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Abstract

Circadian disruption may play a role in carcinogenesis. Recent research suggests that light at night 

(LAN), a circadian disruptor, may be a risk factor for cancer. Moreover, LAN has been linked 

to obesity and diabetes, two risk factors for pancreatic ductal adenocarcinoma (PDAC). Here 

we examine the relationship between LAN and PDAC in an epidemiological study of 464,371 

participants from the NIH-AARP Diet and Health Study. LAN was estimated from satellite 

imagery at baseline (1996) and incident primary PDAC cases were ascertained from state cancer 

registries. Cox proportional hazards models were used to estimate hazard ratios (HR) and 2-sided 

95% confidence intervals (CI) for the association between quintiles of LAN and PDAC in the 

overall population stratified by sex. Over up to 16.2 years of follow-up, a total of 2,502 incident 

PDAC were identified in the cohort. Higher estimated LAN exposure was associated with an 

elevated PDAC risk. Compared to those living in areas in the lowest LAN quintile, those in 

areas in the highest quintile had a 27% increase PDAC risk (HR (95% CI), 1.24 (1.03, 1.49)), 

with similar risk for men (1.21 (0.96, 1.53)) and women (1.28 (0.94, 1.75)). In addition, stronger 

associations were observed in normal and overweight groups compared to the obese group (p for 

interaction = 0.03). Our results support the hypothesis that LAN and circadian disruption may be 

risk factors for PDAC.

Introduction

Pancreatic cancer is the most lethal type of cancer and the fourth leading cause of cancer 

mortality in the US in both men and women.1,2 Pancreatic ductal adenocarcinoma (PDAC) 
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is the most common subtype, representing more than 85% of all pancreatic cancers.3 Few 

risk factors have been consistently identified beyond family history, heavy alcohol use, 

current smoking, diabetes, and overweight and obesity.4–11 Genetic susceptibility also plays 

a role.12 The causes of PDAC are still insufficiently known, and a better understanding of 

its etiology and identifying additional risk factors are essential for the primary prevention of 

this disease.

A growing body of research has suggested that circadian disruption may play a role in 

cancer etiology in general, and PDAC risk more specifically.13 For example, night shift 

work has been classified as a probably carcinogen to humans by the International Agency 

for Research on Cancer,14 and has been linked to a more than two-fold increase in risk 

of pancreatic cancer in men.15 Although night shift work may cause multiple changes in 

health behaviors and environmental exposures that may lead to elevated cancer risk, it has 

been postulated that the disruption of circadian rhythms among shift worker may be a main 

driver of the carcinogenic effect.16 In addition, an earlier study reported that residing in the 

western regions of time zones, a risk factor for circadian disruption, was also associated with 

higher pancreatic cancer risk.17 Moreover, shift work and sleep deficiency, an indicator and 

potential cause of circadian disruption, have been consistently linked with type 2 diabetes 

and obesity,18–21 two important risk factors for PDAC. Together, these findings raised the 

possibility that circadian disruption may be a risk factor for PDAC.

Light at night (LAN) is a well-established disruptor of the circadian rhythm.22 In modern 

societies, the growing exposure to artificial LAN and its potential disruptive effect on human 

circadian rhythms have become a public health concern.23 Studies have linked LAN to 

multiple health conditions including obesity24–26 and incident diabetes.27 Moreover, using 

satellite data, several studies have shown that higher outdoor LAN may be a risk factor for 

breast and prostate cancer.28–30 However, no epidemiological study has examined LAN in 

relation to PDAC risk. To fill this gap, we studied the association between satellite-estimated 

LAN and the risk of PDAC in a large U.S. cohort of middle-to-older aged men and women. 

We hypothesize that higher levels of LAN are associated with elevated risks for PDAC.

