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ABSTRACT OF THE DISSERTATION 

The diversity, distribution, and biological activity of brominated natural products in the 
genus Pseudoalteromonas 

 
by 
 

Julia Busch 

Doctor of Philosophy in Marine Biology 

University of California San Diego, 2018 

Professor Paul R. Jensen, Chair 
 

Secondary metabolite production plays an important role in the interaction of 

bacteria and their environments. While many marine microbes have been found to 

produce bioactive molecules, relatively little is known about the diversity and distribution 

of biosynthetic gene clusters with known products. This dissertation includes five 

chapters that explore these topics in the genus Pseudoalteromonas. The first chapter 

introduces marine natural products and the group of bacteria, followed by three research 

chapters and a summary chapter.  

Chapter 2 explores the evolution of the bmp gene cluster in the genus 

Pseudoalteromonas. A well-supported species phylogeny was generated and the 
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distribution and diversity of the biosynthetic gene cluster was mapped onto the tree. Four 

distinct versions of the bmp cluster were found in the genus, with evidence supporting 

gene loss in certain cases. It is uncertain how many times the gene cluster was acquired 

within Pseudoalteromonas, but the conservation of the biosynthetic genes within some 

lineages suggests that the metabolites produced are relevant to the ecology of these 

bacteria.  

Chapter 3 presents the results from the bacterial cytological profiling of 

pentabromopseudilin in an E. coli strain. The primary phenotype observed in treated cells 

was membrane permeability, which increases over time and concentration. Despite its 

apparent ability to disrupt the cell membrane of Gram-negative bacteria and increase the 

potency of two tested antibiotics, pentabromopseudilin is not likely a good candidate for 

therapeutic uses due its cytotoxicity.  

The final research chapter investigates the bioactivity and biosynthetic potential 

of five Pseudoalteromonas species. The crude extracts and fractions of some of the 

strains included in the study were bioactive against Gram-positive and Gram-negative 

test strains. Preliminary genome mining results reveal that Pseudoalteromonas are rich in 

biosynthetic gene clusters, most of which do not have known products or similar clusters. 
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1.1 Marine natural products 

1.1.1 History of natural products 

Secondary metabolites, also known as natural products, are biologically 

synthesized molecules that are not essential for the immediate survival of an organism. 

Unlike primary metabolites, these molecules are generally not involved in the growth or 

reproduction of an organism but rather serve to increase the overall fitness of the 

producer in a specific niche. Some secondary metabolites have been identified as defense 

mechanisms against predators or competing organisms and have proven to be a rich 

source of drugs such as antibiotics. Historically, illnesses were viewed from a magical, 

superstitious, and religious viewpoint. Hippocrates, the “father of medicine” (460-370 

BC), established the first scientific basis of western medicine by forming rational 

diagnoses based on direct clinical observations (Voultsiadou Eleni 2010).  

Plants are rich sources of therapeutic natural products and have been used in 

medicines for thousands of years. Because they’ve had to adapt to survive pests (e.g. 

bacteria, fungi, insects) and other environmental pressures, they have evolved to produce 

a plethora of structurally diverse secondary metabolites. Early societies have 

experimented with the therapeutic potential of plants by simple trial and error. Aspirin is 

derived from salicin, a natural product isolated from willow tree bark (Salix alba) and 

research involving opium poppies (Papaver somniferum) led to the discovery of 

morphine (Dias, Urban, and Roessner 2012). Additionally, animal products have also 

been used for their medicinal properties, however these have been overwhelmingly from 

terrestrial sources. Perhaps the most well known terrestrial natural product is penicillin, 

from the fungus, Penicillium notatum. Alexander Fleming discovered the potent 
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antibiotic by accident in 1929. It has since saved countless human lives (Dias, Urban, and 

Roessner 2012). Most natural products-based medicines originate from terrestrial sources 

due to ease of access. For many early civilizations, the ocean was inaccessible. But even 

for those living near the coast, the marine environment was often viewed as dangerous 

and inhospitable. While there is ample evidence that some early civilizations used marine 

algae and organisms as a primary source of food, there are also accounts of their use as 

ancient medicines dating back thousands of years. 

Specific research on the drug discovery application of marine natural products 

began about 60 years ago, but the use of marine organisms in traditional medicine 

originated long before that. Records of medicinal seaweeds appeared in Chinese literature 

over two thousand years ago and they are still being used today for a variety of medical 

purposes. Laminaria japonica and Sargassum fusiforme have been used for more than 20 

centuries to cure ailments such as goiters, which we now know is due to the high iodine 

content of brown seaweeds (Chengkui and Junfu 1984). Additionally, the red algae 

Chondrus crispus and Mastocarpus stellatus were used to treat colds, sore throats, and 

chest infections such as tuberculosis (Dias, Urban, and Roessner 2012).  

It was found that inhabitants of Monte Verde, the archaeological site in southern 

Chile, used seaweed for both food and medicine (Dillehay et al. 2008). The seaweeds 

were combined with other known medicinal terrestrial plants in masticated cuds, 

suggesting their medicinal application. Additionally, two nonedible genera, Gigartina and 

Sargassum, were found at the site and are still used medicinally today by local 

indigenous populations. 
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Records of the medicinal uses of marine invertebrates including shellfish, 

cephalopods, and sponges date back to the 5th century BC and include authors such 

Hippocrates. Classical Greek texts report the pharmaceutical properties of dozens of 

marine invertebrates, primarily in treatments of the digestive system, genitourinary 

system, and skin. Marine invertebrates were used as medicines so extensively and 

expertly that in some cases, specific body parts or organs of the animals were proposed as 

therapeutic (Voultsiadou Eleni 2010). 

Traditional Indian medicine also employs marine animals as a source of 

treatments. Corals have been used to treat tuberculosis, sponges used to treat dysentery, 

oil from the flesh of crabs is used to ear infections, and sea turtle shells are used to treat 

cataracts and other eye disorders (Gopal et al. 2008).  

Natural product discovery traditionally involved thorough screening of crude 

extracts generated from plants, fungi, bacteria, and other organisms. Subsequently, the 

extracts were fractionated and screened for bioactivity, and finally structures were 

elucidated. However, the discovery of novel compounds using this classic ‘grind and 

find’ method rapidly plateaued as the rediscovery of known natural products became 

more common. 

Scientists have had to become more innovative and exhaustive in their efforts to 

identify new molecules. As whole genome sequencing became more efficient and cost 

effective in the 2000s, the field shifted focus to natural product isolation based on in 

silico predictions. This practice of genome mining includes sequencing the genome of a 

fungus or bacterium then searching for biosynthetic gene clusters. It was quickly 

discovered that these organisms have a greater number of gene clusters than reported 
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molecules, suggesting their untapped potential to produce additional pharmaceutically 

relevant metabolites (Winter, Behnken, and Hertweck 2011). 

In addition to their human health applications, natural products presumably have 

ecological roles in order to make it worth it for the organism to expend energy 

synthesizing these molecules. In addition to exploiting natural sources for potential 

antibiotics and other drugs, understanding their ecological functions can facilitate the 

discovery process. Using bioactivity guided isolation limits discovery to compounds with 

specific activities (e.g. antibacterial, anticancer), but having a greater understanding of 

the ecological roles of secondary metabolites by the producing organism can be in 

credibly valuable information when it comes to determining their activities. While this 

approach also presents a number of significant challenges, the structural complexity and 

diversity of natural products suggests that they each have a biologically relevant role for 

the organism. 

1.1.2 Marine sources of medicines 

The ocean is the largest environment on the planet, covering roughly 70% of the 

earth. The oceans are home to a great number and diversity of organisms, including 

microbes. The harsh conditions of living in the ocean may lead to the evolution of distinct 

defense mechanisms and novel biosynthetic pathways. Some organisms use chemical 

defenses to avoid predation because they don’t have structural protection. It is also 

possible that because of the dilution of seawater, marine natural products that are 

bioactive have evolved to be more potent. This means that the marine environment may 

still be a mostly untapped source of secondary metabolite diversity. So it’s worth the 

extra work to find these compounds. 
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Natural product drug discovery techniques can be challenging, especially from the 

marine environment. One reason for this is because access to the samples can be difficult. 

Before the introduction of SCUBA in the 1970s, researchers were restricted to samples 

they could collect by wading or snorkeling in shallow intertidal waters. Later, the 

development of underwater submersibles, both manned and remotely operated has also 

led to the discovery of novel bioactive marine natural products (Dias, Urban, and 

Roessner 2012). Additionally, advancements in analytical chemistry have increased 

instrument sensitivity so only a few micrograms of a sample can be sufficient to identify 

some novel molecules (Molinski et al. 2009). Despite these advances increasing the 

access to marine natural product sources, there are still often supply problems. The 

chemical and biological characterizations are difficult because the compounds are often 

only isolated in small amounts. The acquisition of sustainable supplies of marine natural 

products for clinical trials is often a bottleneck in the process in drug development. 

Marine bacteria have proven to be a rich source of natural products with potential 

therapeutic uses. Microbes tend to organize genes into clusters, which make them easier 

to find and define. Bacteria can be genetically manipulated and grow relatively quickly, 

making then ideal organisms to manipulate and exploit for drug discovery. Additionally, 

some groups of microbes have stringent relationships between their taxonomy and 

secondary metabolite production (Jensen et al. 2007). Furthermore, the relationship 

between the presence of certain biosynthetic gene clusters and the biogeography of 

certain strains is crucial to our ability to understand patterns of natural product discovery. 

One group of marine bacteria that is of particular interest in terms of natural 

product discovery is the actinobacteria. Examples of compounds discovered from marine 
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actinobacteria include the manzamines, a class of compounds isolated from some species 

of Micromonospora (Bull and Stach 2007). These bioactive molecules are synthesized by 

sponge symbionts and have no known terrestrial equivalents. Salinosporamide A is an 

important anticancer agent produced by Salinispora tropica strains isolated from marine 

sediments (Feling et al. 2003). Its cytotoxic activity is attributed to the ability of the 

compound to inhibit all three active proteolytic sites of the 20S proteasome. The natural 

product is currently in clinical trials for the treatment of multiple myeloma but has also 

been reported to have potential in combination treatment potentiating the standard 

therapies for lung, pancreas, colorectal, and other cancers. Although the total synthesis of 

salinosporamide A was recently worked out, culturing remains the most cost-effective 

and dependable source of the molecule (Marx and Burton 2018).  

Marine-derived drugs have also been isolated from a variety of marine 

invertebrates . Cytarabine, one of the first FDA-approved drugs from a marine organism, 

is an anticancer agent originally isolated from the Caribbean sponge Tethya crypta 

(Montaser and Luesch 2011). Other tumor suppressant metabolites include halichondrin 

B isolated from Halichondria okadai and hemiasterlin from Hemiasterella minor 

(Molinski et al. 2009). In 1990, discodermolide was isolated from the rare deep water 

sponge, Discodermia dissolute. The metabolite functions as an immunosuppressant and 

because of the incredibly limited natural supply, a total synthesis was developed. 

Unfortunately the drug was discontinued from Phase I trials due to its toxicity and lack of 

efficacy, but the potential remains for discodermolide to be used in combination drug 

therapy (Molinski et al. 2009). Vidarabine, an anti-herpes agent, was developed from 

natural products also isolated from the Caribbean sponge Tethya crypta and was more 
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recently discovered to prevent catecholamine-induced atrial fibrillation or ventricular 

arrhythmia in mice without negatively affecting normal cardiac function (Montaser and 

Luesch 2011; Suita et al. 2018). 

Extracts from the bryozoan Bugula neritina exhibited high activity against 

leukemia cells in mice, which was later attributed to bryostatin 1 (Montaser and Luesch 

2011; Molinski et al. 2009). Fortunately the total synthesis of the natural product was 

recently achieved; collecting sufficient amounts of the compound for therapeutic use 

presented a great challenge due to the limited access to the natural source (Wender et al. 

2017). Tunicates such as Trididemnum solidum and Ecteinascidia turbinate also produce 

cytotoxic molecules including didemnin B and ecteinascidin-743 respectively (Xing et al. 

2017; Molinski et al. 2009). The cytotoxic peptide dolastatin 10 was isolated from the sea 

hare Dolabella auricularia. Consistent with the major hurdle facing most marine natural 

products as therapeutic agents, the yields of the natural product were extremely low 

requiring 2 tons of animal to obtain the first milligram of pure compound. The total 

synthesis was achieved in 1989 but clinical trials for the drug were discontinued after a 

phase II study failed to elicit a treatment response (Molinski et al. 2009; Xing et al. 

2017). Prialt® was the first FDA approved marine natural product for the management of 

severe chronic pain. The drug is the synthetic equivalent of a natural product originally 

isolated from the cone snail Conus magus (Montaser and Luesch 2011; Molinski et al. 

2009). The anticancer agent kahalalide F, isolated from the sea slug Elysia rufescens, was 

not actually produced by the animal but by the alga on which it feeds (Molinski et al. 

2009). As of 2017, the molecule is in phase II clinical trials for prostate and breast 

cancers.  
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Some marine natural products have the same mechanisms of action as terrestrial 

secondary metabolites. However, they can have the most potent activity of all similarly 

active molecules. For example, salinosporamide A, is one of the most potent proteasome 

inhibitors (Montaser and Luesch 2011). Additionally, some marine natural products have 

unique mechanisms of action. Apratoxin A, originally isolated from a marine 

cyanobacterium, was the first reported antitumor compound to reversibly inhibit the 

secretory pathway for several receptors by interfering with co-translational translocation, 

a distinct mechanism of action (Montaser and Luesch 2011). 

To date, over 32,000 distinct marine natural products have been described 

(http://pubs.rsc.org/marinlit/). Not all of the described molecules are bioactive but a select 

few are FDA approved or are currently in clinical trials. It is incredibly difficult to bring a 

new drug to market and while many marine-derived drugs fail at various stages in the 

clinical trial process, they are still a great source of novel treatment options. Effective 

collaborations between academic research and pharmaceutical companies will continue to 

be critical to achieve the success of marine natural product therapies. 

1.1.3 Halogenated marine natural products 

Halogenated natural products are metabolites that contain chlorine, bromine, 

iodine, and fluorine. Halogenated chemicals are also produced for industrial purposes via 

chemical synthesis. These anthropogenic compounds include the pesticide DDT and 

CFCs from refrigerants often end up in the ocean from runoff and pollution. However, 

there is also substantial evidence that some halogenated compounds structurally identical 

to the manmade ones found in the marine environment are naturally produced (Reddy et 

al. 2004; Teuten and Reddy 2007).  
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One group of organisms that are a particularly rich source of halogenated natural 

products is marine sponges. Brominated metabolites have been isolated in large quantities 

from Dysidea herbacea, D. chloren, D. dendyi, and P. folioscens samples (Carte and 

Faulkner 1980; Utkina et al. 2001). These molecules are produced in such great amounts 

that they can contribute up to 6% of the dry weight of some sponge species (Faulkner, 

Unson, and Bewley 1994). Halogenated natural products have been isolated from sponge-

eating nudibranchs. A complex mixture of polybrominated diphenyl ethers and 

sesquiterpenes were isolated from Chromodoris funereal collected in Iwayama Bay, 

Palau. The metabolite profile is essentially identical to the Dysidea spp. on which it feeds 

(Carté et al. 1986). This suggests that the nudibranchs not only tolerate the molecules 

produced by sponges but are also able to sequester the compounds and use them for their 

own defense. 

Another well-studied source of halogenated marine natural products is algae. 

Extracts from Asparagopsis taxiformis, an edible red seaweed favored by native 

Hawaiians, contain over 100 halogenated metabolites (Gribble 2003). Bonnemaisonia 

spp., do not produce halomethanes such as those found in the closely related 

Asparagopsis spp., but halogenated ketones, alcohols, and carboxylic acids have been 

isolated from the alga (McConnell and Fenical 1980). Haolgenated terpenes and 

fucophlorethol derivatives have also been isolated from the brown algae Laurencia sp. 

and Cystophora retroflexa respectively (Sailler and Glombitza 1999). It is hypothesized 

that these molecules function as a chemical defense for the algae, possibly as feeding 

deterrents or antifouling agents (Gribble 2003). 
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While it’s possible that sponges and other marine macroorganisms are themselves 

synthesizing these halogenated natural products, it’s widely hypothesized, and in some 

cases proven, that microbial symbionts are responsible for compound production. 

