 

cycles where Zi corresponding to each range of the DOD for a year. One can set up intervals 

of DOD and obtain the number of cycles to failure (CFi) by measurement. Then lifetime can 

be calculated as following: 
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Lifetime = 1
Zi
CFii=1

m

∑  

 
Take m=10 as example, we can got sample cycles to failure as following: 

 

 
Fig. 5. The cycles to failure vs DOD. [41] 

 
This model is more precise but still doesn’t take other factors into account except DOD. 

2.3.3 The Schiffer weighted Ah-throughput model 

This model is always called Ah-throughput approach due to its basing on the assumption 

that the working conditions are much more severe than testing conditions. Hence the actual 

Ah throughput is multiplied by a weight factor that reflects the operating conditions. In this 

way, not only this type of batteries but also any other batteries can be modeled by using 
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different data sheet information. In this model lifetime is defined as following: 

Lifetime is the time remained before a battery’s available capacity reduced to 80%. 

Which is usually known as SOH in BMS. 

 SOH is defined as the percentage of nominal capacity. The commonly used method is 

given by  

 

Nominal capacity: It is the average capacity when batteries are discharged at 0.2C 

within one hour of being charged for 16 hours at 0.1C and 20± 5°C. Unit: Ah (Ampere 

Hours). 

As mentioned in the previous section, this method considered all possible aging process 

from chemical-physics point of view. The loss of capacity is calculated by mining initial 

battery capacity C(0) by corrosion capacity Ccorrosion(t) and degradation capacity Cdegradation(t) as 

following shows [54]: 

Cremaining (t) = C(0)−Ccorrosion (t)−Cdeg radation (t)  
 
Model algorism: 

Note that the remaining capacity is defined as the capacity of the battery in the fully 

-charge state in a certain discharge current rate (typically 10h current). 

A simplified flow diagram of the model is shown in the Figure 6. 

 

80 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 1, JANUARY 2011

Fig. 8. Thermal management block.

The thermal management block reads ambient and battery
temperatures, initiates cooling or heating operation, and sends
an emergency signal to ECU in case of abnormal rise in
temperature.

III. STATE OF CHARGE ESTIMATION

The model developed in this paper is based on the state-
space method presented in [16], in which SOC is a state of the
system, and OCV is predicted using polynomial equations. The
predicted OCV is then used for calculating the terminal voltage
of the battery, and the calculated terminal voltage is compared
with the actual battery voltage. The error between the calculated
and the real battery voltage is then used to calculate the filter
gain in the Kalman filter to update the state SOC. Thus, the
model is used to estimate the SOC of a battery. The battery
model simulates a battery control strategy for EV. In this model,
the battery SOC is simulated. The parameters represented in the
model were extracted from the experiment data of the chosen
LiFePO4 battery.

SOH is defined in terms of the percentage of nominal capac-
ity. Aging and charge–discharge cycles are two major factors
that reduce the SOH of a battery. The SOH of an average Li-ion
battery is reduced to 80% after 1000 charge–discharge cycles.
The commonly used method is given by

SOH =
nominal capacity − loss of capacity

nominal capacity
. (1)

A. Battery Model

The battery model [15] shown in Fig. 9 consists of a con-
trolled voltage source in series with a resistor that represents
the internal resistance of the cell.

The controlled voltage source is implemented using the
following expression:

OCV = E0 − K
QR

QR − it
+ Ae−bit. (2)

The main advantage of this model is that all the parameters
can be obtained from the cell’s discharge characteristics to

Fig. 9. Generic battery model in [15].

represent a particular battery type. The SOC for step changes
in load can be derived using

SOCnew = SOCold − ∆SOC

SOCnew = SOCold − inew∆t

QR
. (3)

The input to the SOC estimation block is the current, and the
output is the SOC estimation.

The simple generic model shown in Fig. 9 does not consider
the effect of temperature and the rate of discharge current, and
hence, the results are not accurate for practical implementation.
It lacks the accuracy demanded in a practical application. The
following section gives the development of a model based on
state-space equations where SOC and SOP are considered as
state variables.

