
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
High-Dimensional Polynomial Approximation with Applications in Imaging and Recognition

Permalink
https://escholarship.org/uc/item/77t2n55b

Author
Rajagopal, Abhejit

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77t2n55b
https://escholarship.org
http://www.cdlib.org/


University of California

Santa Barbara

High-Dimensional Polynomial Approximation

with Applications in Imaging and Recognition

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Abhejit Rajagopal

Committee in charge:

Professor Shivkumar Chandrasekaran, Chair

Professor Hua Lee

Professor Kenneth Rose

Professor Upamanyu Mhadow

Professor Fabien Scalzo

Professor Hrushikesh N. Mhaskar

September 2019



The dissertation of Abhejit Rajagopal is approved.

Professor Hua Lee

Professor Kenneth Rose

Professor Upamanyu Mhadow

Professor Fabien Scalzo

Professor Hrushikesh N. Mhaskar

Professor Shivkumar Chandrasekaran, Chair

September 2019



High-Dimensional Polynomial Approximation

with Applications in Imaging and Recognition

Copyright © 2019

by

Abhejit Rajagopal

iii



To my family.

iv



Acknowledgements

Graduate school has been quite a journey for me, and without the support of my many

mentors, family, and friends, I most certainly would not have made it this far.

I would first like to thank my advisor Shivkumar Chandrasekaran, who has shown

great patience in exposing me to the language, art, and practice of mathematics. For

almost any problem that I bring, Shiv has a knack of tearing away as many assumptions

as possible to illuminate the underlying mathematical problem and its core difficulties.

Whether it was about linear algebra, PDEs, radar, or pattern recognition, Shiv has always

been an endless well of knowledge and a crucial part of my education. Without Shiv’s

creativity, guidance, and friendship, this dissertation would not have been possible.

I would similarly like to thank Hua Lee, who has been a mentor and sponsor for my

interests in imaging and has exposed me to an exciting number of possibilities, starting

with radar. His curiosity and wisdom is imparted by the great number of stories he tells,

and I’m grateful for all the afternoons, evenings, meals, tea-times, and road trips he has

spent sharing them with me.

I am also grateful for the support and mentorship of Andrew Brown, who believed in

me early in my graduate career, and enabled new opportunities for me at Toyon. With his

guidance, I was able to pursue funding to mature my interests in the analysis of various

signal modalities.

My graduate experience would not have been the same without the support of the

Scientific Computing Group: Kristen, Chris, Nithin, and Ethan, who have all provided

guidance and input on various parts of my graduate work and have exposed me to new

problem areas and approaches from their own research. Nithin, Kristen, and I spent hours

working through linear algebra problems. Chris spent time teaching me many of the

fundamentals of MSN interpolation. Ethan spent hundreds of hours collecting, translating,

v



explaining, and extending the many theorems of classical approximation theory, including

the ones featured in this thesis concerning deep MSN networks. I am extremely grateful

for his work and intellect, and it is important that his contribution to this work is stated.

There are many friends that have made my journey possible, including Oytun, Asutay,

Isabella, Rohan, Itir, Camille, Rahul, Nate, Sean, Bryce, David, Connor, and Noah.

I would especially like to thank Vincent R. Radzicki, who has been a friend, collaborator,

and brother to me throughout graduate school. The story of how we first met is still

mysterious, but his camaraderie and enthusiasm to explore the unexplored has resulted in

several enjoyable years exploring the theory of Fourier imaging, radar, PDEs, basketball,

golf, computers, and everything in between. I am looking forward to continuing our

collaborations and discussions for many years to come.

Finally I would like to thank my family, Amma, Dad, Ana, who have supported

me and fostered an a strong sense of ambition in education. Looking back, the years

spent working through Spectrum Mathematics books with Amma, learning physics and

chemistry from Self Teaching Guides with Dad, and being inspired by the various research

projects undertaken by Ana, have truly had a phenomenal impact on my curiosity and

ambition as a scientist. I am forever grateful.

And last, and certainly not least, I want to thank Deeksha, who has been a true

friend, confidant, and partner throughout my time at UC Santa Barabra. Whether it was

nerding out over VScode setups, staying in the lab late and making spontaneous trips

to NaanStop, or walking along the beach to decompress, Deeks has supported me and

nurtured growth in all aspects of my life. With her love, I have developed a sense of

awareness in both my academic and personal interactions that has resulted in a great

number of new opportunities for me, including a postdoc position at UC San Francisco. I

am very thankful, and I am looking forward to pursuing our dreams together.

vi



Abhejit Rajagopal
abhejit@ece.ucsb.edu

EDUCATION

Ph.D. Electrical & Computer Engineering 2019
University of California, Santa Barbara

M.S. Electrical & Computer Engineering, 2016
University of California, Santa Barbara

B.S. Electrical Engineering 2014
University of California, Los Angeles

ACADEMIC EXPERIENCE

Graduate Student Researcher, June 2015 - September 2019
Scientific Computing Group, UC Santa Barbara
Advisor: Dr. Shivkumar Chandrasekaran
� Design of numerical algorithms for neural information processing and imaging systems.

Teaching Assistant, September 2014 - December 2017
Department of Electrical & Computer Engineering, UC Santa Barbara
� ECE 2a - Circuits, Devices, and Systems (Fall 14) – w/ Prof. H. Lee

� ECE 137a - Circuits and Electronics I (Winter 15) – w/ Prof. M. Rodwell

� ECE 137b - Circuits and Electronics II (Spring 15) – w/ Prof. M. Rodwell

� ECE 130a - Signal Analysis & Processing I (Fall 15) – w/ Prof. H. Lee

� ECE 130b - Signal Analysis & Processing II (Winter 16) – w/ Prof. S. Chandrasekaran

� ECE 130c - Signal Analysis & Processing III (Spring 16, 17) – w/ Prof. S. Chandrasekaran

� ECE 134 - Introduction to Fields and Waves (Fall 17) – w/ Prof. B. York

� ECE 210a - Matrix Analysis (grader–Fall 15) – w/ Prof. S. Chandrasekaran

� ECE 259a - Digital Speech Processing (grader–Winter 16, 17) – w/ Prof. L. Rabiner

� ECE 258a - Advanced Digital Signal Processing (grader–Winter 17) – w/ Prof. M. Liebling

Collaborator, Staba Lab, UCLA August 2014 - June 2015
Advisor: Dr. Shennan Weiss, Dr. Richard Staba
� Design and numerical optimization of epilepsy detection algorithms that process intracra-

nial EEG to identify interictal discharges and coherent high-frequency neural oscillations.

Undergraduate Researcher, April 2013 - August 2014
Neurovascular Imaging Research Core, UCLA Advisor: Dr. Fabien Scalzo
� Discrimination and estimation of intracranial pressure (ICP) signals via manifold learning.

Undergraduate Researcher, April 2013 - June 2014
Integrated Nanomaterials Core Lab, UCLA Advisor: Dr. Dianna Huffaker
� Optical and electrical simulation of sub-wavelength nanostructures. Development of tools

for characterization and design of 3D III-V nanowire solar cells, APDs, and modulators.

Research Volunteer, May 2008 - May 2010
Collin’s Group, UC Irvine Advisor: Dr. Philip G. Collins
� Investigated electrostatic properties of single-walled carbon nanotubes in FETs using AFM

and SEM microscopy, E-beam lithography, and Raman spectroscopy.

vii



PROFESSIONAL EXPERIENCE

Analyst, Toyon Research Corporation December 2015 - September 2019
� Development of new signal analysis and learning paradigms for EO/IR, LiDAR, and SAR

imagery.

Research Intern, Akela Inc. June 2015 - October 2015
� R&D in radar signal processing, EM simulation, antenna design, VNA calibration.

Consultant, Neural Analytics Inc. December 2014 - December 2015
� Signal processing, machine learning, and QA for traumatic brain injury (TBI) detection

and prognosis using ICP, TCD and other measurements of CBFV.

Intern, Hardware Testing, Broadcom Corporation April 2012 - April 2013
� Test and debug of reference designs in HWDSL group. Automated DSL/WiFi throughput

testing, designed a temperature feedback controller for PVT, developed drivers and tools.

PUBLICATIONS

* A. Rajagopal, E. Epperly, H.N. Mhaskar, and S. Chandrasekaran, “Deep Polynomial Networks”,

in preparation, Sep 2019.

* A. Rajagopal, V.R Radzicki, H. Lee, S. Chandrasekaran, “DeepISAR: End-to-End Imaging and

Recognition in Inverse Synthetic Aperture Radar (ISAR)”, under review, Sep 2019.

* A. Rajagopal, W. Nelson, N. Stier, S. Chandrasekaran, A.P. Brown, “Deep OSM-3D: Scalable

Recognition in Wide-Area LiDAR and RGBD Imagery”, under review, Sep 2019.

11. A. Rajagopal, N. Stier, J. Dey, M. King, S. Chandrasekaran, “Towards deep iterative-reconstruction

algorithms for single-photon emission computed tomography (SPECT)”, SPIE: Medical Imaging,

Feb 2019. DOI: 10.1117/12.2513005

10. A. Rajagopal, V.R. Radzicki, H. Lee, and S. Chandrasekaran, “Nonlinear electrocardiographic

imaging using polynomial approximation networks”, APL Bioengineering, Oct 2018.

