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ABSTRACT OF THE DISSERTATION

CPU Side-Channels: New Attacks and Applications

by

Daimeng Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2020

Dr. Zhiyun Qian, Chairperson

CPU micro-architectural side-channels, or CPU side-channels in short, have gained

plenty of attention recently. Many existing works have proved that classical CPU side-

channel attacks (e.g. Prime+probe [81] and Flush+reload [105]) as well as recently-discovered

attacks (e.g. Spectre [65], Meltdown [71], Zombieload [90]) are practical and effective against

cryptographic libraries. However, it’s in our belief that CPU side-channels have more po-

tential and can be utilized in a wider variety of attacks and applications.

In our work, we strive to push the capacity of existing CPU side-channel attacks

and apply them for novel attacks and applications, and in the meanwhile discovering new

research aspects. More specifically, 1) we propose the concept of a prime+probe attack

to extract onscreen keyboard inputs on Android, 2) we design and implement an auto-

mated approach to augment prime+pro be attack in the environment of aggressive cache

prefetching and demonstrate significant improvement over traditional prime+probe attack,

3) we design a machine-learning-based system to automatically discover execution timing

side-channels in graphics rendering libraries and using flush+reload attack to exploit them
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on multiple platforms, evaluate using real-world applications and demonstrate its ability

to infer sensitive user input with high accuracy, 4) we propose to use CPU side-channels

as feedback to fuzzing when target binary cannot be modified and performed some initial

evaluations, 5) we propose to use improve the coverage discovery rate of kernel fuzzing with

reinforcement learning, implement it around Syzkaller [9] and significantly improve its cover-

age growth fuzzing Linux kernel. Ultimately, we demonstrate that CPU side-channels have

great potentials and can be practically applied in many attacks and applications. Moreover,

researching CPU side-channel attacks and applications can sometimes lead to interesting

new research aspects.
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Chapter 1

Introduction

CPU side-channels can be exploited to extract sensitive information using attacks

such as Flush+reload [105] and Prime+probe [81]. These attacks can be launched by any

user-space process and are able to bypass cross-process and even cross-VM boundaries.

They have been widely used to extract secret keys from cryptographic algorithms including

AES [94, 81, 62, 54] and El-Gamal [73]. Recently, the emergence of new CPU side-channels

such as Spectre [65], Meltdown [71] and Zombieload [90] brought more much-needed atten-

tion to this security threat. The majority of researches on CPU side-channels focuses on

extracting secret information from cryptographic algorithms, with several expectations such

as [51]. However, the basic concepts of CPU side-channels are very general. Often times,

the only requirement of CPU side-channel attacks is to have a co-residence malware with

no special privilege. The same threat model that applies to existing cryptographic attacks

can also apply to many other scenarios. As a result, there’s bound to be a wider variety of

possible attacks and applications utilizing CPU side-channels.
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Launching a successful CPU side-channel attack is not a trivial task and faces the

following challenges:

1. The capacity of such attacks are heavily impacted by CPU architecture, with features

crucial to a successful attack (e.g. cache hierarchy, replacement policy) often not

well-documented. Researchers put considerable efforts into understanding and reverse

engineering these CPU features [58, 76, 25] but there are many other features that

are not thoroughly studied yet.

2. Most CPU side-channels are timing side-channels, which means attackers can only

infer the inner state of CPU by measuring the execution time of specific operations.

Timing measurements are often subject to noise and can be affected by many external

sources such as background processes, memory access speed, etc.

3. It is extremely challenging to discover vulnerable software code that is affected by

known CPU side channels. Researchers often need to utilize their domain knowledge

and manually analyze the program to identify these vulnerable codes. Traditional

program vulnerability discovery approaches such as static/dynamic analysis are not

designed to effectively discovering CPU side-channel vulnerabilities.

In this dissertation, we strive to push the capacity of existing CPU side-channel

attacks, apply them for novel attacks and applications and address the challenges mentioned

above. Specifically, we conduct the following studies:

1. We propose the concept of using a prime+probe attack to extract onscreen keyboard

inputs on Android via its graphic buffer mechanism. We identified and studied several

2



challenges and sub-problems of this attack, one of which eventually leads to study #2.

See Chapter 2 for more details.

2. We design and implement an automated approach to augment prime+probe attack

in the environment of aggressive cache prefetching. We demonstrate our augmented

prime+probe attack on real-world systems using the cache side-channel vulnerability

(CSV) metric. We show that our approach doubles the information leakage compared

to traditional prime and probe implementations. See Chapter 3 for more details.

3. We discover a novel type of execution timing side-channels in graphic rendering li-

braries. We design a machine-learning-based system to automatically discover these

side-channels. We use flush+reload attack to exploit them on multiple platforms and

predict users’ sensitive text input with high accuracy. See Chapter 4 for more details.

4. We propose to use CPU side-channels as feedback to fuzzing when the target binary

cannot be modified. We implement this idea around Syzkaller [9] kernel fuzzer and ob-

tained some interesting observations, which sparks our idea of study #5. See Chapter

5 for more details.

5. We propose SyzVegas to dynamically choose the right fuzzing task in conjunction with

the right seed, in Syzkaller [9]. Towards this, we model the specific fuzzing tasks as a

multi-armed-bandit problem, which allows the system to learn the effective strategies

and adapt over time, using a novel, yet intuitive reward assessment model to capture

benefits and costs. See Chapter 6 for more details.
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1.1 Background

1.1.1 CPU Caches

Programs often have temporal and spatial locality, i.e., the most recently accessed

memory addresses, as well as nearby addresses, are often accessed in the near future. To

exploit locality, modern architectures use CPU caches to store recently accessed memory.

A CPU cache is often organized into multiple levels with different sizes and access speeds.

For example, on Intel CPUs, there are commonly three levels of caches: L1, L2 and L3,

with L1 being the fastest and the smallest and L3 being the largest and the slowest. On

multi-core CPUs, lower levels of caches such as L2 and L3 are often shared among multiple

CPU cores.

Modern CPU caches are organized using a set-associative policy. This policy di-

vides the cache into multiple cache sets and each cache set contains several cache lines.

When the CPU accesses memory, the memory address is indexed into a cache set. The

CPU checks all cache lines in this set to identify the presence of the cache line holding the

memory address.

Inclusiveness. Lower levels of the cache (L2, L3) can be configured with different

inclusion policies. The most common policies are inclusive, exclusive, “non-inclusive non-

exclusive” (NINE). Lower levels of the cache are considered inclusive if all the memory

blocks present in the upper levels of the cache are also present on the lower levels. The

lower levels of the cache are considered exclusive of the higher levels of cache if all the

memory blocks present on the higher level of cache are not present on the lower level of

cache. Otherwise. it is considered NINE.

4



Prefetching. Programs often access their memory in a predictable order. For

example, when memory accesses and loads the predicted contents into the CPU cache before

they are actually accessed. For example, Intel CPUs implement a streaming prefetcher that

could prefetch up to 20 cache lines ahead of the cache line currently being accessed [6].

1.1.2 Shared Libraries

A program library is a collection of subroutines that are available for immediate use

by other programs. Since the functionalities provided by these libraries are very commonly

required, they are designed to be shared across multiple user programs. These libraries can

be mapped to the address space of a user program by the linker when the user program

prepares for execution. A library can also be loaded in the middle of an execution of a user

program when it explicitly requests that the library be loaded. Regardless of the case, the

contents in the library are mapped into the user program’s address space.

Operating systems use shared memory to improve the memory utilization efficiency

with regards to these libraries. For example, common libraries (.so on Linux, .dll on

Windows) are often shared across all processes linking them. This means that these libraries

are loaded into physical memory only once and remain there for the entirety of the OS

session. For every process which loads a library, the library will be mapped to a different

virtual address in the memory space of the process. However, when different processes

access the same library, the same physical memory pages will be accessed.

5



1.1.3 Prime+probe Side-channel Attack

When a process loads a memory block from the cache, the access time is relatively

short. If the accessed memory block is not present in the CPU cache, the process will

need to load that block from memory (or a lower level of the cache), which is slower. This

creates a timing side-channel for attackers to infer the current state of CPU cache, and thus

perform attacks on the victim process. One of such attack is Prime+probe [81].

The prime+probe attack relies on the cache indexing and the replacement policy

being known or discoverable. First, the attacker occupies (primes) all cache lines in a

specific cache set with a set of memory blocks. If the victim process accesses memory that

is indexed into the same cache set, one or more cache lines that the attacker previously

occupied will be evicted based on the cache replacement policy. As a consequence, the

attacker can then read (probe) the memory blocks previously occupying the cache set, check

whether an eviction just happened and thereby infer the victim’s activity. The prime+probe

attack can work even when there is no shared memory between the attacker and the victim

processes. However, since the size of the CPU cache is usually much smaller than the

memory. thousands of different memory blocks can be mapped to the same cache set. This

makes the prime+probe attack very noisy, especially on devices where many processes are

running at the same time.

1.1.4 Flush+reload Side-channel Attack

Flush+reload [105] attack usually targets shared libraries. The attacker first picks

a memory block in the shared libraries and flushes it out of the CPU cache. On Intel CPUs,

6



this can be done using the CLFLUSH instruction. If the victim process executes code that

resides in the same memory block, it will load the memory block back into the CPU cache.

Subsequently, the attacker accesses (reloads) the memory block, and checks whether it was

loaded back into the CPU cache and thereby infers the victim’s activity.

The flush+reload attacker does not have to consider issues of multiple memory

blocks mapping on to the same cache set. Only the access of the exact memory block will

produce a cache hit with the attacker’s reload. This property makes the flush+reload attack

substantially more precise than the prime+probe attack. In addition, the flush instruction

supported by most architectures (e.g., CLFLUSH for Intel CPUs) is faster than executing

sufficient memory accesses to occupy an entire cache set (needed by the prime), making

flush+reload both more accurate and faster than prime+probe. The only drawback is that

the flush+reload attack requires shared memory between the attacker and the victim but

this property holds in our scenario.

On some CPU architectures such as ARM, cache flush instruction is not available

to user programs. However, an attacker can still “evict” a cache line by accessing a set of

memory blocks that are mapped to the same cache set. Gruss et.al. [72] demonstrated

that evict+reload attack can be as effective as flush+reload.

1.1.5 Fuzzing

Fuzzing, or fuzz testing, is an automated software testing technique to discover

software vulnerabilities. The goal of a fuzzer provides unexpected, or random data as

inputs to the tested compute program to achieve a higher degree of code coverage and/or

reveal bugs. In order to create valid input, fuzzers can apply either generation or mutation.
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Figure 1.1: Architecture of Syzkaller.

A generation-based fuzzer (e.g. [43]) takes the well-defined input model provided by the user

to generate inputs from scratch. The efficiency of such fuzzers are affected by the quality of

input model. A mutation-based fuzzer (e.g. [18]) leverage existing valid inputs (aka. corpus

seeds) and generates inputs by modifying (mutating) the valid input. Some fuzzers such

as [9, 86] are capable of utilizing both strategies.

Many state-of-art fuzzers such as AFL [18], libFuzzer [22] and Syzkaller [9] often

utilizes gray-box fuzzing or coverage-guided fuzzing. A gray-box fuzzer utilizes instrumen-

tation to obtain information of the internal structures of the program. Fuzzer use these

information to guide its fuzzing strategy in order to achieve better code coverage. Com-

paring to blind black-box fuzzing and program analysis-based white-box fuzzing, gray-box

fuzzing has a reasonable performance overhead while informing the fuzzer about the code

coverage during fuzzing, making it very efficient in detecting software vulnerabilities.
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1.1.6 Syzkaller

Created by Google, Syzkaller [9] is the state-of-art kernel fuzzer. It is initially

developed for fuzzing Linux kernel but later extends to support other OS kernels as well.

Syzkaller is a grey-box fuzzer that relies on the kernel to provide code coverage information.

Despite this, it can also be configured to run under black-box fuzzing mode. Syzkaller

supports both generation and mutation. It comes with a comprehensive system call template

including information on argument types and inter-system-call dependencies.

Figure 1.1 shows the architecture of Syzkaller. There are three key components:

syz-manager, syz-fuzzer and syz-executor. syz-manager runs on the host machine

and serves as the supervisor of the entire fuzzing process. It launches and manages guest

VMs/devices, syz-fuzzer processes, and maintains the seed corpus and crashes database.

If there are multiple fuzzer VMs/devices, syz-manager provides some degree of synchro-

nization between them.

syz-fuzzer runs on the VM/device to be fuzzed. It handles the fuzzing logic

(e.g. generation, mutation), creating programs (a sequence of system calls) and launch

syz-executor processes to test the program. Once launched, syz-executor executes the

program and interact with the code coverage component (e.g. kcov [20] for Linux) of the OS

kernel, sending observed coverage back to syz-fuzzer. On Linux, the coverage is measured

in number of edges between basic blocks. syz-fuzzer then analyze the coverage, comparing

it to existing coverage. If new coverage is achieved, syz-fuzzer proceeds to analyze the

program, attempts to create a seed program, and send seed program back to syz-manager.
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1.1.7 Multi-armed Bandit Problem

Multi-armed Bandit (MAB) problem is a classic reinforcement learning problem.

In this problem, a gambler must play a number of competing slot machine arms (choices) in

a way that maximizes their expected gain. Each arm’s properties are only partially known

at the time of playing, and may become better understood as the arm is played more. The

MAB problem is a classic example of the tradeoff between exploration and exploitation.

One notable variant of MAB problem is the is called the Adversarial Bandit, first

introduced by Auer and Cesa-Bianchi in 1995 [27]. In this variant, the slot-machine arms

are controlled by an adversary who is capable of altering the reward of each arm during

every play. As one of the strongest generalizations of the MAB problem, adversarial bandit

problem requires its solution to react quickly to the changing rewards of each arm.

1.2 Related Work

Prime+Probe: There has been an abundance of existing work on prime+probe CPU

cache side-channel attacks. The Advanced Encryption Standard (AES) is the first to fall

victim to prime and probe attack [81, 94, 62] where attackers were able to recover victim’s

memory accesses of AES lookup table, inferring the secret key. Prime and probe attack is

also used to break other mechanisms such as El-Gamal [73]. Zhang et al. [109, 108] show

that prime and probe attacks can even cross VM boundaries and perform cross-tenant

attacks on PaaS (Platform as a Service) clouds. Moreover, prime+probe attack is shown

to work not only on Intel CPUs but also other architectures such as ARM [70] and even

well-sandboxed environments like browsers [78].
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Flush+Reload: Flush+reload attack was first introduced by Yuval et al. [105]. In

their work, the authors demonstrate that the flush+reload attack can be used to attack

encryption applications such as GnuPG. Gulmezoglu et al., [54] design and showcase an

improved flush+reload attack on AES. On ARM CPUs and Intel CPUs with non-inclusive

LLC, there have been solutions that primarily leverage the cache coherency protocol among

different last-level caches. For example, it was recently shown that the latest non-inclusive

last-level cache employed by x86 CPUs can also be attacked [104]. Several researchers

demonstrate the possibility of performing cache side-channel attacks on ARM. Zhang et

al., [107] design and implement a return-oriented flush+reload attack on ARM. Both works

utilize the cache coherency policy to monitor victim applications’ instruction cache access

and we adopted a similar methodology. Gruss et al., [72] perform a systematic study on

cache side-channel attacks on the ARM architecture, discussing both the prime+probe and

the flush+reload attacks.

Other CPU side-channel attacks: Recently, researchers are paying more attention to the

implications of CPU optimizations (e.g. prefetcher, branch predictor, etc) on side-channel

attacks. Gruss et al. [48] show that prefetch instructions from Intel and ARM CPUs can be

utilized to infer sensitive information and break KASLR. Evtyushkin et al. [39] and Wang et

al. [101] show that branch predictors can be exploited to attack secure systems such as SGX.

The most well-known works in this area are Spectre [65] and Meltdown [71] attacks that

utilize CPU’s speculative execution feature to steal sensitive information from the kernel

or other processes. Shin et al. [91] show that CPU cache stride prefetching introduces a

side-channel that can be exploited against the ECDH algorithm in OpenSSL.
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Effect of prefetching: There have been a few studies on the prefetcher’s effect on cache

side-channel attacks. Tromer et al. [94] is the first to acknowledge CPU prefetching’s inter-

ference on prime and probe attack and propose a linked-list structure of eviction set and

pointer-chasing technique to suppress the prefetcher. This technique is widely adopted in

almost all known prime and probe implementations. Fuchs et al. [42] demonstrate that it

is possible to defend prime and probe attacks by applying disruptive prefetching techniques

to obfuscate victim’s memory footprint.

Automated side-channel discovery: There are studies on the automated discovery of

cache side-channels. Gruss et al. [51] proposes a cache template attack which aims to

discover input-dependent cache line accesses automatically in shared libraries. Gorka et al.,

[59] utilize dynamic taint analysis to locate cache side-channels in crypto libraries. Wang

et al., [100] model the cache behavior and use symbolic execution in conjunction with their

model to discover crypto-related vulnerabilities.

Applying reinforcement learning to fuzzing: Researchers have attempted to apply re-

inforcement learning techniques to improving fuzzing efficiency. Woo et al. [103] use MAB al-

gorithm to perform crash-based seed selection for black-box fuzzing within a fixed run/time

budget. Patil et al. [84] treat the problem of assigning rewards the fuzzing iterations to a

test case as a “Contextual Bandit” problem. Böttinger et al.,[31] use Q-learning [102] to

learn a policy for choosing mutation operators. Karamcheti et al. [61] apply what is called

a Thompson Sampling, bandit-based optimization approach to fine-tune the mutation op-

erator distribution. MOpt [74] utilized a customized Particle Swarm Optimization (PSO)

algorithm to determine the optimal distribution of mutation operators.
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Seed selection optimizations for fuzzing: Researchers have also focused on optimizing

different mutation strategies. Rebert et al. [87] explored several different seed selection

algorithms and measured their qualities using linear programming. DigFuzz [110] uses a

Monte-Carlo-based algorithm to prioritize favorable paths, and determine the seeds that

are more valuable for future mutations. AFLFast [30] treats fuzzing as a Markov chain

problem, modeling the probability that fuzzing the seed that exercises one path, generates

an input that exercises another path.

Kernel fuzzing: Syzkaller provides a great foundation for coverage-based kernel fuzzing.

There are several works built upon it, to improve kernel fuzzing from different aspects.

FastSyzkaller [69] combines Syzkaller with an N-Gram model, to optimize the test case

generation process. Moonshine [83] tries to improve the quality of the initial seeds in

Syzkaller by “distilling” seeds from system call traces of real-world programs. RAZZER [60]

combines fuzzer and static analysis, to detect race bugs in kernel. Difuze [38] utilizes static

analysis to compose correctly-structured inputs in the userspace, to explore kernel drivers.

Besides Syzkaller, there exist other fuzzers for OS kernels. Trinity [24], iknowthis [19],

KernelFuzzer [21], and sysfuzz [23] are built with hard-coded rules and grammars. kAFL [88],

TriforceLinuxSyscallFuzzer [47], TriforceAFL [57], on the other hand, are based on or in-

spired by AFL.
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Chapter 2

Prime+Probe Attack Against

Android Graphic Buffers

This chapter documents our research on using prime+probe attack against An-

droid graphic buffers.

2.1 Introduction & Intuition

In graphic rendering, it’s common pratice that graphic buffers be maintained to

store rendered graphics before pushing them to the display. For graphic architectures such

as Linux X Window System [12] and Microsoft Windows, such buffers are maintained by

a system process or the kernel itself. Other platforms such as Linux Wayland [11] and

Android lets the applications maintain its own buffers while system services are dedicated

to compositing graphic buffers from multiple applications.
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Figure 2.1: Android Graphic Buffer and Side-channel

Figure 2.1 demonstrates a example of Android graphic buffer if an Input Method

Editor (IME) application (aka. onscreen keyboard). The process maintains three graphic

buffers in its memory and alternating them when an UI change occurs. When part of the UI

need to be updated, the process will update the modified part of its current graphic buffer,

submit the buffer to the dedicated system graphic service and setting the next graphic buffer

as the current buffer.

It is worth noting that for IME applications, different user input often result in

different part of the UI being updated. This creates a side-channel for a local attacker to

exploit. If the attacker can monitor what part of the graphic buffer is being updated, attack

can infer user’s sensitive input.

As a result we propose to use prime+probe attack to extract user’s sensitive input

from graphic buffers of IME application, as shown in Figure 2.2. As demonstrated by

previous research [81, 94, 62], prime+probe attack is effective in monitoring what part of
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Figure 2.2: Prime+probe attack on Android graphics buffer

the CPU cache has been accessed by the victim. When user presses a key on IME process,

the IME process will often render a highlight effect of the pressed key. During this process,

the IME process will make a partial update to its graphic buffer. Such update will eventually

be made to the physical memory containing the graphic buffer, as well as the corresponding

cache sets in the CPU’s unified last-level cache (LLC). Different keypress will result in

different part of the graphic buffer being modified, thus touching different subsets of CPU

LLC. As a result, the attacker monitoring the CPU LLC can observer what part of the LLC

is being touched by the IME app, thus inferring user’s input.

In order to implement an end-to-end attack, there’re several technical challenges

that must be addressed:

1. Prime+probe entire LLC in a single run. Graphic rendering is triggered by the

victim user and happens only once per keypress. Thus it is essential that the attacker

be able to monitor the entire CPU LLC during the process, unlike previous researches

(e.g. [108]) that relies on repeatedly launching victim for a large number of times.
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This is not straightforward as prime+probe is impacted by the CPU data prefetcher.