B. State-Space Model

The state-space representation of a typical battery [17] is
given in (4), shown at the bottom of the next page. The battery
terminal voltage is defined in

Vbat(k) = OCV (Soc(k)) + Sop(k) + Rnik. (5)

OCV is obtained by modeling the curve that depicts the
relation between SOC and OCV as in

OCV
(
Ŝoc(k + 1)

)

= b(1)Ŝ5
oc(k + 1) + b(2)Ŝ4

oc(k + 1) + b(3)Ŝ3
oc(k + 1)

+ b(4)Ŝ2
oc(k + 1) + b(5)Ŝ1

oc(k + 1) + b(6). (6)
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Fig. 6. Flow diagram 

At the first simulation step, the voltage and SOC are calculated according to the input 

data. Based on the Shepherd equation, voltage can be calculated. And SOC is the difference 

between the total battery current and gassing current. [54] We can calculate gassing current 

by using Tafel approximation. Once we have voltage and SOC of a certain time, aging model 

of corrosion and degradation can be adopted. By obtaining the capacity of corrosion and 

degradation, the remaining can be calculated according to the above equation. Then the main 

output SOH can be calculated. Because the condition of batteries is changing along with time, 

the time related step should be calculated again and updated to determine the initial 

parameters.  

Because most of the chemical-physical process is temperature related, we use the 

simplest approach that the battery temperature is equal to the ambient temperature in a certain 

time. As mentioned in the [54], the temperature effects become minor when the current 

1)  Ba%ery	Temperature,	Current,	Ba%ery	parameters	

2)	Calculate	Voltage	and	SOC	of	ba%ery	

3)	Aging	Model	Corrosion	and	DegradaCon	

5)	Calculate	Remaining	Capacity	and	esCmate	the	life	Cme	

4)	Update	of	parameters	
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integrated time by time in high average current. 

In some equations, the functions are chosen to represent real physical or chemical 

processes. It is hard to explain the reason or determine the most accurate functions. Hence 

most choices are made according to the experience from related work and the data from the 

measurement. 

 This model is much more complicated than previous two because all possible aging 

effects are taking into account. It is import to know the mathematic relations between 

chemical or physical process and input data. Hence we talk about a brief introduction of the 

choice of aging model of degradation and corrosion. Detailed calculation process and 

modification of this model will be discussed in the next sections. 

 
Degradation capacity: 
 

As mentioned in the above sections, degradation is a common process happened in 

batteries resulting in a capacity loss. Because the structure and composition changes in 

batteries, the active material reduces or failures to react. Most possible causes of degradation 

are shedding (mechanical lose from gassing), sulfation (irreversible sulfate crystals) and 

softening (loss of electronic conductivity). According to the former research, the gassing 

process is the major reason of the mechanical stress changes hence the degradation of active 

material. This is the reason why battery lifetime always depended on the depth-of-discharge 

(DOD) during cycling. The Larger DOD leads to larger gassing, hence resulting in higher the 

mechanical stress. Based on these theories, the degradation capacity can be calculated as 

following with the IEC cycles that can be found in the factory data sheet.  
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Cdeg radation (t) = Cdeg radation,lim it i exp[−Cz i (1−

Z(t)
1.6 i ZIEC

)]
 

where Cdegradation,limit is the degradation limit (the capacity at the end of lifetime, we can 

take it as 80% of initial capacity) ,Cz is chosen as 5 when taking into account boundary 

conditions. Factor 1.6 is chosen because the weighted effective number of cycles of aging 

without corrosion is approximate 1.6ZIEC.  

The Ah throughput is related to SOC, discharge current and the acid stratification. Hence 

the weighted number of cycles without corrosion Zw(t) is calculated as: 

 
Z(t + Δt) = Z(t)+

| Idischarge(t) | i fsoc(t) i facid (t) i Δt
C  

where fsoc is SOC related factors and facid is acid stratification related factors. This is 

based on the Equivalent full cycles to failure model but taking into account influence of SOC 

and acid stratification. 

Determination of fsoc: 

Degradation increases with increasing DOD of batteries (with decreasing SOC of 

batteries). Both of the magnitude of the lowest SOC and the length of time when batteries 

under low SOC have impact on the lifetime. Hence SOC weighted factor can be calculated by 

the following equation: 

 fsoc(t) = 1+ (Csoc,0 +Csoc,min i (1− SOCmin (t) |t0
t )) i fI (I ,n) i (t − t0 ))  

where t0 is the time of the last full charge, SOCmin(t) is the minimum SOC since the last 

full charge, Csoc,0 represent the increase in fSOC with time at SOC=0 and fI(I,n) is the current 

factor. 
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Because the small discharge currents will lead to larger lead sulfate crystals, the lead 

sulphate crystals will grow with each cycle and stay in the electrodes. This process depends 

mainly on the current at the beginning of the discharge after a full charge. A boundry factor 

of 0.9 is artificially setup to determine the number of bad charges. If the battery is charged to 

SOC that higher than 0.9 and lower than 1, it is counted as bad charge. The current factors 

hence calculated by the number of bad charges (n) as following shows: 

 
fI (I ,n) =

I10
I(t)

i exp(n(t)
3.6

)3
 

where I10 is defined as 10h current (I10 = C10/10) in discharging. 

