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Abstract 

MULTIDISCIPLINARY APPROACHES TO COASTAL ADAPTATION 

 

by 

Juliano Calil 

 

This dissertation contributes to the pressing need to improve the connections 

between quantitative scientific studies and policy in the context of human 

vulnerability to costal hazards, at multiple spatial and temporal scales. This 

dissertation integrates diverse tools and methods (including GIS, Machine Learning 

Clustering Techniques, and spatial indices), to assess risks and vulnerabilities of 

coastal communities to select natural hazards, at multiple geographies and scales (i.e. 

California, Florida, and Latin America and Caribbean). Statistically sound methods 

were applied to integrate data from multiple disciplines, including: natural hazards, 

geographical distribution of natural habitats, population, and assets, as well as 

socioeconomic vulnerability, providing insights to adaptation alternatives.   

The first chapter of this dissertation demonstrates that flood losses in California 

could be mitigated through action that meets both flood risk reduction and 

conservation objectives. The study demonstrates that government funded buyouts, 

followed by restoration of targeted lands, can support social, environmental, and 

economic objectives: reduction of flood exposure, restoration of natural resources, 

and efficient use of limited governmental funds. 
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In the second chapter of this dissertation, a revised and improved version of the 

model developed in chapter 1 is applied to the state of Florida. In addition to flood 

exposure and natural habitats, social vulnerability was also included in the 

prioritization scheme. Further, inland habitats were also included, expanding the 

focus of the analysis beyond just the coast. Results identified lands in Florida that are 

eligible to receive federal funds to attain multiple benefits: (i) reduce flood risk to 

home owners; (ii) reduce FEMA’s financial burden (from future flood claim 

payments); (iii) restore/protect natural habitats; (iv) remediate social vulnerability, 

and (v), identify potential sources of funding for projects. There were at least 10,000 

km2 of land in Florida where such objectives may be achieved simultaneously. In a 

targeted case-study our model identified 92 RLPs in Miami-Dade located in areas of 

high social vulnerability, high flood exposure, and where natural habitats coexist. 

Collectively, these 92 RLPs filed 207 claims against NFIP from 1978 to 2011. 

In the third chapter, I employed a combination of machine learning clustering 

techniques (Self Organizing Maps and K-Means algorithms) and a spatial index 

(GIS), to assess coastal risks in Latin America and the Caribbean (LAC) on a 

comparative scale. The third study meets multiple objectives, including the 

identification of hotspots and key drivers of coastal risk, and the ability to process 

large-volume multidimensional and multivariate datasets - effectively reducing 

sixteen variables related to coastal hazards, geographic exposure, and socioeconomic 

vulnerability, into a single index. 
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INTRODUCTION 

Backing away from estimates from less than a decade ago, the United Nations now 

predicts that the world population is unlikely to stabilize by the end of the century. 

The global population, currently at 7.46 billion, is increasing by nearly 230,000 

people every day, at a growth rate of 1.18% per year [1]. In the next 15 years, the 

global population is expected to grow by an additional 1 billion, reaching 11.2 billion 

people by 2100 [1]. Concurrently, the number of people living in low elevation 

coastal areas, exposed to natural hazards, continues to increase [2]. There is a clear 

trend of coastal populations growing globally, with an estimated 230% increase 

(from 2000 to 2030) in the size of urban areas within the Low Elevation Coastal 

Zone (LECZ) - defined as “the contiguous area along the coast that is less than 10 

meters above sea level”, and which accounts for only 2% of the planet’s total land 

area [3,4]. Moreover, critical infrastructure and valuable assets continue to be placed 

in areas exposed to coastal hazards [5]. 

In 2013, almost 22 million people were displaced by extreme weather events across 

the globe, with 37 events displacing at least 100,000 people each [5]. All but one of 

the top 15 largest events were either typhoons or floods, with at least three million 

people displaced from coastal areas [6]. In 2012, more than 30 million people were 

dislocated worldwide by climate or weather-related disasters [6]. From 1995 to 2015, 

worldwide losses resulting from minor but recurrent natural hazards, including flash 

floods, landslides, and storms, reached $94 billion [7].  
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A significant percentage of the expected global population will be exposed and 

vulnerable to coastal hazards by 2100. Therefore, it is becoming more and more 

important to devise accurate and effective ways to quantify and communicate coastal 

risks in a relevant manner, one that accounts for local, regional and international 

policies. Moreover, risks related to natural hazards are determined by a complex 

interaction between physical hazards, the vulnerability of a society or social-

ecological system and its exposure to such hazards; these risks are amplified by 

challenging socioeconomic dynamics, including ill-advised urban development, 

income inequality, and poverty. There is a pressing need for studies that go beyond 

quantitative analyzes, studies that also consider governance realities and incorporate 

links to existing policies and societal realities.  

This dissertation contributes to a pressing need to improve the connections between 

quantitative scientific studies and policy in the context of human vulnerability to 

coastal hazards at multiple spatial and temporal scales. Diverse tools and methods 

(including GIS, Machine Learning Clustering Techniques, and spatial indices) are 

utilized to assess risks and vulnerabilities of coastal communities to selected natural 

hazards at multiple scales (i.e. California, Florida, and Latin America and the 

Caribbean). Furthermore, statistically sound methods are applied to integrate data 

from multiple disciplines, including present physical hazards, population and assets 

exposure to such hazards, socioeconomic vulnerability and insights to adaptation 

alternatives.   
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 “Aligning Natural Resource Conservation and Flood Hazard Mitigation in 

California” (Chapter 1) demonstrates that flood losses in California could be 

mitigated through action that meets both flood risk reduction and habitat 

conservation objectives. There are at least 11,243 km2 of land in coastal California, 

which is both flood-prone and has natural resource conservation value, and where a 

property/structure buyout and habitat restoration project could meet multiple goals. 

In Sonoma County, for example, 564 km2 of land meets these criteria. Further, we 

explore flood mitigation grant programs that can be a significant source of funds to 

such projects. Government funded buyouts followed by restoration of targeted lands 

can support social, environmental, and economic objectives, including reduction of 

flood exposure, restoration of natural resources, and efficient use of limited 

governmental funds. 

In chapter 2, “Aligning Natural Resource Conservation, Flood Hazard Mitigation, 

and Social Vulnerability Remediation in Florida”, a revised and improved version of 

the model developed in chapter 1 is applied to the state of Florida. In addition to 

flood exposure and conservation priorities, this chapter also prioritizes areas with 

high social vulnerability and includes inland habitats, expanding the analysis beyond 

the coast. Our results identified lands in Florida that are eligible to receive federal 

funds to attain multiple benefits: (i) reduce flood risk to home owners; (ii) reduce 

FEMA’s financial burden (from future flood claim payments); (iii) restore/protect 

natural habitats; (iv) remediate social vulnerability, and (v), identify potential 

sources of funding for projects. We found at least 10,000 km2 of land in Florida 
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where such objectives may be achieved simultaneously. In a targeted case-study our 

model identified 92 RLPs in Miami-Dade located in areas of high social 

vulnerability, high flood exposure, and where natural habitats coexist. Collectively, 

these 92 RLPs filed 207 claims against NFIP from 1978 to 2011. 

Finally, in chapter 3, A combination of machine learning clustering techniques (Self 

Organizing Maps and K-Means algorithms) and a spatial index (GIS), are utilized to 

assess coastal hazard risks in Latin America and the Caribbean (LAC) on a 

comparative scale. The methods proposed in chapter 3 meet multiple objectives, 

including the identification of hotspots and key drivers of coastal risk, and the ability 

to process large-volume multidimensional and multivariate datasets, which 

effectively reduces sixteen variables related to coastal hazards, geographic exposure, 

and socioeconomic vulnerability, into a single index. This study demonstrates that in 

LAC, more than 500,000 people live in areas where coastal hazards, exposure (of 

people, assets and ecosystems) and poverty converge, creating the ideal conditions 

for a perfect storm. Hotspot locations of coastal risk, identified by the proposed 

Comparative Coastal Risk Index (CCRI), contain more than 300,000 people and 

include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan, El Salvador; and Chiapas, 

Mexico. The results provide important insights into potential adaptation alternatives 

that could reduce the impacts of future hazards. Effective adaptation options must 

not only focus on developing coastal defenses, but also on improving practices and 

policies related to urban development, agricultural land use, and conservation, as 

well as ameliorate socioeconomic conditions.    
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CHAPTER 1. ALIGNING NATURAL RESOURCE CONSERVATION AND 

FLOOD HAZARD MITIGATION IN CALIFORNIA. 

Published: July 22, 2015 (http://dx.doi.org/10.1371/journal.pone.0132651) 

Juliano Calil, Michael W. Beck, Mary Gleason, Matthew Merrifield, Kirk 

Klausmeyer, and Sarah Newkirk.  

Abstract  

Flooding is the most common and damaging of all natural disasters in the United 

States, and was a factor in almost all declared disasters in U.S. history. Direct flood 

losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on 

the rise globally over the past century. The National Flood Insurance Program paid 

out more than $38 billion in claims since its inception in 1968, more than a third of 

which has gone to the one percent of policies that experienced multiple losses and 

are classified as “repetitive loss.” During the same period, the loss of coastal 

wetlands and other natural habitat has continued, and funds for conservation and 

restoration of these habitats are very limited. This study demonstrates that flood 

losses could be mitigated through action that meets both flood risk reduction and 

conservation objectives. We found that there are at least 11,243km2 of land in coastal 

California, which is both flood-prone and has natural resource conservation value, 

and where a property/structure buyout and habitat restoration project could meet 

multiple objectives. For example, our results show that in Sonoma County, the extent 

of land that meets these criteria is 564km2. Further, we explore flood mitigation grant 

http://dx.doi.org/10.1371/journal.pone.0132651
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programs that can be a significant source of funds to such projects. We demonstrate 

that government funded buyouts followed by restoration of targeted lands can 

support social, environmental, and economic objectives: reduction of flood exposure, 

restoration of natural resources, and efficient use of limited governmental funds. 

Introduction 

Flooding is the most common and damaging of all natural disasters in the United 

States [1]. Historically, floods have caused more economic loss to the nation than 

any other natural hazard and flooding has been a factor in almost all declared 

disasters in the U.S. [2]. Recently, several perilous and costly flood events including 

super storm Sandy and Hurricanes Irene, Ike and Katrina, have once again raised 

public awareness of the threats posed by coastal and riverine floods nationally. The 

average annual value of insured losses related to storms from 2007 to 2011 is $12.1 

billion [3]. Direct flood losses in the U.S. in 2011 totaled $8.41 billion [4]. It is likely 

that with climate change the frequency of heavy precipitation will increase in some 

areas over the 21st century, and that the return interval of floods will be shorter thus 

increasing the frequency of such events [5]. 

In 1968, the National Flood Insurance Program (NFIP) was created in response to 

wide spread demand for private insurance resulting from a series of catastrophic 

flood losses early in the twentieth century [6].  From its inception in 1968 until 

December of 2011, NFIP insured a total of 5.58 million policies and paid more than 

$38 billion in claims [7].  In addition to covering flood losses, one of the objectives 
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of the NFIP was to encourage communities to adopt risk-minimizing measures by 

promoting floodplain management regulations to ultimately lower their flood risks 

[8], but for the most part, this has not occurred [9]. Partially because the NFIP has no 

strong provisions to guide development away from floodplains, many flood-prone 

areas of the United States are still subject to development [10] .  

As a consequence of existing and ongoing risky development, 1% of all NFIP 

policies are classified as Repetitive Loss Properties (RLPs) [7] – a detailed definition 

of RLPs and recent NFIP regulatory updates can be found in S1 Appendix [11]. 

According to the Federal Emergency Management Agency (FEMA), from 1978 to 

2011, 166,368 Repetitive Loss Properties across the U.S. filed 496,178 claims 

resulting in more than $12.1 billion in payments, an average of $24,386 per claim 

[7]. One out of every ten Repetitive Loss Properties has received more money in 

reimbursements than the estimated market value of their property [1]. This startling 

fact suggests that purchasing RLPs for restoration to open space would save FEMA, 

and U.S. taxpayers, money.  

Currently, FEMA administers three Hazard Mitigation Assistance (HMA) grant 

programs: (i) the Hazard Mitigation Grant Program (HMGP), focused on post-

disaster reconstruction efforts including mitigation measures to reduce future risk; 

(ii) the Pre-Disaster Mitigation (PDM) grant program, supporting activities that 

reduce overall risk of future natural hazard events; and (iii), the Flood Assistance 

Mitigation (FMA) grant program, focused on reducing the number of NFIP claims 
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[12]. In 2013, FEMA announced national grant opportunities for PDM and FMA of 

$23.7 million and $120 million respectively [13][14]. These funds may be used to 

acquire and remove or relocate structures away from risky areas [12], but to date that 

has not yet been a widespread activity [15]. Property acquisition and structure 

removal or relocation are the most permanent forms of mitigation, and are eligible 

activities under all three programs [12]. Nevertheless, from 1989 through 2011, only 

28 acquisition projects were funded in California [15]. 

Protecting communities and private property from flooding has traditionally been 

accomplished through the use of fortifying structures (e.g., seawalls, dikes, and 

levees). However, natural habitats and ecosystems offer significant, and often 

overlooked and undervalued, protection, mitigating or buffering flood hazards [16–

20]. Restored areas within the floodplain usually regain their natural function of 

attenuating floods and reduce cyclical flood damages [21].  The value of wetlands in 

protecting coastal communities against floods globally has been estimated at $6,923 

per hectare per year [22].  

While FEMA aims to protect people and properties from future floods and other 

disasters, the conservation community attempts to protect valuable threatened 

floodplain habitats and species. From the 1780’s to 1980’s California has seen the 

highest percent loss of coastal wetlands in the U.S., 91% [23]. This represents more 

than 4.5 million acres of wetlands lost [23]. Floodplain habitats and species are 

continuously under tremendous pressure from human impacts including: urban 
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development, agricultural expansion, water quality issues, and habitat fragmentation 

from dams and other physical barriers [24].  

Until very recently, hazard mitigation plans and conservation project plans did not 

explicitly recognize the flood protective value of natural habitats, even though this 

value has been well documented [19,20,25]. Increasingly, conservationists and risk 

managers are looking for approaches to accomplish multiple objectives with a single 

project [21,26,27].  In addition, conservation groups, in particular the National 

Wildlife Federation and The Nature Conservancy (TNC), have engaged in FEMA 

policy under the premise that flood risk response has direct impacts on natural 

resources [28,29]. However, to date, the development of tools for flexible, multi-

objective flood exposure reduction and conservation prioritization permitting the 

identification of projects with the greatest likelihood of success, has been limited. 