However, in many cases, this hypothesis is not supported by direct experimental evidence 

(Faulkner, Unson, and Bewley 1994). The biosynthesis of some brominated metabolites 

in sponges can be attributed to cyanobacterial symbionts. The first evidence of this was 

when crystals of 2-(2’,4’-dibromophenyl)-4,6- dibromophenol were observed to be in 

contact with cyanobacteria filaments yet did not consistently occur in the sponge tissue 

(Faulkner, Unson, and Bewley 1994). More conclusively, the biosynthetic machinery 

needed to produce PBDEs was discovered in sponge metagenomic data (Agarwal et al. 

2017). Biosynthesis carried out by symbiotic bacteria or microalgae living in the internal 

tissue of the animal is particularly evident in in Dysidea herbacea (Gribble 2003). Some 

members of this group of marine sponges have been found to be morphologically 

indistinguishable but chemically diverse, suggesting that specific populations of 

symbionts are in fact responsible for the variety of secondary metabolites found in 

different sponge samples (Carte and Faulkner 1980; Norton, Croft, and Wells 1981). 

Additionally, a large number of halogenated molecules have been isolated from Lyngbya 

majuscule, providing supporting evidence that multiple cyanobacterial species are 

capable of producing these molecules. (Burja et al. 2001; Gribble 2003). Other marine 

bacteria that have been shown to produce halogenated metabolites, some of which 

display high levels of antibiotic activity, are in the genus Pseudoalteromonas (Ross et al. 

2015; Isnansetyo and Kamei 2009). 
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1.2 Bacteria in the ocean 

1.2.1 Marine microbial ecology 

Marine microbes are globally important organisms having complex interactions 

with the biological and geochemical systems of the ocean. One-half of the primary 

production on earth occurs in the oceans and a large portion of that primary production 

becomes dissolved organic matter (DOM), which is almost exclusively utilized by 

heterotrophic bacteria and archaea (Azam and Malfatti 2007). Historically, marine 

microbes were generally ignored because they were essentially invisible and early 

research conducted in the oceans focused on the health and significance of larger scale 

systems such as coral reefs and kelp forests. However, we now have a much greater 

understanding of the intimate interactions between bacteria and the whole ocean 

ecosystem, and can appreciate the importance of their significant roles in the carbon 

cycle. 

Studies have shown that despite their significant and intricate roles, bacterial 

community composition in the marine environment follows fairly predictable patterns 

(Fuhrman, Cram, and Needham 2015). While some microorganisms prefer specific 

environmental conditions, they are remarkably dynamic and resilient. Marine microbes 

have evolved internal feedback mechanisms to maintain generally steady community 

structures despite the wide range of external forces they face, such as ocean mixing, 

temperature changes, and nutrient fluctuations (Fuhrman, Cram, and Needham 2015). As 

a result, the interactions and relationships between marine microbes and their processes 

are particularly complex (Duarte, Gasol, and Vaqué 1997). These relationships are also 

likely dependent on factors such as the presence of other organisms and seasonal 
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changes. Correlations between environmental conditions and taxa suggest that the 

majority of microorganisms in the ocean occupy well-defined niches, which define their 

relationships with one another and with other organisms (Fuhrman, Cram, and Needham 

2015). 

However, microbial communities in the ocean also can change over various 

timescales in response to the biological and physical forces of the marine environment. 

Some examples include the primary productivity cycle, the diel pattern of cyanobacterial 

abundance, and increased nutrient levels induced by upwelling from storms or run-off 

from land (Fuhrman, Cram, and Needham 2015). Seasonal variation in microbial 

communities is observed more frequently in the photic zone of surface waters compared 

to darker deep waters (Fuhrman, Cram, and Needham 2015). Additionally, many marine 

bacteria are motile, which may enable them to more readily couple with DOM sources 

(Azam and Malfatti 2007; Dinsdale et al. 2008). Studying these dynamic microbial 

systems helps us understand how organisms interact and change in relation to one another 

and to conditions in the ocean. 

In addition to naturally occurring factors in the ocean causing changes in 

populations of bacteria, large-scale human activities can also influence the marine 

environment on the microbial level. For example, removal of the top predators in an 

ecosystem either indirectly or as a result of overfishing, slows the rate of energy turnover 

of the environment. This has been observed on Kiritimati, where the removal of both 

predatory and herbivorous fish has led to an increase in macroalgae growth (Dinsdale et 

al. 2008). The food web structure change resulted in an excess of dissolved organic 

carbon (DOC), which is almost exclusively available for heterotrophic microbes. The 
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effects of these environmental factors caused an increase in microbial growth as well as 

changes in bacterial community composition, which led to an increase in coral diseases 

and death. This is a clear example of the complex interactions between fish, algae, 

microorganisms, and coral health. 

While it’s important to study the top-down and bottom-up interactions of marine 

microbial populations, it’s also imperative that we understand competitive interactions 

among bacteria. A great deal is still unknown about the competitive controls that function 

to regulate community composition as well as the driving forces behind the diversity and 

dynamics of bacterial communities in the ocean (Fuhrman, Cram, and Needham 2015). 

Positive correlations between certain microorganisms may result from parasitism or 

similar environmental preferences while negative correlations may suggest competition, 

allelopathy, or a preference for different environmental conditions (Fuhrman, Cram, and 

Needham 2015). While we want to understand the collective role of microbial processes 

in the marine environment, the interactions at the scale of individual microorganisms 

must also be understood. 

Most published studies addressing marine bacteria report results of microbial 

abundance and growth in the ocean. However, research interests are shifting more 

towards elucidation of interactions between microbial taxa (Duarte, Gasol, and Vaqué 

1997). The vast majority of marine microbial ecology experiments are conducted in the 

laboratory, but these highly controlled environments often exaggerate responses to 

treatments and can lead to results that may have no real significance in nature. Our 

current understanding of the intimate microbial interactions in the ocean is largely based 

on these small-scale experiments, which are extrapolated to explain larger ecosystem 
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dynamics. However, designing the necessary field experiments to test key large-scale 

hypotheses is extremely complicated. 

In addition to improved experimental design, advancements in instrumentation 

and other technologies may offer a greater understanding of microbial population 

diversity and dynamics (Fuhrman, Cram, and Needham 2015). To sufficiently evaluate 

ecological interactions, we must go further than simply identifying who is there by 

investigating the functional capacity of the community using techniques such as 

metagenomic, transcriptomics, and other related analyses (Fuhrman, Cram, and Needham 

2015). While these comparative analyses can provide clues about the biochemical 

potential of marine bacteria and how they obtain and process nutrients in the ocean, they 

must be experimentally validated (Azam and Malfatti 2007; Duarte, Gasol, and Vaqué 

1997). 

1.2.2 Chemotaxonomy  

The secondary metabolite profiles of bacteria, also known as chemotypes, can 

play an important role in their taxonomy. Chemotaxonomy refers to the correlation 

between who the bacteria are and the molecules they make. While metabolite profiles can 

help assign taxonomic similarity, the two are not always in complete agreement. 

Nonetheless, chemotyping may be used as a supplementary approach to traditional 

classification methods for bacteria. Efforts are being made to establish a database of the 

chemical fingerprints of marine bacteria based on LC-MS data to provide another 

measurement of their classification (Lu et al. 2014). In some cases, the production of 

certain secondary metabolites is species-specific and a strain’s chemical profile may be 

considered a diagnostic phenotype for its classification (Jensen et al. 2007). However, the 



 16 

alternative can also be true. For example, Streptomyces strains that are the same species 

may have distinct secondary metabolite profiles (Jensen 2010). Additionally, the 

pathogenicity among strains from the same species of Bacillus can be determined based 

on their chemotypes (Bundy et al. 2005). Fatty acid and phospholipid compositions are 

commonly used to help classify bacteria, with some fatty acids considered genus-specific 

chemotaxonomic markers (Elena P. Ivanova et al. 2000). The production of certain fatty 

acids is not entirely sufficient to delineate species of bacteria, however, the results are 

useful for distinguishing between phenotypically similar genera.  

Salinispora is a genus of marine bacteria with three names species: S. tropica, S. 

arenicola, and S. pacifica (Maldonado et al. 2005; Ahmed et al. 2013). The 16S rRNA 

sequences of Salinispora species are incredibly similar, making classification particularly 

challenging using this marker. However, five distinct chemotypes were reported, 1 from 

S. tropica, 1 from S. arenicola, and 3 from S. pacifica (Jensen et al. 2007). There was no 

commonality observed between the three S. pacifica metabolite profiles despite the fact 

that the 16S sequences for some of the strains only differed by a single nucleotide. This is 

evidence that regardless of how similar Salinispora species are based on 16S sequence 

identity, their secondary metabolite production may be entirely different. In this genus, 

chemotype is an important phenotype to consider when classifying strains. However, the 

correlation between the chemotaxonomic markers found in Salinispora cannot 

necessarily be extrapolated and applied to all marine bacteria. Unlike most bacterial taxa, 

the species in this genus are highly similar based on sequence identity and classification 

based on chemotype is not always appropriate for groups with greater intraspecific 

diversity. A bacterium’s secondary metabolite profile is not the only characteristic that 
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should be considered when classifying species, however, it a valuable tool that often 

reflects phylogenetic relationships. 

1.3 Biosynthetic gene cluster evolution 

The genes that encode secondary metabolites in bacteria are typically found in 

clusters known as biosynthetic gene clusters (BGCs). These BGCs are incredibly diverse 

and represent some of the most rapidly evolving genetic elements (Fischbach, Walsh, and 

Clardy 2009). The diversity of BGCs is also reflected in the structural diversity of the 

metabolites they produce, which likely have distinct biological functions (Ruzzini and 

Clardy 2016). Biosynthetic gene clusters are frequently transferred horizontally between 

bacteria. The lateral transfer of genetic material is well established in microbes and is 

widely recognized to play a significant role in the classification, pathogenicity, and 

ecological relationships of bacteria (Ruzzini and Clardy 2016). Some gene clusters are 

only found in very closely related organism while nearly identical BGCs may be 

observed in distantly related groups (Fischbach, Walsh, and Clardy 2009). Thus, the 

taxonomic distribution of gene clusters provides important insight into their evolutionary 

history. 

Gene clusters undergo changes that affect the small molecules whose biosynthesis 

they encode (Fischbach, Walsh, and Clardy 2009). For example, point mutations in the 

catalytic residues can inactivate an entire KS domain. However, mutations can result in 

either the loss or the gain of function, both of which have important evolutionary 

implications increasing the diversity of secondary metabolite production (Fischbach, 

Walsh, and Clardy 2009). Interestingly, the biosynthesis of some molecules requires 

more than one biosynthetic gene cluster. For example, four genetic loci are responsible 
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the production of sioxanthin by Salinispora tropica (Richter, Hughes, and Moore 2015). 

It is unknown how many secondary metabolites are synthesized by genes that are not 

contiguously clustered, but it’s likely more common that currently represented in the 

literature. 

The complexity of the small molecules produced by bacteria is astounding to 

chemists and the identification and characterization of the genes responsible is critical to 

discovering how the compounds are synthesized (Fischbach, Walsh, and Clardy 2009). 

Secondary metabolites have diverse functions and play important roles in the 

relationships between bacterial species as well as between microbes and eukaryotic 

organisms.  

1.4 Pseudoalteromonas: a genus of marine bacteria 

1.4.1 Pseudoalteromonas distribution, and abundance 

The first 11 species of Pseudoalteromonas were established as part of a new 

genus over 20 years ago after previously being included in Alteromonas (G. Gauthier, 

Gauthier, and Christen 1995). Pseudoalteromonas haloplanktis ATCC 14393 was named 

the type species of the genus because it was the first to be described and has been 

extensively studied. Pseudoalteromonas are Gram-negative, non-spore-forming, strictly 

aerobic, obligate marine bacteria. The cells are straight or curved rods ranging from 0.2-

1.5 by 1.8-3 µm in size and most species are motile enabled by a single polar flagellum. 

Over half of Pseudoalteromonas species are pigmented but none are luminescent (G. 

Gauthier, Gauthier, and Christen 1995). Since being defined as a genus, 

Pseudoalteromonas has expanded to include 42 named species (Table 1.1). The species 

are quite diverse when it comes to both primary and secondary metabolism; however, 
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many are over 99% similar based on 16S rRNA sequence data (Figure 1.1). Less than 

half of the species have available genome sequences, making further taxonomic 

assignments difficult.  

Pseudoalteromonas strains are ubiquitous in the marine environment and have 

been isolated from nearly every sample type including seawater, algal surfaces, and 

marine animals (Skovhus et al. 2007). While found in the water column, they are also 

frequently associated with eukaryotic hosts and abiotic surfaces. The relative abundance 

of Pseudoalteromonas on different marine surfaces has been determined using real-time 

quantitative PCR (qPCR) and denaturing gradient gel electrophoresis (PCR-DGGE) used 

to assess diversity in the genus (Skovhus et al. 2007). Pseudoalteromonas strains were 

identified in all of the samples that were analyzed ranging from 0.7-3.4% of the total 

abundance, with an average or 1.6% across the 11 samples tested. The six samples with 

the greatest species diversity including F. serratus, D. sanguinea, seawater, M. edulis, 

sediment, and rock samples also had the greatest degree of surface fouling (Skovhus et al. 

2007). The heterogeneity of Pseudoalteromonas on some marine surfaces may be due to 

physical, chemical, and nutrient conditions on the macro and micro-scale. It is 

hypothesized that the samples with low Pseudoalteromonas diversity contain species 

with antifouling capabilities, which a microbial community shift and results in an overall 

lower level of fouling. 

  



 20 

 
Table 1.1 Pseudoalteromonas species 

Species Reference 
P. agarivorans (Romanenko 2003a) 
P. aliena (Elena P Ivanova et al. 2004) 
P. antarctica (Bozal et al. 1997) 
P. arabiensis (Matsuyama et al. 2013) 
P. arctica (Al Khudary et al. 2008) 
P. atlantica (Akagawa-Matsushita et al. 1992) 
P. aurantia (M. J. Gauthier and Breittmayer 1979) 
P. byunsanensis (Park et al. 2005) 
P. carrageenovora (Akagawa-Matsushita et al. 1992) 
P. citrea (M. J. Gauthier 2018) 
P. denitrificans (Enger 1987) 
P. distincta (E P Ivanova et al. 2000) 
P. donghaensis (Oh et al. 2011) 
P. elyakovii (Sawabe et al. 2000) 
P. espejiana (Chan et al. 1978) 
P. flavipulchra (Elena P Ivanova, Shevchenko, et al. 2002) 
P. fuliginea (Machado et al. 2017) 
P. haloplanktis (G. Gauthier, Gauthier, and Christen 1995) 
P. issachenkonii (Elena P. Ivanova et al. 2002) 
P. lipolytica (Xu et al. 2010) 
P. luteoviolacea (M. J. Gauthier 1982) 
P. maricaloris (Elena P Ivanova, Shevchenko, et al. 2002) 
P. marina (Nam et al. 2007) 
P. mariniglutinosa (Romanenko 2003b) 
P. nigrifaciens (G. Gauthier, Gauthier, and Christen 1995) 
P. paragorgicola (Elena P Ivanova, Sawabe, Lysenko, Gorshkova, Hayashi, et al. 2002) 
P. peptidolytica (Venkateswaran and Dohmoto 2000) 
P. phenolica (Isnansetyo and Kamei 2003b) 
P. piratica (Beurmann et al. 2017) 
P. piscicida (Bein 1954) 
P. prydzensis (J. P. Bowman 1998) 
P. rubra (M. J. Gauthier et al. 1976) 
P. ruthenica (Elena P Ivanova, Sawabe, Lysenko, Gorshkova, Svetashev, et al. 2002) 
P. shioyasakiensis (Matsuyama et al. 2014) 
P. spongiae (Lau et al. 2005) 
P. tetradonis (Simidu et al. 1990) 
P. translucida (Elena P Ivanova, Sawabe, Lysenko, Gorshkova, Hayashi, et al. 2002) 
P. tunicata (Holmstromfl et al. 1998) 
P. ulvae (Egan, Holmström, and Kjelleberg 2001) 
P. undina (Chan et al. 1978) 
P. xiamenensis (Zhao et al. 2014) 
P. xishaensis (Luo et al. 2013) 
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Figure 1.1 The maximum likelihood phylogeny of type strains for the 42 Pseudoalteromonas named 
species. 16S rRNA sequences were aligned with MUSCLE and analyzed with RAxML. 
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1.4.2 Bioactive metabolites produced by Pseudoalteromonas strains 

Many Pseudoalteromonas strains have been reported to produce bioactive 

molecules. Members of this genus are found in nearly every type of marine environment, 

often living on surfaces and forming biofilms (Dang and Lovell 2016; Skovhus et al. 

