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Given globalization and other social phenomena, controlling the spread of infectious diseases has become an
imperative public health priority. A plethora of interventions that in theory can mitigate the spread of pathogens
have been proposed and applied. Evaluating the effectiveness of such interventions is costly and in many circum-
stances unrealistic. Most important, the community effect (i.e., the ability of the intervention to minimize the spread
of the pathogen from people who received the intervention to other community members) can rarely be evaluated.
Here we propose a study design that can build and evaluate evidence in support of the community effect of an inter-
vention. The approach exploits molecular evolutionary dynamics of pathogens in order to track new infections as
having arisen from either a control or an intervention group. It enables us to evaluate whether an intervention re-
duces the number and length of new transmission chains in comparison with a control condition, and thus lets us
estimate the relative decrease in new infections in the community due to the intervention. We provide as an exam-
ple one working scenario of a way the approach can be applied with a simulation study and associated power
calculations.

community effect; HIV; human immunodeficiency virus; intervention; persons who inject drugs; phylodynamics;
PWID; transmission chain

Abbreviations: HIV, human immunodeficiency virus; tMRCA, time to most recent common ancestor; PWID, persons who inject
drugs.

Over the last decade our understanding of how pathogens
spread has greatly improved, but mitigating pathogen epidemics
still remains an enormous challenge. Early mathematical models
of infectious diseases predicted what reality confirmed: the intro-
duction and spread of pathogens intomodern human populations
now occurs more easily than ever due to the fast-growing high-
density human population, which may travel long distances more
easily than ever (1, 2). Epidemics such as those caused by human
immunodeficiency virus (HIV)-1, hepatitis C virus, hepatitis B virus,
tuberculosis, or malaria are still holding, and we are still far
from containing them. On multiple independent occasions, large
and rapid socioeconomic deterioration or, in other cases, a rapid
growth preceded epidemic outbreaks, suggesting that “big events”
could be considered spatiotemporal hot spots for triggering new

(3, 4) or fueling old epidemics (5–7). Although such epidemics
will not stop happening, we endeavor to better understand when,
andmost importantly, how,wewill be able to contain them.

A plethora of mathematical models aims to evaluate interven-
tion strategies with respect to successful mitigation of pathogen
epidemics (8, 9). It is thought that the evaluation of interven-
tions and their success is dependent on randomized trials (10),
which can be costly and unrealistic in many settings. In addi-
tion, randomized controlled trials measure the impact of an
intervention only on those who directly participate in one of the
trial arms (or their first degree contacts) and thus cannot assess
the community impact of the intervention (11). In cases such as
harm-reduction interventions (e.g., needle or syringe exchange
programs), where randomized controlled trials cannot be applied
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in practice, a substantial amount of data in support of certain in-
terventions has resulted in considering them as well-supported.
However, more research is required (12).

Here we propose a new approach that aims to measure and
evaluate the effect of interventions to mitigate the spread of
pathogens by studying their evolutionary dynamics. We are
interested inmeasuring the “community effect” of interventions
(i.e., the ability to prevent both the initiation and expansion of
transmission chains from people that have received a given
intervention).

The method we describe here focuses on evaluating interven-
tions among HIV-positive individuals. Our approach has been
designed with HIV evolutionary dynamics in mind but can be
adapted to evaluate interventions for other pathogens and for a
broad range of settings. We specifically draw upon the example
of HIV-preventive interventions among HIV-infected persons
who inject drugs (PWID), where the community effect of an
intervention in this group still remains a significant challenge.
We focus on risk-network-based interventions such as the
Transmission Reduction Intervention Program (13), which are
designed not only to protect specific individuals recruited by the
intervention arm but also to protect their risk network contacts.

METHODS

The problem

At time t an HIV epidemic has Nb infected individuals over
a population with an overall number of individuals Na (for a
list of abbreviations used in equations see Table 1). At this
time t an intervention is applied on n infected individuals and
aims to mitigate the spread of HIV over the susceptible popu-
lation.We believe this intervention has a community effect, so
it reduces transmissibility not only by the recruited n individuals
but also by the contacts in their risk networks. Importantly, the
described approach can easily be expanded to include interven-
tions that affect only the recruited individuals to whom the inter-
ventionwas applied.