Recent studies have presented spatially explicit models of flood risk with diverse 

focuses. Some studies produced maps of flood prone areas based on terrain and 

hydraulic models [30,31], while others evaluated the costs and benefits associated 

with  the use of land conservation as a flood mitigation strategy (including the 

impacts of flooding on housing values) [26,32,33]. However, to our knowledge, the 

study presented herein is the first detailed spatial analysis in the context of existing 

policy instruments which may be applied to achieve multiple benefits. 

Here, we examine the potential to identify projects with multiple objectives in which 

flood exposure is reduced and conservation benefits are achieved. We test an 
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approach for identifying developed and federally-insured lands that are prone to 

flooding and therefore not ideal for development, and where valuable natural 

resources, such as salmon habitat or estuaries, are also present. We examine whether, 

by defining appropriate flood exposure and conservation proxies, decision makers 

could identify and prioritize parcels and neighborhoods where flood exposure 

reduction and conservation objectives could be achieved simultaneously. Further, we 

describe federal funding programs that could be applied to achieve both flood 

mitigation and conservation objectives.  

This study used coastal California as a model to evaluate the alignment between 

coastal flood mitigation and natural resource conservation because of the high 

number of RLPs and flood claims [7], and the many highly threatened floodplain 

habitats (e.g. saltmarsh) [23], including areas that support multiple salmonid species 

listed as either threatened or endangered [34]. By the end of 2011, more than 3,200 

RLP owners in the state of California filed more than 9,000 claims against NFIP 

totaling $155.3 million [1]. The average claim payment was $21,200. At the same 

time, California hosts floodplain natural resources that provide important functions 

including water filtration, erosion control, pollution prevention and control, fish 

production, and recreation amongst many others [35]. Finally, California’s Multi-

Hazard Mitigation Plan (SHMP) contains several explicit objectives to integrate 

hazard mitigation and environmental protection, calling for solutions that enhance 

natural processes with minimal negative impacts on natural ecosystems [36]. 
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Additionally, we present a case study focused on the Sonoma County, where 

flooding has been a historical problem dating back to 1862 [37]. During the last 

twenty years, Federal and state disaster declarations were made following 8 

significant flood events affecting the county [37]. Sonoma County, which occupies 

roughly 1% of the total area of California, accounts for 27.5% of all RLPs and 32% 

of all NFIP claims in the state. Sonoma County also represents an area of significant 

critical habitat for biodiversity conservation [38], thus representing a high priority 

area in coastal California for multi-benefit restoration and hazard mitigation projects. 

Materials and Methods 

We used a weighted overlay spatial model developed in a desktop geographic 

information system (ESRI ArcGIS version 10.2) and applied it to the 21 coastal 

counties in California (total study area covers 94,500km2). Based on multiple flood 

exposure and conservation components (details below), we developed two indices: 

The Flood Exposure Index (FEI) and the Conservation Priority Index (CPI). The 

model calculates the spatial extent of overlap (km2) between selected indicators of 

conservation priorities and flood exposure. Each indicator of Conservation Priority 

and Flood Exposure received a score of 1 or 0, based on the occurrence or absence of 

the indicator as described in detail below. The FEI and the CPI have equal weight 

and vary from 0 to 10. These indices are intended to be qualitative and relative, 

rather than quantitative measures of any specific feature. 
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Using data from the FEMA’s Repetitive Flood Claims program and Digital Flood 

Insurance Rate Maps (DFIRM) [39], sea level rise projections from the California 

Climate Change Center [40], and spatial data on natural habitats and other indicators 

of conservation value in California, we examine the potential for projects with 

multiple management benefits in which flood exposure is reduced and conservation 

benefits are achieved.  

1. Flood Exposure Index (FEI) 

The FEI scores each grid cell in the study area according to multiple indicators of 

exposure to flooding events (grid cells are 50m by 50m or 0.0025km2). 

The FEI was calculated based on the following components (table 1): 

Whether or not the area is in either the 100-year or 500-year floodplain, based on 

FEMA’s digital Flood Insurance Rate Maps (DFIRM) [39]. DFIRMs are developed 

by FEMA based on detailed Flood Insurance Studies that include hydraulic, 

hydrologic and wave height analyses to determine the water surface elevations for 

the 100-year and 500-year floodplains [41,42]. 

Whether or not the area is in California’s Coastal Zone, based on data from the 

National Oceanic and Atmospheric Administration (NOAA) [43]. 

Sea Level Rise (SLR) projections at the year 2100, based on the “California Climate 

Change Scenarios Assessment” of 2009 [40,44,45]. The SLR components include 

areas projected to be below the mean high high water mark (MHHWM), and areas 
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projected to be inside the 100-year floodplain at the year 2100 (based on a projected 

SLR of 1.4m). SLR projections are based on simulations of six global climate 

models which were forced by the greenhouse gases emissions scenario A2 (high 

emissions scenario) developed by the Intergovernmental Panel on Climate Change 

(IPCC) [46], and have a considerable level of uncertainty attached to them (future 

sea levels are very sensitive to changes in global temperatures resulting from 

uncertain greenhouse gases emissions scenarios [40]). 

RLPs and surrounding areas, based on data from FEMA’s Repetitive Loss Program. 

Areas surrounding RLPs (within 1,000m) were included in this index for three main 

reasons; first, RLPs are point occurrences, which have no area associated with them. 

By adding a buffer, we can ensure that the area of the flooded parcel is include in the 

criterion; second, the accuracy of geographic coordinates of the RLPs data provided 

by FEMA is roughly 100m by 100m (for latitude and longitude); third, the exposure 

of areas adjacent to RLPs is also high and not all properties in the surrounding area 

may be insured, or have filed multiple claims against the NFIP, and therefore would 

be absent from the RLP dataset.   

An overall FEI was calculated by summing up the values of individual flood 

exposure indicators within each grid cell according to the following equation 

𝐹𝐸𝐼 = 𝐹100 + 𝐹500 + 𝑅𝐿𝑃 + 𝐶𝑍 + 𝑆𝐿𝑅1 + 𝑆𝐿𝑅2 

(1) 
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where F100 represents the 100-year floodplain score, F500 represents the 500-year 

floodplain score, WL is the wetland score, RLP is the proximity to RLPs score, CZ is 

the coastal zone score, SLR1 is the area inside the MHHWM at the year 2100 score, 

and SLR2 is the areas projected to be inside the 100-year floodplain at the year 2100 

score. FEI score values range from 0 to 6 (Table 1) and were scaled to range between 

0 and 10 to balance its weight with that of the CPI, which also ranges from 0 to 10 

(details below). The FEI score values were scaled according to the following feature 

normalization equation: 

𝐹𝑙𝑜𝑜𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =
(𝑋 − 𝑀𝑖𝑛)

(𝑀𝑎𝑥 − 𝑀𝑖𝑛)
∗ 10 

(2) 

where X is the value of the FEI for each grid cell before the normalization, Min is 

the minimum value of the index before normalization (i.e. 0), and Max is the 

maximum value of the index before normalization (i.e. 6). 

Table 1. Flood Exposure Index (FEI). 

FEI Components – data sources in parenthesis Score 

Area located within the 100-year Floodplain (FEMA) 1 

Area located within the 500-year floodplain (FEMA)  1 

RLPs and surrounding areas (1,000m buffer) (FEMA) 1 

Area located in the California Coastal Zone (NOAA) 1 
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Area inside the projected MHHWM at the year 2100 (California 

Climate Change Center) 
1 

Area located inside the projected 100-year floodplain at the year 

2100 (California Climate Change Center) 
1 

Maximum possible FEI score 6 Points 

 

2. Conservation Priority Index (CPI) 

There are many conservation prioritization schemes, developed by diverse 

institutions for multiple purposes [47–51]. Recognizing this variety, we demonstrate 

the flexibility of our approach by evaluating conservation priority in two ways. First, 

we used generally available raw spatial data representing natural resources and land 

cover to develop a unique CPI (Table 2). Second, we used TNC’s Priority Areas 

[47,52] as an alternative, pre-existing prioritization scheme[47]. 

The CPI was calculated based on the following components (table 2): 

 Areas located inside estuaries (excluding water bodies), based on spatial data from 

the National Wetlands Inventory (NWI) produced by the U.S Fish and Wildlife 

Service [53]. 

Areas Located inside wetlands (excluding deep water marine and lake interior), 

based on data from the Coastal Change Analysis Program (CCAP) produced by 

NOAA [54]. 

Presence of salmonids, based on current and historical observations and expert 

opinion data from the Wild Salmon Center (WSC) [55]. There are three species of 
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salmonids included in the study (Coho, Steelhead, and Chinook), which may be 

observed at different locations at different seasons of the year.  

Area covered by sand dunes, based on TNC’s northern California Current Ecoregion 

Assessment [56]. 

Urbanization level, based on data from the Coastal Change Analysis Program 

(CCAP) produced by NOAA [54]. Areas with urbanization levels lower than 50% 

received a score of 1.  

Every grid cell received a unique value for each Conservation Priority component. 

An overall CPI score was calculated by summing up conservation components scores 

according to the following equation: 

𝐶𝑃𝐼 = 𝐸𝑆 + 𝑊𝐿 + 𝑆𝑀1 + 𝑆𝑀2 + 𝑆𝑀3 + 𝑆𝑀4 + 𝑆𝑀5 + 𝑆𝑀6 + 𝑆 + 𝑈 

(3) 

where ES represents the Estuaries score, WL is the Wetlands scores, SM1 through 

SM6 are the individual Salmonid scores, S is the Sand Dunes score and U is the 

Urbanization score. CPI score values can range from 0 to 10 (Table 2).  

Table 2. Conservation Priority Index (CPI) 

CPI Components – data sources in parenthesis Score 

Area Located Inside Estuaries (U.S Fish and Wildlife Service) 1 

Area Located Inside Wetlands (NOAA) 1 

Salmon – Presence of Coho (WSC) 1 
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Salmon – Presence of Steelhead in the winter (WSC) 1 

Salmon – Presence of Steelhead in the summer (WSC) 1 

Salmon – Presence of Chinook in the fall (WSC) 1 

Salmon – Presence of Chinook in the spring/summer (WSC) 1 

Salmon – Presence of Chinook in the winter (WSC) 1 

Area covered by Sand Dunes (TNC) 1 

Areas with Urbanization Levels lower than 50% (NOAA) 1 

Maximum Possible CPI Score 10 Points 

 

We have assigned uniform weights to each conservation criterion of the study. 

However, scores and weights can be adjusted to reflect conservation values of 

specific communities or conservation programs. A large proportion of CPI weight 

(60%) is based on the presence of three salmon species listed as either Endangered or 

Threatened. This specific prioritization scheme reflects the high restoration value of 

salmonid habitats and their special status under the Endangered Species Act (ESA). 

ESA mandates the identification and protection of all lands water and air necessary 

to recover endangered species [57]. Other applications of the method introduced here 

may consider other relevant criteria to calculate indices that reflect specific 

stakeholder’s interests. 

In addition, to further illustrate the flexibility of our approach, we included an 

example of an existing conservation prioritization scheme in the study. We used 

TNC’s Priority Areas, [47] which were developed through comprehensive eco-
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regional assessments of species and habitat types [58]. Grid cells within a TNC 

Priority Area were given a score of 10. Because we use this index only to evaluate 

the spatial overlap between TNC Priority Areas and the FEI, our use of a Boolean 

data type is justified. 

3. Spatial Model Description 

All the spatial data layers described above were converted into raster format (grid 

cells), throughout the study area, each raster cell was attributed with three final 

scores representing Flood Exposure Index (Table 1), Conservation Priority Index 

(Table 2), and TNC’s Priority Areas.  

The spatial extent of overlap between the FEI and the CPI was calculated by 

multiplying the CPI raster by the FEI raster, and can potentially vary from 0 to 100. 

Grid cells with scores equal to zero (indicating total absence of Conservation 

Priority, Flood Exposure, or both), resulted in a zero value, indicating no overlap 

between the two scores. The spatial extent of overlap between TNC’s Priority Areas 

and the FEI was calculated in a similar way, by multiplying TNC’s Priority Area 

raster values (0 or 10) by the FEI (0 to 10) in each grid cell. The final step in the 

calculation was the multiplication of the number of grid cells in the resulting raster 

by the area of each grid cell.  

Additionally, we analyzed the distribution of Repetitive Loss Properties throughout 

our study areas and how their distribution relates to our three categories 

(Conservation Priority, Flood Exposure and TNC’s Priority Areas). Finally, we 
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chose Sonoma County, the county with the highest number of repetitive loss claims 

in California, to conduct a focused case study. The same methodology used in the 

broader study area was applied in the case study. 

Results  

We found that there are at least 11,243 km2 in coastal California which represent 

both flood exposure reduction and conservation value, and where property/structure 

buyouts and habitat restoration projects would meet multiple objectives. This area 

covers almost 12% of the total study area of 94,500 km2, with the extent of land 

decreasing as each score increases. 

We scored areas in the 21 coastal counties of California based on flood exposure and 

conservation priority, and applied the spatial model described above to calculate the 

areal extent of overlap between them in order to prioritize potential areas for 

multiple-benefit projects, which accomplish both flood mitigation and conservation 

or restoration of natural habitats.   

Areas that scored at least 1 point for both Flood Exposure and Conservation Priority 

intersect extensively in the 21 coastal counties of California. For example, the area of 

overlap between the Flood Exposure Index greater than 1 and the Conservation 

Priority Index equal to or greater than 5, is 954 km2. The highest priority areas for 

both indices (FEI ≥5 and CPI ≥ 5) covers 340 km2 (total area calculated from Fig. 1). 
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Figure 1. Area of overlap between CPI and FEI scores greater than or equal to 5. CPI 

scores equal to 7 and FEI scores equal to 6 and 9 did not occur in the study area, 

therefore are not shown. 