2007). A variety of toxic metabolites from a number of Pseudoalteromonas species have 

been reported for their antifungal activity, antibiotic properties, and causing diseases in 

algae to name a few (Skovhus et al. 2007). Interestingly, there appears to be a correlation 

between pigmentation and the production of bioactive compounds in Pseudoalteromonas 

and, in the case of violacien, the pigment itself has antimicrobial activity (J. Bowman and 

P. 2007; Thøgersen et al. 2016). 

Pseudoalteromonas tetradonis gets its name from the production of tetrodotoxin, 

a potent neurotoxin (J. Bowman and P. 2007). Another species, P. tunicata, was reported 

to produce a bioactive tambjamine compound, which had been previously isolated from 

marine invertebrates but never before from a bacterium (Burke et al. 2007). The BGC 

encoding the biosynthesis of this antifungal metabolite was also identified. Only a 

handful of other gene clusters observed in Pseudoalteromonas spp. have been assigned 

specific compounds including the previously mentioned violacien pigment, indolmycin, 

and alterochromide (Thøgersen et al. 2016; Ross et al. 2015). Pseudoalteromonas strains 

are also well known brominated metabolite producers, but it wasn’t until recently that the 

bmp gene cluster responsible for some of these compounds was identified and 

characterized (Agarwal et al. 2014; M. J. Gauthier and Flatau 1976). The brominated 

compound MC21-B produced by the P. phenolica type strain O-BC30 was reported to 

have anti-MRSA activity. Additionally, the IC50 value of pentabromopseudilin for MRSA 
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was determined to be 0.1 µM (±0.18) and bioactivity of the compound has also reported 

against the marine bacteria Photobacterium phosphoreum and Chromobacter sp. (Fehér 

et al. 2010; Andersen, Wolfe, and Faulkner 1974). 

Because Pseudoalteromonas strains commonly reside in biofilms and are 

therefore living in very close proximity to other bacteria, their ability to produce 

bioactive compounds may be critical to their survival. Studies have shown that 

metabolites produced by P. tunicata are bioactive at ecologically relevant concentrations 

on the surfaces of marine organisms (Skovhus et al. 2007). These results suggest that 

Pseudoalteromonas species have a rich biosynthetic potential to produce bioactive 

molecules that are ecologically relevant but may also be useful therapeutic agents. 

1.5 Overview of dissertation 

 
Figure 1.2 Chapter 2 overview. A well-supported Pseudoalteromonas species phylogeny was constructed 
using MLSA data. The bmp gene cluster was mined from genomes or amplified using PCR and the 
distribution of the different versions of the BGC were mapped onto the species tree. 
 

Chapter 2 of this dissertation includes a comprehensive Pseudoalteromonas 

species phylogeny. The data for this study was generated from publically available 

Pseudoalteromonas genomes (75), genomes sequences at SIO (3), sequence data from 10 

Genome mining

PCR Map biosynthetic genes 
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genes
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genomes shared by Lone Gram, as well as 17 strains isolated as part of the study. Using 

ANI analysis for the 91 strains with genome sequences, we attempted to define the 

number of different species in the genus. Because only 16 of the 42 type strains have 

available genome sequences, the results were compared with those of the species 

phylogeny in an attempt to classify as many strains as possible. Based on the combined 

analyses, 17 candidate novel Pseudoalteromonas species were proposed. 

Once a well-supported species phylogeny was generated, the next aim of this 

study was to explore a specific BGC of interest in Pseudoalteromonas. The bmp 

biosynthetic gene cluster was previously identified and experimentally characterized, but 

its genus-level distribution and diversity had not been explored. Four distinct versions of 

the bmp cluster were identified across multiple Pseudoalteromonas species. The 

production of pentabromopseudilin was evaluated for available strains and the literature 

was searched for previously published chemical data reporting the compound in bacterial 

extracts. The distribution and diversity of the bmp gene cluster as well as PBP production 

was mapped onto the species phylogeny to better understand the evolution of the BGC in 

Pseudoalteromonas. Finally, the genomic environment of the bmp cluster was 

investigated and found in three different locations. Two alternative hypotheses were 

made based on these results: 1) the BGC was acquired once by a common ancestor and 

inherited vertically, changing location within the genome or 2) there were three separate 

acquisition events of the BGC in Pseudoalteromonas. Without including additional 

genome sequences for strains with the BGC, it is difficult to tell which is more likely. 
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Figure 1.3 Chapter 3 workflow. The overview of the workflow undertaken in Chapter 3, beginning with 
the determination of the MIC value of pentabromopseudilin. Fluorescence microscopy was then employed 
in parallel with cell viability assays to determine the effects of the compound on cells over time across 
increasing concentrations. Using the generated data, potential cellular targets of the bioactive molecule 
were identified. 
 

In chapter 3, bacterial cytological profiling (BCP) to identify cellular targets and 

the mechanism of action (MOA) of pentabromopseudilin. This experimental technique 

can identify an antibiotic’s MOA and distinguish between molecules with distinct cellular 

targets (Nonejuie et al. 2013). The results showed that SYTOX Green intensity increased 

with time and concentration of PBP in E. coli ATCC 25922 cells, indicating the cells 

were permeable to the dye. Based on the BCP results suggesting its ability to 

permeabilize membranes, PBP was also tested for potentiation activity. Because Gram-

negative bacteria have a highly impermeable outer cell membrane, they are resistant to 

most antibiotics. Thus, many therapeutic treatments include a potentiator molecule, 

which is able to disrupt the outer membrane and allow the antibiotic to do its job. 

Pentabromopseudilin was found to function as a potentiator molecule, increasing the 

potency of vancomycin and erthryomycin against E. coli ATCC 25922. Unfortunately, its 

cytotoxicity does not make it a good applicant for therapeutic use. However, from an 

ecological standpoint, it is hypothesized that PBP may play an ecological role by making 

other antimicrobial compounds produced by Pseudoalteromonas strains more potent. 
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Figure 1.4 Chapter 4 workflow. The overview of the workflow undertaken in Chapter 4, including growth 
of Pseudoalteromonas cultures, which were extracted and fractionated, then tested for bioactivity. The 
genomes of the strains used in this study were analyzed with antiSMASH to identify their BGCs and 
molecular networking was performed with the crude extracts and active fractions to identify potential novel 
structures. 
 

Chapter 4 assesses the bioactivity and chemical analysis of extracts from five 

Pseudoalteromonas species. Crude extracts and fractions from the strains used in this 

study were tested for activity using disc diffusion assays with test strains E. coli ATCC 

25922 and B. subtilis PY79 and analyzed with LC-MS. Molecular networks of the 

Pseudoalteromonas crude extracts and fractions were generated from the MS/MS data 

and screened for dependable library hits. For example, a group of spectra were matched 

with bromoaterochromide, sharing 19 peaks and having a cosine value of 0.92 when 

compared with the library spectrum. The bioactivity results were mapped onto molecular 

networks to identify known molecules and identify potential novel metabolites of interest. 

Several molecular families were found to be exclusive to specific strains, especially those 

with the highest bioactivity: 2ta16 and PS5. 

The genomes for the strains were also run through antiSMASH v3.0 to identify all 

BGCs (Weber et al. 2015). A total of 147 biosynthetic gene clusters were identified, only 

a handful of which have known products. The genome mining data, chemical analyses, 

and bioactivity results combined suggest that Pseudoalteromonas species have great 
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potential to synthesize novel metabolites, some of which may be antibiotics. 

Pseudoalteromonas strains are ubiquitous in the ocean and are frequently found in high 

abundance in biofilms on marine surfaces. Because of limited space, strains producing 

antimicrobial molecules such as pentabromopseudilin (PBP) may have a selective 

advantage by preventing competing strains from settling on the same surfaces. The 

results of this chapter revealed the vast biosynthetic potential of five Pseudoalteromonas 

species and their capacity to produce novel bioactive metabolites.  
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Chapter 2: Diversity and distribution of the bmp gene cluster and 
pentabromopseudilin production in Pseudoalteromonas 
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2.1 Abstract 

The production of pentabromopseudilin and related brominated compounds by 

Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. 

This study explored the distribution and evolution of this gene cluster in the genus 

Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not 

contain type strains, suggesting some species level diversity has yet to be described. 

Comparative genomics revealed four distinct versions of bmp, which were distributed 

among 19 of the 101 genomes examined. These were largely localized to the least 

inclusive clades containing the P. luteoviolacea and P. phenolica type strains. There was 

clear evidence of gene and gene cluster loss within the P. luteoviolacea lineage, which 

included 17 candidate new species. The bmp gene phylogeny is highly congruent with the 

species tree, which is consistent with vertical inheritance within the genus. However, the 

gene cluster is found in three different genomic environments suggesting separate 

acquisition events or chromosomal rearrangement. While there is clear evidence of gene 

and gene cluster loss within certain lineages, the conservation of bmp within certain 

lineages suggests the products encoded are highly relevant to the ecology of these 

bacteria. 

2.2 Introduction 

The structure of the bromine rich antibiotic pentabromopseudilin was the first 

marine microbial natural product described (Lovell, 1966). It was isolated from an 

obligate marine bacterium identified at the time as Pseudomonas sp. (Burkholder et al., 

1966). Subsequently, pentabromopseudilin and biosynthetically related brominated 

natural products (BNPs) have been reported from a single strain of Marinomonas 
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mediterranea (MMB-1) and multiple Pseudoalteromonas spp. (Agarwal et al. 2014; 

Vynne et al. 2011; Fehér et al. 2010; Vynne, Mansson, and Gram 2012; Whalen et al. 

2015; Isnansetyo and Kamei 2003a; El Gamal, Agarwal, Rahman, et al. 2016; El Gamal, 

Agarwal, Diethelm, et al. 2016). In addition to pentabromopseudilin, brominated phenol 

and pyrrole monomers and dimers as well as polybrominated diphenyl ethers (PBDEs) 

have been reported in Pseudoalteromonas extracts. One brominated pyrrole monomer, 

tetrabromopyrrole, has been studied in depth and functions as a coral larvae settlement 

cue (El Gamal, Agarwal, Diethelm, et al. 2016). PBDEs are of particular interest because 

of their negative implications for human health such as disruption of the endocrine 

system, neurodevelopmental deficits, and cancer (Richardson et al. 2008; Hallgren et al. 

2001; Zhou et al. 2002; Fernie et al. 2005). Starting in the late 1920s, polybrominated 

diphenyl ethers (PBDEs) were produced industrially and used as flame-retardants in a 

wide variety of products such as electronics and textiles (Johnson-Restrepo and Kannan 

2009). While anthropogenic PBDEs can be introduced into the ocean via wastewater 

runoff, there is increasing evidence that these compounds are also produced naturally in 

the marine environment (Teuten and Reddy 2007; Reddy et al. 2004). These lipophilic 

molecules bioaccumulate in the blubber and tissues of marine mammals, thus suggesting 

that a human diet rich in seafood could lead to increased PBDE exposure (Teuten, Xu, 

and Reddy 2005; Malmvärn et al. 2005; Venkateswaran and Dohmoto 2000). 

The recent identification of the bmp gene cluster as the biosynthetic origin of 

these compounds in MMB-1 and select Pseudoalteromonas strains (Agarwal et al. 2014; 

El Gamal, Agarwal, Diethelm, et al. 2016) provides a unique opportunity to more broadly 

assess the biosynthesis of these BNPs among marine bacteria. The bmp cluster encodes 
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the production of polybrominated phenol and pyrrole monomers (2-4), the phenolic 

homodimeric antibiotic bromophene (5), polybrominated diphenyl ethers (PBDES) (6), 

polybrominated biphenyls (7), and the brominated phenol/pyrrole heterodimer 

pentabromopseudilin (1) (Figure 2.1). The gene cluster encodes an ACP-TE di-domain 

protein (Bmp1) and two flavin-dependent brominases (Bmp2 and Bmp5) that catalyze the 

bromination of pyrrole and phenol monomers respectively (2-4). Bmp3, 4 and 8 play 

roles in bromopyrrole monomer synthesis and Bmp6 is involved in the biosynthesis of 

bromophene and PBDEs (6-7). Bmp7 catalyzes the oxidative coupling of bromophenol 

and bromopyrrole monomers in the presence of Bmp9, Bmp10, and NADH.  

Genes similar to those found in the bmp cluster have been characterized in other 

bacterial strains. Bromopyrrole biosynthesis is achieved in a similar manner to that of 

pyoluteorin, an antifungal produced by a Pseudomonas fluorescens strain (Dorrestein et 

al. 2005). Additionally, the biosynthesis of pentachloropseudilin, which is incredibly 

similar to pentabromopseudilin with the only structural difference being the replacement 

of bromines with chlorines, also involves an FADH2-dependent halogenase similar in 

function to Bmp5 (Van Pée 2001).  

Previous studies of BNP production in Pseudoalteromonas spp. have focused on a 

few specific strains (Isnansetyo and Kamei 2003; Fehér et al. 2010). As a result, we lack 

a broader understanding of the bacterial taxa that either produce or have the potential to 

produce these compounds. Our results show that, with the exception of MMB-1, the bmp 

cluster and pentabromopseudilin production are restricted to marine bacteria in the genus 

Pseudoalteromonas. To better assess these traits within the genus, we generated a 

multilocus phylogeny of 144 Pseudoalteromonas strains using five genes: 16S, gyrB, 
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pyrH, recA, and rpoD. Mapping the distribution of the bmp genes onto this phylogeny 

suggests a complex evolutionary history and clues as to how this biosynthetic capacity 

evolved within the genus. 

 
Figure 2.1 Brominated natural product biosynthesis in marine bacteria. Five versions of the bmp gene 
cluster (a) and the brominated natural products whose biosynthesis they encode (b). Versions A and C-E 
are observed in various Pseudoalteromonas strains while version B is found in Marinomonas mediterranea 
MMB-1. Version C has an ~150 bp insertion in bmp1 (indicated by hash marks), version D lacks bmp5-7 
and bmp8, and version E lacks bmp3-7. 
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2.3 Materials and Methods 

2.3.1 Bacterial isolation 

Seawater samples were collected off Scripps Institution of Oceanography (SIO), 

plankton tows (20 µm mesh size) were performed from the SIO pier, and algal samples 

were collected by SCUBA from Catalina Island, CA and the Coral Coast, Fiji. The algae 

were gently shaken to remove excess water before a small piece of tissue was added to 10 

ml of 0.2 µm-filtered seawater. The algal samples were mixed and diluted 1:10, 1:50, and 

1:100 in sterile seawater, and 100 µl of each dilution spread onto Difco 2216 media with 

15 g/L agar added. Seawater and plankton tow samples were diluted 1:2, 1:10, and 1:50 

and similarly plated. Bacterial colonies were isolated based on morphology, specifically 

selecting for dark purple and other pigmentation that is characteristic of 

Pseudoalteromonas spp. Strains were identified at the genus level based on 16S rRNA 

sequence analysis (see below) and glycerol stocks frozen (-80°C) in Difco 2216 broth 

with 20% glycerol.  

2.3.2 Genome mining, primer design and PCR 

Published genome sequences are available for 16 of 42 Pseudoalteromonas type 

strains while gyrB and 16S sequences are available for an additional 12 (Table 2.1). Our 

analysis also included an additional 75 published Pseudoalteromonas genomes (Table 

2.2), 10 unpublished genomes, and 17 strains isolated as part of this study. Genome 

sequences were acquired from the NCBI and JGI public databases or sequenced at SIO. 

They were uploaded and annotated in RAST (Aziz et al. 2008) and mined for 16S, gyrB, 

pyrH, recA, and rpoD based on annotations. Bmp1-10 gene sequences were identified 

using the internal BLAST search tool in RAST with gene sequences from P. 
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luteoviolacea strain 2ta16 as queries. Ten unpublished Pseudoalteromonas genomes were 

similarly mined. PCR was used to generate sequences for strains isolated as part of this 

study but for which genome sequences were not available. Degenerate PCR primers were 

designed based on the translated and MUSCLE aligned gyrB, pyrH, recA, rpoD, and bmp 

sequences (Edgar, Drive, and Valley 2004). The primers were validated across different 

Pseudoalteromonas spp. using Primaclad software and manual analyses (Table 2.3) 

(Gadberry et al. 2005). 