When the SOC reaches about 1, the number of bad charges resets to 0. And when maximum 

SOC is still between 0.9 and 1, we can count n as follows [53]: 

n(t + Δt) = n(t)+ Δn = n(t)+ 0.0025− (0.95− SOCmax )
2

0.0025  

Determination of facid: 

The stratification increases with the increasing inhomogeneous led by low current. 

Although high current also affects stratification process, we ignore the influence of high 

current because its insignificant impact. Hence the acid stratification factor can be modeled 

by the increased or decrease factor (fplus and fminus) that calculated by SOC and gassing 

current (detailed can be found in the discussion sections). 
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facid (t) =1+ fstratification (t)i
I10
I(t)  

and 

fstratification (t + Δt) = ( fplus (t)− fminus (t))Δt + fstratification (t)  

where fplus and fminus are an increase and a decrease of acid stratification, respectively. 

With taking into account both factors, the capacity of degradation of active mass can be 

calculated. Note that this model based on the assumption that non-active materials cannot be 

converted resulting in reduction of the discharge capacity while all active materials are 

converted into the charged state during every charge (always fully charged). 

 
Corrosion capacity: 

Because the corrosion mostly affects the positive electrode, the influence of negative 

electrode can be ignored. By adopting the concept of a corrosion “layer” with lower 

conductivity (grows over the lifetime of batteries), the effect of corrosion can be calculated 

by counting an effective layer thickness, W , which is undated during each simulation steps. 

The effective layer is related to the loss of active materials that assumed to be lost from 

electrode. According to the Ref.[51] the corrosion processes vary with the potential of the 

batteries. Hence W can be obtained by  

ΔW (t) = ΔW (t − Δt)+ ksΔt  

where t is the duration of one time step and ks is the corrison speed parameter that 

changes with time. Further details will be discussed in the modification sections. 

Then the capacity loss by corrosion is: 
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Ccorrosion (t) = Ccorrosion,lim it (t) i

ΔW (t)
ΔWlim it

 

where Ccorr,limit is the limit of the loss of capacity by corrosion and Wlimit is the corrosion 

layer thickness when battery reached the end of float lifetime (can be found in the battery 

datasheet). 

Note that the calculation of Ccorr,limit is based on the assumption that 20% of the capacity 

decrease at the end of life is caused by corrosion and remaining 80% loss of the capacity is 

caused by active material loss. The assumption can be found in several studies [43] and 

proved to be successful in modeling [44,45]. 

2.3.4 Recurrent Neural Network-based Model 

Unlike previous Ah-throughput approach focusing on the chemical or physical relations, 

recurrent Neural Network-based Model (RRNs) is based on the purpose of explain which and 

why some key parameters are dynamic and interdependent. Although simple electrical 

networks can roughly used to model lead-acid batteries, the large amount of battery data 

becomes costly and time consuming when computing the functions of State of charge (SOC), 

depth of discharge (DOD), and electrolyte temperature [47-49].  

This method uses RNN model working with SOC observer to establish a suitable charge 

algorithm. According to Ref.[46], two steps are introduced to present a nonlinear 

mathematical prediction model. In this thesis, only the first step (a design of RNNs to predict 

terminal voltage and SOC) is discussed while second step (using RNNs results establish 

tuning procedure of the mathematical battery model parameters) is omitted. In this section, 
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both the mathematical battery model and RNN-based modeling of battery will be briefly 

introduced. 

Mathematical battery model: 

As first reported in [50,51], the basic mathematical model equations of lead-acid battery 
are the following: 

dq
dt

= i,SOC =1− q
C0

v = E(SOC)− R(SOC*)i
 

 

where SOC* is a fictitious SOC that related to the effective SOC, DOD and current 

discharge rate. C0 is the rated battery capacity (Ah). 