Additionally, we substituted a score based upon a pre-existing conservation 

prioritization scheme (TNC’s Priority Areas) for the CPI briefly described above (see 

Materials and Methods).  In coastal California, the overlap between TNC’s Priority 

Areas and areas where the FEI scores greater than 0 covers an area of 3,665km2 

(total area calculated from Fig. 2). This extent is much smaller than the total 

coverage of TNC’s Priority Areas (more than 40,000 km2), across the entire study 

region. If we focus only on areas where TNC’s Priority Areas overlap with high FEI 

scores (overlap scores > 50), the resulting area is roughly 218 km2, spread across 15 

coastal counties. Moreover, if we focus on areas where TNC’s Priority Areas overlap 

with very high Flood Exposure score (overlap score equal 100) the resulting area is 

only about 10 km2, spread across 8 coastal counties.  
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Figure 2. Area of overlap between TNC's Priority Areas and FEI greater than or 

equal to 1. FEI scores equal to 1, 4, 6 or 9 did not occur in the study area, therefore 

are not shown. 

The area of intersection between CPI and FEI (11,243km2) is larger than the area of 

intersection between TNC’s Priority Areas and the FEI (3,664km2). Broadly, 

however, this indicates that the model can be applied to reflect distinct conservation 

priorities of the user. 

There are over 3,200 Repetitive Loss Properties located throughout California (Fig. 

3). In the 21 coastal counties included in the study area, 2,395 Repetitive Loss 

Property owners filed 6,794 claims against the NFIP from 1978 to April 2010. This 

represents 77% of the total number of Repetitive Loss Properties and 79% of the 

total number of claims in the state for the same period. 
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Figure 3. Repetitive Loss Properties throughout California (fuchsia circles). The 

diameter of each circle increases with number of losses (ranging from 2 to 9 losses) 

[59]. 
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Sixty-six percent of the Repetitive Loss Properties (1,589 properties) located in our 

study area, are situated in areas with a CPI score greater than 0. Roughly 18% of all 

Repetitive Loss Properties (440 properties) are located in areas with a CPI score of at 

least 5. Approximately 44% of all Repetitive Loss Properties in the state (1,051 

properties) co-occur with TNC’s Priority Areas.  

Sonoma County Case Study 

Here we highlight results from Sonoma County, which is a hotspot of repetitive loss 

in California (Table 3). Flood Exposure and Conservation Priority intersect to a very 

significant degree in Sonoma County.  The area of intersection between FEI scores 

greater than 1 and CPI scores greater than 1, is 564 km2 – roughly 12.6% of the 

county area (Fig. 4, left panel). The intersection of areas having a FEI score greater 

than 0 and TNC’s priority areas in Sonoma covers an area of 128 km2, roughly 3% of 

the county area (Fig. 4, right panel). The overlap between TNC’s Priority Areas and 

FEI score greater than or equal to 5 is about 42km2. 
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Figure 4. RLPs in Sonoma County and a) overlap between the FEI and CPI; b) 

overlap between the FEI and TNC’s Priority Areas. Darker green indicates areas 

where higher indices values overlap. Fuchsia circles represent the locations of RLPs 

(as of April 20). 

Table 3. Distribution of Repetitive Loss properties and Claims in California by 

County 

County 
Number of 

RLPs 

% of 

RLPs 

Number of 

Claims 

% of 

Claims 

Sonoma 853 36% 2734 40% 

Los Angeles 434 18% 1147 17% 

Marin 192 8% 532 8% 

Napa 114 5% 346 5% 

Monterey 112 5% 248 4% 

San Diego 106 4% 282 4% 

Orange 101 4% 251 4% 

Santa Cruz 89 4% 254 4% 

Ventura 77 3% 201 3% 

Santa Barbara 74 3% 165 2% 

Contra Costa 66 3% 169 2% 

Solano 48 2% 125 2% 

San Mateo 32 1% 83 1% 

San Luis Obispo 32 1% 87 1% 
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Santa Clara 29 1% 84 1% 

Alameda 15 1% 32 0% 

Other 36 2% 86 1% 

Total 2,395 100% 6,794 100% 

 

 

Table 3 only contains data for the 21 coastal counties in California, from January 

1978 to April of 2010 (Source: FEMA). 

Nearly all of the Repetitive Loss Properties in Sonoma (95.3% or 813 properties) are 

located in areas where Flood Exposure and Conservation Priority indices overlap. 

The total number of properties where there is an overlap between FEI and TNC’s 

Priority Areas is slightly lower but still large (83.1% or 709 properties). The highest 

priority areas in Sonoma County may be located where the highest FEI (10) overlap 

with CPI greater than or equal to 5. In Sonoma County, 32 Repetitive Loss 

Properties are in such areas and have filed at least 95 combined claims. 

Discussion 

Our results demonstrate that there can be significant synergies between the 

objectives of flood exposure reduction and those of habitat conservation and 

restoration projects. We have identified and prioritized high-leverage sites for such 

multi-objective projects in California, and our approach can be applied to any 

geography where floods have repeatedly resulted in financial and human losses, and 

where critical natural resources are present. For the purposes of this discussion, a 
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multi-objective project should be understood as one in which structures associated 

with a RLP are removed from the floodplain to permit habitat restoration. 

Buyouts of property and structures have been a part of the FEMA’s overall risk 

reduction strategy since the 1980s [60], but a number of factors – including an 

understandable hesitation to abandon homes and neighborhoods – have limited its 

application [61]. Removal of structures from floodplains has ecological benefits in 

addition to hazard mitigation benefits, including increases in wetland acreage, 

restoration of wildlife habitat and reconnection of fragmented habitat [62]. An 

important added benefit of wetlands restoration is that, in some cases, restored 

floodplains may also function as natural flood mitigation infrastructure [21,63]. 

Communities are increasingly considering the application of buyouts as a strategy to 

reduce their long term risks and therefore need to prioritize parcels for the 

application of limited funds [64].  Following super storm Sandy in October 2012, 

New York State conducted a needs assessment to prioritize the allocation of federal 

disaster recovery funds, and 34% of responders (totaling 2,582 people) indicated 

interest in a buyout of their home [64]. The present study demonstrates a 

prioritization scheme that would support the elimination of flood exposure for the 

target parcel (and possibly to neighboring parcels as well), restoration of natural 

resources, and efficient use of limited governmental funds. 

Our analysis of Sonoma County, California’s epicenter of repetitive losses with 36% 

of all Repetitive Loss Properties (853) and 40% of all individual claims (2,734) filed 
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in the study area (as of April 2010), is particularly illustrative of this principle.  As of 

June of 2010, Sonoma County had received more than $53 million in payments from 

grants intended to mitigate flooding on Repetitive Loss Properties; this value 

represents more than 30% of the total amount of RLP grants received by California 

for the same period ($171.7 million) [36]. Meanwhile, Sonoma County has critical 

biodiversity conservation objectives, including restoration of steelhead trout, 

Chinook and Coho salmon, all of which are listed as threatened or endangered under 

the federal Endangered Species Act [38] . Our results suggest that Sonoma County’s 

efforts to restore salmonid habitat and its efforts to reduce Flood Exposure are very 

well aligned. 

There is a significant need for conservation and restoration of coastal habitats, but 

limited resources available for accomplishing these goals. Specifically, the National 

Oceanic and Atmospheric Administration’s Restoration Center has a planned budget 

of $42 million for 2015, [23]. By contrast, FEMA’s obligated funds for the Hazard 

Mitigation Grant Programs in 2013, exceeded $700 million [24]. Nonprofit 

organizations, federal, state, and local agencies, and other decision makers should 

use analyses like the one presented here to strengthen the case for the application of 

hazard mitigation funds to acquire properties or engage in restoration in areas with 

both high flood exposure and high conservation value.  
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The multiple benefits to this approach include: elimination of risk for the target 

parcel, reduction of the financial impact to NFIP of repeated flood claims, and 

restoration of land to a more natural condition.  

The qualitative approach proposed here could be further enhanced by additional case 

studies that should focus on Los Angeles, Marin, Napa and Monterey Counties, 

which combined account for 36% of RLPs and 33% of the total number of claims in 

the study area. Additionally, including a third index scoring socioeconomic 

vulnerability would provide valuable insight to the potential benefits or 

consequences of buyout projects to disadvantaged demographics. Finally, our 

proposed approach should be applied to other coastal states of the country, utilizing 

substitute relevant local conservation criteria (e.g. sea grass and mangroves instead 

of salmonids could be used in Florida). 
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CHAPTER 2. ALIGNING FLOOD EXPOSURE MITIGATION, NATURAL 

RESOURCE CONSERVATION, AND SOCIAL VULNERABILITY 

REMEDIATION IN FLORIDA. 

Juliano Calil & Sarah Newkirk 

Abstract  

Flooding continues to be the most common and damaging of all natural disasters in 

the United States. In 2016, twelve individual weather and climate events caused 

more than $1billion in damages each. During 2016, the U.S. was hit by six once-in-

1,000 years precipitation events, and severe floods resulted in more than $17 billion 

in damages. Currently, more than 5.5 million flood insurance policies are active 

under the National Flood Insurance Program (NFIP). Combined, these policies 

underwrite more than $1.6 trillion in assets. Since 1978, NFIP has paid out more than 

$38 billion in claims, with more than 30% paid to the one percent of policies that 

experienced multiple losses and are classified as “repetitive loss properties” (RLPs).  

Flood impacts are determined by a complex interaction between physical hazards, 

the vulnerability of a society or social-ecological system, and its exposure to such 

hazards. The extent and severity of flood impacts are amplified by challenging 

socioeconomic dynamics, including ill-advised urban development, lack of access to 

resources and information, social vulnerability, and poverty.  

Addressing this complex interaction between hazards, exposure and social 

vulnerability, this study identifies and prioritizes land in Florida, where multiple 
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management benefits can be achieved: flood exposure is reduced, conservation 

benefits are achieved, and social vulnerability is remediated. We found at least 

10,000 km2 of land in Florida where such objectives may be achieved 

simultaneously. In a targeted case-study our model identified 92 RLPs in Miami-

Dade located in areas of high social vulnerability, high flood exposure, and where 

natural habitats coexist. Collectively, these 92 RLPs filed at least 207 claims against 

NFIP between 1978 and 2011. 

The multiple benefits of the presented approach include: reduction of flood exposure, 

reduction of NFIP’s financial impact, restoration of the floodplain to a more natural 

condition; and the identification of efficient application of federal funds, usually 

destined to single-objective projects - e.g. grants from Federal Emergency 

Management Agency (FEMA), and the U.S. Department of Housing and Urban 

Development (HUD). 

We argue that government funded buyouts, followed by structure demolition and/or 

relocation, and the restoration of floodplain habitats, can support social, 

environmental, and economic objectives, as long as such projects are executed in a 

thoughtful and fair manner. 
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Introduction 

Flooding continues to be the most common and damaging of all natural disasters in 

the United States. According to the Federal Emergency Management Agency 

(FEMA), 44 out of the 46 major disaster declarations in 2016 were related to storms, 

with flooding being a significant factor in almost 70% of them (30 events) [1]. In 

2016, severe floods in the U.S resulted in more than $17 billion in damages (six 

times higher than in 2015). Twelve individual weather and climate events caused 

more than $1 billion in damages each, and six severe 1,000-yr precipitation events 

occurred in the U.S. in 2016 [2].  

The National Flood Insurance Program (NFIP), created by FEMA in 1968 following 

a series of severe floods, aimed at providing flood loss coverage for home owners, as 

well as promoting risk-reduction measures for properties located in floodplains 

across the country. Until 1986, NFIP finances were self-sustainable, with premiums 

collected roughly balancing the total claim payments [3]. However, due to disastrous 

recent flood seasons, and insurance rates that do not reflect real flood risks, NFIP has 

accrued a total debt of more than $23 billion during the last decade [4]. Roughly 

$16.4 billion was paid to claims related to Hurricane Katrina (2005), and $8.3 billion 

paid to claims related to superstorm Sandy (2012) ($24.7 billion total) [5]. One 

critical component of NFIP losses are repetitive loss properties, which account for 

roughly 1% of all policies, but received roughly 30% of all NFIP claims payments 

until 2011 [6].  
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In an effort to bring stability and fiscal soundness to the national flood insurance 

program, in July of 2012 Congress approved the Biggert Waters Flood Insurance 

Reform Act (BW-12). Among other provisions, BW-12 reauthorized NFIP for an 

additional 5 years (from 2013 to 2017), and defined a gradual adjustment of 

insurance rates to reflect true risk [7]. However, in response to strong public reaction 

and concerns that the new flood insurance rates triggered by BW-12 would affect the 

housing market, as well as drive home owners from their properties, in March of 

2014 Congress enacted the Homeowner Flood Insurance Affordability Act of 2014. 

This modified and repealed several provisions of BW-12 by implementing measures 

including: limiting the increase of annual flood insurance premiums to 18%, 

repealing any rate increases triggered by property sales or the acquisition of new and 

voluntary flood insurance policies, refunding select policy holders for recent rate 

increases, and authorizing additional funds for the National Academy of Sciences to 

complete a series of affordability studies [7]. According to the first report from the 

series, entitled “Affordability of National Flood Insurance Program Premiums/ 

Report 1”, published in 2015, 60% of all NFIP policies (5.5 million in total), are 

located in Florida, Texas, and Louisiana [8].  

As of November, 2016, property owners in Florida held the highest number of NFIP 

polices in the nation (almost 1.8 million policies, roughly 35% of all NFIP claims at 

the time), with insured property values reaching $429 billion (almost 35% of the 

entire NFIP coverage of $1.25 trillion) [9]. However, until 2012, home owners in 

Florida paid roughly four times more in premiums than they received in flood claim 
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payments from NFIP ($16.1 billion vs. $4.5 billion) [10]. As of September 2011, 

there were more than 15,000 repetitive loss properties in FL. From 1978 to 2011, 

these RLPs received payments for almost 40,000 claims (an average of 2.7 claims 

per property). A stunning 808 RLPs filed at least 5 claims against NFIP during that 

same period, with 70 RLPs having filed at least 9 claims. Nationwide, the number of 

RLPs has outpaced FEMA mitigation efforts by a factor of 10 [6].  

FEMA continues to offer significant funds in Flood Mitigation Assistance (FMA) 

grants destined to reduce or eliminate the risk of repetitive flood damage to NFIP 

customers. In 2016, FEMA allocated almost $200 million in FMA funds, eligible to 

be used in pre-disaster planning and mitigation activities including: property 

acquisition and structure demolition or relocation, and structure elevation and 

building retrofitting [11].  