We collect blood samples at time t from both the intervention
and defined (also infected) control groups, and we perform HIV
genetic sequencing.After some later time ti we revisit the popula-
tion in order to evaluate the effect of the intervention. An impor-
tant aspect of HIV natural history is that when someone gets
infected they remain infected and carry HIV for life. This allows
sequence sampling of the infected individuals many years after
the transmission event.

To simplify calculations in ourmodel wemeasure time t back-
ward (as “time ago”) from the last sampling date (e.g., when we
revisit the location); this allows time to most recent common
ancestor (tMRCA) to be directly comparedwith t and ti. Thus ti < t
even though in calendar years the intervention occurred before
the time point whenwe revisited the population (see Figure 1).

The “phylodynamic transmission chain”model

As indicated above we are interested in evaluating the ability
of an intervention to prevent both the initialization and expansion
of a transmission chain.Wewill evaluate these 2 properties of an
intervention separately even though the expansion of a transmis-
sion chain ismechanistically dependent on the initialization.

At time ti we will sample and sequence HIV from nx indivi-
duals (we will call them incident individuals) who have been
infected after the intervention (see Figure 1). To verify that a
patient was infected within the intervention-resampling interval,
we may use a combination of approaches and criteria including
known time of seroconversion, an HIV-negative test result within
the intervention-resampling interval, and/or an avidity test sugges-
tive of recent infection and/or high-throughput deep-sequencing
approaches (14).

Our first goal is to determine whether each one of these inci-
dent individuals is phylogenetically linked with the interven-
tion group or with a nonintervention (or control) group. We
consider that a phylogenetic link with the intervention group is
established when the relationship of the tMRCA for anyone in
the intervention group and a given incident individual (tMRCAi)
as well as the tMRCA for anyone in the control group (tMRCAg)
and any of the incident individuals is given by:

<t ti gMRCA MRCA

and

< +t t a,iMRCA

where a is the phylogenetic assignment interval (see Figure 1);
a is a nonnegative real number that defines the threshold time
period before which the likelihood of attributing the transmis-
sion to either the control or the intervention group is unlikely.

A phylogenetic link with the control group is similarly
verified (or resolved) when

<t tg iMRCA MRCA

and

< +t t a.gMRCA

Thus, because both the intervention and control group parti-
cipants are by design HIV-infected at time t, a link with the
intervention group is established when the incident individual
has a common ancestor with a participant in the intervention
group that is within the phylogenetic assignment interval a;
this common ancestor must also be more recent than the most
recent ancestor of the incident individual with any participant
in the control group. Likewise, a link with the control group is
established when the incident individual has a common ances-
tor with the control group that is within a; this common ances-
tor needs also to be more recent than the most recent ancestor
with the intervention group. Incident individuals that have
tMRCA with any of the groups larger than a are unlikely to be
of interest because they are not considered to have been in-
fected from either the control or the intervention group after
the intervention took place. InWeb Appendix 1 andWeb Fig-
ures 2 and 3 (available at https://academic.oup.com/aje) we
provide a generalized framework for taking into account phy-
logenetic uncertainty when establishing phylogenetic links.

We select a depending on the natural course of the infection;
a reflects the fact that each infected patient has a population of
nonidentical viruses, sometimes referred as quasispecies. The
role of this genetic diversity in HIV transmission dynamics has
been studied intensively and thus we already have a fairly good
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understanding of how HIV genetic diversity is passed in
transmitter-acceptor couples (15). These studies have shown
that at the time of transmission there is a quasispecies popula-
tion bottleneck suggesting that only a minority of the genetic
diversity within the “donor” can be transmitted. Due to within-
patient evolution and stochasticity, the transmitted strains may
or may not contain exactly the same genomic sequence that
was isolated from the transmitter at the time of the intervention.
This means that the tMRCA between the donor and the receiver
viral strains is likely to predate the transmission event, which in
turn creates the necessity of nonzero a.The phenomenon, known
since 1999, that has been described as pretransmission interval
(16) explains why tMRCAand actual transmissions may not coin-
cide (17).

Sampling at time ti: power calculations

How should we sample at time ti to have sufficient power
to evaluate the effect of an intervention?

Our intuitive expectation is that if the intervention has reduced
transmissibility, then the individuals who received the intervention

would have generated a smaller number of transmission chains;
a random sample of incident cases should result in finding
fewer individuals from the intervention group having phylo-
genetic links with any of the incident individuals than the
control group.

