
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Deep Generative Models for Decision-Making and Control

Permalink
https://escholarship.org/uc/item/7b39125c

Author
Janner, Michael

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b39125c
https://escholarship.org
http://www.cdlib.org/

Deep Generative Models for Decision-Making and Control

By

Michael Janner

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Chair
Professor Anca Dragan

Professor Jacob Steinhardt
Professor Karthik Narasimhan

Spring 2023

Deep Generative Models for Decision-Making and Control

Copyright 2023

by

Michael Janner

Abstract

Deep model-based reinforcement learning methods offer a conceptually simple approach
to the decision-making and control problem: use learning for the purpose of estimating
an approximate dynamics model, and offload the rest of the work to classical trajectory
optimization. However, this combination has a number of empirical shortcomings, limiting the
usefulness of model-based methods in practice. The dual purpose of this thesis is to study the
reasons for these shortcomings and to propose solutions for the uncovered problems. We begin
by generalizing the dynamics model itself, replacing the standard single-step formulation
with a model that predicts over probabilistic latent horizons. The resulting model, trained
with a generative reinterpretation of temporal difference learning, leads to infinite-horizon
variants of the procedures central to model-based control, including the model rollout and
model-based value estimation.

Next, we show that poor predictive accuracy of commonly-used deep dynamics models is a
major bottleneck to effective planning, and describe how to use high-capacity sequence models
to overcome this limitation. Framing reinforcement learning as sequence modeling simplifies
a range of design decisions, allowing us to dispense with many of the components normally
integral to reinforcement learning algorithms. However, despite their predictive accuracy,
such sequence models are limited by the search algorithms in which they are embedded.
As such, we demonstrate how to fold the entire trajectory optimization pipeline into the
generative model itself, such that sampling from the model and planning with it become
nearly identical. The culmination of this endeavor is a method that improves its planning
capabilities, and not just its predictive accuracy, with more data and experience. Along
the way, we highlight how inference techniques from the contemporary generative modeling
toolbox, including beam search, classifier-guided sampling, and image inpainting, can be
reinterpreted as viable planning strategies for reinforcement learning problems.

1

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1

2 Preliminaries 4

3 Infinite-Horizon Prediction 6
3.1 Introduction . 6
3.2 Related Work . 8
3.3 Generative Temporal Difference Learning . 9
3.4 Analysis and Applications of γ-Models . 10
3.5 Practical Training of γ-Models . 18
3.6 Experimental Evaluation . 20
3.7 Discussion . 23

4 Reinforcement Learning as Sequence Modeling 24
4.1 Introduction . 24
4.2 Related Work . 26
4.3 Reinforcement Learning as Sequence Modeling 27
4.4 Experimental Evaluation . 31
4.5 Discussion . 38

5 Planning with Diffusion 40
5.1 Introduction . 40
5.2 Background on Diffusion Probabilistic Models 43
5.3 Planning with Diffusion . 43
5.4 Properties of Diffusion Planners . 47
5.5 Experimental Evaluation . 49
5.6 Related Work . 54

i

5.7 Discussion . 56

6 Conclusion 57

Open-Source Implementations 60

Code References 60

Bibliography 61

A γ-Model Details 74
A.1 Geometric weighting lemma . 74
A.2 Implementation Details . 75
A.3 Environment Details . 76
A.4 Adversarial γ-Model Predictions . 77

B Trajectory Transformer Details 78
B.1 Model and Training Specification . 78
B.2 Discrete Oracle . 78
B.3 Baseline performance sources . 79
B.4 Datasets . 79
B.5 Beam Search Hyperparameters . 79
B.6 Goal-Reaching on Procedurally-Generated Maps 80

C Diffuser Details 82
C.1 Baseline details and sources . 82
C.2 Test-time Flexibility . 84
C.3 Implementation Details . 84

ii

List of Figures

3.1 (Prediction with probabilistic horizons) Conventional predictive models
trained via maximum likelihood have a horizon of one. By interpreting temporal
difference learning as a training algorithm for generative models, it is possible to
predict with a probabilistic horizon governed by a geometric distribution. In the
spirit of infinite-horizon control in model-free reinforcement learning, we refer to
this formulation as infinite-horizon prediction. 7

3.2 (Rollouts with probabilistic horizons) (a) The first step from a γ-model
samples states at timesteps distributed according to a geometric distribution with
parameter 1−γ; all subsequent steps have a negative binomial timestep distribution
stemming from the sum of independent geometric random variables. When these
steps are reweighted according to Theorem 1, the resulting distribution follows a
geometric distribution with smaller parameter (corresponding to a larger discount
value γ̃). (b) The number of steps needed to recover 95% of the probability
mass from distributions induced by various target discounts γ̃ for all valid model
discounts γ. When using a standard single-step model, corresponding to the case
of γ = 0, a 299-step model rollout is required to reweight to a discount of γ̃ = 0.99. 14

3.3 (γ-model predictions) Visualization of the predicted distribution from a single
feedforward pass of normalizing flow γ-models trained with varying discounts
γ. The conditioning state st is denoted by . The leftmost plots, with γ = 0,
correspond to a single-step model. For comparison, the rightmost plots show
a Monte Carlo estimation of the discounted occupancy from 100 environment
trajectories. 20

3.4 (γ-model value estimation) Values are expectations of reward over a single
feedforward pass of a γ-model (Equation 3.6). We visualize γ-model predictions
(γ = 0.99) from nine starting states, denoted by , in the pendulum benchmark
environment. Taking the expectation of reward over each of these predicted
distributions yields a value estimate for the corresponding conditioning state. The
rightmost plot depicts the value map produced by value iteration on a discretization
of the same environment for reference. 21

iii

3.5 (γ-MVE control performance) Comparative performance of γ-MVE and four
prior reinforcement learning algorithms on continuous control benchmark tasks. γ-
MVE retains the asymptotic performance of SAC with sample-efficiency matching
that of MBPO. Shaded regions depict standard deviation among 5 seeds. . . . 22

4.1 (Trajectory Transformer architecture) The Trajectory Transformer trains on
sequences of (autoregressively discretized) states, actions, and rewards. Planning
with the Trajectory Transformer mirrors the sampling procedure used to generate
sequences from a language model. 25

4.2 (Transformer prediction visualization) A qualitative comparison of length-
100 trajectories generated by the Trajectory Transformer and a feedforward
Gaussian dynamics model from PETS, a state-of-the-art planning algorithm
(Chua et al., 2018). Both models were trained on trajectories collected by a single
policy, for which a true trajectory is shown for reference. Compounding errors
in the single-step model lead to physically implausible predictions, whereas the
Transformer-generated trajectory is visually indistinguishable from those produced
by the policy acting in the actual environment. The paths of the feet and head
are traced through space for depiction of the movement between rendered frames. 32

4.3 (Compounding model errors) We compare the accuracy of the Trajectory
Transformer (with uniform discretization) to that of the probabilistic feedforward
model ensemble (Chua et al., 2018) over the course of a planning horizon in the
humanoid environment, corresponding to the trajectories visualized in Figure 4.2.
The Trajectory Transformer has substantially better error compounding with
respect to prediction horizon than the feedforward model. The discrete oracle is the
maximum log likelihood attainable given the discretization size; see Appendix B.2
for a discussion. 33

4.4 (Attention patterns) We observe two distinct types of attention masks during
trajectory prediction. In the first, both states and actions are dependent primarily
on the immediately preceding transition, corresponding to a model that has learned
the Markov property. The second strategy has a striated appearance, with state
dimensions depending most strongly on the same dimension of multiple previous
timesteps. Surprisingly, actions depend more on past actions than they do on past
states, reminiscent of the action smoothing used in some trajectory optimization
algorithms (Nagabandi et al., 2019). The above masks are produced by a first- and
third-layer attention head during sequence prediction on the hopper benchmark;
reward dimensions are omitted for this visualization.1 34

4.5 (Offline locomotion performance) A plot showing the average per-algorithm
performance in Table 4.1, with bars colored according to a crude algorithm
categorization. In this plot, “Trajectory Transformer” refers to the quantile
discreization variant. 36

iv

4.6 (Goal-reaching) Trajectories collected by TTO with anti-causal goal-state
conditioning in a continuous variant of the four rooms environment. Trajectories
are visualized as curves passing through all encountered states, with color becoming
more saturated as time progresses. Note that these curves depict real trajectories
collected by the controller and not sampled sequences. The starting state is
depicted by

1.900 1.925 1.950 1.975 2.000 2.025 2.050 2.075 2.100

13.4

13.6

13.8

14.0

14.2

14.4

14.6

and the goal state by

13.4 13.6 13.8 14.0 14.2 14.4 14.6

1.900

1.925

1.950

1.975

2.000

2.025

2.050

2.075

2.100

. Best viewed in color. 38

5.1 (Planning via denoising) Diffuser is a diffusion probabilistic model that plans
by iteratively refining trajectories. 41

5.2 (Diffuser block architecture) Diffuser samples plans by iteratively denoising
two-dimensional arrays consisting of a variable number of state-action pairs. A
small receptive field constrains the model to only enforce local consistency during
a single denoising step. By composing many denoising steps together, local
consistency can drive global coherence of a sampled plan. An optional guide
function J can be used to bias plans toward those optimizing a test-time objective
or satisfying a set of constraints. 42

5.3 (Properties of diffusion planners) (a) Learned long-horizon planning:
Diffuser’s learned planning procedure does not suffer from the myopic failure
modes common to shooting algorithms and is able to plan over long horizons with
sparse reward. (b) Temporal compositionality: Even though the model is not
Markovian, it generates trajectories via iterated refinements to local consistency.
As a result, it exhibits the types of generalization usually associated with Markovian
models, with the ability to stitch together snippets of trajectories from the
training data to generate novel plan. (c) Variable-length plans: Despite
being a trajectory-level model, Diffuser’s planning horizon is not determined by
its architecture. The horizon can be updated after training by changing the
dimensionality of the input noise. (d) Task compositionality: Diffuser can be
composed with new reward functions to plan for tasks unseen during training. In
all subfigures, denotes a starting state and denotes a goal state. 48

5.4 (Planning as inpainting) Plans are generated in the Maze2D environment by
sampling trajectories consistent with a specified start and goal condition.
The remaining states are “inpainted” by the denoising process. 51

5.5 (Block stacking) A block stacking sequence executed by Diffuser. This task is
best illustrated by videos viewable at diffusion-planning.github.io. 52

5.6 (Guided sampling) Diffuser generates all timesteps of a plan concurrently,
instead of autoregressively, through the denoising process. 53

5.7 (Warm-starting planning) Performance of Diffuser on Walker2d Medium-Expert
when varying the number of diffusion steps to warm-start planning. Performance
suffers only minimally even when using one-tenth the number of diffusion steps,
as long as plans are initialized from the previous timestep’s plan. 55

v

https://diffusion-planning.github.io/

A.1 (Adversarial γ-model predictions) Visualization of the distribution from a
single feedforward pass of γ-models trained as GANs according to Algorithm 2.
GAN-based γ-models tend to be more unstable than normalizing flow γ-models,
especially at higher discounts. 77

B.1 (Minigrid rollouts) Example paths of the Trajectory Transformer planner in
the MiniGrid-MultiRoom-N4-S5. Lock symbols indicate doors. 81

C.1 (Diffuser U-Net architecture) Diffuser has a U-Net architecture with residual
blocks consisting of temporal convolutions, group normalization, and Mish nonlinearities.
. 84

vi

List of Tables

4.1 (Offline reinforcement learning) The Trajectory Transformer (TT) performs
on par with or better than the best prior offline reinforcement learning algorithms
on D4RL locomotion (v2) tasks. Results for TT variants correspond to the mean
and standard error over 15 random seeds (5 independently trained Transformers
and 3 trajectories per Transformer). We detail the sources of the performance for
other methods in Appendix C.1. 35

4.2 (Combining with Q-functions) Performance on the sparse-reward AntMaze
(v0) navigation task. Using a Q-function as a search heuristic with the Trajectory
Transformer (TT (+Q)) outperforms policy extraction from the Q-function (IQL)
and return-conditioning approaches like the Decision Transformer (DT). We report
means and standard error over 15 random seeds for TT (+Q); baseline results are
taken from (Kostrikov et al., 2022). 37

5.1 (Long-horizon planning) The performance of Diffuser and prior model-free
algorithms in the Maze2D environment, which tests long-horizon planning due to
its sparse reward structure. The Multi2D setting refers to a multi-task variant with
goal locations resampled at the beginning of every episode. Diffuser substantially
outperforms prior approaches in both settings. Appendix C.1 details the sources
for the scores of the baseline algorithms. 49

5.2 (Test-time flexibility) Performance of BCQ, CQL, and Diffuser on block stacking
tasks. A score of 100 corresponds to a perfectly executed stack; 0 is that of a
random policy. 51

5.3 (Offline reinforcement learning) The performance of Diffuser and a variety of
prior algorithms on the D4RL locomotion benchmark (Fu et al., 2020). Results
for Diffuser correspond to the mean and standard error over 150 planning seeds.
We detail the sources for the performance of prior methods in Appendix C.1.
Following Kostrikov et al. (2022), we emphasize in bold scores within 5 percent of
the maximum per task (≥ 0.95 ·max). 54

A.1 GAN γ-model hyperparameters (Algorithm 2). 75
A.2 Flow γ-model hyperparameters (Algorithm 3) 76

vii

Acknowledgments

I am luckier than I deserve in having so many people to thank.

First and foremost, I thank my advisor, Sergey Levine, for sharpening my thinking and
helping me develop a research taste during the past five years. Sergey has a remarkable
ability to always find time to chat about research regardless of how busy he is, and my work
benefitted immensely from those many conversations. I am also grateful to my committee,
Anca Dragan, Jacob Steinhardt, and Karthik Narasimhan, for their feedback and perspectives
that have improved this dissertation.

I decided to pursue a PhD in artificial intelligence due to an overwhelmingly positive research
experience as an undergrad at MIT. Working with Josh Tenenbaum, Regina Barzilay, and
Bill Freeman as well as their (at the time) students and postdocs Tejas Kulkarni, Karthik
Narasimhan, Jiajun Wu, Ilker Yildirim, Pedro Tsividis, and Max Kleiman-Weiner was the
best introduction to the field imaginable.

Before starting at MIT, I spent a few formative years in Yadong Yin’s materials science group
at UC Riverside. Here I met my first research mentors: Qiao Zhang, Le He, and Mingsheng
Wang. Looking back, I only grow more impressed at their patience and generosity. I am sure
they had much more pressing things to attend to than showing a high school student the
research ropes, but they did so anyway. It is because of Yadong and his students that I am a
scientist today.

Over the course of my PhD, I have been fortunate to work with many collaborators. Igor
Mordatch, Colin Li, Yilun Du, Kevin Black, Chelsea Finn, Justin Fu, JD Co-Reyes, Rishi
Veerapaneni, Katie Kang, Ilya Kostrikov, Philippe Hansen-Estruch, Zhengyao Jiang, Tianjun
Zhang, Yueying Li, and Yuandong Tian have all taught me so much and expanded my
research horizons.

The Berkeley AI Research lab was a wonderful place to study. Aviral Kumar, Young Geng,
Dibya Ghosh, Laura Smith, Philip Ball, Manan Tomar, Oleh Rybkin, Marwa Abdulhai, Kuba
Grudzien, Dhruv Shah, Charlie Snell, Homer Walke, Simon Zhai, Coline Devin, Abhishek
Gupta, Anusha Nagabandi, Natasha Jaques, Dinesh Jarayaman, Rowan McAllister, Vitchyr
Pong, Kelvin Xu, Amy Zhang, Glen Berseth, Aurick Zhou, Avi Singh, Ashvin Nair, Allan
Jabri, Sasha Sax, Vickie Ye, and the rest of the BAIR community made me look forward
to coming into the lab every day. I am especially grateful to Michael Chang, for being my
sounding board on nearly everything, and Marvin Zhang, for keeping me sane during a
pandemic.

During the summer before my final year at Berkeley, I took a research detour and worked on
reinforcement learning for program synthesis applications at Google. I would like to thank
my host Alex Polozov, for a gracious introduction to a new subfield, as well as my residency

viii

collaborators Rishabh Singh, Charles Sutton, Abhishek Rao, Jacob Austin, David Bieber,
Kensen Shi, Aitor Lewkowycz, and Vedant Misra. I also owe much to Michele Catasta and
Kefan Xiao for their holistic mentorship.

My research was generously supported by Open Philanthropy, a group of some of the most
thoughtful people I have met. Daniel Dewey and Catherine Olsson, the early program
managers of the AI Fellowship, were instrumental in pushing me to think about the larger
impacts of my work.

Finally, I would like to thank my parents, for their unwavering support from the beginning,
and Emma, for more than I know how to express.

ix

1

Introduction

This thesis examines one of the simplest conceivable strategies for data-driven decision-making
and robotic control problems. The abstract procedure consists of two interleaved steps:

1. Use data to fit a parametric model used to predict the future given the past.

2. Use the model to predict the outcomes of a candidate set of action sequences, selecting
that which produces the most desirable result.

This high-level description outlines a type of model-predictive control algorithm that uses
“planning in the now" (Kaelbling & Lozano-Pérez, 2011; van Hasselt et al., 2019), meaning
that the model is used to predict into the future while making decisions as opposed to other
ways of using model-generated data. It leaves much to be specified: how does one choose the
candidate actions for evaluation? How should the model be structured? What constitutes
useful data?

Regardless, this specification is already sufficient to suggest why it might be a good approach.
Step 1 amounts to supervised learning, which now often works reliably given enough data and
high-capacity function approximators like neural networks (Krizhevsky et al., 2012; Zhang
et al., 2017; Kaplan et al., 2020). In control contexts, step 2 can (in principle) be offloaded
to trajectory optimization algorithms, which have been the subject of much study and are
similarly well-understood in their original context when the ground-truth dynamics are known
(Diehl et al., 2009; Tassa et al., 2012; Kelly, 2017). It would appear that this approach
combines two fairly reliable puzzle pieces.

Moreover, the separation between model-learning and decision-making has a number of
appealing properties. Most obviously, it allows for reuse of the learned model, allowing
it to be deployed for a variety of tasks in the same setting. This level of reuse is not as
straightforward with model-free approaches because the reward function cannot be separated

1

Introduction

from the implicit dynamics knowledge encoded in a learned policy or value function. This
property also allows for a model to be trained from data that is not explicitly labeled with
rewards, which can be useful in situations where rewards are difficult to define but experience
is plentiful. Empirically, dynamics models are found to be easier to train than value functions,
allowing for better sample efficiency and generalization of learned models (Janner et al., 2019);
this can be viewed as a consequence of either differences between the types of algorithms
used to train value functions versus dynamics models (Kumar et al., 2022) or the simplicity
of the dynamics itself relative to the optimal value function (Dong et al., 2020). Finally,
this separation provides a convenient way to interpret the learned model: for any decision a
planning routine produces, one can inspect the model-expected outcome that caused that
decision to be selected.

Unfortunately, employing this strategy is not as straightforward as it might seem, nor do
these purported benefits always translate to practice. While there have been successful
demonstrations of the combination (Chua et al., 2018; Argenson & Dulac-Arnold, 2021), it is
surprisingly difficult to extract a set of design principles from these successes that allow for
the approach to be effectively applied to new problems without extensive problem-specific
tuning. As a result, the contemporary frontier of deep model-based reinforcement learning
consists largely of algorithms that pull extensively from the model-free reinforcement learning
toolbox. By contrast, conventional planning in the now with deep neural networks is rare.

This state of affairs should be surprising. The dual purpose of the following chapters is
to explain why this is the case and to suggest a way forward. After a brief description of
the problem setting and review of technical background in Chapter 2, we proceed to three
primary ideas:

• In Chapter 3, we reconsider the role of state-space prediction in reinforcement learning.
The result is a model that amortizes the work of prediction during training time, much
like a value function, as opposed to relying on model-based rollouts. As a result,
the model can predict over infinite probabilistic horizons without sequential rollouts,
blurring the line between model-based and model-free mechanisms. This investigation
underscores a particular drawback: representing high-dimensional joint distributions
over future trajectories is a difficult generative modeling problem.

• In Chapter 4, we ask whether the quality of the predictive model is the bottleneck.
We appeal to recent successes in generative modeling and replace the conventional
single-step dynamics model with a long-horizon Transformer. In the process, we show
how to reinterpret algorithms from the sequence modeling toolbox as viable planning
algorithms.

• Transformers largely address the predictive quality bottleneck, but are still limited by
the quality of the planning routine in which they are embedded. In Chapter 5, we
discuss a way of incorporating both the prediction and the planning into a generative

2

Introduction

model, such that the line between sampling from the model and planning with it
becomes blurred. The end result is a method that improves its planning capabilities,
and not just its predictive accuracy, with more data and experience.