Then  

E(SOC) = E0 + Ee ln(SOC)
R(SOC*) = R0 + R1 ln(SOC*)  

 
The SOC* can be calculated: 

SOC* =η[σ (SOC)2 −η ⋅DOD ⋅SOC ⋅( i
In
)δ ]−1

 

where E0 and R0 are constant, DOD = 1-SOC, while η, σ, δ, are empirical coefficients, 

and In is a reference current equal to a value representative of the typical usage of a given 

battery. It is about ten times the value of the rated discharge current. [50] In this way a SOC 

observer can be obtained as a function of η, σ, δ. Details can be found in Ref.[52]. The 

related equivalent network of lead-acid battery is shown in Figure 7. 
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Fig. 7. Equivalent network of lead-acid battery.[47] 
 
 
RNN-based modeling of battery: 
 

RNNs Model is based on the basic elements of dynamic neural units (DNUs) receive not 

only external inputs but also the feedback signals from themselves and other neurons. With 

many interconnected DNUs, a neural network forms the layered configurations. As 

introduced by [52], an individual neuron aggregates its inputs and output a nonlinear 

activation function with a threshold. There are tree types of connections: intralayer, interlayer, 

and recurrent connections. 

The intralayer connections: links between neurons in the same layer of the network.  

The interlayer connections: links between neurons in different layers.  

The recurrent connections: self-feedback links to the neurons.  

In order to acquire dynamic learning, the stability of the equilibrium points with 

decaying transients is important. A scheme of RNN for battery model is shown as follows: 
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Fig. 8. A scheme of RNNs of lead-acid battery. [47] 
 

The SOC evaluation can be calculated by: 

SOC(k) = f (SOC(k −1),i(k −1),v(k −1))  

and battery voltage output equations of RNN are given by: 

v(k) = g(SOC(k −1), i(k −1),v(k −1))  

where f and g are nonlinear functions. 

RNN modeling is a suitable tool to consider the nonlinear modeling of lead-acid batteries 

where the charge-discharge processes are concerned. Detailed algorism can be found in the 

reference [18]. Note that this model is algorism-based which means no chemical process is 

considered in modeling. This feature let RNNs-based model reach high prediction accuracy 

only when empirical coefficients are chosen correctly and calculated based on large 

experiment data.  
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Chapter 3  

Model modification and discussion 

3.1 Model comparison and selection 

Until now, not any model can be perfect fit all batteries due to the large amount of 

variables and the complexity of applications. Every model has it pros and cons, choosing the 

right model is hard but exciting work in the simulation and prediction. In this section, the 

advantages and disadvantages will be discussed to fit our target system. 

3.1.1 Equivalent full cycles to failure 

As the most “classic” lifetime prediction models, equivalent full cycles counting model 

is proved to do not work well in some systems (especially in photovoltaic systems [53]). 

There are several reasons:  

(1) Because the pre-determined parameter is IEC cycles, it is not easy to keep IEC test 

condition when batteries in working. For example, in the PV systems, the battery’s bank 

capacity is usually high hence the IEC cycles is usually high, which leads to the IEC cycles in 

the testing condition is high. 

(2) The working condition of batteries is always changing, State of charge, temperature and 

charging methods may change the charge and discharge currents a lot. 

 
Hence, this model is not suitable in our further predictions. 
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3.1.2 “Rain flow” cycles counting 

The “Rain flow” cycles counting model is more complex than previous model. It takes 

depth of discharge (DOD) as the main factor to predict lifetime of a battery. However, it is 

always hard to obtain an accurate DOD or SOC when batteries under working. The 

disadvantages of the model can be conclude as follows: 

(1) The accuracy depends on intervals of DOD. The smaller the interval is, the higher 

accuracy will be. However, the money and time cost of testing will increase dramatically 

with the decreasing interval. 

(2) In the prediction, only DOD or SOC is the input parameters, which lead to high 

possibility of wrong prediction due to the difficulty of obtaining SOC in working conditions. 

Although it based on simple but powerful theory, a number of studies show the failure of 

this model [53]. The predict lifetime sometimes can be 10 times of the real lifetime if the 

systems have large temperature variation like PV systems. However, in other systems, they 

always have lower battery-bank capacity and there are always backup generators in the 

system to keep the batteries from staying in a long time in low charge states. Their operating 

conditions are therefore not so different than those in the standard IEC tests. 

Hence this model may be used as a rough prediction in some applications that operating 

in the stable condition.  

 

3.1.3 The Schiffer weighted Ah-throughput model 

As described in reference [54], this model takes into account all effects based on a 
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detailed analysis and understanding of ageing process in lead-acid batteries. In addition, 

according to [51-54], it works well in renewable energy systems, autonomous power-supply 

systems and photovoltaic systems.  