Another intuitive expectation is that if the intervention has
reduced transmissibility in the risk contacts of the intervention
arm, then a random sample of incident cases should result in
reconstructing shorter transmission chains having phyloge-
netic links with the intervention rather than the control group.

One of the major questions that we want to explore is how
many individuals we would need to sample at time ti given that
we have performed an intervention on n individuals at time t. If
the intervention has no effect, then the transmission rate (ra)
would be equal among background population (rb), control
(rc), and intervention groups (ri):

= = ( ) ( )r r r H null hypothesis .b c i 0

If the intervention has the anticipated effect, then the transmis-
sion rates of the background population and control population

Table 1. Description of Symbols Used in an Analysis Evaluating the Community Effect of an Epidemic Intervention

Symbol Description

Na Size of the population where the intervention will take place

Nb Size of the background (infected) population

Nc Size of the control group

Ni Size of the intervention group

n Overall number of individuals recruited by the intervention

nx Number of incident individuals

nb Number of transmission chains generated by the background (infected) population

nc Number of transmission chains generated by the control group

ni Number of transmission chains generated by the intervention group

t Time point of the intervention

ti Time point of the resampling

tMRCA Time to most recent common ancestor

tMRCAi Time to most recent common ancestor for anyone in the intervention group and a given incident
individual

tMRCAg Time to most recent common ancestor for anyone in the control group and a given incident individual

tMRCAgi Time to most recent common ancestor between one person from the control group and its closest
member of the intervention group

a Phylogenetic assignment interval

ra Transmission rate

rb Transmission rate of the background population

rc Transmission rate of the control group

ri Transmission rate of the intervention group

l Relative size of background (infected) population compared with the intervention groups

lb Length of transmission chains generated by the background (infected) population

lc Length of transmission chains generated by the control group

li Length of transmission chains generated by the intervention group

πc Proportion of transmitters in the control group

πi Proportion of transmitters in the intervention group

Am J Epidemiol. 2018;187(12):2615–2622
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would be approximately equal (for a placebo control group), and
the transmission rate of the intervention groupwould be lower:

= > ( ) ( )r r r H alternative hypothesis .b c i 1

The expected number of transmission chains generated
between time t and ti from the background population (nb), the
control group (nc), and the intervention group (ni) will be pro-
vided through functions of the transmission rate and the size
of the population belonging to each one of these groups at
time t (Nb, Nc, and Ni, respectively). The same parameters will
also contribute to the expected length of transmission chains
generated between time t and ti from the background popula-
tion (lb), the control group (lc), and the intervention group (li).

By linking the transmission chains with either the control or
the intervention group, we estimate the proportion of transmitters
that is the number of individuals who eventually transmitted the
virus. We are thus interested in comparing the proportion of the
transmitters between the intervention and control group given by
the respective ratios (π = π = )andc

n

N i
n

N
c

c

i

i
. We can also mea-

sure and compare the length of the generated transmission chains.

Simulation parameters

We use a simulator that implements stochastic models of
structured and unstructured population dynamics (18). The sim-
ulator generates transmission chains, which we then transform
into molecular-clock trees by simulating the sequence evolution
of pathogens (19).

From each infected individual we generate transmission chains
based on: 1) the “accessible” population, that is, the size of the
risk network (or the population “bubble”) upon which the

pathogenmay spread from a single individual within the locality
of the study and within a specific time frame; and 2) pathogen
transmission assumptions that are based mainly on our expecta-
tion of how large an epidemic a pathogen could create in a
completely susceptible population of 10,000 people without
structure.

More details on ourmethods can be found inWebAppendix 1.

RESULTS

Size of intervention and postintervention sampling

When assessing the effect of an intervention within a com-
munity, we intuitively expect that the size of the intervention
compared with the size of the existing epidemic is an important
factor: The larger the epidemic, the more “diluted” will be the
role of the intervention in controlling further spread of HIV. At
the time of the design we need to identify which of the follow-
ing scenarios applies to our sample:

1. An epidemic with a very small intervention group relative to
the background infected population: Ni«Nb. This might be
the case in well-established epidemics in large at-risk popu-
lations (e.g., Durban, South Africa, or St. Petersburg, Rus-
sia) where an evaluation of the intervention is required, but
the funds may not yet be sufficient for large-scale interven-
tions. Data on incidence rates and on the proportion of the
infected on antiretroviral therapy (and therefore unlikely to
generate many new transmission cases) may affect the
power analyses for determining which cities fall into this
category.