Materials and Methods

Study Population

The NIH-AARP Diet and Health study was established in 1995–1996 and recruited AARP 

(formerly known as the American Association of Retired Persons) members (age 50–71) 

from six U.S. states (California, Florida, Louisiana, New Jersey, North Carolina, and 

Pennsylvania) and two metropolitan areas (Atlanta, Georgia, and Detroit, Michigan). Details 

of the study were reported previously.31 The study was approved by the National Cancer 

Institute Special Studies Institutional Review Board.

At baseline, 617,119 questionnaires were returned and after removing duplicates and 

respondents who had missing key demographic variables, were not the intended respondent, 

skipped substantial portions of the questionnaire, had >10 recording errors, or requested to 

be removed from the study, a total of 566,389 questionnaires were deemed satisfactorily 

completed. At baseline, participants provided their residential addresses, which were linked 
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with satellite data to obtain LAN exposure status (details below), as well as information 

on demographic factors, lifestyle behaviors, and medical history including cancer. In 2004–

2006, an updated list of residential addresses was constructed for administering a follow-up 

survey. We used these addresses in the sensitivity analysis (detailed in Statistical analysis) to 

examine the association between long-term exposure to LAN and PDAC among people who 

were living in the same area at baseline and follow up, defined as <1km in distance between 

the two addresses. Of the 566,389 participants with satisfactory baseline questionnaire, we 

excluded participants who reported a personal history of cancer at baseline (N=50,591), 

were identified through National Death Index with cancer as the underlying cause of 

death but had no information on timing of diagnosis date or cancer histology (N=6,702), 

requested to be withdrawn or had moved out of the study areas before baseline (N=57), 

and whose residential location could not be geocoded to an exact street address or point 

address (N=44,641). The final analytical cohort included 464,371 men and women. For the 

sensitivity analysis, we included 251,298 participants (55%) who were living in the same 

area at baseline and follow up.

Assessment of Outdoor LAN

Residential addresses at baseline were geocoded into latitude/longitude coordinates, and 

linked with satellite imagery data using ArcGIS (v. 10.7, ESRI, Redlands, CA). Annual 

composite measures of LAN were obtained from the archive of the U.S. Defense 

Meteorological Satellite Program’s Operational Linescan System, maintained by the 

National Oceanic and Atmospheric Administration’s Earth Observation Group.32 The 

images were processed to remove light signals from sun and moon luminance, glare, 

clouds, atmospheric lightning, and ephemeral events such as fires, and therefore mainly 

consist of artificial light. Images were georectified to a 30 arc-second grid (equivalent to 

approximately 1km2).33 To avoid saturation at higher levels of light intensity, particularly in 

urban areas, we used the Global Radiance Calibrated Nighttime Lights high-dynamic range 

data, which were derived by combing data from three fixed-gain settings, with the lowest 

gain setting set to avoid saturation in areas with the brightest lighting. LAN measures were 

transformed into units of radiance (nanowatts/cm2/sterradian(sr)).33 We used the LAN data 

in 1996 to estimate the baseline LAN exposures for participants.

Cohort Follow-up and Ascertainment of Incident PDAC

Cancer cases were identified by linking the study cohort to the eight original and three 

additional (Arizona, Nevada and Texas) state cancer registry databases from 1995 until 

Dec 31, 2011. A previous validation study found that approximately 90% of cancers 

in the cohort were identified through registry linkage.34 The vital status of participants 

was also ascertained by linkage to the Social Security Administration Death Master File, 

supplemented by the National Death Index and responses to study mailings. Incident first 

primary cases of PDAC were identified using the International Classification of Diseases for 
Oncology Third Edition (codes C250–C259) and histological types (8140, 8255, 8490, 8500, 

8507, 8510, 8514, 8521, 8523, 8560, 8570, 8440, 8470, 8504, 8144, 8450, 8453, 8471, 