A comparison between weighted Ah-throughput model and former models in household 

PV system are shown in the tables using the data of Ref.[53]: 

Models Lifetime prediction 

Equivalent full cycles to failure 5.8 

“Rain flow” cycles counting 19.1 

The Schiffer weighted Ah-throughput model 17.6 

Table 3. Battery lifetime prediction (years) for the household PV systems (real lifetime: 6.2 

years) 

A comparison between weighted Ah-throughput model and former models in alarm PV 

system are shown in the tables [53]: 

Models Lifetime prediction 

Equivalent full cycles to failure 4.4 

“Rain flow” cycles counting 16.1 

The Schiffer weighted Ah-throughput model 16.1 

Table 4. Battery lifetime prediction (years) for the alarm PV systems (real lifetime: 5.1 years) 

It is clear to see that both average full equivalent model and “rain flow” cycle counting 

model failed to prediction the lifetime of lead-acid batteries in PV systems. Both of them 

have 2-3 times higher predict lifetime than the real one. However, weighted Ah-throughput 

model obtained better results, which shows much more stability and accessibility in the 
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lifetime prediction of different lead-acid batteries. 

3.1.4 Recurrent Neural Network-based Model 

The RNN-based modeling of charge-discharge phenomena of the lead-acid battery is a 

new way to predict lifetime of batteries that used in PV systems, electric vehicles and hybrid 

electric vehicles. This method relies on the using of soft-computing technics and RNN to 

model the complex systems. Theoretically, the more parameters used in training RNNs, the 

more accuracy it will be. Reference [52] shows a successful calculation which results are in 

good agreement with the experimental data shown in Figure 8. 

 

Fig. 8. Simulated curves(n,m) and experimental data at low discharge rate.[52] 

And the reference proposed a tuning procedure of the empirical parameters by using 

selected RNN resulting in better fitting results. 

However, it is always hard to select features to train RNNs in real applications. In our 

target systems, slight modification is needed. 
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 To sum up, we briefly review four models and their accessibility in our target system. 

The result is conclude in the table： 

Models Target 

systems 

Parameter 

Complexity 

Accuracy Computational 

Cost 

Modification 

Equivalent full 

cycles to failure 

No Easy Low Low No 

“Rain flow” 

cycles counting 

Yes Easy Low Low No 

The Schiffer 

weighted 

Ah-throughput 

model 

Yes Hard High Medium Yes 

Recurrent 

Neural 

Network-based 

Model 

Yes Medium High High No 

Table 5. Comparison of four Battery lifetime prediction models 

 

Both Equivalent full cycles to failure and “Rain flow” cycles counting models are easy to 

use but lack of accuracy. “Rain flow” cycles counting could be chosen as a rough calculation 

in target system due to its low cost.  

Both the Schiffer weighted Ah-throughput model and Recurrent Neural Network-based 
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Model have high accuracy. However, the parameter preparation and computational cost are 

relatively high in the Schiffer weighted Ah-throughput model. In order to fit this model well 

in our target systems, further modification are needed. The details will be introduced in the 

next section. 

3.2 Model modification 

3.2.1 Modification of The Schiffer weighted Ah-throughput model 

Before modification, it is essential to know which part of weighted Ah-throughput model 

takes into account anode. In other words, we should clarify the relationships between anode 

and chemical or physical processes in lead-acid batteries. As explained in the section 2.2, five 

major processes affect the lifetime of batteries. Based on the basic algorism of weighted 

Ah-throughput model shown in Figure 6, gassing current, state of charge (SOC) and the 

voltage of cell, should be calculated at first. Then ageing process, corrosion and degradation 

should be considered. The following modification will follow this order. 

Gassing current: 

As the significant side-reaction in lead-acid batteries, the gassing process affects batteries’ 

operating current hence the voltages. It reduces the columbic efficiency of batteries. The 

gassing current increases with increasing battery temperature (Arrhenius law) and with 

increasing cell voltage (Butler-Volmer process).  

This process happens in no matter what electrodes are. Because both sides of electrodes 

in target system have the similar voltage to conventional one, the same quantitative equation 

can be employed to calculate gassing current. Specifically, gassing current is calculated by 
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the Tafel approximation due to the high overpotentials: 

 

Igassing =
CN

100
Igassing,0 ⋅exp(cu(U −Ugassing,0 )+ cT (T −Tgassing,0 ))

where Igassing,0 is the normalized gassing current (100 Ah nominal battery capacity at nominal 

voltage Ugas,sing,0) and nominal temperature Tgassing,0; U is the cell voltage; T is the battery 

temperature; Cu is the voltage coefficient and CT is the temperature coefficient. Because most 

of the parameters in this equation are not relevant to time and temperature, the initial values 

of these parameters should be carefully considered. 

State of Charge (SOC):  

As the most important parameter in the calculation, State of Charge stands for the 

magnitude of charge/discharge state that how many sulfate crystals convert into positive or 

negative electrode.  