2. An epidemic (typically small) with an intervention group
that would be comparable to the total number of infected in-
dividuals with Ni = Nc = Nb/l (where l is a natural nonzero
number showing the relative size of the background epidemic
compared with the intervention groups). Interventions that
aim to mitigate outbreaks in situations with small at-risk pop-
ulations (e.g., AthensMetropolitan Area (20) or Indiana rural
outbreaks (21)) fit this sampling scenario.

Scenario 1 is a special case of scenario 2 when l→ ∞. There-
fore, under the null hypothesis (H0) we would have ni = nc«nb,
and the ratio ni/nb = nc/nb ≅ 0. This suggests that for the well-
established epidemics (scenario 1), through random sampling
it is highly unlikely to sample incident cases within a reasonable
ti− t period that could be attributable to either the intervention or
control arms. On the other hand, as scenario 2 suggests, in smal-
ler outbreaks random sampling might allow us to recruit a suffi-
cient number of incident individuals. Under the null hypothesis,
for every l + 2 incident cases we would sample l from the back-
ground, 1 from the intervention group, and 1 from the control
group.

Depending on the expected reduction of transmissibility and
the relative size of the background epidemic l, we can estimate
the minimum number of incident cases that we would need to
sample in order to test our alternative hypothesis. The required
number of incident cases, however, needs to be adjusted de-
pending on the amount of phylogenetic information contained
in the resulting phylogenies: If we can resolve all the phyloge-
netic links between the intervention or control group and the
incident cases, then the minimum number to be sampled for
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Figure 1. Theoretical representation of the phylogenetic assign-
ment process as used in the phylodynamics transmission-chain
model. Calendar years are shown in the lower scale, while reverse
chronological years are shown in the upper scale (measured back-
ward from the second time point in 2015). Red circles indicate viral
strains isolated at the time of the intervention (t = 5, year 2010). Green
circles indicate viral strains isolated from incident cases at the second
time point (resampling at t = 0, year 2015). With light-blue ellipses we
show a common ancestor before the phylogenetic assignment win-
dow (a) (i.e., not phylogenetically assigned to the viral strains isolated
in 2010) while with light-orange ellipses we show a common ancestor
within the phylogenetic assignment window (thus phylogenetically as-
signed to the strain isolated in 2010).
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evaluating the impact of the study will be lower than if we can-
not. If we cannot resolve whether a given incident case came
from the control group, the intervention group, or the back-
ground, then we would consider that case as censored (i.e., ren-
dered missing). The number of censored incident cases reduces
the power of our estimation. Intuitively, in the ideal case we
could minimize the number of censored individuals if we could
maximize the phylogenetic distance between members of each
one of the groups at the time point of the intervention.

A guide for power calculations

By means of stochastic modeling and empirical estimates
of transmissibility, we can estimate the proportion of indivi-
duals that we expect to produce infections (and thus trans-
mission chains) within the time frame (t − ti). With standard
proportion power calculations we can then estimate the mini-
mum number of transmission chains that we need to sample
when we visit the site after (t− ti) years.

How can we use the estimated necessary number of transmis-
sion chains to extrapolate the number of incident cases that we
would need to sample in order to get a sufficiently powered
study? At the very least a transmission chain can be attributed to
1 incident case. Thus, the absolutely minimum number of inci-
dent cases would be equal to the minimum number of transmis-
sion chains. By simulating the sampling strategy of incident cases
over a population of simulated (under the null and the alterna-
tive hypotheses) transmission chains, we can then inflate the
number of additional incident cases needed to be sampled to
get the required minimum number of transmission chains. To
illustrate how this framework operates we provide an example
of a power calculation below.

Example of power calculation

Sizes of control and intervention groups. We have simu-
lated transmission chains (n = 10,000) for the control and inter-
vention groups (seeMethods). The proportion of individuals that
generate a transmission chain is 0.75 and 0.50 for the control and
intervention groups, respectively (assuming that the intervention
reduces transmissibility by 50% compared with the control
group). Based on the power calculation test (P value =
0.02, power = 0.95, 2-tailed) in order to show that 75% is
different compared with 50% in independent populations,
we would need to have 115 participants assigned both to
the intervention group and to the control group. We will
slightly inflate this number and we will assign 120 partici-
pants per group. We expect these to generate 150 transmis-
sion chains (90 for the control and 60 for the intervention).
If we relax the power calculation (P value = 0.05, power =
0.80, 2-tailed), then we could perform the intervention with
as few as 55 persons per group.