The U.S. Department of Housing and Urban Development (HUD) is another 

potential source of significant funds for projects within the scope of this study. On 

the aftermath of superstorm Sandy, HUD offered $930 million through the Rebuild 

by Design competition [12] to seven proposals that developed innovative regionally-

scalable, locally-contextual approaches to increase coastal resilience in the region 

affected by Sandy. In 2015, through the National Disaster Resilience Competition, 

HUD offered an almost $1 billion in additional funding, destined for disaster 

recovery and long-term community resilience [13]. More recently, in October of 
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2016, HUD proposed new property elevation standards for all HUD support 

properties of at least 2 feet [14]. 

Losses related to coastal hazards are not uniformly distributed, and depend greatly on 

socioeconomic conditions of the population exposed to environmental hazards [15]. 

Social vulnerability relates to the characteristics of a person or group and their 

capacity to anticipate, cope with, resist, or recover from the impacts hazards [16]. 

Some of the major factors that increase social vulnerability include: lack of access to 

resources, limited access to political representation, beliefs and customs, building 

stock and age, and frail and physically limited individuals. Additionally, 

socioeconomic status, gender, race and ethnicity, and special needs, are also relevant 

drivers of vulnerability [15]. Social vulnerability becomes much more apparent after 

the onset of a disaster, when impacts can be observed in specific groups of the 

population [15]. Flood events cause disproportionate impacts on more vulnerable 

groups (e.g. the poor, minorities, the elderly, and the disabled), which usually live in 

high-risk areas, lack basic resources to prepare for floods and other natural hazards, 

and are not aware of available resources that may reduce their sustainability [17].  

Social Vulnerability is a complex subject and difficult to evaluate at large scales. 

However, multiple social vulnerability analysis tools are available in the United 

States, including: The Social Vulnerability Index (SoVI©) (University of South 

Carolina, Hazards and Vulnerability Research Institute), Social Vulnerability 

Mapping Tools (Texas Coastal Planning Atlas), the Roadmap for Adapting to 
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Coastal Risk (NOAA, Coastal Services Center), and the USA – Social Vulnerability 

Thematic Maps (ESRI). Most of the tools above are either based on SoVI©, or 

mention it as a more comprehensive tool [17], therefore SoVI© was chosen as the 

social vulnerability index for this analysis. SoVI© has some known limitations, 

including the complexity of the statistical methods applied, including principal 

component analysis, but it is generally recognized as the standard for social 

vulnerability studies. 

The Social Vulnerability Index (SoVI©) measures community vulnerability, defined 

as a reduction in the community’s ability to prepare for, respond to, and recover from 

hazards [18]. In the 2006 to 2010, nearly 30 variables we reduced to seven 

independent components, which describe social vulnerability: (i) race (Black) and 

class (poverty); (ii) wealth; (iii) elderly residents; (iv) Hispanic ethnicity; (v) special 

needs individuals (nursing home residents); (vi) Native American ethnicity; and (vii), 

service industry employment [19]. SoVI© is a dynamic index and future iterations 

are expected to include additional variables including: homeless population, physical 

mobility constraints, and social capital [20]. 

Conservation objectives can also align with those of flood exposure reduction, and 

social vulnerability remediation. Ecosystems provide numerous services to humans, 

beyond just coastal and flood protection, including: fisheries improvement, water 

filtration, transportation, and recreation. While the benefits provided by nature are 

widely accepted, there is still a great need to account for natural habitat in 
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multidisciplinary community decision making processes. To address this need, in 

this study we include various ecosystems in Florida in the Conservation Priority 

Index (CPI). Further, we give CPI the same weights as Flood Exposure, and Social 

Vulnerability in our final calculations and land prioritization. Recognizing the value 

of various habitats, CPI includes marine, terrestrial, and freshwater ecosystems.  

The goal of this study is to identify and prioritize lands in Florida that are potential 

targets for projects that can result in multiple benefits: flood exposure is reduced, 

conservation benefits are achieved, and social vulnerability is remediated. 

Using spatial data related to flood exposure, natural habitats, and SoVI©, we build 

on the methods proposed by Calil et al. (2015), who demonstrated that flood losses 

could be mitigated through action that meets both flood risk reduction and 

conservation objectives [21]. Calil et al. (2015) identified developed and federally-

insured lands in California that are prone to flooding and therefore not ideal for 

development, and where valuable natural resources, such as salmon habitat or 

estuaries, are also present. Further, that study described federal funding programs 

that could be applied to achieve both flood mitigation and conservation objectives.  

We propose that flood losses can also be mitigated through action that remediates 

social vulnerability. The present study greatly improves on Calil et al. (2015). In 

addition to flood exposure and natural habitats, we include social vulnerability in the 

prioritization scheme. Furthermore, we include inland habitats, expanding the focus 

of the analysis beyond just the coast. Our results identified lands in Florida that are 
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eligible to receive federal funds to attain multiple benefits: (i) reduce flood risk to 

home owners; (ii) reduce FEMA’s financial burden (from future flood claim 

payments); (iii) restore/protect natural habitats; (iv) remediate social vulnerability, 

and (v), identify potential sources of funding for projects. To our knowledge, this is 

the first study to present a detailed spatially explicit analysis of the overlap between 

flood exposure, natural habitats, and social vulnerability in Florida. 

Materials and Methods 

Our model identifies and prioritizes land in Florida where valuable habitats and 

socially vulnerable population are exposed to flooding. Flood exposure was 

evaluated based on data from the FEMA’s Repetitive Flood Claims program and 

Digital Flood Insurance Rate Maps (DFIRM), as well as sea-level rise projections 

from NOAA. Conservation priority lands were identified in two ways. First, we used 

The Nature Conservancy’s (TNC’s) Priority Areas, a conservation prioritization 

scheme developed through comprehensive eco-regional assessments of species and 

habitats. Second, we developed a Conservation Priority Index (CPI) based on 

habitats data from the Cooperative Land Cover dataset, published by Florida’s Fish 

and Wildlife Conservation Commission 2016. Areas of high social vulnerability 

were identified using the social vulnerability index (SoVI©). 

We used an equal-weight overlay spatial model, developed in a geographic 

information system (ESRI ArcGIS 10.2), and applied it to all census tracts in Florida 

(total study area of roughly 125,000 km²). Four indices were considered in the study 
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(at a resolution of 50m by 50m, or 0.0025 km2): (i) Flood Exposure Index (FEI); (ii) 

TNC’s Priority Areas; (iii) Conservation Priority Index (CPI); and (iv), SoVI©. Note 

that these indices are intended to be qualitative and relative, rather than quantitative 

measures of specific features. 

First, we developed a Flood Exposure Index, by combining four attributes: the 100 

yr. and 500 yr. floodplains as defined by FEMA; proximity to repetitive loss 

properties; (also based on FEMA’s data); and the projected area located below the 

mean high water levels in year 2100 from the National Oceanic and Atmospheric 

Administration (NOAA). 

Second, we evaluate conservation priority utilizing The Nature Conservancy’s 

(TNC) priority areas, and develop a custom conservation priority index (CPI). CPI is 

based on selected natural habitats in Florida, as identified by the Cooperative Land 

Cover dataset, recently published by Florida’s Fish and Wildlife Conservation 

Commission (see detailed habitat list below). It is useful to have a comparison of 

prioritization schemes to demonstrate that this approach can be adjusted to reflect 

specific users interests and available data. 

Finally, we use the pre-existing Social Vulnerability Index (SoVI©) in the study to 

identify areas of high social vulnerability in Florida. To support calculations SoVI© 

original values (low, medium, and high) were replaced by numerical scores (25, 50, 

and 100, respectively).  
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The final step of the model, was the calculation of overlapping scores across the 

indices, as explained below. Results are presented in overlapping scores and areal 

extent (in km2). 

1. Flood Exposure Index (FEI) 

An overall FEI was calculated by summing up the values of individual flood 

exposure indicators within each grid cell (Table 1, Fig 1), according to equation 1: 

𝐹𝐸𝐼 = 𝐹100 + 𝐹500 + 𝑅𝐿𝑃 + 𝑆𝐿𝑅 

(1) 

where F100 represents the 100-year floodplain score, F500 represents the 500-year 

floodplain score, RLP is the proximity to RLPs score, and SLR is the area inside the 

MHHWM at the year 2100 score. FEI score values range from 0 to 400 (Table 1). 

FEI scores were then normalized from 0 and 100 according to (equation 2): 

𝐹𝑙𝑜𝑜𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =
(𝑋 − 𝑀𝑖𝑛)

(𝑀𝑎𝑥 − 𝑀𝑖𝑛)
∗ 100 

(2) 

where X is the value of the FEI for each grid cell before the normalization, Min is 

the minimum value of the index before normalization (i.e. 0), and Max is the 

maximum value of the index before normalization (i.e. 400). 
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Table 1. Flood Exposure Index (FEI). 

FEI Components – data sources in parenthesis Score 

Area located within the 100-year Floodplain (FEMA) 100 

Area located within the 500-year floodplain (FEMA)  100 

RLPs and surrounding areas (1,000m buffer) (FEMA) 100 

Area inside the projected MHHWM at the year 2100 (NOAA) 100 

Maximum possible FEI score 
400 

Points 

 

 
Figure 1. Flood Exposure Index (FEI). 
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2. TNC Priority Areas and the Conservation Priority Index (CPI) 

Following the model outlined by Calil et al. (2015) [21], we include an example of 

an existing conservation prioritization scheme in the study. We use TNC’s Priority 

Areas, developed through comprehensive eco-regional assessments of species and 

habitat types [22] (Figure 2). TNC’s priority areas cover approximately 17.2% of 

Florida (24,000km2), across four ecoregions (areas of similar climate, topography 

that support a range of habitats): Tropical Florida, Florida Peninsula, and part of the 

East Gulf and South Atlantic Coastal Plains located within state boundaries [22–24]. 

 
Figure 2.TNC's priority Areas. 
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Additionally, following the approach from Calil et al. (2015) - and to illustrate that 

the proposed approach is flexible, and can be adjusted to represent specific 

conservation interests - we have substituted a custom conservation priority index 

(CPI) for TNC’s priority areas. 

The CPI is based on habitat data derived from the Cooperative Land Cover dataset, 

published by Florida’s Fish and Wildlife Conservation Commission in October of 

2016 [25]. The original dataset was developed based on ecologically-based statewide 

land cover from existing sources and expert review of aerial photography, and is 

used inform various conservation and management activities in Florida [25]. The 

following habitats (extracted from the Cooperative Land Cover dataset) were 

included in the CPI: Upland Hardwood Forest; Mesic Hammock; Rockland 

Hammock; Slope Forest; Xeric Hammock; High Pine and Scrub; Sand Pine Scrub; 

Coastal Scrub; Upland Pine; Sandhill; Pine Flatwoods and Dry Prairie; Dry 

Flatwoods; Mesic Flatwoods; Scrubby Flatwoods; Dry Prairie; Palmetto Prairie; 

Mixed Hardwood-Coniferous; Coastal Strand; Maritime Hammock; Sand Beach 

(Dry); Upland Glade; Freshwater Non-Forested Wetlands; Prairies and Bogs; 

Marshes; Isolated Freshwater Marsh; Floodplain Marsh; Freshwater Forested 

Wetlands; Cypress/Tupelo(including Cy/Tu mixed); Cypress; Isolated Freshwater 

Swamp; Strand Swamp; Floodplain Swamp; Other Coniferous Wetlands; Wet 

Flatwoods; Other Hardwood Wetlands; Baygall; Hydric Hammock; Non-vegetated 

Wetland; Lacustrine; Riverine; Natural Rivers and Streams; Estuarine; Tidal Flat; 

Salt Marsh; Mangrove Swamp; Scrub Mangrove; Dome Swamp; Basin Swamp. 
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In addition to the data above, seagrass coverage, based on data from Florida’s Fish 

and Wildlife Conservation Commission [26] was also included in the CPI, and the 

resulting raster received a value of 100 (figure 3). 

 
Figure 3. Conservation Priority Index (CPI). 

 

3. Social Vulnerability Index (SoVI©) 

Cutter et al. (2003), developed the Social Vulnerability Index (SoVI©), which 

measures community vulnerability, defined as a reduction in the community’s ability 

to prepare for, respond to, and recover from hazards [18]. The 2006-2010 version of 

SoVI© for Florida, was calculated at the census tract level, by the use of principal 

component analysis. Principal component analysis reduces a number of correlated 
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variables into a smaller number of uncorrelated variables called principal 

components. The first component explains as much of the variability in the data as 

possible, with succeeding components accounting for as much of the remaining 

variability in the data as feasible [27]. In Florida, the 2006-2010 SoVI© reduces 29 

independent socioeconomic variables into seven components that explain 72% of the 

variance in the data [18]. 

Positive and negative values are then assigned to each of the seven components, 

based on their impact on social vulnerability. Values are tallied up at the census tract 

level, determining a numerical social vulnerability score. The seven independent 

components that describe social vulnerability in Florida are: race (Black) and class 

(poverty) combined; wealth; elderly residents; Hispanic ethnicity; special needs 

individuals (nursing home residents); Native American ethnicity; and service 

industry employment [19]. The 2006-2010 SoVI® data sources include primarily the 

United States Census Bureau (from 2005 to 2009). SoVI® is a dynamic index and 

future iterations are expected to include additional variables including: homeless 

population, physical mobility constraints, and social capital [20]. 

One of the main focal points of social vulnerability in Florida is in urban areas in the 

southeast of the state, north from Miami-Dade, through Broward, and into Palm 

Beach County, where 76%, 31%, and 29% of the respective populations live in areas 

with high vulnerability [28]. Miami-Dade contains the most vulnerable census tract 
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in the state [28]. For the purposes of this study, SoVI© values were transformed 

from medium, high, and low, to 25, 50, and 100, respectively. 

 
Figure 4. SoVI© 2006 - 2010. 

 

4. Spatial Model Description 

The four spatial layers above (FEI, TNC’s Priority Areas, SoVI©, and CPI) were 

converted into raster format at the same resolution (0.0025 km2). Next, the geometric 

average between the raster values (i.e. individual indices) was calculated, resulting in 

overlapping scores (equations 3, 4, and 5). Areas where either layer was not present 

(i.e. index value equal 0) were excluded from the results. An equal weights approach 

was applied but the model is flexible enough that different weights may be used in 
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the future, to represent specific values of model users. As an example, a future 

application of the model may give a heavier weight to high social vulnerability.   