Because in target system, the anode is replaced by supercapaciter, only positive plate 

reaction happens. SoC of 1 means the state where all sulfate crystals converted completely 

into PbO2 in the cathode. Therefore, the SOC can be calculated by integrating the current 

minus the gassing current divided by the nominal capacity:  

SOC(t) = SOC(0)+
I(θ )− Igas (θ )

CN

dθ
0

t

∫  

Cell Voltage: 

According to Ref.[54], The cell voltage is calculated by a modified shepherd equations. 

Four terms should be considered: Open-circuit voltage, open-circuit voltage changes that 
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affected by SOC, voltage changes that affected by ohmic loss and overvoltage that affected 

by current and SOC. No transient effects are taken into account due to the long time-step 

evaluation algorism (always larger than 1min). Because no electrode reactions are considered 

in this calculation, reported equations can be directly employed in the target system. In the 

charging process, the cell voltage can be calculated as follows: 

U(t) =U0 − g(1− SOC(t))+ ρc(t)
I(t)
CN

+ ρc(t)Mc
I(t)
CN

SOC(t)
Cc − SOC(t)

where U is the terminal voltage of the cell; U0 is the open-circuit equilibrium cell voltage at 

the fully-charged state; g is an electrolyte proportionality constant. SOC is state of charge 

(SOC=1 when fully charged, SOC=0 after discharge of the nominal capacity, SOC < 0 is also 

possible); I is applied current (I >0 when charge; I <0 when discharge); CN is the nominal 

capacity; ρc is effective internal resistance. Mc is the charge-transfer overvoltage coefficient; 

Cc is the normalized capacity. And for the discharging process, voltage can be calculated at 

the same way. Note that the parameter used in charges and discharges are different and 

should be considered respectively. 

After obtaining gassing current, state of charge (SOC) and the voltage of cell, the ageing 

process (corrosion and degradation) can be calculated. 

 

Corrosion: 

 Corrosion always happened in the positive electrode that lead grids convert into different 

lead oxides forming a layer with lower conductivity. Reported corrosion capacity calculation 

are based on the estimation of corrosion voltage from only positive electrode as following 
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(detailed in 2.3.3 section)[55-57]: 

ΔW (t) = ΔW (t − Δt)+ ksΔt   

when corrosion voltage is high; And  

ΔW (t) = ks[(
ΔW (t − Δt)

ks
)
1
0.6 + Δt]0.6

 

 when corrosion voltage is low; where W is the effective layer thickness. 

Here, corrosion voltage can be determined by the same way as cell voltages: 

Ucorrosion (t) =Ucorrosion,0 − a ⋅g(1− SOC(t))+ b ⋅ρc (t)
I(t)
CN

+ b ⋅ρc (t)Mc
I(t)
CN

SOC(t)
Cc − SOC(t)

 where the corrosion voltage Ucorr,0 is a function of the acid concentration. Factor a and b 

are electrode contribution factor that determined by the experiment. 

Not that the in the second term a is the SOC contribution to the electrode. According to 

[60,61], a can be assumed to be 10/13 because a typical change in OCV from fully charged to 

fully discharge is 130mV with 100mV from positive electrode and 30mV from negative 

electrode. And b can be set as 0.5 when considering the ohmic losses and charge factor are 

equally distributed between the positive and the negative electrode.  

 Because only positive electrode is considered in the model, there are no differences 

between conventional model and hybrid model. Therefore, as reported in Ref.[54], the 

corrosion capacity can be calculated: 

 
Ccorrosion (t) = Ccorrosion,lim it (t) i

ΔW (t)
ΔWlim it

 

Degradation of active material: 

 Degradation is a capacity loss process caused by cycling of batteries. Because the 
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specific volume of lead sulfate formed in discharging and that of Pb in negative electrode 

(volume change factor = 2.4) or PbO2 in positive electrode (volume change factor 1.96), the 

replacement of negative electrode (Pb) in hybrid batteries reduces this effect dramatically. 

This concept has been proved by experiment [62], and a comparison shows as following: 

 

Fig. 7. Lifetime test between three types of battery (Green: lead-acid battery with added 

carbon capacity in negative electrode, blue: normal lead-acid battery, yellow：Ni-NiMH cell) 

The Ultrabattery with replaced carbon capacity in negative electrode has nearly 5 times 

lifetime of the traditional lead-acid batteries while relatively longer lifetime than Ni-NiMH 

cell too. Therefore the difference in degradation process between hybrid batteries and normal 

lead-acid batteries should be carefully considered. 