DOI: 10.1063/1.5038046

9. S. Chandrasekaran, N. Govindarajan, and A. Rajagopal, “Fast Algorithms for Displacement and

Low-Rank Structured Matrices”, 2018 ACM International Symposium on Symbolic and Algebraic

Computation, Jul 2018. DOI: 10.1145/3208976.3209025

8. A. Rajagopal, H.N. Mhaskar, and S. Chandrasekaran, “Deep Algorithms: designs for networks”,

arXiv:1806.02003, Jun 2018. arXiv:1806.02003

7. A. Rajagopal, V.R. Radzicki, H. Lee, and S. Chandrasekaran, “Towards non-invasive electro-

cardiographic imaging using regularized neural networks”, SPIE: Medical Imaging, Feb 2018.

(Best Poster Award) DOI: 10.1117/12.2294474

6. A. Rajagopal, V.R. Radzicki, S. Chandrasekaran, and H. Lee, “Tracking Information in RaDAR

Image Formation and Classification Algorithms”, International Telemetry Conference (ITC), Oct

2017. ISSN: 0884-5123; 0074-9079

5. A. Rajagopal, K. Chellappan, S. Chandrasekaran, and A.P. Brown, “A machine learning pipeline

for automated registration and classification of 3D LiDAR data”, SPIE: Defence and Security,

May 2017. DOI: 10.1117/12.2262872

4. S. Chandrasekaran and A. Rajagopal, “Fast indefinite multi-point (IMP) clustering”, Calcolo,

Apr 2016. DOI: 10.1007/s10092-016-0191-2

3. A. Rajagopal, R. Hamilton, and F. Scalzo, “Noise reduction in intracranial pressure signal using

causal shape manifolds”, Biomedical Signal Processing and Control, Mar 2016.

DOI: 10.1016/j.bspc.2016.03.003

viii



2. A. Farrell, P. Senanayake, CH. Hung, G. El-howayek, A. Rajagopal, M. Currie, M. Hayat, and

D.L. Huffaker, “Plasmonic field confinement for separate absorption-multiplication in InGaAs

nanopillar avalanche photodiodes”, Scientific Reports, Dec 2015. DOI: 10.1038/srep17580

1. G. Mariani, M. Haddad, A. Rajagopal, D.L. Huffaker, “High-efficiency nanopillar solar cells

employing wide-bandgap surface recombination barrier”, SPIE: Photonics West, Invited Paper,

Feb 2014. DOI: 10.1117/2.1201401.005303

WORKSHOPS & WHITE PAPERS

2. A. Rajagopal, V.R. Radzicki, H. Lee, S. Chandrasekaran, “Deep Learning for Inverse Problems”,

2019 International Conference on Machine Learning: Workshop on Physics for Deep Learning,

Jun 2019. [link]

1. A. Rajagopal, A.C. Nguyen, and D.M. Briggs, “NeuroPass: A secure neural password based on

EEG”, University of California, Los Angeles, Dec 2013. perm: [link]

PATENTS

1. F. Scalzo and A. Rajagopal, “Machine-learning based denoising of doppler ultrasound blood flow

and intracranial pressure signal”, University of California, US201662279653, Jan 2016.

FUNDING

SBIR Phase I – SCO182-008, $225K Dec 2018 – Jun 2019
Principal Investigator, “Maritime Target Classification from ISAR Imagery Using Machine
Learning”

STTR Phase I – N18B-T033, $125K Oct 2018 – Apr 2019
Principal Investigator, “Blending Classical Model-Based Classification with Data-Driven
Artificial Intelligence”

SBIR Phase II – AF161-138, $750K Nov 2017 – Feb 2020
Principal Investigator, “Cognitive Processing and Exploitation of 3D LiDAR Imagery”

HONORS & AWARDS

ECE Dissertation Fellowship , UC Santa Barbara May 2019

Outstanding ECE Teaching Assistant Award, UC Santa Barbara May 2018

Best Poster Award, Physics of Medical Imaging, SPIE-MI 2018 Feb 2018

Best Poster Award, UC Bioengineering Symposium 2017 Jun 2017

ASEI Graduate Fellowship Jun 2014

MENTORING
UCSB Research Mentorship Program, Santa Barbara, CA Summers 2015, 2016, 2017
Mentoring high school students in basic algorithms useful for image processing and automatic
signal analysis. Guiding students to develop fundamental skills in programming and mathemat-
ics by engaging in relevant research. New projects every year. Students advised:

• Tiffany Huang, now at M.I.T. Jun 2017 - Aug 2017

• Michael B. Zhang, now at UC Santa Barbara Jun 2017 - Aug 2017

• Catherine Chi, now at UC Berkeley Jun 2016 - Aug 2016

• Anuva Mittal, now at University of Southern California Jun 2017 - Aug 2016

• Tejas Thvar, now at UC Berkeley Jun 2017 - Aug 2016

• Priyanka Multani, now at Stanford University Jun 2015 - Aug 2015

• Gitanjali Multani, now at Stanford University Jun 2015 - Aug 2015

ix



UCLA NSF IGERT, Los Angeles, CA Jan 2014 – May 2014
Directed two students to develop a hub for clean-energy web-applications. Served as a soft-
ware architect and managed the development in all stages. Facilitated conversations between
engineers and developers, and established an inter-department collaboration between Dept. of
Electrical Engineering and Dept. of Geography.

UCLA SEAS Mentor, Los Angeles, CA Sep 2012 – Jun 2014
Served as a mentor for freshman and sophomore students in Electrical Engineering, part of the
Henry Samueli School of Engineering and Applied Science.

SERVICE
Reviewer
• Elsevier Biomedical Signal Processing and Control 2017 - 2019

• IEEE Journal of Biomedical and Health Informatic 2019

• IEEE WACV 2019

Graduate Simulation Seminar Series (GS3), Santa Barbara, CA Summers 2016-2018
Seminar series on numerical simulation. Member, speaker, and volunteer.

PROFESSIONAL AFFILIATION
Institute of Electrical and Electronics Engineers (IEEE)
International Society for Optics and Photonics (SPIE)
Society for Industrial and Applied Mathematics (SIAM)
Association for Computing Machinery (ACM)

x



Abstract

High-Dimensional Polynomial Approximation

with Applications in Imaging and Recognition

by

Abhejit Rajagopal

Deep learning has demonstrated unreasonable effectiveness on several high dimensional

regression and classification problems, far exceeding theoretical expectations. In this

thesis, we analyze this phenomena from the perspective of approximation theory. Utilizing

recent theoretical advances, we investigate whether and under what conditions deep

networks can escape the curse of dimensionality, providing experimental evidence where

the theory falls short. We use these insights to suggest new approaches to network design

that is more in accordance with this theory, and give several examples of where such

designs succeed.
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Chapter 1

Introduction

In this thesis, we are interested in studying and developing scalable approaches to high

dimensional imaging and image recognition problems. Imaging refers to the process of

transforming raw sensor data into descriptive 1D, 2D, and 3D physical representations

or “images” of objects. Image recognition refers to the process of understanding the

objects in these images by computing a descriptive segmentation, clustering, classification,

or sub-classification result. The task is to construct useful and accurate functions that

perform imaging and/or image recognition. While previously physics, geometry, topology,

statistics, and even computer vision have been used to construct simple linear and

polynomial models for these problems, as the dimension of data has increased these

techniques have been replaced by deep learning approaches. Today, deep learning is used

pervasively for image recognition, and more recently for image reconstruction, in various

signal modalities because of its unreasonable effectiveness in achieving and advancing the

state-of-the-art for these tasks.

What is surprising and “unreasonable” about deep learning is that its performance

is to-date not supported satisfactorily by a theory. In particular from the perspective

of approximation theory, even though the input dimension is very high (often in the

thousands), deep learning algorithms are able to uncover representations that seem to
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generalize surprisingly well to previously unseen queries from relatively few data samples.

While deep networks empirically perform better than shallow ones, the connection between

structure and performance of deep networks is still poorly understood, often only vaguely

motivated by notions in computer vision rather than by a rigorous theory. This has lead to

an abundance of ad hoc network designs, often arrived upon by trial and error, frustrating

the application of deep learning to critical imaging and image recognition systems. Thus,

a major focus of this thesis is to understand and quantify the phenomena of deep learning

to develop scalable techniques that can provide reliable and robust performance for these

tasks.

In this thesis, we approach this problem in two ways. First, by appealing to approx-

imation theory and recent theoretical work on using deep neural networks (DNNs) to

approximate compositional functions, we investigate under what conditions deep net-

works can avoid the curse of dimensionality with respect to the degree of approximation

(e.g. number of neurons) and the data rate (amount of data required) for a desired level of

accuracy. Second, by generalizing the architecture-design strategies employed in today’s

DNNs, we investigate whether prior human knowledge about a problem can be used to

accelerate the search for robust data-efficient architectures. Both these approaches are

used to influence the design and application of high dimensional end-to-end imaging and

recognition systems.

To speak to the first point, approximation theory is concerned with how functions

can be approximated by simpler functions and in Chapter 2 we focus on polynomial

approximation. Polynomials are chosen for this task not only because they match the

language used in classical approximation theory, but because they are simple and reflect

our descriptions of physics and other low-dimensional models. In electrodynamics, for

example, a polynomial approximation (e.g. Taylor series) is used to describe the electric

field density in terms of the electric field [103]. Note that polynomials form the basis

for other popular means of approximation, such as via neural networks. More generally,
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the use of polynomials is pervasive throughout physics and engineering, from the way

we describe physical phenomena (fields and dielectric responses), to how we manipulate

algebraic expressions and variables (i.e. indeterminates), and how we think about functions

and their limits (e.g. calculus).