We manage to address this technical challenge in our research in Chapter 3.

2. Construct physical mapping. CPU LLC is often physically indexed. In order

to perform the attack, it’s essential that a unprivileged attacker knows the virtual-

to-physical mapping of the IME process’s graphic buffer. On Asus Zenfone 2, we

managed to reverse-engineer its graphic buffer allocation driver and trick it into al-

locating physical memory space designated by the attacker. We also propose to use

prime+probe attack in combination with the CFS scheduler attack [52] to infer the

physical address of the graphic buffers during their initialization.

3. Slowing down the rendering. The rendering time of highlighted key can range

from 0.01 to 0.35 microseconds. However, occupying and probing 1-2 MB of CPU LLC

takes much longer. In addition, the highlighted key-press itself will often result in a

large (> 70% in our experiment) proportion of the CPU LLC being accessed, making

it harder to differentiate between different key presses, especially in the presence of

noise. Therefore, it is necessary to use CFS scheduler attack [52] to slowdown the

rendering process, allowing the attacker to collect multiple measurements.

2.2 Conclusion

According to previous discussions, it is essential to have the ability to slowdown

the victim IME app via CFS scheduler attack. However, Android gives foreground apps and

background apps different scheduling priorities. The CFS scheduler attack can only work

on the IME app (which is a foreground app when being used) when the attacker’s app is
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also a foreground app. The only way to achieve this is through the SYSTEM ALERT WINDOW

permission, which allows a background app (e.g. messenger app) to draw graphic content

(e.g. new message notification) on top of other foreground apps, thus granting it the same

scheduling priority. Unfortunately, Fratantonio et.al [40] has demonstrated that with this

permission, there is a much easier and more reliable approach to steal user’s sensitive input

from IME apps, making our proposed attack obsolete. Despite this setback, we are still

intrigued by our research into this potential attack. Furthermore, this attack gives us the

idea of improving traditional prime+probe attack by allowing it to monitor the entire CPU

LLC at once, which we will introduce in Chapter 3. Finally, on to the topic of attacking

users’ sensitive input, we designed and implemented an end-to-end CPU side-channel attack

from a different angle, which we will introduce in Chapter 4.
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Chapter 3

PAPP: Prefetcher-Aware

Prime+Probe Attack

This chapter documents our research into improving classic CPU cache prime+probe

attacks in the presence of prefetching, which is published in Design Automation Conference

(DAC) 2019. [99]

3.1 Introduction

CPU cache side-channels can be exploited to extract sensitive information [105, 81].

These attacks can be launched by any userspace process and are able to bypass cross-process

and even cross-VM boundaries. The most general of these attacks is Prime and Probe which

has been widely used to extract secret keys from crypto algorithms including AES [94, 81, 62]

and El-Gamal [73]. To successfully implement a prime and probe attack, researchers put

considerable efforts into understanding and reverse engineering CPU features [58, 76, 25]
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One aspect of side-channel attack that has not been well studied is the impact of

the data prefetcher, which speculatively fetches un-accessed cache lines to improve cache

hit rate. The prefetcher adds noise to the side-channel information in two ways: first, the

victim signal has some spurious accesses that are from the prefetcher rather than the appli-

cation. Moreover, the attacker’s prime and probe access patterns are limited since it also

generates unneeded memory accesses from the prefetcher. The effects described above can

substantially interfere with prime and probe attacks. One commonly adopted methodology

is to utilize a linked-list setup of the eviction set [94] to suppress prefetching. By adopt-

ing this approach, an attacker can suppress the prefetcher to the next-line prefetcher only

and thus enable prime and probe of every other cache set. Still, this approach leaves the

attacker missing half of the cache sets, lowering the quality of the leaked signal. To make

things worse, on CPUs with more aggressive prefetching, the attacker might not even be

able to prime and probe every other set, making the attack way less effective. In particular,

in-order processors such as the Intel Atom, which is often used in embedded systems, have

very aggressive prefetchers since cache misses cause substantial performance losses without

the support of out-of-order execution.

In this paper, we develop a new prime and probe attack which we call Prefetcher-

Aware Prime and Probe (PAPP). PAPP reverse-engineers the replacement policy and the

prefetching behavior and generate a prime and probe pattern in an automated fashion.

PAPP mitigates the impact of the prefetcher on prime and probe attacks, substantially

improving their effectiveness (especially in the presence of aggressive prefetchers). Our ex-

periments show that PAPP can almost completely circumvent the effect of cache prefetching
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on in-order CPUs with aggressive prefetching policy, substantially improving the quality of

prime and probe attack.

Our main contributions are:

• We perform a systematic study on the impact of prefetching on prime and probe

attacks. We demonstrate limitations of the existing implementation of prime and

probe attack.

• We present a novel prime and probe strategy aiming to address the effect of prefetch-

ing. We combine the knowledge of replacement policy and cache prefetcher to ef-

fectively circumvent the effect of cache prefetching. We automate the generation of

prime and probe strategy and open-source our implementation at [4].

• We evaluated PAPP on real-world system using cache side-channel vulnerability (CSV)

metric. We show that our approach doubles the information leakage comparing to tra-

ditional prime and probe implementations.

3.2 Background and Motivation

The high cost of memory accesses is one of the fundamental bottlenecks limit-

ing processor performance. Processors use caches (often Set-associative) to store recently

accessed memory in order to compensate this cost. Moreover, modern CPUs exploit pre-

dictable program access patterns using prefetchers that preload memory that is likely to be

accessed in the future [95]. Prefetchers can be quite aggressive, especially in in-order proces-

sors which are often used in embedded applications: in such processors, cache misses cannot
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(a) Initial state (b) Victim’s eviction (c) Signal erased (d) Cache hit

Figure 3.1: Prefetcher’s effect on traditional prime+probe

be compensated for using out-of-order execution. For example, Intel CPUs implement a

streaming prefetcher which could prefetch up to 20 cache lines ahead [6].

Because CPU caches are shared among multiple programs, they become targets of

side-channel attacks [81]. Prime+probe is one of the most general attack strategies because

it does not require shared memory pages with the victim. At high level, the attacker starts

with completely filling (prime) the cache sets she wish to monitor using a carefully chosen

eviction set. When the victim generates memory references, its accesses replace some of

the cache lines in the eviction set filled by the attacker. The attacker can then access the

eviction set again (probe); whenever an access results in a cache miss, she can infer that the

victim has accessed that cache set resulting in her data being replaced.

The most commonly used approach to implement a prime+probe attack is to

sequentially access all cache lines in the same cache set from the eviction set, timing the

total access time [81, 73]. This way, priming and probing are built into one access pattern,

making it efficient to monitor a single cache set.
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Unfortunately, this approach does not work well with multiple cache sets in the

presence of a prefetcher. Figure 3.1 shows an example of a prime+probe attack on 8-way

set-associative cache. First, the attacker primes all cache lines in sets 0,1,2 and waits for

victim’s activity (a). Next, victim’s memory activity evicts cache set 1 (b). In (c), the

attacker starts to prime+probe cache set 0, getting all cache hits due to the lack of victim’s

activity on this set. However, during this process, the prefetcher loads all cache lines from

cache set 1 back, completely erasing the signal created by the victim (d).

This issue cannot be solved by simply going backward in prime+probe order. On

many modern CPUs, the prefetcher can also detect whether an attacker accessing mem-

ory in forward order or backward order, changing prefetching tactics accordingly. Tromer

et. al. [94] attempted to set up a random-order linked-list structure and utilize a pointer-

chasing technique when accessing eviction set memories, suppressing the stream prefetcher

from aggressively loading too many cache sets because of the unpredictable access pat-

tern. However, we find that this approach still cannot completely get around the next-line

prefetching (a standard prefetcher that always brings in the next cache line), especially on

in-order CPUs with more aggressive prefetching. As a result, attackers often compensate for

this prefetching issue by either skipping every other cache set and/or repeatedly conducting

experiments and testing different cache sets each time [109]. In either case, the performance

and precision of prime+probe is severely impacted, potentially making it unusable for CPUs

with aggressive prefetchers.
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Figure 3.2: PAPP Attack Workflow

3.3 PAPP Design and Implementation

We propose Prefetcher-Aware Prime and Probe (PAPP) attack, a prime+probe

attack that overcomes the negative impacts of prefetching. Figure 3.2 demonstrates a high-

level workflow of the attack. Similar to other prime+probe attacks, the attacker first creates

an eviction set. Utilizing this eviction set, PAPP first conducts prefetcher reverse

engineering and replacement policy reverse engineering. Using the obtained profiles

of the prefetcher and replacement policy, PAPP then constructs a probe sequence and

subsequently a prime sequence. PAPP then combines both sequences into a prime+probe

attack that circumvents the interference of the prefetcher.

Specifically, PAPP leverages two new ideas: (1) It first reverse-engineers the re-

placement policy to make the probe sequence possible using only one access to each set

(instead of having to access all the cache lines in each set). As a result, fewer accesses are

generated, leading to less prefetching activities; and (2) It uses probe patterns that avoid

the impact of the prefetcher. Together, the techniques allow for near perfect probing of the

cache, even on in-order CPUs with aggressive prefetching. Although we omit the details due

to space, we are able to automate the construction of these sequences giving our profiling,

24



potentially enabling the attack to be adaptable with little effort to other CPUs. Detailed

implementation of algorithms used by PAPP can be found at [4].

To simplify explanations, and without loss of generality, we assume that the at-

tacker targets a single memory page. We design and implement PAPP attack on Intel

Atom Z3560 and Z3580 and use the L2 cache of Z3580 for demonstration. Intel Atom is

an in-order processor with a unified 16-way set-associative L2 cache. It has a cache line

size of 64 bytes, which means it would require 64 cache sets to cover a 4KB memory page.

We selected the Atom, as an in-order processor representative of what is used in embedded

systems, because such processors are known to use aggressive prefetchers. All results are

from real experiments conducted on an Android phone using Atom Z3580 CPU.

3.3.1 Reverse Engineering the Prefetcher and Replacement Policy

Eviction Set: We construct the eviction set ES with m sets and n lines per set similar

to other prime+probe attacks (e.g., [62]). Let a be the associativity of the CPU cache

level being targeted, i.e. each cache set is composed of a cache lines. Therefore, in order

to fully occupy the cache, we need n ≥ a. We partition the eviction set ES in to two

sections: occupation section and warmup section (which is a new improvement we

introduce here). The occupation section is composed of m × a cache lines, designed to

occupy the cache after priming. This section is essential to all prime+probe attacks. On

CPUs with strict least-recently-used (LRU) replacement policy, the warmup section is not

needed. However, most modern CPUs do not have a strict LRU policy [25], the warmup

section is a necessity which is used to make the occupancy and replacement state of the

cache set more predictable as we demonstrate later in the paper.
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(a) n=a, s=0 (b) n=a+16, s=0 (c) n=a+16, s=32 (d) n=a+16, s=63

Figure 3.3: Occupancy on L2 cache of Atom Z3580. Darker cells means higher chance of cache line

being in cache. Each cache line tested 100 times.

Reverse Engineering Prefetcher: We reverse engineer the CPU memory prefetcher and

use the results later in Section 3.3.2 to construct PAPP prime+probe sequence. Prefetcher

reverse engineering aims to answer the following two questions:

1. What cache lines will be occupying the CPU cache after accessing a sequence of

memories in the eviction set?

2. What cache lines will be first replaced upon victim’s access to the same cache set?

We perform prefetcher reverse-engineering using two steps: 1) Access a sequence

of cache lines in the eviction set ES and 2) Access an arbitrary cache line in ES and check

whether the this line is cached (indicating it was loaded or prefetched). We adopt the

pointer-chasing technique used in previous literature [94] during the accesses suppress the

prefetcher.
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The prefetcher behavior is complex and can vary based on the access pattern and

the availability of memory bandwidth. To provide a basic characterization, we conduct

prefetcher reverse-engineering with respect to accesses to a single set, i.e. what cache lines

will be in the cache after we fully prime a single set s in by accessing all cache lines mapped

to s in the eviction set. The result on Intel Atom Z3580 processor is shown in Figure 3.3.

Figure 3.3(a) demonstrate the cache occupancy heat map of the eviction set after

priming set s = 0 in the eviction set without any warmup section (i.e. n = a = 16). We

notice that Atom does not have a naive LRU replacement policy, as accessing 16 cache lines

in the eviction set does not guarantee full cache occupancy of the accessed lines. As a result,

we determine that a warmup section is necessary for reliable cache priming.

Figures 3.3(b), 3.3(c), 3.3(d) shows the cache occupancy heat map after priming

set 0, 32 and 63 respectively with 16 extra lines as warmup (i.e. n = a+16 = 32). First, we

see that using 16 extra lines reliably ensures the cache occupancy of the occupancy section of

the eviction set (lines 16-31). Additionally, we found that the prefetching behavior differs

for different cache sets. The prefetcher is more aggressive at the beginning of the page

(cache set 0) than at the middle of the page (cache set 32). And towards the end of the

page (cache set 63) the prefetcher will prefetch previous cache set instead of next cache set

apparently to avoid prefetching into a potentially unmapped or uncached page.

Based on the analysis above, we conclude that although traditional prime+probe

will be able to monitor every other set at the middle of the memory page, it’s impossible to

do so at the beginning and end of the page. The effectiveness of traditional prime+probe

is substantially impacted by aggressive prefetching.
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(a) n = a + 16

(b) n = a + 8

Figure 3.4: Replacement profiling on L2 cache of Atom Z3580. Darker means higher chance of line

being replaced first. Each cache line tested 100 times.

Reverse Engineering Replacement policy: We reverse engineer the replacement policy

which is needed to construct the prime+probe sequences. If we can reliably set up which

cache line will be replaced if a set is accessed by the victim, we can probe only this line to

determine if there is a victim access, substantially reducing the number of memory accesses

and prefetcher noise.

Similar to prefetcher profiling conducted in Figure 3.3, we conduct replacement

profiling by first fully priming a cache set s. Afterwards, for each cache line in s, we compare

the miss rate of this cache line with/without a single victim memory access in set s as an

indicator of how often a cache line in the eviction set will be replaced after a single victim

memory access at the same cache set. Figure 3.4 shows our profiling result on Intel Atom
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Figure 3.5: Sample probe sequence for L2 cache of Intel Atom.

Z3580. According to Figure 3.4(a), when we have a 16-cache-line warmup section, the 16th

least recently used cache line reliably becomes the next victim. However, as we can see in

Figure 3.4(b), with a warmup section size of 8, the replacement status becomes much less

predictable.

3.3.2 PAPP Prime and probe Sequence

With the knowledge of the prefetching and replacement policies, PAPP crafts a

prefetcher aware prime+probe sequence.

Probe Sequence: To avoid prefetcher effects, accesses in the probe sequence should not

prefetch memory from the rest of the sequence; otherwise prefetched data overwrites any

victim data. Moreover, accessing probe sequence should not prefetch new data into the

cache; otherwise prefetched data evicts attacker’s eviction set data. We have automated the

construction of probe sequence using the prefetcher reverse-engineering result we discussed

in Section 3.3.1. We start with an empty sequence seqprobe = (). For each cache set s in

the eviction set ES, we try to find a cache line indexed to s in the occupation section of

ES (thus prevents self-evicting) such that accessing seqprobe does not prefetch the chosen

cache line. Upon finding such cache line, we append it to seqprobe and move on to the next
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Figure 3.6: Sample prime sequence (solid line) for L2 cache of Intel Atom which sets line 20 to be

replaced next.

set until all sets are covered. There can be multiple possible probe sequences that satisfy

our requirements. Figure 3.5 illustrates one possible generated probe sequence for Atom

Z3580’s L2 cache.

Prime Sequence: For each cache set s, we seek a memory access sequence of cache lines

in ES that can (1) occupy the cache with the occupancy section in ES and (2) set the

chosen cache line in the probe sequence to be the next one being replaced. We automate

this process utilizing the reverse-engineering result of the prefetcher and replacement policy.

Figure 3.6 shows a prime sequence of one set generated on Intel Atom Z3580. The sequence

first access all cache lines in the warmup section. Next, it accesses line 20 and finally rest

of cache lines in occupation section. According to our reverse-engineering result in Figure

3.4(a), this will reliably set line 20 as the next one being replaced.

Generating prime sequence will be problematic when there is forward prefetching

and backward prefetching at the same time. In the case of Atom Z3580, priming cache

set 62 will prefetch all cache lines in set 61 while priming cache set 61 will prefetch set

62. Therefore whichever set got primed first will have its replacement status wiped when

priming the other set. Fortunately, for Atom Z3580, such backward prefetching only exists
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when priming cache set 62 and 63. In practice, the attacker can omit these two cache sets

in order to ensure other cache sets are monitored effectively.

3.4 Evaluation

We implement both PAPP and traditional prime+probe attacks in C and perform

the attack on Intel Atom Z3580 CPU running Android OS. For traditional prime+probe

attack, we use a standard implementation following previous attacks [62, 109, 52] which

prime+probe every other cache set and uses pointer chasing to suppress the prefetcher. In

contrast, PAPP is able to probe all sets with the exception of sets 62 and 63 as discussed

earlier. We use a benchmark victim program and test the ability of prime+probe attack

towards inferring victim’s activity. We do not apply any prefetcher suppression techniques

to the victim. We consider three victim process access patterns:

1. Accessing one cache line: in this pattern, the victim’s behavior corresponds to LLC-

based AES attacks introduced in [62, 109, 52]. In these attacks, the attacker exploits

the Linux complete fair scheduler (CFS) to interrupt the victim’s execution. As a

result, the victim can only access a single AES table entry between two attacker

prime+probe rounds.

2. Accessing six consecutive cache lines: corresponds to attacks on El-Gamal cipher [73],

where each table entry spans 6 cache lines. CFS exploit is optional since the crypto

computation is much slower than AES.

3. Accessing a various number of random cache lines: this case provides a tunable more

general access pattern.
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Figure 3.7: Victim’s prefetching

To measure the effectiveness of the attack, we use the cache side-channel vulnerabil-

ity (CSV) [106] metric. CSV computes Pearson correlation coefficient between the victim’s

cache activity (oracle) and attacker’s measurement. The higher the CSV, the stronger the

correlation between victim’s activity and attacker’s measurement, indicating better attack

effectiveness.

3.4.1 Modification to CSV Metric

CSV does not account for CPU cache prefetching and has only been used in exper-

iments where the prefetcher is disabled. The original work [106] assumed that the prefetcher

can be either disabled or fully suppressed. As a result, it only considers the victim accesses

from the application perspective rather than their footprint in the cache as observed by the

attacker. In reality, however, the prefetcher affects victim’s memory footprint and in turn

affect attacker’s observations.

Figure 3.7 demonstrates one attack scenario. In this example, the victim accesses

one cache set while an attacker (traditional or PAPP) is trying to infer victim’s access. To
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(a) Next-line prefetch prediction. (b) Full prefetch prediction.

Figure 3.8: CSV score with prefetch prediction.

measure the effectiveness of the attacker, CSV computes the correlation between attacker’s

observation (Figure 3.7(c), Figure 3.7(d)) and victim’s access (Figure 3.7(a)). With the

presence of prefetcher, however, the attacker does not directly monitor victim’s memory

access. Instead, attacker can only monitor a combination of victim’s memory access and

victim’s prefetched memory access (Figure 3.7(b)). Therefore, computing the correlation

between (a),(c) and (a),(d) does not accurately reflect the success in recovering the cache

state, as some of the attacker’s observations can only correlate to the victim’s prefetching.

To address this issue, for the victim access pattern we include the prefetching

behavior based on a model of the prefetcher. A simple model is to assume that the prefetcher

will only prefetch next cache line for the victim. A more sophisticated model can use the

prefetcher profile (as we carried out in the previous section) to more accurately predict

victim’s prefetching behavior. Note that we only modify the computation of the CSV

metric, not to the operation of PAPP or traditional prime+probe experiments.
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3.4.2 Comparison to Traditional Prime+Probe

Figure 3.8 shows the CSV score with the traditional attack and PAPP. We found

that for type (1) victim, the prefetcher indeed only prefetches the next cache line except at

the beginning and end of a page. PAPP substantially outperforms traditional prime+probe

across all cases: for example, for type(1) workload, PAPP achieve a CSV of 0.81 using

the modified next line CSV metric (Figure 3.8(a)) and even higher with the full prefetch

prediction (Figure 3.8(b)), while traditional prime+probe scores only 0.48, demonstrating

that PAPP is a much higher quality attack. Since traditional prime+probe can only probe

every other cache set, it cannot capture access to sets not being probed, resulting in a lower

correlation.

For type (2) and type (3) victims, we found that the prefetcher is more aggressive

when multiple closely-located cache lines are accessed. In type (2) victim, we found that the

prefetcher is constantly prefetching 10-11 cache lines. In type (3) victim, the aggressiveness

of the prefetcher depends on the memory access pattern of the victim. As a result, a naive

next-line prediction can no longer reflect the cache activity of the victim program. This

can be compensated by having a better profile of victim’s prefetching behavior, as shown

in Figure 3.8(b). We see that with the correct prefetcher profiling, the CSV for type (2)

victim rises to 0.2 (traditional) and 0.88 (PAPP), while the CSV for type (3) victim rises

to 0.39 (traditional) and 0.95 (PAPP). We notice that type (2) victim has a low CSV under

traditional prime+probe. This is because the prefetcher is more aggressive for type (2)

victim, prefetching cache lines in more sets that traditional prime+probe cannot monitor.
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Figure 3.9: Prefetched cache lines for type (3) victim.