Table 2.1 Type strains without published genome sequences.  
Strain ID Species 16S accession number gyrB accession number 

DSM 14585 agarivorans AJ417594 KF793928 
LMG 22059T aliena AY387858 FR668563 
LMG 18002T antarctica X98336 FR668564 
NCIMB 14688 arabiensis AB576636 N/A 
ATCC 19262 atlantica X82134 AB100885 
ATCC 33046 aurantia X82135 AF007275 
KCTC 12274 byunsanensis DQ011289 N/A 
DSM 6820T carrageenovora X82136 FR668560 
ATCC 43337 denitrificans X82138 N/A 
KCTC 22219 donghaensis FJ754319 N/A 
LMG 2866T espejiana X82143 FR668566 
LMG 19697T issachenkonii AF316144 FR668568 
JCM 15903 lipolytica FJ404721 N/A 
LMG 19692 maricaloris AF144036 N/A 
NCIMB 1770 mariniglutinosa AJ507251 N/A 
LMG 2227T nigrifaciens X82146 FR668569 
LMG 19696T paragorgicola AY040229 FR668570 
DSM 14001T peptidolytica AF007286 FR668573 
CIP 105820 prydzensis U85855 N/A 
LMG 19699 ruthenica AF316891 N/A 
SE3 shioyasakiensis AB720724 N/A 
ATCC 51193 tetradonis AF214730 N/A 
LMG 19694T translucida AY040230 FR668571 
NCIMB 13762 ulvae AF172987 N/A 
Y2T xiamenensis JN188399 N/A 
E418 xishaensis JQ237129 N/A 
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Table 2.2 Pseudoalteromonas genomes. The 91 genome sequences used in this study. Type strains 
indicated in bold. Roman numerals correspond to candidate ANI species designations assigned based on 
coherence between the species tree and ANI dendogram. Asterisks (*) indicate possible classifications for 
ANI species in cases where type strain genome sequences are unavailable. 

Strain ID Species GenBank accession number 

10-33 P. marina LOFI01000000 

13-15 P. sp. nov (VIII) FSRF01000000 

23 GOM-1509m P. issachenkonii* (X) JADO01000000 

2ta16 P. sp. nov (XXV) AUSV00000000 

2ta6 P. elyakovii/piscicida JGI Taxon ID: 2505119014 

520P1 No. 412 P. denitrificans* (I) BBIN01000000 

520P1 No. 423 P. denitrificans* (I) BBZB01000000 

6BO GOM-1096m P. issachenkonii* (X) JIAM01000000 

A 37-1-2 P. arctica AHBY02000000 

A2 P. issachenkonii* (X) JPMC01000000 

A757 P. sp. nov (III) QNQN00000000 

AC163 P. distincta/flavipulchra AUTK01000000 

ANT/505 P. distincta/flavipulchra ADOP01000000 

ATCC 14393 P. haloplanktis AHCA01000000 

ATCC 29581 P. xiamenensis* (XXVIII) CAPN01000000 

ATCC 700518 P. distincta JWIG01000000 

ATCC 700519 P. elyakovii JWIH01000000 

BSi20311 P. sp. nov (IX) BADU01000000 

BSi20429 P. arctica BADV01000000 

BSi20439 P. sp. nov (IX) BADW01000000 

BSi20480 P. marina BADX01000000 

BSi20495 P. fuliginea BADY01000000 

BSi20652 P. sp. nov (XI) BADT01000000 

BSw20308 P. fuliginea AMYA01000000 

CGMCC 1.8499 P. donghaensis/lipolytica* (XVIII) FPAZ01000000 

CP76 P. ruthenica* (V) AOPM00000000 

CPMOR-1 P. sp. nov (XXII) AUYC00000000 

CPMOR-2 P. luteoviolacea AUYA01000000 

D2 P. tunicata AAOH01000000 

DSM 17587 P. marina AHCB02000000 

DSM 26666 P. issachenkonii* (X) FPAR01000000 

DSM 6059 P. sp. nov (II) FOLO01000000 

DSM 6061 P. luteoviolacea AUYB01000000 
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Table 2.2 Pseudoalteromonas genomes (continued).	
Strain ID Species GenBank accession number 

DSM 6065 P. undina AHCF02000000 

DSM 6842 P. rubra AHCD02000000 

DSM 8771 P. citrea AHBZ02000000 

ECSMB14103 P. marina JWGY01000000 

H103 P. carrageenovora* (VII) LOFG01000000 

H105 P. sp. nov (XV) LOFH01000000 

H33 P. sp. nov (XXIV) AUXZ01000000 

H33-S P. sp. nov (XXIV) AUXY01000000 

HI1 P. sp. nov (XXII) JWIC01000000 

JCM 20779 P. piscicida AHCC02000000 

JG1 P. elyakovii/piscicida AJMP01000000 

KMM 216 P. fuliginea JJNZ01000000 

NCIMB 2033 P. flavipulchra JTDZ01000000 

NCIMB 1942 P. sp. nov (XXVII) AUXT01000000 

NCIMB 1944 P. sp. nov (XXV) AUXS01000000 

NCIMB 2035 P. sp. nov (XXVII) JPWZ01000000 

ND6B P. issachenkonii* (X) JQFL01000000 

NJ631 P. elyakovii/piscicida AKXJ01000000 

NW 4327 P. atlantica* (VI) AZIO01000000 

O-BC30 P. phenolica RCWG00000000 

OCN003 P. piratica CP009888, CP009889 

OCN096 P. sp. nov (XXI) LFZX01000000 

PAMC 22718 P. issachenkonii* (X) AJTK01000000 

PS5 P. peptidolytica* (IV) RCSQ00000000 

R3 P. sp. nov (XX) LJDF01000000 

S2040 P. elyakovii/piscicida JXXW01000000 

S2292 P. fuliginea JXYD01000000 

S2471 P. sp. nov (XX) JXYA01000000 

S2607 P. sp. nov (XXVI) AUXV01000000 

S2724 P. elyakovii/piscicida JXXX01000000 

S3137 P. ruthenica* (V) JXXZ01000000 

S3258 P. ruthenica* (V) JXXY01000000 

S3431 P. fuliginea JJNY01000000 

S4047-1 P. sp. nov (XXIII) AUXU01000000 

S4054 P. sp. nov (XXIII) AUXW01000000 
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Table 2.2 Pseudoalteromonas genomes (continued).	
Strain ID Species GenBank accession number 

S4060-1 P. sp. nov (XXVI) AUXX01000000 

S8-38 P. arctica AUTS01000000 

S8-8 P. arctica AUTR01000000 

S816 P. atlantica* (VI) APME01000000 

SCSIO 04301 P. donghaensis/lipolytica* (XVIII) JGI Taxon ID: 2568526619 

SCSIO 11900 P. issachenkonii* (X) JEMJ01000000 

SM9913 P. issachenkonii* (X) CP001796, CP001797 

TAB23 P. arctica AUTP01000000 

TAC125 P. nigrifaciens* (XIII) CR954246, CR954247 

TAE56 P. arctica AUTN01000000 

TAE79 P. distincta/flavipulchra AUTL01000000 

TAE80 P. distincta/flavipulchra AUTM01000000 

TB13 P. arctica AUTJ01000000 

TB25 P. distincta/flavipulchra AUTI01000000 

TB41 P. issachenkonii* (X) AUTH01000000 

TB51 P. atlantica* (VI) AUTO01000000 

TB64 P. sp. nov (XII) AUTQ01000000 

UCD-SED14 P. sp. nov (XIV) LHPH01000000 

UCD-SED8 P. undina LITK01000000 

UCD-SED9 P. sp. nov (XIV) LITL01000000 

UCD-33C 
P. arabiensis/shioyasakiensis* 
(XVII) LJTB01000000 

UCD-48B P. arabiensis/shioyasakiensis* (XVI) LJTC01000000 

UST010723-006 P. spongiae AHCE02000000 
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Table 2.3 PCR primer sequences.  
Gene Forward primer sequence Reverse primer sequence Tm (°C) 
16S 5’ GGCAGCAGTGGGGAATAT 3' 5’ GGTTTATCACCGGCAGTCTC 3' 55 
gyrB 5’ THGGBGAYACNGAYGATG 3’ 5’ GGRTCCATNGTBGTYTCCC 3’ 53 

pyrH 
5’ 
GTAGARYTMGACRTAGAAGTR
GGT 3’ 

5’ GTDCCYTCNTCTTCVCCCATR 
3’ 52 

recA 
5’ 
GGHCCWGARTCDTCRGGTAA 
3’ 

5’ GGHGGNGCHACYTTGTTYT 3’ 52 

rpoD 5’ CVCCDGATGCYGATGARYT 
3’ 5’ GCYTTNGCTTCDATYTGA 3’ 55 

bmp2 
5’ 
GAYGTHGTYATTATTGGYAGY
GG 3’ 

5’ 
CATYTGYTTRCGRTCGTAYTCTT 
3’ 

52 

bmp5 
5’ 
GCAGTSATHGGKGCTGGTTTAT
C 3’ 

5’ GGCCARGARCTDATRTTKGG 3’ 52 

1942bmp1 
5’ 
AGGCGCCGGGTTTAAGCAGC 
3’ 

5’ TCGCGGGTAACCACGACCAA 3’ 55 

2035bmp1 
5’ 
AGGCGCCGGGTTTAAGCAGC 
3’ 

5’ 
TCGTGGTTACCCGCGACAAACA 
3’ 

55 

 

For genomic DNA extractions, strains were cultured overnight at room 

temperature in 10 ml of marine broth (Difco 2216) with shaking at 230 rpm. Cells were 

pelleted (16,000 x g, 2 min) from 1 ml of culture, re-suspended in 600 µl of Nuclei Lysis 

Solution (Promega), and incubated at 80°C for 5 min after which 200 µl of Protein 

Precipitate Solution (Promega) was added. The samples were vortexed at high speed for 

20 sec, incubated on ice for 5 min, centrifuged (16,000 x g, 10 min), and the supernatant 

transferred into 600 µl of isopropanol. The samples were mixed by gentle inversion, 

centrifuged (13,000 rpm, 10 min), and the DNA pellet washed once with 70% ethanol, 

dried, and rehydrated in water. PCR thermocycling conditions were as follows: 5 min of 

initial denaturation at 95°C, 30 cycles of denaturation at 95°C for 1 min, annealing for 1 

min at various temperatures depending upon primers, extension at 72°C for 1 min, and a 
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final extension at 72°C for 5 min. PCR products were sequenced using Sanger methods 

by Eton Biosciences (https://www.etonbio.com/) and trimmed for quality before analysis.  

2.3.3 Phylogenetic analyses 

Nucleotide sequences used to establish the species phylogeny were aligned using 

MAFFT (Katoh et al. 2002) then concatenated. Maximum likelihood analysis of the 

partitioned data was run using RAxML with 100 rapid bootstrap replicates and the 

GTR+G model (Stamatakis 2014). To assess the phylogeny of the bmp cluster, the 

MUSCLE alignments of the bmp1, 2, 9 and 10 gene nucleotide sequences were 

concatenated and a maximum likelihood analysis performed using RAxML with 100 

rapid bootstrap replicates and GTR+G model (Edgar, Drive, and Valley 2004; Stamatakis 

2014). All trees were visualized using FigTree v1.4.2. 

2.3.4 Pentabromopseudilin analysis 

Bacterial cultures were grown at room temperature with agitation (200 rpm) for 

48 hours in 50 ml of Difco 2216 media with 1 g/L of KBr added. The cultures were 

extracted twice with 50 ml ethyl acetate and the organic fractions combined and dried in 

vacuo. The dried extracts were dissolved in 500 µL of MeOH and analyzed by LC/MS 

using previously described methods (Agarwal et al. 2014). Pentabromopseudilin 

production was verified in comparison to an authentic standard either as part of this study 

or based on previously reported results. 

2.3.5 Comparative genomics 

Average nucleotide identity (ANI) was determined for 91 Pseudoalteromonas 

genomes using custom scripts available at (https://github.com/juanu/ANI_analysis). A 

distance matrix was generated from all pairwise comparisons and ANI divergence (100 – 
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ANI) calculated. Pairwise comparisons between contigs containing the bmp BGC were 

preformed using the Artemis Comparison Tool (ACT) v13.0.0 (Carver et al. 2005).  

2.4 Results  

2.4.1 Pseudoalteromonas species phylogeny 

The Pseudoalteromonas species phylogeny reveals three primary clades (Figure 

2.2). Clade 3 distinguishes the least inclusive clade containing P. ruthenica and P. 

xishaensis from the remaining strains, which subsequently diverge into clades 1 and 2. 

The species tree reveals numerous clades at varying depths in the phylogeny that do not 

contain type strains, suggesting some species level diversity has yet to be described. To 

further assess this potential for taxonomic novelty, average nucleotide identity (ANI) was 

calculated among all genome sequences. At the suggested >95% ANI cut-off for species 

designations (Goris et al. 2007), 42 species are resolved of which 14 contain a type strain 

(Figure 2.3). We identified two instances where multiple type strains occurred within the 

same ANI species (P. elyakovii/P. piscicida and P. flavipulchra/P. distincta), suggesting 

these lineages have been over described. Genome sequences are unavailable for 26 of the 

Pseudoalteromonas type strains. Thus, at least two of the 28 candidate ANI species are 

unnamed. To better address taxonomic novelty, the candidate ANI species groupings 

were compared to the Pseudoalteromonas species tree. If the groupings were coherent 

and did not include a type strain, a new species was proposed (Figure 2.2). Using this 

approach, we identified 17 candidate new species (Table 2.2). 
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Figure 2.2 Pseudoalteromonas species tree and bmp gene cluster distribution. A maximum likelihood 
phylogeny generated from concatenated 16S, gyrB, pyrH, recA, and rpoD nucleotide sequences reveals 
three primary clades. The three least inclusive clades containing strains with the bmp cluster are highlighted 
in color. Lettered brackets (A, C, D, and E) indicate the version of the bmp cluster. The 42 type strains are 
indicated in bold italics and strains isolated as part of this study are assigned CN numbers. Filled squares 
indicate the 10-gene bmp cluster, half-filled squares indicate a partial gene cluster. Filled triangles indicate 
the detection of pentabromopseudilin, half-filled triangles indicate that only tetrabromopyrrole was 
detected. Empty triangles indicate that none of the target brominated compounds were detected. Candidate 
novel species assigned based on the ANI analysis are indicated with roman numerals. 
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Figure 2.3 ANI analysis. Average nucleotide identity (ANI) of 91 Pseudoalteromonas genome sequences. 
The vertical dashed line specifies 95% ANI and the grey dots designate candidate ANI species. Candidate 
species that do not include a type strain were assigned numbers (I-XXVIII). The matrix next to the right of 
the strains displays the distribution of the 10 genes in the bmp gene cluster. Hash marks indicate a modified 
bmp1 sequence. 
 

2.4.2 Distribution of the bmp gene cluster among Pseudoalteromonas spp. 

We next mapped the distribution of the bmp gene cluster onto the 

Pseudoalteromonas species phylogeny. Of the 101 Pseudoalteromonas genomes mined 

(91 published, 10 unpublished), 19 contain some version of this gene cluster and all of 

these fall within clade 2 (Figure 2.2). Three least inclusive sub-clades containing the bmp 

BGC can be identified. The 12 strains that were PCR positive for the bmp cluster all fall 
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within the least inclusive clade that includes P. luteoviolacea.  Pseudoalteromonas 

luteoviolacea and P. phenolica are the only named species whose type strains contain the 

BGC and these fall into different sub-clades. In addition, six candidate species containing 

the BGC were identified (sp. III, XXII, XXIII, XXV, XXVI, XXVII).  

A comparative analysis of the bmp cluster revealed four versions (A, C-E) among 

the Pseudoalteromonas strains and a fifth version (B) in Marinomonas strain (MMB-1) 

(Figure 2.2). Version A contains 10 genes, has been experimentally characterized, and is 

linked to the production of pentabromopseudilin and related BNPs (Agarwal et al. 2014). 