8503, 8480, 8481, 8000, 8010, 8440, 8470, 8504). Our case definition included 2,502 PDAC 

cases, while excluding 128 (4.9%) pancreatic tumors other than PDAC, including pancreatic 

endocrine tumors, acinar cell, and other rare pancreatic tumors and some poorly specified 
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pancreatic cancers (all of the other histologic types). We excluded non-PDAC cases because 

these rarer subtypes differ from the PDAC not only in clinical presentations and prognosis, 

but also in cell of origin and possibly disease etiology and risk factors.35,36

Covariates

At baseline, participants provided information on a broad range of covariates, including 

demographic characteristics such as age, race/ethnicity, education and marital status; 

lifestyle factors, such as smoking, alcohol use, diet, body mass index (BMI kg/m2), and 

physical activity; and medical history of cardiovascular diseases and diabetes. Baseline 

addresses were linked to the 2000 US Census, which allowed us to derive a number of 

neighborhood measures at the census tract level, such as population density, median home 

value, and percent of population below poverty line. We used population density as an 

indicator of urbanicity, and the percent of population below poverty line and median home 

value as indicators of neighborhood socioeconomic status.

Statistical analysis

We used Cox proportional hazards models to calculate hazard ratios (HR) and 95% 

confidence intervals (CI) for determining the association between LAN and PDAC risk. 

Person-years of follow-up time were calculated from the baseline until the date of primary 

cancer diagnosis, relocation from the registry areas, death, or the end of follow-up 

(December 31, 2011), whichever came sooner. All models used age as the underlying 

time metric. The quintiles for LAN were based on the distribution of the full cohort. The 

proportional hazards assumption was evaluated and confirmed by including interaction terms 

with follow-up time and using the Wald χ procedure to test whether coefficients equaled 

zero. We took a stepwise approach to build our regression models. The minimal model 

(Model 1) was adjusted for state of residence (California, Florida, Louisiana, New Jersey, 

North Carolina, Pennsylvania, Georgia, Michigan) and sex (men, women). The second 

model (Model 2) was additionally adjusted for race (white, black, other), education (less 

than high school, high school graduate, some college, college and post graduate), smoking 

(former smoker and quit 10+ years, former smoker and quit 1–9 years, current smoker or 

quit<1 year, never smoked), alcohol use (non-drinker, <1 drink/day, 1–<3 drinks/day, ≥3 

drink/day), red meat intake (continuous), rural-urban continuum code (1, 2, 3, 4, 5+), and 

2000 census tract percent below poverty (continuous), median home value (continuous), and 

population density (quintile). We consider model 2 as our main model. In a third model 

(Model 3), we additionally adjusted for BMI (<25, 25–<30, 30+) and self-reported diabetes 

(yes, no), because they are well-established PDAC risk factors but can be influenced by 

LAN,37 making them unlikely to be confounders of the association. We also calculated the 

HR and 95% CI associated per quintile increase in LAN as well as P-value for trend using 

LAN quintile as a continuous score by assigning a numeric value 1–5 to each quintile. 

Although we did not observe a statistically significant interaction between sex and LAN, we 

conducted analyses in the overall cohort, as well as in men and women separately to report 

sex-specific associations. In addition, we also performed stratified analyses by smoking, 

alcohol, BMI, diabetes, and study areas (six states and two metropolitan areas). Statistical 

significance for multiplicative interactions was tested using the Wald test. Finally, to assess 

how robust the results are when using a one-time estimate of LAN at baseline, we examined 
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the relationship between LAN and PDAC among those who reported living in the same 

area at baseline and follow-up. We used the 1996 LAN as the exposure variable for the 

sensitivity analysis because LAN levels remained largely stable across the study areas during 

this period, showing a correlation coefficient of 0.97 between LAN in 2004 and 1996. All 

analyses were performed using Stata 14 (StataCorp, College Station, TX) and P-values for 

statistical tests were 2-tailed.