Figure 3.10: CSV for type (3) victim

Figure 3.9 further demonstrates the effect of the prefetcher when a type (3) victim

accesses various numbers of cache sets. On average, the prefetcher prefetches no more

than 2.1 additional lines per victim’s memory access. Figure 3.10 shows the CSV score

for type (3) victim with different number of accesses. We notice that as the intensity

of the victim’s activity increases, next-line prediction approach loses its effectiveness. A

refined “full prediction” is necessary when victim accesses more memory during one round

of prime+probe. As we mentioned in Section 3.4.1, this observation only refers to the

computation of the CSV metric. The operations of PAPP or traditional prime+probe

remain unmodified.
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3.4.3 Discussion

PAPP exploits the replacement policy and attempts to set the cache replacement

to a more predictable status. Through our experiment with Intel Atom processors, we show

that this can be achieved on processors without naive LRU replacement policy. On ARM

CPUs, however, we are unable to achieve the same since ARM’s replacement policy is much

less predictable as demonstrated in previous research. [70]

We also experimented on some out-of-order Intel CPU architectures including

Xeon, Haswell, Sandybridge and Skylake. PAPP can successfully generate a prime and

probe strategy on these CPUs but their prefetchers behaves very differently from Atom. On

Xeon, we found that pointer chasing technique can effectively disable next-line prefetcher.

On Haswell, Sandybridge and Skylake, we found that priming a cache set with odd index

will prefetch the next line while priming a cache set with even index will prefetch the

previous line. As we discussed in Section 3.3.2, the generated prime and probe strategy

cannot monitor adjacent cache sets and achieve higher coverage than traditional prime and

probe on these CPUs One conclusion of this is that PAPP is most important for in-order

processors which have more aggressive prefetching.

Besides coverage, PAPP also has an advantage of manipulating the replacement

policy and separating probe sequence with prime sequence. Specifically, when probing re-

sults in a cache hit, an attacker can simply skip this set during priming, improving the

throughput of prime and probe drastically. The effect on replacement status can be com-

pensated by updating the prime and probe sequence for the next round. This benefit applies

to both CPUs with aggressive prefetchers and CPUs with less aggressive prefetchers.
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We show that with the prefetcher-aware approach of PAPP, we can monitor more

cache sets than traditional prime and probe attacks. We believe this makes PAPP applicable

on a wider variety of attacks, especially in scenarios where attacker can only obtain a limited

number of observations. (e.g. [98]) We plan to implement new cache side-channel attacks

using PAPP in the future.

3.5 Related Work

There has been an abundance of existing work on prime and probe CPU cache

side-channel attacks. The Advanced Encryption Standard (AES) is the first to fall victim

to prime and probe attack [81, 94, 62] where attackers were able to recover victim’s memory

accesses of AES lookup table, inferring the secret key. Prime and probe attack is also used

to break other mechanisms such as El-Gamal [73]. Zhang et al. [109, 108] show that prime

and probe attacks can even cross VM boundaries and perform cross-tenant attacks on PaaS

(Platform as a service) clouds. Moreover, prime and probe is shown to work not only on

Intel CPUs but also other environments such as ARM [70] and browsers [78].

There have been a few studies on prefetcher’s effect on cache side-channel attacks.

Tromer et al. [94] is the first to acknowledge CPU prefetching’s interference on prime and

probe attack and propose a linked-list structure of eviction set and pointer-chasing technique

to suppress the prefetcher. This technique is widely adopted in almost all known prime and

probe implementations. Fuchs et al. [42] demonstrate that it is possible to defend prime and

probe attacks by applying disruptive prefetching techniques to obfuscate victim’s memory

footprint. Unfortunately, to our knowledge, this technique is not implemented in any CPUs.
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Recently, researchers are paying more attention to the implications of CPU opti-

mizations (e.g. prefetcher, branch predictor, etc.) on side-channel attacks. Shin et al. [91]

show that CPU cache stride prefetching introduces a side-channel that can be exploited

against ECDH algorithm in OpenSSL. Other CPU optimizations such as branch predictor

(e.g. [39]) and speculative execution (e.g. [65, 71] have also been exploited for side-channel

attacks.

3.6 Conclusion

In this paper, we propose PAPP: a prefetcher-aware prime+probe cache side-

channel attack. PAPP performs systematic reverse-engineering of CPU cache prefetcher

and replacement policy. We show that PAPP is able to construct prime+probe strat-

egy that are resistant to the interference of aggressive prefetchers on in-order CPUs. We

evaluated PAPP on real-world system using cache side-channel vulnerability (CSV) met-

ric and demonstrates that PAPP doubles the information leakage comparing to traditional

prime+probe implementations. We hope that in the future, PAPP can be used in new

attacks and applications to provide efficient cache monitoring.
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Chapter 4

CPU Cache Side-Channel

Discovery and Attack on Graphic

Libraries

This chapter documents our research on automated discovery and exploitation of

timing side-channels in graphic libraries, which is published in Network and Distributed

System Security Symposium (NDSS) 2019 [98].

4.1 Introduction

Graphics are pervasively used in modern applications and many applications im-

plement a graphical user interface (GUI) to improve user experience. Graphics rendering is

complex and involves multiple processes. For example, on the Linux X architecture, graph-

ics rendering involves many components spanning the kernel, the X-server, the application
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client, and the device driver. To shelter developers from this complexity, many operating

systems provide graphics libraries with simple APIs for applications to process and render

their GUIs.

In this chapter, we scrutinize such graphics libraries as a target of side-channel

attacks. It is noteworthy that these graphics libraries are provided by operating systems

and loaded dynamically by applications and shared across user processes, i.e., different

virtual pages are mapped to the same physical pages. This creates an opportunity for a

malicious process to infer graphics-related activities of a victim process.

Our intuition of the attack is that the performance of graphics rendering is critical

for user experience across a wide range of applications. Consequently, graphics libraries

often optimize their execution logic for high performance. For example, when handling

simpler graphical content, graphics libraries usually execute a different set of procedures

than that for complex content. Even if the same set of subroutines are executed, the

execution time can still differ for different inputs (e.g., different characters to render). This

processing logic creates a side-channel that can allow attackers to infer a user’s input since

the execution times of these sensitive graphics operations are both input-dependent and

measurable.

However, the practical realization of such side-channel attacks is not trivial, espe-

cially since graphics rendering is complex, large, and is characterized by interdependence

across multiple processes. On Linux, for example, we find that graphics rendering could

involve multiple shared libraries and millions of lines of code. Thus, if attempted blindly, it

would take significant time and manual effort to determine where side-channels exist during
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the rendering process. Moreover, even upon finding such a side-channel, it is difficult to

assess whether the leakage is sufficient to reliably recover the target information (e.g., in

the presence of measurement noise). To further complicate attacks, measuring the execu-

tion time of the victim process regarding the shared graphics library is also challenging.

Previous attacks often rely on the attacker actively triggering the sensitive procedure (e.g.,

encryption), and measuring the execution time as many times as they want [66, 34]. When

attacking graphics-based applications such as the ones we consider, the attack process can

only passively observe the execution, leaving fewer attack opportunities.

To this end, we propose a novel method to completely automate the end-to-end

realization of practical attacks on graphics rendering. It not only automatically identifies

the vulnerable instructions/subroutines whose execution times are input-dependent, but

also yields an end-to-end exploit to infer a user’s inputs with disturbingly high accuracies.

The method measures the information gains from a set of execution times of the subroutines

involved in rendering, and identifies those that yield high information gain (i.e., allow effec-

tive discrimination between subroutine executions [55]). We then apply a machine learning

model that uses these discriminatory subroutines’ executions to infer the user’s input with

high accuracy. We demonstrate that the method exposes a leaky CPU side-channel that

is practically exploitable and more effective than previously known side-channels of similar

types (e.g., [51]). Unlike many previous studies (e.g., [29, 33, 54]), where the researchers

relied on manual inspection of source code or instructions to identify vulnerabilities, we

provide a systematic methodology that can completely automate the identification of such

side-channels (all of which are previously unknown).
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We upload the demo videos of our attack on an anonymous website [3]. Moreover,

to facilitate the reproduction of the work and future research, we open source the complete

source code of the attack at [4].

Our contributions: In brief, we make the following key contributions.

1. Exposing input-dependent execution-time side-channels in graphics libraries: We sys-

tematically investigate this unique type of under-scrutinized side-channels in graphics

libraries. By developing a novel and automated methodology, we discover previously

unknown and exploitable graphics rendering side-channels on both Ubuntu and An-

droid platforms.

2. Accurate subroutine execution time measurement: We design and implement an end-

to-end CPU cache side-channel attack to measure the execution time reliably in graph-

ics rendering subroutines. We address the technical challenges associated with noises

and the implementation of such attacks on the Android platform.

3. Evaluations on real-world applications: We demonstrate that the discovered side-

channel on common graphics libraries can be exploited to infer the passwords with

lowercase letters and numbers 10,000 - 1,000,000 times faster than random guessing.

For a large fraction of PINs consisting of 4 to 6 digits, we are able to infer them in

under 20 and 80 guesses, respectively.
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Figure 4.1: Attack workflow.

4.2 Attack Overview

In this section, we provide an overview of the proposed attack starting with the

threat model and a high-level description of the underlying intuition. We then briefly

describe the individual components of the attack.

4.2.1 Threat Model

The attacker’s goal is to passively eavesdrop on the victim’s CPU cache looking

for sensitive information (e.g., PINs or passwords) the victim entered in an application,

which we refer to as the victim application. The attacker is assumed to be local, i.e.,

the attack process is co-located with a victim process on the same physical device and

operating system, (e.g., a piece of malware is installed on the victim’s system). We assume

that the physical device is a multi-core system, and the attack and victim process can run

simultaneously on different cores. The attack process can create a few threads that run

continuously in the background. No privileges or special permissions are required.

The attacker should also be aware of when a target victim application is launched

and when it is in a sensitive state (e.g., login screen) so as to start the side-channel attack.
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Typically the login screens are shown automatically when the app is first launched. However,

even if it is not, we can still infer their presence through attacks similar to prior work [36].

Finally, we assume that an attacker has access to the same version of shared

graphics libraries used in desktop and mobile applications (these libraries come with the

operating system). The attacker has the knowledge of the victim’s CPU specification and

has access to a device with the same CPU and operating system. These allow the attacker

to fully simulate victim’s environment offline.

4.2.2 Intuition

By studying how graphics libraries work in general, we observe that when a part of

the GUI of an application is updated, only the updated part will be rendered. For example,

on-screen keyboard applications will often highlight the key being pressed. In this case, only

the highlighted key will be rendered on the screen while other parts of the GUI remain the

same. Another example is when a user types a character into an input box, the application

will only render the typed character. This precise rendering is necessary for input inference.

Our second observation is that when performing text rendering, the graphics li-

brary often renders only the pixels representing the text while ignoring the background

pixels. Because of this, the rendering of characters with fewer pixels such as “1” and “i”, is

considerably faster than rendering more complex characters such as “8” and “w”.

Given these observations, if an attacker can measure the time it takes for a victim

application to render its GUI, she could potentially use this as a side-channel to infer the

user’s input to the application. In practice, we envision that the attacker conducts offline

profiling experiments to map different user inputs to execution times of subroutines related
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to rendering in shared graphics libraries. Later, she performs online attacks by leveraging

the prepared mapping to associate measured execution times back to the user’s input.

Without any privilege, an attack process cannot directly measure the program

state of the victim. Fortunately, a flush+reload cache side-channel attack can be utilized

to indirectly measure graphics rendering time through the shared graphics libraries. Note

that previously studied flush+reload attacks [105, 51, 80, 107, 72, 79] were successful at

checking only the presence and absence of data in the cache. In our attack, we take a step

further to measure the execution time of subroutines.

Measuring the execution time of a shared library subroutine requires an attacker to

locate at least a pair of instructions (and their corresponding cache lines). However, this can

be challenging and tedious. First of all, graphics libraries are complex and graphics render-

ing often involves multiple libraries. For example, a typical desktop application on Ubuntu

Linux will involve libraries including libgdk-3.so, libcairo.so and libpixman.so which

have millions of instructions. Manually going through them is not scalable (especially con-

sidering that there are many platforms and library versions). Secondly, even if the attacker

finds a good target pair to monitor, it is unclear whether it is reliable and effective in prac-

tice due to features such as the cache prefetcher. As a result, we need automated discovery

and evaluation of good target cache lines to monitor.

4.2.3 Attack Workflow

In this work, we overcome the above challenges and show 1) how we automate the

discovery and selection of viable instructions in graphics libraries and 2) how we automati-

cally generate the working exploits of the discovered side-channels.
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Our attack is divided into two phases: side-channel discovery (offline) and online

attack. Figure 4.1 shows the general workflow of our proposed methodology. During the

side-channel discovery phase the attacker selects a victim application and one (or more)

shared graphics libraries to target. The goal of this phase is to (i) analyze the victim ap-

plication’s execution, (ii) discover execution-time side-channels inside the graphics libraries

and, (iii) craft an attack program (malware) that exploits the discovered side-channel iv)

generate a prediction model based on the side-channel for future attacks. Detailed descrip-

tions of the side-channel discovery phase will be described in Section 4.3.

To carry out the online attack on user’s device, the attacker runs the malware

program alongside the victim application, and performs the flush+reload cache side-channel

attack on the vulnerable cache lines. The attacker then uses the prediction model to compute

the most likely input from the victim. Finally, the attacker could combine the result with

other information (such as a password dictionary) to improve the accuracy. We discuss the

details of the design and implementation of the online attack in Section 4.4 and 4.5.

4.3 Side-Channel Discovery

4.3.1 Overview

As discussed in Section 4.2.3, in the profiling phase, our goal is to find a pair

of cache lines (x, y) (derived from instruction addresses) in the shared graphic libraries

as targets for our flush+reload attack. Here we use the term “cache line” as a memory

range in the shared library that occupies the same cache line block in the CPU cache (e.g.,
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Figure 4.2: Flow chart of side-channel discovery.

0x7f00-0x7f3f). In order to make the attack effective, we need to find the vulnerable cache

lines (x, y) such that the time difference between the first access of x to the first access of

y (denoted as dxy) “is dependent” on user input. If the attacker is able to reliably measure

dxy when users are inputting their PINs or passwords using a cache side-channel attack,

they can map the measurements to the original input.

To increase the attack reliability, we need to reduce measurement noise. Measure-

ment noise can originate from two different sources. First, the victim application’s behavior

combined with modern CPU cache features, (e.g. prefetcher) could significantly decrease

the effectiveness of a flush+reload attack, which we refer to as application noise. Sec-

ond, the background processes sharing the same libraries could also introduce noise to the

flush+reload attack, which we refer as system noise. In side-channel discovery phase, an

attacker tries to identify the cache lines least affected by these noises.
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Figure 4.2 captures the process we follow to find the vulnerable cache-line pairs

that are suitable for attack. This process is designed to minimize the negative impact of

both application noise and system noise in a real online attack scenario. Below, we describe

the sequence of steps needed.

1. Vulnerable Cache Line Identification

1. The attacker runs the victim application multiple times with different user inputs and

collects the program traces for graphics libraries used by the application.

2. The attacker uses a feature extraction algorithm to identify potentially vulnerable

cache lines from libraries that are least affected by the application noise. See Section

4.3.2 for more details.

2. Attack Simulation

1. For each pair of cache lines (x, y) identified, the attacker runs a simulated offline

attack and collects the measurement times.

2. The attacker builds a key-press prediction model using the collected measurement

times (see Section 4.3.3).

3. If the performance of the prediction model is not better than a random guess (e.g.,

< 20% for numeric characters 0-9), the attacker selects another pair {x, y} and starts

over until all the selected cache line pairs are tested. The attacker then picks the

cache line pairs with the best performance results. This assures that the chosen cache

line pairs are least affected by system noise. See Section 4.3.3 for more details.
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(a) Successful attack scenario.
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(b) Prefetcher noise due to

cache line x′ prefetching x.

Attacker falsely thinks x is

being executed by the victim.
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(c) Measurement noise

due to lx too large while

flush+reload miss a signal.

Attacker’s measurement tx is

more likely to be inaccurate.

Figure 4.3: Attack scenario illustration. Victim executes x, z, y sequentially while execution time

of z varies depend on user input.

4.3.2 Vulnerable Cache Line Identification

We instrument the victim program and collect the program execution traces with

regard to its “cache line accesses” under different user inputs. The cache line trace is a

representation of a sequence of instructions being accessed and loaded into CPU instruction

by the victim application. For example, on a machine with 64-byte cache lines, if a program

executes instructions sequentially from addresses from 0x8020 to 0x80b0, the CPU will load

cache lines 0x8000-0x803f, 0x8040-0x807f and 0x8080-0x80bf into the instruction cache.

Given a cache line trace, we can compute dxy for all combinations of cache lines x and y.

Next, we design an algorithm to find a pair of cache lines (x, y) such that the

distance between the appearances of x and y (denoted as dxy) in the trace varies determin-
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Algorithm 1 Feature Extraction and Selection
Input T : Set of traces that are related to user input event.

Output X =
[
(IGxy , Gx, Gy)

]
: Pairs of cache lines for flush+reload attack, ordered by information

gain

1: Result← ∅

2: G← groupGenerate(T)

3: for all Gx, Gy ∈ G do

4: Compute dxy , lx, ly

5: if dxy > dthreshold & lx < lthreshold & ly < lthreshold then

6: if standard deviation({dxy}) ≥ stdthreshold then

7: IGxy ← Compute information gain of (Gx, Gy)

8: Add (IGxy , Gx, Gy)) to Result

9: end if

10: end if

11: end for

istically based on the user’s input, thereby providing a potential side-channel. A graphics

rendering operation might contain multiple side-channels, meaning that we might be able

to find multiple pairs of (x, y). However, not all of these pairs can be used in a practi-

cal flush+reload attack to collect accurate measurements because of the following types of

application noise.

1. Prefetcher Noise (Figure 4.3(b)). The cache lines x and y might be prefetched

by the prefetcher, when other memory blocks with slightly lower addresses are being

fetched. As a result, we might get false hits with the flush+reload attack.

2. Measurement Noise (Figure 4.3(c). x and y may be accessed by the victim

application (or prefetched) multiple times during the rendering operation. There are

chances that we might miss the first access of x or y (due to a cache line being evicted
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by victim or background processes before the attacker can reload it) and capture a

later access. This will result in an inaccurate measurement with regards to the time

interval between x and y.

3. Prediction Noise. The flush+reload attack has a limited resolution. Therefore, dxy

must be large enough to be captured by flush+reload attack. For good prediction,

dxy should significantly differ across different user inputs while being consistent with

the same input.

Figure 4.3(a) depicts an example of a victim application’s execution trace and one

possible attack scenario. In this scenario, the victim application executes code fragments

in cache lines x, z, and y sequentially. The execution time of z varies depending on user

input, thus creating a side-channel. The execution time of x and y are constant. Therefore,

attacker can monitor the time where x and y first appears in CPU cache (flush+reload

cache hit) as tx, ty respectively and measure txy = ty − tx as a measurement of dxy to infer

user input.

However, as depicted in Figure 4.3(b), if the victim accesses cache line x′ before

x and accessing x′ prefetches x into the CPU cache, the attacker might get a cache hit on

x while in fact only the code in x′ are being executed. This creates prefetcher noise that

makes txy unable to measure dxy accurately.

Moreover, the “flush” operation of “flush+reload” attack takes some time to com-

plete. So there are chances (although rare) that the victim or some other background

process may evict the cache line x or y before the attacker can “reload” the cache line and

capture the signal. As a result, the attacker could possibly miss x where it is first loaded
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into the CPU cache and successfully capture it later on, as depicted in Figure 4.3(c). This

creates a measurement noise whose level is determined by the “lifespan” of x or y (denote

as lx, ly). If lx and ly are small, the attacker might miss the signals x or y completely but

when it does capture a signal, the signal is guaranteed to be more accurate. On the other

hand, if lx and ly are large, the attacker has a better chance at capturing the signals and

measuring tx and ty, and yet the measured result could be very inaccurate. We find that

inaccurate measurements are more detrimental to the attacker than missing measurements

as the attacker might unknowingly use them for both training and in the actual attack. On

the other hand, missing measurements can be compensated by methods such as having the

attack process monitor multiple pairs of cache lines, as we will discuss in Section 4.4 and

Section 4.5. As a result, our feature extraction algorithm favors a relatively small lx and ly.

In order to find a good pair of cache line (x, y) that achieves a good accuracy given

the above constraints, we design and implement an algorithm to extract potential targets

from program traces. Algorithm 1 captures this logic which we discuss in the subsequent

paragraphs.

The first step in the algorithm is to find these cache line accesses in the shared

library that are least affected by the CPU cache prefetcher (i.e. prefetcher noise). For

this purpose, we put the cache lines into a set of no-conflict groups G. We ensure that

accessing a cache line from one group will have no prefetching effect on a different group.

For example, according to Intel’s optimization manual [6], the prefetcher can prefetch up to

20 consecutive cache lines. Therefore, we ensure that there is at least 20 ∗ cache line size

byte gap between cache lines of different groups.
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With all groups G determined, we then compute dxy, lx and ly for all pairs of

groups Gx and Gy. We only select pairs of groups (Gx, Gy) where the lifespans of both

groups lx and ly are below a threshold lthreshold. This ensures a minimum measurement

noise level as discussed earlier.

To reduce the prediction noise, we filter out group pairs where dxy is no greater

than threshold dthreshold, as these are too small to be measurable given the limited resolution

of the flush+reload attack. We also need to ensure that the dxy is sufficiently different for

different inputs. For this, we first use a coarse-grained filter by checking the standard

deviation of dxy for different inputs. If it is less than a threshold, we exclude the associated

cache line pair.