It was observed in 25 of the Clade 2 strains including the P. phenolica and P. 

luteoviolacea type strains and five of the candidate ANI species (Figure 2.2). Version B 

was only observed in a single Marinomonas mediterranea strain (MMB-1) and has one 

additional gene annotated as a putative permease. Version C has an ~150 bp insertion in 

bmp1 suggesting it may be non-functional. This insertion was verified by PCR and 

sequencing in the two strains (NCIMB 1942 and NCIMB 2035) in which it was observed. 

The genome sequences for PS5 (ANI sp. IV) and A757 (ANI sp. III) contain a partial 

bmp cluster that lacks bmp5-8 (version D) (Figure 2.3). These are the only two strains 

with any form of the BGC in the least inclusive clade containing 2ta6 and P. 

peptidolytica (Figure 2.2). Strains S4047 and S4054 (both ANI sp. XXIII) possess 

version E of the gene cluster, which lacks bmp3-7 (Figure 2.3). This truncated version, 

along with a pair of strains that lack the entire gene cluster (H33 and H33-S), are part of a 

well-supported sub-clade that is dominated by version A (Figure 2.2), suggesting they 

result from gene loss events. Strains isolated as part of this study were assigned version A 

if both bmp2 and bmp5 were detected by PCR and sequence verified. They were not 
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assigned version B, since this has only been detected in a single Marinomonas strain, or 

versions C-E based on subsequent metabolomics data. 

2.4.3 Pentabromopseudilin production 

Pseudoalteromonas strains possessing different versions of the bmp gene cluster 

were next analyzed for pentabromopseudilin (1) production (Figure 2.4). 

Pentabromopseudilin (1) is a heterodimer comprised of brominated pyrrole and phenol 

monomers. All 10 genes in version A of the gene cluster are required for the production 

of this compound in Pseudoalteromonas spp. (Agarwal et al. 2014). Therefore, any 

Pseudoalteromonas strains that produce this compound can be expected to contain bmp 

version A, since version B has not been observed in the genus. Of the 25 

Pseudoalteromonas strains containing bmp version A, 24 produce pentabromopseudilin 

(1) (Figure 2.2) (Vynne et al. 2011; Agarwal et al. 2014) thus matching the metabolic 

predictions. The genome of HI1 contains version A of the BGC but chemical data has not 

been published for the strain, therefore, pentabromopseudilin production is unconfirmed. 

H33 and H33-S are the only strains in the P. luteoviolacea sub-clade missing the entire 

bmp gene cluster and as expected, no BNPs were detected (Vynne, Mansson, and Gram 

2012). We also failed to detect brominated compounds from the strains that possess bmp 

version C (NCIMB 1942 and NCIMB 2035). The 150 bp insertion in the ACP-TE 

encoding bmp1 gene distinguishes version C from A and may explain the lack of BNP 

production in these strains. Tetrabromopyrrole (2) was the only BNP detected from 

strains with bmp version D, which is consistent with the expected phenotype (El Gamal, 

Agarwal, Diethelm, et al. 2016). Additionally, BNPs were not detected from the two 

strains containing version E of the BGC (S4047 and S4054), which lacks bmp3-7. These 
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results are consistent with the functional characterization of the BGC, as the products of 

the missing genes are required to synthesize brominated pyrrole and phenol monomers 

(Vynne, Mansson, and Gram 2012). 

 
Figure 2.4 Detection of pentabromopseudilin by LCMS. Strains isolated as part of this study were screened 
for pentabromopseudilin production. (A) Extracted ion chromatograms for the mass of 
pentabromopseudilin (553.67 g/mol) from a strain with version A of the BGC (CNY-791, top) and one that 
lacks the BGC (CNY-943, middle). Pentabromopseudilin standard (bottom). All strains containing bmp 
version A produced pentabromopseudilin with an absolute intensity of at least 1.4 x 106 (B) Isotopic pattern 
of a pentabromopseudilin standard and the compound detected from strain CNY-791 (C).  
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2.4.4 Evolutionary history of the bmp gene cluster 

A concatenated phylogeny of the bmp genes derived from all 19 

Pseudoalteromonas genome sequences that contained some version of the BGC was 

compared to a species tree generated for the same strains (Figure 2.5). No outgroup was 

used in the bmp phylogeny; however, the sequences from Marinomonas strain MMB-1 

were included and the tree was rooted consistently with the species tree (Figure 2.5a). 

With the exception of the position of MMB-1, the two trees are highly congruent. The 

bmp phylogeny shows that the sister clades containing P. luteoviolacea and A757 and the 

more distantly related P. phenolica clade are consistent with the species tree, supporting a 

single acquisition of the bmp cluster in the genus. 

 
 Figure 2.5 Bmp gene phylogeny. Concatenated maximum likelihood phylogenies of the bmp gene 
sequences (a) and the 16S, gyrB, pyrH, recA, and rpoD sequences (b) derived from the 19 
Pseudoalteromonas strains and the one Marinomonas strain (MMB-1) that contain any version of the bmp 
gene cluster. The bmp gene tree is rooted based on the species phylogeny while the species tree is rooted 
with MMB-1. 
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To further test a single acquisition event for the bmp gene cluster in 

Pseudoalteromonas, we explored the genomic environment in which it was observed, 

expecting that it would be similar. However, the bmp cluster is found in three different 

genomic environments, thus, if there was a single acquisition event, the BGC has 

subsequently moved (Figure 2.6). The genomic environment analysis suggests a single 

acquisition event of the gene cluster by the large clade containing strains CPMOR-2 and 

H33. The strains in the clade have high sequence identity of the bmp genes as well as 

synteny both upstream and downstream of the BGC, suggesting that once acquired it 

remained in the same genomic position. It is hypothesized that subsequent gene loss or 

modification resulted in versions C and E in strains NCIMB 1942 and S4054 

respectively. Strain H33 lacks bmp genes yet is highly syntenic in this region with strain 

CPMOR-1, which possesses version A of the gene cluster. Additionally, strain S4054 

contains the abbreviated bmp version E but the BGC is in the same genomic environment 

as bmp version A in strains NCIMB 1944 and HI1. The detection of a remnant of bmp7 in 

strain S4054 supports the gene loss hypothesis (Figure 2.7). These results suggest that a 

common ancestor possessed the BGC with subsequent partial (S4054) and complete 

(H33) loss events in these two strains. The lack of synteny between more distantly related 

strains that possess the same version of the BGC (e.g., HI1 and P. phenolica) indicates 

that regardless of whether the same biosynthetic genes are present in a pair of more 

distantly related strains, the bmp gene cluster can be found in different genomic 

environments (Figure 2.6b). These results suggest that P. phenolica and HI1 did not 

inherit version A the bmp gene cluster from a common ancestor within the genus. When 

HI1 (version A) was compared with A757 (version D), aside from the bmp genes, very 
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little synteny was found, which does not support the hypothesis that the strains inherited 

the BGC from a common ancestor and version D is the result of a partial loss of the 

cluster (Figure 2.6c). The genomic analysis results provide evidence that the bmp gene 

cluster may have been independently acquired three times within the genus. 

Alternatively, the BGC could have also been acquired by a common ancestor then moved 

its position within some genomes. Regardless of which hypothesis is correct, there is 

clear evidence that the gene cluster has been maintained, modified, or lost following 

vertical inheritance within certain subclades (Figure 2.8).  
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Figure 2.6 Genomic environment of the bmp gene cluster. For each contig, the bmp gene cluster version 
(A, C, D and E) and ANI species identity is indicated in parentheses after the strain name. The opacity of 
shaded regions indicates percent sequence identity. (a) The phylogenetic relationships of the strains 
consistent with the species tree are shown on the left. The lack of synteny between bmp gene clusters 
(shown in red) and the surrounding genomic environments in Pseudoalteromonas strains supports 
independent acquisition events or movement of the BGC within the chromosome. (b) Sequence identity for 
bmp gene cluster version A is shown in two distantly related strains (HI1 and P. phenolica), but no other 
synteny on the contigs is observed. (c) Strains HI1 (bmp version A) and A757 (bmp version D) have highly 
similar sequences for the biosynthetic genes that they share, however, there is no indication of a partial loss 
of the BGC. 
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Figure 2.7 Evidence for partial loss of the bmp cluster. A region immediately downstream of bmp2 in 
strain S4054 (version E) has high sequence identity to a portion of bmp7 in strain HI1 (version A), 
supporting gene loss in S4054.  

 

The bmp cluster is found in three different genomic environments in 

Pseudoalteromonas strains, which could be attributed to separate acquisition events or 

post acquisition migration (Figure 2.6). While incomplete genome sequences prevented 

the precise mapping of BGC chromosomal positions, there is a lack of synteny among 

genes surrounding the different versions of the gene cluster, despite the close relationship 

among the strains based on ANI analysis (>82%).  

2.5 Discussion 

Characterization of the bmp biosynthetic gene cluster revealed it accounts for the 

production of the potent antibiotic pentabromopseudilin (Burkholder, Pfister, and Leitz 

1966), the larval settlement cue tetrabromopyrrole (El Gamal, Agarwal, Diethelm, et al. 

2016), and polybrominated diphenyl ethers whose industrial production and use as flame 

retardants has been banned due to human health implications (Johnson-Restrepo and 

Kannan 2009). Despite the potential ecological significance of these compounds, their 

production and the distribution of bmp among marine bacteria has not been examined. 
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This study addressed these questions within the genus Pseudoalteromonas, the primary 

bacterial source of pentabromopseudilin and biosynthetically related compounds reported 

to date. The results indicate a narrow distribution and complex evolutionary history that 

includes gene modifications and deletions that affect compound production. While 

congruence between the species tree and bmp gene phylogeny supports a single 

acquisition event for the gene cluster (Figure 2.5), this model requires eight complete or 

partial gene cluster losses to explain the current distributions. Based on these results, the 

possibility of multiple acquisition events cannot be ruled out. While the evolutionary 

history of the bmp gene cluster remains obscure at the genus level, there are three points 

from which this history can be confidently inferred (Figure 2.8). Even within these sub-

lineages, there is clear evidence of gene cluster loss or modification, attesting to the 

complex evolutionary history of this gene cluster. 

There is ample evidence that the gene clusters associated with secondary 

metabolism are exchanged by horizontal gene transfer. Despite this, there was a strong 

correlation between taxonomy, bmp composition, and compound production within the 

genus Pseudoalteromonas. For example, all P. phenolica strains analyzed maintained the 

same version of the BGC and produced the same secondary metabolites. The least 

inclusive clade that includes P. luteoviolacea is also highly conserved for these feature 

with the exception of a few loss events. BGC conservation associated with species level 

units of diversity suggests that the products encoded provide an important selective 

advantage for the producer and add to growing evidence that secondary metabolites can 

be useful taxonomic markers for bacteria (Hoffmann et al. 2018). 
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Figure 2.8 Evolutionary history of the bmp gene cluster in Pseudoalteromonas. Abbreviated species 
phylogeny represented as a cladogram indicating ancestral BGC composition and inferred evolutionary 
history of each gene (colored lines). Versions of the BGC (A, C, D, or E) observed in different lineages 
with evolutionary events indicated as maintenance, loss, or modification. Loss includes complete or partial 
deletion of the BGC. An insertion in bmp1 is the only modification observed (indicated with a star). 

 

During the course of this study, gene clusters related to bmp were detected in 

sponge cyanobacterial symbionts (Agarwal et al. 2017). While these gene clusters have 

yet to be fully characterized, they include bmp5-7 homologs, which encode the 

production of PBDEs, but not the genes required to make brominated pyrrole molecules 

or pentabromopseudilin. These results suggest that an even more complex evolutionary 

history remains to be resolved for the bmp gene cluster in marine bacteria. 
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Remarkable new insight is being gained into the evolutionary processes that drive 

the biosynthesis of specialized metabolites (Lind et al. 2017; Ruzzini and Clardy 2016; 

Medema et al. 2014). These studies have helped reveal the dynamic processes of gene 

gain, loss, and degradation (Letzel et al. 2017) and how subtle changes in regulatory 

genes can have substantial effects on both gene expression and compound production 

(Amos et al. 2017). This study adds to the growing number of examples in which the 

evolutionary history of a biosynthetic gene cluster provides insight into the processes that 

establish lineage specific chemical diversity (Freel et al. 2011). Biosynthetic gene 

clusters evolve rapidly and while there are multiple versions of the bmp cluster found in 

marine bacteria, selection seems to be favoring the maintenance of version A, which 

enables the biosynthesis of bioactive molecules such as pentabromopseudilin (1) (Fehér 

et al. 2010; Fischbach, Walsh, and Clardy 2008). It is also possible that loss of the ability 

to produce this bioactive compound is complemented by the products of an unrelated 

BGC, as was shown with siderophore biosynthetic gene clusters in marine actinomycetes 

(Bruns et al. 2017). Bioinformatic analyses have become powerful predictors of chemical 

phenotypes, as there was a perfect correlation between the version of the BGC detected 

and BNP production among the strains analyzed here. With continued access to more 

strains and genome sequences, it will likely become possible to infer the evolutionary 

events that led to the acquisition of the bmp gene cluster in Pseudoalteromonas. 
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3.1 Abstract 

Pentabromopseudilin is a bioactive marine natural product isolated from several 

Pseudoalteromonas species. While its antimicrobial activity has been reported, the 

mechanism of action for the molecule remains unknown. Using bacterial cytological 

profiling techniques in conjunction with cell viability assays, we show that the primary 

phenotype observed in pentabromopseudilin-treated E. coli ATCC 25922 cells was 

membrane permeability, which increases over time and with compound concentration. 

Infections caused by Gram-negative bacteria present a therapeutic challenge because 

antibiotics cannot act on these pathogens due to their highly impermeable outer cell 

membrane. Therefore, potentiator molecules are often administered concurrently to 

increase the efficacy of antibiotics. Despite its observed potentiation of antibiotics against 

E. coli cells, pentabromopseudilin is highly cytotoxic and thus, is not a good candidate 

for therapeutic applications. However, this function may provide a selective advantage 

for strains that produce other antibiotics. 

3.2 Introduction 

The antimicrobial natural product pentabromopseudilin (PBP) was first 

discovered from a marine bacterium over 50 years ago (Burkholder, Pfister, and Leitz 

1966) (Figure 3.1). However, it wasn’t until recently that the biosynthetic gene cluster 

(BGC) attributed with the production of PBP, the bmp gene cluster, was identified 

(Agarwal et al. 2014). The bmp cluster encodes the biosynthesis of numerous compounds 

including brominated phenols, pyrroles, homodimers (both phenol and pyrrole), as well 

as the heterodimer PBP. The BGC and suite of brominated metabolites has been reported 
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in multiple Pseudoalteromonas strains as well as a single Marinomonas mediterranea 

strain (MMB-1) (Agarwal et al. 2014). 

 
Figure 3.1 Pentabromopseudilin 
 

While the potent bioactivity of PBP has been reported, little is known about its 

mechanism of action (MOA). One study suggested that PBP inhibits myosin motor 

activity, thus possibly explaining the cytotoxicity, but there is no known mechanism of 

action for its antibiotic properties (Fedorov et al. 2009). The IC50 value of PBP for MRSA 

was determined to be 0.1 µM (±0.18) and bioactivity of the compound has also reported 

against the marine bacteria Photobacterium phosphoreum and Chromobacter sp. (Fehér 

et al. 2010; Andersen, Wolfe, and Faulkner 1974). 

To investigate the MOA of PBP, bacterial cytological profiling (BCP) was used. 

This technique can be used to identify the cellular targets of antimicrobial molecules in 

both Gram-positive and Gram-negative bacteria and can accurately predict their MOA 

(Nonejuie et al. 2013). Unlike other methods to identify the MOA of antibacterial 

compounds, BCP requires a very small amount of compound and results can be generated 

very quickly. In this study, BCP revealed increased membrane permeability in response 

to PBP concentration and exposure time, thus indicating that the major cellular target in 

E. coli ATCC 25922 is the cell membrane. 
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3.3 Materials and Methods 

3.3.1 Minimal inhibitory concentration determination 

The minimal inhibitory concentration (MIC) of PBP was determined against E. 

coli ATCC 25922 using the broth microdilution method according to the guidelines 

outlined by the Clinical and Laboratory Standards Institute. Abdhesh Kumar synthesized 

pentabromopseudilin with a shortest route by Suzuki coupling of Boc protected pyrrole 

boronic acid with anisole and then deprotection of Boc and methoxy group by sodium 

methoxide and anhydrous sodium sulfide respectively. And finally, bromination with 

pyridinium tribromide gave pentabromopseudilin. 