In fact, as we see in Chapter 3, traditional algorithms can also be viewed through

the lens of polynomial approximation. Specifically, we show how sequential programs

correspond to high order polynomial networks, and how these deep networks can be

exploited for inference and regression tasks such as classification and imaging, sometimes

with performance guarantees. This technique is called the approach of “Deep Algorithms”.

In Chapter 4, we take a more pragmatic view for a few application problems. In

these problems we show how exploiting the structure of the data, signal modality, or a

problem-specific solution heuristic yields avenues for designing robust architectures for

imaging and image recognition. Many of the insights that are derived from polynomial

approximation theory and Deep Algorithms are utilized or showcased in these application

domains.
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Chapter 2

Polynomial Approximation

In this chapter, we review some of the relevant classical theory for using polynomials

to approximate functions. We then ask how this theory extends to to high dimensional

problems, touching on issues that arise such as the curse of dimensionality and severe

undersampling with respect to the dimension. Building on some recent theoretical work,

we prove that deep networks can avoid the curse of dimensionality with respect to the

degree of approximation for compositional functions when the compositional graph is

known, and we show empirically that this technique may also ameliorate data rate

requirements.

2.1 Background

2.1.1 Classical Approximation

The central classical result of approximation theory is the well-known Weierstrass theorem.

Theorem 2.1.1. Let f be a continuous function on a compact set, say [−1, 1]d. Then there

exists a sequence of polynomial functions pn converging uniformly to f .

A constructive proof is given by Bernstein [153], stated here for d = 1. Specifically,

for a function f : [0, 1]→ R1 define the Bernstein polynomial as:
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Bn(x) :=
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
.

Proposition 2.1.2. The Bernstein polynomials converge uniformly to f on [0, 1]. Moreover,

if f is Lipschitz continuous with Lipschitz constant L, then:

||f −Bn||L∞ ≤
L

2
√
n
. (2.1)

A probabilistic interpretation for the Bernstein polynomials is as follows. For n ≥ 1,

define Xn to be the average of n independent Bernouli trials with success probability x.

The Bernstein polynomial Bn(x) is then the expectation of f(Xn). In effect, f has been

smoothed to a polynomial by a discrete random walk. The proof of Proposition 2.1.2 goes

by the law of large numbers and the estimate (2.1) goes by Chebyshev’s inequality. Where

more sophisticated approximation bounds for the Bernstein polynomials are possible [46,

22], there are much better ways of approximating a given function.

As is usual in approximation theory, the degree of approximation depends on the

smoothness of the function being approximated. To this end, we introduce the Sobolev

space W k,p(Ω) to consist of the functions f on a domain Ω ⊆ Rq which are k times

(weakly) differentiable such that the Sobolev norm ||f ||Wk,p is finite, where:

‖f‖Wk,p(Ω) :=
∑
|α|≤k

‖Dαf‖Lp(Ω), ‖f‖Lp(Ω) :=

{(∫
Ω
|f(x)|p dx

)1/p
, p <∞,

ess supx∈Ω |f(x)|, p =∞.

Here α = (α1, . . . , αq) denotes a multiindex of nonnegative integers such that |α| =

α1 + · · ·+ αq ≤ k and Dαf is defined to as:

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαqq

.

When the domain Ω is clear from context, we shall omit it. The mathematical theory

of Sobolev spaces is introduced in [66, Ch. 5]. Given a polynomial p, we define the degree

5



of p to be max |α|∞, where |α|∞ = max1≤i≤q |αi| and the maximum is taken over all

monomials xα = xα1
1 · · ·xαqq appearing in p. The following classic result states the degree

of approximation by polynomials.

Theorem 2.1.3 ([204]). For f ∈ W k,p([−1, 1]q) and n ≥ 1, there exists a constant C =

C(k, p) and a polynomial pn of degree not exceeding n such that

‖f − pn‖Lp ≤ C‖f‖Wk,pn−k.

Moreover, the theory of nonlinear widths says that for any means of approximating a

function in W k,p to accuracy ε in Lp where the approximant continuously depends on the

target function f , there exists a constant C = C(k, p) such that the approximant requires

≥ Cε−q/k terms to describe [60, Thm. 4.2]. (A more simple statement is provided in [222,

Thm. 3].) Thus, in terms of complexity, approximation by polynomials is asymptotically

optimal with respect to the degree of approximation. In the same stroke, however, we

see that approximation by polynomials suffers from the curse of dimensionality, as the

number of terms grows exponentially in the dimension. Even for d = 10, this seems

intractable for ε ≤ 0.1.

2.1.2 The Curse of Dimensionality

The curse of dimensionality refers to unsustainable growth in the runtime, storage

complexity, or power consumption of an algorithm as the dimension of the input increases.

In the context of approximation algorithms, this comes in two flavors: (1) exponential

growth in the number of parameters or terms in an approximation, and (2) exponential

growth in the amount of training data needed to even coarsely sample a domain (e.g the

d-dimensional hypercube).

In the approximation theory literature, the growth in the number of terms required

for provably achieving ε accuracy for some function class is studied as the “degree of

approximation” of an approximation scheme. It can be shown that, for a given function

6



class, some schemes (algorithms) are more “optimal” than others with respect to the

degree of approximation that they offer. Note that these are typically complexity estimates.

The major task of the theorist, then, is to design a scheme that offers a high degree of

accuracy for representing a large (useful) function class with as few terms as possible.

If she succeeds, the next challenge is to outline a scheme for setting or learning the

corresponding parameters or coefficients.

There have been many attempts in this vein. Each scheme has its own tradeoffs in

the degree of approximation, functions it can approximate, learnability, and practical

numerical feasibility (although not typically considered in theoretical work). An important

question for such investigations is whether the function class is of practical importance,

e.g. representing the solution to a family of partial differential equations (PDEs).

Unfortunately, most of the existing theory and relies on density of data in the input

domain, and in many ways constructing approximations from a finite amount of data

remains an open problem. This problem is exacerbated in high dimensions. Assuming the

data lies in the unit d-dimensional hypercube [−1, 1]d, the number of data points is µ−d,

where µ represents the data density or the mesh-norm (i.e. distance between samples).

This is clearly infeasible when d > 15, even with a coarse sampling (e.g. 2 samples per axis

yields 215 data points). Instead, and in some cases, we can show that an approximation

scheme converges in the neighborhood of the available data. In some problems, even high

dimensional imaging and recognition problems where the data is sampled from sufficiently

close clusters, this can be sufficient to yield a useful approximation. On the other hand,

uncovering and exploiting the structure of data is a challenging task (e.g. on curved

domains).
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2.1.3 Neural Networks

Single Layer Networks

Definition: An activation function σ is a continuous, nonlinear, non-polynomial

function from R to R. A sigmoid is an activation function which limits to 0 at −∞

and 1 at ∞. A single-layer feed-forward network is a function g : Rd → R given

by

g(x) =
M∑
i=1

aiσ(yTi x+ θi)

The most important result of neural network approximation theory is that neural

networks are so-called universal approximators; that is, they can approximate an arbitrary

function to arbitrary accuracy.

Theorem 2.1.4 ([53], [97], among many others). Let σ be a bounded nonlinear non-

polynomial activation function. Then for every ε > 0 and any continuous function

f : [−1, 1]d → R, there exists a single layer feed-forward neural network g such that

‖f − g‖∞ < ε.

Extensions such as [96] show these approximation properties extend to arbitrary mea-

surable functions in Lp and Sobolev norms. The original proofs of universal approximation

were non-constructive. Cybenkos proof [53] is function analytic and Hornik et al.s [97]

uses the Stone-Weierstrass theorem. Additionally, these theorems provide no bound on

the number of neurons M needed to obtain such an approximation.

A quantitative bound on the approximation error is given by Barron [11].

Theorem 2.1.5 ([11]). Let B be a ball in Rd of radius r, µ a probability measure, and

f : B → R. Then for the constant C :=
∫
Rd |k||f̂(k)| dk there exists a single-layer

feed-forward network g of M neurons with sigmoid activation σ, such that:
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‖f − g‖L2(µ) ≤
√

2 rCM−1/2. (2.2)

The proof can be made “constructive” based on a greedy algorithm where each

individual neuron is added to minimize the error, although this depends upon finding

the largest inner products among infinitely many. Still, Barron’s result is noteworthy

in that the approximation bound is independent of the dimension d. However, the

dimension-dependence may be effectively hidden in the constant C, as the integral

constraint effectively implies that the target function f must be very smooth. In fact,

for such smooth functions there is nothing special about sigmoidal networks. As Candes

shows in [27], the convergence rate in (2.2) may be improved to O(M−1/2−1/d) by simply

thresholding the Fourier series. Barron’s result is not the only one that can be improved

this way, as Candes’s result is just an application of Hoeffding’s inequality.

Mhaskar and others went on to study approximation by neural networks of functions

depending on their smoothness properties.

Theorem 2.1.6 ([146]). Given a function f ∈ W s,p([−1, 1]d) and a smooth bounded

activation function σ, there exists a constructive algorithm to produce a single-layer

feedforward network of M neurons such that

‖f − g‖Lp ≤ O
(
‖f‖W s,pM−s/d) . (2.3)

Moreover, the error bound (2.3) is optimal in the sense of n-widths theory (see [60]).