Results

During up to 16.2 y of follow-up (median: 15.5 y), 1571 men and 931 women were 

identified with incident PDAC in the baseline cohort. Table 1 presents characteristics of 

study participants at baseline according to LAN quintiles. For both sexes, compared to those 

with the lowest LAN, participants with high LAN were less likely to be white, but were 

more likely to be college educated, report moderate alcohol use (<1 drink/day), and live 

in census tracts with higher population density and median home values; they also had 

lower levels of vigorous physical activity and red meat intake. We also observed a U-shaped 

relationship between LAN and census tract poverty levels.

Overall and sex-specific associations between LAN and PDAC risk are presented In Table 2. 

Higher levels of LAN were associated with higher risks for incident PDAC after adjusting 

for multiple confounders (Model 2). Specifically, those in the highest quintile had a 24% 

greater risk of developing PDAC over follow-up (HR Q5 vs Q1 (95% CI), 1.24 (1.03, 1.49), 

p-trend, 0.005), and this association was similar in both men (1.21 (0.96, 1.53), 0.03) 

and women (1.28 (0.94, 1.75), 0.08), although sex-specific results were only of borderline 

statistical significance. Additionally adjusting for BMI and diabetes had almost on impact on 

the results (all effect estimates remained the same). We further calculated that the risk for 

PDAC increased by 6–7% for every quintile increase in LAN. In our sensitivity analysis, we 

found that restricting to those who lived in the same areas at baseline and in the follow-up 

produced largely similar results (Supplementary Table 1).

We observed that the association between LAN and PDAC differed by BMI status (p-
interaction, 0.03) (Table 3 and Supplementary Table 2), such that the association appeared 

stronger among participants who were normal weight (HR Q5 vs Q1 (95% CI), 1.30 (0.94, 

1.80); P-trend, 0.08) or overweight (1.31 (0.98, 1.74); 0.02) than among obese participants 

(1.04 (0.71, 1.52); 0.65), although none of these effect estimates reached statistical 

significance. The associations did not differ by smoking, alcohol use, and self-reported 

diabetes (p-interaction, 0.33, 0.80, and 0.89 respectively, Supplementary Table 3). Finally, 

we presented results for each of the eight study areas in Supplementary Table 4. Although 

only the results in the two states with the largest study participants (CA and FL) reached 

statistical significance, they generally support an association between higher LAN and 

elevated risk of PDAC in each state, excepting New Jersey, for which no association was 

observed.
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Discussion

In this large cohort of middle-to-older aged American men and women, we found that higher 

outdoor LAN estimated by satellite imagery around the residential address was associated 

with an elevated risk of PDAC. We also found evidence suggesting that this association may 

differ by baseline BMI.

To the best of our knowledge, our epidemiologic study is the first to examine the association 

between LAN and PDAC in humans. Several earlier studies reported associations between 

higher levels of LAN estimated by satellite and other cancer types, particularly breast and 

prostate cancers. For example, the highest quintile of outdoor LAN was associated with a 

modest increase in breast cancer risk in the California Teachers Study (HR Q5 vs. Q1, 95% 

(CI), 1.12 (1.00, 1.26))30 and the Nurses’ Health Study II (1.14 (1.01, 1.29)).28 Similar 

results were also observed in the NIH-AARP Diet and Health cohort, where higher levels 

of outdoor LAN was associated with higher postmenopausal breast cancer risk in older aged 

women.38 In addition, in a population-based case-control study in Spain, Garcia-Saenz et al. 

reported that higher exposure to outdoor LAN in the blue light spectrum, measured using 

recent images from the International Space Station, was associated with elevated risks of 

breast (Odds ratio T3 vs. T1, 95% (CI), 1.47 (1.00, 2.17) and prostate cancer (2.05 (1.38, 

3.03)). The variety of cancer types that have been found to be associated with LAN in these 

studies and this current study seem to suggest that there may be common mechanisms that 

may drive the association between higher LAN and higher risks of cancer.