A single colony was picked from a plate of E. coli ATCC 25922 (on LB incubated 

at 30°C overnight) and added to 5 mL of LB broth in a culture tube and incubated 

overnight at 30°C while rolling at maximum speed (80 rpm). A series of 100-fold 

dilutions were prepared from the overnight culture in a culture tube with 5 mL of LB then 

incubated at 30°C while rolling at max speed (80 rpm) until the OD600 reached 0.2 – 0.4 

(log phase growth). LB broth was added to sterile flat-bottom 96-well plates as follows: 

200 µL in column 1 rows A-H, 100 µL in all other wells. A 2 mM stock of PBP in 

DMSO was added to wells corresponding to column 1 rows A-H to final concentrations 

of 22, 21.875, 21.6, 21.4, 21.2, 21, 20.6, and 20 µM respectively. A series of two-fold 

dilutions consisting of 100 µL from column 1 rows A-H, mixed with column 2 rows A-H 

were created to incorporate all wells except those in columns 11 and 12 rows A-H. 

Finally, a volume of 1 µL of log phase cells diluted to 0.05 OD600 was added to every 

well except those in column 12 (negative control, LB only). Column 11 served as the 

positive control and contained only cells and media. The OD600 at time 0 was recorded 
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using a TECAN plate reader. The plates were incubated at 30°C with shaking at 220 rpm 

for 18-24 hours. The OD600 reading from T0 was subtracted from the T18-24 values and 

the lowest concentration at which there was no growth (OD600 < 0.06) was the MIC value.  

3.3.2 Bacterial Cytological Profiling (BCP)  

Cell cultures in early log phase (OD600 0.15-0.17) were treated with 1/8, 1/4, 1/2, 

1, 2, 4, 8x MIC concentrations of pentabromopseudilin and incubated at 30°C while 

rolling at max speed (80 rpm). Three hundred microliters of cells were collected for 

imaging after 10 min, 30 min, 1 h, and 2 h of PBP treatment and stained with 1 µL of a 

dye mixture to achieve the following dye concentrations: 1 µg/mL FM-464 (red, 

membrane), 2 µg/mL DAPI (blue, DNA), and 0.5 µM SYTOX Green (green, DNA, 

impermeable to intact membranes) (Pogliano et al. 1999). Stained cells were then 

transferred to 1.6 mL microfuge tubes, centrifuged for 30 seconds at 3,300 x g, and 14 µl 

of the supernatant removed to concentrate the cells, which were re-suspended and 

transferred to an agarose pad (1.2 % agarose, 20% LB medium) for fluorescence 

microscopy. Six images were taken for each concentration at every time point. 

Fluorescence microscopy was performed as previously described with the same exposure 

time for each wavelength maintained throughout every experiment (Lamsa et al. 2016).  

3.3.3 Viability counts 

At each imaging time point, 10 µl of cells was added to 90 µl of 1X Tbase (10X 

Tbase = 20g (NH4)2SO4, 140 g K2HPO4, 60 g KH2PO4, 10 g Na3Citrate�H2O per L) in a 

96-well plate and serially diluted 1:10 to a final dilution of 10-8. Five µl of each dilution 

was pipetted onto LB agar media. The plates were incubated at room temperature 
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overnight, then checked for growth. Colony counts were multiplied by the volume plated 

and dilution factor to calculate colony forming units (CFU) per ml. 

3.3.4 Membrane permeability quantification 

Cell permeability was quantified using a custom script in MATLAB version 

R2017b. The SYTOX Green intensity per pixel was measured in a total of 25,288 cells 

across all pentabromopseudilin concentrations and time points. Intensity was determined 

using the membrane outline, and then subtracted by its own background intensity. The 

analysis only included measurements of the dye within intact cells. 

3.3.5 Cytotoxicity assay 

Cytotoxicity to H-460 human lung carcinoma cells was measured as cell viability 

using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction 

method (Alley, M.C., Scudiero, D.A., Monks, P.A., Hursey, M.L., M.J., Fine, D.L., 

Abbott, B.J., Mayo, J.G., Shoemaker, and M.R. 1988). Evgenia Glukhov performed these 

experiments.  

3.4 Results & Discussion 

3.4.1 Cytological profiling of cells treated with pentabromopseudilin 

The MIC values for PBP against E. coli ATCC 25922, Bacillus subtilis PY79, and 

a E. coli Δtolc strain AD3644 were determined to be 5.47 µM, 0.093 µM, and 0.219 µM 

respectively. Only the wild type E. coli strain (ATCC 25922) was selected for BCP 

experiments. E. coli ATCC 25922 cultures were treated with 1/8X (0.68 µM), 1/4X (1.37 

µM), 1/2X (2.73 µM) 1X (5.47 µM), 2X (10.94 µM), 4X (21.88 µM), and 8X (43.75 µM) 

MIC concentrations of PBP and harvested cells were stained with FM, DAPI, and 

SYTOX Green for imaging at 10 min, 30 min, 1 hr, and 2 hr time points. The primary 
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phenotype observed was permeability to SYTOX Green, which suggests that PBP 

increases membrane permeability (Figure 3.2, Figure 3.3). Interestingly, at the higher 

concentrations of PBP tested, permeability was observed after only 10 min. While 

membrane permeability is not a unique phenotype, PBP doesn’t cause the cells to lyse as 

readily as other compounds with the same MOA such as detergents (Mohammad et al. 

2017). Additionally, at the 8X MIC concentration (43.75 µM), it appears that the DAPI 

fluorescence decreases and the chromosomes appear to de-condense, suggesting that PBP 

may also be targeting DNA in cells. 

3.4.2 Quantification of cell membrane permeability 

In addition to identifying the predominant phenotype of PBP treated cells, we 

were interested to know if this phenotype developed in a dose-dependent manner and 

how membrane permeability changed over time. To answer these questions the SYTOX 

Green intensity was quantified in a total of 25,288 cells across eight different 

concentrations and four time points (Table 3.1). For all treatments, the SYTOX Green 

intensity in E. coli cells increased as concentrations of PBP increased (Figure 3.4). The 

cells that were incubated with less than the MIC concentration (<5.47 µM) showed no 

increase in membrane permeability over the course of two hours. The cells treated with 

the 1X MIC concentration of PBP displayed very low levels of permeability for the first 

hour, but after 2 hours, the SYTOX Green intensity increased. At the higher 

concentrations (greater than 1X MIC), the cells are permeable at the first time point 

(Figure 3.4). The dye only enters cells with compromised membranes, thus its intensity is 

a measurement of cell permeability. At concentrations greater than the MIC of PBP over 

longer periods of time, the cells began to lyse and released the dye. Since the SYTOX 
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Green intensity was only measured inside the boundaries of the cells, this is why the 

signal decreases over time at some of the higher concentrations. Overall, the 

quantification of the SYTOX Green intensity results suggest that membrane permeability 

increases with dose and time.  

While the results of this study clearly show that PBP increases E. coli cell 

membrane permeability, the specific mechanism of this activity remains unclear. One 

explanation is that PBP is simply a highly lipophilic molecule and thus is capable of 

untargeted membrane disruption. The logarithm of the ratio of the partition coefficient 

(P) is one metric used to measure the lipophilicity or hydrophobicity of a compound; the 

higher the value the more lipophilic the molecule. The logP value of PBP is 4.8 

(calculated using ChemDraw version 16.0). Because the molecule is lipophilic, it’s 

possible that its mechanism of increasing membrane permeability is simple membrane 

disruption rather than targeting a specific cellular pathway. However, further studies are 

needed to support this hypothesis.  

 

 
Figure 3.2 Bacterial cytological profiling of E. coli ATCC 25922 treated with pentabromopseudilin at 
concentrations greater than or equal to the MIC value. 
 

E. coli ATCC25922 treated with Pentabromopseudilin

Untreated 2x MIC [10.94 μM] 4x MIC [21.88 μM]1x MIC [5.47 μM] 8x MIC [43.75 μM]

10 min

30 min

1 hr

2 hr
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Figure 3.3 Bacterial cytological profiling of E. coli ATCC 25922 treated with pentabromopseudilin at 
concentrations less than the MIC value. 
 
 
Table 3.1 SYTOX Green intensity cell counts 
Time Untreated 0.68  

µM 
1.37  
µM 

2.73  
µM 

5.47  
µM 

10.94  
µM 

21.88  
µM 

43.75 
µM 

Total 

10 min 262 1275 234 926 833 756 1116 347 5749 
30 min 1443 1896 266 1272 880 603 428 316 7104 
1 hr 563 1377 1037 608 546 646 295 127 5199 
2 hrs 2212 2277 544 315 708 473 249 458 7236 
Total 4480 6825 2081 3121 2967 2478 2088 1248 25288 

 
Table 3.2 Average SYTOX Green intensity values 
Time Untreated 0.68  

µM 
1.37  
µM 

2.73  
µM 

5.47  
µM 

10.94  
µM 

21.88  
µM 

43.75 
µM 

10 min 36.95 16.12 19.43 48.55 62.6 1875.58 4021.23 4514.18 
30 min 20.41 36.28 31.28 49.05 124.71 2343.63 7442.46 6859.10 
1 hr 17.81 17.81 41.50 105.41 158.80 971.90 3741.96 4073.03 
2 hrs 35.122 22.31 26.34 53.53 931.29 931.29 2233.19 4536.04 

 

10 min

30 min

1 hr

2 hr

E. coli ATCC25922 treated with Pentabromopseudilin

Untreated 1/4x MIC [1.37 μM] 1/2x MIC [2.73 μM]1/8x MIC [0.68 μM]
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Figure 3.4 SYTOX Green intensity of E. coli ATCC 25922 cells treated with pentabromopseudilin over 
time. 
 
3.4.3 Pentabromopseudilin-treated cell viability 

Cell viability assays were performed in parallel with the cytological profiling 

experiments. The amount of culture available for viability assays was limited due to the 

concurrent BCP experiments; therefore, the assays were not replicated. E. coli ATCC 

25922 cells were harvested at the same time points as the cultures used for microscopy, 

diluted and plated on LB medium. Cell counts were normalized by calculating the ratio of 

CFUs/mL in the treated cultures to the untreated culture at time zero. The values were 

graphed as log(CFU/mL) over time (Figure 3.5). As expected, increasing the 

concentration of PBP caused a decrease in E. coli colony forming units (CFUs). Cell 

viabilities for the 1/2X and 1X PBP MIC concentrations were nearly identical. At the 4X 

and 8X MIC concentrations of PBP, a steep decrease in CFUs/mL was observed after 

only 10 minutes, indicating that cell viability is rapidly lost at these high concentrations. 
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The slight increase observed in the 4X MIC treated culture may be due to cell recovery, 

development of resistance, or error. To further explore these results, the experiments 

should be repeated including longer time points and replicate plate counts. 

 
Figure 3.5 The viability of PBP-treated cells represented as log(CFU/mL) vs. time in minutes. 
 
3.4.4 The potentiation of pentabromopseudilin 

To test the effects of pentabromopseudilin on membrane permeability, 

potentiation assays were performed with vancomycin and erythromycin. Most Gram-

negative bacteria including E. coli are intrinsically resistant to these antibiotics because 

their outer membranes are not permeable to large glycopeptides. This mechanism of 

resistance presents a challenge for the treatment of infections caused by Gram-negative 

bacteria. Therefore, potentiator molecules are often used in conjunction with antibiotics 

to disrupt the outer membrane and enhance drug efficacy (Zabawa et al. 2016). 
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The MIC values of vancomycin and erythromycin were determined for E. coli 

ATCC 25922. The same strain was then incubated with the antibiotics and sub-MIC 

(>5.47 µM) concentrations of PBP to test for antibiotic potentiation. The MIC value for 

vancomycin was 250 µg/mL with no added PBP, 158.3 µg/mL with 1 µM PBP added, 

and 124 µg/mL with 2 µM PBP added (Figure 3.6). The MIC value for erythromycin was 

91.7 µg/mL with no added PBP, 44.8 µg/mL with 1 µM PBP added, and 23.7 µg/mL with 

2 µM PBP added (Figure 3.7). These results suggest that PBP potentiates the activity of 

PBP vs. E. coli ATCC 25922 and lowers the MIC of erythromycin by 74%. The 

potentiation effect of PBP on cells treated with vancomycin lowered the MIC by 50%. 

This is likely because the antibiotic is a large molecule (1449.3 g/ml) and nearly twice the 

size of erythromycin. To verify that the sub-MIC concentrations of PBP were not 

responsible for the decreased MIC values, the average OD600 of the positive control wells 

(cells with PBP but no antibiotic) were calculated as a percentage of the values from cells 

with no PBP added (Figure 3.8). Minimal decreases in cell density of 7% for 1 µM PBP 

and 6% for 2 µM PBP were observed, supporting the conclusion that the lowered MIC 

values were largely due to the antibiotics, not the potentiator molecule. 

Pentabromopseudilin was tested for cytotoxicity against a human lung cancer cell 

line (H460) and found to have an IC50 value of 480 ±70 nM. Because of it’s highly 

cytotoxic activity, PBP would not likely be an ideal candidate for therapeutic use. 

However, it may play an important ecological role in bacterial strains that produce the 

compound if they also produce other antibiotics. The BGC responsible for the production 

of PBP has been identified in several Pseudoalteromonas species, a very diverse and 

ubiquitous group of marine bacteria. Strains from this genus are often isolated from 
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biofilms on both living and abiotic surfaces in the ocean, implying that they live in close 

association with other microbes (Skovhus et al. 2004; Skovhus et al. 2007). It is possible 

that the bacterial strains capable of synthesizing PBP may also produce other, more 

potent antibacterial compounds, and a small amount of PBP production enhances the 

potency of other secondary metabolites. The potentiation concept has not been described 

for Pseudoalteromonas and very little research has been done in this area for 

environmental bacteria. In addition to their therapeutic applications, identifying 

potentiator molecules may mediate microbial population dynamics in biofilms.  

 

 Figure 3.6 Vancomycin potentiation assay of E. coli ATCC 25922.  
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Figure 3.7 Erythromycin potentiation assay of E. coli ATCC 25922. 
 

 
Figure 3.8 Percent growth based on OD600 ratio of untreated E. coli ATCC 25922 cells to cells treated with 
PBP. The sub-MIC concentrations had minimal effects on culture density after 24 hours.  
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4.1 Abstract 

Species in the Pseudoalteromonas genus of marine bacteria have been well 

studied for their production of bioactive compounds but very few gene clusters have been 

linked to specific molecules. In this chapter, bioactivity assays of chemical extracts, 

genome mining for biosynthetic genes, and molecular networks were employed to 

explore the secondary metabolite potential of five Pseudoalteromonas species. Chemical 

extracts from all strains tested displayed some level of activity against B. subtilis PY70 

with strains 2ta16 and PS5 displaying the most bioactivty. The genomes analyzed in this 

study were rich with biosynthetic gene clusters, only a very small number of which could 

be assigned predicted products. Similarly, the MS/MS molecular networks revealed 

numerous compounds that could not be identified. These results highlight the genus as a 

largely untapped resource of undiscovered bioactive secondary metabolites. 

4.2 Introduction 

Pseudoalteromonas is a genus of obligate marine bacteria that has been isolated 

from nearly every marine sample type including seawater, rock surfaces, and eukaryotic 

host organisms and multiple species have been reported to produce bioactive molecules 

compounds (Skovhus et al. 2004; Isnansetyo and Kamei 2003b; Offret et al. 2016). An 

interesting correlation has been observed between pigmentation and bioactivity in various 

species, and in the case of violacien, the pigment itself displays antibacterial activity 

(Egan et al. 2002; Huang et al. 2011; Thøgersen et al. 2016).  

Despite the extensive research exploring the bioactive potential of 

Pseudoalteromonas species, very few molecules have been isolated and even fewer 

BGCs have been experimentally characterized. One BGC that has been investigated in 
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great detail both as a part of this thesis as well as previous studies is the bmp cluster. 

Each of the bmp genes has been experimentally characterized and the suite of compounds 

produced by the cluster is well known (Agarwal et al. 2014). Additionally, the bioactivity 

of some of the brominated metabolites was established prior to the discovery and 

description of the BGC (Isnansetyo and Kamei 2009). Another bioactive compound 

produced by a Pseudoalteromonas strain is YP1, a member of the tambjamine group for 

which the biosynthetic gene cluster has been proposed based on the results of a functional 

genomic study (Burke et al. 2007). Tambjamines have been isolated from nudibranchs, 

ascidians, and bryozoans, but P. tunicata was the first marine bacteria with confirmed 

production of these bioactive compounds (Blackman and Li 1994; Carbone et al. 2010; 

Lindquist and Fenical 1990).  