We conclude by discussing the lessons learned from these investigations and their implications
for future model-based reinforcement learning algorithms in Chapter 6.

3

2

Preliminaries

This brief chapter introduces the problem setting studied by this thesis and defines notation.

The reinforcement learning problem. We consider an infinite-horizon Markov decision
process (MDP) defined by the tuple (S,A, p, r, γ, ρ0), with state space S and action space
A. The transition distribution and reward function are given by p : S × A× S → R+ and
r : S → R, respectively. The discount is denoted by γ ∈ [0, 1) and the initial state distribution
by ρ0 : S → R+. A policy π : S ×A → R+ describes the distribution over actions taken at a
particular state. The goal of the reinforcement learning problem is to find the optimal policy
π∗ that maximizes the expected sum of discounted rewards:

π∗ = argmax
π

Eπ

[
∞∑

t=0

γtr(st, at)

]
. (2.1)

The discounted occupancy. A policy π induces a conditional occupancy µπ(s | st,at)
over future states:

µπ(s | st, at) = (1− γ)
∞∑

∆t=1

γ∆t−1p(st+∆t = s | st, at, π). (2.2)

The discounted occupancy is a distribution over states encountered by the policy when
using a geometric weighting over future timesteps, analogous to the geometric weighting
of the reinforcement learning objective in Equation 2.1. Unlike the single-step transition
distribution p, the discounted occupancy is policy-conditioned because it marginalizes over

4

Preliminaries

future action distributions. When γ = 0, the discounted occupancy µπ becomes policy-
agnostic and identical to the single-step transition distribution p. For brevity, we omit the
policy superscript π in the discounted occupancy µπ when it is otherwise clear from context.

The optimization objective Equation 2.1 can be reformulated as the expected reward over
the policy-conditioned discounted occupancy:

Eπ

[
∞∑

t=0

γtr(st, at)

]
= E s0∼ρ0(·)

st∼µ(·|s0,a0)
at∼π(·|st)

[r(st, at)] (2.3)

Function approximation. In the reinforcement learning problem, we assume only the
ability to interact in the environment, which provides data streams in the form of trajectories.
We do not assume query access to the functional form of, for example, the transition
distribution p or reward function r. Instead, if these are used by an algorithm, they must be
approximated from data. We denote parametric approximations of p (or µ) as pθ (or µθ), in
which the subscripts denote model parameters.

Trajectory optimization. Trajectory optimization (Witkin & Kass, 1988; Tassa et al.,
2012) refers to finding a sequence of actions a∗0:T that maximizes (or minimizes) an objective
J factorized over per-timestep rewards (or costs) r(st, at).

a∗
0:T = argmax

a0:T

J (s0, a0:T) = argmax
a0:T

T∑

t=0

r(st, at) (2.4)

where T is the planning horizon. We use the abbreviation τ = (s0,a0, s1, a1, . . . , sT ,aT) to
refer to a trajectory of interleaved states and actions and J (τ) to denote the objective value
of that trajectory.

This problem statement is similar to that in Equation 2.1, and it is commonplace to
use trajectory optimization algorithms to address problems formulated in the language
of reinforcement learning. However, there are two differences worth discussing. The most
apparent distinction is that the trajectory optimization objective in Equation 2.4 considers a
finite-horizon decision-making problem, though in practice the use of terminal value functions
trained via reinforcement learning can allow for the consideration of infinite horizons as well.
The second distinction is that the optimization variables are of a different data type: instead
of functions that output actions, they are now primitive actions themselves. Optimizing over
actions directly allows for the representation of non-Markovian policies. For example, the
solution to Equation 2.4 could prescribe a different action to be taken every time a particular
state is encountered; the solution to Equation 2.1 could not without changing the definition
of a policy.

5

3

Infinite-Horizon Prediction

3.1 Introduction

The common ingredient in all of model-based reinforcement learning is the dynamics model:
a function used for predicting future states. The choice of the model’s prediction horizon
constitutes a delicate trade-off. Shorter horizons make the prediction problem easier, as the
near-term future increasingly begins to look like the present, but may not provide sufficient
information for decision-making. Longer horizons carry more information, but present a more
difficult prediction problem, as errors accumulate rapidly when a model is applied to its own
previous outputs (Talvitie, 2014).

Can we avoid choosing a prediction horizon altogether? Value functions already do so by
modeling the cumulative return over a discounted long-term future instead of an immediate
reward, circumventing the need to commit to any single finite horizon. However, value
prediction folds two problems into one by entangling environment dynamics with reward
structure, making value functions less readily adaptable to new tasks in known settings than
their model-based counterparts.

In this chapter, we propose a model that predicts over an infinite horizon with a geometrically-
distributed timestep weighting (Figure 5.1). This γ-model, named for the dependence of
its probabilistic horizon on a discount factor γ, is trained with a generative analogue of
temporal difference learning suitable for continuous spaces. The γ-model bridges the gap
between canonical model-based and model-free mechanisms. Like a value function, it is
policy-conditioned and contains information about the distant future; like a conventional
dynamics model, it is independent of reward and may be reused for new tasks within the same
environment. The γ-model may be instantiated as both a generative adversarial network
(Goodfellow et al., 2014a) and a normalizing flow (Rezende & Mohamed, 2015).

6

Infinite-Horizon Prediction

single-step model : ∆t = 1 γ-model : ∆t ∼ Geom(1− γ)

current state prediction

Figure 3.1: (Prediction with probabilistic horizons) Conventional predictive models
trained via maximum likelihood have a horizon of one. By interpreting temporal difference
learning as a training algorithm for generative models, it is possible to predict with a
probabilistic horizon governed by a geometric distribution. In the spirit of infinite-horizon
control in model-free reinforcement learning, we refer to this formulation as infinite-horizon
prediction.

The shift from standard single-step models to infinite-horizon γ-models carries several
advantages:

Constant-time prediction Single-step models must perform an O(n) operation to
predict n steps into the future; γ-models amortize the work of predicting over extended
horizons during training such that long-horizon prediction occurs with a single feedforward
pass of the model.

Generalized rollouts and value estimation Probabilistic prediction horizons lead to
generalizations of the core procedures of model-based reinforcement learning. For example,
generalized rollouts allow for fine-grained interpolation between training-time and testing-
time compounding error. Similarly, terminal value functions appended to truncated γ-model
rollouts allow for a gradual transition between model-based and model-free value estimation.

Omission of unnecessary information The predictions of a γ-model do not come
paired with an associated timestep. While on the surface a limitation, we show why knowing
precisely when a state will be encountered is not necessary for decision-making. Infinite-
horizon γ-model prediction selectively discards the unnecessary information from a standard
model-based rollout.

7

Infinite-Horizon Prediction

3.2 Related Work

The complementary strengths and weaknesses of model-based and model-free reinforcement
learning have led to a number of works that attempt to combine these approaches. Common
strategies include initializing a model-free algorithm with the solution found by a model-based
planner (Levine & Koltun, 2013; Farshidian et al., 2014; Nagabandi et al., 2018), feeding
model-generated data into an otherwise model-free optimizer (Sutton, 1990; Silver et al.,
2008; Lampe & Riedmiller, 2014; Kalweit & Boedecker, 2017; Luo et al., 2019), using model
predictions to improve the quality of target values for temporal difference learning (Buckman
et al., 2018b; Feinberg et al., 2018), leveraging model gradients for backpropagation (Nguyen
& Widrow, 1990; Jordan & Rumelhart, 1992; Heess et al., 2015b), and incorporating model-
based planning without explicitly predicting future observations (Tamar et al., 2016; Silver
et al., 2017; Oh et al., 2017; Kahn et al., 2018; Amos et al., 2018; Schrittwieser et al., 2019).
In contrast to combining independent model-free and model-based components, we describe
a framework for training a new class of predictive model with a generative, model-based
reinterpretation of model-free tools.

Temporal difference models (TDMs) (Pong et al., 2018) provide an alternative method of
training models with what are normally considered to be model-free algorithms. TDMs
interpret models as a special case of goal-conditioned value functions (Kaelbling, 1993; Foster
& Dayan, 2002; Schaul et al., 2015; Andrychowicz et al., 2017), though the TDM is constrained
to predict at a fixed horizon and is limited to tasks for which the reward depends only on the
last state. In contrast, the γ-model predicts over a discounted infinite-horizon future and
accommodates arbitrary rewards.

The most closely related prior work to γ-models is the successor representation (Dayan,
1993), a formulation of long-horizon prediction that has been influential in both cognitive
science (Momennejad et al., 2017; Gershman, 2018) and machine learning (Kulkarni et al.,
2016; Ma et al., 2018). In its original form, the successor representation is tractable only
in tabular domains. Prior continuous variants have focused on policy evaluation based
on expected state featurizations (Barreto et al., 2017; 2018; Hansen et al., 2020), forgoing
an interpretation as a probabilistic model suitable for state prediction. Converting the
tabular successor representation into a continuous generative model is non-trivial because
the successor representation implicitly assumes the ability to normalize over a finite state
space for interpretation as a predictive model.

Because of the discounted state occupancy’s central role in reinforcement learning, its
approximation by Bellman equations has been the focus of multiple lines of work.
Generalizations include β-models (Sutton, 1995), allowing for arbitrary mixture distributions
over time, and option models (Sutton et al., 1999), allowing for state-dependent termination
conditions. While our focus is on generative models featuring the state-independent geometric
timestep weighting of the successor representation, we are hopeful that the tools developed

8

Infinite-Horizon Prediction

in this paper could also be applicable in the design of continuous analogues of these
generalizations.

3.3 Generative Temporal Difference Learning

Our goal is to make long-horizon predictions without the need to repeatedly apply a single-
step model. Instead of modeling states at a particular instant in time by approximating the
environment transition distribution p(st+1 | st, at), we aim to predict a weighted distribution
over all possible future states according to µ(s | st, at). In principle, this can be posed as a
conventional maximum likelihood problem:

max
θ

Est,at,s∼µ(·|st,at) [log µθ(s | st, at)] .

However, doing so would require collecting samples from the occupancy µ independently
for each policy of interest. Forgoing the ability to re-use data from multiple policies when
training dynamics models would sacrifice the sample efficiency that often makes model usage
compelling in the first place, so we instead aim to design an off-policy algorithm for training
µθ. We accomplish this by reinterpreting temporal difference learning as a method for training
generative models.

Instead of collecting only on-policy samples from µ(s | st,at), we observe that µ admits a
convenient recursive form. Consider a modified MDP in which there is a 1− γ probability of
terminating at each timestep. The distribution over the state at termination, denoted as the
exit state se, corresponds to first sampling from a termination timestep ∆t ∼ Geom(1− γ)
and then sampling from the per-timestep distribution p(st+∆t | st, at, π). The distribution over
se corresponds exactly to that in the definition of the occupancy µ in Equation 2.2, but also
lends itself to an interpretation as a mixture over only two components: the distribution at the
immediate next timestep, in the event of termination, and that over all subsequent timesteps,
in the event of non-termination. This mixture yields the following target distribution:

ptarg(se | st, at) = (1− γ)p(se | st, at)︸ ︷︷ ︸
single-step distribution

+ γEst+1∼p(·|st,at) [µθ(se | st+1)]︸ ︷︷ ︸
model bootstrap

. (3.1)

We use the shorthand µθ(se | st+1) = Eat+1∼π(·|st+1) [µθ(se | st+1, at+1)]. The target distribution
ptarg is reminiscent of a temporal difference target value: the state-action conditioned
occupancy µθ(se | st, at) acts as a Q-function, the state-conditioned occupancy µθ(se | st+1)
acts as a value function, and the single-step distribution p(st+1 | st,at) acts as a reward
function. However, instead of representing a scalar target value, ptarg is a distribution from
which we may sample future states se. We can use this target distribution in place of samples

9

Infinite-Horizon Prediction

from the true discounted occupancy µ:

max
θ

Est,at,se∼(1−γ)p(·|st,at)+γE[µθ(·|st+1)] [log µθ(se | st, at)] .

This formulation differs from a standard maximum likelihood learning problem in that the
target distribution depends on the current model. By bootstrapping the target distribution
in this manner, we are able to use only empirical (st,at, st+1) transitions from one policy
in order to train an infinite-horizon predictive model µθ for any other policy. Because the
horizon is governed by the discount γ, we refer to such a model as a γ-model.

This bootstrapped model training may be incorporated into a number of different generative
modeling frameworks. We discuss two cases here. (1) When the model µθ permits only
sampling, we may train µθ by minimizing an f -divergence from samples:

L1(st, at, st+1) = Df (µθ(· | st, at) || (1− γ)p(· | st, at) + γµθ(· | st+1)). (3.2)

This objective leads naturally to an adversarially-trained γ-model. (2) When the model µθ
permits density evaluation, we may minimize an error defined on log-densities directly:

L2(st, at, st+1) = Ese

[∥∥ log µθ(se | st, at)− log
(
(1− γ)p(se | st, at)+ γµθ(se | st+1)

)∥∥2
2

]
. (3.3)

This objective is suitable for γ-models instantiated as normalizing flows. Due to the
approximation of a target log-density log

(
(1− γ)p(· | st, at) + γEst+1 [µθ(· | st+1)]

)
using a

single next state st+1, L2 is unbiased for deterministic dynamics and a bound in the case
of stochastic dynamics. We provide complete algorithmic descriptions of both variants and
highlight practical training considerations in Section 3.5.

3.4 Analysis and Applications of γ-Models

Using the γ-model for prediction and control requires us to generalize procedures common
in model-based reinforcement learning. In this section, we derive the γ-model rollout and
show how it can be incorporated into a reinforcement learning procedure that hybridizes
model-based and model-free value estimation. First, however, we show that the γ-model is
a continuous, generative counterpart to another type of long-horizon model: the successor
representation.

γ-Models as a Continuous Successor Representation

The successor representation M is a prediction of expected visitation counts (Dayan, 1993).
It has a recurrence relation making it amenable to tabular temporal difference algorithms:

M(se | st, at) = Est+1∼p(·|st,at) [1 [se = st+1] + γM(se | st+1)] . (3.4)

10

Infinite-Horizon Prediction

Adapting the successor representation to continuous state spaces in a way that retains an
interpretation as a probabilistic model has proven challenging. However, variants that forego
the ability to sample in favor of estimating expected state features have been developed
(Barreto et al., 2017).

The form of the successor recurrence relation bears a striking resemblance to that of the target
distribution in Equation 3.1, suggesting a connection between the generative, continuous γ-
model and the discriminative, tabular successor representation. We now make this connection
precise.

Proposition 1. The global minimum of both L1 and L2 is achieved if and only if the resulting
γ-model produces samples according to the normalized successor representation:

µθ(se | st, at) = (1− γ)M(se | st, at).

Proof. In the case of either objective, the global minimum is achieved only when

µθ(se | st, at) = (1− γ)p(se | st, at) + γEst+1∼p(·|st,at) [µθ(se | st+1)]

for all st,at. We recognize this optimality condition exactly as the recurrence defining the
successor representation M (Equation 3.4), scaled by (1 − γ) such that µθ integrates to 1
over se.

γ-Model Rollouts

Standard single-step models, which correspond to γ-models with γ = 0, can predict multiple
steps into the future by making iterated autoregressive predictions, conditioning each step on
their own output from the previous step. These sequential rollouts form the foundation of
most model-based reinforcement learning algorithms. We now generalize these rollouts to
γ-models for γ > 0, allowing us to decouple the discount used during model training from
the desired horizon in control. When working with multiple discount factors, we explicitly
condition an occupancy on its discount as µ(se | st; γ). In the results below, we omit the
model parameterization θ whenever a statement applies to both a discounted occupancy µ
and a parametric γ-model µθ.

Theorem 1. Let µn(se | st; γ) denote the distribution over states at the nth sequential step
of a γ-model rollout beginning from state st. For any desired discount γ̃ ∈ [γ, 1), we may
reweight the samples from these model rollouts according to the weights

αn =
(1− γ̃)(γ̃ − γ)n−1

(1− γ)n

11

Infinite-Horizon Prediction

to obtain the state distribution drawn from µ1(se | st; γ̃) = µ(se | st; γ̃). That is, we may
reweight the steps of a γ-model rollout so as to match the distribution of a γ̃-model with larger
discount:

µ(se | st; γ̃) =
∞∑

n=1

αnµn(se | st; γ).

Proof. Each step of the γ-model samples a time according to ∆t ∼ Geom(1− γ), so the time
after n γ-model steps is distributed according to the sum of n independent geometric random
variables with identical parameters. This sum corresponds to a negative binomial random
variable, NB(n, 1− γ), with the following pmf:

pn(t) =

(
t− 1

t− n

)
γ(t−n)(1− γ)n. (3.5)

Equation 3.5 is mildly different from the textbook pmf because we want a distribution over
the total number of trials (in our case, cumulative timesteps t) instead of the number of
successes before the nth failure. The latter is more commonly used because it gives the
random variable the same support, t ≥ 0, for all n. The form in Equation 3.5 only has
support for t ≥ n, which substantially simplifies the following analysis.

The distributions q(t) expressible as a mixture over the per-timestep negative binomial
distributions pn are given by:

q(t) =
t∑

n=1

αnpn(t),

in which αn are the mixture weights. Because pn only has support for t ≥ n, it suffices to
only consider the first t γ-model steps when solving for q(t).

We are interested in the scenario in which q(t) is also a geometric random variable with smaller
parameter, corresponding to a larger discount γ̃. We proceed by setting q(t) = Geom(1− γ̃)
and solving for the mixture weights αn by induction.

Base case. Let n = 1. Because p1 is the only mixture component with support at t = 1,
α1 is determined by q(1):

1− γ̃ = α1

(
t− 1

t− 1

)
γt−1(1− γ)t

= α1(1− γ).

12

Infinite-Horizon Prediction

Solving for α1 gives:

α1 =
1− γ̃
1− γ .

Induction step. We now assume the form of αk for k = 1, . . . , n− 1 and solve for αn using
q(n).

(1− γ̃)γ̃n−1 =
n∑

k=1

αk

(
n− 1

n− k

)
γn−k(1− γ)k

=

{
n−1∑

k=1

(1− γ̃)(γ̃ − γ)k−1

(1− γ)k
(
n− 1

n− k

)
γn−k(1− γ)k

}
+ αn(1− γ)n

= (1− γ̃)
{
n−1∑

k=1

(
n− 1

n− k

)
(γ̃ − γ)k−1γn−k

}
+ αn(1− γ)n

= (1− γ̃)
{

n∑

k=1

(
n− 1

n− k

)
(γ̃ − γ)k−1γn−k

}
− (1− γ̃)(γ̃ − γ)n−1 + αn(1− γ)n

= (1− γ̃)γ̃n−1 − (1− γ̃)(γ̃ − γ)n−1 + αn(1− γ)n

Solving for αn gives

αn =
(1− γ̃)(γ̃ − γ)n−1

(1− γ)n

as desired.

This reweighting scheme has two special cases of interest. A standard single-step model,
with γ = 0, yields αn = (1− γ̃)γ̃n−1. These weights are familiar from the definition of the
discounted state occupancy in terms of a per-timestep mixture (Equation 2.2). Setting γ = γ̃
yields αn = 0n−1, or a weight of 1 on the first step and 0 on all subsequent steps.1 This result
is also expected: when the model discount matches the target discount, only a single forward
pass of the model is required.

Figure 3.2 visually depicts the reweighting scheme and the number of steps required for
truncated model rollouts to approximate the distribution induced by a larger discount. There
is a natural tradeoff with γ-models: the higher γ is, the fewer model steps are needed to
make long-horizon predictions, reducing model-based compounding prediction errors (Asadi
et al., 2019; Janner et al., 2019). However, increasing γ transforms what would normally

1We define 00 as limx→0 x
x = 1.

13

Infinite-Horizon Prediction

20 40 60 80 100

timestep t

0.00

0.01

0.02

0.03

0.04

0.05

p(
t)

Reweighting γ = 0.95 predictions to γ̃ = 0.99

t distribution per model step mixture

0.0 0.2 0.4 0.6 0.8 1.0

model discount γ

100

101

102

ro
ll
ou

t
le

n
gt

h

γ̃ :

Required model rollout lengths

0.5 0.75 0.9 0.95 0.975 0.99

(a) (b)

Figure 3.2: (Rollouts with probabilistic horizons) (a) The first step from a γ-model
samples states at timesteps distributed according to a geometric distribution with parameter
1− γ; all subsequent steps have a negative binomial timestep distribution stemming from the
sum of independent geometric random variables. When these steps are reweighted according to
Theorem 1, the resulting distribution follows a geometric distribution with smaller parameter
(corresponding to a larger discount value γ̃). (b) The number of steps needed to recover 95%
of the probability mass from distributions induced by various target discounts γ̃ for all valid
model discounts γ. When using a standard single-step model, corresponding to the case of
γ = 0, a 299-step model rollout is required to reweight to a discount of γ̃ = 0.99.

be a standard maximum likelihood problem (in the case of single-step models) into one
resembling approximate dynamic programming (with a model bootstrap), leading to model-
free bootstrap error accumulation (Kumar et al., 2019a). The primary distinction is whether
this accumulation occurs during training, when the work of sampling from the occupancy
µ is being amortized, or during “testing”, when the model is being used for rollouts. While
this horizon-based error compounding cannot be eliminated entirely, γ-models allow for a
continuous interpolation between the two extremes.