The total extent of overlapping land was calculated in three ways:  

(i) extent of overlap between FEI and SoVI©: 

Overlap between FEI and SoVI© = √(𝐹𝐸𝐼 ∗  𝑆𝑜𝑉𝐼©) 

(3) 

(ii) extend of overlap between FEI, SOVI©, and CPI:  

Overlap between FEI, SoVI©, and CPI = √(𝐹𝐸𝐼 ∗  𝑆𝑜𝑉𝐼© ∗  𝐶𝑃𝐼)3
 

(4) 

(iii) the extent of overlap between FEI, SOVI©, and TNC’s Priority Areas: 

Overlap between FEI, SoVI©, and TNC Priority Areas = √(𝐹𝐸𝐼 ∗  𝑆𝑜𝑉𝐼© ∗  𝑇𝑁𝐶 𝐴𝑟𝑒𝑎𝑠)
3

 

(5) 

Additionally, the distribution of Repetitive Loss Properties in Florida, and their 

overlap with the three land prioritizations above was evaluated, and a case study was 

conducted for Miami-Dade, the county with the highest number of repetitive loss 

claims in Florida.  
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Results  

1.  Extend of overlap between SOVI© and FEI  

The first step in the analysis was to evaluate the extent of overlap between flood 

exposure and social vulnerability in Florida. Results are presented as scores, 

calculated by equation 3, with overlapping scores ranging from 0 to 100.  

The state of Florida contains a total area over land of 138,887 km2. Our results 

indicate the extent of overlap between FEI (values> 0), and medium SoVI© (values 

>=50), cover nearly 22% of the state (30,205km2). As expected, the areal extent of 

overlap diminishes as the scores increases: There are roughly 870 km2 in the state 

where SoVI© is high (i.e. score is 100), and FEI values >= 60 overlap (red 

categories in Figure 5). Finally, there are 162 km2 in Florida where high social 

vulnerability (SoVI© = 100) and high flood exposure (FEI >=80) overlap (figures 5 

and 6).  

 
Figure 5. Area of overlap between FEI scores greater than or equal to 60, and SoVI© values medium and higher. 

FEI scores equal to 30, 50, 70 and 90 did not occur in the study area, therefore are not shown in figure 5. 
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Figure 6. SoVI© and FEI Overlap 

 

2. Extent of overlap between FEI, SoVI© and TNC’s Priority Areas 

TNC’s priority areas cover approximately 24,000 km2 in Florida (17.2% of the state). 

Roughly 42% of that total (nearly 10,000 km2) overlaps with areas where both 

SoVI© and FEI also coexist in Florida. Overlapping scores range from 0 to 100. 

There are 75 km2 of land in Florida, where TNC’s priority areas overlap with FEI >= 

80, and SoVI© >= 50. Finally, there are 20 km2 of land in Florida, where TNC’s 

priority areas overlap with high FEI >= 80 and SoVI©=100 (figures 7 and 8). 
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Figure 7. TNC, SoVI©, and FEI Overlapping Scores (excludes areas where TNC areas are not present). 

 

 
Figure 8. TNC, SoVI©, and FEI Overlapping Scores 
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3. Extent of overlap between SoVI©, FEI, and CPI 

The extent of overlap between FEI >0, CPI >0, and SoVI© >=50 covers more than 

30% of Florida, 45,350 km2 (Figure 6). Overlapping scores range from 0 to 100 

(equation 4). Generally, the amount of land where the three indices overlap 

diminishes as the indices values increase. Nearly 19% of the state (26,171 km2) is in 

areas with an overlapping score greater than 50 (Table 2). The areal extent where 

overlapping scores are 80 or higher is 553 km2. 

As expected, the total areal extent with maximum overlapping scores (i.e. 100), is 

very limited, roughly 0.2 km2. As previously mentioned, the fact that the areal extent 

of overlap between the indices generally diminishes as the values of each index 

increase, provides a valuable land prioritization tool. 
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Figure 9. SoVI©, FEI and CPI Overlap. 

 

4. Repetitive Loss Properties in Florida 

According to FEMA, as of December 31, 2011, there were 16,546 RLPs located 

throughout Florida (table 3, Figure 10). Collectively, these RLPs filed 42,092 claims 

against NFIP, with total claim payments reaching more than $1.3 billion (average 

claim value of almost $33,000) [6]. Five counties are responsible for 52% of claims 

and 52% of all repetitive loss properties in Florida:  Miami-Dade, Pinellas, 

Escambia, Santa Rosa, and Broward (Table 3). Not all RLPs had their locations 

included in the database used in this study (provided by FEMA), therefore the 

number of RLPs analyzed here is slightly lower (15,274). 
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Table 2. Distribution of Repetitive Loss properties and Claims in Florida – top 

12 Counties. 

County 
Number of 

Claims 

% of 

Claims 

Number of 

RLPs 
% of RLPs 

Miami-Dade 7,886 20% 3,415 22% 

Pinellas 4,226 11% 1,418 9% 

Escambia 3,956 10% 1,373 9% 

Santa Rosa 2,380 6% 953 6% 

Broward 1,834 5% 724 5% 

Monroe 1,702 4% 747 5% 

Okaloosa 1,699 4% 715 5% 

Pasco 1,610 4% 650 4% 

Lee 1,575 4% 641 4% 

Hillsborough 1,238 3% 424 3% 

Manatee 1,051 3% 333 2% 

Sarasota 1,010 3% 326 2% 

Other 8,961 23% 376 23% 

Total 39,128 100% 15,274 100% 
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Figure 10. Repetitive Loss Properties throughout Florida (red circles). The diameter of each circle increases 

with number of losses (ranging from 2 to 9 losses). 

 

There are at least 824 RLPs in Florida, located in areas where SoVI©, FEI, and CPI 

overlap. Collectively, these properties filed more than 2100 claims against NFIP 

between 1978 and 2011. At least 185 RLPs (that filed more than 500 claim during 

the same period), are in areas where the overlapping scores between these three 

indices are 70 or higher. 



62 
 

Miami-Dade County Case Study 

Miami-Dade County is an ideal geography for a targeted case study of our methods, 

as it contains extensive areas with high exposure to floods, high social vulnerability, 

and valuable habitats.  

Miami-Dade contains the largest number of RLPs in Florida; more than 3,400 RLPs 

have filed more than 7,800 claims against NFIP in the County, between 1978 to 

2011. There are more than 500 km2 of land in the County where FEI is 60 or higher.  

The total area of Miami-Dade County is approximately 6,296 km2. Nearly 90% of 

the county’s area (5,600 km2) is classified as TNC’s Priority areas, with extensive 

coverage of marshes (2,264 km2), estuaries (650 km2) and other natural habitats [25]. 

Nearly 67% of the county (4,254 km2) is in areas where FEI, SoVI©, and TNC areas 

overlap. The extent of land in the county where FEI, SoVI© and PCI areas overlap is 

slightly smaller, roughly 50% of the county (3,148 km2). 

Finally, Miami-Dade is a hotspot of social vulnerability in Florida, holding the most 

vulnerable census tract in the state, with almost 2 million people living in areas with 

high social vulnerability [28] (roughly 76% of the total 2.6 million population in the 

county [29]). More than 20% of the Miami-Dade’s population (nearly 540,000 

people) are living in poverty, and more than 680,000 people did not have health 

insurance in the county as of July of 2016 [29]. 
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We found 92 RLPs in Miami-Dade located in 61 km2 where the overlapping score 

between FEI, SoVI, and TNC areas is high (overlapping scores >= 84). Collectively, 

these 92 RLPs filed at least 207 claims against NFIP between 1978 and 2011. Such 

properties are eligible for HMA grants, which support flood-risk mitigation activities 

that can improve the livelihoods of socially vulnerable neighborhoods, and promote 

the conservation of critical habitats. 

 

Figure 11.RLPs in Miami-Dade County. Color represents Overlapping Scores (SoVI© FEI, and TNC areas). 

Diameters represent the number of claims filed (from 2 to 9). 

 

  



64 
 

Discussion 

Our methods identified and prioritized multiple location in Florida, where multi-

objective projects can be implemented to simultaneously reduce flood exposure, 

restore natural habitats and improve social vulnerability. As an example, in a 

targeted case-study, we identified 92 RLPs in Miami-Dade County located in areas 

where these objectives are very well aligned.  

It is important to note that, due to privacy concerns, FEMA restricts the accuracy of 

RLPs locations to a city block level, not individual parcels. However, such accuracy 

is sufficient for the objectives of the present study, and the identification of potential 

locations for acquisition projects. Another limitation of the study is that in addition 

to the 15,274 RLPs records used in the model, there are roughly 1,200 RLPs records 

that did not have adequate geolocation information and therefore were excluded from 

the study. Other limitations are related to SoVI©: since the social vulnerability index 

is calculated at a census tract level, some uninhabited areas (e.g. Biscayne National 

Park) receive high overlap scores between the indices used, but are not necessarily 

relevant. Additionally, social vulnerability is a very complex subject, and SoVI© is 

based on broad assumptions of drivers of vulnerability. It is important to ground 

proof the index, validate its assumptions, and incorporate local knowledge before 

any project implementation.  

Future research and applications of our model should focus on specific locations of 

higher resolution (e.g. Miami-Dade County), through partnerships with local 
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communities, government agencies and officials, NGO’s, and the private sector 

(which should also be considered as a relevant partner in such projects). Our model 

can also be improved by the addition of population data in the social vulnerability 

category. Finally, it would be interesting to include information about property 

values in the study, which could be done by cross referencing RLP locations and 

claims dates with property value records. Despite these limitations and opportunities 

for future improvement, our results provide a valuable first step in the identification 

of candidate neighborhoods for the implementation of multi-objective projects. 

The presented approach identifies a valuable opportunity for the coordinated use of 

funds previously destined to single objective projects. Since the 1993 floods in the 

Midwest, FEMA has spent hundreds of millions of dollars to remove repetitive loss 

structures from the floodplains across the country [6]. Additionally, in recent years, 

the U.S. Department of Housing and Urban Development (HUD) offered almost $2 

billion in funding, destined for disaster recovery and long-term community resilience 

[12–14]. 

There is a growing realization that integrated approaches to flood mitigation yield 

better benefits than single objective approaches. As an example, building a seawall 

on a sandy beach, which in theory may protect a community from flooding, does 

very little to improve social vulnerability, or to sustain the natural environment. In 

fact, as a consequence of coastal dynamics, seawalls may result in beach loss, 

diminishing the social, economic, and ecosystems benefits the lost beach provided, 
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further impacting social vulnerability. Conversely, relocation, or managed retreat, the 

relocation of properties to safer areas, followed by the restoration of the floodplain to 

a more natural state, is an example of an integrated approach. Understandably, this is 

a controversial topic, and not always viable on the short-term, especially in denser 

urban areas where other structural measures (i.e. engineered coastal defenses 

including building seawalls and elevating properties) will continue to be important 

for some time in the future. The comparison between seawalls and managed retreat is 

illustrative of two contrasting approaches, and by no means all inclusive. 

Nonetheless, the emphasis is slowly transitioning from large engineered solutions to 

more creative approaches that are better aligned with natural processes, less costly in 

the long-term [30,31], and reduce future impacts on socially vulnerable communities 

and beyond.  

We argue that government funded buyouts, followed by structure demolition or relocation, 

and the restoration of floodplain habitats can support social, environmental, and economic 

objectives. It is important to note that buyouts must be done from willing and volunteer 

sellers, and relocation projects must be executed in a thoughtful and fair manner. Kick et al. 

(2011) found through interviews with flood victims from repetitive loss sites and FEMA 

officials, that a community-system is the most efficient approach to such projects. Kick et al. 

(2011) show that financial variables are not the only critical factor, with perceptions of 

future risk, attachments to home and community, and the relationships with flood 

management officials, are also critical decision factors that homeowners must consider [32]. 

Additionally, the timing of relocation is critical. While it is harder to make the case for 
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relocation before the onset of a disasters, the occurrence of disasters reduces income and 

consumption levels, further aggravating poverty [33]. Moreover, availability of affordable 

housing in economically thriving areas where relocated families can find work and become 

productive members of the community, should be a key component of the relocation process. 

As it was previously mentioned, input from vulnerable communities must be taken into 

consideration during all phases of potential projects, from the early planning stages, to actual 

implementation.  

The availability of current technology, supported by well-developed climate science, well-

known floodplain processes, and a multitude of high-resolution data, provide decision 

makers with all the tools required to reduce flood exposure across the country, improving 

livelihoods, and restoring natural habitat at the same time. 
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Abstract 

As the world’s population grows to a projected 11.2 billion by 2100, the number of 

people living in low-lying areas exposed to coastal hazards is projected to increase. 

Critical infrastructure and valuable assets continue to be placed in vulnerable areas, 

and in recent years, millions of people have been displaced by natural hazards. 

Impacts from coastal hazards depend on the number of people, value of assets, and 

presence of critical resources in harm’s way. Risks related to natural hazards are 

determined by a complex interaction between physical hazards, the vulnerability of a 

society or social-ecological system and its exposure to such hazards. Moreover, these 

risks are amplified by challenging socioeconomic dynamics, including poorly 

planned urban development, income inequality, and poverty. This study employs a 

combination of machine learning clustering techniques (Self Organizing Maps and 

K-Means) and a spatial index, to assess coastal risks in Latin America and the 

Caribbean (LAC) on a comparative scale. The proposed method meets multiple 

objectives, including the identification of hotspots and key drivers of coastal risk, 
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and the ability to process large-volume multidimensional and multivariate datasets, 

effectively combining sixteen variables related to coastal hazards, geographic 

exposure, and socioeconomic vulnerability, into a single index. Our results 

demonstrate that in LAC, more than 500,000 people live in areas where coastal 

hazards, exposure (of people, assets and ecosystems) and poverty converge, creating 

the ideal conditions for a perfect storm. Hotspot locations of coastal risk, identified 

by the proposed Comparative Coastal Risk Index (CCRI), contain more than 300,00 

people and include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan, El Salvador; and 

Chiapas, Mexico. Our results provide important insights into potential adaptation 

alternatives that could reduce the impacts of future hazards. Effective adaptation 

options must not only focus on developing coastal defenses, but also on improving 

practices and policies related to urban development, agricultural land use, and 

conservation, as well as ameliorate socioeconomic conditions.    