To further reduce the prediction noise and select the best group pairs suitable

for the flush+reload attack, we use “information gain” as a metric for selection [55]. The

information gain captures the discriminatory value of a cache line pair by quantifying “how

much information the cache line pair gives with respect to uniquely separating the users’

inputs”. In particular, it is a computation of the reduction in entropy. The cache line

pairs that perfectly partition the user inputs will have the highest information gain. Our

approach ranks the cache line pairs based on their information gain and selects the top-

ranked cache line pairs; those that do not add much information will have a lower score and

are removed.

Finally, the attacker will need to perform the flush+reload attack on two specific

cache lines viz., {x, y} instead of two groups {Gx, Gy}. Therefore, we pick x and y to be

the first cache lines that appear in the trace, and belong to their respective groups.
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4.3.3 Attack Simulation

We now have a list of features (cache line pairs) that are derived from the program

trace. However, during the real attack, there can still be unpredictable system noise.

Hence, the vulnerable cache lines identified in Section 4.3.2 might not perform well during

the real attack. Therefore, as mentioned earlier in Section 4.3.1, we need to run a simulated

offline attack to find the cache line pairs least affected by the system noise.

To perform the attack simulation on a cache line pair (x, y) we create an attack

process performing the flush+reload attack on one of the CPU cores while running the victim

application on another core. Initially, the attack process continuously monitors cache line x

and awaits the victim’s activity. If the attack process observes a cache hit on cache line x,

it records the time of the observation as tx and immediately switches to monitoring cache

line y. If the attacker successfully observes a cache hit on cache line y within a timeout

threshold, it records the time of the observation as ty. If both tx and ty are measured, it

computes txy = ty − tx. Detailed implementations of flush+reload will be described in

Section 4.4.2 and Section 4.5.2.

Model Construction. We use the collected measurements to build our key prediction

model. We choose the Random Forest [32] algorithm for our key prediction model as these

classifiers are robust to outliers, and resilient to irrelevant features [32]. We use sklearn

[85] implementation of Random Forest with 100 estimators. The performance of the key

prediction model was evaluated with 10-fold cross validation [67]. We compute the true

positive rate TPR and the false positive rate FPR. TPR refers to the ratio of the total

number of correctly identified instances to the total number of instances present in the

54



Figure 4.4: Partial graphical user interface of Onboard keyboard and the highlighting effect during

key-press.

classification model; the FPR refers to the ratio of the total number of negative instances

incorrectly classified as a positive instance to the total number of actual negative instances.

A model with a high TPR and a low FPR is considered good for classification tasks. We

measure the performance metrics (of the machine learning model) using different cache-lines

pairs as features and select the cache-line pairs which result in the highest TPR and a low

FPR for the flush+reload attack.

In Section 4.4 and Section 4.5 we describe the detailed implementations on two

different platforms (Linux and Android) and demonstrate their effectiveness with real-world

attacks.

4.4 Attack I: Ubuntu On-screen Keyboard

In this section, we demonstrate our attack on the default on-screen keyboard (used

in Ubuntu) to extract a user’s password. Such virtual keyboards are necessary in a touch

screen scenario. Even without the touch screen, it is recommended that we use such virtual

keyboards as a more secure alternative for entering private credentials [15] because it is

less prone to various attacks such as keyloggers (e.g., [92, 112]). We evaluate our attacks

on a desktop machine with 3.40 GHz Intel Core i7-4770 CPU, which has a 8MB L3 cache
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Table 4.1: Graphic library versions used in Onboard attack.

Library Version Description

libgtk-3 0.1800.9 Multi-platform toolkit for creating GUI.

libgdk-3 0.1800.9
A wrapper around the low-level functions provided by the underlying windowing

and graphics systems.

libcairo 2.11400.6 Provides primitives for two-dimensional drawing.

libpixman-1 0.33.6 A low-level software library for pixel manipulation.

libfreetype 6.16.0 Render text onto bitmaps, and provides support for other font-related operation

and 64 byte cache line size. The GPU on the machine is Nvidia GeForce GT 635 and the

main display has a resolution of 1920x1080 pixels. Table 4.1 lists the versions of several

graphic-related libraries. We study the “Onboard” input method editor (IME) that comes

with Ubuntu Desktop 16.04. Figure 4.4 shows the graphical user interface of Onboard.

When a key is pressed by the user, a “highlight effect” of the pressed key will be

rendered on the keyboard. The highlight effect includes (i) a color change of the border,

(ii) a fill of the key (iii) a color change with regards to the character represented by the

key. Since different characters are composed of different numbers of pixels, we suspect that

there are side-channels within the highlight rendering process.

4.4.1 Side-Channel Discovery

For our offline trace collection, we use Intel PIN [13] to perform binary instru-

mentation of the graphics libraries listed in Table 4.1 (we identified them by checking the

description of the every library loaded in the Onboard keyboard process). The instrumen-

tation allows us to collect full-instruction traces of the keyboard process during a user’s key
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Table 4.2: Top cache line pairs selected for Onboard IME attack

# Cache Line Library Function Name

1
0x75a40 libcairo.so cairo surface create scratch

0x69e40 libcairo.so cairo scaled font map lock

2
0x69e40 libcairo.so cairo scaled font map lock

0x41f40 libcairo.so cairo intern string

3
0x24440 libcairo.so cairo clip copy with translation

0xbe000 libcairo.so cairo ft unscaled font lock face

4
0x6b900 libcairo.so cairo path fixed approximate stroke extents

0x41700 libcairo.so intern string pluc

5
0x6a5c0 libcairo.so cairo scaled font thaw cache

0x41700 libcairo.so intern string pluc

press. We then convert the instruction trace to the corresponding cache line trace of the

victim application. Such a trace is devoid of any form of cache pollution. (e.g., from PIN,

background process, prefetcher, etc.). From the collected trace we find a very large number

of cache lines being accessed by multiple graphics libraries. In libcairo.so alone we find

2591 cache lines, which can create around 6.7 million cache line pairs.

We then run our feature selection algorithm on the collected trace and attempt

to discover side-channels. Using the procedure discussed in Section 4.3.1, we first put all

cache lines into groups to eliminate prefetcher noise. In the case of libcairo.so, the cache

lines form a total of 150 groups, which can create 22350 cache line pairs. The algorithm

then filters pairs of cache lines that are not suitable for our attack. The algorithm left us

1488 cache line pairs, ranked by information gain. Interestingly, we find that the majority

of the identified cache lines are located at the beginning of functions. This is reasonable

since the instructions of functions are organized contiguously in the memory address space.

57



Cache lines located at the beginning of functions are much less likely to be affected by the

prefetcher and thus have a better chance of being selected by our algorithm.

Interestingly, we find that out of the few graphics libraries only libcairo.so

produces good cache line pairs. Upon closer inspection, it turns out that the measured

execution time between cache lines pairs from GDK and GTK libraries are not consistent

for the same key press. Cache lines corresponding to libfreetype.so are only accessed when

a key is first pressed during the lifespan of the Onboard process (we’ll discuss exploitation

of Freetype library in Section 4.5). Cache lines corresponding to libpixman.so are seldom

accessed under the default Linux X server graphics architecture and only play a role under

the Wayland architecture (an alternative to X server) as will be discussed in Section 4.7).

From the cache lines identified in libcairo.so, we further perform an offline

simulation attack on the top 100 cache line pairs to filter out cache-line pairs that do not

produce good results. For each lower-case letter and number, we collect 50 measurements

by having one attacker thread running in the background monitoring the selected cache line

pairs (as discussed in Section 4.3.3). Next, we build our prediction model with Random

Forest classifier on these measurements and evaluate it with a 10-fold cross validation [67].

We select the cache-line pairs and the prediction model with the highest true positive rate.

Table 4.2 shows the top 5 cache-line pairs that performs best during attack simulation.

To understand the underlying cause of the input-dependent execution time, we

choose to inspect the source code of the corresponding address pairs. According to Ta-

ble 4.2, cache line pair #1 and #2 clearly corresponds to two separate side-channels, one

from 0x75a40 to 0x69e40 and another from 0x69e40 to 0x41f40. We find these two side-
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channels are both part of function cairo show glyphs(). This function is tasked with com-

puting the rendering result of a given character (glyph) and send the rendering command to

Linux X server. The function will first load the pre-computed font data (in which the input

character will be rendered) and compute a scaled “pattern” matrix via a series of matrix

transformations and multiplications, amounting to the first discovered input-dependent ex-

ecution time (between 0x75a40 and 0x69e40). This operation involves over 100,000 instruc-

tions and its complexity depends on both the font used and the character to be rendered.

Next, before contacting X server to render text on the screen, cairo show glyphs() will

first render the computed “pattern” matrix on its own cairo surface t struct. This oper-

ation takes around 10,000 instructions to complete and its complexity also depends on the

input character, thus creating the second side-channel (between 0x69e40 to 0x41f40). Pairs

#4 and #5 also cover the second side-channel while pair #3 covers both side-channels.

In theory, one cache-line pair is sufficient. In practice though, due to measure-

ment noises (and the possibility of missing signals during flush+reload), we simultaneously

monitor two cache-line pairs for redundancy. We further use them to train a new machine

learning model for the actual attack. Empirically, we observe that the addition of more

features (more cache line pairs) improves the prediction accuracy. However, monitoring too

many cache line pairs results in much noisier measurements (as flush+reload itself as well

as context switches create noises). Ideally, for the best attack resolution, an attacker thread

should only monitor one cache line pair on a CPU core. On our desktop machine, we find

that the measurement becomes noisy when we run the flush+reload attack to monitor more

than two cache-line pairs. We select the top cache line pair #1 and #2 from Table 4.2 for
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our side-channel attack. Luckily, we also find that when a user presses a key on Onboard,

there will be two rendering operations. The first operation will render the highlighted key

while the second operation will reverse the highlight effect. Both operations will generate

a signal measurable using the selected cache line pairs. Therefore, the attacker can capture

4 measurements for a single key press.

4.4.2 Flush+reload Evaluation

We first evaluate the flush+reload attack in a controlled environment. We create

a controlled victim process that accesses a cache line x and collects the timestamp of the

access as the ground truth. Meanwhile, the attack process tries to capture the time when

x is accessed by the victim. To achieve this, the attack process “loads” a memory address

in the cache line x, checking whether a cache hit or miss has occurred. Then, the attacker

thread executes the CLFLUSH instruction on the address just read. We find that we need to

introduce a short delay after the CLFLUSH instruction and before the next load operation

in order to capture the signal reliably. Similar to previous works [51], we use sched yield()

to introduce this delay.

The more delay we introduce, the better the chance that the flush+reload attack

will be able to capture the signal. However, a larger delay also means a longer time for each

round of flush+reload; this reduces our measurement resolution. Figure 4.5 demonstrates

the effect of sched yield(). In our attack, we set the number of sched yield() calls

to 3, which is the setup that can reliably capture the signal and maintain a reasonable

measurement resolution at the same time.
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Figure 4.5: Effect of sched yield()
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Figure 4.6: CDF distribution of measurement error.

Figure 4.6 presents the cumulative distribution function (CDF) of the measurement

error. We see that in 90% of the experiments, the attacker is able to measure the execution

time of the target operation with an absolute error of less than 700 ns. Given that a single

round of flush+reload takes around 500 ns, we conclude that our cross-process execution

time measurement is accurate.

4.4.3 Password Inference Attack

We then run our attack to infer a user password inputted using the Onboard key-

board. We have two attacker threads each monitoring the selected cache line pairs (in

Table 4.2) respectively, while a user is inputting passwords. After the attacker thread col-
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lects the measurement data during the user’s input, we use the trained prediction model

generated via the offline simulation to predict the user passwords based on the measure-

ments.

For demonstration, we only consider lower-case letters and numbers for the pass-

word field inputted using the Onboard keyboard. We choose the list of most common

passwords as our dictionary [7]. This dataset contains 10,000 unique passwords, with 9984

of them composed of lower-case letters and numbers. Note that for all our attacks except

for the one augmented with dictionary, we assume the attacker has no knowledge of the

passwords in the dataset.

Single Character Prediction Accuracy

Single Login Attempt. First, we test our password prediction capability when we capture

a single login attempt from the user (we might be able to observe multiple attempts over

time). For each character, we perform the attack multiple times and test whether the

attacker can correctly predict the character within a certain number of guesses. Figure 4.7

demonstrates the single-character prediction accuracy for numeric characters. We observe

that we can reach 90% accuracy in 10 guesses for all numeric characters. Some characters

(e.g., “2”) can be predicted more accurately than characters like “0” and “4”; this can be

helpful in inferring PINs. However, predicting lower-case letters are much more difficult.

With 10 guesses we can only reach 70% accuracy. Some characters such as “u”, “v”, and

“w” requires more than 30 guesses while characters like “i”, “o”, and “y” can be predicted

pretty accurately in fewer guesses. When it comes to lower-case letters some of them look

similar and the measured time difference is often overwhelmed by the noise. As we will show
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Figure 4.7: Onboard IME: Single login attempt. Number of guesses required to reach 70% and 90%

accuracy.
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Figure 4.8: Onboard IME: Repeated login attempts. Number of guesses required to reach 100%

accuracy.

next, the limited measurement resolution and noise are the main reasons why the accuracy

of observing a single login is not as high.

Repeated Login Attempts. A password is often reused or repeatedly inputted by the

user. An attacker has the opportunity to obtain measurements of the user’s repeated login

attempts using the same password. This gives the attack more potency i.e., by combining

multiple measurements together the attacker can make better predictions (e.g., because the

noise can be corrected). Suppose the user inputs password p = b1b2...bn N times. At the jth

instance, suppose our prediction model generates confidence vectors Cj,1, ..., Cj,2, Cj,n. We

can then combine these guesses by simply adding the prediction confidence values together,

letting Ccomb,k = ΣN
x=1Cx,k, k = 1, ..., n to be the aggregated confidence vector.
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We study the per-character prediction accuracy when we have 10 and 20 measure-

ments of the same character, as shown in Figure 4.8. We can see that more measurements

leads to higher prediction accuracy. With 10 measurements, all numeric characters and

most lower-case letters can be predicted with 100% accuracy within 4 guesses. Characters

like “a”, “d” and “v” are a little harder to predict than other characters, yet the attacker

can still predict them with 100% accuracy within 8 guesses. With 20 measurements, the

prediction accuracy is slightly improved over 10 measurements. 17 out of 36 characters can

be predicted perfectly in the first guess.

Multi-Character Prediction Accuracy

To guess the entire password correctly, we need every character to be guessed

correctly. This means that the total number of guesses is bound by the prediction accuracy

of the worst character. Specifically, if the worst character takes k guesses to achieve a 100%

accuracy, then the total number of required guesses will be kn where n is the number of

characters in the password. This is because we cannot know a priori which character is the

worst during guessing and will have to exhaust all possibilities.

In the best case when the attacker can observe 20 login attempts, the number of

needed guesses is then 5n, which is a drastic improvement from the original 36n. Figure

4.9(a) further illustrates our results. We observe that having multiple measurements of the

same password significantly improved our password-guessing effectiveness. On average we

need 1000 times fewer guesses to infer a password compared to the case where we used a

single input, and 1,000,000 times faster over a random guess. Finally, 40% of the passwords

are guessed within 100 attempts.
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Figure 4.9: Onboard IME: The cumulative distribution function for the number of guesses needed

to infer passwords.

Augmentation with Dictionary Attack. Password characters are often non-independent

events. To better utilize this dependency between password characters, attackers often use

dictionary attacks to reduce the search space. Being able to guess the password in fewer

attempts is useful as an account may be locked after a few failed login attempts. Our

attack can work very well in conjunction with dictionary attacks to boost its effectiveness.

Let p = b1b2...bn be the target password and C1, ..., Cn be the prediction confidence vec-

tors (single-input or combined). Let conf(a,C) be the confidence value of character a in

confidence vector C.

For each n-character password w = w1...wn from the dictionary, we can compute

the confidence cw of w being the correct password, to be cw = Σn
i=1conf(wi, Ci). We then

rank all possible n-character passwords based on the confidence values cws, and try them

in order. If the correct guess has the kth-highest confidence score, we will need k guesses.
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Table 4.3: Example dictionary-assisted password guessing attack for password “hello”.

Input
Confidence Vector (Partial)

e h i j l o s y

h 0.0 0.39 0.0 0.23 0.0 0.0 0.0 0.03

e 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.03

l 0.0 0.0 0.05 0.0 0.37 0.0 0.07 0.0

l 0.0 0.0 0.05 0.0 0.37 0.0 0.07 0.06

o 0.0 0.0 0.0 0.0 0.0 0.15 0.0 0.0

Rank Dictionary Words Confidence Value

1 hello 0.39 + 0.21 + 0.37 + 0.37 + 0.15 = 1.49

2 jelly 0.23 + 0.21 + 0.37 + 0.37 + 0.0 = 1.18

3 hills 0.39 + 0.0 + 0.37 + 0.37 + 0.0 = 1.13

4 holly 0.39 + 0.0 + 0.37 + 0.37 + 0.0 = 1.13

Table 4.3 shows an example of dictionary attack. When user inputs password

“hello”, the attacker would be able to obtain five different measurements each corresponding

to one character in the password. The attacker will then use the prediction model to generate

five confidence vectors C1, ..., C5, where each character in the password alphabet is given

a confidence value. Next, the attacker look up all the passwords in the dictionary with a

length of 5 and compute its confidence value. The attacker finally ranks all the 5-character

passwords based on their confidence values and proceeds to use them as guesses in order. In

this example, “hello” has the highest confidence compared to the other 5-length passwords

in the dictionary. As a result, the attacker can guess “hello” in the first attempt. Our

66



algorithm ranks the guesses based on confidence relating to each character. Note that we

use the sum of individual confidences instead of product as we do not want to penalize a

guess for one poorly predicted character. For example, in Table 4.3, suppose the correct

password is “jelly”. Multiplying the confidences will result in a low rank of the word “jelly”

for merely a poorly predicted “y”.

We compare our password guessing approach with random brute-force guessing

with dictionary. With the random approach, the attacker needs to look up all the passwords

in the dictionary and guess them in random order. Therefore, the number of guesses required

with the random approach is a random number between 1 and the total number of passwords

in the dictionary (10,000 in our case).

Figure 4.9(b) demonstrates the result. With one input of the password, our ap-

proach can guess 50% of the passwords correctly in the first attempt and 80% the passwords

within 10 guesses. On the other hand random guesses can hardly crack anything within 10

guesses. If attacker can measure 10 login attempts, 95% of the passwords can be cracked in

the first guesses. We do acknowledge that this result is dependent on the size of dictionary

we are considering.

4.5 Attack II: Android Application

In this section, we demonstrate our attack on two Android applications to extract

a user’s password and PIN, respectively. For this demonstration, we use a Nexus 6P running

Android 8.0, as the victim’s device. The victim apps are the CapitalOne banking and the

Reliance Global Call [8] (an app similar to the Skype) app. With both apps, every time the

67



Table 4.4: Cache line pairs selected for CapitalOne attack

# Cache Line Library Function Name

1
0x176a80 libskia.so SkScalerContext FreeType Base::generateGlyphImage

0xef440 libskia.so SkMask::getAddr

2
0x109e40 libskia.so SkGlyph::computeImageSize

0xca8c0 libskia.so SkAAClipBlitter:: SkAAClipBlitter

app opens, it will require a user to input his/her username and password/pin. For security

reasons, the exact password and pin are not normally rendered on the screen and often

replaced with stars or dots. However, to prevent input errors, Android, by default, makes

any input character visible for one second before masking it.

4.5.1 Side-Channel Discovery

For offline trace collection, we instrument the graphics libraries (e.g. libskia.so,

libfreetype.so, etc.) from Android AOSP source code, recompiled these libraries and

loaded them on to the victim device. The instrumentation targets various functions and

records the timestamp each time an instrumented function is called. The instrumentation

will introduce a small overhead but it does not thwart the feature selection algorithm.

We run our feature selection algorithm on the collected traces and identify top

function pairs suitable for attack. We then translate the function names to cache line

addresses and perform the offline simulation attack to filter out cache-line pairs that do not

produce good results. Normally, the shared library is stripped and thus, not all function

names to cache line translations will be straightforward. However, we find that graphics

libraries such as libskia.so contain enough symbols for us to translate most of the selected
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functions. Similar to Onboard attack, we then select the top two cache-line pairs for our

attack. Table 4.4 shows the two cache-line pairs and the corresponding functions.

Upon analyzing the function calls made between the identified cache lines, as well

as the source code of related graphics libraries, we find that the cache lines actually mea-

sure an exploitable side-channel in the font translation process from the standard Android

Freetype library. Font translation is long in duration and happens whenever an application

attempts to render any text (e.g., characters) for the first time. It works by translating the

character representation into the graphical representation (glyphs). In Freetype library this

is accomplished via FT Outline Decompose(). Depending on the font and the input char-

acter, FT Outline Decompose() will invoke a series of functions (such as gray set cell(),

gray hline()) to compute the translation result [5]. Each Android process keeps the trans-

lation result in its memory space. Thus, the next time the same character with the same

font type and size is to be rendered, there is no need to execute font translation again. As

a result, the attacker can only capture the first appearance of each character using the this

side-channel. However, many sensitive applications, CapitalOne and Reliance Global Call

included, require the user’s login information right upon the apps’ start. At this point, the

font translation has not been performed for most characters (especially the font type and

size in the password box), leaving a window for attacker to extract sensitive information

via timing measurements of font translation.