γ-Model-Based Value Expansion

We now turn our attention from prediction with γ-models to value estimation for control. In
tabular domains, the state-action value function can be decomposed as the inner product
between the successor representation M and the vector of per-state rewards (Gershman,
2018). Taking care to account for the normalization from the equivalence in Proposition 1,
we can similarly estimate the Q function as the expectation of reward under states sampled

14

Infinite-Horizon Prediction

from the γ-model:

Q(st, at; γ) =
∞∑

∆t=1

γ∆t−1

∫

S
r(se)p(st+∆t = se | st, at, π)dse

=

∫

S
r(se)

∞∑

∆t=1

γ∆t−1p(st+∆t = se | st, at, π)dse

=
1

1− γEse∼µ(·|st,at;γ) [r(se)] (3.6)

This relation suggests a model-based reinforcement learning algorithm in which Q-values are
estimated by a γ-model without the need for sequential model-based rollouts. However, in
some cases it may be practically difficult to train a generative γ-model with discount as large
as that of a discriminative Q-function. While one option is to chain together γ-model steps
as in Section 3.4, an alternative solution often effective with single-step models is to combine
short-term value estimates from a truncated model rollout with a terminal model-free value
prediction:

VMVE(st; γ̃) =
H∑

n=1

γ̃n−1r(st+n) + γ̃HV (st+H ; γ̃).

This hybrid estimator is referred to as a model-based value expansion (MVE; Feinberg et al.
2018). There is a hard transition between the model-based and model-free value estimation
in MVE, occuring at the model horizon H. We may replace the single-step model with a
γ-model for a similar estimator in which there is a probabilistic prediction horizon, and as a
result a gradual transition.

Theorem 2. For γ̃ > γ, V (st; γ̃) may be decomposed as a weighted average of H γ-model
steps and a terminal value estimation. We denote this the γ-MVE estimator:

V̂γ-MVE(st; γ̃) =
1

1− γ̃
H∑

n=1

αnEse∼µn(·|st;γ) [r(se)] +

(
γ̃ − γ
1− γ

)H
Ese∼µH(·|st;γ) [V (se; γ̃)] .

15

Infinite-Horizon Prediction

Proof.

V (st; γ̃) =
1

1− γ̃Ese∼µ(·|st;γ̃) [r(se)]

=
1

1− γ̃
∞∑

n=1

αnEse∼µn(·|st;γ) [r(se)]

=
1

1− γ̃
H∑

n=1

αnEse∼µn(·|st;γ) [r(se)]

︸ ︷︷ ︸
1

+
1

1− γ̃
∞∑

n=H+1

αnEse∼µn(·|st;γ) [r(se)]

︸ ︷︷ ︸
2

. (3.7)

The second equality rewrites an expectation over a γ̃-model as an expectation over a rollout
of a γ-model using step weights αn from Theorem 1. We recognize 1 as the model-based
component of the value estimation in γ-MVE. All that remains is to write 2 using a terminal
value function.

∞∑

n=H+1

αnEse∼µn(·|st;γ) [r(se)] =
∞∑

n=1

αH+nEse∼µH+n(·|st;γ) [r(se)]

=

(
γ̃ − γ
1− γ

)H
EsH∼µH(·|st;γ)

[
∞∑

n=1

αnEse∼µn(·|sH ;γ) [r(se)]

]

=

(
γ̃ − γ
1− γ

)H
EsH∼µH(·|st;γ)

[
Ese∼µ(·|sH ;γ̃) [r(se)]

]

= (1− γ̃)
(
γ̃ − γ
1− γ

)H
Ese∼µH(·|st;γ) [V (se; γ̃)] (3.8)

The second equality uses αH+n =
(
γ̃−γ
1−γ

)H
αn and the time-invariance of G(n) with respect to

its conditioning state. Plugging Equation 3.8 into Equation 3.7 gives:

V (st; γ̃) =
1

1− γ̃
H∑

n=1

αnEse∼µn(·|st;γ) [r(se)] +

(
γ̃ − γ
1− γ

)H
Ese∼µH(·|st;γ) [V (se; γ̃)] .

Remark 1. Using Lemma 1 from Appendix A.1 to substitute 1 −∑H
n=1 αn in place of(

γ̃−γ
1−γ

)H
clarifies the interpretation of V (st; γ̃) as a weighted average over H γ-model steps

and a terminal value function. Because the mixture weights must sum to 1, it is unsurprising

that the weight on the terminal value function turned out to be
(
γ̃−γ
1−γ

)H
= 1−∑H

n=1 αn.

16

Infinite-Horizon Prediction

Algorithm 1 γ-model based value expansion
1: Input γ: model discount, γ̃: value discount, λ : step size
2: Initialize µθ : γ-model generator
3: Initialize Qω : Q-function, Vξ : value function, πψ : policy, D : replay buffer
4: for each iteration do
5: for each environment step do
6: at ∼ πψ(· | st)
7: st+1 ∼ p(· | st, at)
8: rt = r(st, at)
9: D ← D ∪ {st, at, rt, st+1}

10: end for
11: for each gradient step do
12: Sample transitions (st, at, rt, st+1) from D
13: Update µθ to Algorithm 2 or 3
14: Compute Vγ−MVE(st+1) according to Theorem 2
15: Update Q-function parameters:

ω ← ω − λ∇ω
1
2
(Qω(st, at)− (rt + γ̃Vγ−MVE(st+1)))

2

16: Update value function parameters:
ξ ← ξ − λ∇ξ

1
2

(
Vξ(st)− Ea∼πψ(·|st) [Qω(st, a)− log πψ(a | st)]

)2
17: Update policy parameters:

ψ ← ψ − λ∇ψEa∼πψ(·|st) [log πψ(a | st)−Qω(st, a)]
18: end for
19: end for

Remark 2. Setting γ = 0 recovers standard MVE with a single-step model, as the weights
on the model steps simplify to αn = (1− γ̃)(γ̃ − γ)n−1 and the weight on the terminal value
function simplifies to γ̃H .

The γ-MVE estimator allows us to perform γ-model-based rollouts with horizon H, reweight
the samples from this rollout by solving for weights αn given a desired discount γ̃ > γ, and
correct for the truncation error stemming from the finite rollout length using a terminal
value function with discount γ̃. As expected, MVE is a special case of γ-MVE, as can be
verified by considering the weights corresponding to γ = 0 described in Section 3.4. This
estimator, along with the simpler value estimation in Equation 3.6, highlights the fact that
it is not necessary to have timesteps associated with states in order to use predictions for
decision-making. Pseudocode for an actor-critic algorithm using the γ-MVE estimator is
provided Algorithm 1.

17

Infinite-Horizon Prediction

3.5 Practical Training of γ-Models

Because γ-model training differs from standard dynamics modeling primarily in the
bootstrapped target distribution and not in the model parameterization, γ-models are in
principle compatible with any generative modeling framework. We focus on two representative
scenarios, differing in whether the generative model class used to instantiate the γ-model
allows for tractable density evaluation.

Training without density evaluation. When the γ-model parameterization does not
allow for tractable density evaluation, we minimize a bootstrapped f -divergence according to
L1 (Equation 3.2) using only samples from the model. The generative adversarial framework
provides a convenient way to train a parametric generator by minimizing an f -divergence
of choice given only samples from a target distribution ptarg and the ability to sample from
the generator (Goodfellow et al., 2014a; Nowozin et al., 2016). In the case of bootstrapped
maximum likelihood problems, our target distribution is induced by the model itself (alongside
a single-step transition distribution), meaning that we only need sample access to our γ-model
in order to train µθ as a generative adversarial network (GAN).

Introducing an auxiliary discriminator Dϕ and selecting the Jensen-Shannon divergence as our
f -divergence, we can reformulate minimization of the original objective L1 as a saddle-point
optimization over the following objective:

L̂1(st, at) = Es+e ∼ptarg(·|st,at)
[
logDϕ(s

+
e | st, at)

]
+ Es−e ∼µθ(·|st,at)

[
log(1−Dϕ(s

−
e | st, at))

]
,

which is minimized over µθ and maximized over Dϕ. As in L1, ptarg refers to the bootstrapped
target distribution in Equation 3.1. In this formulation, µθ produces samples by virtue of a
deterministic mapping of a random input vector z ∼ N (0, I) and conditioning information
(st, at). Other choices of f -divergence may be instantiated by different choices of activation
function (Nowozin et al., 2016).

Training with density evaluation. When the γ-model permits density evaluation, we
may bypass saddle point approximations to an f -divergence and directly regress to target
density values, as in objective L2 (Equation 3.3). This is a natural choice when the γ-model
is instantiated as a conditional normalizing flow (Rezende & Mohamed, 2015). Evaluating
target values of the form

T (st, at, st+1, se) = log
(
(1− γ)p(se | st, at) + γµθ(se | st+1)

)

requires density evaluation of not only our γ-model, but also the single-step transition
distribution. There are two options for estimating the single-step densities: (1) a single-step

18

Infinite-Horizon Prediction

Algorithm 2 γ-model training without density evaluation
1: Input D : dataset of transitions, π : policy, λ : step size, τ : delay parameter
2: Initialize parameter vectors θ, θ̄, ϕ
3: while not converged do
4: Sample transitions (st, at, st+1) from D and actions at+1 ∼ π(· | st+1)
5: Sample from bootstrapped target s+e ∼ (1− γ)δst+1 + γµθ̄(· | st+1, at+1)
6: Sample from current model s−e ∼ µθ(· | st, at)
7: Evaluate objective L = logDϕ(s

+
e | st, at) + log(1−Dϕ(s

−
e | st, at))

8: Update model parameters θ ← θ − λ∇θL; ϕ← ϕ+ λ∇ϕL
9: Update target parameters θ̄ ← τθ + (1− τ)θ̄

10: end while

Algorithm 3 γ-model training with density evaluation
1: Input D : dataset of transitions, π : policy, λ : step size, τ : delay parameter, σ2 :

variance
2: Initialize parameter vectors θ, θ̄; let f denote the Gaussian pdf
3: while not converged do
4: Sample transitions (st, at, st+1) from D and actions at+1 ∼ π(· | st+1)
5: Sample from bootstrapped target se ∼ (1− γ)N (st+1, σ

2) + γµθ̄(· | st+1, at+1)
6: Construct target values T = log

(
(1− γ)f(se | st+1, σ

2) + γµθ̄(se | st+1, at+1)
)

7: Evaluate objective L = ∥log µθ(se | st, at)− T∥22
8: Update model parameters θ ← θ − λ∇θL
9: Update target parameters θ̄ ← τθ + (1− τ)θ̄

10: end while

model pθ may be trained alongside the γ-model µθ for the purposes of constructing targets
T (st,at, st+1, se), or (2) a simple approximate model may be constructed on the fly from
(st, at, st+1) transitions. We found pθ = N (st+1, σ

2), with σ2 a constant hyperparameter, to
be sufficient.

Stability considerations. To alleviate the instability caused by bootstrapping, we appeal
to the standard solution employed in model-free reinforcement learning: decoupling the
regression targets from the current model by way of a “delayed" target network (Mnih et al.,
2015). In particular, we use a delayed γ-model µθ̄ in the bootstrapped target distribution
ptarg, with the parameters θ̄ given by an exponentially-moving average of previous parameters
θ.

We summarize the above scenarios in Algorithms 2 and 3. We isolate model training from
data collection and focus on a setting in which a static dataset is provided, but this algorithm

19

Infinite-Horizon Prediction

may also be used in a data-collection loop for policy improvement. Further implementation
details, including all hyperparameter settings and network architectures, are included in
Appendix A.2.

3.6 Experimental Evaluation

Our experimental evaluation is designed to study the viability of γ-models as a replacement
of conventional single-step models for long-horizon state prediction and model-based control.

−1 0 1

−2

−1

0

1

2

an
gl

e
2

(r
ad

)

Single-step model
γ = 0

−1 0 1

γ = 0.5

−1 0 1

γ = 0.75

−1 0 1

γ = 0.85

−1 0 1

γ = 0.95

−1 0 1

angle 1 (rad)

Ground Truth
γ = 0.95

Acrobot

0 π 2π
−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

Single-step model
γ = 0

0 π 2π

γ = 0.5

0 π 2π

γ = 0.75

0 π 2π

γ = 0.85

0 π 2π

γ = 0.95

0 π 2π

angle (rad)

Ground Truth
γ = 0.95

Pendulum

Figure 3.3: (γ-model predictions) Visualization of the predicted distribution from a
single feedforward pass of normalizing flow γ-models trained with varying discounts γ. The
conditioning state st is denoted by . The leftmost plots, with γ = 0, correspond to a
single-step model. For comparison, the rightmost plots show a Monte Carlo estimation of the
discounted occupancy from 100 environment trajectories.

20

Infinite-Horizon Prediction

Prediction

We investigate γ-model predictions as a function of discount in continuous-action versions of
two benchmark environments suitable for visualization: acrobot (Sutton, 1996) and pendulum.
The training data come from a mixture distribution over all intermediate policies of 200
epochs of optimization with soft-actor critic (SAC; Haarnoja et al. 2018). The final converged
policy is used for γ-model training. We refer to Appendix A.2 for implementation and
experiment details.

Figure 3.3 shows the predictions of a γ-model trained as a normalizing flow according
to Algorithm 3 for five different discounts, ranging from γ = 0 (a single-step model) to
γ = 0.95. The rightmost column shows the ground truth discounted occupancy corresponding
to γ = 0.95, estimated with Monte Carlo rollouts of the policy. Increasing the discount γ
during training has the expected effect of qualitatively increasing the predictive lookahead of
a single feedforward pass of the γ-model. We found flow-based γ-models to be more reliable
than GAN parameterizations, especially at higher discounts. Corresponding GAN γ-model
visualizations can be found in Appendix A.4 for comparison.

Equation 3.6 expresses values as an expectation over a single feedforward pass of a γ-model.

Rewards γ-model predictions Value estimates Ground truth

0 π 2π 0 π 2π 0 π 2π

angle (rad)

γ-model predictions

0 π 2π 0 π 2π 0 π 2π

angle (rad)

γ-model predictions

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π 0 π 2π 0 π 2π

angle (rad)

γ-model predictions

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)

−8

0

8

an
gu

la
r

ve
lo

ci
ty

(r
ad

/
s)

0 π 2π

angle (rad)
0 π 2π

angle (rad)

Figure 3.4: (γ-model value estimation) Values are expectations of reward over a single
feedforward pass of a γ-model (Equation 3.6). We visualize γ-model predictions (γ = 0.99)
from nine starting states, denoted by , in the pendulum benchmark environment. Taking
the expectation of reward over each of these predicted distributions yields a value estimate
for the corresponding conditioning state. The rightmost plot depicts the value map produced
by value iteration on a discretization of the same environment for reference.

21

Infinite-Horizon Prediction

2 4 6 8

steps ×103

−1000

−800

−600

−400

−200

0

av
er

ag
e

re
tu

rn

Acrobot

5 10 15

steps ×103

−40

−20

0

20

40

60

80

100

Mountain Car

1 2 3 4 5

steps ×103

−1750

−1500

−1250

−1000

−750

−500

−250

0

Pendulum

γ-MVE MVE MBPO SAC PPOγ-MVE MVE MBPO SAC PPO

5 10 15 20

steps ×103

−160

−140

−120

−100

−80

−60

−40

−20

0

Reacher

Figure 3.5: (γ-MVE control performance) Comparative performance of γ-MVE and
four prior reinforcement learning algorithms on continuous control benchmark tasks. γ-MVE
retains the asymptotic performance of SAC with sample-efficiency matching that of MBPO.
Shaded regions depict standard deviation among 5 seeds.

We visualize this relation in Figure 3.4, which depicts γ-model predictions on the pendulum
environment for a discount of γ = 0.99 and the resulting value map estimated by taking
expectations over these predicted state distributions. In comparison, value estimation for the
same discount using a single-step model would require 299-step rollouts in order to recover
95% of the probability mass (see Figure 3.2).

Control

To study the utility of the γ-model for model-based reinforcement learning, we use the
γ-MVE estimator from Section 3.4 as a drop-in replacement for value estimation in SAC.
We compare this approach to the state-of-the-art in model-based and model-free methods,
with representative algorithms consisting of SAC, PPO (Schulman et al., 2017), MBPO
(Janner et al., 2019), and MVE (Feinberg et al., 2018). In γ-MVE, we use a model discount
of γ = 0.8, a value discount of γ̃ = 0.99 and a single model step (n = 1). We use a model
rollout length of 5 in MVE such that it has an effective horizon identical to that of γ-MVE.
Other hyperparameter settings can once again be found in Appendix A.2; details regarding
the evaluation environments can be found in Appendix A.3. Figure 3.5 shows learning curves
for all methods. We find that γ-MVE converges faster than prior algorithms, twice as quickly
as SAC, while retaining their asymptotic performance.

22

Infinite-Horizon Prediction

3.7 Discussion

We have introduced a new class of predictive model, a γ-model, that is a hybrid between
standard model-free and model-based mechanisms. It is policy-conditioned and infinite-
horizon, like a value function, but independent of reward, like a standard single-step model.
This new formulation of infinite-horizon prediction allows us to generalize the procedures
integral to model-based control, yielding new variants of model rollouts and model-based
value estimation. Our experimental evaluation shows that, on tasks with low to moderate
dimensionality, our method learns accurate long-horizon predictive distributions without
sequential rollouts and can be incorporated into standard model-based reinforcement learning
methods to produce results that are competitive with state-of-the-art algorithms.

However, scaling up this framework to more complex tasks, including high-dimensional
continuous control problems and tasks with image observations, presents a number of
additional challenges. These challenges are largely those of generative modeling; whereas
temporal differences algorithms are conventionally used to estimate expectations of scalar
random variables, we are here employing them to estimate high-dimensional joint distributions.
Unsurprisingly, this approach can fall short above a threshold dimensionality (in our experience,
above 10) or discount factor (above 0.99), as these both increase the complexity of the
distribution in question. In the next chapter, we investigate whether the language modeling
toolbox can be used to address this limitation directly and provide effective generative
modeling solutions for the reinforcement learning problem setting.

23

4

Reinforcement Learning as Sequence Modeling

4.1 Introduction

The standard treatment of reinforcement learning relies on decomposing a long-horizon
problem into smaller, more local subproblems. In model-free algorithms, this takes the
form of the principle of optimality (Bellman, 1957), a recursion that leads naturally to the
class of dynamic programming methods like Q-learning. In model-based algorithms, this
decomposition takes the form of single-step predictive models, which reduce the problem
of predicting high-dimensional, policy-dependent state trajectories to that of estimating a
comparatively simpler, policy-agnostic transition distribution. As seen in Chapter 3, these
two approaches constitute the endpoints of a spectrum, and it is possible to design methods
that interpolate between them.

However, we can also view reinforcement learning as analogous to a sequence generation
problem, with the goal being to produce a sequence of actions that, when enacted in an
environment, will yield a sequence of high rewards. In this chapter, we consider the logical
extreme of this analogy: does the toolbox of contemporary sequence modeling itself provide a
viable reinforcement learning algorithm? We investigate this question by treating trajectories
as unstructured sequences of states, actions, and rewards. We model the distribution of
these trajectories using a Transformer architecture (Vaswani et al., 2017), the current tool of
choice for capturing long-horizon dependencies. In place of the trajectory optimizers common
in model-based control, we use beam search (Reddy, 1977), a heuristic decoding scheme
ubiquitous in natural language processing, as a planning algorithm.

Posing reinforcement learning, and more broadly data-driven control, as a sequence modeling
problem handles many of the considerations that typically require distinct solutions: actor-
critic algorithms require separate actors and critics, model-based algorithms require predictive
dynamics models, and offline reinforcement learning methods often require estimation of the

24

Reinforcement Learning as Sequence Modeling

Trajectory Transformer

Figure 4.1: (Trajectory Transformer architecture) The Trajectory Transformer trains
on sequences of (autoregressively discretized) states, actions, and rewards. Planning with the
Trajectory Transformer mirrors the sampling procedure used to generate sequences from a
language model.

behavior policy (Fujimoto et al., 2019). These components estimate different densities or
distributions, such as that over actions in the case of actors and behavior policies, or that
over states in the case of dynamics models. Even value functions can be viewed as performing
inference in a graphical model with auxiliary optimality variables, amounting to estimation
of the distribution over future rewards (Levine, 2018). All of these problems can be unified
under a single sequence model, which treats states, actions, and rewards as simply a stream
of data. The advantage of this perspective is that high-capacity sequence model architectures
can be brought to bear on the problem, resulting in a more streamlined approach that could
benefit from the same scalability underlying large-scale unsupervised learning results (Brown
et al., 2020).