Sampled Data

Barron’s result can be improved to include errors due to approximation error and estima-

tion error.

Theorem 2.1.7 ([10]). Let σ be a sigmoid, µ a probability measure, and f : [−1, 1]d → R.

Suppose the value of f is known only at N samples. Then for the Barron constant

C; =
∫
Rd |k||f̂(k)| dk, one can construct a single-layer feedforward network such that
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‖f − g‖2
L2(µ) = O

(
C2

M

)
+O

(
Md

n
log n

)
.

In particular, setting M ∼ C(N/(d logN))1/2, then ‖f − g‖2
L2(µ) = O(C((d/N) logN)1/2).

Deep Networks

Definition: The ReLU function is defined to be ReLU(x) := max(x, 0). A deep

feed-forward network with k hidden layers and activation function σ is a function

g : Rd → R given by

y0,j = xj, 0 ≤ j ≤ d

yi,j = σ

Mi,j∑
`=1

ai,j,`yi−j,Ii,j` + bi,j

 , 1 ≤ i ≤ k, 1 ≤ j ≤ Ni

g(x) =

Nk∑
j=1

ckyi,k + d.

The number of nodes in the network is N :=
∑k

i=1 Nk and the number of weights is

M :=
∑k

i=1

∑Ni
j=1Mi,j . The network architecture is the collection (k, {Ni}, {Mi,j},

{Ii,j,`}) which characterizes the number of neurons and how they are connected. An

architecture is said to approximate a class of functions to degree ε (with respect to

some norm ‖ · ‖, if for every function f in that class, there exists a deep feed-forward

network g of that architecture such that ‖f − g‖ < ε.

While single-layer feed-forward networks are universal approximators optimal in the

sense of n-width theory, empirical studies have continued to show that deep networks

perform better than single layer networks. Mhaskar et. al show in [149, 144] that deep

networks are effective at approximating functions possessing a special compositional

structure.
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Theorem 2.1.8 ([149, 144]). Let Bs
d denote the unit ball in W s,∞ with the norm ‖f‖W s,∞ =∑

|α|≤s ‖Dαf‖. Let F s
d denote the space of functions which can be achieved by compo-

sition of functions in Bs
2. Then the complexity of single-layer feed-forward networks

approximating Bs
d to degree ε in L∞ is O(ε−d/s) and no better result is possible. The

complexity of deep networks in approximating F s
d to degree ε is O((d− 1)ε−2/s).

An extension to incorporate training and generalization errors is provided in [145,

Theorem 4.2].

Theorem 2.1.9 ([222]). For any d, s, and desired tolerance ε ∈ (0, 1), there is a ReLU

network architecture capable of approximating the unit ball ofW s,∞ to degree ε in L∞ norm

such that, for some constant c = c(s, d), k ≤ c(ln(1/ε+1) and N+M ≤ cε−d/s(ln(1/ε)+1).

The proof goes by construction of an efficiently representatable partition of unity and

polynomial approximation. An extension to general Sobolev spaces W s,p is provided by

[86]. [222] also provides a lower bound

Theorem 2.1.10 ([222]). Let f ∈ C2([−1, 1]d) be nonlinear. Then for any fixed k, a k-depth

neural network approximating f in L∞ to degree ε must have at least N +M ≥ cε−1/2k

for c = c(f, k) > 0.

Thus, combining Theorems 2.1.9 and 2.1.10, a neural network of unbounded depth

performs strictly better in an asymptotic sense than a neural network with k levels at

least when s > 2kd. Thus, as is highlighted in [86], for high dimensional problems,

essentially bounded derivatives of order s > 2d are required for the Yarotsky theory

to prove asymptotic superiority of deep networks. Additionally, the dimension of the

problem effects the constant c in the complexity bounds in Theorem 2.1.9.

In [201], it is shown that certain networks of depth Θ(L3) and Θ(1) nodes per layer

cannot be well-approximated by networks with O(L) layers without Ω(2L) complexity.

This demonstrates by example the benefits of arbitrarily deep networks over shallow

networks. [202] shows another example where shallow networks have an exponentially

larger complexity than deep networks.
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2.1.4 Interpolation

Often, we are interested in approximating a function f with knowledge of f only at a

finite collection of N sample points X = {xj}Nj=1. It is well known that for N sample

points, there exist a unique Lagrange polynomial If,X of degree N − 1 interpolating these

points. However, for equispaced points, it is known that the sequence of interpolatory

polynomials need not converge uniformly to f . In fact, much more is known.

Theorem 2.1.11 (Faber [67], translated in [207]). For any sequence of interpolation nodes

XN = {x(N)
j }Nj=1 for N ≥ 1, there exists a continuous function f such that the interpolatory

Lagrange polynomials If,XN do not converge uniformly to f .

However, for functions possessing more regularity then mere continuity (even just

Lipschitz continuity) there do exist interpolation points for which the interpolatory

polynomials converge uniformly. The most famous and widely used of these interpolation

points are the famous Chebyshev nodes:

x
(N)
j = cos

(
2j − 1

2N

)
, 1 ≤ j ≤ N,

which are the zeros the Chebyshev polynomials and the projection of equispaced points

from the unit circle onto the x axis.

Theorem 2.1.12 ([206]). Let pn denote the nth interpolatory polynomial on the Chebyshev

nodes to a Lipschitz continuous function f . Then pn converges uniformly to f . Moreover,

if f is k-times differentiable with a kth derivative of bounded variation, then ‖f − pn‖∞ =

O(n−k). If f is analytic, then ‖f − pn‖ = O(ρ−n) for ρ > 1.

Polynomial interpolation in higher dimensions is a more complicated problem alge-

braically. For a review, see [74]. A simple case is given by the Chebyshev grid Cd
N , where

CN denotes the Chebyshev points. In which case, there is a unique polynomial of termwise

degree not exceeding N−1 interpolating f at Cd
N satisfying the error estimates in Theorem

2.1.12. Note that the total term of terms in a polynomial is M = Nd, so in terms of the

12



total complexity M , the error estimates have the form ||f − pn||∞ = O(M−k/d).

2.1.5 Minimum Sobolev Norm (MSN)

As we saw in the previous section, the interpolatory polynomial of minimal degree has nice

convergence properties if the function being approximated is sufficiently well-behaved and

the interpolatory nodes are chosen judiciously (e.g. the Chebyshev nodes). Unfortunately,

in many practical applications, we must deal with samples of a function where they are

given, and cannot insist, for example, that these sampling points be the Chebyshev nodes.

To address this problem, we relax the condition that the interpolatory polynomial have

minimal degree. Given N sample points {xj}Nj=1, there are infinitely many polynomials

of degree M > N − 1 interpolating f at these points, so the problem of determining

a polynomial interpolant becomes underdetermined. As usual when dealing with an

underdetermined problem, we shall seek a solution of minimal-norm. In this case, we

shall seek the solution of minimum Sobolev norm (MSN) in particular, which can be

interpretted as finding the “smoothest” solution that interpolates the data.

We are interested in approximating a function f : [−1, 1]d → R given a collection

of samples X1, X2, X3, . . ., |Xn| → ∞ as n → ∞. The total collection of all samples is

denoted by X, and is referred to as the interpolation matrix. For theoretical purposes,

it is convenient to convert our function f : [−1, 1]d → R to a function f ◦ on the torus

Rd/(2πZ)d by f ◦(θ1, . . . , θd) = f(cos θ1, . . . , cos θd).

Theorem 2.1.13 ([38]). Let s > d/2, f ∈ Hs, and let X be the interpolation matrix.

Denote by ηN := infx,y∈XN ,x 6=y |x − y| the minimum intersample distance. Then there

exists MN = O(η−1
n ) such that the polynomial pN of degree MN interpolating the points

function f at the interpolatory nodes XN converges pointwise with error estimate

|pM(x)− f(x)| ≤ Cδ(x)min(s−d/2,1),

where δ(x) := infy∈XN |x− y|.
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Note that Theorem 2.1.13 refers to a particular construction, and that there are much

stronger existence results that give the degree of approximation comparable to the best

degree of approximation achievable by trigonometric polynomials.

As a practical note, the MSN scheme proceeds as follows (shown here for d = 1).

Consider a function f(x) with samples f(xi). Let the interpolant p(x) to f(xi) be given

by:

p(x) =
M−1∑
m=0

am cos (m cos−1 x) =
M−1∑
m=0

amTm(x) (2.4)

That is, we choose a basis composed of trignometric Chebyshev polynomials (for con-

venience and numerical reasons). In this basis, we let V be the Chebyshev-Vandermonde

matrix:

V =


cos (0 cos−1 x0) cos (1 cos−1 x0) ... cos ((M − 1) cos−1 x0)
cos (0 cos−1 x1) cos (1 cos−1 x1) ... cos ((M − 1) cos−1 x1)

... ... ... ...
cos (0 cos−1 xN−1) cos (1 cos−1 xN−1) ... cos ((M − 1) cos−1 xN−1)

 ,
a the vector of coefficients am, Ds a diagonal matrix of the filter/scaling coefficients

Ds(m) = 1
(1+m)s

used to penalize the derivative, and f be the vector of samples f(xi).