It is worth mentioning that the software keyboard app similar to those on Linux,

is also an excellent target for this attack. However, the software keyboard is maintained in

a dedicated long-running process and the font translation results are cached throughout the
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lifetime of the process. This means that most of the characters should have been translated

by the time the attack is launched.

Note that there are also side-channels discovered on Android that get exercised

every time when a key is pressed (regardless of whether it is a pressed for the first time).

Unfortunately, the limited measurement resolution on ARM makes them un-exploitable.

4.5.2 Evict+reload Implementation

The ARM architecture poses several technical challenges. First of all, the ARM

architecture does not include a CLFLUSH instruction. As a result, we cannot perform a

flush+reload attack. Fortunately, we can still perform the evict+reload attack by creating a

set of memory blocks (eviction set) that can evict the target cache line. Our implementation

is similar to Gruss et.al.’s implementation [72].

Eviction is slower than the CLFLUSH instruction. On the LG Nexus 5X, each

round of evict+reload takes 10µs to 13µs, while on our x86 desktop machine each round of

flush+reload takes only around 0.5µs. As a result, the attack resolution of evict+reload is

lower than that of flush+reload. This means that our attack will be less effective for faster

graphic operations such as text rendering. The font translation process takes a long time

to compute and thus, the evict+reload attack is able to exploit its associated side-channel.

The evict+reload attack is easier to implement when the attack process can read

its page table and know the physical address of each memory block in the eviction set.

However, later Android versions no longer grant user process read access to its page table.

Still, Oren et.al., [79] demonstrated that evict+reload can still be performed without an

attacker knowing the virtual-to-physical address mapping.
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Another challenge in realizing the evict+reload attack on ARM is that many ARM

CPUs do not have an instruction-inclusive shared L2 cache. In addition, Green et.al. [46]

have shown that there are other features in the ARM CPU implementation that make an

attack more difficult. Fortunately, most ARM CPUs are cache coherent. When a process

accesses a cache line not currently cached in its own core, the CPU will try to fetch it

from other cores in case other processes are accessing it. If successful, the resulting access

will be much faster than access from memory. This feature has been exploited in recent

works [107, 72] and we also rely on it.

However, the phones we tested (Nexus 5X and 6P) have an additional challenge in

that the attacker and victim cannot have a shared L2 cache. Nexus 5X adopts big.LITTLE

technology [10]. It has 2 Coretex-A57 “big” cores sharing a single unified L2 cache and 4

Coretex-A53 “LITTLE” cores sharing 2 unified L2 caches. It appears that only the cores

among big and LITTLE have the proper cache coherency protocol that can be exploited,

which requires the attacker and victim to be on different classes of cores. Further, we find

it interesting that the eviction takes significantly more time on the big cores (likely due to

their cache replacement policy). As a result, we pin the attack threads on the “LITTLE”

cores while leaving the victim on the “big” cores.

The net effect of this setup is that we are unable to evict the victim’s L1 and

L2 cache. As a result, when checking for the victim accesses relating to the cache line

targeted by the evict+reload attack, the attacker will keep getting cache hits for a short

while even when the victim is not accessing it anymore. Fortunately, our attack only focuses

on capturing the target cache line’s first appearance. As a result, the attack is not affected
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Figure 4.10: Android: Number of guesses need to infer each character correctly.

by the lack of victim-core eviction. Since L1 and L2 have limited sizes, shortly after the

victim finishes executing the target function, the cache will be evicted by other functions

of the victim automatically.

4.5.3 Password and Pin Inference

Password Inference. We attack a user who is launching a new CapitalOne application

process and inputting a password from the common password list [7] (the same 10,000

password dataset as used in Section 4.4). During this process we have the attack threads

running in the background and collecting measurements. Next, we use the trained prediction

model to predict the user’s key press based on the measurements collected.
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In this attack, we measure the font translation time when rendering a character

on the screen. This process only happens when the character is inputted for the first

time (i.e., even if a character is inputted multiple times, the attacker can only perform its

timing measurements when it is first inputted). In addition, the CapitalOne app renders

“Username” and “Password” in respective input boxes on startup. Therefore, the attacker

will not be able to measure the font translation time for characters “U”, “P”, “a”, “d”, “e”,

“m”, “n”, “o”, “r”, “s” and “w” (as they share the same font type and size with the actual

password). Interestingly, the attack can still be performed with these restrictions. The

attacker can easily use evict+reload attack to monitor when a key-press is happening and

combine the result with the font translation timing measurement. If the attacker observes

a key press but does not get a timing measurement, the attacker can infer that the inputted

character is either in the list of pre-rendered characters or something that the user had

previously inputted.

Table 4.5 shows an example attack scenario when “hello” is inputted:

• User inputs “h”. “h” is not pre-rendered by the CapitalOne app and the attacker will

be able to get a measurement. Suppose our prediction model guesses it as “0”.

• User inputs “e”, which is pre-rendered. The attacker will detect a key press but will

have no measurement of the font translation time. The attacker will simply guess

it as one of the rendered characters (including the pre-rendered characters and the

inference made with regards to the first character i.e., “0”). Suppose we guess “e”.

• User inputs “l”, which is not pre-rendered. The attacker will be able to get a mea-

surement. Suppose we guess it as “l”.
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Table 4.5: Example password guessing attack for password “hello”.

Input Potential Guesses Guess Description

h 0,p,h 0 Predicted by model.

e a,d,e,m,n,o,r,s,w,0 e Pre-rendered or same as 1st character.

l l,1,7 l Predicted by model

l a,d,e,m,n,o,r,s,w,0,l 0 Pre-rendered or same as 1st/3rd character.

o 0,o o Cannot be “0” since its guessed as 1st character.

• User inputs “l”, which is already rendered during the previous keypress. The attacker

will simply guess it as one of the rendered characters (including all pre-rendered

characters and the guesses of the 1st and 3rd characters viz., “0” and “l”). Suppose

we guess it as “0”.

• User inputs “o”, which is not pre-rendered. Attacker will be able to get a measurement

and guess it to be either “0” or “o”. However, since the belief is that “0” is already

rendered, it is inferred that this character can only be “o”.

Figure 4.10(a) shows the number of guesses required to predict individual charac-

ters. We omit the pre-rendered characters from this figure as the process of guessing them

is simply a random selection from a list of known pre-rendered characters. We assume that

the attacker can measure 10 login attempts from the user. As we discussed in Section 4.4,

having more measurements improves the attacker’s accuracy drastically. According to Fig-

ure 4.10(a), in general, the result is worse than the Linux Onbard keyboard attack primarily

due to the limited measurement resolution of evict+reload. Still, most characters can be

predicted with 90% accuracy within 10 guesses. Some characters such as “4”, “7”, “h”,

74



“u”, “v” are harder to guess accurately as they are often confused with other characters.

For example, “b” and “q” have a similar shape, thus their font translation times are close

to each other. It’s very difficult to distinguish them. On the other hand, characters such

as “1”, “8”, “l” and “z” can be predicted very effectively due to their rather unique shape

and font translation time.

We compute the number of guesses needed to infer a complete password using our

attack model on the CapitalOne application, similar to the previously discussed Ubuntu

Onboard keyboard attack Section 4.4.3. We compare our password inference capability

with a random brute-force guessing in Figure 4.11(a). We see that using our attack model,

the number of guesses needed to infer the password is 10,000 times less than the number of

guesses needed with random guessing.

We also compare our password guessing capability in conjunction with a dictionary.

As discussed in Section 4.4.3, attackers often use dictionary attacks to reduce the search

space. We present our results in Figure 4.11(b). When an attacker is able to capture one

login attempt of the password, our approach can infer 30% of the passwords in the first

guess and 70% the passwords within 10 guesses. With 10 login attempts captured, our

approach can guess 60% of the passwords in the first guess and 90% the passwords within

10 guesses.

PIN Inference. In this section, we exploit the login process of the Reliance Global Call

application [14] (a very popular VoIP app), with a similar PIN input box and graphics

libraries. Reliance asks users to enter a PIN every time the app opens. We generate

random PINs of length 4 and 6 for us to infer.
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Figure 4.11: Android: The cumulative distribution function for the number of guesses needed to

infer passwords.

Similar to the password inference attack, we measure the font translation time

when rendering a digit on the screen using the same cache line pairs listed in Table 4.4.

We assume that the attacker is able to capture the user inputting the PINs multiple times.

These measurements are then fed to the prediction model generated in the offline simulation

to predict the users’ PINs.

Figure 4.10(b) shows the number of guesses required to guess an individual digit

with 100% accuracy. We observe that with 20 user logins, 4 of the digits can be inferred in

one attempt and 8 of the digits can be inferred within 2 attempts with 100% accuracy. We

next use our prediction model to guess the entire PIN of 4-digit and 6-digit lengths. From

Figure 4.12(a) we see about 20% of the 4-digit PINs can be cracked in a single attempt,

and 55% of the 4-digit PINs can be cracked in 20 attempts or less. From Figure 4.12(b)

we notice that more than 50% of the 6-digit PINs can be inferred in less than 80 attempts.

The overall attack success rates in both cases are five to six orders of magnitude better
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Figure 4.12: Android: The cumulative distribution function for the number of guesses needed to

infer the PINs of different lengths.
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Figure 4.13: CITIC mobile banking: Number of guesses needed to infer an input character correctly.

than the random brute-force attack. Consistent with previous results, we observe that the

prediction rate improves as the number of observed login attempts increases.

4.5.4 Attacking Built-in Keyboards

to prevent malicious keyboard applications from recording user’s input, some bank-

ing apps have built-in keyboards for entering passwords/PINs. Ironically, these keyboards

are more vulnerable to our font-translation attack for the following reasons: 1) The banking

app is not a long-running processes like a regular keyboard app. This means every time it
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launches anew, font translation need to be redone. 2) The keyboard often have a unique

font type and size. There is no pre-rendered characters.

We perform our attack on CITIC mobile banking app [2], a popular banking app

that has over 8 million downloads. The app uses its built-in keyboard for password entering.

Whenever a key is pressed, a pop-up echo containing a enlarged version of the pressed key

will be rendered. The password input box, however, will not render inputted character.

The rendering procedure is different from CapitalOne and Reliance. Therefore, we perform

side-channel discovery as previously discussed and selected the following pairs of functions:

1. SkScalerContext FreeType Base::generateGlyphImage (libskia.so)

and GpuPixelBuffer::map (libhwui.so);

2. gray set cell (libft2.so) and FontRenderer::cacheBitmap (libhwui.so).

Similar to our CapitalOne attack, we assume that the attacker can measure 10

login attempts from the user. The measurements we obtain from CITIC however, are

noisier than the CapitalOne. So we evaluated our key prediction model with Random

Forest and Boosting [41] algorithms. Boosting outperforms Random Forest for CITIC app

and we selected it to build a key-prediction model. Boosting is a machine learning ensemble

algorithm that convert weak learners (high bias, low variance) to strong ones and is resistant

to over-fitting [41].

Figure 4.13 shows the character guessing accuracy for our attack on CITIC app.

Comparing with Figure 4.10(a), we first find our attack on CITIC can capture all 26 lower-

case characters. There’s no pre-rendered characters like CapitalOne because the CITIC

keyboard uses a unique font. Additionally, We find that the prediction accuracy for CITIC
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attack is better than CapitalOne attack, where the majority of the characters can be pre-

dicted with 90% accuracy within 4 guesses. This because the rendered echo in CITIC

keyboard is much larger than the text echo displayed in CapitalOne password input box,

making evict+reload more effective in capturing the stronger signal.

4.6 Related Work

There has been an abundance of existing work on CPU cache side-channel attacks,

most of which target encryption keys. For example, Tromer et al. [94] and Osvik et al. [80]

demonstrate how the prime+probe attack could be used to break AES by locating memory

accesses in the AES lookup table. Zhang et al., [109] [108] show that prime+probe attacks

can even cross VM boundaries and perform cross-tenant attacks on PaaS (Platform as a

service) clouds. In our work, we use the flush+reload attack, which was first introduced by

Yuval et al. [105]. In their work, the authors demonstrate that the flush+reload attack can

be used to attack encryption applications such as GnuPG. Gulmezoglu et al., [54] design

and showcase an improved flush+reload attack on AES.

A closely related work by Gruss et al. [51] proposes a cache template attack which

aims to discover input-dependent cache line accesses automatically in shared libraries. This

methodology does not leverage unique characteristics of graphics libraries and therefore

misses the opportunity to measure input-dependent execution time. GDK has patched their

attack and we’re no longer able to find input-dependent cache line accesses. Our attack

differs in that we do not focus on unique memory accesses; instead, we rely on the difference

in execution times to infer user inputs. Furthermore, we demonstrate that given a conducive
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application, we can achieve much better accuracy. On average we reduce the entropy per

character for a random password from log2(36) = 5.16 to (log2(10) = 3.32 – log23 = 1.58),

while Gruss et al. only reduce the entropy from log2(26) = 4.7 to log2(16) = 4.

We perform our attack on ARM CPUs with an instruction non-inclusive last-level

cache. This has been shown to be a minor hurdle for cache side-channel attacks. There

have been solutions for both ARM and x86 that primarily leverage the cache coherency

protocol among different last-level caches. For example, it was recently shown that the latest

non-inclusive last-level cache employed by x86 CPUs can also be attacked [104]. Several

researchers demonstrate the possibility of performing cache side-channel attacks on ARM.

Zhang et al., [107] design and implement a return-oriented flush+reload attack on ARM,

which is essential due to the lack of an data+instruction inclusive last-level cache. Both

works utilize the cache coherency policy to monitor victim applications’ instruction cache

access and we adopted a similar methodology. Gruss et al., [72] perform a systematic study

on cache side-channel attacks on the ARM architecture, discussing both the prime+probe

and the flush+reload attacks. Our work builds on similar ideas. We had to also deal with

the fact that there is no shared L2 cache between the attacker and victim.

In addition to the prime+probe and the flush+reload attacks, researchers also

explore other potential side-channel attacks related to the CPU cache. Gruss et al., [50]

propose the flush+flush attack, which utilizes the timing side-channel of CLFLUSH instruc-

tion under different cache states. Unfortunately, on our machine this attack did not work

as reliably as the flush+reload attack. In addition, they also discover a timing side-channel

on prefetch instructions [49] and utilize this side-channel to perform address translation
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towards breaking ASLR. Lee et al., [68] and Wang et al., [101] show that branch predictors

also contain side-channels that can be used to attack secure systems such as SGX.

There are studies on the automated discovery of cache side-channels. For exam-

ple, Gorka et al., [59] utilize dynamic taint analysis to locate cache side-channels in crypto

libraries. Wang et al., [100] model the cache behavior and use symbolic execution in conjunc-

tion with their model to discover crypto-related vulnerabilities. These approaches discover

only the presence and absence of a unique cache line access to decide if any side-channel

is present. Here, we investigate a unique execution-time-based side-channel in shared li-

braries. Further, we not only automatically discover such side-channels but also generate

and evaluate the exploit automatically.

There are other orthogonal research studies exploiting different types of side-

channels (e.g., keystroke sounds [26, 112, 56]; electromagnetic waves [97]; vibrations [75]

etc.). All these side-channel attacks need physical proximity to the target device. Re-

searchers have also introduced new types of attacks to guess sensitive user input using

motion sensors [35, 82] on smartphones or inter-keystroke timings [92]. However, the suc-

cess of such attacks is dependent on individual users’ typing habits. Unlike these attacks,

our attack does not need access to a physical device nor is dependent on user behavior.

Additionally, defenses mitigating inter-keystroke timing attacks [89] cannot prevent our

attack.
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4.7 Discussion and Future Work

Measurement challenges: Our attack is sensitive to measurement resolution and noise.

For example, we found that with the Linux Wayland architecture, there is a side-channel in

libpixman.so when it renders text for applications such as Gedit, the Gnome Terminal. We

also find that libskia.so can perform text rendering pixel-by-pixel for Android applications

(in addition to the font translation that is triggered only for the first time a key is rendered

within the same process). However, out measurement resolution is too low to perform a

reliable attack on these operations. One interesting observation we had is that the larger the

font size, the more time it takes for rendering. We will explore other opportunities where

the measurement resolution is sufficient (e.g., larger fonts are used). Another direction

is to integrate this attack with scheduler-based attacks [53, 63, 109] to slow down the

victim process which in turn allows the measurement to be more precise. Finally, is is

worth noting that most previous attacks against crypto libraries assume a large number of

observations [109] (as the encryption can be triggered by the attacker) which makes their

attack much easier compared to ours (from the measurement challenge perspective).

Capital letters and special characters: In reality, many passwords must include capital

letters and special characters. Adding these characters directly to our prediction model

would no doubt introduce confusion and reduce accuracy. Fortunately, often times these

characters can only be entered by pressing special keys (e.g. shift, “?123”) or perform special

actions (e.g. long-presses). These operations will change the keyboard status (e.g. switch

to special characters keyboard) and generate unique signals (e.g. redraw the keyboard)

that can potentially be detected by the attacker. Therefore, attacker can train different
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prediction models for capital letters and special characters. Upon detecting a keyboard

status change, attacker can then switch to the corresponding prediction model.

Mitigations: There are several steps one could take to help mitigate the side-channel

attack that we discover. Since the attack relies on the flush+reload attack, disabling user

access to the CLFLUSH instruction and high resolution timers will make the attack much

more difficult. Although the attacker could still evict a cache line by accessing a set of

memory blocks, it will be much slower and result in an attack with much lower resolution.

Since performance is critical to our attack, this is likely to reduce the accuracy significantly.

Disabling the high-resolution timer will also affect our attack. However, the attacker could

choose to implement its own timer [72] and perform the attack as described.

A general solution to timing side-channels is to make the rendering constant time

irrespective of the input at the cost of rendering performance. Nevertheless, even if one

decides to implement this mitigation, one will need to overcome the challenge of locating the

input-dependent subroutines. Here, our profiling model can significantly help in identifying

these locations and thus can be useful for defense as well.

Finally, to prevent attacks on applications such as CapitalOne, a user can turn off

the “Make password visible” option (which is on by-default) under the Android settings.

This makes password inputting less convenient but prevents any text rendering operation

for passwords. In addition, application developers can choose to forcibly pre-render all

characters with the same font as the password, thus eliminating the font translation process.

Extensions: In this paper, we focus on using our attack to discover side-channels in graphic

libraries. In principle, our attack on input-dependent execution times could find previously
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unknown side-channels in all kinds of shared libraries. As a future work, we will consider

extending our attack beyond graphic libraries such as crypto and audio processing libraries,

hardware drivers, etc. In addition, currently we are mainly studying applications on Linux

and Android. Our attack could also be ported to platforms such as Windows and MacOS.

Additionally, it’s worth noting our attack implicitly obtains the inter-keystroke

timing for free via flush+reload. This allows us to combine our attack with existing inter-

keystroke timing attacks [92] to further improve its effectiveness, which we will consider in

future studies.

Finally, we currently only use our intuition to exploit a general type of feature

- measuring the execution time between two addresses. There might exist other type of

features (e.g. execution order, time series of multiple addresses, etc.) in the program

execution trace that could potentially be identified using more sophisticated techniques

such as deep learning. This is another interesting direction for future studies.

4.8 Conclusions

In this chapter, we discover a previously unknown type of potent side-channel

that allows an attacker to use the flush+reload attack to perform cross-process timing mea-

surements on sensitive functionalities inside shared graphic libraries. The attack facilitates

the inference of a user’s keystrokes when the typed keys are rendered on the screen. The

attack hinges on utilizing machine learning techniques to discover execution-time based

side-channels inside graphic libraries. We have completely automated the discovery of

such side-channels and even the generation of exploits. We validate that our attack is
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viable on real-world applications on multiple platforms and demonstrate its high accuracy

in predicting user input in practice, which affects a large user population of the considered

applications. Finally, we suggest ways to mitigate this exploit.
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Chapter 5

CPU Side-Channel Feedback for

Fuzzing Un-Modifiable Binaries

This chapter documents our initial research of using CPU side-channels to help

fuzzing un-modifiable binaries.

5.1 Introduction & Intuition

Grey-box fuzzing is a very effective technique for discovering software vulnerabil-

ities. Instead of requiring full knowledge of the program structure, grey-box fuzzers con-

duct light-weight instrumentation to fuzz target to extract feedback of each fuzzing input.

This not only leads to a reasonable performance overhead comparing to the programming-

analysis-based approaches, but also informs the fuzzer about the increase in code coverage

during fuzzing. Advanced grey-box fuzzers such as Syzkaller [9] can fuzz software as complex

as operating system kernels with impressive efficiency.

86



Many grey-box fuzzers, Syzkaller included, requires modifications (i.e. instrumen-

tations) to the fuzzing target to gather coverage feedback. However, this is not always

possible as sometimes there are protections (e.g. locked bootloader, Trustzone) that pre-

vents modifications to the fuzzing target. Without any feedback, grey-box fuzzers cannot

gain any information about code coverage. Thus, their effectiveness is severely limited.

CPU side-channels have proven to be very effective in breaking many types of

isolation techniques. It’s very common for CPU side-channel attacks to extract sensitive

information of a higher-privilege process (e.g. kernel, secure application) from a lower-

privilege process (e.g. user process, loadable kernel module). Therefore, we propose to

leverage CPU side-channels as a source of code coverage feedback when target cannot be

directly modified. Our goal is to fuzz un-modifiable (i.e. un-instrument-able) binaries in a

grey-box fashion, thus improving fuzzing performance.