We refer to our model as the Trajectory Transformer (Figure 5.2) and evaluate it in the offline
regime so as to be able to make use of large amounts of prior interaction data. The Trajectory
Transformer is a substantially more reliable long-horizon predictor than conventional dynamics
models, even in Markovian environments for which the standard model parameterization is
in principle sufficient. When decoded with a modified beam search procedure that biases
trajectory samples according to their cumulative reward, the Trajectory Transformer attains
results on offline reinforcement learning benchmarks that are competitive with the best prior
methods designed specifically for that setting. Additionally, we describe how variations of
the same decoding procedure yield a model-based imitation learning method, a goal-reaching
method, and, when combined with dynamic programming, a state-of-the-art planner for
sparse-reward, long-horizon tasks. Our results suggest that the algorithms and architectural
motifs that have been widely applicable in unsupervised learning carry similar benefits in
reinforcement learning.

25

Reinforcement Learning as Sequence Modeling

4.2 Related Work

Recent advances in sequence modeling with deep networks have led to rapid improvement in
the effectiveness of such models, from LSTMs and sequence-to-sequence models (Hochreiter
& Schmidhuber, 1997; Sutskever et al., 2014) to Transformer architectures with self-attention
(Vaswani et al., 2017). In light of this, it is tempting to consider how such sequence models
can lead to improved performance in reinforcement learning, which is also concerned with
sequential processes (Sutton, 1988). Indeed, a number of prior works have studied applying
sequence models of various types to represent components in standard reinforcement learning
algorithms, such as policies, value functions, and models (Bakker, 2002; Heess et al., 2015a;
Chiappa et al., 2017; Parisotto et al., 2020; Parisotto & Salakhutdinov, 2021; Kumar et al.,
2020b). While such works demonstrate the importance of such models for representing
memory (Oh et al., 2016), they still rely on standard reinforcement learning algorithmic
advances to improve performance. The goal in our work is different: we aim to replace as
much of the reinforcement learning pipeline as possible with sequence modeling, so as to
produce a simpler method whose effectiveness is determined by the representational capacity
of the sequence model rather than algorithmic sophistication.

Estimation of probability distributions and densities arises in many places in learning-based
control. This is most obvious in model-based reinforcement learning, where it is used to train
predictive models that can then be used for planning or policy learning (Sutton, 1990; Silver
et al., 2008; Fairbank, 2008; Deisenroth & Rasmussen, 2011; Lampe & Riedmiller, 2014; Heess
et al., 2015b; Janner et al., 2020; Amos et al., 2021). However, it also figures heavily in offline
reinforcement learning, where it is used to estimate conditional distributions over actions
that serve to constrain the learned policy to avoid out-of-distribution behavior that is not
supported under the dataset (Fujimoto et al., 2019; Kumar et al., 2019a; Ghasemipour et al.,
2020); imitation learning, where it is used to fit an expert’s actions to obtain a policy (Ross
& Bagnell, 2010; Ross et al., 2011); and other areas such as hierarchical reinforcement
learning (Peng et al., 2017; Co-Reyes et al., 2018; Jiang et al., 2019). In our method, we
train a single high-capacity sequence model to represent the joint distribution over sequences
of states, actions, and rewards. This serves as both a predictive model and a behavior policy
(for imitation) or behavior constraint (for offline reinforcement learning).

Our approach to reinforcement learning is most closely related to prior model-based methods
that plan with a learned model (Chua et al., 2018; Wang & Ba, 2020). However, while
these prior methods typically require additional machinery to work well, such as ensembles
in the online setting (Kurutach et al., 2018; Buckman et al., 2018a; Malik et al., 2019)
or conservatism mechanisms in the offline setting (Yu et al., 2020; Kidambi et al., 2020;
Argenson & Dulac-Arnold, 2021), our method does not require explicit handling of these
components. Modeling the states and actions jointly already provides a bias toward generating
in-distribution actions, which avoids the need for explicit pessimism (Fujimoto et al., 2019;

26

Reinforcement Learning as Sequence Modeling

Kumar et al., 2019a; Ghasemipour et al., 2020; Nair et al., 2020; Jin et al., 2021; Yin et al.,
2021; Dadashi et al., 2021). Our method also differs from most prior model-based algorithms
in the dynamics model architecture used, with fully-connected networks parameterizing
diagonal-covariance Gaussian distributions being a common choice (Chua et al., 2018),
though recent work has highlighted the effectiveness of autoregressive state prediction (Zhang
et al., 2021) like that used by the Trajectory Transformer. In the context of recently proposed
offline reinforcement learning algorithms, our method can be interpreted as a combination of
model-based reinforcement learning and policy constraints (Kumar et al., 2019a; Wu et al.,
2019), though our approach does not require introducing such constraints explicitly. In the
context of model-free reinforcement learning, our method also resembles recently proposed
work on goal relabeling (Andrychowicz et al., 2017; Rauber et al., 2019; Ghosh et al., 2021;
Paster et al., 2021) and reward conditioning (Schmidhuber, 2019; Srivastava et al., 2019;
Kumar et al., 2019b) to reinterpret all past experience as useful demonstrations with proper
contextualization.

Concurrently with our work, Chen et al. (2021b) also proposed a reinforcement learning
approach centered around sequence prediction, focusing on reward conditioning as opposed
to the beam-search-based planning used by the Trajectory Transformer. Their work further
supports the possibility that a high-capacity sequence model can be applied to reinforcement
learning problems without the need for the components usually associated with reinforcement
learning algorithms.

4.3 Reinforcement Learning as Sequence Modeling

In this section, we describe the training procedure for our sequence model and discuss how it
can be used for control. We refer to the model as the Trajectory Transformer for brevity,
but emphasize that at the implementation level, both our model and search strategy are
nearly identical to those common in natural language processing. As a result, modeling
considerations are concerned less with architecture design and more with how to represent
trajectory data – potentially consisting of continuous states and actions – for processing by a
discrete-token architecture (Radford et al., 2018).

Trajectory Transformer

At the core of our approach is the treatment of trajectory data as an unstructured sequence
for modeling by a Transformer architecture. A trajectory τ consists of T states, actions, and
scalar rewards:

τ =
(
s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT

)
.

27

Reinforcement Learning as Sequence Modeling

In the event of continuous states and actions, we discretize each dimension independently.
Assuming N -dimensional states and M -dimensional actions, this turns τ into sequence of
length T (N +M + 1):

τ =
(
. . . , s1t , s

2
t , . . . , s

N
t , a

1
t , a

2
t , . . . , a

M
t , rt, . . .

)
t = 1, . . . , T.

Subscripts on all tokens denote timestep and superscripts on states and actions denote
dimension (i.e., sit is the ith dimension of the state at time t). While this choice may seem
inefficient, it allows us to model the distribution over trajectories with more expressivity
without simplifying assumptions such as Gaussian transitions.

We investigate two simple discretization approaches:

1. Uniform: All tokens for a given dimension correspond to a fixed width of the original
continuous space. Assuming a per-dimension vocabulary size of V , the tokens for state
dimension i cover uniformly-spaced intervals of width (max si −min si)/V .

2. Quantile: All tokens for a given dimension account for an equal amount of probability
mass under the empirical data distribution; each token accounts for 1 out of every V
data points in the training set.

Uniform discretization has the advantage that it retains information about Euclidean distance
in the original continuous space, which may be more reflective of the structure of a problem
than the training data distribution. However, outliers in the data may have outsize effects
on the discretization size, leaving many tokens corresponding to zero training points. The
quantile discretization scheme ensures that all tokens are represented in the data. We compare
the two empirically in Section 4.4.

Our model is a Transformer decoder mirroring the GPT architecture (Radford et al., 2018).
We use a smaller architecture than those typically used in large-scale language modeling,
consisting of four layers and four self-attention heads. (A full architectural description
is provided in Appendix B.1.) Training is performed with the standard teacher-forcing
procedure (Williams & Zipser, 1989) used to train sequence models. Denoting the parameters
of the Trajectory Transformer as θ and induced conditional probabilities as Pθ, the objective
maximized during training is:

L(τ) =
T∑

t=1

(N∑

i=1

logPθ
(
sit | s<it , τ<t

)
+

M∑

j=1

logPθ
(
ajt | a<jt , st, τ<t

)
+ logPθ

(
rt | at, st, τ<t

))
,

in which we use τ<t to denote a trajectory from timesteps 0 through t − 1, s<it to denote
dimensions 0 through i− 1 of the state at timestep t, and similarly for a<jt . We use the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 2.5× 10−4 to train parameters θ.

28

Reinforcement Learning as Sequence Modeling

Algorithm 4 Beam search
1: Require Input sequence x, vocabulary V , sequence length T , beam width B
2: Initialize Y0 = { () }
3: for t = 1, . . . , T do
4: Ct ← {yt−1 ◦ y | yt−1 ∈ Yt−1 and y ∈ V} // candidate single-token extensions
5: Yt ← argmaxY ⊆ Ct, |Y | = BlogPθ(Y | x) // B most likely sequences from

candidates
6: end for
7: Return argmaxy ∈ YT logPθ(y | x)

Planning with Beam Search

We now describe how sequence generation with the Trajectory Transformer can be repurposed
for control, focusing on three settings: imitation learning, goal-conditioned reinforcement
learning, and offline reinforcement learning. These settings are listed in increasing amount
of required modification on top of the sequence model decoding approach routinely used in
natural language processing.

The core algorithm providing the foundation of our planning techniques, beam search, is
described in Algorithm 4 for generic sequences. Following the presentation in (Meister et al.,
2020), we have overloaded logPθ(· | x) to define the likelihood of a set of sequences in addition
to that of a single sequence: logPθ(Y | x) =

∑
y∈Y logPθ(y | x). We use () to denote the

empty sequence and ◦ to represent concatenation.

Imitation learning. When the goal is to reproduce the distribution of trajectories in the
training data, we can optimize directly for the probability of a trajectory τ . This situation
matches the goal of sequence modeling exactly and as such we may use Algorithm 4 without
modification by setting the conditioning input x to the current state st (and optionally
previous history τ<t).

The result of this procedure is a tokenized trajectory τ , beginning from a current state st, that
has high probability under the data distribution. If the first action at in the sequence is enacted
and beam search is repeated, we have a receding horizon-controller. This approach resembles
a long-horizon model-based variant of behavior cloning, in which entire trajectories are
optimized to match those of a reference behavior instead of only immediate state-conditioned
actions. If we set the predicted sequence length to be the action dimension, our approach
corresponds exactly to the simplest form of behavior cloning with an autoregressive policy.

Goal-conditioned reinforcement learning. Transformer architectures feature a “causal”
attention mask to ensure that predictions only depend on previous tokens in a sequence.

29

Reinforcement Learning as Sequence Modeling

In the context of natural language, this design corresponds to generating sentences in the
linear order in which they are spoken as opposed to an ordering reflecting their hierarchical
syntactic structure (see, however, Gu et al. 2019 for a discussion of non-left-to-right sentence
generation with autoregressive models). In the context of trajectory prediction, this choice
instead reflects physical causality, disallowing future events to affect the past. However, the
conditional probabilities of the past given the future are still well-defined, allowing us to
condition samples not only on the preceding states, actions, and rewards that have already
been observed, but also any future context that we wish to occur. If the future context is a
state at the end of a trajectory, we decode trajectories with probabilities of the form:

Pθ(s
i
t | s<it , τ<t, sT)

We can use this directly as a goal-reaching method by conditioning on a desired final state
sT . If we always condition sequences on a final goal state, we may leave the lower-diagonal
attention mask intact and simply permute the input trajectory to {sT , s1, s2, . . . , sT−1}.
By prepending the goal state to the beginning of a sequence, we ensure that all other
predictions may attend to it without modifying the standard attention implementation. This
procedure for conditioning resembles prior methods that use supervised learning to train
goal-conditioned policies (Ghosh et al., 2021) and is also related to relabeling techniques
in model-free reinforcement learning (Andrychowicz et al., 2017). In our framework, it is
identical to the standard subroutine in sequence modeling: inferring the most likely sequence
given available evidence.

Offline reinforcement learning. The beam search method described in Algorithm 4
optimizes sequences for their probability under the data distribution. By replacing the log-
probabilities of transitions with the predicted reward signal, we can use the same Trajectory
Transformer and search strategy for reward-maximizing behavior. Appealing to the control
as inference graphical model (Levine, 2018), we are in effect replacing a transition’s log-
probability in beam search with its log-probability of optimality.

Using beam-search as a reward-maximizing procedure has the risk of leading to myopic
behavior. To address this issue, we augment each transition in the training trajectories
with reward-to-go: Rt =

∑T
t′=t γ

t′−trt′ and include it as an additional quantity, discretized
identically to the others, to be predicted after immediate rewards rt. During planning, we
then have access to value estimates from our model to add to cumulative rewards. While
acting greedily with respect to such Monte Carlo value estimates is known to suffer from
poor sample complexity and convergence to suboptimal behavior when online data collection
is not allowed, we only use this reward-to-go estimate as a heuristic to guide beam search,
and hence our method does not require the estimated values to be as accurate as in methods
that rely solely on the value estimates to select actions.

In offline RL, reward-to-go estimates are functions of the behavior policy that collected the
training data and do not, in general, correspond to the values achieved by the Trajectory

30

Reinforcement Learning as Sequence Modeling

Transformer-derived policy. Of course, it is much simpler to learn the value function of
the behavior policy than that of the optimal policy, since we can simply use Monte Carlo
estimates without relying on Bellman updates. A value function for an improved policy would
provide a better search heuristic, though requires invoking the tools of dynamic programming.
In Section 4.4 we show that the simple reward-to-go estimates are sufficient for planning with
the Trajectory Transformer in many environments, but that improved value functions are
useful in the most challenging settings, such as sparse-reward tasks.

Because the Trajectory Transformer predicts reward and reward-to-go only every N +
M + 1 tokens, we sample all intermediate tokens according to model log-probabilities, as
in the imitation learning and goal-reaching settings. More specifically, we sample full
transitions (st,at, rt, Rt) using likelihood-maximizing beam search, treat these transitions
as our vocabulary, and filter sequences of transitions by those with the highest cumulative
reward plus reward-to-go estimate.

We have taken a sequence-modeling route to what could be described as a fairly simple-looking
model-based planning algorithm, in that we sample candidate action sequences, evaluate
their effects using a predictive model, and select the reward-maximizing trajectory. This
conclusion is in part due to the close relation between sequence modeling and trajectory
optimization. There is one dissimilarity, however, that is worth highlighting: by modeling
actions jointly with states and sampling them using the same procedure, we can prevent the
model from being queried on out-of-distribution actions. The alternative, of treating action
sequences as unconstrained optimization variables that do not depend on state (Nagabandi
et al., 2018), can more readily lead to model exploitation, as the problem of maximizing
reward under a learned model closely resembles that of finding adversarial examples for a
classifier (Goodfellow et al., 2014b).

4.4 Experimental Evaluation

Our experimental evaluation focuses on (1) the accuracy of the Trajectory Transformer as
a long-horizon predictor compared to standard dynamics model parameterizations and (2)
the utility of sequence modeling tools – namely beam search – as a control algorithm in the
context of offline reinforcement learning, imitation learning, and goal-reaching.

Model Analysis

We begin by evaluating the Trajectory Transformer as a long-horizon policy-conditioned
predictive model. The usual strategy for predicting trajectories given a policy is to rollout
with a single-step model, with actions supplied by the policy. Our protocol differs from the

31

Reinforcement Learning as Sequence Modeling
R

ef
er

en
ce

T
ra

n
sf

or
m

er
Fe

ed
fo

rw
ar

d

Figure 4.2: (Transformer prediction visualization) A qualitative comparison of length-100
trajectories generated by the Trajectory Transformer and a feedforward Gaussian dynamics
model from PETS, a state-of-the-art planning algorithm (Chua et al., 2018). Both models
were trained on trajectories collected by a single policy, for which a true trajectory is shown
for reference. Compounding errors in the single-step model lead to physically implausible
predictions, whereas the Transformer-generated trajectory is visually indistinguishable from
those produced by the policy acting in the actual environment. The paths of the feet and
head are traced through space for depiction of the movement between rendered frames.

standard approach not only in that the model is not Markovian, but also in that it does
not require access to a policy to make predictions – the outputs of the policy are modeled
alongside the states encountered by that policy. Here, we focus only on the quality of the
model’s predictions; we use actions predicted by the model for an imitation learning method
in the next subsection.

Trajectory predictions. Figure 4.2 depicts a visualization of predicted 100-timestep
trajectories from our model after having trained on a dataset collected by a trained humanoid
policy. Though model-based methods have been applied to the humanoid task, prior works
tend to keep the horizon intentionally short to prevent the accumulation of model errors
(Janner et al., 2019; Amos et al., 2021). The reference model is the probabilistic ensemble
implementation of PETS (Chua et al., 2018); we tuned the number of models within the
ensemble, the number of layers, and layer sizes, but were unable to produce a model that

32

Reinforcement Learning as Sequence Modeling

10 20 30 40 50

timestep

0

20

40

60

80

100

lo
g

lik
el

ih
oo

d

Humanoid

10 20 30 40 50

timestep

40

50

60

70

lo
g

lik
el

ih
oo

d

Partially-Observed Humanoid

Transformer Markovian Transformer Feedforward Discrete oracleTransformer Markovian Transformer Feedforward Discrete oracle

Figure 4.3: (Compounding model errors) We compare the accuracy of the Trajectory
Transformer (with uniform discretization) to that of the probabilistic feedforward model
ensemble (Chua et al., 2018) over the course of a planning horizon in the humanoid
environment, corresponding to the trajectories visualized in Figure 4.2. The Trajectory
Transformer has substantially better error compounding with respect to prediction horizon
than the feedforward model. The discrete oracle is the maximum log likelihood attainable
given the discretization size; see Appendix B.2 for a discussion.

predicted accurate sequences for more than a few dozen steps. In contrast, we see that the
Trajectory Transformer’s long-horizon predictions are substantially more accurate, remaining
visually indistinguishable from the ground-truth trajectories even after 100 predicted steps.
To our knowledge, no prior model-based reinforcement learning algorithm has demonstrated
predicted rollouts of such accuracy and length on tasks of comparable dimensionality.

Error accumulation. A quantitative account of the same finding is provided in Figure 4.3,
in which we evaluate the model’s accumulated error versus prediction horizon. Standard
predictive models tend to have excellent single-step errors but poor long-horizon accuracy,
so instead of evaluating a test-set single-step likelihood, we sample 1000 trajectories from a
fixed starting point to estimate the per-timestep state marginal predicted by each model. We
then report the likelihood of the states visited by the reference policy on a held-out set of
trajectories under these predicted marginals. To evaluate the likelihood under our discretized
model, we treat each bin as a uniform distribution over its specified range; by construction,
the model assigns zero probability outside of this range.

To better isolate the source of the Transformer’s improved accuracy over standard single-step
models, we also evaluate a Markovian variant of our same architecture. This ablation has

33

Reinforcement Learning as Sequence Modeling

st st
at at

... ...

... ...

st+5 st+5

at+5 at+5

Figure 4.4: (Attention patterns) We observe two distinct types of attention masks during
trajectory prediction. In the first, both states and actions are dependent primarily on the
immediately preceding transition, corresponding to a model that has learned the Markov
property. The second strategy has a striated appearance, with state dimensions depending
most strongly on the same dimension of multiple previous timesteps. Surprisingly, actions
depend more on past actions than they do on past states, reminiscent of the action smoothing
used in some trajectory optimization algorithms (Nagabandi et al., 2019). The above masks
are produced by a first- and third-layer attention head during sequence prediction on the
hopper benchmark; reward dimensions are omitted for this visualization.1

a truncated context window that prevents it from attending to more than one timestep in
the past. This model performs similarly to the trajectory Transformer on fully-observed
environments, suggesting that architecture differences and increased expressivity from the
autoregressive state discretization play a large role in the trajectory Transformer’s long-horizon
accuracy. We construct a partially-observed version of the same humanoid environment, in
which each dimension of every state is masked out with 50% probability (Figure 4.3 right),
and find that, as expected, the long-horizon conditioning plays a larger role in the model’s
accuracy in this setting.