Pseudoalteromonas is ubiquitous in the marine environment with species isolated 

from both poles and everywhere in between (Al Khudary et al. 2008; Bozal et al. 1997). 

The abundance and distribution of Pseudoalteromonas strains associated with eukaryotic 

hosts has been studied, but there is a very limited understanding of the specific ecological 

roles of these bacteria or the specific molecules they produce (Skovhus et al. 2004). In 

this regard, perhaps the most well studied metabolite produced by Pseudoalteromonas 

strains is tetrabromopyrrole, a product of the bmp gene cluster. The brominated pyrrole 

induces the settlement and development of coral larvae and is an example of a synergistic 

relationship between a microbial secondary metabolite and a eukaryotic host (Tebben et 

al. 2011; Sneed et al. 2014). It’s also possible that Pseudoalteromonas produce 

compounds that function as feeding deterrents for seaweeds, filter feeders, and other 

invertebrates, but no studies have established these roles to date. Many of the bioactive 
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compounds produced by Pseudoalteromonas species may be used to ward off other 

bacteria that are competing for space on the surface of or nutrients from larger eukaryotic 

marine organisms. It has also been hypothesized that producing antimicrobial compounds 

in biofilms helps keep the community diversity high by ensuring that there isn’t a single 

winning species of bacteria (Rao, Webb, and Kjelleberg 2005). 

The aims of this study were to evaluate the metabolite production of five 

Pseudoalteromonas species and identify known bioactive compounds. Additionally, the 

genomes were mined for BGCs using antiSMASH v3.0 (Weber et al. 2015) to investigate 

the biosynthetic potential of the strains. The bioactive metabolite production of each 

strain was assessed by testing the crude extracts as well as fractions in disc diffusion 

assays and these results were mapped onto molecular networks. Although there were only 

a small number of dependable library hits for the chemical data, there are many candidate 

novel molecules, especially in strain 2ta16 worthy of further investigation. The number of 

biosynthetic gene clusters found in Pseudoalteromonas genomes vastly outnumbers the 

molecules reported. In the present study, bioactivity-guided assays in combination with 

chemical analysis and genome mining help identify strains and BGCs of interest. 

4.3 Materials and Methods 

4.3.1 Strain growth and chemical extractions 

Five Pseudoalteromonas strains were used in this study: 2ta16, 2ta6, O-BC30, 

A757, and PS5. Each strain was grown in 1 L of marine broth (5 g peptone, 1 g yeast 

extract, 22 g/L instant ocean) for 24 hours at 30°C with agitation (230 rpm). All of the 

strains were grown with and without 1 g/L of KBr supplemented in the media. Adding 1 

g/L of KBr to marine broth medium can help increase the production level of brominated 
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molecules, making them easier to detect by LC/MS. The liquid cultures were extracted 

twice with equal volumes of ethyl acetate (EtOAc) and the combined extracts were dried 

in vacuo. Media controls of the same volume (1 L) were also extracted using the same 

methods. The crude extracts were weighed and re-suspended in HPLC-grade MeOH to a 

concentration of 10 mg/mL for use in disc diffusion assays and LC-MS analysis. 

4.3.2 Fractionation of crude extracts 

Between 20-30 mg of crude extract generated from the 

five Pseudoalteromonas strains used in this study were fractionated using normal phase 

flash chromatography. Only crude extracts without 1 g/L of KBr added to media were 

fractionated because the bioactivity assay results showed no relationship between KBr-

supplemented media and increased activity of extracts. A step-wise gradient of a series of 

solvent compositions were passed through a column packed with Silica sorbent (particle 

size 40-60 µm, pore size 60 Å, mesh 230-400, Agela Technologies) in order of increasing 

polarity in 10 mL volumes: 1) hexane, 2) 1:3 ethyl acetate (EtOAc):hexane, 3) EtOAC, 4) 

5:95 methanol (MeOH):dichloromethane (DCM), 5) 1:4 MeOH:DCM, 6) 1:1 

MeOH:DCM, 7) MeOH, 8) MeOH. The fractions were dried under a stream of nitrogen 

gas, weighed, and re-suspended in HPLC-grade MeOH at a concentration of 2 mg/mL for 

use in disc diffusion assays and LC-MS analysis. 

4.3.3 Disc diffusion assays 

The crude extracts and media controls (with and without KBr added) were serially 

diluted 1:10 in MeOH and 20 µL of each concentration (10 mg/mL, 1 mg/mL, 0.1 

mg/mL, and 0.01 mg/mL) and solvent controls added to sterile paper discs and allowed to 

dry. 10 mL liquid cultures of the test strains, ATCC 25922 (E. coli) and PY79 (Bacillus 



 75 

subtilis) were inoculated from overnight cultures into 10 mL of LB at and shaken at 230 

rpm until an OD600 between 0.2-0.4 (exponential phase) was reached. 100 µL of each 

strain was then spread onto three replicate LB plates and the discs placed directly on the 

media. The assay plates were incubated for 24 hours at 37°C and the radii of zones of 

inhibition were measured and reported. The fractions were tested at 2 mg/mL against the 

Bacillus subtilis PY79 strain.  

4.3.4 Chemical analyses of crude extracts and fractions 

Samples were analyzed on an Agilent 1260 Infinity LC system equipped with a 

diode array detector and coupled with a Bruker amaZon SL ion-trap mass spectrometer. 

Extracts were prepared in MeOH at a concentration of 2 mg/mL and 5 µL was injected 

onto a Phenomenex Kinetex C18 column (5 µm, 100 Å, 150 mm x 4.6 mm) coupled to a 

C18 guard cartridge and eluted using a gradient of acetonitrile (ACN) and water (H2O). 

Solvents were prepared with 0.1% formic acid when acquiring data in positive mode. The 

flow rate was 0.75 mL/min beginning with an isocratic hold of 5% ACN for 3 min, 

followed by a gradient from 5-100% ACN over 10 min and a 4 min isocratic hold at 

100% ACN. The column was re-equilibrated with a gradient from 100-5% ACN over 1 

min before the next injection. Solvent control injections (10 µL of MeOH) were 

performed after every fourth sample for crudes and every eighth sample for fractions. The 

LC flow was sent to the source between minutes 5-17 and the remaining time was 

diverted to waste. 

Mass spectra were collected using Ultrascan mode over a range of 70-2200 m/z 

and speed of 32500 m/z per second. Molecular ions were generated using electrospray 

ionization (ESI) with the following parameters: Capillary 3500 V, end plate offset 500 V, 
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nebulizer 2.0 bar, dry gas 9 L/min, and dry temp 250 °C. Ion charge control was 

implemented with the following settings: Target 200000, max accu time 100 ms, range 

100-2000 m/z, and 3 averages. Tandem MS was collected using auto MS/MS mode with 

n = 2 and set to collect two precursor ions that are excluded after acquisition of two 

spectra with the exclusion released after 1.0 minutes. UV absorption was detected using 

ultraviolet and visible lamps over a range of 190-800 nm with a step of 2.0 nm. 

4.3.5 Molecular Networking 

A molecular network was created using the online workflow at GNPS 

(https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp). The data were filtered by 

removing all MS/MS peaks within +/- 17 Da of the precursor m/z. MS/MS spectra were 

window filtered by choosing only the top 6 peaks in the +/- 50Da window throughout the 

spectrum. The data was then clustered with MS-Cluster with a parent mass tolerance of 

2.0 Da and a MS/MS fragment ion tolerance of 0.5 Da to create consensus spectra. 

Further, consensus spectra that contained less than 2 spectra were discarded. A network 

was then created where edges were filtered to have a cosine score above 0.7 and more 

than 6 matched peaks. Further edges between two nodes were kept in the network if and 

only if each of the nodes appeared in each other's respective top 10 most similar nodes. 

The spectra in the network were then searched against GNPS' spectral libraries. The 

library spectra were filtered in the same manner as the input data. All matches kept 

between network spectra and library spectra were required to have a score above 0.7 and 

at least 6 matched peaks 
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4.4 Results 

4.4.1 Bioactivity of Pseudoalteromonas extracts 

In this study, extract from Pseudoalteromonas strains 2ta16, 2ta6, O-BC30, A757, 

and PS5 were tested for bioactivity and their genomes were mined for BGCs (Table 4.1). 

These strains were selected for their accessibility for culture work as well as available 

genome sequences. Strain O-BC30 is the P. phenolica type strain and the other four 

strains used in this study were classified based on the results reported in Chapter 2 of this 

thesis. Strain 2ta16 and A757 are proposed novel species, PS5 has been classified as P. 

peptidolytica, and P. elyakovii, P. piscicida, and strain 2ta6 are the same species based on 

their ANI values (Figure 2.2, Figure 2.3).  

 
Table 4.1 Pseudoalteromonas strains used in study. 
Strain ID Genome Accession number Classification 
2ta16 AUSV00000000 Pseudoalteromonas sp. 
2ta6 2505119014 (JGI) Pseudoalteromonas elyakovii/piscicida 
O-BC30 RCWG00000000 Pseudoalteromonas phenolica 
A757 QNQN00000000 Pseudoalteromonas sp. 
PS5 RCSQ00000000 Pseudoalteromonas peptidolytica 

 

The crude extracts from each strain, grown with and without 1 g/L of KBr added 

to the media, were tested in disc diffusion assays using E. coli ATCC 25922 and B. 

subtilis PY79 as test strains. The only extracts displaying bioactivity against E. coli were 

generated from 2ta16 and PS5 (Table 4.2, Figure 4.1). Pseudoalteromonas strain PS5 

displayed bioactivity against E. coli when grown with and without the bromine 

supplement, however, only the extract from 2ta16 grown without KBr added to media 

was active. The average zone of inhibition produced by strain 2ta16 was 0.83 mm while 

the crude extracts of PS5 had average zone of inhibition of 2.17 mm and 1.33 with and 
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without KBr added, respectively. None of the extracts were active against E. coli ATCC 

25922 at concentrations lower than 10 mg/mL. 

 All of the Pseudoalteromonas crude extracts were active against B. subtilis PY79 

(Figure 4.1). Both crude extracts from strain 2ta16 were again the most active resulting in 

a zone of inhibition of 6.3 mm for the culture grown without KBr and 5 mm for the 

culture with KBr added. PS5 was also highly bioactive against the Gram-positive strain, 

with the extract from the KBr-supplemented culture producing a larger ZOI, consistent 

with the assay results with the E. coli strain. There was no observed difference in the 

activity of extracts from A757 with and without KBr added, while both O-BC30 and 2ta6 

were slightly more active when grown in KBr-supplemented media. The only strain with 

a bioactive extract against B. subtilis PY79 at concentrations lower than 10 mg/mL was 

2ta16 (Table 4.3, Figure 4.2). At all of the lower concentrations tested, the 2ta16 extracts 

from the cultures grown without KBr added to the media were more active than those 

grown with added bromine. 
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Figure 4.1 Disc diffusion assay results for Pseudoalteromonas crude extracts at 10 mg/mL concentration. 
E. coli ATCC 25922 and B. subtilis PY79 were the test strains. Activities reported as the diameter of the 
region of no growth surrounding the disc. 
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Figure 4.2 Disc diffusion assay results for strain 2ta16 crude extracts at lower concentration. B. subtilis 
PY79 was the test strain. 
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without KBr added to the media (Figure 4.3, Figure 4.4). Interestingly, in both the 

positive and negative mode data, there were several molecular families that were 

exclusive to certain strains; every strain except for 2ta6 has at least one molecular family 

comprised of strain-specific nodes (Figure 4.5, Figure 4.6). These strain-specific 

molecular families were also correlated with the bioactivity results (Figure 4.7, Figure 

4.8).  

A total of six library hits were identified for mass spectra acquired in negative 

mode and 16 in positive mode (Table 4.4). Bromoalterochromide A was detected in the 

crude extracts with 17 shared peaks and a cosine value of 0.87. There was a reasonable 

match for an Arenimycin-like compound, most likely an analogue of Arenimycin A.  
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Figure 4.3 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in negative mode. Each node is colored based on media type and GNPS library hits are indicated with a 
black square.  
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Figure 4.4 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in positive mode. Each node is colored based on media type and GNPS library hits are indicated with a 
black square  
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Figure 4.5 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in negative mode. Each node is colored based on strain and GNPS library hits are indicated with a black 
square.  
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Figure 4.6 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in positive mode. Each node is colored based on strain and GNPS library hits are indicated with a black 
square.  
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Figure 4.7 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in negative mode. Each node is colored based on bioactivity and GNPS library hits are indicated with a 
black square. Red colored nodes represent fragments from a crude extract that was active against PY79 
while those from extracts active against both strains are indicated in purple. 
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Figure 4.8 Molecular network of crude extracts from strains 2ta16, O-BC30, PS5, A757, and 2ta6 acquired 
in positive mode. Each node is colored based on bioactivity and GNPS library hits are indicated with a 
black square. Red colored nodes represent fragments from a crude extract that was active against PY79 
while those from extracts active against both strains are indicated in purple. 
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Table 4.2 GNPS library hits found in Pseudoalteromonas crude extracts. The asterisk (*) refers to spectral 
matches, not direct library hits.  

Compound Name Shared 
peaks 

MassDiff Mode Cosine Precursor 
mass 

phenazine-1-carboxylic acid 6 0.656006 negative 0.79 225.656 
*Spectral Match to 1-Myristoyl-
2-hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

6 0.895996 negative 0.82 425.145 

Pesticide3_Iprovalicarb Isomer 
1_C18H28N2O3_Isopropyl 
[(2S)-3-methyl-1-{[1-(4-
methylphenyl)ethyl]amino}-1-
oxo-2-butanyl]carbamate 

6 1.34799 negative 0.79 344.547 

PE(16:1/0:0); [M-H]- 
C21H41N1O7P1 

8 0.0690002 negative 0.84 451.201 

MLS001195659-01 sumatriptan 8 0.864014 negative 0.81 297.002 
2,4-dihydroxyheptadec-16-enyl 
acetate 

6 1.71301 negative 0.73 325.541 

xenorhabdin 1 6 0.0429993 positive 0.72 313.06 
phenylethylamide 343 8 0.260986 positive 0.74 344.555 
UHQ C11:1 aka 2-undecenyl-
quinoloin-4(1H)-one position of 
double bond unknown 

7 0.0759888 positive 0.85 298.293 

TriamcinoloneAcetonide 6 0.842041 positive 0.96 892.252 
*	Spectral Match to Palmitoleoyl 
3-carbacyclic phosphatidic acid 
from NIST14 

6 1.968 positive 0.73 217.242 

*	 Spectral Match to 
Monopalmitolein (9c) from 
NIST14 

11 0.505005 positive 0.82 311.765 

*Spectral Match to D-erythro-
C18-Sphingosine from NIST14 

6 0.0950012 positive 0.81 300.189 

*Spectral Match to 11-
Deoxyprostaglandin F1.alpha. 
from NIST14 

6 1.98502 positive 0.73 321.271 

*	Spectral Match to 1-Palmitoyl-
2-hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

7 1.72601 positive 0.89 474.551 

*	Spectral Match to 1-Palmitoyl-
2-hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

7 1.931 positive 0.73 452.362 

Simvastatin 6 1.24896 positive 0.92 860.785 
PE(18:0/0:0); [M+H]+ 
C23H49N1O7P1 

6 1.27103 positive 0.82 482.588 

NCGC00385643-
01_C20H30O3_1-
Phenanthrenecarboxylic acid, 7-
ethenyl-
1,2,3,4,4a,4b,5,6,7,9,10,10a-
dodecahydro-9-hydroxy-1,4a,7-
trimethyl- 

6 0.778015 positive 0.90 340.431 
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Table 4.2 GNPS library hits found in Pseudoalteromonas crude extracts (continued).	
Compound Name Shared 

peaks 
MassDiff Mode Cosine Precursor 

mass 
HHQ aka 2-heptylquinolin-
4(1H)-one 

6 0.352005 positive 0.86 243.818 

Bromoalterochromide A/A' 17 0.80304 positive 0.87 867.477 
35212-22-7 (Ipriflavone) 6 1.20599 positive 0.75 282.323 

 

4.4.3 Bioactivity of fractions vs. PY79 

Crude extracts from the five Pseudoalteromonas strains were separated into eight 

fractions using flash chromatography. Because there was no consistent or substantial 

difference in the bioactivity between the extracts from strains cultured with and without 

KBr-supplemented media, only the extracts with no added KBr were fractionated. The 

fractions were re-suspended in MeOH to a final concentration of 2 mg/mL and tested for 

bioactivity in a disc diffusion assay with B. subtilis as the challenge strain. 