The MSN interpolant is given by solving the optimization problem:

min
V a=f
‖Dsa‖2

2. (2.5)

The solution to this problem is given by:

p(x) = V (x)D−2
s V T (V D−2

s V T )−1f (2.6)

= V (x)a

where V (x) is a row of the matrix V , computed at x. Note that direct computation of
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Eq. 2.6 is likely to be numerically unstable, and solvers based on orthogonal factorizations

(QR) are used in practice.

One challenge with the conventional MSN approach is that it seeks a perfect interpo-

lation of the provided data. When dealing with undersampled representations of data,

or real-world noisy data, this may cause the required polynomial order to be very high.

Thus, a useful extension is the generalized minimum Sobolev norm (GMSN) solution,

which can be formulating by introducing a parameter θ that controls the accuracy of the

approximation, and a window W that weights the point-wise approximation error, as [35]:

min
a

sin2 (θ)‖Dsa‖2
2 + cos2 (θ)‖W (V a− f)‖2

2 (2.7)

The first term in the above formulation corresponds to choosing a smooth interpolant

and the second term corresponds to choosing a good approximant to the given set of

samples. The parameter θ can be chosen such that tan θ ≈ σ
‖p‖s , where σ is the standard

deviation of noise, or also set to zero as sin θ ≈ 0. Eq. 2.7 can be posed as the least

squares system:

min
aM

∣∣∣∣∣∣∣∣[ sin (θ)I
cos (θ)V D−1

s

]
DsaM −

[
0

cos (θ)f

]∣∣∣∣∣∣∣∣
2

(2.8)

with the corresponding solution for the interpolant:

p(x) = cos2 (θ)(sin2 (θ)D2
s + cos2 (θ)V TW 2V )−1V TW 2f (2.9)

Again, a direct solution as above is numerically unstable, and a stable solver based on

orthogonal factorizations should be constructed instead [35].

There are many practical implications of seeking the MSN solution. First, while

it appears we are over-parameterizing the model via an underdetermined system, the

Golumb-Weinburger principle tells us that the number of free parameters is determined by

the normal equations which is always a N ×N system for N training data points [77, 39].
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Thus, we are robust to egregiously overfitting, and we gain additional regularization by

controlling the smoothness of the interpolant. Second, the location of the data points is not

a requisite for convergence, so the MSN solution will converge to the true solution at limit

points of the training data. Thus, the method can be applied to sparse data (although

approximation guarantees far away from the provided data are minimal, especially in high

dimensions). Third, with numerically stable techniques to compute the MSN solution,

the method is guaranteed to converge as we add more data points. On this last point, the

MSN method has been shown as an effective solution for various approximation problems,

including approximation of the Runge function and other challenging problems [35, 36,

38, 32, 37, 82].

2.2 MSN Polynomial Networks

With the requisite theoretical tools in place, we now outline the construction of networks

representing high-dimensional polynomials. Many of the concerns here are practical

in nature, because our ultimate goal is to develop set of techniques that allows us to

extend and validate our theory on practical problems such as image reconstruction and

image recognition. On this note, in Section 2.2.2 we define the various constituent

functions we will use to construct approximations, with emphasis on frames amenable

to direct and efficient Sobolev-norm penalization. In Section 2.2.2 we outline several

structured sub-sampling techniques for generating polynomial terms in high-dimensions

as a practical means to avoid (but not escape) the curse of dimensionality in a single-

layer. In Section 2.2.3 we introduce deep (multi-layered) networks as a means to escape

the curse of dimensionality when the compositional structure of the target function is

known, including an extension of recent theory to objective functions with a Sobolev-norm

penalty amenable to gradient-based optimization. In Section 2.3 we provide promising

numerical results that indicate the benefit of depe networks in ameliorating the curse of
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dimensionality, especially with respect to the data rate.

2.2.1 Choice of Basis and Frames

When constructing an interpolant, there are many choices one can make. In general, we

prefer to pick basis functions that are well matched to the target function, so that a

small number of coefficients can be used (i.e. arg minV a=f ||a||0). For a general class of

target functions, it is typically considered optimal to pick a set of linearly independent

functions (i.e. a basis), so that there is limited re-use or redundancy in the required

number of non-zero coefficients. However, in some instances it is desirable to use a set of

linearly dependent functions (a frame) to achieve more stable or efficient representation.

In this work, we will not distinguish between these cases, but we will assume that the

constructed interpolation matrix (e.g. Vandermonde matrix V ) has full row rank. In

addition, we will work primarily in finite-dimensional input and output spaces, and will

only consider interpolates of finite degree. This is amenable to practical implementation

via high-dimensional numerical linear algebra techniques.

In particular, we will first construct the interpolation matrix V based on the basis or

frame of choice. In the case of interpolation, we look for the solution to the system:

V (x)a = f(x) (2.10)

where a is the matrix of coefficients and f is the vector of function evaluations at the

sample points xi corresponding to the rows of V . For simplicity we drop the the notation

V (x), f(x) in favor of V, f .

The MSN solution can be expressed as:

p(x) = V D−2
s V T (V D−2

s V T )†f (2.11)

where we have traded the inverse of V D−2
s V T used in Eq. 2.6 for the pseudo-inverse, and
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we define the Ds appropriately to penalize the derivative or the roughness of the resulting

interpolant.

Similarly, the GMSN solution with parameters θ,W can be expressed as:

p(x) = cos2 (θ)(sin2 (θ)D2
s + cos2 (θ)V TW 2V )†V TW 2f (2.12)

Note that we are not suggesting this as a viable computational formula. More stable

algorithms can be derived using RRQR and similar orthogonal factorizations, in favor of

spectral approaches (e.g. SVD) which generally have worse complexity when M > N .

We will now give a few formulas for V and Ds.

Monomial Basis

The monomial basis, described in 1D as the moments {1, x, x2, x3, ...}, is perhaps the

most familiar basis used by engineers and mathematicians. In d dimensions, we can define

the basis as the set:

{
gi =

K∏
j∈Ji

xj | i ∈ N[0,S]

}
(2.13)

where gi is the ith monomial polynomial term of maximum degree K, Ji ∈ ZK[0,d] is a

multi-index indicating the multiplicity of each variable, x ∈ Rd is the variable indexed as

xj ∀ j ∈ [1, d], and S =
(
d+K
K

)
is the total number of terms in a polynomial of maximum

degree K. These terms are evaluated for the various scattered data, and the corresponding

columns are stacked up to form the Vandermonde interpolation matrix V . Note that the

ordering of the columns is non-unique, even though fast algorithms for construction and

evaluation may want to exploit the structure of V .

We define Ds vector based on the degree of each term, as:
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Ds =
{ 1

(1 +
∑
Ji)s
|i ∈ [1, S]

}
(2.14)

Unfortunately, the monomial basis is known to be numerically unstable [205, 111].

Instead, we will use an orthogonal basis.

Chebyshev Basis

Chebyshev polynomials of the first kind are a family of orthogonal functions on the

interval [−1, 1], expressed in 1D using the recurrance relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) (2.15)

where n is the degree of the term. Applying the change of variables x = cos(θ), θ ∈ [0, 2π],

we see that the Chebyshev polynomials and trignometric functions are equivalent on the

unit interval:

Tn(x) = cos(n arccosx) = cos(nθ) (2.16)

We will use this representation for convenience. We can express d dimensional Chebyshev

polynomials as the product of d 1D Chebyshev polynomials, as the set:

{
TJi =

d∏
k=1

TJi(k)(xk) | i ∈ N[0,S]

}
(2.17)

where Ji ∈ Zd s.t. ||Ji||1 <= K is a multi-index indicating the degree of the d 1D

polynomials in the ith term, and K is the max degree of the multivariate polynomial

term. Note that there are still S =
(
d+K
k

)
terms, and the Ds vector is still defined as in

Eq. 2.14.
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Besides convenience in direct control over the derivative, as measured via the decay

in Fourier coefficients, the trignometric Chebyshev basis has also been shown to provide

superior numerical stability. We will use this basis for the majority of our experiments.

“Neural” Sigmoid/ReLU Basis

Following our discussion of neural networks, we note that one can also consider this to be

a basis. In the original definition of neural networks, the network output is the simple

sum of a set of neurons. Neurons are defined via a simple inner product between the input

vector and a coefficient vector, followed by an activation function σ (see Definition 2.1.3).

In [127] it is shown that this formulation is “universal” (i.e. that it can approximate any

function) as long as σ is chosen to be non-polynomial.

However, this technique does not benefit from the direct solver for a system V a = f ,

since it is instead σ(A, a) = f . Instead, the task of finding the coefficients a is often posed

as a convex problem and solved using gradient descent or similar scheme. In fact, because

for some finite number of neurons (i.e. the number of columns in a) the coefficients depend

on the training data, neural networks were touted as being unique for their ability to

“adapt to the data” via so-called “data-dependent” basis functions [19, 20].

Of course, it is debatable whether this offers a fundementally different kind of repre-

sentation compared to polynomials. As Candes points out in [27], a number of different

functions can be used for approximation, sometimes with even better properties than

neural networks for specific function classes. For example, in [26, 28] Candes introduces

ridgelets as a competitive basis with some superior properties to wavelets in some cases.

In all these cases, the basic idea is to take an inner product between the data point x ∈ Rd

and a coefficient vector, and to generate moments of this sum via a so-called “squashing”

function.
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2.2.2 Single-layer Networks

Regardless of the choice of basis, a direct implementation of interpolation suffers from

the curse of dimensionality because for general functions defined on the d dimensional

hypercube an infeasible number of expansion terms and data points are needed. Therefore,

some sensible techniques must be used to judiciously select which terms to include in

practice, which undoubtedly depends on the morphology of the data and the target

function.