For calculation of capacity loss due to degradation, the weighted number of cycles Z is 
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calculated with: 

Z(t + Δt) = Z(t)+
| Idischarge(t) |i fsoc (t)i facid (t)iΔt

C  

where fsoc is SOC related factors and facid is acid stratification related factors. 

Then the capacity loss due to the degradation Cdegradation is calculated: 

Cdeg radation (t) = Cdeg radation,lim it ⋅exp[−Cz ⋅(1−
Z(t)
k ⋅ZIEC

)]
 

The factor K can be estimated as the IEC cycle lifetime without corrosion due to the fact that 

the effective number of cycles (ZIEC) is the combination of corrosion and degradation. A 

reasonable choice of K is 1.6 according to Ref. [37]. 

The impact of SOC: 

The degradation would occur whenever a lead-acid battery’s ‘state-of-charge’ remained 

significantly below 100% for a sustained period. The lower SOC is, the higher is the impact 

on the battery lifetime. On the one hand, the capacity loss is due to the mechanical stress on 

the active material because of SOC. On the other hand, the capacity loss comes from the 

increasing size of the sulfate crystals. In the hybrid battery, the sulfation effects are largely 

reduced by the replacement of negative electrode.  Therefore we can model the loss of 

capacity from mechanical stress only by omitting the current factor reported in Ref.[54]: 

fsoc (t) =1+ (Csoc,0 +Csoc,min i(1− SOCmin (t) |t0
t ))i(t − t0 ))  

where CSoC,0 and CSoC,min represent the increase in fSoC with time at S0C = 0 and the 

minimum SOC since the last full charge. 

Note that this relationships are modeled by the factor fSoC, which is set to 1 at each full 
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charge and which increases with the time since the last full charge, i.e.,tSoC = t−t0, where t0 

is the time of the last full charge. 

The impact of acid stratification: 

Acid stratification itself is not an ageing effect, but it accelerates ageing. It is fully 

reversible at any time if sufficient gas evolves or if electrolyte agitation systems are used. 

Acid stratification builds up during charging and discharging and results in a gradient of the 

acid concentration. Diffusion and gassing bring a mixing of the electrolyte. Ageing as a result 

of acid stratification occurs because the differences in the acid concentration result in 

different electrochemical potentials at different levels in the battery. Therefore, the current 

distribution along the electrodes is inhomogeneous. 

Charging is preferred in the upper parts of the electrode (lower density, lower potential), 

discharging is preferred in the lower part of the electrode (higher density, higher potential). 

Consequently, the state-of-charge in the lower part of the electrode is significantly lower 

compared with the upper part and therefore sulfation is accelerated. This has been confirmed 

by models [63] and measurements [64]. 

Therefore, the increase and decrease of stratification can be modeled: 

 fstratification (t + Δt) = ( fplus (t)− fminus (t))Δt + fstratification (t)  

and  

facid (t) =1+ fstratification (t)i
I10
I(t)  

The increase of Acid stratification: 

Acid stratification increases during cyclic operation. It is more distinct the lower the 
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state-of-charge since the last time acid stratification is removed and the higher the discharge 

current. Removal of acid stratification is assumed to take place due to extensive gassing. 

Taking into account all the factors described above, the factor for the increase of acid 

stratification becomes: 

fplus (t) = cplus (1− SOCmin |t0
t )exp(−3 fstratification (t))

| Idischarge(t) |
Ireference  

Note that there are no factors affected by the replacement of negative electrode. However, 

the reference current should use the data from hybrid batteries. 

The decrease of Acid stratification: 

Acid stratification is removed by diffusion and by gassing. Diffusion is slow, so it is typically 

only noticeable during long pauses (which is can be omitted in this model). And the gassing 

mechanism is based on the assumption that the mixing effect is directly proportional to the 

amount of gas generated in the cell. Gas generation increases exponentially with temperature 

and voltage. 

Hence the decrease of stratification distributed in gassing can be modeled as: 

fminus = fminus,gassing =
100
CN

Igassing,0
Igassing

⋅exp(cu (U −Ugassing,0 )+ cT (T −Tgassing,0 ))  

where U is the cell voltage. This factor is designed to be equal to fminus = 0.1 if the cell voltage 

equals to the reference voltage and T = Tgas,0 for a 100 Ah battery. Acid stratification is harder 

to remove in large batteries than in small batteries, therefore fminus,gassing is weighted with the 

nominal battery capacity. Igassing,0(t) is the normalized gassing current taking into account the 

present state of ageing of the battery, and Igassing,0 is the initial normalized gassing current. 
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In the end, the total remaining capacity can be calculated by: 

Cremaining (t) = C(0)−Ccorrosion (t)−Cdeg radation (t)  

Then, the lifetime can be predicted by comparing the remaining capacity with the factory 

data sheet. 