Number of incident cases to sample at revisit. We need
to multiply the number of incident cases linked with any of the
2 arms (n = 150) by 2, given that the simulation shows that on
average 2 randomly sampled incident cases would be part of
the same transmission chain. We need to inflate this number
further because not all incident cases would be linked with the
intervention group or the control group—a significant number

would be unlinked (or considered to be produced from the
background infected population). If we assume that 50% of the
incident cases would be linked to either the control group or
the intervention group, then the minimum sampling number is
600 incident cases. If the proportion of the incident sample that
can be phylogenetically linked with either the control group or
the intervention group is higher, then the number of incident
cases sampled at follow-up can be reduced. Such enriched
sampling effects can be reached through network-based ap-
proaches using the people recruited during the intervention as
seeds. For example in Athens, through a network-based sam-
pling approach, we have shown that approximately 50% of the
phylogenetically related HIV-1 infected PWIDs reported a social
network relationship (first or second degree) (22).

Proof of concept: simulation of an HIV-preventive interven-
tion among PWID. Based on the above-stated power estima-
tion, we have designed an intervention. We posit that in 2010
we visited a place that had an ongoing HIV epidemic for at
least 10 years, with at least 1,000 infected individuals.We ran-
domly selected 120 to participate in the intervention and 120
to participate in the control group. In 2015, we revisited the
place and sampled 620 individuals who had been infected
after the intervention (i.e., we further inflated the number from
our power calculation by 20 cases). These 620 people were
sampled in 2015 through an approach that we expected to link
50% of the incident cases with either the control group or the
intervention group (specifically, targeting the risk networks of
the control and intervention groups). These 620 incident cases
could be part of transmission chains coming from the study
groups or from unsampled people (background infected popu-
lation). We assumed that our sampling approach would be
able to retrieve transmissions from our study groups with equal
probability to that of the transmissions coming from the back-
ground. The sampling approach was performed in a way that
was unbiased with respect to recovering transmissions from the
intervention or the control groups. Thus, whether the sampled
transmissions were the result of the control group or the inter-
vention group is proportional to the number of incident indivi-
duals generated from each one of these groups.

Estimating the proportion of transmitters. InWeb Figure 1
we see the molecular-clock tree of the above-mentioned simu-
lation scenario. The scale is in years.We consider that someone
from each of the groups has generated a transmission chain
when the tMRCA from any of the 620 people sampled in 2015
and any of the control or the intervention groups falls after
2009.5 (allowing thus for a window of a = 0.5 year before
2010, which is the gray shaded box on the tree). We recovered
130 transmission chains that could be linked with either the
control group or the intervention group. Seventy-four transmis-
sion chains were phylogenetically linked to the control arm
while 56 transmission chains were phylogenetically linked to
the intervention arm, suggesting a statistically significant reduc-
tion of the transmission rate (74/120 versus 56/120 with a P =
0.025, 2-tailed χ2 test). The rate of false phylogenetic links was
2/120 for the control group and 5/120 for the intervention
group. We found similar results in 4 independent simulations
of the same scenario (Table 2). The role of the phylogenetic
assignment interval a on evaluating on the proportion of trans-
mitters is analyzed inWebAppendix 2 andWeb Table 1.
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Evaluating the wider community effect by measuring the
“length” of transmission chains. The number of generated
transmission chains is a measure of the direct or “first-wave”
community effect of an intervention. To evaluate an interven-
tion’s long-term effect at the community level, another approach
is required. As stated above, we are interested in evaluating inter-
ventions that are designed to have wider community effects.
Such interventions are designed to reduce transmissibility even
among persons who are socially or distally related to the inter-
vention “seeds.” Here we propose to assess this wider commu-
nity effect by comparing the length of the produced transmission
chains, which are phylogenetically linked to either the interven-
tion or control seeds. By size or length of transmission chains,
wemean the number of the incident individuals linkedwith a spe-
cific person belonging to the intervention or the control group.