Classically in low dimensions this problem was addressed by picking a suitable basis

for each problem. However, in high dimensional problems (e.g. image recognition), it is

difficult to understand and visualize the morphology of the input-output map. As a result,

practitioners are left to picking an arbitrary basis with generic approximation properties,

and carefully selecting or tuning terms within that set with a set of heuristics.

In the following, we outline a few simple choices or algorithmic tools for picking terms

in a “sensible” way, understanding that this choice is highly problem dependent. In

each case, we will assume the input is a vector x ∈ Rd, referred to as the input pixels.

Input pixels are processed in “layers” that generate terms and output one or several

polynomials of the input pixels. Each polynomial that is computed is considered a “node”

in the network. In single-layer polynomial networks, the output of the first set of nodes is

concatenated and taken as the output of the network (i.e. it should match the dimension

of the target function). Note that this grouping differs from some of the nomenclature

used to describe single-layered and deep neural networks (DNNs), where an indefinite

number of neurons can be linearly combined to form each dimension of the output node.

To be clear, we now define a few types of layers that we will use to construct single-layer,

multi-layer, and deep-compositional MSN polynomial networks used in our experiments

(Sec. 2.3).
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The “Dense” Layer of Degree K

The dense layer produces and sums all possible polynomials (i.e. combinations) of the input

pixels. The number of terms depends on the desired degree K (as defined in Section 2.2.1).

The number of polynomials computed by a dense layer is conformal with the output

dimension of the target function. The feedforward computation can be expressed succinctly

as V (x)a → f , with the appropriate dimensions on a and f . When it is desirable for

each polynomial to have a different degree, zeroes are inserted at appropriate locations

in V (x) for feed-forward evaluation, although a more complicated routine is required for

training. As mentioned, this layer suffers from the curse of dimensionality with respect to

the number of terms (rows in a).

The “Sparse” Layer of Max-Degree K

The sparse layer produces and sums a subset of the terms generated by the dense layer.

This can be achieved in a variety of ways, including by random subsampling of the terms.

The subsampling can also be structured, e.g. organized or prioritized by the degree of

each term. There is no minimum number of terms, while the maximum is the same as the

corresponding dense layer of the same maximum degree K. In our implementation, we use

a Python generator to collect, shuffle, and sample terms for each desired degree. Although

this is an implementation detail, we note that in very high dimensions designing a good

sampling strategy for such terms is not trivial. For example, the naive technique does not

produce well-spaced samples when the degree is large, since the required buffer-size is

very large:

1 def random_combinations_with_replacement_v1(iterable, degree):

2 num2get = nCr_with_replacement(len(iterable),degree)

3 combos = itertools.combinations_with_replacement(iterable,degree)

4 for k in shuffle_generator(combos, bufsize=200000): yield k
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where iterable is an vector of indices corresponding to the pixels of x, and degree is

the desired polynomial degree.

A better technique, although extremely slow, is to create a set and sample at runtime,

as:

1 def random_combinations_with_replacement_v2(x, degree):

2 num2get = nCr_with_replacement(len(iterable),degree)

3 unique = set()

4 while len(unique) < num2get:

5 tmp = random_combination_with_replacement(iterable,degree)

6 tmp_tup = tuple([tuple(p) for p in tmp])

7 if tmp_tup not in unique:

8 unique.add(tmp_tup)

9 yield tmp

10 #

11 #

In low-dimensions and for reasonably low-degree polynomials, of course, either tech-

nique can be used effectively to enumerate all combinations (in lexicographic order, if

desired).

Normalization and Batch-Normalization

Without loss of generality, generated polynomial terms can be scaled with a diagonal

matrix Y ; its feedforward computation can be expressed as V Y a→ f . Shifting is also

possible as (V Y + B)a → f , but some care needs to be taken to preserve the column-

rank of the LHS. These factors can be picked a priori, e.g. heuristically or via batch

normalization on a subset of training data, and then frozen for all subsequent evaluation

or training. In general, when there are free parameters in Y or B, we would consider the

normalization as its own layer. Note that when the scale or shift factors are a function of

the input data itself e.g. Y = φ1(V ), B = φ2(V ), we get more complicated higher-order
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terms. In the general case, we may want to allow normalization of this form to yield a

rational function of the input x, rather than a polynomial.

Dropouts and K-sparse Weights

The technique of dropouts can be applied by picking a sparse binary-valued diagonal

matrix Y with Yi,i ∈ Z{0,1} as a simple normalization layer. Although this technique is

typically coupled with gradient-based optimization, we can understand the operation as

increasing the number of data points (number of rows in V ) via data augmentation, when

all possible dropout instances are realized. The added data matches the original data up

to K of its M moments (polynomial terms). However, in this fixed-data setup we would

require an intelligent training routine that would respect the information sparsity and

allow the remaining moments to be free, rather than pinning them at zero.

Controlling the In-Degree

Not all the input pixels need to be used in each node of a layer. Instead, the pixels can

also be grouped into smaller bins, prior to selecting terms via the aforementioned dense

or sparse polynomial layers. This has the benefit of letting each node be low-dimensional.

We refer to the number of pixels entering a node as the “in-degree”. Interpolation of

low-dimensional polynomials is a well studied subject, and the numerical tools developed

for MSN approximation can be applied directly. However, because these choices are fixed

at the time of construction, an arbitrary choice may not yield a good result for a general

class of target functions without structure. Note that in conventional neural networks,

even if each neuron selects a subset of the input pixels (e.g. encouraged via a L0 or L1

penalty on the weights), summing these nodes within a layer increases the in-degree of

the output “node”. In a non-polynomial network, the in-degree of any node i can be

computed by the number of non-zero entries in the gradient of the node-output f̂i with

respect to pixel inputs x. As we will argue in Section 2.2.3, having low in-degree may
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also ease the curse of dimensionality in scenarios with sufficiently representative, albeit

sparse, training data.

The Local Neighborhood Layer

For data that is locally correlated (e.g. images), input pixels can be organized into bins

based on their location in pixel-space. We call these groups, whether they are locally

contiguous or disjoint, as local pixel “neighborhoods”, and can leverage them as a strategy

to sample relevant polynomial terms of high dimensional inputs using the aforementioned

dense and sparse term generators. While thus far we have only considered a vectorized

version of the input x ∈ Rd, utilizing the intrinsic format of the sampled data x′ can

be beneficial for uncovering and leveraging its structure in approximation tasks. For N

dimensional Euclidean data such as images or griddata x′ = R
∏N+1
k=1 Dk with

∑
kDk = N ,

where the last dimension DN+1 represents the number of channels at a given voxel index.

For 2D natural images with one or more intensity or color channels, x′ = RD1×D2×Nchannels .

We will use 2D images as an illustrative example.

The local neighborhood can be based on a fixed-size or location-dependent stencil,

with fixed or location-dependent sparsity. Each neighborhood will generate polynomial

terms with respect to the input pixels or the “support” defined by the stencil. It is left to

the algorithm or network designer to decide how to use these terms. For example, in a

single-layer network with one output node, the terms produced by each neighborhood

can be linearly combined. In a single-layer network with several output nodes, the terms

produced by each neighborhood can be further grouped and linearly combined into each

output node (without going to a multi-layer network). In either case, the network retains

the feedforward format V a→ f without restriction on the number of unique stencils or

number of output nodes. However, notice that the in-degree is likely to increase as the

number of neighborhoods contributing to an output node increases.

To keep the in-degree small, we can enforce a sparsity condition on the stencil
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corresponding to each neighborhood. However, this fixes the minimum number of output

nodes. For some applications, single-layer networks multiple-output nodes are desirable

and sufficient. However, in many applications we would like to uncover more complicated

groupings of the input pixels or neighborhoods. In this case, we can take the output nodes

of a layer to be the input nodes of the next layer. This technique helps define multi-layer

deep compositional networks that retain low in-degree at each node (Sec. 2.3).

The “Convolutional” Layer

In the local neighborhood layer, when the same stencil is used throughout the image

(e.g. by sweeping with some stride-length), and the resulting polynomial terms are

identical for each neighborhood, one can share some or all of the polynomial parameters

(e.g. linear-combination coefficients) across neighborhoods. Sharing all the parameters

yields a “convolutional” layer, similar in structure to the initial layers of convolutional

neural networks (CNNs). The feedforward computation can be expressed via the block

matrix expression [V · ã1, V · ã2, ..., V · ãk]T → [f1, f2, ..., fk]
T with ãk = Rk · a, where a

are the shared polynomial coefficients, fk is the (possibly) vector-valued output of one

neighborhood, and Rk is the k-th shift/displacement or rotation operator resulting from

the stencil sweep. With appropriate reformatting, this layer can be efficiently vectorized

for fast computation on CPUs and GPUs. Neighborhoods of different sizes may be used,

but the encoding will be slightly more expensive. Notice that in this view, convolutional

layers increase the data-rate by a multiple of the number of neighborhoods.