The majority of the strains had no active fractions while nearly all of the 2ta16 

fractions (Fractions 3-8) resulted in zones of inhibition (Figure 4.9). Fraction 5 of 2ta16 

was the most active with an average ZOI of 4.83 mm. Additionally, PS5 had a single 

active fraction (fraction 2) with an average ZOI of 1.17 mm, and it was the only strain for 

which fraction 2 was active. Fraction 1 was not active for any of the strains at the tested 

concentration.  
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Figure 4.9 Disc diffusion assay results for 2ta16 active fractions at 2 mg/mL concentration. B. subtilis 
PY79 was the challenge strain. 
 

4.4.4 LC-MS analysis of Pseudoalteromonas fractions 

To identify molecular families associated with observed activity, all eight 

fractions from strains 2ta16, PS5, and 2ta6 were analyzed using LC-MS and the data was 

used to construct molecular networks. The results include entire molecular families as 

well as subsets of larger families that are exclusive to strains 2ta16 or PS5 (Figure 4.10, 

Figure 4.11). No molecular families specific to strain 2ta6 were observed. These results 

suggest that strains 2ta16 and PS5 both produce distinct molecules, some of which are 

active against B. subtilis PY79. 

The samples acquired in positive mode revealed a library hit for 

bromoalterochromide that displayed 19 shared peaks and a cosine value of 0.92 when 

compared with the library spectrum. There was also a reasonable match for the antibiotic 
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chloramphenicol (6 shared peaks, cosine = 0.81). Alteramide B, a compound previously 

isolated from Pseudoalteromonas (Shiroyama et al. 2017), was found with nine shared 

peaks and a cosine value of 0.73 with the library spectrum. The same fractions acquired 

in negative mode did not produce any reliable library hits.  
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Figure 4.10 Molecular network of fractions from strain 2ta16, PS5, 2ta6 acquired in negative mode. The 
red coloring on nodes indicates the proportion of spectra from active fractions. The molecular families (or 
sections of molecular families) highlighted in purple represent molecular ions found exclusively in strain 
2ta16. Those in blue are restricted to strain PS5. GNPS library hits are indicated with a black square.  
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Figure 4.11 Molecular network of fractions from strain 2ta16, PS5, 2ta6 acquired in positive mode. The 
red coloring on nodes indicates the proportion of spectra from active fractions. The molecular families (or 
sections of molecular families) highlighted in purple represent molecular ions found exclusively in strain 
2ta16. Those in blue are restricted to from strain PS5. GNPS library hits are indicated with a black square. 
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4.4.5 Biosynthetic gene clusters in Pseudoalteromonas genomes 

The antiSMASH results show that the five strains used in this study contain 

diverse and distinct biosynthetic gene clusters. In total, 147 BGCs belonging to 19 

biosynthetic classes were identified in the five genomes. The analysis was run with 

ClusterFinder in order to detect all BGCs, including the bmp gene cluster in strains A757, 

PS5, O-BC30, and 2ta16. However, this resulted in the annotation of a large number of 

“putative/other” gene clusters (Table 4.6).  

Strain 2ta16 contains the most gene clusters with a total of 36, followed by PS5 

with 34, 2ta6 with 29, A757 with 25, and O-BC30 with 23. After the putative/other 

BGCs, the next most abundant were fatty acid gene clusters with 19 total found in the 

five strains. All of the strains except O-BC30 contain at least two type 1 PKS-NRPS 

cluster and NRPS gene clusters were found in all five Pseudoalteromonas strains. Many 

of the remaining classes of BGCs were distinct for each strain. For example, a single type 

1 PKS was found in the PS5 genome and a type 3 PKS was found only in strain 2ta16. 

No type 2 PKS clusters were found in the genomes. 

While the genome mining results reveal a substantial number of BGCs in the 

Pseudoalteromonas strains used in this study, the majority of do not have similar known 

gene clusters or predicted products. However, each strain had several gene clusters with 

various levels of gene similarity BGCs with known products. The only BGC with a high 

level of gene similarity in strain O-BC30 was the bromophenols/bromopyrroles (bmp) 

cluster (Table 4.7). As expected, 100% of the bmp genes are similar because the strain 

contains all 10 genes identified as part of the BGC. The same result is observed in 2ta16, 

another Pseudoalteromonas strain with the gene cluster (Table 4.10). The results from 
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Chapter 2 of this thesis indicated that strains A757 and PS5 are known to contain an 

abbreviated version of the bmp cluster with only six of the 10 genes present in the 

genome, which is consistent with the 60% gene similarity identified by the antiSMASH 

analysis (Table 4.8, Table 4.9). 

Table 4.3 Genome mining analysis summary for five Pseudoalteromonas genomes. The number of BGCS 
in each cluster type identified by antiSMASH v3.0 is listed for the five Pseudoalteromonas strains. 
BGC type O-BC30 A757 2ta6 PS5 2ta16 Total 
Putative/other 12 12 12 13 17 66 
Fatty acid 4 4 4 3 4 19 
Bacteriocin 2 2 3 2 2 11 
Saccharide 2 1 1 4 2 10 
T1PKS-NRPS 0 3 2 5 3 13 
NRPS 1 1 3 4 2 11 
Fatty acid-saccharide 0 1 0 0 0 1 
Thiopeptide 0 0 1 0 0 1 
Arylpolyene-NRPS 0 0 0 1 0 1 
Lantipeptide 1 1 0 1 0 3 
TransAT PKS-Lantipeptide 0 0 0 0 1 1 
Lantipeptide-NRPS 0 0 1 0 0 1 
T1 PKS 0 0 0 1 0 1 
H-Ser Lactone Acyl amino acids 0 0 0 0 1 1 
Acyl amino acids 0 0 1 0 0 1 
NRPS-Ladderane 0 0 1 0 1 2 
TransAT PKS-NRPS 1 0 0 0 1 2 
Indole-T3 PKS 0 0 0 0 1 1 
TransAT PKS-Other KS-NRPS 0 0 0 0 1 1 
Total 23 25 29 34 36 147 

 

PS5 and 2ta6 show 100% and 77% gene similarity respectively to the 

alterochromide cluster, which was previously identified and characterized in 

Pseudoalteromonas (Ross et al. 2015) (Table 4.9, Table 4.11). The genome for strain 

2ta16 contains BGCs with 50% gene similarity to the bromoalterochromide cluster, 80% 

similarity to the violacien cluster, and 100% similarity to the thiomarinol cluster (Table 

4.10). The gene cluster for the pigment Violacien was expected because the strain is a 

dark purple color. Thiomarinol is a known antibiotic and the BGC has previously been 

described in Pseudoalteromonas (Murphy et al. 2014).  
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Table 4.4 Similar known biosynthetic gene clusters to those found in strain O-BC30. The cluster number is 
an arbitrary numbering system used by antiSMASH to distinguish between BGCs of the same type. The 
percentage of shared genes between the BGC and the most similar known cluster is reported.  
Cluster 

No. 
Type Most similar known cluster % gene 

similarity 
MIBiG BGC-ID 

7 Putative O-antigen 10 BGC0000788_c1 
9 NRPS Vibriobactin 18 BGC0000945_c1 
12 Saccharide O&K-antigen 6 BGC0000780_c1 
15 PBDE Bromophenols/bromopyrroles 100 BGC0000890_c1 
19 Putative Myxochelin 16 BGC0001345_c1 
20 Trans AT PKS-NRPS Kalimantacin 10 BGC00001099_c1 
 
Table 4.5 Similar known biosynthetic gene clusters to those found in strain A757. The cluster number is an 
arbitrary numbering system used by antiSMASH to distinguish between BGCs of the same type. The 
percentage of shared genes between the BGC and the most similar known cluster is reported. 
Cluster 

No. 
Type Most similar known cluster % gene 

similarity 
MIBiG BGC-ID 

3 Saccharide O-antigen 23 BGC0000791_c1 
14 T1PKS-NRPS Serobactins 23 BGC0000424_c1 
17 Putative Bromophenols/bromopyrroles 60 BGC0000891_c1 
20 Putative Fengycin 13 BGC0001095_c1 
22 Putative Bacillomycin 20 BGC0001090_c1 
 
Table 4.6 Similar known biosynthetic gene clusters to those found in strain PS5. The cluster number is an 
arbitrary numbering system used by antiSMASH to distinguish between BGCs of the same type. The 
percentage of shared genes between the BGC and the most similar known cluster is reported. 
Cluster 

No. 
Type Most similar known cluster % gene 

similarity 
MIBiG BGC-ID 

2 Putative Fengycin 13 BGC0001095_c1 
4 T1PKS-NRPS Turnerbactin 23 BGC0000451_c1 
14 Arylpolyene-NRPS Alterochromides 77 BCG0000299_c1 
18 Putative Bromophenols/bromopyrroles 60 BGC0000890_c1 
19 Saccharide O&K-antigen 8 BGC0000780_c1 
20 T1PKS-NRPS Pyoverdine 2 BGC0000413_c1 
21 T1PKS-NRPS Syringomycin 11 BGC0000437_c1 
25 NRPS Bromoalterochromides 14 BGC0000314_c1 
26 Other Bromoalterochromides 21 BGC0000314_c1 
 
Table 4.7 Similar known biosynthetic gene clusters to those found in strain 2ta16. The cluster number is an 
arbitrary numbering system used by antiSMASH to distinguish between BGCs of the same type. The 
percentage of shared genes between the BGC and the most similar known cluster is reported. 
Cluster 

No. 
Type Most similar known cluster % gene 

similarity 
MIBiG BGC-ID 

2 Saccharide O&K-antigen 13 BGC0000780_c1 
11 TransAT PKS-

Lantipeptide 
Cystobactamide 8 BGC0001413_c1 

17 NRPS-Ladderane Bromoalterochromides 50 BGC0000314_c1 
18 NRPS Turnerbactin 23 BGC0000451_c1 
23 TransAT PKS-NRPS Kalimantacin/batumin 10 BGC0001099_c1 
25 Putative Bromophenols/bromopyrroles 100 BGC0000891_c1 
28 Fatty acid Xenocyloins 25 BGC0000189_c1 
34 Indole-T3 PKS Violacein 80 BGC0000831_c1 
36 TransAT PKS-Other 

KS-NRPS 
Thiomarinol 100 BGC0001115_c1 
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Table 4.8 Similar known biosynthetic gene clusters to those found in strain 2ta6. The cluster number is an 
arbitrary numbering system used by antiSMASH to distinguish between BGCs of the same type. The 
percentage of shared genes between the BGC and the most similar known cluster is reported. 
Cluster 

No. 
Type Most similar known cluster % gene 

similarity 
MIBiG BGC-ID 

11 Ladderane-NRPS Alterochromides 100 BGC0000299_c1 
13 NRPS Bacillibactin 60 BGC0001185_c1 
15 Saccharide O-antigen 16 BGC0000784_c1 
29 Putative Bacillomycin 20 BGC0001090_c1 
 
4.5 Discussion 

The results of this study indicate that Pseudoalteromonas strains are rich in yet to 

be characterized biosynthetic gene clusters with no known products, suggesting they have 

the potential to produce novel bioactive molecules. A number of Pseudoalteromonas 

species are known to produce bioactive molecules, however, only a handful of specific 

structures have been elucidated and even fewer of the responsible gene clusters have been 

identified. Even when the gene cluster for a known bioactive molecule was identified in 

the genome, it was likely not the only active compound produced by that strain. For 

example, 2ta16 contains the BGC for thiomarinol, a known antibiotic (Murphy et al. 

2014; Shiozawa et al. 1993; Murphy et al. 2014). However, six of the eight fractions 

tested from this strain were bioactive, suggesting that there are multiple compounds 

responsible for the observed activity. No molecular families were found only in strains 

grown with or without KBr added to the media, which indicates that while supplementing 

the media can increase the level of production for some brominated compounds, it most 

likely does not result in an increased diversity of brominated metabolites.  

Pseudoalteromonas is an ideal organism to study because it is ubiquitous in the 

marine environment, thus facilitating the collection of environmental isolates. The strains 

can be readily cultured and most species thrive under laboratory conditions, allowing for 

the rapid generation of chemical extracts and other samples. This study has confirmed the 
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immense potential for Pseudoalteromonas as an important player in marine natural 

products research and identified strains and BGCs of interest. Generating more sequence 

data from different species distributed across the genus, mining genomes for BGCs, and 

performing subsequent chemical analyses, will help to further illuminate the biosynthetic 

capacity of this genus. An in-depth comparative study of annotated BGCs using a 

phylogenetic approach will help identify which clusters are homologous or distinct and 

will provide a greater understanding of the secondary metabolite diversity in 

Pseudoalteromonas. Additionally, applying techniques such as TAR-cloning to 

characterize interesting BGCs in addition to performing isolation studies, may lead to the 

identification of novel bioactive compounds from this genus of marine bacteria 

(Yamanaka et al. 2014). 
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Chapter 5: Concluding Remarks 
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Marine bacteria have proven to be a rich source of bioactive secondary 

metabolites. A group of specific interest and focus of this dissertation is 

Pseudoalteromonas, a genus of marine bacteria found throughout the ocean environment. 

The work presented in this dissertation explores the diversity and distribution of the bmp 

gene cluster and is specifically focused on one of its products, pentabromopseudilin. The 

bioactivity and mechanism of action in bacteria was tested for this toxic metabolite as 

well as testing a diverse sample of Pseudoalteromonas strains for their potential to 

produce interesting molecules.  

Defining the species phylogeny of bacteria is crucial to understanding the 

distribution and evolution of BGCs. In chapter 2 of this dissertation, the most complete 

and well-supported species tree for Pseudoalteromonas was generated and used as a 

powerful tool to infer the evolution of a biosynthetic gene cluster. Over 100 

Pseudoalteromonas genomes were mined for the bmp cluster and the results were 

mapped onto the species phylogeny to identify groups within the genus having the 

potential to produce the suite of brominated molecules encoded by the BGC. Chapter 3 

looks closely at the cellular target of pentabromopseudilin in an E. coli strain and the 

viability of cells treated with different concentrations of the molecule over time. Finally, 

in chapter 4, the broad bioactivity of metabolites from five Pseudoalteromonas species 

was assessed. There still remains a great deal of research to be done on 

Pseudoalteromonas and the biologically active compounds they produce, but this work 

includes a foundation on which to build future studies of this genus and the interesting 

molecules they make.  
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The accessibility and affordability of genome sequencing has played a significant 

role in facilitating comparative genomics studies including the exploration of secondary 

metabolite gene cluster diversity and evolution. Additionally, genome mining tools 

including antiSMASH are constantly being improved to enable the investigation of 

bacterial biosynthetic potential. While sequence data is critical for genome mining and 

the identification of BGCs and a comparative study could be conducted using all 

currently available genome sequences, having access to the strains themselves for 

experimental use is equally important for natural product research. Only by increasing the 

number of genomes sequenced for Pseudoalteromonas available strains or alternatively, 

acquiring strains with published genomes from their respective collections, the secondary 

metabolite profile of the genus can be established. Expanding on the research presented 

in this dissertation, it would be interesting to sequence the genomes of more 

Pseudoalteromonas genomes to explore the diversity of their BGCs across the genus. 

While this can already be done with the large number of publically available genomes, 

it’s challenging to form hypotheses from genomic data without the organisms being 

experimentally available and vice versa. Having access to strains with genome sequences 

presents endless possibilities for future studies.  

With an increase in available genome sequence data and taxonomic certainty 

comes an overwhelming number of interesting biosynthetic gene clusters to explore. In 

this area of research, there is a substantial bottleneck between the identification of BGCs 

and identifying the molecules they encode. While success with methods such as TAR-

cloning can be experimentally difficult, tools such as this are absolutely critical and with 
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time, perseverance, and perhaps a little luck, we can slowly start to assign orphan gene 

clusters their respective natural products.  
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