Attention patterns. We visualize the attention maps during model predictions in
Figure 4.4. We find two primary attention patterns. The first is a discovered Markovian
strategy, in which a state prediction attends overwhelmingly to the previous transition. The
second is qualitatively striated, with the model attending to specific dimensions in multiple
prior states for each state prediction. Simultaneously, the action predictions attend to prior
actions more than they do prior states. The action dependencies contrast with the usual
formulation of behavior cloning, in which actions are a function of only past states, but is

34

Reinforcement Learning as Sequence Modeling

reminiscent of the action filtering technique used in some planning algorithm to produce
smoother action sequences (Nagabandi et al., 2019).

Reinforcement Learning and Control

Offline reinforcement learning. We evaluate the Trajectory Transformer on a number
of environments from the D4RL offline benchmark suite (Fu et al., 2020), including the
locomotion and AntMaze domains. This evaluation is the most difficult of our control
settings, as reward-maximizing behavior is the most qualitatively dissimilar from the types
of behavior that are normally associated with unsupervised modeling – namely, imitative
behavior. Results for the locomotion environments are shown in Table 4.1. We compare
against five other methods spanning other approaches to data-driven control: (1) behavior-
regularized actor-critic (BRAC; Wu et al. 2019) and conservative Q-learning (CQL; Kumar
et al. 2020a) represent the current state-of-the-art in model-free offline RL; model-based
offline planning (MBOP; Argenson & Dulac-Arnold 2021) is the best-performing prior offline
trajectory optimization technique; decision transformer (DT; (Chen et al., 2021b)) is a
concurrently-developed sequence-modeling approach that uses return-conditioning instead of
planning; and behavior-cloning (BC) provides the performance of a pure imitative method.

The Trajectory Transformer performs on par with or better than all prior methods (Table 4.1).
The two discretization variants of the Trajectory Transformer, uniform and quantile, perform

Dataset Environment BC MBOP BRAC CQL DT TT (uniform) TT (quantile)

Med-Expert HalfCheetah 59.9 105.9 41.9 91.6 86.8 40.8 ±2.3 95.0 ±0.2

Med-Expert Hopper 79.6 55.1 0.9 105.4 107.6 106.0 ±0.28 110.0 ±2.7

Med-Expert Walker2d 36.6 70.2 81.6 108.8 108.1 91.0 ±2.8 101.9 ±6.8

Medium HalfCheetah 43.1 44.6 46.3 44.0 42.6 44.0 ±0.31 46.9 ±0.4

Medium Hopper 63.9 48.8 31.3 58.5 67.6 67.4 ±2.9 61.1 ±3.6

Medium Walker2d 77.3 41.0 81.1 72.5 74.0 81.3 ±2.1 79.0 ±2.8

Med-Replay HalfCheetah 4.3 42.3 47.7 45.5 36.6 44.1 ±0.9 41.9 ±2.5

Med-Replay Hopper 27.6 12.4 0.6 95.0 82.7 99.4 ±3.2 91.5 ±3.6

Med-Replay Walker2d 36.9 9.7 0.9 77.2 66.6 79.4 ±3.3 82.6 ±6.9

Average 47.7 47.8 36.9 77.6 74.7 72.6 78.9

Table 4.1: (Offline reinforcement learning) The Trajectory Transformer (TT) performs
on par with or better than the best prior offline reinforcement learning algorithms on D4RL
locomotion (v2) tasks. Results for TT variants correspond to the mean and standard error over
15 random seeds (5 independently trained Transformers and 3 trajectories per Transformer).
We detail the sources of the performance for other methods in Appendix C.1.

35

Reinforcement Learning as Sequence Modeling

BC MBOP BRAC CQL Decision
Transformer

Trajectory
Transformer

0

20

40

60

80
A

ve
ra

g
e

n
o
rm

al
iz

ed
re

tu
rn

Behavior Cloning Trajectory Optimization Temporal Difference Sequence Modeling

Figure 4.5: (Offline locomotion performance) A plot showing the average per-algorithm
performance in Table 4.1, with bars colored according to a crude algorithm categorization.
In this plot, “Trajectory Transformer” refers to the quantile discreization variant.

similarly on all environments except for HalfCheetah-Medium-Expert, where the large range
of the velocities prevents the uniform discretization scheme from recovering the precise
actuation required for enacting the expert policy. As a result, the quantile discretization
approach achieves a return of more than twice that of the uniform discretization.

Combining with Q-functions. Though Monte Carlo value estimates are sufficient for
many standard offline reinforcement learning benchmarks, in sparse-reward and long-horizon
settings they become too uninformative to guide the beam-search-based planning procedure.
In these problems, the value estimate from the Transformer can be replaced with a Q-function
trained via dynamic programming. We explore this combination by using the Q-function from
the implicit Q-learning algorithm (IQL; Kostrikov et al. 2022) on the AntMaze navigation
tasks (Fu et al., 2020), for which there is only a sparse reward upon reaching the goal
state. These tasks evaluate temporal compositionality because they require stitching together
multiple zero-reward trajectories in the dataset to reach a designated goal.

AntMaze results are provided in Table 4.2. Q-guided Trajectory Transformer planning
outperforms all prior methods on all maze sizes and dataset compositions. In particular,
it outperforms the IQL method from which we obtain the Q-function, underscoring that
planning with a Q-function as a search heuristic can be less susceptible to errors in the
Q-function than policy extraction. However, because the Q-guided planning procedure still
benefits from the temporal compositionality of both dynamic programming and planning, it
outperforms return-conditioning approaches, such as the Decision Transformer, that suffer
due to the lack of complete demonstrations in the AntMaze datasets.

1More attention visualizations can be found at trajectory-transformer.github.io/attention

36

https://trajectory-transformer.github.io/attention

Reinforcement Learning as Sequence Modeling

Dataset Environment BC CQL IQL DT TT (+Q)

Umaze AntMaze 54.6 74.0 87.5 59.2 100.0 ±0.0

Medium-Play AntMaze 0.0 61.2 71.2 0.0 93.3 ±6.4

Medium-Diverse AntMaze 0.0 53.7 70.0 0.0 100.0 ±0.0

Large-Play AntMaze 0.0 15.8 39.6 0.0 66.7 ±12.2

Large-Diverse AntMaze 0.0 14.9 47.5 0.0 60.0 ±12.7

Average 10.9 44.9 63.2 11.8 84.0

Table 4.2: (Combining with Q-functions) Performance on the sparse-reward AntMaze
(v0) navigation task. Using a Q-function as a search heuristic with the Trajectory Transformer
(TT (+Q)) outperforms policy extraction from the Q-function (IQL) and return-conditioning
approaches like the Decision Transformer (DT). We report means and standard error over 15
random seeds for TT (+Q); baseline results are taken from (Kostrikov et al., 2022).

Imitation and goal-reaching. We additionally plan with the Trajectory Transformer
using standard likelihood-maximizing beam search, as opposed to the return-maximizing
version used for offline RL. We find that after training the model on datasets collected
by expert policies (Fu et al., 2020), using beam search as a receding-horizon controller
achieves an average normalized return of 104% and 109% in the Hopper and Walker2d
environments, respectively, using the same evaluation protocol of 15 runs described as in the
offline reinforcement learning results. While this result is perhaps unsurprising, as behavior
cloning with standard feedforward architectures is already able to reproduce the behavior of
the expert policies, it demonstrates that a decoding algorithm used for language modeling
can be effectively repurposed for control.

Finally, we evaluate the goal-reaching variant of beam-search, which conditions on a future
desired state alongside previously encountered states. We use a continuous variant of the
classic four rooms environment as a testbed (Sutton et al., 1999). Our training data consists
of trajectories collected by a pretrained goal-reaching agent, with start and goal states
sampled uniformly at random across the state space. Figure 4.6 depicts routes taken by
the the planner. Anti-causal conditioning on a future state allows for beam search to be
used as a goal-reaching method. No reward shaping, or rewards of any sort, are required;
the planning method relies entirely on goal relabeling. An extension of this experiment to
procedurally-generated maps is described in Appendix B.6.

37

Reinforcement Learning as Sequence Modeling

Figure 4.6: (Goal-reaching) Trajectories collected by TTO with anti-causal goal-state
conditioning in a continuous variant of the four rooms environment. Trajectories are visualized
as curves passing through all encountered states, with color becoming more saturated as time
progresses. Note that these curves depict real trajectories collected by the controller and not
sampled sequences. The starting state is depicted by

1.900 1.925 1.950 1.975 2.000 2.025 2.050 2.075 2.100

13.4

13.6

13.8

14.0

14.2

14.4

14.6

and the goal state by

13.4 13.6 13.8 14.0 14.2 14.4 14.6

1.900

1.925

1.950

1.975

2.000

2.025

2.050

2.075

2.100

. Best viewed
in color.

4.5 Discussion

We have presented a sequence modeling view on reinforcement learning that enables us
to derive a single algorithm for a diverse range of problem settings, unifying many of the
standard components of reinforcement learning algorithms (such as policies, models, and
value functions) under a single sequence model. The algorithm involves training a sequence
model jointly on states, actions, and rewards and sampling from it using a minimally modified
beam search. Despite drawing from the tools of large-scale language modeling instead of
those normally associated with control, we find that this approach is effective in imitation
learning, goal-reaching, and offline reinforcement learning.

However, prediction with Transformers is currently slower and more resource-intensive than
prediction with the types of single-step models often used in model-based control, requiring
up to multiple seconds for action selection when the context window grows too large. This
precludes real-time control with standard Transformers for most dynamical systems. While
the beam-search-based planner is conceptually an instance of model-predictive control, and as
such could be applicable wherever model-based RL is, in practice the slow planning also makes
online RL experiments unwieldy. (Computationally-efficient Transformer architectures (Tay
et al., 2021) could potentially cut runtimes down substantially.) Further, we have chosen to
discretize continuous data to fit a standard architecture instead of modifying the architecture
to handle continuous inputs. While we found this design to be much more effective than
conventional continuous dynamics models, it does in principle impose an upper bound on

38

Reinforcement Learning as Sequence Modeling

prediction precision.

The effectiveness of the Trajectory Transformer stems largely from its improved predictive
accuracy compared to dynamics models used in prior model-based reinforcement learning
algorithms; its weaknesses are largely consequences of the beam search-based planner in
which it is embedded. In the next chapter, we will consider whether it is possible to retain
the strengths of the Trajectory Transformer without suffering from its limitations by building
a planning algorithm from the ground up around the affordances of a specific generative
model, as opposed to using an improved generative model in a generic search algorithm for
model-predictive control.

39

5

Planning with Diffusion

5.1 Introduction

Planning with a learned model is a conceptually simple framework for reinforcement learning
and data-driven decision-making. Its appeal comes from employing learning techniques only
where they are the most mature and effective: for the approximation of unknown environment
dynamics in what amounts to a supervised learning problem. Afterwards, the learned model
may be plugged into conventional search algorithms (Reddy, 1977; Kocsis & Szepesvári, 2006)
or trajectory optimization routines (Tassa et al., 2012; Posa et al., 2014; Kelly, 2017), as
demonstrated with the Trajectory Transformer in Chapter 4.

However, this combination has a number of shortcomings. Because powerful trajectory
optimizers can exploit learned models, plans generated by better optimizers often look more
like adversarial examples than optimal trajectories (Talvitie, 2014; Ke et al., 2018). As a
result, contemporary model-based reinforcement learning algorithms often inherit more from
model-free methods, such as value functions and policy gradients (Wang et al., 2019), than
from the trajectory optimization toolbox. Those methods that do rely on online planning tend
to use simple gradient-free trajectory optimization routines like random shooting (Nagabandi
et al., 2018) or the cross-entropy method (Botev et al., 2013; Chua et al., 2018) to avoid the
aforementioned issues. Because these problems stem from the limitations of the planning
algorithm, they cannot be fully overcome by improved model quality.

In this chapter, we propose an alternative approach to data-driven trajectory optimization.
The core idea is to train a model that is directly amenable to trajectory optimization, in
the sense that sampling from the model and planning with it become nearly identical. This
goal requires a shift in how the model is designed. Because learned dynamics models are
normally meant to be proxies for environment dynamics, improvements are often achieved by
structuring the model according to the underlying causal process (Bapst et al., 2019). Instead,

40

Planning with Diffusion

pθ(τ
i−1 |τ i)

q(τ i |τ i−1)

denoising

diffusion

Figure 5.1: (Planning via denoising) Diffuser is a diffusion probabilistic model that plans
by iteratively refining trajectories.

we consider how to design a model in line with the planning problem in which it will be used.
For example, because the model will ultimately be used for planning, action distributions
are just as important as state dynamics and long-horizon accuracy is more important than
single-step error. On the other hand, the model should remain agnostic to reward function
so that it may be used in multiple tasks, including those unseen during training. Finally,
the model should be designed so that its plans, and not just its predictions, improve with
experience and are resistant to the myopic failure modes of standard shooting-based planning
algorithms.

We instantiate this idea as a trajectory-level diffusion probabilistic model (Sohl-Dickstein
et al., 2015; Ho et al., 2020) called Diffuser, visualized in Figure 5.2. Whereas standard
model-based planning techniques predict forward in time autoregressively, Diffuser predicts
all timesteps of a plan simultaneously. The iterative sampling process of diffusion models
leads to flexible conditioning, allowing for auxiliary guides to modify the sampling procedure
to recover trajectories with high return or satisfying a set of constraints. This formulation of
data-driven trajectory optimization has several appealing properties:

Long-horizon scalability Diffuser is trained for the accuracy of its generated trajectories
rather than its single-step error, so it does not suffer from the compounding rollout errors of
single-step dynamics models and scales more gracefully with respect to long planning horizon.

Task compositionality Reward functions provide auxiliary gradients to be used while
sampling a plan, allowing for a straightforward way of planning by composing multiple
rewards simultaneously by adding together their gradients.

Temporal compositionality Diffuser generates globally coherent trajectories by iteratively

41

Planning with Diffusion

planning horizon

de
no

is
in

g

Diffuser

local receptive field

Figure 5.2: (Diffuser block architecture) Diffuser samples plans by iteratively denoising
two-dimensional arrays consisting of a variable number of state-action pairs. A small receptive
field constrains the model to only enforce local consistency during a single denoising step.
By composing many denoising steps together, local consistency can drive global coherence
of a sampled plan. An optional guide function J can be used to bias plans toward those
optimizing a test-time objective or satisfying a set of constraints.

improving local consistency, allowing it to generalize to novel trajectories by stitching together
in-distribution subsequences.

Effective non-greedy planning By blurring the line between model and planner, the
training procedure that improves the model’s predictions also has the effect of improving
its planning capabilities. This design yields a learned planner that can solve the types of
long-horizon, sparse-reward problems that prove difficult for many conventional planning
methods.

The core contribution of this chapter is a denoising diffusion model designed for trajectory
data and an associated probabilistic framework for behavior synthesis. While unconventional
compared to the types of models routinely used in deep model-based reinforcement learning,
the unusual properties of Diffuser make it particularly effective in control settings that require
long-horizon reasoning and test-time flexibility.

42

Planning with Diffusion

5.2 Background on Diffusion Probabilistic Models

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) pose the data-
generating process as an iterative denoising procedure pθ(τ i−1 | τ i). This denoising is the
reverse of a forward diffusion process q(τ i | τ i−1) that slowly corrupts the structure in data
by adding noise. The data distribution induced by the model is given by:

pθ(τ
0) =

∫
p(τN)

N∏

i=1

pθ(τ
i−1 | τ i)dτ 1:N

where p(τN) is a standard Gaussian prior and τ 0 denotes (noiseless) data. Parameters
θ are optimized by minimizing a variational bound on the negative log likelihood of the
reverse process: θ∗ = argminθ−Eτ0 [log pθ(τ

0)] . The reverse process is often parameterized
as Gaussian with fixed timestep-dependent covariances:

pθ(τ
i−1 | τ i) = N (τ i−1 | µθ(τ i, i),Σi).

The forward process q(τ i | τ i−1) is typically prespecified.

Notation. There are two “times" at play in this work: that of the diffusion process and
that of the planning problem. We use superscripts (i when unspecified) to denote diffusion
timestep and subscripts (t when unspecified) to denote planning timestep. For example,
s0t refers to the tth state in a noiseless trajectory. When it is unambiguous from context,
superscripts of noiseless quantities are omitted: τ = τ 0. We overload notation slightly by
referring to the tth state (or action) in a trajectory τ as τst (or τat).

5.3 Planning with Diffusion

A major obstacle to using trajectory optimization techniques is that they require knowledge of
the environment dynamics. Most learning-based methods attempt to overcome this obstacle
by training an approximate dynamics model and plugging it in to a conventional planning
routine. However, learned models are often poorly suited to the types of planning algorithms
designed with ground-truth models in mind, leading to planners that exploit learned models
by finding adversarial examples.

We propose a tighter coupling between modeling and planning. Instead of using a learned
model in the context of a classical planner, we subsume as much of the planning process as
possible into the generative modeling framework, such that planning becomes nearly identical
to sampling. We do this using a diffusion model of trajectories, pθ(τ). The iterative denoising
process of a diffusion model lends itself to flexible conditioning by way of sampling from
perturbed distributions of the form:

43

Planning with Diffusion

p̃θ(τ) ∝ pθ(τ)h(τ). (5.1)

The function h(τ) can contain information about prior evidence (such as an observation
history), desired outcomes (such as a goal to reach), or general functions to optimize (such
as rewards or costs). Performing inference in this perturbed distribution can be seen as
a probabilistic analogue to the trajectory optimization problem posed in Section 2, as it
requires finding trajectories that are both physically realistic under pθ(τ) and high-reward
(or constraint-satisfying) under h(τ). Because the dynamics information is separated from
the perturbation distribution h(τ), a single diffusion model pθ(τ) may be reused for multiple
tasks in the same environment.

In this section, we describe Diffuser, a diffusion model designed for learned trajectory
optimization. We then discuss two specific instantiations of planning with Diffuser, realized
as reinforcement learning counterparts to classifier-guided sampling and image inpainting.

A Generative Model for Trajectory Planning

Temporal ordering. Blurring the line between sampling from a trajectory model and
planning with it yields an unusual constraint: we can no longer predict states autoregressively
in temporal order. Consider the goal-conditioned inference p(s1 | s0, sT); the next state s1
depends on a future state as well as a prior one. This example is an instance of a more general
principle: while dynamics prediction is causal, in the sense that the present is determined
by the past, decision-making and control can be anti-causal, in the sense that decisions in
the present are conditional on the future.1 Because we cannot use a temporal autoregressive
ordering, we design Diffuser to predict all timesteps of a plan concurrently.

Temporal locality. Despite not being autoregressive or Markovian, Diffuser features a
relaxed form of temporal locality. In Figure 5.2, we depict a dependency graph for a diffusion
model consisting of a single temporal convolution. The receptive field of a given prediction
only consists of nearby timesteps, both in the past and the future. As a result, each step of
the denoising process can only make predictions based on local consistency of the trajectory.
By composing many of these denoising steps together, however, local consistency can drive
global coherence.

Trajectory representation. Diffuser is a model of trajectories designed for planning,
meaning that the effectiveness of the controller derived from the model is just as important
as the quality of the state predictions. As a result, states and actions in a trajectory are

1In general reinforcement learning contexts, conditioning on the future emerges from the assumption of future
optimality for the purpose of writing a dynamic programming recursion. Concretely, this appears as the
future optimality variables Ot:T in the action distribution log p(at | st,Ot:T) (Levine, 2018).

44

Planning with Diffusion

predicted jointly; for the purposes of prediction the actions are simply additional dimensions
of the state. Specifically, we represent inputs (and outputs) of Diffuser as a two-dimensional
array:

τ =

[
s0 s1 . . . sT
a0 a1 aT

]
. (5.2)

with one column per timestep of the planning horizon.

Architecture. We now have the ingredients needed to specify a Diffuser architecture: (1)
an entire trajectory should be predicted non-autoregressively, (2) each step of the denoising
process should be temporally local, and (3) the trajectory representation should allow for
equivariance along one dimension (the planning horizon) but not the other (the state and
action features). We satisfy these criteria with a model consisting of repeated (temporal)
convolutional residual blocks. The overall architecture resembles the types of U-Nets that have
found success in image-based diffusion models, but with two-dimensional spatial convolutions
replaced by one-dimensional temporal convolutions (Figure C.1). Because the model is fully
convolutional, the horizon of the predictions is determined not by the model architecture,
but by the input dimensionality; it can change dynamically during planning if desired.