We consider the following fuzzing scenarios:

1. Android kernel. Most Android phones nowadays come with a locked bootloader to

prevent modifications to the system or kernel image. Although some manufacturers

allow users and third-party developers to unlock the bootloader, manufacturers such as

Huawei [16, 17] do not provide any means to unlock the bootloader. Therefore, fuzzing

techniques such as Syzkaller cannot take advantage of feedback from an instrumented

kernel. In this scenario, it’s often impossible to root the device. Therefore, our fuzzer

can only have userspace privilege.

2. SGX / Trustzone applications. Intel SGX and ARM Trustzone are designed

to host secure applications in enclaves that are immune to normal attacks from an
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insecure world. In the case of Trustzone, manufacturers often deploy trusted OS, boot,

and firmware. These secure applications are signed by the manufacturer and cannot

be modified to provide fuzzing feedback. In this scenario, we assume our fuzzer has

non-secure kernel privilege.

Depending on the different scenarios, we expect to face different technical chal-

lenges. In general, these technical challenges can be categorized as follows:

1. Reliable side-channel. Similar to researches conducted in previous chapters, the

quality of the side-channel we’re using determines our capacity. If the side-channel is

noisy and unstable, we might need to run the same input repeatedly for a large number

of times in order to obtain a clear signal. This defeats the goal of improving perfor-

mance over blackbox fuzzing. For example, on some Android devices, prime+probe

attack from userspace is very unreliable due to lack of pagemap access and ARM’s

random replacement policy. On the other hand, the RAMINDEX operation [1] from

kernel space provides a much more stable signal.

2. Interface Knowledge. It is essential we have the knowledge of the interaction

interface between our fuzzer and fuzzing target. This is not a problem when fuzzing

kernel as the system call interfaces are open and previous kernel fuzzers (e.g. Syzkaller)

had established well-founded methodologies in generating fuzzing inputs accordingly.

However, the interface for secure application and OS are not as well documented.

Additionally, there is no effective fuzzer for secure applications to our best knowledge.

We will have to build a fuzzer from scratch.
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Figure 5.1: Implementing RAMINDEX prime+probe attack in Linux kernel.

5.2 Evaluation: Side-channel Quality

In order to address the first challenge we identified in Section 5.1, we first evaluate

the possibility of using CPU side-channel as feedback for fuzzing. Specifically, we use the

RAMINDEX interface, which allows OS kernel to directly read CPU cache content, as the

most noise-free form of prime+probe. We evaluate whether CPU prime+probe side-channel

in its most noise-free form could serve as an effective source of coverage feedback for the

state-or-art fuzzer such as Syzkaller.

We modified the kernel version 3.10.73 for LG Nexus 6P phone running Android

8.0. First, we back-ported the Kcov [20] interface to this kernel to allow Syzkaller to obtain

coverage information. Next, we implemented the L1 instruction cache prime (occupying

the entire L1 instruction cache) and probe (checking the entire L1 instruction cache for

replacement and output to Kcov interface) functions using RAMINDEX interface. We

choose to monitor L1 instruction cache as it closely resembles the code being executed
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Figure 5.2: Evaluation framework: modified Syzkaller.

during a system call. L2 cache on the Nexus 6P is unified and shared among two CPU

cores, which will no doubt introduce noise due to data accesses and activities from other

processes. Finally, we modified the system call interface as illustrated in Figure 5.1, priming

L1 instruction before the core system call functionalities and probing L1 instruction cache

afterwards. We also modified Syzkaller as depicted in Figure 5.2, allowing it to operate with

feedback from RAMINDEX prime+probe on the L1 instruction cache. We also collect the

regular Kcov-produced branch coverage as the ground truth for comparison.

On the LG Nexus 6P phone, we performed 6-hour fuzzing experiments using three

different setups of Syzkaller: 1) the default Syzkaller using regular Kcov-produced branch

coverage, 2) the modified Syzkaller using RAMINDEX prime+probe result as coverage and

3) the black-box Syzkaller that received no coverage information and can only generate

inputs blindly. The result of our experiment is shown in Figure 5.3.

As we expected, RAMINDEX prime+probe is an inferior source of feedback com-

paring to regular branch coverage. Despite being the most noise-free form of prime+probe
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Figure 5.3: Comparison between KCOV, RAMINDEX and generation-only (No cover) Syzkallers.

we can implement, there could still be noise due to prefetching, speculative execution, etc.

In addition, L1 instruction cache prime+probe is limited to the 64-byte cache-line size

granularity, which in some cases are insufficient for identifying branches.

What interests us most is that both RAMINDEX and the default Syzkaller is

out-performed by the Syzkaller with no coverage at all. This is very counter-intuitive since

grey-box fuzzing is supposed to a significant improvement over black-box fuzzing. Further

investigation reveals the cause of our observation:

1. When generating input from scratch, Syzkaller utilizes a builtin library of templates.

These templates are manually curated by domain experts (e.g., kernel developers),

and contain information relating to the argument type of each system call, and the

dependencies between system calls These well-written makes generating new inputs

very effective, especially in the early stages when the kernel is not explored much.
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2. Due to the stateful nature of OS kernels (e.g., certain code may be allowed to execute

only once, controlled by a global flag). Syzkaller needs to perform “triage” on any

new programs discovering new coverage. This process includes “verification” by

re-executing the program and verify the new coverage can be reliably reproduced,

as well as “minimization” by attempting the removal of system calls and/or the

shortening of the arguments, while still retaining new coverage. This process takes

a long time (comparing to generating a program) and does not produce much new

coverage by itself.

As the fuzzer runs for longer, these problems will eventually fade away and the de-

fault Syzkaller is able to reach more coverage than the black-box generation-only Syzkaller,

as we will show in Section 6.2.2. However, on systems with limited throughput such as

Android phones, it would take significantly longer for the default Syzkaller to outperform

generation-only Syzkaller. After carefully studying Syzkaller’s strategies, including the pri-

ority of different tasks and seed selection strategy (see Section 6.2.1), we believe there

are plenty of opportunities for improvement and the coverage growth of Syzkaller can be

significantly increased. We hence propose to make these improvements using reinforcement-

learning techniques, as we will introduce in Chapter 6.

5.3 Conclusion

In conclusion, we present the idea to use CPU side-channel as a feedback source

for grey-box fuzzing. We evaluated RAMINDEX prime+probe, a more noise-free version of

the prime+probe, on Syzkaller and measured its effectiveness when fuzzing Android kernel.
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Surprisingly, we discover that there is an opportunity of improvement on default Syzkaller’s

strategy in the early stages of fuzzing, especially on devices with limited throughput. In

the end, we are able to turn this idea into full-fledged research on dynamically adjusting

kernel fuzzing strategies with reinforcement learning, which will be presented in detail in

Chapter 6.
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Chapter 6

SyzVegas: Beating Kernel Fuzzing

Odds with Reinforcement Learning

This chapter documents our research of improving kernel fuzzing efficiency with

reinforcement learning.

6.1 Introduction

Gray-box fuzzing or coverage-guided fuzzing, is an automated software testing tech-

nique that has gained traction in recent years. In a nutshell, such a fuzzer automatically

provides unexpected, or random data as inputs to explore the codebase, to maximize code

coverage and/or reveal bugs. Although fuzzing is generally effective in practice, it is often

perceived as an art, as every fuzzer embeds various heuristics throughout the process. More

specifically, fuzzers often have many decision points and parameters (e.g., which seed to

mutate) that collectively determine their overall effectiveness. Making these choices often
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involves not only strong intuitions and domain expertise, but also much empirical testing

and tuning.

Even though researchers have been attempting to auto-tune various fuzzing deci-

sions, including seed selection [103, 110, 87] and mutation operators [31, 61, 30, 74], prior

efforts are mostly point solutions and none of them are specifically tailored for Operating

System (OS) kernel fuzzing. Kernel fuzzing is uniquely challenging for the following rea-

sons: (1) any modern OS kernel has a huge code base and dependencies among various

components; (2) the input to an OS kernel is through the system call interface that needs

special handling; and (3) an OS kernel maintains a massive amount of state and the behav-

ior of an input (i.e., test case) may or may not be reproducible. To illustrate these factors,

the state-of-the-art kernel fuzzer, Syzkaller [9] itself has over 1.3 million lines of code and

numerous parameters than can be tuned to improve its efficiency. Given this large and

complex space, and the ad hoc strategies used to tune parameters, we believe that there

remains an abundance of opportunities to improve kernel fuzzing.

To address the above OS kernel fuzzing challenges, Syzkaller employs a combina-

tion of generation-based [43] and mutation-based [18] input crafting strategies. Specifically,

to generate inputs (sequence of syscalls) from scratch, Syzkaller requires hand-crafted input

models called “templates”. It also leverages mutation to take known good inputs (aka.

corpus seeds) that have previously achieved new code coverage, and mutate (i.e., modify)

them to generate new ones. Finally, Syzkaller needs to triage an input to make sure that

a minimal input can reproduce the coverage that it achieved before turning it into a seed.

Syzkaller uses a fixed strategy to schedule these different types of tasks and seeds to mutate.

95



In this paper, we propose SyzVegas, a fuzzer based on Syzkaller that is capable of

dynamically and automatically adapting its strategies to improve coverage. Specifically, we

focus on addressing the two aforementioned first-order decision making processes: 1) select-

ing (scheduling) the most rewarding fuzzing tasks (e.g., generation, mutation and triage)

and 2) selecting the most potent seeds for mutation. Both of these are done dynamically

in SyzVegas via a unified reward assessment model to significantly improve the odds of

excavating new code coverage and finding new vulnerabilities.

The main contributions of our paper are as follows:

• Identifying optimization opportunities. We perform a systematic analysis of

Syzkaller’s default (fixed) task and seed selection policies. We identify several oppor-

tunities for improving Syzkaller’s fuzzing efficiency.

• Realizing dynamic fuzzing. SyzVegas employs a light-weight reinforcement

learning algorithm to adjust the task and seed selection policies dynamically. We

propose a novel approach for modeling the rewards attained by the different fuzzing

tasks by consolidating the discovery of new coverage and the time cost incurred.

The approach also accounts for the associations between different types of tasks, can

quickly adapt during the different stages of fuzzing, and has very low overhead.

• Improved coverage growth. We perform extensive evaluations of SyzVegas on

the latest Linux kernel and show that it consistently attains 21.6% more coverage than

the default Syzkaller and finds more unique crashes. In total, we found 11 crashes

that the default Syzkaller failed to detect in the same time period. For OS kernels

as important as Linux, such an improvement makes a big difference as every kernel
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Figure 6.1: Workflow overview of Syzkaller.

version is being constantly fuzzed and tested (e.g., by Google [45] using hundreds of

machines.

6.2 Background and Motivation

6.2.1 Syzkaller

The goal of Syzkaller is to explore the OS kernel by executing a series of test

programs, defined as a sequence of system calls. To create such programs, Syzkaller has

two options: generate a new program from scratch or mutate from an existing program.

Figure 6.1 depicts the workflow of Syzkaller. It has three types of tasks during the fuzzing

process viz., Generation, Mutation and Triage.

• Generation. Syzkaller creates a brand new test program using templates. These tem-

plates are manually curated by domain experts (e.g., kernel developers), and contain

information relating to the argument type of each system call, and the dependen-

cies between system calls (e.g., the return value of open can be used later in read).
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This allows Syzkaller to generate meaningful syscall sequences and arguments, greatly

improving the likelihood of exploring deeper kernel code. Generation is a highly in-

dependent task and does not rely on other types of tasks. If a generated program

produces new coverage, it is then put into the triage work queue.

• Mutation. Syzkaller randomly picks a program (a.k.a. seed) from a corpus (i.e.,

programs that have previously achieved new coverage), and performs a series of ran-

dom mutations on the chosen seed (e.g., inserting/removing a new syscall, changing

the argument of an existing syscall), and then execute it. Similar to generation, if a

mutated program produces new coverage, it is inserted into the triage work queue.

• Triage. Syzkaller fetches a program from the triage work queue. The picked program

is in the queue because it was observed to attain new coverage. However, at this point

it is unclear whether the coverage can be reproduced reliably, due to the stateful nature

of OS kernels (e.g., certain code may be allowed to execute only once, controlled by

a global flag). Therefore, Syzkaller first performs “Verification” by re-executing

the program thrice and computing the coverage that is stable throughout the re-

execution. If the stable coverage is empty (none is attained), then the triage is aborted.

Otherwise, Syzkaller performs a “Minimization” of the program by attempting the

removal of system calls and/or the shortening of the arguments, while still retaining

the stable coverage. Finally, Syzkaller puts the minimized program into the seed

corpus (where further mutations can be performed later). During the minimization,

Syzkaller might discover that a partially minimized program can achieve new coverage;

in such cases, Syzkaller will put these programs into the work queue to be triaged later.
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By default, Syzkaller selects the aforementioned three types of fuzzing tasks as per

the following hard-coded priorities:

1. Triage takes absolute priority over generation and mutation.

2. When no triage task is available, the absolute priority goes to mutating programs

that were just added to the seed corpus. Syzkaller will mutate each new seed for a

fixed number of (100) times. These mutations receive some special treatment and are

referred by Syzkaller as Smash.

3. If no triage or smash tasks are available, Syzkaller will execute generation and regular

mutation tasks with a fixed 1:99 ratio, i.e., one generation task for every 99 mutation

tasks.

In practice, when Syzkaller starts from scratch, a generation task is performed

first and some part of the kernel code base is covered as a consequence. This very first

program will then go through triage, producing the initial seed and potentially creating

more programs for triage during minimization. Then, Syzkaller will focus on triaging these

additional programs (if any from minimization) and smashing the new seeds, which in

turn creates more seeds for smashing and programs for triaging; proceeding in this manner

typically leads to a huge chain reaction. As a result, the actual number of generations

Syzkaller performs is much lower than the policy description may suggest.

When it comes to mutation, Syzkaller chooses which seed to mutate according

to the following principles. First, as mentioned before, a newly created seed enjoys the

privilege of a high-priority invocation of 100 mutations, i.e., smash. Second, each seed has
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a weight assigned to it equaling the number of new and stable edge coverage it brings. This

number is static and will not change over time. When Syzkaller needs to pick one seed from

the corpus, it will do so on the basis of this weight, from among all the seeds.

6.2.2 Observations and Intuition

In this section, we motivate the rationale of using a learning-based approach to

improve Syzkaller’s coverage. We run the default Syzkaller alongside a modified Syzkaller

which can perform only generations, for 6 hours, and collect metrics such as coverage growth

and task effectiveness to gain insights about the operation of Syzkaller. We use a testbed

with Intel(R) Xeon(R) CPU E5-2680 v4 2.40 GHz CPU as the testing platform. Both the

default Syzkaller and the generation-only Syzkaller run on a 2-core single-process fuzzer

VM. Our experiment yields the following observations:

The best strategy evolves over time. Following the task selection policy described

earlier, Syzkaller gives a low priority to generation. However, with a well-written template,

generation can be quite powerful, especially in the earlier stages of the fuzzing where most

of the kernel code is unexplored/uncovered.

Figure 6.2(a) demonstrates the coverage growth comparison between the two

Syzkallers fuzzing 1) the full Linux kernel and 2) the core kernel excluding sub-systems

such as filesystem and drivers. When it comes to fuzzing the full Linux kernel, we observe

that in the first 1 hour of fuzzing, the generation-only Syzkaller outperforms the default

Syzkaller by a significant margin. After 4 hours, however, the generation-only Syzkaller

falls behind the one using the default strategy. When fuzzing the core kernel, however, it
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Figure 6.2: Evaluating default Syzkaller strategies.

takes only 1 hour for the default Syzkaller to find more coverage than the generation-only

Syzkaller. These observations suggest that the optimal strategy is dynamic, and should

adapt over time in a way that is sensitive to the state of the fuzzer and fuzzed kernel.

Although we tried multiple static strategies (e.g., generate more earlier), they are not able

to effectively adapt and outperform the default Syzkaller. This motivates a learning-based

approach.

Ad-hoc decisions can be harmful. Syzkaller’s strategy gives high priority for mutating

newly-discovered seeds, invoking a mandatory 100 mutations, to extract as much as pos-

sible quickly from a fresh seed. There is little doubt that the domain experts working on

Syzkaller choose this strategy carefully with extensive testing. However, this ad-hoc deci-

sion leaves opportunities for improvement. Figure 6.2(b) shows the mutation effectiveness

of the default Syzkaller, fuzzing the whole Linux kernel, for 6 hours. We see that there are

three opportunities for improvement: 1) A large number of seeds are not being mutated
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Algorithm 2 Exp3-IX Algorithm

1: wi ← 0. for i = 1, ...,K

2: for all t = 1, 1, 2 do

3: pri(t)← wi(t)∑
j wj(t)

, for i = 1, ...,K

4: Draw it randomly according to pri(t)

5: Receive reward xit(t) ∈ [0, 1]

6: for all i = 1, ...,K do

7: x̂i(t) =


xit(t)/(pr(i) + γ), i = it

0, otherwise

8: wi(t+ 1) = wi(t) · eηx̂i(t)

9: end for

10: end for

because Syzkaller is too busy performing the mandatory number of mutations and triag-

ing. 2) We observe chain reactions where the 100 new mutations of a program discover

new coverage and in turn schedule additional 100 new mutations for each of these, causing

exploration to be focused narrowly on the seeds from the same roots; and, 3) Of those seeds

that are mandatorily mutated, many do not deserve to be mutated 100 times. We believe

that this behavior is an unintended consequence of the ad-hoc (but perhaps empirically

acceptable) decision to carry out 100 mutations of each new seed. We also believe that a

learning-based approach can avoid these negative consequences and therefore improve the

fuzzing effectiveness.

Kernel-space must be effectively explored. In Syzkaller, all explorations start from

generated programs. These generated programs then go through a series of minimization

and mutation tasks, creating a forest-like structure with a tree rooted at each generated
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program. Essentially, kernel fuzzing can be viewed visually as a tree/forest exploration,

where Syzkaller attempts to explore/grow the program evolution trees in order to find new

coverage. There are multiple strategies to approach this problem. For example, how many

roots (or trees) should the fuzzer “plant”, should the fuzzer favor breadth-first or depth-first

approaches, etc.

Figure 6.2(c) shows a down-sampled program evolution tree from fuzzing the full

kernel for 24 hours. The default Syzkaller plants very few trees due to its very low priority

of generation. It also heavily favors a depth exploration approach of these few trees owing to

its high priority to mutation, especially the mandatory 100 mutations for new seeds (which

are not always effective). Our intuition (which we back experimentally later) is that each

tree can only cover a limited part of the kernel, and a strategy that explores the kernel

space well must learn how to find the interesting trees and how to grow them.

Intuition. Based on the observations above, we conclude there are plenty of opportunities

to tune the various hard-coded parameters (e.g. mutation count, generation to mutation

ratio) and priorities. Our experiments suggest that the right strategy and the right seed

dynamically change over time. Needed is an automated way to identify the task that is most

promising at any given time, and if appropriate the best seed to be invoked in association

with that task. To identify the best task and the best seed, a reinforcement-learning based

scheme is a natural fit, where it can be modeled to maximize the coverage rewards relative

to the time cost of execution.
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6.2.3 Multi-armed Bandit Problem

The Multi-Armed Bandit (MAB) problem is a reinforcement learning problem,

which we believe is well suited to model the various decisions of Syzkaller. In this problem,

a gambler must play a number of competing slot machine arms (choices) in a way that

maximizes their expected gain. Each arm’s properties are only partially known at the time

of playing and may become better understood as the arm is played more and more. The

MAB problem is a classic example of the tradeoff between exploration and exploitation.

While there exist a multitude of reinforcement learning models and algorithms,

we consider the MAB problem to be particularly suitable because it is non-associative [93],

meaning that it passively adapts to the changing reward signals without explicitly concern-

ing itself with the long term implications of taking an action. As a result, although hard to

achieve the absolute optimal strategy, it has the advantage of learning the dynamics much

quicker and adapting faster. In addition, it is computationally efficient to implement, which

is critical in maintaining the throughput in fuzzing.

One notable variant of the MAB problem is called Adversarial Bandit problem,

first introduced by Auer and Cesa-Bianchi in 1995 [27]. In this variant, the slot-machines

are controlled by an adversary who is capable of altering the reward of the arms every play.

As one of the strongest generalizations of the MAB problem, the adversarial bandit problem

requires its solution to react quickly to the changing rewards of each arm. This maps well

to the fuzzing process where each decision also receives different reward over time.

To address the adversarial bandit problem, Auer et.al. proposed the Exponential-

weight algorithm for Exploration and Exploitation (Exp3 ) [28]. The main idea is to introduce
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an exponential growth in an arm’s weight (i.e. probability of playing) depending on the

yielded reward, thereby ensuring that good arms are quickly identified and exploited. There

are many variants of the Exp3 algorithm. Exp3.1 [28] divides the algorithm executions into

epochs and resets Exp3 at the beginning of each epoch, making Exp3 perform better over

time. Exp4 [28] allows for an additional advice vector to be inputted. Exp3-M.B [111]

extends Exp3 to playing multiple arms at the same time with a limited budget. Exp3-

IX [77] replaces the explicit exploration with implicit exploration, further improving its

regret bounds.

Algorithm 2 shows the Exp3-IX algorithm. Exp3-IX maintains the weight of each

of the K arms, each of which is used to proportionally determine the playing probability of

that arm. When an arm is played and a reward is attained, the algorithm first computes

the estimated reward based on the probability of playing this arm as well as an implicit

exploration factor γ. The weight of each arm is increased exponentially based on the

estimated reward, controlled by the constant growth factor η. Given the number of arms

K, the total number of plays T , and an exploration/growth factor η = 2 γ =
√

2 lnK
KT ,

Exp3-IX guarantees a regret bound of:

Gmax − E(GExp3−IX) =
√

2KT lnK +

(√
2KT

lnK
+ 1

)
ln

(
2

δ

)
(6.1)

with probability of at least 1− δ for any 0 < δ < 1.
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Figure 6.3: High-level idea/design.