Introduction 

Backing away from estimates from less than a decade ago, the United Nations now 

predicts that the world population is unlikely to stabilize by the end of the century. 

The global population, currently at 7.46 billion, is increasing by nearly 230,000 

people every day, at a growth rate of 1.18% per year [1]. In the next 15 years, the 

global population is expected to grow by an additional 1 billion, reaching 11.2 billion 

people by 2100 [1]. Concurrently, the number of people living in low elevation 

coastal areas, exposed to natural hazards, continues to increase [2]. There is a clear 
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trend of coastal populations growing globally, with an estimated 230% increase 

(from 2000 to 2030) in the size of urban areas within the Low Elevation Coastal 

Zone (LECZ) - defined as “the contiguous area along the coast that is less than 10 

meters above sea level”, and which accounts for only 2% of the planet’s total land 

area [3,4]. Moreover, critical infrastructure and valuable assets continue to be placed 

in areas exposed to coastal hazards [5]. 

In 2013, almost 22 million people were displaced by extreme weather events across 

the globe, with 37 events displacing at least 100,000 people each [5]. All but one of 

the top 15 largest displacements were related to typhoons or floods, with at least 

three million people displaced from coastal areas [6]. In 2012, more than 30 million 

people were displaced worldwide by disasters related to climate and weather events 

[6]. From 1995 to 2015, worldwide losses resulting from minor but recurrent natural 

hazards, including flash floods, landslides, and storms, reached $94 billion [7].  

Natural events are not the only reason why disasters occur. Disaster risk is defined 

by a complex interaction between physical hazards and the vulnerability of a society 

or social-ecological system, and its exposure to such hazards [8]. The disaster risk-

poverty nexus has been well documented [8–12]; Poor communities suffer a 

disproportionate share of losses resulting from disasters, are usually less resilient to 

losses, and have very limited or no access to insurance and social protection [9]. 

Furthermore, the occurrence of disasters reduces income and consumption levels, 

further aggravating poverty [9].  
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Social, political and economic conditions are often ignored determining factors for 

the consequences of the onset of disasters [13–16]. Coastal risks are amplified by 

challenging socioeconomic dynamics, including ill-advised urban development, 

income inequality, and poverty. Lack of access to critical resources including food, 

fresh water, shelter, medicine and evacuation routes, can greatly intensify the 

damaging effects of coastal hazards [16]. Finally, income inequality is frequently 

associated with larger damage [17]. Inequality increases poverty and creates 

processes of social and political exclusion, possibly resulting in social instability, 

reduced accountability and enabling corruption [17].  

There is a well-documented need for studies that explicitly integrate exposure and 

vulnerability to coastal hazards, disaster risk management, and adaptation [18,19]. 

Further, multidisciplinary approaches are an effective way to evaluate and solve 

complex environmental and social problems [19–23].   

Previous research addressed the exposure of critical resources to coastal hazards in 

Latin America and the Caribbean (LAC). In 2011, the Economic Commission for 

Latin America and the Caribbean (ECLAC) published an assessment of the risks and 

impacts of climate change in coastal areas of LAC [24]. The 2011 study produced a 

comprehensive high-resolution database containing more than 15,000 coastal 

segments of 5-km length each. Individual coastal segments contain multiple 

attributes related to natural hazards (e.g. significant wave height, storm surge, and 

wind) and geographic exposure (e.g. urban and cropland area, beaches, and 
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ecosystems, critical infrastructure, and Gross Domestic Product (GDP)). Coastal 

risks and hotspots were evaluated for flooding and coastal erosion, resulting from 

both sea-level rise and extreme weather events. Losada et al. (2013) [25] studied 

historical sea-level rise and extreme sea levels in LAC, while Reguero et al. (2013) 

[26], and Izaguirre et al. (2012) [27] described changes in wave conditions in the 

region. More recently, Reguero et al. (2015b) [28] assessed the exposure of people, 

land, and built capital to coastal flooding in LAC under current and future conditions 

of sea level rise (SLR), El Niño induced sea level rise, and storms.  

While the studies above address important knowledge needs, they do not incorporate 

important drivers of risk, such as poverty and inequality. Building on the works from 

ECLAC (2011) [24], Losada et al. (2013) [25], Reguero et al. (2015a, 2015b) 

[28,29], and based on the methods developed by Camus et al. (2011) [30], and 

Ramos et al. (2012) [31], we present a method that identifies critical drivers of 

coastal risks and isolates hotspots of coastal vulnerability. Combining multiple 

variables related to the three dimensions of risk (coastal hazards, geographic 

exposure, and socioeconomic vulnerability) a Comparative Coastal Risk Index 

(CCRI) is proposed. Areas with higher scores of coastal hazards, exposure, and 

vulnerability, receive a higher CCRI value (see methods). 

Study Region – Latin America and The Caribbean  

Despite recent advances in promoting economic and social development, efforts in 

LAC have failed to significantly reduce poverty [32]. There are a large number of 
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people in the region with no access to basic services including water and sanitation 

[32], a situation that greatly increases the vulnerability of coastal populations to 

natural hazards.  

The total population in the LAC region in 2014 was approximately 623 million 

people (with an annual growth rate of 1.1% between 2010 and 2015) [33]. The GDP 

in LAC in 2014 was approximately $5.7 trillion. Brazil, Mexico and Argentina had 

the highest GDPs in 2014 ($2.4 trillion, $1.2 trillion and $0.5 trillion, respectively) 

[34]. In Colombia, Venezuela, Costa Rica, El Salvador, and Panama, more than 30% 

of the total population is located in the LECZ [35]. In 2000, roughly 32.2 million 

people lived in the LECZ in LAC [36,37]. 

From 1972 to 2010, 88 natural disasters caused nearly 310,000 deaths and 236 

billion dollars in damages (2015 $) in LAC [38]. During the same period, 63 

meteorological events caused roughly $118 billion [38]. Storms and hurricanes were 

responsible for 40 disasters, resulting in 50.2% of all deaths, and almost 40% of total 

damages [38]; in 1998, a single event, Hurricane Mitch, caused more than 23,000 

deaths in Central America [38]. From 1972 to 2010, El Niño and La Niña events 

caused 17 disasters in the region, resulting in approximately 50% of all damages and 

4.1% of all deaths [38].  

This study focuses on coastal areas (i.e. under 10m in elevation and within 5km of 

the coast) of LAC, and includes more than 13,000 unique coastal segments covering 

more than 59,000km of coastline. The study area includes a total population of 
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almost 23 million people in 26 countries, and is bounded by Mexico (north and 

west), Chile (south), and Brazil (east). 

Methods and Materials 

a) Methodology 

This study employs a combination of machine learning clustering techniques (Self 

Organizing Maps and K-Means) and a spatial index, to classify and rank coastal 

areas according to coastal risk. Hazards, exposure, and vulnerability data were 

combined to calculate a comparative coastal risk index (CCRI).   

The benefits of the proposed approach include: (i) the identification of hotspots and 

key drivers of coastal risk; (ii) the ability to process large-volume multidimensional 

and multivariate datasets, effectively reducing sixteen variables related to coastal 

hazards, geographic exposure, and socioeconomic vulnerability, into a single index; 

and (iii), clustering of coastal areas according to similar attributes, where consistent 

risk reduction strategies may be applied to minimize future risk. 

Methodology steps (see Fig 1):  

First, variables within each risk dimension (hazards, exposure, and vulnerability) 

were clustered. Second, individual scores for each risk dimension were calculated. 

Finally, a Comparative Risk Index (CCRI) was calculated. 
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          Figure 1. Methods Flow Chart 
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Within the context of this study, risk is defined as the geometric mean between the 

individual scores describing various degrees of hazards, exposure, and vulnerability. 

Areas with higher individual scores receive a higher comparative risk index value. 

For this first implementation of CCRI, an equal weights approach was chosen. 

However, future applications may consider different weighting scenarios. 

b) Data: 

The methodology leverages several datasets, including the ones published by 

Reguero et al. (2013 and 2015a, 2015b) [28,26], Losada et al. (2013) [25], Izaguirre 

et al. (2013) [39], and ECLAC (2011) [40]. Several new attributes were appended to 

the original datasets, including: cumulated cyclone winds (used as a proxy for 

hurricanes), GDP, Gini coefficient of inequality, and Infant Mortality Rates (IMR). 

A description of the individual variables used in each score follows: 

Coastal Hazards 

Coastal hazards may be related to extreme weather events (e.g. storm surge and 

winds from tropical storms), or to low intensity events (e.g. sea level rise due to El 

Niño events) [16,41,42]. Table 1 contains a description of the coastal hazards 

variables included in the study. 
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Table 1. Coastal Hazards Variables 

Coastal Hazards 

Score 

Components 

Data Source 
Resolution (degrees 

of Latitude or km) 

Period of 

Data 
Unit 

Wave Energy 
Reguero et al. 

(2015a) [29] 

0.25o (Caribbean) 

0.50 o remaining 

areas 

1948 - 2008 W/m2 

Storm Surge 99% 

(m) 

Losada et al. 

(2013) [25] 

0.25o (Caribbean) 

0.50 o remaining 

areas 

1948 - 2010 m 

El Nino 1997-1998 

(m) 

Losada et al. 

(2013) [25] 
0.50o 1997 - 1998 m 

Significant Wave 

Height Ratio (HS 

12 / HS mean) 

Reguero et al. 

(2013 and 

2015b) [28,26] 

0.25o (Caribbean) 

0.50 o remaining 

areas 

1948 - 2008 ratio 

Cumulated 

Tropical Cyclone 

Winds 

Global Risk Data 

Platform, United 

Nations 

Environment 

Programme 

(UNEP), [43] 

2 km 1975 - 2007 
km 

(km/h*h) 

Geographic Exposure 

Geographic exposure is defined as the presence (of people, ecosystems, 

infrastructure, and assets) in places that could be adversely affected by physical 

hazards [19]. The variables included in this study representing exposure are: coastal 

population, GDP, urban area, cropland and various ecosystems.  

An ecosystems category was included to reflect the valuable (and often overlooked) 

services that ecosystems provide. As an example, wetlands and mangroves provide 

valuable services to neighboring communities in the form of coastal protection, 

enhancement of fisheries, water filtration, sediment trapping, and many others [44]. 
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As ecosystems are impacted by the onset of coastal hazards, however, their value to 

coastal communities is diminished, hence their inclusion in the exposure category. 

The following ecosystems were included in this study: beaches, mangroves, 

estuaries, marshes, grasslands, deciduous, mixed and conifer forests, and deserts 

[25]. Ecosystems data were summarized into three components: (i) beach area; (ii) 

wetlands (sum of saltmarshes and estuaries); and (iii), coastal forests (sum of 

mangroves, grasslands, deciduous, and mixed forests). First, linear densities were 

calculated for each component by normalizing their areas by the length of coastal 

segments. Second, the linear densities of beaches, coastal forests and wetlands were 

added into a broader ecosystems category, calculated for each coastal segment 

(equation 1): 

𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  𝐵𝑒𝑎𝑐ℎ (𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) +

 𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐹𝑜𝑟𝑒𝑠𝑡𝑠 (𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) + 𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠 (𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) (1) 

Table 2 contains a description of the geographic exposure variables included in the 

study. 
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Table 2. Geographic Exposure Variables 

 

Socioeconomic Vulnerability 

Within the context of this study, socioeconomic vulnerability is described in terms of 

the ability of a coastal community to cope with and adapt to a coastal hazard that 

may impact livelihoods and well-being [46]. Poverty and welfare are common 

indicators of socioeconomic vulnerability, and can be evaluated by proxy variables 

[47,48]. Vulnerability variables used in this study, namely: Infant Mortality Rate 

(IMR), Child Malnutrition, GDP, and Income Inequality, are commonly accepted 

Exposure Score 

Components 
Data Source Resolution Date Unit / Year 

Coastal 

Population 

Reguero et al.  

(2015b) [28] 
1 km2 2000 

Number of 

People 

% Urban 

Coverage 

ECLAC (2011) 

[45] 
5km 2000? Ratio 

% Crop 

Coverage 

ECLAC (2011) 

[45] 
5km 2011 Ratio 

Beach Linear 

Density 

ECLAC (2011) 

[45] 
5km 2011 Km (km2/km) 

Coastal Forests 

Linear Density 

ECLAC (2011) 

[45] 
5km 2011 Km (km2/km) 

Wetlands 

Linear Density 

ECLAC (2011) 

[45] 
5km 2011 Km (km2/km) 

Per Capita GDP 

(average) 

Global Risk 

Data Platform, 

(UNEP) [43] 

(see S2 

Appendix for 

additional 

sources) 

30 arc second 

resolution, 

roughly 1 km2 

2000 

USD (year 

2000, 

extrapolated to 

2010) 
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indicators of socioeconomic vulnerability and poverty [47–49].  Table 3 contains a 

list of the socioeconomic vulnerability variables included in the study. 

Table 3. Socioeconomic Vulnerability Variables 

Vulnerability 

Variable 
Data Sources Resolution Period Unit 

Gini coefficient 

Socioeconomic Data 

and Applications Center 

(SEDAC) [50,51] 

(see S2 Appendix for 

other sources) 

National 1995-2012 N/A 

Child 

Malnutrition 

Rate (%) 

SEDAC [50] 

(see S2 Appendix for 

other sources) 

Subnational 1990 - 2000 % 

Infant Mortality 

Rate (%) 

SEDAC [50] 

(see S2 Appendix for 

other sources) 

Subnational 2000 
number 

of deaths 

Per Capita GDP 

(average) 

Global Risk Data 

Platform, (UNEP) [43] 

(see S2 Appendix for 

other sources) 

Subnational 2010 USD 

c) Clustering Analysis 

Clustering techniques were used to investigate how coastal areas in the LAC region 

may be grouped according to similar characteristics of hazards, exposure, and 

vulnerability. We follow the techniques and recommendations from Camus et al. 

(2011, and 2016) [30,52], and Ramos et al. (2012) [31]. Clustering, in this context, 

means partitioning of each dataset into smaller groups of similar characteristics. Two 

clustering algorithms were applied in two subsequent steps. First, the Self-

Organizing Maps (SOM) algorithm was applied to distribute 13,426 study units into 

100 maps. Second, the K-Means algorithm was applied to further group the 100 

resulting SOM maps into 9 clusters (S1 Appendix). The application of two 
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abstraction levels proved more consistent than applying either one independently, 

confirming the findings from Vesanto and Alhoniemi (2000) [53]. Recent studies 

applied similar methods of data classification in various research fields [30,54–57]. 