Although speculative, circadian disruption is a biologically plausible mechanism that could 

potentially explain the association of LAN with PDAC risk. LAN suppresses nighttime 

secretion of melatonin, a hormone that plays a key role in circadian regulation, and may 

lead to circadian disruption.39 Growing evidence supports a role for circadian disruption in 

the etiology of pancreatic cancer. For example, multiple variants in genes that regulate the 

molecular clock have been linked to a wide range of cancers, including pancreatic cancer.40 

Moreover, a population-based case-control study in Canada found that night shift work 

was associated with a higher risk of pancreatic cancer in men (OR (95% CI), 2.31 (1.48, 

3.61)).15 In addition, another study examined the longitudinal position in a time zone in 

relation to cancer incidence using data from the Surveillance, Epidemiology and End Results 

program.17 Although people within the same time zone tend to follow similar work, school 

and social schedules based on the same clock time, those living in more western locations 

are more likely to have a later circadian timing due to delayed sun light exposure, which 

usually lead to a larger circadian misalignment.41 Thus the authors hypothesized that cancer 

incidence rates would increase from eastern to western locations within a time zone. Indeed, 

the study found that each five degrees of longitude toward the west was associated with 

increases in the incidence of multiple cancers, including a ~4% increase in pancreatic cancer 

incidence rate among both men and women. Taken together, these findings support a role of 

circadian disruption and LAN in PDAC risk.

The circadian clock plays a central role in orchestrating many physiological functions in 

the human body, and the adverse effects of circadian disruption on metabolism may be 

particularly relevant to pancreatic cancer. Metabolic disorders, such as obesity and type 2 

Xiao et al. Page 6

Cancer Res. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diabetes, are well-established risk factors for pancreatic cancer.42,43 Night-shift workers who 

commonly suffer circadian disruption experience larger weight gain44 and are more likely 

to develop metabolic syndrome45 and diabetes.46 Moreover, multiple studies have directly 

linked LAN with obesity and diabetes. For example, in a cross-sectional analysis in the 

Korea Genome and Epidemiology Study, results revealed a positive association between 

outdoor LAN and obesity when comparing high vs low LAN groups (1.20, 95% CI:1.06, 

1.36)).25 In more than 700 elderly Japanese with photometer-measured LAN, Obayashi et 

al. reported that exposure to higher LAN was associated with higher gain in BMI and waist-

to-height ratio over 21 months,47 and a more-than-two-fold increase in diabetes incidence 

after 42 months.27 Although including BMI and diabetes in our model did not have a 

meaningful impact on our results, these variables were measured at the same time when 

LAN was estimated, and we were not able to examine their role as potential mediators 

using formal mediation analysis. In our stratified analyses, we did observe differences in 

the association between LAN and pancreatic cancer among different BMI groups, with 

stronger associations observed among people with normal or overweight BMI. It is unclear 

why the results were stronger among nonobese participants. BMI is a well-established 

risk factor for PDAC.48 It is possible that the presence of obesity may mask the effects 

of LAN. Alternatively, compared to the other groups, the obese group has less cases and 

may not have as much power to observe associations. In our analysis stratified by type 

2 diabetes status (Supplemental Table 3), the per-quintile increase in PDAC risk appeared 

greater among people with no history of diabetes at baseline, although the relatively small 

sample size for people with diabetes limited the statistical power and the ability to make 

a reliable comparison. More studies are needed to clarify the role of obesity and type 

2 diabetes in the association between LAN and pancreatic cancer. Moreover, there are 

numerous other biological pathways that are critically involved in tumorigenesis and may 

be adversely affected by circadian disruption, including immune function, hormone release, 

cell proliferation and cellular response to DNA damage.49,50 Future research is needed 

to understand the underlying mechanisms that may explain the association between LAN, 

circadian disruption, and pancreatic cancer.