Again using the same scenario as described previously, we
are looking at transmission dynamics where a point introduc-
tion of HIV in a population of 10,000 susceptible persons could
produce an epidemic of approximately 5,000 within 5 years.
This scenario when stochastically simulated will produce a range
of transmission chains (see Figure 2). When transmissibility is
reduced by 50%, the length of the simulated transmission chains
in a newly introduced epidemic will be significantly shorter than
in the full transmissibility scenario. This suggests that the size of
the transmission chains that are phylogenetically linked to the
intervention group is expected to be smaller than the transmission

chains that are phylogenetically linked to the control group. We
note that the length of the transmission chains recovered after sam-
pling is much smaller than the actual full length; length is sensitive
to sampling effects. However, the relative length between the
intervention and control groups should be different, even after
sampling.

Indeed when analyzing Web Figure 1, we see that the
average size of the control-linked transmission chains was
2.8, while the average size of the intervention-linked trans-
mission chains was 1.9, suggesting that under the suggested
sampling scheme we observed at least 30% reduction in the
transmission chain’s length (P = 0.01, Mann-Whitney rank-
sum test).

DISCUSSION

We have introduced a methodological approach to assess the
direct and wider community effect of interventions aiming to
control the spread of viral pathogens. Themethod is based on es-
tablishingmolecular-clock-based phylogenetic links of newly in-
fected patients to individuals having received the intervention or
a control condition. The most important advantage of the sug-
gested method is that it can assess the wider community effect
without the necessity of follow-up among an at-risk group. Thus
it remains strong even in circumstances where retaining partici-
pants for follow-up is a major challenge (e.g., among PWID
communities). Our method provides a new tool for evaluating
interventions that previously could be evaluated only with
community-randomized controlled trials, with probability
sampling of communities, or with (for a narrow subset of
interventions like antiretroviral treatment) couples studies
(23, 24) (for more examples, see Web Appendix 3).

Another strength of the suggested method is that a control
group can be formed retrospectively (e.g., by identifying indivi-
duals who were infected at the time of intervention and were
not part of the risk network of the intervention arm). This is fea-
sible as long as we know that these people were indeed infected
at the time of the intervention (thus the risk of transmission is
equal between the intervention group and the control group),
and nucleotide sequences of such people can be retrieved at
any time point. This feature can be particularly important in the
event that many interventions have already taken place without
the formation of control groups, when assessing their wider
community effect can be particularly challenging. Such ongoing
or recent interventions are unlikely to have collected blood

Table 2. Statistics and Characteristics of 5 Independent Simulations of the Proof of Concept Scenario Evaluating the Community Effect of an
Epidemic Intervention

Simulation

Characteristics

Root Height
(years)

Burn-in (× 1,000
Generations)

Control
Transmitters

Intervention
Transmitters

P Value (Control vs.
Intervention)

False Control
Transmitters

False Intervention
Transmitters

1 12.2 5,000 74 56 0.025 2 5

2 12.01 2,000 85 61 0.0015 2 5

3 12.03 2,500 81 62 0.0128 1 6

4 11.79 3,000 83 59 0.0017 3 8

5 11.92 2,000 81 42 <0.0001 2 9

0.05

0.10

0.15

D
e
n
s
it
y

0 1 2 3 4

Log10(Size of Transmission Chain)

0

Figure 2. Distribution of the length of the transmission chains when
simulating the spread of the pathogen in population “bubbles” of
10,000 under transmission parameters described in Methods. Red
signifies the control arms and green signifies the intervention arms.
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samples at the time point of the intervention, but such early sam-
ples are not necessarily required. We may collect samples after
the intervention and, by virtue of molecular-clock phylogenetics,
still assess phylogenetic links. One obvious adjustment will be
on the use of the window a for phylogenetic assignment: The
common ancestor might be dated even after the time of the inter-
vention (Figure 3).

In conclusion, we have presented a new approach that can
evaluate the community effect of interventions that aim to miti-
gate the spread of pathogens among susceptible populations.
The approach exploits molecular evolutionary dynamics of
pathogens in order to track new infections as having arisen
from either a control group or an intervention group. It enables
us to evaluate whether an intervention reduces the number and
length of new transmission chains in comparison with a control
condition, and thus lets us estimate the relative decrease in new
infections in the community due to the intervention. We have
also described a framework to calculate sample size and power
of suggested intervention designs. This new approach provides
a novel formal framework to design and evaluate interventions
in settings and situations in which traditional approaches such
as randomized controlled trials cannot be applied.
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