One of the limitations of the used algorithms is that they do not propose an optimal 

number of clusters. Therefore, it was necessary to test multiple values for each 

abstraction level (SOM and K-Means), until it was possible to validate that the 

resulting clusters indeed consisted of locations with similar features. Several 

attempts were made to adjust the best number of final clusters (from 2 to 25), with 9 

clusters best representing the data. As an index is introduced in the analysis, the issue 

of the number of clusters is greatly minimized, as similar clusters receive similar 

values for the final index. 

The benefits of clustering the data before applying an index are multiple. The 

categorization of multivariate datasets according to similar attributes simplifies the 

analysis; SOM provide intuitive visualization of results, greatly facilitating the 

analysis of multivariate sets in a 2D plane. Further, the clustering analysis produces 

risk profiles across the region allowing areas of similar risk profiles to be easily 

identified; the most relevant variables of hazards, exposure, and vulnerability can be 

traced back from the final risk index, to individual clusters. Finally, clustering 

techniques allow the analysis of large datasets at a low computational cost.  
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Data Transformation and Normalization 

The exposure dataset contains a significant number of coastal segments with no 

population or GDP (values equal 0), resulting in a highly-skewed distribution. To 

improve the distribution, the Box-Cox transformation (equation 2) was applied to the 

relevant variables.  

𝑥′
𝜆 =

(𝑥𝜆 – 1)

𝜆
    (2) 

Subsequently, all variables were then transformed to range from 0 to 1. This step 

ensures that all variables have equal weight in the clustering analysis. 

Maximum Dissimilarity Initialization 

The Maximum Dissimilarity algorithm was used to pre-select the most distinct 

values within the dataset as the initial centers for each cluster, ensuring that the 

resulting clusters are as diverse as possible [30,58]. 

First Clustering Step – Self-Organizing Maps (SOM) 

The SOM algorithm [59] facilitates the visualization of high-dimensional data by 

converting nonlinear statistical relationships between multiple dimensions into 

simple geometric shapes, usually a simple grid of nodes. SOM compresses 

information but retains the most important relationships of the original data 

elements. Formally, SOM is the nonlinear mapping of high-dimensional input data 

into a linear array. Each map unit produced represents a vector, comprised of as 

many columns as the original dataset (i.e. each hazards, exposure, and vulnerability 
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attributes). The most commonly used SOM output is a topological representation of 

the data, where each cell represents a cluster and contains a number of data entries, 

or samples, associated with it. All samples within a cell are similar, and also similar 

to samples in adjacent cells, while samples assigned to distant cells are less similar. 

A probability matrix is also produced, which represents the number of records 

belonging to each cluster. SOM reduced the dimensionality of each data set into a 

single value for each cluster.  

Hazards, exposure, and vulnerability data were clustered independently. Several 

attempts were made to perform a single cluster analysis utilizing a single database 

containing all variables. However, clustering results, based on 16 variables, proved 

to be too complex and cumbersome to be analyzed.  

Second Clustering Step – K-Means Algorithm 

As a second clustering step, the K-Means algorithm was applied to further reduce the 

100 SOM groups (resulting from the first clustering step) into 9 clusters. This step 

was repeated for each category (hazards, exposure, and vulnerability), independently. 

Using K-means to assign each one of the 100 SOM groups into 9 clusters provides 

additional benefits beyond the initial clustering provided by SOM. It provides a 

smaller number of clusters, and the ability to compare similar values that were 

placed further apart in the SOM maps. K-means cluster centers (mean values) 

represent prototypes for the records belonging to it. Individual SOM groups were 

assigned to the prototypes with the closest mean value in a two-step iterative way. 
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On each step, the algorithm calculates a mean value for each cluster, based on the 

values of the points belonging to it. In a second step, individual points are reassigned 

to the cluster with the closest value [60]. Values within clusters are more similar, and 

closer in value to the cluster’s mean value, than other clusters. This process is 

repeated until points no longer jump between clusters. In this study, the process was 

repeated 100 times. Several numbers of K-Means clusters were evaluated (from 3 to 

25) with the best results achieved with 9 clusters. 

Hazards, Exposure, and Vulnerability Scores 

The next step in the analysis was to assign individual scores to the 9 clusters (for 

each category), and rank them by intensity. Scores were calculated according the 

equations described below, and variables within each score were equally weighted. 

The rationale behind developing these scores is that areas where more than one 

variable is present receive a higher score than areas where only one, or no variables 

are present (e.g. areas impacted by both high wave energy and tropical storm winds 

would be ranked higher than areas only affected by one of these hazards). 

Once scores were calculated, each one of the 9 clusters within each category 

(hazards, exposure, and vulnerability), was ranked from 1 to 5 (with 1 representing 

the lowest severity, and 5 representing the highest severity). 

One limitation of this approach is the assumption that that the impacts from 

individual hazards are equal in severity. As an example, we assume that elevated sea 

levels during an El Niño event have the same impact as areas of high accumulated 
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winds. This assumption is adequate for the objectives and spatial scale of the current 

analysis, and illustrates a basic implementation of the proposed approach. However, 

it may not be adequate for other applications of this method, or the selection of local 

risk reduction strategies. Moreover, the proposed index is not meant to represent a 

definite result, but rather a starting point, showcasing the benefits of the method 

presented here. However, the model is flexible, and different weights can be easily 

assigned to specific variables within the model, making it suitable to be used by 

diverse stakeholders. Future applications of this model should ensure that each 

variable receives the appropriate weight that represents the study’s objectives.  

Coastal Hazards Score 

An overall coastal hazards score was calculated by summing up the values of 

individual hazard variables at each coastal segment (equation 3). Variables included 

in the hazards score are: waves (average between significant weight height ratio, and 

wave energy), storm surge, wind, and El Niño. Hazards scores for the 9 clusters were 

ranked from 1 to 5 (low to high), according to severity. 

𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐻𝑎𝑧𝑎𝑟𝑑𝑠 𝑆𝑐𝑜𝑟𝑒 (𝐻𝑆) =  𝑊𝑎𝑣𝑒𝑠 + 𝑆𝑡𝑜𝑟𝑚 𝑆𝑢𝑟𝑔𝑒 + 𝑊𝑖𝑛𝑑 + 𝐸𝑙 𝑁𝑖ñ𝑜 (3) 

Geographic Exposure Score 

An overall Exposure Score was calculated by summing up the values of individual 

exposure variables for each coastal segment. Variables included in the exposure 

score are: coastal population, GDP, cropland ratio, urban ratio, and coastal 
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ecosystems (equation 4). Exposure scores for the 9 clusters were ranked from 1 to 5 

(low to high) according to severity. 

𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 (𝐸𝑆) =  𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐺𝐷𝑃 +

𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑 𝑅𝑎𝑡𝑖𝑜 + 𝑈𝑟𝑏𝑎𝑛 𝑅𝑎𝑡𝑖𝑜 + 𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝑠 (4) 

The presence of ecosystems in low elevation areas is an important component of 

coastal exposure. Coastal ecosystems provide valuable services to neighboring 

communities in the form of coastal protection, enhancement of fisheries, water 

filtration, sediment trapping and many others [44]. 

Ecosystems data were summarized into three components: (i) beach area; (ii) 

wetlands (sum of saltmarshes and estuaries); and (iii), coastal forests (sum of 

mangroves, grasslands, deciduous, and mixed forests). First, linear densities were 

calculated for each component by normalizing their areas by the length of coastal 

segments. Second, the linear densities of beaches, coastal forests and wetlands were 

averaged into a broader ecosystems category, calculated for each coastal segment 

(equation 5). 

𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝑠 = (𝐵𝑒𝑎𝑐ℎ 𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +  𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐹𝑜𝑟𝑒𝑠𝑡𝑠 𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +

 𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠 𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦)/3 (5) 

Socioeconomic Vulnerability Score 

An overall vulnerability score was calculated by summing up the values of 

individual vulnerability variables for each coastal segment. The following variables 
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were included in the vulnerability score: a social welfare function (SWF), IMR, and 

malnutrition (equation 7). Vulnerability score scores for the 9 clusters were ranked 

from 1 to 5 (low to high) according to severity.  

A social welfare function (SWF), which combines GDP and the Gini coefficient was 

used in the vulnerability score, as it better describes aggregated income and its 

distribution [61,62] (equation 6). Areas with higher value of SWF are wealthier, 

therefore less vulnerable than areas with low values of SWF. Given the inverse 

relationship between SWF and socioeconomic vulnerability, SWF is negative. 

SWF =  −(𝐺𝐷𝑃 ∗ (1 − 𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥)) (6) 

𝑆𝑜𝑐𝑖𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 (𝑉𝑆) = 𝐼𝑀𝑅 + 𝑀𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑡𝑖𝑜𝑛 +  𝑆𝑊𝐹 (7) 

d) Comparative Coastal Risk Index (CCRI) 

Finally, CCRI was calculated as the geometric mean of the hazards, exposure, and 

vulnerability scores, for each coastal segment. CCRI values range from 1 to 5 

(equation 8). 

𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐶𝑅𝐼) = √(𝐻𝑆 ∗  𝐸𝑆 ∗  𝑉𝑆)3
 (8) 

Results 

The results from this first implementation of CCRI in LAC, which are based on an 

equal weights approach, are meant to illustrate different kinds of analysis that this 

method can support. Values described as “high”, “large”, or “low” and “small” are 
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relative to values from other areas in the study region. They may still be considered 

higher or lower when compared with other regions of the planet not included in the 

study.  

The following section describes the resulting clusters for each category of CCRI. The 

13,426 original coastal segments were reduced to 9 hazards clusters (H1 to H9), 9 

exposure clusters (E1 to E9), and 9 vulnerability clusters (V1 to V9). 

Coastal Hazards – Clusters and Scores 

First, coastal hazards data were clustered according to characteristics of: waves, 

storm surge, wind, and El Niño induced sea level changes. Second, hazards scores 

were calculated (equation 4), and range from 1 to 5, with 5 being the most severe. 

The resulting scores were scaled from 0 to 1. Clusters H1 and H8 received the 

maximum hazards score, and are characterized by El Niño induced sea levels, and 

strong cumulated winds, respectively (Table 4).  

As previously discussed, one of the benefits of applying clustering techniques, prior 

to the index calculation, is that drivers of coastal risks can be traced back to 

individual clusters for each category (hazards, exposure, and vulnerability). 
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Table 4. Coastal Hazards Clusters (sorted by Hazards Score) 

Cluster 

% of 

Coastal 

Segments 

Coastal 

Length 

(km) 

Coastal 

Population 

Most 

Relevant 

Attribute 

Top 3 

Affected 

Countries 

(by 

population) 

Hazards 

Score 

H1 16% 10,312 2.2 million 
Strong El 

Niño 

Mexico, 

Ecuador, 

Peru 

5 

H8 7% 4,673 1.0 million 
Strong 

winds 

Puerto 

Rico, 

Mexico, 

and 

Caribbean 

5 

H3 7% 3,628 3.3 million 
High 

Waves 

Argentina, 

Uruguay, 

Brazil 

4 

H4 8% 4,985 0.6 million 
Moderate 

El Niño 

Peru, Puerto 

Rico and 

the 

Dominican 

Republic 

3 

H6 11% 5,184 27,000 
Moderate 

Waves 

Chile and 

Mexico 
3 

H5 9% 4,147 3.4 million 

Weak 

Storm 

Surge 

Brazil, 

Argentina, 

and Chile 

2 

H7 10% 6,213 2.1 million 

Moderate 

winds 

and weak 

El Niño 

Cuba, 

Dominican 

Republic, 

and Haiti 

2 

H9 8% 5,043 2.0 million 

Small 

waves 

and 

Weak El 

Niño 

Mexico, 

Cuba and 

Haiti 

2 

H2 24% 15,119 8.3 million 
Weak El 

Niño 

Brazil, 

Venezuela, 

Colombia 

1 
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The spatial distribution of the hazards clusters (Fig.2) is consistent with recent 

studies of coastal hazards in the LAC region [25,26,40]. 

 
Figure 2. Coastal Hazards Scores 

First, geographic exposure data were clustered according to characteristics of: coastal 

population, GDP, urbanization, cropland, and ecosystems. Second, exposure scores 

were calculated (equation 5), and range from 1 to 5, with 5 indicating the highest 
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geographic exposure levels. Geographic exposure clusters are not as geographically 

concentrated as the coastal hazards discussed above. Clusters E1, E8, and E6 

received the maximum exposure score. These three clusters include coastal segments 

with large population. However, E1 includes large urban areas while E8 and E6 are 

characterized by a more significant presence of ecosystems and croplands, 

respectively (Table 5, and Fig 3). 

Table 5. Geographic Exposure Clusters (sorted by Exposure Score) 

Cluster 

% of 

Coastal 

Segments 

Coastal 

Length 

(km) 

Coastal 

Population 

Most 

Relevant 

Attribute 

Top 3 

Affected 

Countries 

(by 

population) 

Exposure 

Score 

E1 2% 1,410 km 8.0 million 

Largest 

population, 

GDP, and 

urban areas 

Brazil, 

Argentina, 

Mexico 

5 

E8 4% 2,706 km 2.9 million 

Large 

population, 

ecosystems 

and croplands 

Brazil, 

Colombia, 

and 

Ecuador 

5 

E6 7% 4,818 km 2.3 million 

Large 

population and 

ecosystems 

Mexico, 

Brazil, and 

Guyana 

5 

E4 16% 9,821 km 6.1 million 

Large 

population and 

croplands 

Brazil, 

Mexico, 

Cuba 

4 

E7 13% 8,247 km 1.6 million 
Croplands and 

moderate GDP 

Haiti, 

Dominican 

Republic, 

and Brazil 

3 

E9 25% 15,220 km 1.5 million Moderate GPD 

Brazil, 

Mexico, 

and Chile 

2 

E5 7% 4,477 km 0.5 million 

Moderate 

GDP; 

ecosystems 

Peru, 

Venezuela, 

and 

Colombia 

2 

E3 5% 2,685 km 0 

Moderate 

croplands and 

GDP 

Trinidad 

Tobago, 
2 
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Mexico, 

and Haiti 

E2 20% 9,921 km 1,780 
Low presence 

of all variables 

Cuba, 

Mexico and 

Belize 

1 

 

 
Figure 3. Exposure Scores 
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Socioeconomic Vulnerability – Clusters and Scores 

First, socioeconomic vulnerability data were clustered according to characteristics 

of: GDP, Inequality, IMR, and malnutrition. Second, vulnerability scores were 

calculated as the sum of SWF, IMR, and malnutrition (equation 6), and range from 1 

to 5, with 5 indicating the highest socioeconomic vulnerability. Clusters V1, V9 

received the maximum vulnerability score, with high IRM, malnutrition, and low 

social welfare (Table 6, and Fig 4). 