2.2.3 Deep Compositional Networks

Still, single-layer networks have limitations. In particular, they suffer from the curse of

dimensionality when the value of an output node must depend on more than a small subset

of the input pixels. This high in-degree poses undue burden on the network designer

to enumerate or sample relevant terms from a potentially large pool. While single-layer
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neural networks sought to ameliorate this issue by proving dimension-independent bounds

for the degree of approximation for some functions (Theorem. 2.1.5), the constants are

typically too large to be feasible in practical problems. Moreover, these early works fail

to explain the practical success of deep, multi-layer networks over shallow networks.

Recent work has considerably improved our understanding of the benefits of deep

networks over shallow networks. [222] showed that for functions possessing bounded

derivatives of very high order relative to the dimension, very deep networks would

asymptotically outperform networks of any fixed depth. [201] demonstrated the existence

of deep neural networks with Θ(n3) layers which could not be approximated by shallow

networks of Θ(n) layers without exponentially many nodes.

In [149, 143, 144] it is argued that deep networks are better than shallow networks

at approximating functions with a compositional structure—that is, functions such as

f(x, y, z, w) = h3(h1(x, y), h2(z, w)) and the like. They model a compositional function f

as a directed acyclic graph (DAG) G. Directed edges from one node to another represent

the output of one function being used as an input to another function. Source nodes S

represent inputs to the function and the (unique) sink node represents the output of the

function. Letting V denote non-source nodes, for each v ∈ V , there exists a function fv

taking dv inputs where dv is the in-degree of fv. The entire collection (S, V, {fv}v∈V ,G)

is referred to as a G-function of f . We shall refer to d := maxv dv as the degree of the

q-dimensional G-function f . In this framework, a deep neural network is just a G-function

where each nodal function fv is a linear combination of shifted, scaled activation functions.

The total number of summands in all nodal functions is the complexity of the network.

Proposition 2.2.1 ([149, 143, 144]). Let f be a G-function where ‖fv‖Wk,∞ ≤ 1. Then

there exists a constant c(G) > 0 such that for every ε > 0, there exists a deep network g

such that ‖f − g‖L∞ ≤ ε and complexity ≤ c(G)ε−d/k.

In this way, deep networks avoid the curse of dimensionality for compositional functions

in that the exponential dependence on the dimension q is removed. Instead, we have an
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exponential dependence on the G-function degree d, which we can take to be considerably

smaller than q, d � q. Moreover, it is shown in [145] that it is possible to train such

a deep network from noisy data by solving an appropriate optimization problem for a

function with known compositional structure but unknown nodal functions {fv}. For

simplicity of analysis, the domain is taken to be the q-dimensional torus Tq and the

activation function is taken to be t 7→ cos t. Thus, in this framework, approximation by

neural networks is reduced to the well-studied subject of approximation by trigonometric

polynomials. For a collection N = {Nv}v∈V , we denote GHN the class of G-functions g

for which gv is a trigonometric polynomial of degree not exceeding Nv.

Theorem 2.2.2. Suppose we are given the values yi of a G-function f with some error

yi = f(xi) + εi. Assume that each fv satisfies the Lipschitz condition ‖∇f‖L∞ ≤ L

and ε := maxi εi ≤ L. Then there exists constants C(G), c(G, L) > 0 such that for

Nv ≥ C(G)η(Cv)−1, for the loss function:

L [g] := max
i
|yi − g(xi)|+

∑
v∈V

1

Nv

||∇gv||L∞ ,

defined for every G-function g, we have:

min
g∈GHN

L [g] ≤ c(G, L)

[
ε+

∑
v∈V

1

Nv

||∇f ||L∞

]
and with h := arg min L [g],

|h(x)− f(x)| ≤ c(G, L)

[
ε+

∑
v∈V

1

Nv

||∇f ||L∞

]
+ (c(G, L) + εmax

v
Nv)δ(x),

where δ(x) = mini |x− xi| is the distance to nearest sample.

In particular, this theorem shows that provably good generalization error can be

obtained by minimizing the error on the training data with a gradient penalty.
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Generalization Error for Deep Minimum Sobolev Networks

An important step in actualizing the ideas presented in Theorem 2.2.2 is replacing the L∞

gradient penalization to a method more amenable to training with existing methologies

such as stochastic gradient descent. To this end, we shall prove a modified version of

Theorem 2.2.2 which uses the Sobolev norms W 2,s rather than the gradient’s L∞ norm.

This shall introduce a significant benefit in that, for a function f expressed as a Chebyshev

series,

f =
∑
k∈Nq0

akTk,

the Sobolev norm of f can be defined to be ||f ||2s :=
∑

k∈Nq0
(1 + |k|)2sa2

k. This

norm differs from the one defined in the background but is equivalent in the sense that

C1 ||f ||W 2,s ≤ ||f ||s ≤ C2 ||f ||W 2,s for constants C1 = C1(s, q) and C2 = C2(s, q). For a

function f on the torus, there is a simple relation between the Sobolev norm and its

Fouerier coefficients,

f =
∑
k∈Zq

ake
ik• =⇒ ||f ||s =

∑
k∈Z

(1 + |k|)2s|ak|2.

There is a natural equivalence between functions f on [−1, 1]q and functions f ◦ on the

torus Tq by f ◦(θ1, . . . , θq) = f(cos θ1, . . . , cos θq). Under this correspondence, Chebyshev

expansions are equivalent to Fourier cosine expansions. For this reason, for the remainder

of the section, we shall focus on functions defined on the torus.

We shall need the following Lemma.

Lemma 2.2.3 ([33, 38]). Let f ∈ W 2,s(Td) and let Y be a collection of points in Td, s > d/2.

Define η := minx,y∈Y |x − y|. Then there exist constants c = c(d, s) and C = C(d, s)

such that there exists a trigonometric polynomial p of degree not exceeding Cη such that

p(y) = f(y) for every y ∈ Y and ‖p‖W 2,s ≤ c‖f‖W 2,s .

For a G-function g and a collection C ⊆ Tq of points, denote by Cv the inputs to gv as

the collection of points C is fed through the G-function for each v ∈ V ,
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ηv(C) := inf
x,y∈Cv

|x− y|.

When the input set C is clear from context, we shall simply write ηv. We also need

the following result. Call a G-function streamlined if the nodes of V can be broken into

disjoint levels 1, 2, . . . , ` such that if there is a directed edge from u on level k to v on

level j, then j = k + 1.

Lemma 2.2.4. Given a G-function g, g can be converted to an equivalent streamlined

G-function G with node set Ṽ ⊇ V such that Gv = gv if v ∈ V and Gv = id if v /∈ V . G

can be written as a composition G = G` ◦ · · · ◦G2 ◦G1, where

||∇Gk||L∞ ≤ c

1 +
∑

v level k

||∇gv||L∞


for some constant c = c(G). If g is already streamlined and g = G or k = L, this

estimate can be improved to

||∇Gk||L∞ ≤ c
∑

v level k

||∇gv||L∞ .

Theorem 2.2.5. Suppose we are given the values yi of a G-function f with some error

yi = f(xi) + ε at M points C = {x1, . . . , xM}. Assume that each fv ∈ W 2,s for s > d/2 + 1.

Then there exist a constant C = C(G, s) such that for Nv ≥ Cη−1
v , the loss function

L [g] :=
1

M

∑
i

|yi − g(xi)|2 + α2 ||g||2s ,

defined for every G-function g, we have

min
g∈GHN

L [g] ≤ C
[
ε2 + α2 ||f ||2s

]
, (2.18)

where ε := max εi, and with h := arg min L [g],

|h(z)− f(z)| ≤ C

[√
M (ε+ α ||f ||s) +

(
1 +

ε

α
+ ||f ||s

)`
δ(z)

]
. (2.19)
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Proof. Throughout, we shall use C = C(G, s) to denote arbitrary constants depending

on G and s. We begin by showing (2.18). Lemma 2.2.3 says there exists a constant C

and a polynomial pv of degree not exceeding Cη−1
v such that pv agrees with fv on Cv and

||pv||s ≤ C ||fv||s. Then the G-function p agrees with f on C and thus has

L [p] =
1

M

∑
i

|yi − p(xi)|2 + α2 ||p||2s ≤ ε2 + C2α2 ||f ||2s ≤ C
[
ε2 + α2 ||f ||2s

]
.

This establishes the estimate (2.18). Let h := arg ming L [g]. For any z ∈ Tq and

w = xi := arg minw∈C |w − z|, we have

|h(z)− f(z)| ≤ |h(z)− h(w)|︸ ︷︷ ︸
E1

+ |h(w)− f(w)|︸ ︷︷ ︸
E2

+ |f(w)− f(z)|︸ ︷︷ ︸
E3

. (2.20)

We now seek to estimate |h(z)− f(z)| by estimating the three terms E1, E2, E3. We

note that |z − w| = δ(z) by definition. Let g denote either f or h. Note by the general

Sobolev inequality [66, Thm. 5.6.6], for each v ∈ V , gv is a Lipschitz continuous function

with ||∇g||L∞ ≤ C ||gv||s. Let g = g` ◦ · · · g2 ◦ g1 be an expression of g as a composition

as argued for by Lemma 2.2.4. Then by Lemma 2.2.4,

||∇gk||L∞ ≤ C

1 +
∑

v level k

||∇gv||L∞


≤ C

(
1 +

∑
v∈V

||∇gv||L∞

)

≤ C

1 + C
√
|V |
√∑

v∈V

||gv||2s


≤ C(1 + ||g||s).