So far, the weighted Ah-throughput model is fully modified according to the hybrid 

battery. Note that although this model is carefully discussed based on the electrode change, 

further calculation is needed to validate this model with experiment data. In the estimation of 

battery lifetime, a list of initial parameters should be carefully chosen. Some of the 

parameters can be calculated based on the factory data sheet and basic measurements. The 

descriptions and symbols are listed in following table:  

 

 

Parameters Description 

CN Nominal capacity 

ZIEC Number of cycles under standard conditions 

L Float lifetime 

Uo Full charge open-circuit voltage 

g Gradient change in OCV with SOC 

Mc Effective charge-transfer resistance  

ρc Effective internal resistance 

Cc Normalized capacity of battery 

Iref Normalized reference current 
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Ucorrosion,0 Corrosion voltage of fully charged battery 

Igassing,0 Normalized gassing current 

cu Voltage factor of gassing current 

CT Temperature factor of gassing current 

Ugassing,0 Nominal gassing voltage 

Ks Corrosion speed coefficient 

Tgassing,0 Nominal temperature of gassing 

Tcorrosion,0 Nominal temperature of corrosion 

SOClimit Minimum SOC for bad charges 

Table 6. Parameter list (Those can be estimated and directly measured) 
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Chapter 4 

Conclusion and suggestion 

This thesis reviews four different lifetime modeling of lead-acid batteries to be mainly 

used as energy storage for PV systems, EV, and hybrid EV.  

Equivalent full cycles to failure, “Rain flow” cycles counting, the Schiffer weighted 

Ah-throughput model and recurrent Neural Network-based Model are discussed for the 

accessibility and availability of the lead-acid batteries with the supercapacitor anode. 

Equivalent full cycles to failure and “Rain flow” cycles counting are two traditional and 

easy-to-use model in lifetime prediction. However, These models only work when the 

operating condition are the same as IEC test conditions. In most estimation, these two models 

show a much longer estimated lifetime by underestimating the aging process in different 

operating conditions. Although they have restrictions in applications, they use only one 

parameter in prediction which is much more convenient and cheap in preliminary predictions. 

The Schiffer weighted Ah-throughput model is one of the possible models for the 

lead-acid batteries with the supercapacitor anode (or hybrid batteries). Because the real 

lifetime of the battery can differ from the estimated lifetime by several years due to the 

severe operating conditions, a dynamic mathematical model based on rhe physical and 

chemical process of batteries is carefully developed. However, the model adopted in the 

traditional lead-acid batteries is not directly suitable for the hybrid batteries. We modified the 

model in detail according to the change of negative electrode material. Although further 

simulation should be conducted and be compared with experiment results, modified weighted 
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Ah-throughput model is the most promising one by taking into account all effects. Note that 

the key factor of successful prediction is the parameters choice (Table. 6) based on the 

experiment and empirical assumption. 

Recurrent Neural Network-based (RNNs) Model is discussed as another possible model 

for hybrid battery. Several contributions are presented in the literature about the use of 

soft-computing techniques for the estimation of the battery voltage, but most of them utilize 

static neural networks to model nonlinear dynamic phenomena of the lead-acid battery as the 

charge–discharge phenomena. The strength of the use of the RNNs is that they provide a 

dynamic modeling of the voltage and SOC of the battery simultaneously.    The selected 

RNN is designed starting from the dynamic equations that describe the charge–discharge 

phenomena of a lead-acid battery. Samples of main simulation results are reported by Ref.[24] 

and all are in good agreement with the experimental and model calculated data. The battery 

modeling and simulation is a critical task for electrical engineers that often use mathematical 

models and the relative electrical networks. This model can fit hybrid battery well due to its 

computing mechanism having no relevant to the chemical process. 

To sum up, as one important part of BMS, lifetime prediction model should be carefully 

considered and selected based on the demand of applications. In general, the Schiffer 

weighted Ah-throughput model with modification and recurrent Neural Network-based 

(RNNs) Model are two promising models for the hybrid lead-acid batteries. 

For the future work, it is essential to apply modified Schiffer weighted Ah-throughput 

model in the hybrid batteries in different operating conditions. Besides we will also use the 

RNNs model to compare the estimation results with former one. The model will be modified 
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again, and features will be added or removed after compared to the measurement data. To 

increase the prediction accuracy, the combination of these two or other models is also a 

promising solution in the future. 
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