Training. We use Diffuser to parameterize a learned gradient ϵθ(τ i, i) of the trajectory
denoising process, from which the mean µθ can be solved in closed form (Ho et al., 2020).
We use the simplified objective for training the ϵ-model, given by:

L(θ) = Ei,ϵ,τ0

[
∥ϵ− ϵθ(τ i, i)∥2

]
,

in which i ∼ U{1, 2, . . . , N} is the diffusion timestep, ϵ ∼ N (0, I) is the noise target, and τ i

is the trajectory τ 0 corrupted with noise ϵ. Reverse process covariances Σi follow the cosine
schedule of Nichol & Dhariwal (2021).

Reinforcement Learning as Guided Sampling

In order to solve reinforcement learning problems with Diffuser, we must introduce a notion
of reward. We appeal to the control-as-inference graphical model (Levine, 2018) to do so. Let
Ot be a binary random variable denoting the optimality of timestep t of a trajectory, with
p(Ot = 1) = exp(r(st, at)). We can sample from the set of optimal trajectories by setting
h(τ) = p(O1:T | τ) in Equation 5.1:

p̃θ(τ) = p(τ | O1:T = 1) ∝ p(τ)p(O1:T = 1 | τ).

45

Planning with Diffusion

Algorithm 5 Guided Diffusion Planning
1: Require Diffuser µθ, guide J , scale α, covariances Σi

2: while not done do
3: Observe state s; initialize plan τN ∼ N (0, I)
4: for i = N, . . . , 1 do
5: // parameters of reverse transition
6: µ← µθ(τ

i)
7: // guide using gradients of return
8: τ i−1 ∼ N (µ+ αΣ∇J (µ),Σi)
9: // constrain first state of plan

10: τ i−1
s0 ← s

11: end for
12: Execute first action of plan τ 0

a0

13: end while

We have exchanged the reinforcement learning problem for one of conditional sampling.
Thankfully, there has been much prior work on conditional sampling with diffusion models.
While it is intractable to sample from this distribution exactly, when p(O1:T | τ i) is sufficiently
smooth, the reverse diffusion process transitions can be approximated as Gaussian (Sohl-
Dickstein et al., 2015):

pθ(τ
i−1 | τ i,O1:T) ≈ N (τ i−1;µ+ Σg,Σ) (5.3)

where µ,Σ are the parameters of the original reverse process transition pθ(τ i−1 | τ i) and

g = ∇τ log p(O1:T | τ)|τ=µ

=
T∑

t=0

∇st,atr(st, at)|(st,at)=µt = ∇J (µ).

This relation provides a straightforward translation between classifier-guided sampling, used to
generate class-conditional images (Dhariwal & Nichol, 2021), and the reinforcement learning
problem setting. We first train a diffusion model pθ(τ) on the states and actions of all
available trajectory data. We then train a separate model Jϕ to predict the cumulative
rewards of trajectory samples τ i. The gradients of Jϕ are used to guide the trajectory sampling
procedure by modifying the means µ of the reverse process according to Equation 5.3. The
first action of a sampled trajectory τ ∼ p(τ | O1:T = 1) may be executed in the environment,
after which the planning procedure begins again in a standard receding-horizon control loop.
Pseudocode for the guided planning method is given in Algorithm 5.

46

Planning with Diffusion

Goal-Conditioned Reinforcement Learning as Inpainting

Some planning problems are more naturally posed as constraint satisfaction than reward
maximization. In these settings, the objective is to produce any feasible trajectory that
satisfies a set of constraints, such as terminating at a goal location. Appealing to the two-
dimensional array representation of trajectories described by Equation 5.2, this setting can be
translated into an inpainting problem, in which state and action constraints act analogously
to observed pixels in an image (Sohl-Dickstein et al., 2015). All unobserved locations in
the array must be filled in by the diffusion model in a manner consistent with the observed
constraints.

The perturbation function required for this task is a Dirac delta for observed values and
constant elsewhere. Concretely, if ct is state constraint at timestep t, then

h(τ) = δct(s0, a0, . . . , sT , aT) =

{
+∞ if ct = st

0 otherwise

The definition for action constraints is identical. In practice, this may be implemented
by sampling from the unperturbed reverse process τ i−1 ∼ pθ(τ

i−1 | τ i) and replacing the
sampled values with conditioning values ct after all diffusion timesteps i ∈ {0, 1, . . . , N}.

Even reward maximization problems require conditioning-by-inpainting because all sampled
trajectories should begin at the current state. This conditioning is described by line 10 in
Algorithm 5.

5.4 Properties of Diffusion Planners

We discuss a number of Diffuser’s important properties, focusing on those that are are
either distinct from standard dynamics models or unusual for non-autoregressive trajectory
prediction.

Learned long-horizon planning. Single-step models are typically used as proxies for
ground-truth environment dynamics p(st+1 | st, at), and as such are not tied to any planning
algorithm in particular. In contrast, the planning routine in Algorithm 5 is closely tied to
the specific affordances of diffusion models. Because our planning method is nearly identical
to sampling (with the only difference being guidance by a perturbation function h(τ)),
Diffuser’s effectiveness as a long-horizon predictor directly translates to effective long-horizon
planning. We demonstrate the benefits of learned planning in a goal-reaching setting in
Figure 5.3a, showing that Diffuser is able to generate feasible trajectories in the types of

47

Planning with Diffusion

a

denoising

b

data plan

c

τN

→

τN

→
d

reward − + plan

Figure 5.3: (Properties of diffusion planners) (a) Learned long-horizon planning:
Diffuser’s learned planning procedure does not suffer from the myopic failure modes common to
shooting algorithms and is able to plan over long horizons with sparse reward. (b) Temporal
compositionality: Even though the model is not Markovian, it generates trajectories via
iterated refinements to local consistency. As a result, it exhibits the types of generalization
usually associated with Markovian models, with the ability to stitch together snippets of
trajectories from the training data to generate novel plan. (c) Variable-length plans:
Despite being a trajectory-level model, Diffuser’s planning horizon is not determined by its
architecture. The horizon can be updated after training by changing the dimensionality of
the input noise. (d) Task compositionality: Diffuser can be composed with new reward
functions to plan for tasks unseen during training. In all subfigures, denotes a starting
state and denotes a goal state.

sparse reward settings where shooting-based approaches are known to struggle. We explore a
more quantitative version of this problem setting in Section 5.5.

Temporal compositionality. Single-step models are often motivated using the Markov
property, allowing them to compose in-distribution transitions to generalize to out-of-
distribution trajectories. Because Diffuser generates globally coherent trajectories by
iteratively improving local consistency (Section 5.3), it can also stitch together familiar
subsequences in novel ways. In Figure 5.3b, we train Diffuser on trajectories that only travel
in a straight line, and show that it can generalize to v-shaped trajectories by composing
trajectories at their point of intersection.

Variable-length plans. Because our model is fully convolutional in the horizon dimension

48

Planning with Diffusion

Environment MPPI CQL IQL Diffuser

Maze2D U-Maze 33.2 5.7 47.4 113.9 ±3.1

Maze2D Medium 10.2 5.0 34.9 121.5 ±2.7

Maze2D Large 5.1 12.5 58.6 123.0 ±6.4

Single-task Average 16.2 7.7 47.0 119.5

Multi2D U-Maze 41.2 - 24.8 128.9 ±1.8

Multi2D Medium 15.4 - 12.1 127.2 ±3.4

Multi2D Large 8.0 - 13.9 132.1 ±5.8

Multi-task Average 21.5 - 16.9 129.4

Table 5.1: (Long-horizon planning) The performance of Diffuser and prior model-free
algorithms in the Maze2D environment, which tests long-horizon planning due to its sparse
reward structure. The Multi2D setting refers to a multi-task variant with goal locations
resampled at the beginning of every episode. Diffuser substantially outperforms prior
approaches in both settings. Appendix C.1 details the sources for the scores of the baseline
algorithms.

of its prediction, its planning horizon is not specified by architectural choices. Instead, it is
determined by the size of the input noise τN ∼ N (0, I) that initializes the denoising process,
allowing for variable-length plans (Figure 5.3c).

Task compositionality. While Diffuser contains information about both environment
dynamics and behaviors, it is independent of reward function. Because the model acts as a
prior over possible futures, planning can be guided by comparatively lightweight perturbation
functions h(τ) (or even combinations of multiple perturbations) corresponding to different
rewards. We demonstrate this by planning for a new reward function unseen during training
of the diffusion model (Figure 5.3d).

5.5 Experimental Evaluation

The focus of our experiments is to evaluate Diffuser on the capabilities we would like from
a data-driven planner. In particular, we evaluate (1) the ability to plan over long horizons
without manual reward shaping, (2) the ability to generalize to new configurations of goals
unseen during training, and (3) the ability to recover an effective controller from heterogeneous
data of varying quality. We conclude by studying practical runtime considerations of diffusion-
based planning, including the most effective ways of speeding up the planning procedure
while suffering minimally in terms of performance.

49

Planning with Diffusion

Long Horizon Multi-Task Planning

We evaluate long-horizon planning in the Maze2D environments (Fu et al., 2020), which
require traversing to a goal location where a reward of 1 is given. No reward shaping is
provided at any other location. Because it can take hundreds of steps to reach the goal
location, even the best model-free algorithms struggle to adequately perform credit assignment
and reliably reach the goal (Table 5.1).

We plan with Diffuser using the inpainting strategy to condition on a start and goal location.
(The goal location is also available to the model-free methods; it is identifiable by being
the only state in the dataset with non-zero reward.) We then use the sampled trajectory
as an open-loop plan. Diffuser achieves scores over 100 in all maze sizes, indicating that it
outperforms a reference expert policy. We visualize the reverse diffusion process generating
Diffuser’s plans in Figure 5.4.

While the training data in Maze2D is undirected – consisting of a controller navigating to
and from randomly selected locations – the evaluation is single-task in that the goal is always
the same. In order to test multi-task flexibility, we modify the environment to randomize
the goal location at the beginning of each episode. This setting is denoted as Multi2D in
Table 5.1. Diffuser is naturally a multi-task planner; we do not need to retrain the model
from the single-task experiments and simply change the conditioning goal. As a result,
Diffuser performs as well in the multi-task setting as in the single-task setting. In contrast,
there is a substantial performance drop of the best model-free algorithm in the single-task
setting (IQL; Kostrikov et al. 2022) when adapted to the multi-task setting. Details of our
multi-task IQL with hindsight experience relabeling (Andrychowicz et al., 2017) are provided
in Appendix C.1. MPPI uses the ground-truth dynamics; its poor performance compared
to the learned planning algorithm of Diffuser highlights the difficulty posed by long-horizon
planning even when there are no prediction inaccuracies.

Test-time Flexibility

In order to evaluate the ability to generalize to new test-time goals, we construct a suite
of block stacking tasks with three settings: (1) unconditional stacking, for which the task
is to build a block tower as tall as possible; (2) conditional stacking, for which the task
is to construct a block tower with a specified order of blocks, and (3) rearrangement, for
which the task is to match a set of reference blocks’ locations in a novel arrangement. We
train all methods on 10000 trajectories from demonstrations generated by PDDLStream
(Garrett et al., 2020); rewards are equal to one upon successful stack placements and zero
otherwise. These block stacking are challenging diagnostics of test-time flexibility; in the
course of executing a partial stack for a randomized goal, a controller will venture into novel
states not included in the training configuration.

50

Planning with Diffusion

U
-M

az
e

M
ed

iu
m

L
ar

ge

denoising

Figure 5.4: (Planning as inpainting) Plans are generated in the Maze2D environment by
sampling trajectories consistent with a specified start and goal condition. The remaining
states are “inpainted” by the denoising process.

Environment BCQ CQL Diffuser

Unconditional Stacking 0.0 24.4 58.7 ±2.5

Conditional Stacking 0.0 0.0 45.6 ±3.1

Rearrangement 0.0 0.0 58.9 ±3.4

Average 0.0 8.1 54.4

Table 5.2: (Test-time flexibility) Performance of BCQ, CQL, and Diffuser on block stacking
tasks. A score of 100 corresponds to a perfectly executed stack; 0 is that of a random policy.

We use one trained Diffuser for all block-stacking tasks, only modifying the perturbation
function h(τ) between settings. In the unconditional stacking task, we directly sample from
the unperturbed denoising process pθ(τ) to emulate the PDDLStream controller. In the
conditional stacking and rearrangement tasks, we compose two perturbation functions h(τ)
to bias the sampled trajectories: the first maximizes the likelihood of the trajectory’s final
state matching the goal configuration, and the second enforces a contact constraint between
the end effector and a cube during stacking motions. (See Appendix C.2 for details.)

51

Planning with Diffusion

→

Figure 5.5: (Block stacking) A block stacking sequence executed by Diffuser. This task is
best illustrated by videos viewable at diffusion-planning.github.io.

We compare with two prior model-free offline reinforcement learning algorithms: BCQ
(Fujimoto et al., 2019) and CQL (Kumar et al., 2020a), training standard variants for the
unconditional stacking task and goal-conditioned variants for the conditional stacking and
rearrangement tasks. (Baseline details are provided in Appendix C.1.) Quantitative results
are given in Table 5.2, in which a score of 100 corresponds to a perfect execution of the task.
Diffuser substantially outperforms both prior methods, with the conditional settings requiring
flexible behavior generation proving especially difficult for the model-free algorithms. A visual
depiction of an execution by Diffuser is provided in Figure 5.5.

Offline Reinforcement Learning

Finally, we evaluate the capacity to recover an effective single-task controller from
heterogeneous data of varying quality using the D4RL offline locomotion suite (Fu et al.,
2020). We guide the trajectories generated by Diffuser toward high-reward regions using the
sampling procedure described in Algorithm 5 and condition the trajectories on the current
state using the inpainting procedure described in Section 5.3. The reward predictor Jϕ
is trained on the same trajectories as the diffusion model. A visualization of the learned
denoising procedure in this setting is shown in Figure 5.6.

We compare to a variety of prior algorithms spanning other approaches to data-driven control,
including the model-free reinforcement learning algorithms CQL (Kumar et al., 2020a) and
IQL (Kostrikov et al., 2022); return-conditioning approaches like Decision Transformer (DT;
Chen et al. 2021b); and model-based reinforcement learning approaches including Trajectory
Transformer (TT; Janner et al. 2021), MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2020),
and MBOP (Argenson & Dulac-Arnold, 2021). As shown in Table 5.3, Diffuser performs
comparably to prior algorithms in the single-task setting: better than the model-based

52

https://diffusion-planning.github.io/

Planning with Diffusion

de
no

is
in

g

planning horizon

Figure 5.6: (Guided sampling) Diffuser generates all timesteps of a plan concurrently,
instead of autoregressively, through the denoising process.

MOReL and MBOP and return-conditioning DT, but worse than the best offline techniques
designed specifically for single-task performance. We also investigated a variant using Diffuser
as a dynamics model in conventional trajectory optimizers such as MPPI (Williams et al.,
2015), but found that this combination performed no better than random, suggesting that the
effectiveness of Diffuser stems from coupled modeling and planning, and not from improved
open-loop predictive accuracy.

Warm-Starting Diffusion for Faster Planning

A limitation of Diffuser is that individual plans are slow to generate (due to iterative
generation). Naïvely, as we execute plans open loop, a new plan must be regenerated at each
step of execution. To improve execution speed of Diffuser, we may further reuse previously
generated plans to warm-start generations of subsequent plans.

To warm-start planning, we may run a limited number of forward diffusion steps from a
previously generated plan and then run a corresponding number of denoising steps from
this partially noised trajectory to regenerate an updated plan. In Figure 5.7, we illustrate
the trade-off between performance and runtime budget as we vary the underlying number

53

Planning with Diffusion

Dataset Environment BC CQL IQL DT TT MOPO MBOP Diffuser

Medium-Expert HalfCheetah 55.2 91.6 86.7 86.8 95.0 63.3 105.9 88.9 ±0.3

Medium-Expert Hopper 52.5 105.4 91.5 107.6 110.0 23.7 55.1 103.3 ±1.3

Medium-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 44.6 70.2 106.9 ±0.2

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.3 44.6 42.8 ±0.3

Medium Hopper 52.9 58.5 66.3 67.6 61.1 28.0 48.8 74.3 ±1.4

Medium Walker2d 75.3 72.5 78.3 74.0 79.0 17.8 41.0 79.6 ±0.55

Medium-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 53.1 42.3 37.7 ±0.5

Medium-Replay Hopper 18.1 95.0 94.7 82.7 91.5 67.5 12.4 93.6 ±0.4

Medium-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 39.0 9.7 70.6 ±1.6

Average 51.9 77.6 77.0 74.7 78.9 42.1 47.8 77.5

Table 5.3: (Offline reinforcement learning) The performance of Diffuser and a variety of
prior algorithms on the D4RL locomotion benchmark (Fu et al., 2020). Results for Diffuser
correspond to the mean and standard error over 150 planning seeds. We detail the sources
for the performance of prior methods in Appendix C.1. Following Kostrikov et al. (2022), we
emphasize in bold scores within 5 percent of the maximum per task (≥ 0.95 ·max).

of denoising steps used to regenerate each a new plan from 2 to 100. We find that we may
reduce the planning budget of our approach markedly with only modest drop in performance.

5.6 Related Work

Advances in deep generative modeling have recently made inroads into model-based
reinforcement learning, with multiple lines of work exploring dynamics models parameterized
as convolutional U-networks (Kaiser et al., 2020), stochastic recurrent networks (Ke et al.,
2018; Hafner et al., 2021a; Ha & Schmidhuber, 2018), vector-quantized autoencoders (Hafner
et al., 2021b; Ozair et al., 2021), neural ODEs (Du et al., 2020a), normalizing flows (Rhinehart
et al., 2020; Janner et al., 2020), generative adversarial networks (Eysenbach et al., 2021),
energy-based models (EBMs; Du et al. 2019), graph neural networks (Sanchez-Gonzalez
et al., 2018), neural radiance fields (Li et al., 2021), and Transformers (Janner et al., 2021;
Chen et al., 2021a). Further, Lambert et al. 2020 have studied non-autoregressive trajectory-
level dynamics models for long-horizon prediction. These investigations generally assume
an abstraction barrier between the model and planner. Specifically, the role of learning
is relegated to approximating environment dynamics; once learning is complete the model
may be inserted into any of a variety of planning (Botev et al., 2013; Williams et al., 2015)
or policy optimization (Sutton, 1990; Wang et al., 2019) algorithms because the form of
the planner does not depend strongly on the form of the model. Our goal is to break this

54

Planning with Diffusion

10−1 100

planning budget (seconds)

75

85

95

105

n
or

m
al

iz
ed

sc
or

e
(a

.u
.)

Performance versus runtime

Figure 5.7: (Warm-starting planning) Performance of Diffuser on Walker2d Medium-
Expert when varying the number of diffusion steps to warm-start planning. Performance
suffers only minimally even when using one-tenth the number of diffusion steps, as long as
plans are initialized from the previous timestep’s plan.

abstraction barrier by designing a model and planning algorithm that are trained alongside
one another, resulting in a non-autoregressive trajectory-level model for which sampling and
planning are nearly identical.

A number of parallel lines of work have studied how to break the abstraction barrier between
model learning and planning in different ways. Approaches include training an autoregressive
latent-space model for reward prediction (Tamar et al., 2016; Oh et al., 2017; Schrittwieser
et al., 2019); weighing model training objectives by state values (Farahmand et al., 2017);
and applying collocation techniques to learned single-step energies (Du et al., 2019; Rybkin
et al., 2021). In contrast, our method plans by modeling and generating all timesteps of a
trajectory concurrently, instead of autoregressively, and conditioning the sampled trajectories
with auxiliary guidance functions.

Diffusion models have emerged as a promising class of generative model that formulates the
data-generating process as an iterative denoising procedure (Sohl-Dickstein et al., 2015; Ho
et al., 2020). The denoising procedure can be seen as parameterizing the gradients of the
data distribution (Song & Ermon, 2019a), connecting diffusion models to score matching
(Hyvärinen, 2005) and EBMs (LeCun et al., 2006; Du & Mordatch, 2019; Nijkamp et al.,
2019; Grathwohl et al., 2020). Iterative, gradient-based sampling lends itself towards flexible
conditioning (Dhariwal & Nichol, 2021) and compositionality (Du et al., 2020b), which we
use to recover effective behaviors from heterogeneous datasets and plan for reward functions
unseen during training. While diffusion models have been developed for the generation of

55

Planning with Diffusion

images (Song et al., 2021), waveforms (Chen et al., 2021c), 3D shapes (Zhou et al., 2021),
and text (Austin et al., 2021), to the best of our knowledge they have not previously been
used in the context of reinforcement learning or decision-making.