6.3 Design and Implementation

We propose SyzVegas, a dynamic fuzzing approach to select between the three

types of tasks in Syzkaller. The main design goals of SyzVegas are as follows:

• Optimal coverage. SyzVegas should select tasks or pick a mutation seed program in

such a way that maximizes the coverage achieved by Syzkaller while minimizing the

incurred time cost.

• Adaptive adjustment. SyzVegas should determine which type of task is the best, at

any (and every) stage of fuzzing, and adapt its strategy accordingly. When performing

mutations, SyzVegas should be able to assess the quality (change) of the mutated

seed and adjust its weight in the seed corpus accordingly.
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To achieve these goals, SyzVegas abstracts the task selection problem as an

Adversarial Multi-armed-bandit (MAB) problem, where generation, mutation and triage

are treated as the three separate arms. When performing mutation, we treat seed selection

as another layer of the MAB problem, i.e., each seed is treated as a separate arm. In

each layer, SyzVegas utilizes an algorithm similar to classic Adversarial Bandit problem

solutions such as Exp3-IX [77] and Exp3.1 [28], to make decisions on which “arm” to “play”

towards maximizing the reward over time. Figure 6.3 illustrates the high-level idea/design

of our system.

Referring back to Figure 6.1, Syzkaller collects information relating to two types

of coverage, viz., unstable coverage and stable coverage. We design SyzVegas to optimize

for maximum unstable coverage; this is because both types of coverage can lead to crashes

but unstable coverage is a superset of the stable coverage.

Given that SyzVegas treats the task selection and seed selection as Adversarial

MAB problems, the key challenges we need to address are: 1) how to assess the value of the

selected task or the mutated seed, 2) how to pick the task or seed that has the maximum

potential. We address how SyzVegas overcomes these challenges in this section. Table 6.1

lists the symbols we use in subsequent sections to allow the reader to quickly find associated

definitions.

6.3.1 Reward Assessment

To begin with, whenever a generation/mutation/triage task has completed exe-

cution, we need to assign a reward to the task; this reward is later be used when we use
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Table 6.1: Symbols we use to describe SyzVegas

Symbol Description

c or ci Number of edge coverage attained by executing a single task (of type i).

t or ti Execution time of a single task (of type i).

C Total edge coverage attained throughout fuzzing.

T Total elapsed time of fuzzing.

texp Estimated expected execution time of task/tasks.

g or gi Un-normalized reward attributed to task/tasks (of type i).

cpmut(m) Total edge coverage of mutating a seed p for m times.

tpmut(m) Total execution time of mutating a seed p for m times.

x Normalized reward attributed to task/tasks.

Ĝi Accumulated reward estimation of MAB arm i.

the Adversarial Bandit problem model. The key requirements/challenges in computing this

reward are as follows:

1. Gain and cost considerations. The goal of SyzVegas is to maximize the gain (i.e.

number of edges covered) while minimizing the cost (i.e., the time taken for execution).

Our model must be able to unify these two metrics with different units into a single

measurement of the effectiveness (utility) of each task.

2. Dependencies between tasks. The classic multi-armed-bandit problem assumes that

each arm is independent. However, this is clearly not the case in the context of

Syzkaller. As shown in Figure 6.1, there is a strong relationship between Triage and

Mutation. SyzVegas needs to properly address this relationship when assigning

rewards to each arm.

108



3. Normalization. The utilities observed on different systems can be different. For

example, the time it takes to execute a program on Android will be much longer

than executing the same program on a powerful server. In addition, the algorithms

that are used to solve an Adversarial Bandit problem often require the reward to be

normalized.

To address the above challenges, we construct our reward assessment model as

follows, considering each of the tasks of interest.

Generation. Generation is not directly intertwined with either mutation and triage. Thus,

it’s reward can be assessed independently. Let c be the new coverage (measured by the num-

ber of edges) obtained by generating a program. Let t be the cost in time of executing the

generated program. Let C and T be the total achieved coverage (regardless of whether

contributed by generation), and the total elapsed time from when the fuzzer began, respec-

tively. Given these, the expected time for finding the new coverage c (given our average

performance up to time T ), can be “estimated” by:

texp = c · T
C

(6.2)

The reward for the generation task can be modeled as the expected time cost minus the

actual time cost t:

g = texp − t = c · T
C
− t (6.3)

Note that g essentially draws a comparison between the coverage discovery rate of the

current generation task c/t and the coverage discovery rate historically C/T . If the task

has a better-than-historic coverage discovery rate, it will always have a positive reward,

while a worse-than-historic coverage discovery rate will result in a negative reward. This

109



reward representation also ensures that if two tasks A and B both produce the same coverage

c, but consume different times, say tA > tB, we always have gA < gB. This is intuitive since

a task that discovers coverage at a higher rate should be rewarded more. Note that we use

time instead of rate as the unit of the reward. This ensures that if two tasks A and B both

produce no new coverage (which happens often in later stages of fuzzing), we always have

gA < gB < 0. In other words, a task that wastes more time will be punished harder than a

task that wastes less time.

Mutation and Triage. Mutation tasks are heavily dependent on triage because: 1) the

seed driving a mutation can only be obtained via triage and 2) triage will try to minimize

the seed, thus reducing costs for future mutations. As a result, the reward of mutation and

triage must be modeled in conjunction.

Consider a seed program p, where the cost of the triage task that verified and

minimized p is denoted as tptri. As discussed in section 6.2, triage consists of two phases viz.,

verification and minimization. The time costs of each phase are denoted as tpver and tpmin,

with tpver + tpmin = tptri. During the minimization, triage first receives a generated/mutated

program p′ and “minimizes” it to p by removing system calls and/or shortening arguments.

Let tp
′

and tp denote the costs of executing the programs p′ and p, respectively. Thus,

the time saved due to minimization is ∆p
t = tp

′ − tp. Minimization can also potentially

discover new coverage which will be triaged later. We denote the coverage achieved due to

minimization as cpmin.

In reality, the verification phase can also produce new coverage from simply re-

executing the original program. However, since this new coverage was not observed in the
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previous execution of the same program, the input program in this form is unstable (the

coverage may not be reproducible) by definition. As a result, Syzkaller does not attempt

to process such new coverage possibilities. We follow Syzkaller’s design on this matter i.e.,

ignore new coverage possibilities from verification.

The seed program p, is then mutated m times. The observed edge coverage with

each mutation are cp1, c
p
2, ...c

p
m, while the time costs associated with each of these mutations

are tp1, t
p
2, ..., t

p
m, respectively. For simplicity, we denote:

cpmut(m) =

m∑
j=1

cpj , tpmut(m) =

m∑
j=1

tpj . (6.4)

Note here that without minimization, Syzkaller can only mutate from p′ instead of p. In

this case, on average, each mutation should take ∆p
t longer; thus, minimization results in

a total of m · ∆p
t time savings, over m mutation tasks. If we treat the one triage and m

mutations as a single task, we can then compute the expected time to discover the new

coverage of cmut(m) without minimization as:

tpexp = (cpmin + cpmut(m)) · T
C

+m ·∆p
t (6.5)

The first part of right hand side of the equation, is an estimation of the total expected

time to discover the new coverage cpmin + cpmut(m) by mutating p; the second part of the

equation is the estimated time savings due to minimization. The total reward from triaging

and mutating seed p is the difference between the “expected and actual time”, given by:

gptri+mut = (cpmin + cpmut(m)) · T
C

+m ·∆p
t − (tptri + tpmut(m)) (6.6)

Since triage and mutation take different amounts of time, we need to distribute the re-

ward proportionally to each arm. In addition, since triage has two phases (with different

purposes), the reward should be attributed to each phase separately.

111



We reiterate here that since the main contribution of minimization is to save

time in future mutations, the time savings part of Equation 6.6 must be fully credited to

minimization. In addition, minimization is also finding new coverage cmin from testing

minimized programs. Combining them both, we can thus estimate the reward attributed

to minimization as:

gpmin = cpmin ·
T

C
+m ·∆p

t − t
p
min (6.7)

Verification is essential for creating the seed p, which is later mutated m times

to obtain new coverage. Without verification, mutation will have no seeds to mutate and

therefore useless. Thus, verification and mutation should share the reward of obtaining new

coverage proportional to their costs. As a result, the reward attributed to verification and

mutation are:

gpver = cpmut(m) · tpver
tpver + tpmut(m)

· T
C
− tpver (6.8)

gpmut = cpmut(m) · tpmut(m)

tpver + tpmut(m)
· T
C
− tpmut(m) (6.9)

Adding Equation 6.7 and Equation 6.8, we obtain the total reward attributed to

triage as:

gptri =

(
cpmut(m) · tpver
tpver + tpmut(m)

+ cpmin

)
· T
C

+m ·∆p
t − t

p
tri (6.10)

Note that Equation 6.9 and Equation 6.10 are only approximate estimates of the

rewards with mutation and triage, respectively. In practice, it is difficult if not impossible

to predict how many times a seed program p will be mutated. In addition, it is impractical
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to compute the reward after all mutations are complete. Every time a seed program p is

mutated, we need to update the weight of the triage and mutation arms. To achieve this

goal, we first compute the reward for triage and mutation when seed p is added to the

corpus via triage as: gptri(0) = cpmin ·
T
C − t

p
tri (as the reward of performing the triage task

alone) and gpmut(0) = 0. As p is mutated, we keep track of the observed new coverage and

time costs.

Updating rewards. For the kth mutation, we compute the estimated total reward

gptri(k) and gpmut(k) using Equation 6.10 and Equation 6.9. We then compute the difference

as compared to the estimated total reward after the previous mutation step (k− 1th muta-

tion) as ∆(gptri, k) = gptri(k)− gptri(k − 1) and ∆(gpmut, k) = gpmut(k)− gpmut(k − 1). We then

use ∆(gptri, k) and ∆(gpmut, k) as the reward for the triage and mutation tasks at the kth

mutation; this is used later in our task selection algorithm (Section 6.3.2).

Normalization. The rewards g for generation, mutation and triage tasks can take val-

ues from (−∞,∞). However, single-factor algorithms such as Exp3, Exp3.1 and Exp3-IX

require the reward be normalized to [0, 1]. For budget-constrained algorithms such as Exp3-

M.B. [111], both the gain and cost are normalized to [0, 1], and the resulting (gain - cost)

belongs to the range [−1, 1]. The Logistic function 1/ (1 + e−y) is a common normalization

technique for realizing a normalization from (−∞,∞) to (0, 1) [96]. We rescale the logistic

function from (0, 1) to (−1, 1) as (1− e−y) / (1 + e−y), ensuring that a zero reward is always

normalized to 0. In order to account for the variations, we use z′ = g/σg, a shifted version

of standard Z-score to replace the y in the logistic function. We shift z = (g − g) /σg, the

standard Z-score with a mean of g to a mean of 0, in order to make sure that a positive re-
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ward g will always be normalized to a positive normalized reward x. The final normalization

equation is:

x =
1− e−g/σg

1 + e−g/σg
(6.11)

Combined with the gain/cost model, this normalization technique has the following

benefits:

1. g > 0 ⇔ x > 0. This means that a task that takes less time than what is expected

based on history, will always have a positive gain; a task that takes longer than

expected historically, will always have a negative gain.

2. If a task produces no coverage at all, x < 0. Intuitively, we do not want to give any

positive reward to tasks that only waste time.

3. If two tasks A and B both produce no coverage, but incur different time costs, say

tA > tB, we always have gA < gB < 0, and xA < xB < 0. This is also intuitive since

a task that waste more time should be punished harder than a task that wastes less

time.

6.3.2 Task Selection

Now that we have our reward functions, we design our task selection algorithm

based on Exp3.1 [28] and Exp3-IX [77] to determine which task of Syzkaller to invoke at

any given stage. We incorporate the exponential weight growth mechanism and the implicit

exploration of Exp3-IX to ensure sufficient exploitation of the good arms and rapid adaption

to changing rewards with regards to the different arms. We combine it with Exp3.1 that
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periodically resets the weight of each arm and adjusts the exploration and growth factor,

ensuring the stability of the algorithm over an extended (infinite) period of time. Finally,

we combine these with our novel reward assessment model described in Section 6.3.1 to

address the association of mutation and triage tasks. The task selection algorithm used in

SyzVegas is shown as Algorithm 3.

Similar to Exp3.1, the algorithm divides the entire fuzzing timeline into epochs

(which is automatically determined by Algorithm 3), indexed by r. Epochs determine

when to reset the weights of the arms (required in Exp3.1). For each epoch, our algorithm

estimates a target reward Ĝthreshold for that epoch and tunes the exploration/growth factors

γ and η in the same fashion as Exp3.1. Within each epoch, our algorithm performs arm

selection and reward updates similar to Exp3-IX. Upon each update, our algorithm detects

if the estimated gain Ĝi exceeds the threshold. If so, the algorithm transitions to the next

epoch resetting the observed gains Ĝis to zero and increasing Ĝthreshold by 4 × (for the next

epoch).

One major difference between a traditional multi-armed bandit solution and SyzVe-

gas is that we introduce the division of the reward between the triage and mutation func-

tions. The Exp3 algorithms assume that each arm is independent of each other. As a

result, every time one arm is pulled, only the weight of the pulled arm is affected. However,

as described in subsection 6.3.1, when the mutation arm is pulled, the weight of both the

mutation and triage arms are updated.

Another difference between SyzVegas and Exp3 -like algorithms is that the nor-

malized reward xi lies in (−1, 1) in SyzVegas; however, for Exp3 -like algorithms, the
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rewards are often normalized to [0, 1]. As discussed in subsection 6.3.1, we made this design

choice for two intuitive reasons: 1) we do not want the arms relating to tasks that produce

no coverage to receive any gain in weight and 2) when comparing tasks that produce no

coverage, we want to punish those tasks that cost more harder. A [0, 1] normalization can

only achieve (1) i.e., if tasks produce no coverage at all, they get a reward of 0 regardless of

the time cost, but then it cannot achieve (2). Therefore we choose a (−1, 1) normalization

instead.

6.3.3 Seed Selection

In addition to choosing the right task (generation versus mutation versus triage),

we need to choose the proper seed to be associated with the task in the case of mutation.

For this purpose, we again use an Exp3-IX -like algorithm which is shown in Algorithm 4.

At a high level, the seed selection algorithm inherits the basic ideas of the task selection

algorithm. Specifically it includes a reward assessment model, a normalization technique

for scaling the reward, and a weight update process. There are some notable differences:

The reward assessment model only considers mutation tasks. When a mutation

task is finished, we reuse the gain/loss model discussed in Section 6.3.1 to compute the

reward of mutating the current seed. However, since the seed selection algorithm only

focuses on mutation tasks, we no longer need to split the reward with triage (as we did with

task selection). Instead, we can compute the reward in the same way as Equations 6.2 and

6.3. Moreover, we no longer need to consider the reward created by generation and triage,

when it comes to normalization.
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Let Cmut and Tmut be the total achieved coverage and the elapsed time, for all

mutation tasks. Let ci and ti be the achieved coverage and elapsed time relating to mutating

a seed i. The observed gain of mutating this seed can thus be computed as:

g
(ss)
i = ci ·

Tmut
Cmut

− ti (6.12)

Let σ
(ss)
mut be the standard deviation of the observed gain across all mutation tasks, the final

reward of mutating seed i is then computed as:

x
(ss)
i =

1− e−g
(ss)
i /σ

(ss)
mut

1 + e−g
(ss)
i /σ

(ss)
mut

(6.13)

Ever-increasing number of arms. Syzkaller starts with no seed in the corpus. The seed

corpus is only populated as Syzkaller creates and executes more and more programs. As a

result, if we treat the seed selection problem as a Multi-Armed Bandit problem, we would

have an ever-increasing number of arms. Although this is not the typical formulation of

classic MAB problems, we argue that it is easy to adjust it to fit our needs. Specifically, when

a new seed i is added to the seed pool, it starts with a neutral accumulated estimated reward

G
(ss)
i = 0. As a result, its initial weight w

(ss)
i will be 1 (in accordance with Algorithm 4).

The probability of selecting this seed will initially depend on the accumulated rewards (e.g.,

G
(ss)
j ) of other seeds already in the corpus. Once seed i is later mutated, the probability

of picking seed i will be determined by whether the benefits of attained coverage out-weigh

the time cost.

Reset is not necessary in MAB algorithm. Theoretically, given a seed program, the

more it is mutated the less likely that future mutations would result in the discovery of

new coverage. Therefore, each arm in the seed selection MAB has a diminishing reward.

Consequently, there is no point in adopting the Exp3.1 -style reset mechanism for the seed

117



selection algorithm (since seeds die out). Our seed selection algorithm simply follows the

Exp3-IX algorithm, with the only exception being that new arms can be created once a

new seed has been added to the corpus.

6.3.4 Implementation

Our implementation of SyzVegas incorporates our reward assessment models and

the previously discussed extensions of the Exp3.1 algorithm on top of Syzkaller. Specifically,

we modify Syzkaller based on the version retrieved on 01/08/2020 [9]. Our implementation

consists of roughly 1,800 lines of code. Below, we describe some of the subtleties we handled

in our implementation.

Standard deviation computation. During normalization, we need to compute the stan-

dard deviation of all the previously observed rewards as shown in Equation 6.11 and 6.13.

Keeping track of all the reward values is impractical as it’s easy for Syzkaller to execute

millions of programs. In addition, these numbers need to be synced with the host machine

and restored if the fuzzer VM/device crashes or disconnects. Fortunately, we only need to

keep track of the 1) total number of observations n, 2)
∑
g and 3)

∑
g2. We can then

compute the standard deviation as:

σ(g) =
√
E(g2)− E2(g) =

√∑
g2/n− (

∑
g/n)2. (6.14)

Outlier Handling. Programs on the fuzzer VM/device can take different amounts of time

to execute. In some cases, a program can take several seconds for execution. Although this

happens rarely, a mere (insignificant in number) few extreme cases can severely throw off

the time estimation and standard deviation, hurting our task selection and seed selection
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algorithms. Thus, it is crucial that we detect these outliers and prevent them from damaging

the integrity and effectiveness of our algorithms.

According to our measurements, triage is the most costly type of task and its

execution time can vary greatly. If we use the “3rd quartile + interquartile range” method

to detect outliers, we would set the threshold at 0.32 seconds. To allow us some more

flexibility without compromising experimental integrity, we set one second as the outlier

detection threshold. For any task that costs more than one second, we treat it as if it costs

one second. During our experiments, we observe that this cost bounding will only affect

less than 1% of all tasks.

6.4 Evaluation

6.4.1 Fuzzing the Linux Kernel for 24 hours

First, we conduct a 24-hour fuzzing experiment on the full Linux kernel to perform

a systematic evaluation and analysis of SyzVegas. We run our experiments on several

servers. Each server is equipped with an Intel(R) Xeon(R) CPU E5-2680 v4 2.40GHz CPU.

We conduct 10 runs of three different setups of SyzVegas and the default Syzkaller, for a

total of 40 runs in parallel. In each run, we create one fuzzer VM that uses 2 cores and 2 GB

memory. We target the full Linux kernel at version 5.4.8, compiled using the defconfig

and kvmconfig with only the necessary additions [44] to provide coverage information and

make Syzkaller functional. For MAB seed selection, we choose an implicit exploration factor

γ = 0.05 and a growth factor η = 0.1.
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Figure 6.4: Median, 25/75 percentile of coverage reached for fuzzing Linux kernel for 24hrs. Com-

parison of SyzVegas with/without task selectiion (TS) and seed selection (SS).

Coverage growth Figure 6.4(a) shows the median coverage growth reached after fuzzing

the Linux kernel for 24 hours. Figure 6.4(b) shows the 25 and 75 percentiles instead. From

these two figures, we have several interesting observations:

• MAB task selection works best at the early stages of fuzzing. However, the initial

advantage is lost as fuzzing reaches its later stages.

• MAB seed selection has little effect in the first few hours. However, as we run for

longer, seed selection begins to increase coverage growth, reaching 15.1% at 24 hours

for the median.

• Combining MAB task and seed selection produce considerable improvements in cov-

erage growth, reaching around 21.6% at 24 hours for the median. Interestingly, while

MAB task selection does not provide any advantage by itself at 24 hours, combining it

with MAB seed selection significantly outperforms Syzkaller with MAB seed selection

only (no task selection).
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Figure 6.5: Median, 25/75 percentile and Cliff’s delta of coverage reached for fuzzing Linux kernel

for 24hrs. Comparison of against the default Syzkaller.

Since luck plays a prominent role in the coverage growth of fuzzing, researchers

propose that statistical methods be utilized to determine the likelihood of the observed

differences in coverage [64]. To evaluate whether the coverage advantage of SyzVegas is

consistent across all runs, we compute Cliff’s delta [37] between runs with MAB task and/or

seed selection against the default Syzkaller. Cliff’s delta lies in the range [−1, 1] and rep-

resents the pair-wise comparison result between runs (in our case between our setup and

runs with default Syzkaller). A higher Cliff’s delta means that our setup is more likely to

outperform the default Syzkaller. Figure 6.5 demonstrates the Cliff’s Delta of our setups

against the default syzkaller. The Cliff’s delta result verifies that our observations in Figure

6.4(a) and 6.4(b) have associated high confidence.

Figure 6.6(a) shows the number of programs executed by different types of tasks.