Alternatively, our observed association may be from mere confounding by other 

environmental or individual factors. For example, LAN is closely correlated with urbanicity 

and economic activities, which are associated with differences in health behaviors, access to 

and utilization of health services and certain environmental exposures that are concentrated 

in metropolitan areas such as air pollution and traffic noise, all of which may have 

an impact on pancreatic cancer risk. Although we controlled for several environmental 

factors, including urbanicity defined by the rural-urban continuum code, census-tract level 

population density and socioeconomic indicators, these variables do not fully capture the 

complex and multi-dimensional neighborhood attributes that may confound the association 

between LAN and PDAC. Moreover, because LAN and urbanicity are highly correlated, 

it is challenging to fully control for effects of urbanicity in our analytic models. To better 

understand to what degree our results are due to residual confounding or reflect true causal 

associations of LAN, future studies should examine how changes in LAN affect PDAC 

risk and other related health outcomes, such as diabetes and obesity. Indeed, small-scale 

experiments on human subjects and laboratory animals have suggested that light exposure 
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at night not only disrupted circadian rhythms, but also led to metabolic dysfunction.51 

However, it is challenging to conduct experimental studies in large human populations, 

and natural experiments may provide a useful alternative. For example, many cities and 

states have introduced, or are planning to introduce regulations on outdoor lighting, which 

could have an impact on LAN exposures across neighborhoods. It would be informative to 

investigate how such regulations, and other factors that may impact LAN levels, affect health 

outcomes, including cancer risks.

Our study has several strengths. First, we had a large number of PDAC cases provided by 

the large sample size, advanced age distribution and long follow-up of the NIH-AARP 

Diet and Health Study. Moreover, we were able to conduct sex-specific analyses and 

examine multiple risk factors for PDAC as potential confounders and effect modifiers of 

the association. Given the prospective design and long follow-up, our analyses are not 

likely influenced by reverse causation. However, our study does have some limitations. 

First, we used outdoor LAN as a proxy measure, while some previous studies found 

that satellite-estimated LAN only had low correlation with indoor LAN exposures.52,53 

Multiple factors can influence how well outdoor LAN reflects the actual LAN exposure 

at the individual level, such as indoor lighting, nighttime activities in both indoor and 

outdoor settings such as shift work, and the use of light-blocking materials such as window 

treatments and sleep masks. Unfortunately, our study did not collect information on these 

factors and therefore we were not able to assess how they may have affected our results. 

Although the use of satellite-based estimate of LAN present a crude measure of exposure, 

as an exploratory study, our investigation suggests a possible association between high LAN 

exposure and PDAC risk. Future studies should use personal devices to obtain measures that 

more accurately reflect the actual LAN exposure experienced by participants to expand and 

confirm our findings. Second, it has been shown that the blue light has a particularly strong 

effects on circadian disruption,54 and a recent study found that LAN in the blue spectrum 

had a stronger relationship with breast cancer than overall LAN levels.29 Unfortunately, the 

satellite images in 1996 did not measure the spectrum of light, and we were not able to 

examine blue light exposure in relation to PDAC risk. Third, one-time estimate of LAN 

exposure at baseline may not reflect long-term accumulative exposures or changes in LAN. 

In our sensitivity analysis, we found that using baseline LAN measurement produced results 

similar to those using long-term LAN exposures among people who lived in the same areas 

at baseline and after 10-years of follow up. However, exposure misclassification is still 

possible if LAN levels changed substantially in the same areas where people resided after 

baseline. The field would benefit from future studies with long-term residential histories 

and longitudinal LAN data to assess trajectories of LAN exposure among both movers and 

non-movers to obtain a better understanding of the effects of timing and length of LAN 

exposure on PDAC risk. Finally, we did not have measures of circadian rhythms, and could 

not examine whether the observed association was mediated by circadian disruption.

In summary, our study supports the hypothesis that higher exposure to LAN is a risk factor 

for PDAC. Our findings contribute to the growing literature that demonstrates the potentially 

adverse effects of LAN on a wide range of chronic diseases, including cancer.
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Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Our study suggests that higher light at night is a risk factor for pancreatic cancer, 

contributing to the growing literature that demonstrates the potentially adverse health 

effects of light pollution.
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