5.7 Discussion

This chapter has proposed Diffuser, a denoising diffusion model for trajectory data. Unlike
conventional dynamics models, Diffuser lends itself to a learned, non-greedy planning
procedure that allows it so solve long-horizon tasks. Planning with Diffuser is almost
identical to sampling from it, differing only in the addition of auxiliary perturbation functions
that serve to guide samples. The learned diffusion-based planning procedure has a number
of useful properties, including graceful handling of sparse rewards, the ability to plan for
new rewards without retraining, and a temporal compositionality that allows it to produce
out-of-distribution trajectories by stitching together in-distribution subsequences.

Our results point to a new class of diffusion-based planning procedures for deep model-
based reinforcement learning. However, there are genuine tradeoffs between Diffuser and the
Transformer-based approach from Chapter 4. While Diffuser comes equipped with a much
more efficient learned planner than beam search, it comes at the cost of reduced open-loop
predictive accuracy. This discrepancy arises due to differences in the underlying generative
models. Diffusion models’ success in image generation has been attributed to an increased
importance placed on low-frequency information, a consequence of the denoising schedule and
parameter-sharing across noise levels (Song & Ermon, 2019b; Dieleman, 2022). In contrast,
Transformers are more readily able to represent the types of high-frequency information
that can disproportionately affect trajectories, such as joint angles near a contact point,
but are limited in planning contexts due to impoverished search procedures. It remains an
open question, both in the context of decision-making and broadly in generative modeling,
how to best combine the effectiveness of the Transformer architecture with the strengths of
non-autoregressive denoising strategies.

56

6

Conclusion

In this thesis, we considered the role of generative models in the reinforcement learning
problem. We began by asking what prediction problem the generative model should be trained
to solve, and in the process developed a continuous-state dynamics model that can predict
over probabilistic, infinite horizons. However, when generalizing the standard single-step
prediction problem to that of infinite-horizon prediction, we found that the bottleneck to
scaling lay with the quality of the generative model itself. As a result, we studied the extent
to which improved generative modeling capabilities could be used to enhance the performance
of a planning algorithm, designing a planner around the toolbox of large-scale language
modeling. While this approach markedly increased predictive accuracy, planning capabilities
lagged behind due to the inefficiency of language model decoding approaches, making the
new bottleneck the planning algorithm in which the generative model was embedded.

The main difficulty with such an approach was that the quality of the planner was constant;
because the model itself could improve with data but the planner could not, the model
would continue to become more accurate until the planner became the performance-limiting
component. To address this, we described a method of incorporating the entire planning
algorithm into the generative model itself, as opposed to embedding a generative model into
a conventional planner. This design allowed the plans, and not just the predictive quality,
to improve with more data and experience, and we demonstrated that this approach was
effective in long-horizon and sparse-reward settings where conventional planning algorithms
struggle.

As with many research programs, the work in this thesis raises more questions than it answers.
We conclude by discussing some of the most promising directions for future work in the
intersection of reinforcement learning and generative modeling:

• Planning in abstracted time. The γ-model allows us to ask questions of the form
“will I reach a particular state at some point in the future” without needing to worry

57

Conclusion

about precisely when that state will be reached. This affordance is a natural fit for
long-horizon decision-making. For example, a plan for a mobile robot would plausibly
need to include battery recharging after some amount of time. The ability to incorporate
such a step in its plan, without needing to precommit to the exact second in which
this step must occur, would allow the planner to hone in on higher-level decisions to
be made and their ordering as opposed to unnecessary (and inevitably misleading)
precision. This idea shares much of its inspiration with the line of work describing
options (Sutton et al., 1999); scaling such methods to high-dimensional control problems
poses an exciting, and likely fruitful, challenge.

• Planning in abstracted states. The methods described in this thesis plan in raw
state space. In large observation spaces, this becomes not only unnecessary – as most
details in an observation are unlikely to be relevant to the task at hand – but also
possibly infeasible in the event that the space is so large that high-quality generative
modeling once again becomes the bottleneck. Instead, it would be much more efficient
to plan in a compressed space pruned of unnecessary details. There has been much
work on learned latent spaces, with the usual spectrum ranging from those trained
with reconstructive objectives (Hafner et al., 2021a; Janner et al., 2019) to those
that contain only value-relevant information (Grimm et al., 2020) and options that
interpolate between these two extremes (Farahmand et al., 2017; Eysenbach et al.,
2021). However, it remains an open problem how to combine these works with learned
planners, contemporary high-capacity generative models, and deploy them in the types
of real-world problems that are often used as the motivating examples for learned latent
spaces.

• Improved learned planning algorithms. One of the main contributions of this thesis
is a learned planning algorithm based on iterative denoising. The main advantage of
this method compared to conventional planners is its ability to improve with experience.
However, just as there exist many classical planning algorithms with different strengths
and weaknesses, there is no reason to believe that Diffuser is the end of the story for
data-driven planning. Improved variants could incorporate dynamics Jacobians, more
sophisticated constrained optimization techniques, or make use of tree-based search
techniques for better coverage of the space of possibilities.

• Amortized and adaptive planning. As discussed in Chapter 1, model-based planners
are appealing for their test-time flexibility and generalization properties. However,
a fundamental limitation of planning-based approaches is their runtime costs, which
can become prohibitively large for any problem requiring a high planning frequency.
In comparison, model-free policies tend to be more efficient, often requiring only a
single feedforward pass of a neural network as opposed to many such computations for
the purpose of an iterative planner. To benefit from the respective strengths of both
approaches, the cost of planning could be amortized over time by storing the result of
the planning method into a lightweight policy and falling back on the planner only in

58

Conclusion

novel situations. The open challenge, of course, is to design a reliable mechanism for
determining when a situation calls for the slower planning approach and when it is safe
to use the faster policy.

• Foundation dynamics models. The dynamics models and planners described in this
thesis were trained and evaluated on individual tasks (e.g., in locomotion settings) or in
small sets of tasks (e.g., in maze-solving or block-stacking domains). While common in
reinforcement learning, this workflow is becoming increasingly rare in the rest of machine
learning, in which models pretrained on large-scale datasets are finetuned (or used
directly) on a wide variety of tasks. There is an opportunity to build something similar
for dynamics models, especially in real-world robotics settings where the regularity of
the physical world could enable the types of generalization present in large language
modeling (Brown et al., 2020). In the short term, this problem is largely one of dataset
collection. In the longer term, this endeavour will open up new research problems we
are not yet able to anticipate. A common refrain in deep learning is that something
new breaks with every order-of-magnitude scale increase, and it is likely that the same
will be true in robotic control.

59

Open-Source

Open-Source Implementations

Code to reproduce the results in this thesis is available at the following webpages:

• Chapter 3: gamma-models.github.io

• Chapter 4: trajectory-transformer.github.io

• Chapter 5: diffusion-planning.github.io

Code References

The following libraries were used in this work: NumPy (Harris et al., 2020), PyTorch (Paszke
et al., 2019), JAX (Bradbury et al., 2018), Flax (Heek et al., 2023), einops (Rogozhnikov,
2022), MuJoCo (Todorov et al., 2012), mujoco-py (OpenAI, 2016), Gym (Brockman et al.,
2016), minGPT (Karpathy, 2020), and Diffusion Models in PyTorch (Wang, 2020).

60

https://gammamodels.github.io/
https://trajectory-transformer.github.io/
https://diffusion-planning.github.io/

Bibliography

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., and Kolter, J. Z. Differentiable mpc for
end-to-end planning and control. In Advances in Neural Information Processing Systems,
2018.

Amos, B., Stanton, S., Yarats, D., and Wilson, A. G. On the model-based stochastic value
gradient for continuous reinforcement learning. In Conference on Learning for Dynamics
and Control, 2021.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Abbeel, P., and Zaremba, W. Hindsight experience replay. In Advances in Neural
Information Processing Systems. 2017.

Argenson, A. and Dulac-Arnold, G. Model-based offline planning. In International Conference
on Learning Representations, 2021.

Asadi, K., Misra, D., Kim, S., and Littman, M. L. Combating the compounding-error problem
with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den Berg, R. Structured denoising
diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems, 2021.

Bakker, B. Reinforcement learning with long short-term memory. In Neural Information
Processing Systems, 2002.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K. L., Kohli, P., Battaglia, P. W.,
and Hamrick, J. B. Structured agents for physical construction. In International Conference
on Machine Learning, 2019.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D.
Successor features for transfer in reinforcement learning. In Advances in Neural Information
Processing Systems 30. 2017.

61

Biblography

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D., Hessel, M., Mankowitz, D., Zidek,
A., and Munos, R. Transfer in deep reinforcement learning using successor features and
generalised policy improvement. In Proceedings of the International Conference on Machine
Learning, 2018.

Bellman, R. Dynamic Programming. Dover Publications, 1957.

Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., and L’Ecuyer, P. The cross-entropy method
for optimization. In Handbook of Statistics, volume 31, chapter 3. 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,
G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/
jax.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba,
W. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, 2020.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H. Sample-efficient reinforcement
learning with stochastic ensemble value expansion. In Advances in Neural Information
Processing Systems, 2018a.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H. Sample-efficient reinforcement
learning with stochastic ensemble value expansion. In Advances in Neural Information
Processing Systems, 2018b.

Chen, C., Yoon, J., Wu, Y.-F., and Ahn, S. TransDreamer: Reinforcement learning with
transformer world models, 2021a.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A.,
and Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling. In
Advances in Neural Information Processing Systems, 2021b.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and Chan, W. Wavegrad: Estimating
gradients for waveform generation. In International Conference on Learning Representations,
2021c.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. Recurrent environment simulators.
In International Conference on Learning Representations, 2017.

62

http://github.com/google/jax
http://github.com/google/jax

Biblography

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems. 2018.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. Self-consistent
trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings.
In International Conference on Machine Learning, 2018.

Dadashi, R., Rezaeifar, S., Vieillard, N., Hussenot, L., Pietquin, O., and Geist, M. Offline
reinforcement learning with pseudometric learning. arXiv preprint arXiv:2103.01948, 2021.

Dayan, P. Improving generalization for temporal difference learning: The successor
representation. Neural Computation, 5:613, 1993.

Deisenroth, M. and Rasmussen, C. E. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning, 2011.

Dhariwal, P. and Nichol, A. Q. Diffusion models beat GANs on image synthesis. In Advances
in Neural Information Processing Systems, 2021.

Diehl, M., Ferreau, H. J., and Haverbeke, N. Efficient Numerical Methods for Nonlinear
MPC and Moving Horizon Estimation. 2009.

Dieleman, S. Diffusion models are autoencoders, 2022. URL https://benanne.github.io/
2022/01/31/diffusion.html.

Dong, K., Luo, Y., Yu, T., Finn, C., and Ma, T. On the expressivity of neural networks for
deep reinforcement learning. In International Conference on Machine Learning, 2020.

Du, J., Futoma, J., and Doshi-Velez, F. Model-based reinforcement learning for semi-markov
decision processes with neural odes. In Advances in Neural Information Processing Systems,
2020a.

Du, Y. and Mordatch, I. Implicit generation and generalization in energy-based models. In
Advances in Neural Information Processing Systems, 2019.

Du, Y., Lin, T., and Mordatch, I. Model based planning with energy based models. In
Conference on Robot Learning, 2019.

Du, Y., Li, S., and Mordatch, I. Compositional visual generation with energy based models.
In Advances in Neural Information Processing Systems, 2020b.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. Neural spline flows. In Advances
in Neural Information Processing Systems. 2019.

Eysenbach, B., Khazatsky, A., Levine, S., and Salakhutdinov, R. Mismatched no more: Joint
model-policy optimization for model-based rl. arXiv preprint arXiv:2110.02758, 2021.

63

https://benanne.github.io/2022/01/31/diffusion.html
https://benanne.github.io/2022/01/31/diffusion.html

Biblography

Fairbank, M. Reinforcement learning by value gradients. arXiv preprint arXiv:0803.3539,
2008.

Farahmand, A.-M., Barreto, A., and Nikovski, D. Value-aware loss function for model-based
reinforcement learning. In International Conference on Artificial Intelligence and Statistics,
2017.

Farshidian, F., Neunert, M., and Buchli, J. Learning of closed-loop motion control. In
International Conference on Intelligent Robots and Systems, 2014.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., and Levine, S. Model-based
value estimation for efficient model-free reinforcement learning. In International Conference
on Machine Learning, 2018.

Foster, D. and Dayan, P. Structure in the space of value functions. Machine Learning, 49:
325, 2002.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive planning. In International
Conference on Automated Planning and Scheduling, 2020.

Gershman, S. J. The successor representation: Its computational logic and neural substrates.
Journal of Neuroscience, 2018.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. EMaQ: Expected-max Q-learning
operator for simple yet effective offline and online rl. arXiv preprint arXiv:2007.11091,
2020.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M., Eysenbach, B., and Levine, S.
Learning to reach goals via iterated supervised learning. In International Conference on
Learning Representations, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. Generative adversarial nets. In Advances in Neural Information
Processing Systems, 2014a.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014b.

64

Biblography

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., and Zemel, R. Learning the
stein discrepancy for training and evaluating energy-based models without sampling. In
International Conference on Machine Learning, 2020.

Grimm, C., Barreto, A., Singh, S., and Silver, D. The value equivalence principle for
model-based reinforcement learning. In Neural Information Processing Systems, 2020.

Gu, J., Liu, Q., and Cho, K. Insertion-based Decoding with Automatically Inferred Generation
Order. Transactions of the Association for Computational Linguistics, 2019.

Ha, D. and Schmidhuber, J. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. Learning
latent dynamics for planning from pixels. In International Conference on Machine Learning,
2021a.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Mastering atari with discrete world
models. In International Conference on Learning Representations, 2021b.

Hansen, S., Dabney, W., Barreto, A., Warde-Farley, D., de Wiele, T. V., and Mnih, V. Fast
task inference with variational intrinsic successor features. In International Conference on
Learning Representations, 2020.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.
Array programming with NumPy. Nature, 585(7825):357–362, 2020.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., and van Zee, M.
Flax: A neural network library and ecosystem for JAX, 2023. URL http://github.com/
google/flax.

Heess, N., Hunt, J. J., Lillicrap, T., and Silver, D. Memory-based control with recurrent
neural networks. In Neural Information Processing Systems Deep Reinforcement Learning
Workshop, 2015a.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and Erez, T. Learning continuous
control policies by stochastic value gradients. In Advances in Neural Information Processing
Systems, 2015b.

65

http://github.com/google/flax
http://github.com/google/flax

Biblography

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hyvärinen, A. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 2005.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, 2019.

Janner, M., Mordatch, I., and Levine, S. γ-models: Generative temporal difference learning
for infinite-horizon prediction. In Advances in Neural Information Processing Systems,
2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement learning as one big sequence modeling
problem. In Advances in Neural Information Processing Systems, 2021.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. Language as an abstraction for hierarchical deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2019.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline RL? In International
Conference on Machine Learning, 2021.

Jordan, M. I. and Rumelhart, D. E. Forward models: Supervised learning with a distal
teacher. Cognitive Science, 16:307, 1992.

Kaelbling, L. P. Learning to achieve goals. In Proceedings of the International Joint Conference
on Artificial Intelligence, 1993.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task and motion planning in the now. In
2011 IEEE International Conference on Robotics and Automation, 2011.

Kahn, G., Villaflor, A., Ding, B., Abbeel, P., and Levine, S. Self-supervised deep reinforcement
learning with generalized computation graphs for robot navigation. In International
Conference on Robotics and Automation, 2018.

Kaiser, L., Babaeizadeh, M., Miłos, P., Osiński, B., Campbell, R. H., Czechowski, K., Erhan,
D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker, G., and
Michalewski, H. Model based reinforcement learning for atari. In International Conference
on Learning Representations, 2020.

Kalweit, G. and Boedecker, J. Uncertainty-driven imagination for continuous deep
reinforcement learning. In Conference on Robot Learning, 2017.

66

Biblography

Kaplan, J., McCandlish, S., Henighan, T. J., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

Karpathy, A. minGPT: A minimal pytorch re-implementation of the openai gpt training,
2020. URL https://github.com/karpathy/minGPT.

Ke, N. R., Singh, A., Touati, A., Goyal, A., Bengio, Y., Parikh, D., and Batra, D. Modeling
the long term future in model-based reinforcement learning. In International Conference
on Learning Representations, 2018.

Kelly, M. An introduction to trajectory optimization: How to do your own direct collocation.
SIAM Review, 59(4):849–904, 2017.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. MOReL: Model-based offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In European Conference
on Machine Learning, 2006.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement learning with implicit Q-learning.
In International Conference on Learning Representations, 2022.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Neural Information Processing Systems. 2012.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. Deep successor reinforcement
learning, 2016.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing off-policy Q-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems,
2019a.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019b.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020a.

Kumar, A., Agarwal, R., Ma, T., Courville, A., Tucker, G., and Levine, S. DR3: Value-based
deep reinforcement learning requires explicit regularization. In International Conference
on Learning Representations, 2022.

67

https://github.com/karpathy/minGPT

Biblography

Kumar, S., Parker, J., and Naderian, P. Adaptive transformers in RL. arXiv preprint
arXiv:2004.03761, 2020b.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. Model-ensemble trust-region
policy optimization. In International Conference on Learning Representations, 2018.

Lambert, N. O., Wilcox, A., Zhang, H., Pister, K. S., and Calandra, R. Learning accurate long-
term dynamics for model-based reinforcement learning. arXiv preprint arXiv:2012.09156,
2020.

Lampe, T. and Riedmiller, M. Approximate model-assisted neural fitted Q-iteration. In
International Joint Conference on Neural Networks, 2014.

LeCun, Y., Chopra, S., Hadsell, R., Huang, F. J., and et al. A tutorial on energy-based
learning. In Predicting Structured Data. MIT Press, 2006.

Levine, S. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Levine, S. and Koltun, V. Guided policy search. In International Conference on Machine
Learning, 2013.

Li, Y., Li, S., Sitzmann, V., Agrawal, P., and Torralba, A. 3d neural scene representations
for visuomotor control. In Conference on Robot Learning, 2021.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. Algorithmic framework for
model-based deep reinforcement learning with theoretical guarantees. In International
Conference on Learning Representations, 2019.

Ma, C., Wen, J., and Bengio, Y. Universal successor representations for transfer reinforcement
learning. arXiv preprint arXiv:1804.03758, 2018.

Malik, A., Kuleshov, V., Song, J., Nemer, D., Seymour, H., and Ermon, S. Calibrated model-
based deep reinforcement learning. In International Conference on Machine Learning,
2019.

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., and Wang, Z. Least squares generative adversarial
networks. arXiv preprint arXiv:1611.04076, 2016.

Meister, C., Cotterell, R., and Vieira, T. If beam search is the answer, what was the question?
In Empirical Methods in Natural Language Processing, 2020.

Misra, D. Mish: A self regularized non-monotonic neural activation function. In British
Machine Vision Conference, 2019.

68

Biblography

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
Human-level control through deep reinforcement learning. Nature, 2015.

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D., and Gershman,
S. J. The successor representation in human reinforcement learning. Nature Human
Behaviour, 1(9):680–692, 2017.

Moore, A. W. Efficient Memory-based Learning for Robot Control. PhD thesis, University of
Cambridge, 1990.

Nagabandi, A., Kahn, G., S. Fearing, R., and Levine, S. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In International
Conference on Robotics and Automation, 2018.

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V. Deep Dynamics Models for Learning
Dexterous Manipulation. In Conference on Robot Learning, 2019.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Nguyen, D. H. and Widrow, B. Neural networks for self-learning control systems. IEEE
Control Systems Magazine, 1990.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, 2021.

Nijkamp, E., Hill, M., Zhu, S.-C., and Wu, Y. N. Learning non-convergent non-persistent short-
run MCMC toward energy-based model. In Advances in Neural Information Processing
Systems, 2019.

Nowozin, S., Cseke, B., and Tomioka, R. f-gan: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems.
2016.

Oh, J., Chockalingam, V., Lee, H., et al. Control of memory, active perception, and action in
Minecraft. In International Conference on Machine Learning, 2016.

Oh, J., Singh, S., and Lee, H. Value prediction network. In Advances in Neural Information
Processing Systems, 2017.

OpenAI. mujoco-py, 2016. URL https://github.com/openai/mujoco-py.

Ozair, S., Li, Y., Razavi, A., Antonoglou, I., Van Den Oord, A., and Vinyals, O. Vector
quantized models for planning. In International Conference on Machine Learning, 2021.

69

https://github.com/openai/mujoco-py

Biblography

Parisotto, E. and Salakhutdinov, R. Efficient transformers in reinforcement learning using
actor-learner distillation. In International Conference on Learning Representations, 2021.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg, M.,
Kaufman, R. L., Clark, A., Noury, S., et al. Stabilizing transformers for reinforcement
learning. In International Conference on Machine Learning, 2020.

Paster, K., McIlraith, S. A., and Ba, J. Planning from pixels using inverse dynamics models.
In International Conference on Learning Representations, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems. 2019.

Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M. DeepLoco: Dynamic locomotion
skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics, 2017.

Pong, V., Gu, S., Dalal, M., and Levine, S. Temporal difference models: Model-free deep RL
for model-based control. In International Conference on Learning Representations, 2018.

Posa, M., Cantu, C., and Tedrake, R. A direct method for trajectory optimization of rigid
bodies through contact. The International Journal of Robotics Research, 2014.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language
understanding by generative pre-training. 2018.

Rauber, P., Ummadisingu, A., Mutz, F., and Schmidhuber, J. Hindsight policy gradients. In
International Conference on Learning Representations, 2019.

Reddy, R. Speech understanding systems: Summary of results of the five-year research effort
at Carnegie Mellon University, 1977.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In Proceedings
of Machine Learning Research, 2015.

Rhinehart, N., McAllister, R., and Levine, S. Deep imitative models for flexible inference,
planning, and control. In International Conference on Learning Representations, 2020.

Rogozhnikov, A. Einops: Clear and reliable tensor manipulations with einstein-like notation.
In International Conference on Learning Representations, 2022.

Ross, S. and Bagnell, D. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics, 2010.

70

Biblography

Ross, S., Gordon, G., and Bagnell, D. A reduction of imitation learning and structured
prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics, 2011.

Rybkin, O., Zhu, C., Nagabandi, A., Daniilidis, K., Mordatch, I., and Levine, S. Model-based
reinforcement learning via latent-space collocation. In International Conference on Machine
Learning, pp. 9190–9201. PMLR, 2021.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Riedmiller, M., Hadsell, R.,
and Battaglia, P. Graph networks as learnable physics engines for inference and control.
In International Conference on Machine Learning, 2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal value function approximators.
In Proceedings of the International Conference on Machine Learning, 2015.

Schmidhuber, J. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D. Mastering atari, go,
chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Sutton, R. S., and Müller, M. Sample-based learning and search with permanent
and transient memories. In International Conference on Machine Learning, 2008.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold, G.,
Reichert, D., Rabinowitz, N., Barreto, A., and Degris, T. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, 2017.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2021.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, 2019a.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution.
In Neural Information Processing Systems, 2019b.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and Schmidhuber, J. Training agents
using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877, 2019.

71

Biblography

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, 2014.

Sutton, R. TD models: Modeling the world at a mixture of time scales. In Proceedings of the
12th International Conference on Machine Learning, 1995.

Sutton, R. S. Learning to predict by the methods of temporal differences. Machine Learning,
1988.

Sutton, R. S. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In International Conference on Machine Learning,
1990.

Sutton, R. S. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in Neural Information Processing Systems. 1996.

Sutton, R. S., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.

Talvitie, E. Model regularization for stable sample rollouts. In Conference on Uncertainty in
Artificial Intelligence, 2014.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value iteration networks. In
Advances in Neural Information Processing Systems. 2016.

Tassa, Y., Erez, T., and Todorov, E. Synthesis and stabilization of complex behaviors through
online trajectory optimization. In International Conference on Intelligent Robots and
Systems, 2012.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder, S.,
and Metzler, D. Long range arena: A benchmark for efficient transformers. In International
Conference on Learning Representations, 2021.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems, 2012.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use parametric models in
reinforcement learning? In Neural Information Processing Systems, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

Wang, P. Implementation of denoising diffusion probabilistic models in pytorch, 2020. URL
https://github.com/lucidrains/denoising-diffusion-pytorch.

72

https://github.com/lucidrains/denoising-diffusion-pytorch

Biblography

Wang, T. and Ba, J. Exploring model-based planning with policy networks. In International
Conference on Learning Representations, 2020.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., Zhang, S., Zhang, G.,
Abbeel, P., and Ba, J. Benchmarking model-based reinforcement learning. arXiv preprint
arXiv:1907.02057, 2019.

Williams, G., Aldrich, A., and Theodorou, E. Model predictive path integral control using
covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Williams, R. J. and Zipser, D. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1989.

Witkin, A. and Kass, M. Spacetime constraints. ACM Siggraph Computer Graphics, 1988.

Wu, Y. and He, K. Group normalization. In European Conference on Computer Vision, 2018.

Wu, Y., Tucker, G., and Nachum, O. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yin, M., Bai, Y., and Wang, Y.-X. Near-optimal offline reinforcement learning via double
variance reduction. arXiv preprint arXiv:2102.01748, 2021.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. MOPO:
Model-based offline policy optimization. In Advances in Neural Information Processing
Systems, 2020.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations,
2017.

Zhang, M. R., Paine, T., Nachum, O., Paduraru, C., Tucker, G., ziyu wang, and Norouzi,
M. Autoregressive dynamics models for offline policy evaluation and optimization. In
International Conference on Learning Representations, 2021.

Zhou, L., Du, Y., and Wu, J. 3D shape generation and completion through point-voxel
diffusion. In International Conference on Computer Vision, 2021.

73

Appendix A

γ-Model Details

A.1 Geometric weighting lemma

Lemma 1. Let αn be importance weights as described in Theorem 1: αn = (1−γ̃)(γ̃−γ)n−1

(1−γ)n .
Then:

1−
H∑

n=1

αn =

(
γ̃ − γ
1− γ

)H

Proof.

1−
H∑

n=1

αn = 1−
(
1− γ̃
γ̃ − γ

) H∑

n=1

(
γ̃ − γ
1− γ

)n

= 1−
(
1− γ̃
γ̃ − γ

) (γ̃−γ
1−γ

)
−
(
γ̃−γ
1−γ

)H+1

1−γ̃
1−γ

= 1−
(
1− γ
γ̃ − γ

)((
γ̃ − γ
1− γ

)
−
(
γ̃ − γ
1− γ

)H+1
)

=

(
γ̃ − γ
1− γ

)H

74

Appendix A: γ -Model

Table A.1: GAN γ-model hyperparameters (Algorithm 2).

Parameter Value

Batch size 128

Number of se samples per (st, at) pair 512

Delay parameter τ 5 · 10−3

Step size λ 1 · 10−4

Replay buffer size (off-policy prediction
experiments)

2 · 105

A.2 Implementation Details

γ-MVE algorithmic description. The γ-MVE estimator may be used for value estimation
in any actor-critic algorithm. We describe the variant used in our control experiments, in
which it is used in the soft actor critic algorithm (SAC; Haarnoja et al. 2018), in Algorithm 1.
The γ-model update is unique to γ-MVE; the objectives for the value function and policy are
identical to those in SAC. The objective for the Q-function differs only by replacing V (st+1)
with Vγ−MVE(st+1). For a detailed description of how the gradients of these objectives may be
estimated, and for hyperparameters related to the training of the Q-function, value function,
and policy, we refer to (Haarnoja et al., 2018).

Network architectures. For all GAN experiments, the γ-model generator µθ and
discriminator Dϕ are instantiated as two-layer MLPs with hidden dimensions of 256 and leaky
ReLU activations. For all normalizing flow experiments, we use a six-layer neural spline flow
(Durkan et al., 2019) with 16 knots defined in the interval [−10, 10]. The rational-quadratic
coupling transform uses a three-layer MLP with hidden dimensions of 256.

Hyperparameter settings. We include the hyperparameters used for training the GAN
γ-model in Table A.1 and the flow γ-model in Table A.2.

We found the original GAN (Goodfellow et al., 2014a) and the least-squares GAN (Mao et al.,
2016) formulation to be equally effective for training γ-models as GANs.

75

Appendix A: γ -Model

Table A.2: Flow γ-model hyperparameters (Algorithm 3)

Parameter Value

Batch size 1024

Number of se samples per (st, at) pair 1

Delay parameter τ 5 · 10−3

Step size λ 1 · 10−4

Replay buffer size (off-policy prediction
experiments)

2 · 105

Single-step Gaussian variance σ2 1 · 10−2

A.3 Environment Details

Acrobot-v1 is a two-link system (Sutton, 1996). The goal is to swing the
lower link above a threshold height. The eight-dimensional observation is given by
[cos θ0, sin θ0, cos θ1, sin θ1,

d
dt
θ0,

d
dt
θ1]. We modify it to have a one-dimensional continuous

action space instead of the standard three-dimensional discrete action space. We provide
reward shaping in the form of rshaped = − cos θ0 − cos(θ0 + θ1).

MountainCarContinuous-v0 is a car on a track (Moore, 1990). The goal is to drive
the car up a high too high to summit without built-up momentum. The two-dimmensional
observation space is [x, d

dt
x]. We provide reward shaping in the form of rshaped = x.

Pendulum-v0 is a single-link system. The link starts in a random position and the goal is
to swing it upright. The three-dimensional observation space is given by [cos θ, sin θ, d

dt
θ].

Reacher-v2 is a two-link arm. The objective is to move the end effector e of the arm
to a randomly sampled goal position g. The 11-dimensional observation space is given by
[cos θ0, cos θ1, sin θ0, sin θ1,gx,gy,

d
dt
θ0,

d
dt
θ1, ex − gx, ey − gy, ez − gz].

Model-based methods often make use of shaped reward functions during model-based rollouts
(Chua et al., 2018). For fair comparison, when using shaped rewards we also make the same
shaping available to model-free methods.

76

Appendix A: γ -Model

A.4 Adversarial γ-Model Predictions

−1 0 1

−2

−1

0

1

2

an
gl

e
2

(r
ad

)

Single-step model
γ = 0

−1 0 1

γ = 0.5

−1 0 1

γ = 0.75

−1 0 1

γ = 0.85

−1 0 1

γ = 0.95

−1 0 1

angle 1 (rad)

Ground Truth
γ = 0.95

Acrobot

−1 0

6

3

0

−3

−6

ve
lo

ci
ty

(a
.u

.)

×10−2

Single-step model
γ = 0

−1 0

γ = 0.5

−1 0

γ = 0.75

−1 0

γ = 0.85

−1 0

γ = 0.95

−1 0

position (a.u.)

Ground Truth
γ = 0.95

Mountain Car

Figure A.1: (Adversarial γ-model predictions) Visualization of the distribution from a
single feedforward pass of γ-models trained as GANs according to Algorithm 2. GAN-based
γ-models tend to be more unstable than normalizing flow γ-models, especially at higher
discounts.

77

Appendix B

Trajectory Transformer Details

B.1 Model and Training Specification

Architecture and optimization details. In all environments, we use a Transformer
architecture with four layers and four self-attention heads. The total input vocabulary of
the model is V × (N +M + 2) to account for states, actions, rewards, and rewards-to-go,
but the output linear layer produces logits only over a vocabulary of size V ; output tokens
can be interpreted unambiguously because their offset is uniquely determined by that of the
previous input. The dimension of each token embedding is 128. Dropout is applied at the
end of each block with probability 0.1.

We follow the learning rate scheduling of (Radford et al., 2018), increasing linearly from 0 to
2.5× 10−4 over the course of 2000 updates. We use a batch size of 256.

Hardware. Model training took place on NVIDIA Tesla V100 GPUs (NCv3 instances on
Microsoft Azure) for 80 epochs, taking approximately 6-12 hours (varying with dataset size)
per model on one GPU.

B.2 Discrete Oracle

The discrete oracle in Figure 4.3 is the maximum log-likelihood attainable by a model under
the uniform discretization granularity. For a single state dimension i, this maximum is
achieved by a model that places all probability mass on the correct token, corresponding to a

78

Appendix B: Trajectory Transformer

uniform distribution over an interval of size

ri − ℓi
V

.

The total log-likelihood over the entire state is then given by:

N∑

i=1

log
V

ri − ℓi
.

B.3 Baseline performance sources

Offline reinforcement learning The results for CQL, IQL, and DT are from Table 1 in
Kostrikov et al. (2022). The results for MBOP are from Table 1 in Argenson & Dulac-Arnold
(2021). The results for BRAC are from Table 2 in (Fu et al., 2020). The results for BC are
from Table 1 in Kumar et al. (2020a).

B.4 Datasets

The D4RL dataset (Fu et al., 2020) used in our experiments is under the Creative Commons
Attribution 4.0 License (CC BY). The license information can be found at

https://github.com/rail-berkeley/d4rl/blob/master/README.md

under the “Licenses” section.

B.5 Beam Search Hyperparameters

Beam width maximum number of hypotheses retained during beam search 256

Planning horizon number of transitions predicted by the model during 15

Vocabulary size number of bins used for autoregressive discretization 100

Context size number of input (st, at, rt, Rt) transitions 5

kobs top-k tokens from which observations are sampled 1

kact top-k tokens from which actions 20

79

https://github.com/rail-berkeley/d4rl/blob/master/README.md

Appendix B: Trajectory Transformer

Beam width and context size are standard hyperparameters for decoding Transformer language
models. Planning horizon is a standard trajectory optimization hyperparameter. The
hyperparameters kobs and kact indicate that actions are sampled from the most likely 20% of
action tokens and next observations are decoded greedily conditioned on previous observations
and actions.

In many environments, the beam width and horizon may be reduced to speed up planning
without affecting performance. Examples of these configurations are provided in the reference
implementation: github.com/jannerm/trajectory-transformer.

B.6 Goal-Reaching on Procedurally-Generated Maps

The method evaluated here and the experimental setup is identical to that described in
Section 3.2 (Goal-conditioned reinforcement learning), with one distinction: because the
map changes each episode, the Transformer model has an additional context embedding
that is a function of the current observation image. This embedding is the output of a
small convolutional neural network and is added to the token embeddings analogously to the
treatment of position embeddings. The agent position and goal state are not included in the
map; these are provided as input tokens as described in Section 3.2.

The action space of this environment is discrete. There are seven actions, but only four are
required to complete the tasks: turning left, turning right, moving forward, and opening a
door. The training data is a mixture of trajectories from a pre-trained goal-reaching policy
and a uniform random policy.

94% of testing goals are reached by the model on held-out maps. Example paths are shown
in Figure B.1.

80

https://github.com/JannerM/trajectory-transformer

Appendix B: Trajectory Transformer

Figure B.1: (Minigrid rollouts) Example paths of the Trajectory Transformer planner in
the MiniGrid-MultiRoom-N4-S5. Lock symbols indicate doors.

81

Appendix C

Diffuser Details

C.1 Baseline details and sources

In this section, we provide details about baselines we ran ourselves. For scores of baselines
previously evaluated on standardized tasks, we provide the source of the listed score.

Maze2D experiments

Single-task. The performance of CQL and IQL on the standard Maze2D environments is
reported in the D4RL whitepaper (Fu et al., 2020) in Table 2.

We ran IQL using the offical implementation from the authors:

github.com/ikostrikov/implicit_q_learning.

We tuned over two hyperparameters:

1. temperature ∈ [3, 10]

2. expectile ∈ [0.65, 0.95]

Multi-task. We only evaluated IQL on the Multi2D environments because it is the strongest
baseline in the single-task Maze2D environments by a sizeable margin. To adapt IQL to
the multi-task setting, we modified the Q-functions, value function, and policy to be goal-
conditioned. To select goals during training, we employed a strategy based on hindsight

82

https://github.com/ikostrikov/implicit_q_learning

Appendix C: Diffuser

experience replay, in which we sampled a goal from among those states encountered in the
future of a trajectory. For a training backup (st,at, st+1), we sampled goals according to a
geometric distribution over the future

∆ ∼ Geom(1− γ) g = st+∆,

recalculated rewards based on the sampled goal, and conditioned all relevant models on the
goal during updating. During testing, we conditioned the policy on the ground-truth goal.

We tuned over the same IQL parameters as in the single-task setting.

Block stacking experiments

Single-task. We ran CQL using the following implementation

https://github.com/young-geng/cql.

and used default hyperparameters in the code. We ran BCQ using the author’s original
implementation

https://github.com/sfujim/BCQ.

For BCQ, we tuned over two hyperparameters:

1. discount factor ∈ [0.9, 0.999]

2. tau ∈ [0.001, 0.01]

Multi-task. To evaluate BCQ and CQL in the multi-task setting, we modified the Q-
functions, value function and policy to be goal-conditioned. We trained using goal relabeling
as in the Multi2D environments. We tuned over the same hyperparameters described in the
single-task block stacking experiments.

Offline Locomotion

The scores for BC, CQL, IQL, and AWAC are from Table 1 in Kostrikov et al. (2022). The
scores for DT are from Table 2 in Chen et al. (2021b). The scores for TT are from Table 1 in
Janner et al. (2021). The scores for MOReL are from Table 2 in Kidambi et al. (2020). The
scores for MBOP are from Table 1 in Argenson & Dulac-Arnold (2021).

83

https://github.com/young-geng/cql
https://github.com/sfujim/BCQ

Appendix C: Diffuser

t

x

C
on

v1
D

FC

 L
ay

er

C
on

v1
D

GN Mish GN, Mish

Figure C.1: (Diffuser U-Net architecture) Diffuser has a U-Net architecture with residual
blocks consisting of temporal convolutions, group normalization, and Mish nonlinearities.

C.2 Test-time Flexibility

To guide Diffuser to stack blocks in specified configurations, we used two separate perturbation
functions h(τ) to specify a given stack of block A on top of block B, which we detail below.

Final State Matching To enforce a final state consisting of block A on top of block B,
we trained a perturbation function hmatch(τ) as a per-timestep classifier determining whether
a a state s exhibits a stack of block A on top of block B. We train the classifier on the
demonstration data as the diffusion model.

Contact Constraint To guide the Kuka arm to stack block A on top of block B, we
construct a perturbation function hcontact(τ) =

∑64
i=0−1 ∗ ∥τci − 1∥2, where τci corresponds

to the underlying dimension in state τsi that specifies the presence or absence of contact
between the Kuka arm and block A. We apply the contact constraint between the Kuka arm
and block A for the first 64 timesteps in a trajectory, corresponding to initial contact with
block A in a plan.

C.3 Implementation Details

In this section we describe the architecture and record hyperparameters.

1. The architecture of Diffuser (Figure C.1) consists of a U-Net structure with 6 repeated
residual blocks. Each block consisted of two temporal convolutions, each followed by
group norm (Wu & He, 2018), and a final Mish nonlinearity (Misra, 2019). Timestep

84

Appendix C: Diffuser

embeddings are produced by a single fully-connected layer and added to the activations
of the first temporal convolution within each block.

2. We train the model using the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 4e−05 and batch size of 32. We train the models for 500k steps.

3. The return predictor J has the structure of the first half of the U-Net used for the
diffusion model, with a final linear layer to produce a scalar output.

4. We use a planning horizon T of 32 in all locomotion tasks, 128 for block-stacking, 128
in Maze2D / Multi2D U-Maze, 265 in Maze2D / Multi2D Medium, and 384 in Maze2D
/ Multi2D Large.

5. We found that we could reduce the planning horizon for many tasks, but that the guide
scale would need to be lowered (e.g., to 0.001 for a horizon of 4 in the halfcheetah
tasks) to accommodate. The configuration file in the open-source code demonstrates
how to run with a modified scale and horizon.

6. We use N = 20 diffusion steps for locomotion tasks and N = 100 for block-stacking.

7. We use a guide scale of α = 0.1 for all tasks except hopper-medium-expert, in which
we use a smaller scale of 0.0001.

8. We used a discount factor of 0.997 for the return prediction Jϕ, though found that
above γ = 0.99 planning was fairly insensitive to changes in discount factor.

9. We found that control performance was not substantially affected by the choice of
predicting noise ϵ versus uncorrupted data τ 0 with the diffusion model.

85

https://github.com/jannerm/diffuser/blob/34d0e93296c6d8649187e6790ee41cf0c59e3631/config/locomotion.py#L163-L178

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Infinite-Horizon Prediction
	Introduction
	Related Work
	Generative Temporal Difference Learning
	Analysis and Applications of Gamma-Models
	Practical Training of Gamma-Models
	Experimental Evaluation
	Discussion

	Reinforcement Learning as Sequence Modeling
	Introduction
	Related Work
	Reinforcement Learning as Sequence Modeling
	Experimental Evaluation
	Discussion

	Planning with Diffusion
	Introduction
	Background on Diffusion Probabilistic Models
	Planning with Diffusion
	Properties of Diffusion Planners
	Experimental Evaluation
	Related Work
	Discussion

	Conclusion
	Open-Source Implementations
	Code References
	Bibliography
	bold0mu mumu 1-Model Details
	Geometric weighting lemma
	Implementation Details
	Environment Details
	Adversarial Gamma-Model Predictions

	Trajectory Transformer Details
	Model and Training Specification
	Discrete Oracle
	Baseline performance sources
	Datasets
	Beam Search Hyperparameters
	Goal-Reaching on Procedurally-Generated Maps

	Diffuser Details
	Baseline details and sources
	Test-time Flexibility
	Implementation Details