Understandably, all of our optimizations generate more programs by giving a higher priority

to generation and/or removing the mandatory smash mutation. An interesting observation

is that when seed selection is used, SyzVegas executes more programs in total than the
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Figure 6.6: Statistics of program execution.

default Syzkaller. This is primarily due to seed selection favoring mutating seeds with low

execution time, allowing SyzVegas to perform more mutations. This reflects our design

goal of optimizing coverage-time efficiency of tasks.

Figure 6.6(b) breaks down the coverage by the task types. Based on our obser-

vations, MAB task selection significantly shifts the workload from mutation to generation,

giving generation a 20 times boost in terms of the coverage found. This comes with a

sacrifice though, in the form of a 50% reduction in coverage discovered by mutations. For-

tunately, seed selection compensates for this loss, bringing the power of mutations back to

its original level.

Interestingly, we find that when MAB task selection is present, generation produces

a huge amount of coverage. However, when we take a look at the number of programs

executed (Figure 6.6(a)), SyzVegas still favors mutation. If we break down the coverage

achieved by the different tasks over time, as shown in Figure 6.7, we observe that the

coverage reached by generation almost exclusively achieved in the first 2 hours when the
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Figure 6.7: Coverage growth by task for SyzVegas with both task selection and seed selection
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Figure 6.8: MAB task selection choices.

kernel code space is not explored much, and finding new coverage is simple. This, as we

will show later, is due to task selection performing plenty of generation at the early stages.

MAB Task selection. We then take a look at the inner workings of MAB task selection.

In particular, we want to understand how much is the probability assigned by the task

selection algorithm to each type of task.

Figure 6.8 captures the choices made by task selection algorithm. We observe that

at the beginning of fuzzing, task selection quickly “pulled” the generation “arm” more than
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Figure 6.9: Statistics of MAB task selection.

1000 times, giving generation much higher priority than the default Syzkaller. Triage, on

the other hand, is less-favored compared with generation at the beginning, but it starts to

slowly catch up as fuzzing goes on.

Figure 6.9(a) illustrates how MAB task selection balances generation and mutation

over time, with or without seed selection. In the beginning, generation and mutation are

initialized to have the same probability. With the help of the associated seed selection, the

task selection algorithm quickly determines that mutation is the better option, giving it

around a 500 times higher likelihood. Without seed selection, however, the task selection

algorithm favors generation much more, even giving it a higher probability of being invoked

than mutation occasionally. This is expected due to the issues from the default seed selection

algorithm, as discussed in Section 6.2.2. Without the improved seed-selection algorithm,

mutations are less effective in finding new coverage and thus fall out of favor.

Figure 6.9(b) shows the probability change over time for triage, averaged across all

10 runs for each setup. Triage is not always available (when no more interesting programs
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are in the work queue), and thus Figure 6.9(b) only focuses on its probabilities when it is a

valid arm. In the beginning, task selection gives triage a few chances before assigning it a

very low priority, favoring generations and mutations, much more. At this stage, generation

and the initial seeds (accumulated from the few triage tasks) are still very powerful, causing

the task selection algorithm to give generation and the mutation of these initial seeds better

rewards than triage.

But as we run out of the power of generation and these initial seeds, generation

and mutation begin to receive negative rewards (no new coverage yet but a time cost is

incurred). Triage will then be favored naturally. Its ability to generate new seeds and

maintain a diverse seed pool becomes essential here, to discovering new coverage. This

effect is especially prominent when there is MAB seed selection that makes mutation more

effective, while the power of the initial seeds are exhausted faster, causing triage to be

invoked earlier on. Thanks to its exponential weight growth feature, SyzVegas quickly

adjusts its policy giving triage the absolute priority (when appropriate) just like the default

Syzkaller. Note that a near 100% triage probability does not mean SyzVegas will not

execute anything else. Triage tasks are created by generation and mutation and are not

always available (when no interesting programs are pushed into the work queue). When

SyzVegas has no more triage tasks to schedule, it will select generation or mutation tasks.

Further, what is surprising is that according to the task selection algorithm, the

power of generation and initial seeds can last as long as 4 to 10 hours, and the default

Syzkaller does not tap into this power nearly as much. As Syzkaller keeps evolving with

improved templates and mutation strategies, the power of generation and mutation may
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change over time as well, making auto-tuning the task selection the best long-term option

moving forward (instead of hand-picking a threshold).

Overall, we find that the main effects of MAB task selection are performing

more generations and deferring triages at the very early stages of fuzzing. After a few

hours, however, MAB task selection eventually converges to the same policy of the default

Syzkaller. Triage takes absolute priority, while mutation tasks are heavily favored over

generation tasks. This behavior is the most prominent when combined with seed selection,

where mutations are more rewarding.

We now attempt to understand why combining MAB task selection and seed se-

lection significantly outperforms MAB seed selection only, even when MAB task selection is

losing its effectiveness and converging toward a policy similar to that of the default Syzkaller.

As discussed before, the main effect of task selection is performing more generation tasks

and fewer triage tasks at the early stages of fuzzing, which heavily impacts the initial seeds

added into the corpus. Therefore, we also hypothesize that these early-stage seeds have

long-term benefits, similar to previous researches [83].

Seed power. Mutation, the main workhorse of finding new coverage, requires seed pro-

grams to function. Therefore, accounting for the “power” of seeds, i.e., how much coverage

a seed can produce through mutation, has a significant influence on fuzzing efficiency.

Figure 6.10 shows the number of seeds generated by the fuzzer throughout the

24-hour. We find that with MAB task selection, Syzkaller produces much fewer seeds.

Figure 6.11(a) illustrates the distribution of new coverage attained by mutating these seeds,

a.k.a. seed power. As expected, the MAB seed selection algorithm improves seed power by
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Figure 6.10: Seed number growth over time.
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Figure 6.11: Coverage gained (seed power) by mutating seed programs.

preferring good seeds for mutation. Interestingly, we find that adding MAB task selection

contributes to improving the seed power, despite not directly affecting seed selection. In

other words, the coverage benefits induced by MAB task selection must come from its

contribution to seed quality; this is where the initial generations performed by MAB task

selection help, by creating some very powerful seeds.

We break down the seed power distribution (how much new coverage a seed yields)

based on the origin of the seeds in Figures 6.11(b). Clearly, we observe that MAB task
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(a) Default (b) TS only

(c) SS only (d) TS+SS

Figure 6.12: Evolution forests down-sampled to around 500 nodes.

selection brings an increase in the power of the seeds originating from generation. This

verifies our hypothesis as well as our motivation, where more early generations is beneficial

to the Syzkaller fuzzing process.

Program evolution. To further understand the impact of MAB task selection and seed

selection, we take a look into the program evolution in Syzkaller. In Syzkaller, everything

starts from generated programs, who then go through a series of minimizations and muta-

tions, creating a tree-like structure. Multiple generations will result in a program evolution

128



forest consisting of multiple trees. We pick one run for each setup and construct the program

evolution forest, down-sample it to around 500 nodes and display them in Figure 6.12.

We observe that different strategies have very different approaches to program

evolution. The default Syzkaller (Figure 6.12(a)), as discussed earlier in Figure 6.2.2, favors

a depth-first approach. It performs very few generations (13 trees before sampling) and

is quite biased when it comes to exploration (a.k.a. mutation). With only task selection

(Figure 6.12(b)), SyzVegas performs the most generation tasks and created the biggest

number of trees (789 before sampling), but spend less time exploring them while suffering

from the same biased exploration of the default Syzkaller. With only seed selection (Figure

6.12(c)), a reasonable number of trees (202 before sampling) are created while trees are

more balanced. However, it is clear that the tree created by the very first generation

is explored much more in-depth than the latter trees. Finally, with both task and seed

selection, SyzVegas combines both the large tree numbers because of scheduling, and

the exploration balance from seed selection. Specifically, with more generations at the

beginning, SyzVegas is able to turn more of these generations (347 before sampling) into

program evolution trees.

Performance overhead. Finally, we evaluate the overheads of the MAB task selection

and the seed selection algorithms. The overheads come from two sources: 1) computing and

updating weights and probabilities for tasks and seeds and 2) synchronizing the MAB status

between the fuzzer VM and the manager host. The syncing overhead is closely related to

how often the fuzzer crashes, as when does, it needs to fetch all information about the seed

corpus from manager host all over again. During the 24 hour experiment, updating costs
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around 9 minutes while synchronizing costs 22 minutes. Overall, the overhead of MAB task

selection and seed selection is less than 2.1%.

When it comes to memory, SyzVegas needs to store some additional information

such as the weights of the arms, the total reward thus far, etc.. Copies of these records

must be maintained by each fuzzer VM and the manager host, in case the fuzzer crashes.

For task selection, we use a constant 250 bytes to store the necessary information. For seed

selection, we use 104 bytes of additional memory for each seed. With ∼5,000 seeds created

by SyzVegas in 24 hours, we incur ∼520 KB of memory overhead per VM/manager.

6.4.2 Fuzzing Linux Kernel for 5 days

To further study the long-term performance of SyzVegas, we run a 5-day fuzzing

experiment on the full Linux 5.4.8 kernel. We run this specific experiment on a different

server, equipped with Intel(R) Xeon(R) Gold 6248 2.50GHz CPU. We conducted 10 runs

of both SyzVegas and the default Syzkaller, for a total of 20 runs in parallel. In each run,

we created one fuzzer VM that uses 2 cores and 2 GB memory. For MAB seed selection,

we use the same implicit exploration factor γ = 0.05 and a growth factor η = 0.1 as before.

Figure 6.13 shows the median coverage growth. Over the course of fuzzing, SyzVe-

gas produces 35,000 (16.1%) more branch coverage, in the median case. Table 6.2 lists the

unique crashes we find. SyzVegas discovers 6 unique crashes, which the default Syzkaller

failed to find. Sadly, through automated reproduction and manual verification, we have

so far only been able to successfully verify one unfixed bug. Many of them cannot be re-

produced by Syzkaller after the OS is reset. This is a known deficiency of Syzkaller, as
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Figure 6.13: Median coverage reached for fuzzing Linux kernel for 5 days. Comparison of SyzVe-

gas with default Syzkaller
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Figure 6.14: Median coverage reached for fuzzing Linux sub-systems for 24 hours. 5 runs for each

setup.

syzbot [45], the official automated fuzzing and reporting tool, also reported 6 unrepro-

ducible crashes we discovered.

6.4.3 Fuzzing Linux Kernel Modules

We also compared the fuzzing effectiveness of SyzVegas and the default Syzkaller

on several Linux kernel modules and sub-systems. We run our experiments on servers with
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Table 6.2: Crashes discovered fuzzing Linux kernel for 7 days

Crash Function
Discovered

Status
SyzVegas Default

Register deref interrupt entry Y N NR

UAF Read relay switch subbuf N Y NR*

UAF Read ata scsi mode select xlat Y N Not fixed*

UAF Read locks wake up blocks N Y NR*

slab-out-of-bounds mpol parse str Y Y Not fixed*

slab-out-of-bounds mpol to str Y Y Not fixed

Protection fault unlink anon vmas Y N NR

Warning perf group attach Y Y NR*

Warning generic make request checks Y Y NR*

Warning restore regulatory settings Y N NR*

Warning xfrm policy insert list Y N NR*

RCU stall snd seq write Y N Pending*

*: Reported by syz-bot. NR: Not-reproducible. Pending: Re-

producible but pending analysis.

Intel(R) Xeon(R) CPU E5-2680 v4 2.40GHz CPU. We conduct 5 runs of SyzVegas and

the default Syzkaller, for a total of 10 runs in parallel for each module/sub-system.

Figure 6.14 shows the coverage growth of fuzzing the file system, the IPC module,

and the SCSI generic (sg) driver. We observe that SyzVegas performs slightly better in

terms of coverage, while both SyzVegas and default Syakaller are having trouble finding

new coverage after a few hours. Table 6.3 shows the crashes we found using both SyzVe-

gas and the default Syzkaller. Despite not being able to drastically improve coverage,

SyzVegas does find 5 crashes not detected default Syzkaller. Among them, we have so far

verified one unfixed bug. Interestingly, the bug in ata scsi mode select xlat() is found

132



Table 6.3: Crashes discovered fuzzing Linux sub-systems for 24 hours

Crash Function
Discovered

Status
SyzVegas Default

NULL pointer ip rcv finish Y N Not fixed

Kernel paging sel netnode find Y N NR

Protection fault d hash and lookup Y N NR

Protection fault pid vnr Y Y Not fixed

Protection fault fget light Y N NR

RCU stall sys umount Y Y Pending

RCU stall do sys newstat Y N Pending

UAF Read ata scsi mode select xlat Y Y Not fixed*

*: Reported by syz-bot. NR: Not-reproducible. Pending: Re-

producible but pending analysis.

by the default Syzkaller only during the more focused kernel module fuzzing, while SyzVe-

gas is able to discover it in both module fuzzing and full kernel fuzzing. This is another

example of the benefits of the breadth-first approach of SyzVegas.

6.5 Related Work

Applying reinforcement learning to fuzzing. Researchers have attempted to apply

reinforcement learning techniques to perform seed selection. Woo et al. [103] use MAB al-

gorithm to perform crash-based seed selection for black-box fuzzing within a fixed run/time

budget. In our kernel-fuzzing context, however, the ability to find crashes is a sub-optimal

measurement to seed power since 1) the kernel codebase is huge and crashes are hard to

find and 2) assigning more probability on the seeds finding crashes may only trigger the
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same crashes repeatedly. Patil et al. [84] treat the problem of assigning rewards the fuzzing

iterations to a test case as a “Contextual Bandit” problem. However, their reward assign-

ment does not take the time cost into consideration. Comparing to previous researches,

SyzVegas focuses on optimizing the branch coverage growth during fuzzing process by an

intuitive reward assessment model capable of balancing the coverage achieved and time cost.

We also addressed the task selection problem unique to Syzkaller, including the problem of

reward distribution between mutation and triage.

Böttinger et al.,[31] use Q-learning [102] to learn a policy for choosing mutation

operators. Karamcheti et al. [61] apply what is called a Thompson Sampling, bandit-based

optimization approach to fine-tune the mutation operator distribution. MOpt [74] utilized a

customized Particle Swarm Optimization (PSO) algorithm to determine the optimal distri-

bution of mutation operators. SyzVegas focuses on scheduling the right type of work and

choosing the right seed for mutation, independent of the distribution of mutation operators.

In theory, SyzVegas can work perfectly alongside any algorithm aiming to optimize the

mutation operator distribution.

Seed selection optimizations. Researchers have also focused on optimizing different

mutation strategies. Rebert et al. [87] explored several different seed selection algorithms

and measured their qualities using linear programming. DigFuzz [110] uses a Monte-Carlo-

based algorithm to prioritize favorable paths, and determine the seeds that are more valuable

for future mutations. AFLFast [30] treats fuzzing as a Markov chain problem, modeling the

probability that fuzzing the seed that exercises one path, generates an input that exercises

another path. SyzVegas treats the inner workings of the seeds as a black box and model
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the coverage achieved and the time cost of mutating different seeds. It does not require any

program analysis technique, and can easily adapt to different fuzzing targets.

Kernel fuzzing. Syzkaller provides a great foundation for coverage-based kernel fuzzing.

There are several works built upon it, to improve kernel fuzzing from different aspects.

FastSyzkaller [69] combines Syzkaller with an N-Gram model, to optimize the test case

generation process. Moonshine [83] tries to improve the quality of the initial seeds in

Syzkaller by “distilling” seeds from system call traces of real-world programs. RAZZER [60]

combines fuzzer and static analysis, to detect race bugs in kernel. Difuze [38] utilizes static

analysis to compose correctly-structured inputs in the userspace, to explore kernel drivers.

SyzVegas focuses on automating critical fuzzing decisions in Syzkaller, and demonstrates

its short-term and long-term effects on coverage growth, and targets improvements of the

same.

Besides Syzkaller, there exist other fuzzers for OS kernels. Trinity [24], iknowthis [19],

KernelFuzzer [21], and sysfuzz [23] are built with hard-coded rules and grammars. kAFL [88],

TriforceLinuxSyscallFuzzer [47], TriforceAFL [57], on the other hand, are based on or in-

spired by AFL. Given that Syzkaller is the state-of-the-art, we decide to implement our

reinforcement learning based solution on top of it. However, we believe the idea generalizes

to these other kernel fuzzers as they likewise encode numerous decisions and parameters

(e.g., which syscall to insert and when to mutate the value of an argument).
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6.6 Conclusions

In this paper, motivated by observations that kernel fuzzing strategies have nu-

merous fixed decisions and hard-coded parameters, we propose SyzVegas to dynamically

choose the right fuzzing task in conjunction with the right seed, in Syzkaller. Towards

this, we model the specific fuzzing tasks as a multi-armed-bandit problem, which allows

the system to learn the effective strategies and adapt over time, using a novel, yet intuitive

reward assessment model to capture benefits and costs. We evaluate SyzVegas on Linux

kernel version 5.4.8 and several of its modules. We demonstrate that SyzVegas has a low

2.1% performance overhead and makes considerable improvements in terms of coverage

achieved and crashes found, relative to the default Syzkaller. We believe our improved cov-

erage growth will be very beneficial for researchers and developers for large-scale, continuous

fuzzing projects.
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Algorithm 3 Task selection Algorithm

1: for all r = 1, 2, ... do

2: Ĝgen(0), Ĝmut(0), Ĝtri(0)← 0

3: t← 0

4: γ ← 2−r

5: η ← 2× γ

6: Ĝthreshold ← 3 ln3
e−1 · 4

r − 1
3 γ

7: while maxi(|Ĝi|) < Ĝthreshold do

8: wi(t)← eηĜi(t)

9: pri(t)← wi(t)∑
j wj(t)

10: Draw it according to prgen(t), prmut(t), prtri(t)

11: if it = gen then

12: Receive reward xgen(t)

13: Ĝgen(t+ 1)← Ĝgen(t) + xgen(t)/(prgen + γ)

14: else if it = tri then

15: Receive initial reward for triage xtri(s)

16: Ĝtri(t+ 1)← Ĝtri(t) + xtri(t)/(prtri + γ)

17: else if it = mut, Seed s is selected then

18: Receive reward detlas xmut(t), xtri(t)

19: Ĝtri(t+ 1)← Ĝtri(t) + xtri(t)/(prmut + γ)

20: Ĝmut(t+ 1)← Ĝmut(t) + xmut(t)/(prmut + γ)

21: end if

22: t← t+ 1

23: end while

24: end for
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Algorithm 4 Seed Selection Algorithm

Require: γ, η ∈ (0, 1)

1: for all t = 1, 1, 2 do

2: wi ← eηĜi

3: pri ← wi∑
j wj

4: Draw seed it randomly according to pri

5: Receive reward xi(t)

6: Ĝi(t+ 1)← Ĝi(t) + xi(t)
pri+γ

7: end for
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Chapter 7

Conclusion

In this thesis, we explored the possible attacks and applications of existing CPU

side-channels and conducted several systematic studies.

First, we propose a concept of attacking Android graphic buffer using prime+probe

attack. We identify some key challenges of implementing an end-to-end attack, including

the requirement of CFS scheduling slowdown as well as the ability to monitor the entire

CPU LLC in the presence of prefetching.

We thus propose PAPP: a prefetcher-aware prime and probe cache side-channel

attack. PAPP performs systematic profiling of CPU cache prefetcher and replacement

policy. We show that PAPP is able to construct a prime+probe strategy that is resistant to

the interference of prefetcher. We evaluate PAPP on real-world systems using cache side-

channel vulnerability (CSV) metric and demonstrates that PAPP doubles the information

leakage comparing to traditional prime and probe implementations. We hope that PAPP

can be used in new attacks and applications to provide efficient cache monitoring.
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We then discover a previously unknown type of potent side-channel that allows an

attacker to use the flush+reload attack to perform cross-process timing measurements on

sensitive functionalities inside shared graphic libraries. The attack facilitates the inference of

a user’s keystrokes when the typed keys are rendered on the screen or going through graphic

pre-processing. The attack hinges on utilizing machine learning techniques to discover

execution-time based side-channels inside graphic libraries. We have completely automated

the discovery of such side-channels and even the generation of exploits. We validate that

our attack is viable on real-world applications on multiple platforms and demonstrate its

high accuracy in predicting user input in practice. This attack could potentially affect a

large user population of the considered applications.

Next, we propose to utilize CPU side-channels as feedback sources when fuzzing

un-modifiable binaries. We identify several possible scenarios where this technique might be

useful and state the technical challenges the need to be addressed. We also perform an initial

evaluation on real-world systems and make a surprising discovery on the opportunities in

improving kernel fuzzing efficiency.

Finally, we propose SyzVegas to dynamically choose the right fuzzing task in

conjunction with the right seed, in Syzkaller, the state-of-art kernel fuzzer. Towards this, we

model the specific fuzzing tasks as a multi-armed-bandit problem, which allows the system

to learn the effective strategies and adapt over time, using a novel, yet intuitive reward

assessment model to capture benefits and costs. We evaluate SyzVegas on the Linux

kernel and several of its modules and demonstrate that SyzVegas has a low performance

overhead and makes considerable improvements in terms of coverage achieved and crashes
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found, relative to the default Syzkaller. We believe our improved coverage growth will be

very beneficial for researchers and developers for large-scale, continuous fuzzing projects.

Ultimately, we demonstrate that CPU side-channels have plenty of potential and

can be utilized in interesting attacks and applications. We also learned that a successful

end-to-end attack using CPU side-channel is not a trivial task and require many detailed

technical challenges being addressed. We hope our work could inspire more studies of novel

attacks and applications using CPU side-channels.
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