Table 6. Socioeconomic Vulnerability Clusters (sorted by Vulnerability Score) 

Cluster 

% of 

Coastal 

Segments 

Coastal 

Length 

(km) 

Coastal 

Population 

Most 

Relevant 

Attributes 

Top Countries 

Affected (by 

population) 

Vulnerability 

Score 

V1 10% 6,491 5 million 

Highest IMR 

and 

malnutrition; 

low SWF 

Haiti, Brazil, and 

Honduras 
5 

V9 13% 8,324 1.6 million 

High IMR and 

malnutrition; 

low SWF 

Mexico, Guyana, 

and Ecuador 
5 

V3 14% 8,784 7.7 million 

High IMR and 

malnutrition; 

low SWF 

Brazil, Mexico, 

and Colombia 
4 

V7 15% 8,567 521,000 

High 

malnutrition; 

medium IMR; 

low SWF 

Mexico, 

Argentina and 

Peru 

4 

V8 2% 1,285 84,000 

Medium 

malnutrition 

and IMR; low 

SWF 

Brazil, 

Colombia, and 

Panama 

4 

V4 13% 7,561 4.7 million 

Medium 

malnutrition; 

low IMR; high 

SWF 

Argentina, 

Mexico, and 

Uruguay 

3 

V5 6% 3,123 1 million 

Low 

malnutrition 

and IMR; low 

SWF 

Peru, Chile and 

Brazil 
2 

V2 14% 6,690 14,741 
Low 

malnutrition 

Chile, Peru and 

Brazil 
1 



97 
 

and IMR; low 

SWF 

V6 14% 8,479 2.2 million 

Medium 

malnutrition; 

low IMR; 

highest SWF 

Cuba, and 

Venezuela 
1 

 

 
Figure 4. Socioeconomic Vulnerability Scores 
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Comparative Coastal Risk Index (CCRI) – equal weights scenario 

Our results show that nearly 1.79 million people live in areas of high or very high 

CCRI (4.6 or 5, respectively) in LAC. This number represents almost 8% of the 23 

million people population in the study area. Roughly 560,000 people live in areas of 

maximum CCRI value equal 5. These are areas where the maximum scores for 

hazards, exposure, and vulnerability (all equal 5) coexist. Areas with the second 

highest CCRI value (i.e. 4.6), include a coastal population of 1.2 million people. 

Brazil, the largest country in the study region, also contains the largest coastal 

population, more than 8.6 million people. Mexico and Argentina have the second and 

third largest coastal populations (2.9, and 2.7 million people, respectively). However, 

the largest populations in areas of maximum CCRI (equal to 5) are in Ecuador 

(222,404 people), Mexico (130,810 people), and El Salvador (91,965 people). 

The total coastal population in the LAC in areas of maximum CCRI, (more than 

566,000 people) are spread in 223 coastal segments, across 29 provinces in seven 

countries: Ecuador, Mexico, El Salvador, Honduras, Nicaragua, Guatemala, and 

Peru. Ecuador, Mexico, El Salvador and Honduras hold 87% of the total population 

(494,330 people) and 80% of the number of coastal segments (179 segments) in 

areas of maximum CCRI. The above provinces are in countries in Northern, Central, 

and South America, facing the Pacific Ocean.  

The roughly 560,000 people in areas of maximum CCRI values are distributed as 

follows: The majority (98.8%, or almost 560,000 people) belong to cluster H1, 
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characterized by El Niño induced sea levels. Roughly 66% (372,000 people), belong 

to exposure cluster E6, characterized by large population and ecosystems. Roughly 

32% belong to areas in cluster E8, characterized by large population, ecosystems and 

croplands; and 2.3% live in areas assigned to cluster E1, characterized by large 

population, GDP, and urban areas. Finally, 68.1% of the coastal population belong to 

cluster V9 (386,000 people), and almost 32% in cluster V1 (181.000 people). Both 

V1, and V9 clusters are characterized by high IMR, malnutrition, and low SWF. 

Cluster V1, however, has the highest IMR in the study (62 deaths per 1,000 births on 

average). 

See Fig 5, and Table 7, for a geographic distribution of CCRI in LAC. 
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Figure 5. Comparative Coastal Risk Index (CCRI) 

Table 7. Coastal Population living in areas of maximum CCRI (value of 5) 

Country Locality 
Coastal 

Population 

Ecuador El Oro 164,623  
Esmeraldas 38,170  

Manabi 17,442  
Guayas 2,169 

 Total Ecuador 222,404 

Mexico Sinaloa 51,936  
Chiapas 44,709  
Nayarit 17,262  
Oaxaca 10,564 
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Guerrero 6,339  

Tamaulipas 1,464  
Total Mexico 132,274 

El 

Salvador 

Usulutan 51,404 

 
La Paz 17,641  

La Union 11,092  
Ahuachapan 8,569  
Sonsonate 2,259  
Total El 

Salvador 

90,965 

Honduras Choluteca 22,905  
Valle 20,683  

Gracias a Dios 4,858  
Colon 241  
Total 

Honduras 

48,687 

Nicaragua Chinandega 35,988  
Carazo 714  
Zelaya 184  
Total 

Nicaragua 

36,886 

Guatemala Santa Rosa 13,377  
Escuintla 10,172  
Jutiapa 3,935  

Retalhuleu 1,856  
Total 

Guatemala 

29,340 

Peru Piura 3,794  
Ancash 2,059  

La Libertad 319  
Total Peru 6,172  

Grand Total 566,728 

   

   

Hotspots (areas of maximum CCRI = 5) 

Our results show that 55% of the coastal population (more than 310,000 people) 

living in areas of maximum CCRI, are concentrated in four provinces: El Oro, 

Ecuador; Sinaloa and Chiapas, Mexico, and Usulutan, El Salvador (Fig 6). Ranked 

by coastal population, the analysis below focuses on these four areas. In these 

locations, the three dimensions of coastal risk (hazards, exposure, and vulnerability) 

have maximum scores (equal to 5).  
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During the 1982/1983 El Niño, infant mortality rates in flood affected areas in El 

Oro, increased 16% (from 52 to 65 per thousand live births) [63]. In Chiapas, 

Mexico, 76.2% of the population live below the poverty line, with 44.4% of the 

population living in extreme poverty. Infant mortality rates in Chiapas, are three 

times higher than the Mexican average [64]. In Sinaloa, Mexico, 36% of the 

population currently live below the poverty line [65]. In Usulutan, El Salvador, 

37.4% of the population live below the poverty line, with more than 11% living in 

extreme poverty [66].  
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Figure 6. Hotspots of Coastal Risk 

1) El Oro, Ecuador 

Ecuador contains the largest coastal population in the study area with CCRI index 

value equal 5 (222,404 people). El Oro, the southernmost coastal Province of 

Ecuador, contains almost 30% of that population (164,623 people), concentrated in 

six coastal segments. The most relevant drivers of coastal risk in El Oro are: 
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- Hazards: all six coastal segments in El Oro belong to cluster H1, with El 

Niño as the main driver of coastal hazards; 

- Exposure: five coastal segments belong to cluster E8, characterized by large 

population, ecosystems and croplands; one coastal segment belongs to cluster 

E6, characterized by large population and ecosystems. 

- Vulnerability: five coastal segments belong to cluster V9, and one coastal 

segment belongs to cluster V1. Both V1 and V9 clusters are characterized by 

high IMR (35 deaths per thousand births), high malnutrition rates (14.8%), 

and low SWF. However, cluster V1 has much lower SWF values than V9. 

2) Sinaloa, Mexico 

Mexico contains the second largest coastal population in the study area with 

maximum CCRI value of 5 (132,274 people). The state of Sinaloa, on the Gulf of 

California, contains roughly 39% of that total (51,936 people) concentrated in 24 

coastal segments. The most relevant drivers of coastal risk in Sinaloa are:  

- Hazards: All 24 coastal segments in Sinaloa belong to cluster H1, with El 

Niño as the main driver of coastal hazards. 

- Exposure: 21 coastal segments belong to cluster E6, characterized by large 

population and ecosystems; the 3 remaining coastal segments belong to cluster 

E1, characterized by large population, GDP, and urban areas. 

- Vulnerability: All 24 coastal segments in Sinaloa belong to cluster V9, 

characterized by high IMR (24.3 deaths per thousand births), high malnutrition 

rate (7.5%), and low SWF values. 
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3) Usulutan, El Salvador 

El Salvador contains the third largest coastal population in the study area with 

maximum CCRI value of 5 (90,965 people). The province of Usulutan, in the 

southeast region of El Salvador (facing the Pacific Ocean), contains 57% of that 

population (51,404 people), concentrated in 12 coastal segments. The most relevant 

drivers of coastal risk in Usulutan are:  

- Hazards:  All 12 coastal segments in Usulutan belong to cluster H1, 

characterized by El Niño as the main driver of coastal hazards.  

- Exposure: All the 12 coastal segments in Usulutan belong to cluster E6, 

characterized by large population and ecosystems. 

- Vulnerability: All 12 coastal segments in Usulutan belong to cluster V9, 

characterized by high infant mortality rate (31.2 per thousand births), high 

malnutrition rate (11.3%), and low SWF values. 

4) Chiapas, Mexico 

The state of Chiapas, on the shoreline of the Gulf of California, contains 35 coastal 

segments with 44,709 people living in areas of maximum CCRI. This represents 

roughly 33.8% of the total population in maximum CCRI areas in Mexico. The most 

relevant drivers of coastal risk in Chiapas are:  

- Hazards: All 35 coastal segments in Chiapas belong to cluster H1, 

characterized by El Niño as the main driver of coastal hazards; 



106 
 

- Exposure: All 35 coastal segments belong to cluster E6, characterized by large 

population and ecosystems; 

- Vulnerability: All 35 coastal segments in Chiapas belong to cluster V9, 

characterized by high infant mortality rate (31.9 deaths per thousand births), 

high malnutrition rate (7.5%), and low SWF values. 

Discussion 

As coastal populations increase around the globe, the combination of coastal hazards, 

geographic exposure and socioeconomic vulnerability can greatly intensify coastal 

risks. In a vicious cycle, the occurrence of disasters leads to a reduction of income 

and consumption levels, aggravating poverty, and limiting the population’s ability to 

minimize and cope with future impacts. 

Our results show that in LAC, more than 500,000 people live in areas of maximum 

CCRI, with more than 310,000 people concentrated in four hotspot locations: El Oro, 

Ecuador; Sinaloa and Chiapas, Mexico, and Usulutan, El Salvador (Fig 6). These are 

communities where scarce critical resources are consistently placed in hazards prone 

areas further exacerbating risks and impacts from coastal hazards.  

Notably, some areas considered hotspots of coastal exposure in previous studies, 

including a number of Caribbean islands, and Rio de La Plata [16,28], do not peak 

within CCRI. Several areas of the Caribbean received maximum hazards scores (e.g. 

The Bahamas) and maximum vulnerability scores (i.e. Haiti).  However, except for 

very few coastal areas (e.g. Havana, Cuba), exposure scores in The Caribbean ranged 
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from 2 to 3, driving lower CCRI values. Similarly, coastal segments in the Rio de la 

Plata region received maximum coastal hazards scores, but did not receive highest 

vulnerability and hazards scores, resulting in CCRI values from 2.9 to 4.3. 

Nevertheless, coastal risk affects areas beyond those where CCRI equals 5. 

Particularly, areas where CCRI is >=4 and <5 include an additional 1.6 million 

people, and should also be prioritized. Such areas did not peak in the CCRI index 

due to the variables selected, and due to the equal weight scheme utilized in the 

calculations. If variables are substituted, or if individual scores are weighted 

differently, the results are likely to change.  

While the impacts from climate change are not in the scope of the present study, it is 

important to acknowledge that they pose additional threats to coastal areas [19]. 

Climate change impacts, including more frequent high-intensity storms, higher sea-

levels, and more severe floods will pose additional challenges to coastal communities 

[4,25,67]. Global sea-level rise projections for the year 2100 range from 81cm to 

179cm, which will lead to more frequent and widespread coastal flooding [68–71]. 

Nuisance floods – minor, recurrent flooding that takes place at high tide – already 

cause frequent road closures, overwhelm storm water drainage, having a non-linear 

impact on critical infrastructure [72,73] .  

Despite recent efforts to assess coastal risks in a multidisciplinary way, further 

research is still needed. The methods proposed here can be enhanced by the 

introduction of temporal variability via the addition of future projections (e.g. 
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population growth, land use, and hazards projections). Additionally, a panel of 

experts could be convened to review the input variables and weighting of CCRI. 

Finally, higher resolution, small scale studies, focused on coastal risk reduction are 

needed. 

The techniques employed here provide a robust toolset to identify patterns through 

multivariate and complex datasets. The benefits of the proposed approach are 

multiple and include: reduction of multiple independent variables into a single 

coastal risk index; the identification of major drivers of coastal risk and related 

hotspots; the ability to identify coastal areas seemly unrelated, but facing very 

similar challenges and may benefit from future collaborations to reduce coastal risk.  

The current study can inform coastal policies. Coastal risks reduction and adaptation 

efforts must not only focus on developing coastal defenses, but also on improving 

practices and policies related to urban development and zoning, agriculture, and 

conservation, as well as on ameliorating socioeconomic conditions. Policies 

including restoration and preservation of natural habitat, and agricultural practices, 

should also be considered. As an example, the conservation and restoration of coastal 

habitats, which may act as coastal defenses to natural hazards, can also improve 

fisheries, positively impacting the livelihoods of local fishing communities reducing 

their vulnerability. 

The implementation of a sisters-city like approach (where cities, or provinces, form 

partnerships to promote cultural and commercial ties) should be considered. Coastal 
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communities of similar coastal risk profiles, can greatly benefit by an exchange of 

experiences and lessons learned from past disasters, coastal adaptation projects, and 

coping mechanisms.  
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