Taking g = f , we have ||∇fk||L∞ ≤ C(1 + ||f ||s) ≤ C(1 + ||f ||s). Thus, by the chain

rule,
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||∇f ||L∞ ≤
∏̀
k=1

||∇f ||L∞ = C(1 + ||f ||s)`.

Thus, by the mean value theorem,

E3 = |f(z)− f(w)| ≤ ||∇f ||L∞ |z − w| ≤ C(1 + ||f ||s)`δ(z). (2.21)

Taking g = h, we have ||∇hk||L∞ ≤ C(1 + ||h||s) ≤ C(1 +
√

L [h] /α). Then, by

(2.18),

||∇hk||L∞ ≤ C

(
1 +

1

α

√
ε2 + α2 ||f ||2s

)
≤ C

(
1 +

ε

α
+ ||f ||s

)
Thus, ||∇h||L∞ ≤ C(1 + ε/α + ||f ||s)`,

E1 = |h(z)− h(w)| ≤ ||∇h||L∞ |x− y| ≤ C
(

1 +
ε

α
+ ||f ||s

)`
δ(z). (2.22)

For E2,

E2 = |h(w)− f(w)| ≤ |f(w)− yi|+ |yi − h(xi)| ≤ ε+
√
ML [h] ≤ C

√
M (ε+ α ||f ||s).

(2.23)

Combining (2.21), (2.22), and (2.23) with (2.20) gives (2.19).

Compared to Theorem 2.2.2, we pay a penalty of
√
M for switching from the mean-

square error to the maximum error, but in the noise-free case ε = 0, this issue can be

entirely mollified by taking α = M−(1/2+γ) for γ > 0.

2.3 Numerical Experiments

With the theory and construction of single- and multi-layered polynomial networks in

place, we now turn to numerical experiments that seek to validate or uncover important

caveats. In particular, while the theory has established approaches for avoiding or even
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escaping the curse of dimensionality with respect to the degree of approximation, it

is generally silent about the problem of sampling sufficient data in the d dimensional

hypercube (i.e. the data rate). Therefore, it is important to ask if the developed theory

is useful for practical problems involving sparse data. Our experiments provide initial

evidence that the curse of dimensionality with respect to the data rate may be ameliorated

with the techniques described in the previous sections.

2.3.1 Image Classification

As a first attempt, we construct MSN networks with a single sparse layer. We train

these networks with the GMSN objective using numerical linear algebra techniques,

for simplicity. In particular, we set λ = sin(θ) reasonably high, so that the resulting

interpolant is not overly rough. Surprisingly, these single-layer networks work well for

MNIST-like image recognition datasets, even with an extremely low data rate. Current

results indicate upwards of 95% performance using just 400 samples for each of the 10

classes (N = 4000) on MNIST, although the required data rate for FMIST is more than

triple that. Interestingly, the generalization performance increases as the number of

parameters, provided we seek the GMSN solution, i.e. s > 0. However, the performance

on CIFAR-10 plateaus around 45%, even as the number of parameters and amount of

data are maximized within reasonable limits. With some local correlation and data

augmentation tweaks, this can be boosted to 54%. Note that these tests were conducted

in single-precision.

As shown in Table 2.1, experiments on MNIST-Digits indicate increased performance

as the data rate and number of parameters increases. As shown in Table 2.2, experiments

on Fashion-MNIST indicate more incremental improvements to performance as the data

rate and number of parameters are increased. The accuracy is further improved when

local neighborhood techniques are used. Note that the local neighborhood layers utilized

here are not convolutional layers, since we are initially restricting ourselves to shallow
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1-layer networks.

# Parameters # Data Train Acc. Val Acc. Test Acc.
GMSN (s = 1) 10K 100/class 100% 89.8% 90.3%
GMSN (s = 1) 70K 100/class 100% 91.1% 91.5%
GMSN (s = 1) 150K 100/class 100% 91.6% 91.6%
GMSN (s = 1) 10K 400/class 100% 92.2% 92.3%
GMSN (s = 1) 150K 400/class 100% 95.4% 95.7%
GMSN (s = 1) 150K 800/class 100% 96.8% 96.7%
GMSN (s = 1) 296K 800/class 100% 98.9% 98.6%

Table 2.1: MNIST-Digits classification accuracy as a function of data and parameters for
1 sparse polynomial layer of max degree 10.

# Parameters # Data Train Acc. Val Acc. Test Acc.
GMSN (s = 1) 10K 400/class 100% 79.0% 78.3%
GMSN (s = 1) 30K 400/class 100% 82.7% 82.2%
GMSN (s = 1) 70K 400/class 100% 83.5% 82.8%
GMSN (s = 1) 150K 400/class 100% 83.6% 83.0%
GMSN (s = 1) 600K 400/class 100% 83.6% 83.0%
GMSN (s = 1) 30K 1000/class 100% 82.8% 82.8%
GMSN (s = 1) 150K 1000/class 100% 86.0% 85.1%
GMSN (s = 1) 300K 1000/class 100% 86.3% 85.4%

GMSN (5x5 neighborhood, s = 1) 30K 400/class 100% 83.6% 82.5%
GMSN (5x5 neighborhood, s = 1) 296K 800/class 100% 85.8% 86.4%
GMSN (5x5 neighborhood, s = 1) 588K 800/class 100% 88.8% 88.6%
GMSN (5x5 neighborhood, s = 1) 800K 1000/class 100% 92.3% 93.4%
GMSN (5x5 neighborhood, s = 1) 800K 1400/class 100% 94.8% 95.1%

Table 2.2: Fashion-MNIST classification accuracy as a function of data and parameters
for 1 sparse polynomial layer.

Figure 2.1: CIFAR-10 image classification accuracy as a function of number of parameters
for 1 sparse polynomial layer.

Experiments on CIFAR-10 indicate incremental, but monotonic, improvements as the

data rate and number of parameters are increased (Fig. 2.1). The performance eventually
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plateaus, even after employing local neighborhood, sparsity, and sparse auto-encoder

coefficient selection schemes, and is unable to effectively solve the problem with ≥ 95%

accuracy for reasonably-sized polynomials.

To deal with the undesirable plateauing effect for CIFAR-10, we switch to multi-layer

networks. There are many architectures we can explore here, but in our initial experiments

we explore deep compositional MSN networks composed of sparse layers with low in-degree.

We provide some initial numerical evidence to highlight the benefit of this approach,

as outlined in the following (Sec. 2.3.2), with the hope that future work will scale to

addressing the data rate issue for image classification.

2.3.2 max-d

For our first multi-layer example, we will attempt to approximate the maximum or max

function in d dimensions. We will use the Chebyshev basis to illustrate our points not

only for convenience, but because polynomials are not particularly well-suited to the max

function. The key insight we are exploiting is that the maximum function can be written

as a compositional network. We will show that penalizing the Sobolev norm using the

objective function in Theorem 2.2.5 not only enables the interpolant to converge to the

true function as in the MSN theory, but that this technique works together with the

compositional network to ameliorate the curse of dimensionality in deep networks.

In each experiment, we seek the d dimensional polynomial approximation to the

function max(x1, x2, ..., xd). For simplicity, we will switch to the notation maxd(x), x ∈ Rd.

As described in the previous sections, the standard approach is to construct an interpolation

matrix V in the basis of choice from the data points x corresponding to the samples

f(x). Using this point-data, we will seek the parameters of a polynomial f ∗ such that

|f̂(x)− f(x)| < ε ∀x. In the following, we will denote number of training points is N , and

the number of parameters is M . We will approach the problem of finding the polynomial

coefficients as an optimization problem, solved using either using numerical linear algebra
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techniques amenable to single-layer networks, or using a gradient descent-like algorithm.

This latter technique is applicable to multi-layer networks, but comes at the cost of

a hyperparameter on the Sobolev-norm penalty (α2 as in Theorem 2.2.5) which will

adittionally control the convergence rate in terms of the number of training iterations.

The point-wise “training” data used to construct the polynomial will be sampled sparsely

from the d dimensional hypercube, unless otherwise stated. The generalization error will

be measured using the mean-square error and the infinity-norm (maximum) error on

two denser samplings of the d dimensional hypercube (denoted “validation” and “test”),

unless otherwise stated. Note that these tests were conducted in double-precision.

max-2

For max2 we compare the performance of a least-squares network (# parameters ≤ # data

points), the underdetermined network (# parameters > # data points), and the MSN

solution to the underdetermined network, in comparison to the ground-truth function.

All polynomials were computed using a gradient-descent algorithm (Adam optimizer),

although they could equivalently be computed with numerical linear algebra techniques.

The MSN solution has the best generalization performance.

# Parameters Max-Degree Train MSE Test MSE Max Test Error

Least-Squares 100 13 1.3e-5 1.5e-1 2.8e0
No MSN 201 19 7.5e-9 3.0e-1 2.4e0

MSN 201 19 9.0e-6 9.4e-5 8.8e-2

Table 2.3: Approximation of max2 for different networks and objective functions.
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(a) No MSN α2 = 0.0

(b) MSN (α2 = 1e− 6)

Figure 2.2: Performance vs training iteration for target function: max2.
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(a) Least-Squares

(b) No MSN (α2 = 0.0)

(c) MSN (α2 = 1e− 6)

Figure 2.3: Approximation of max2 for different networks and objective functions, N =
100.
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max-4

For max4, we notice that more data is required to get good generalization performance,

since the sampling is much more sparse in the 4 dimensional hypercube. We find that the

compositional network trained with the Sobolev-norm penalty helps the interior nodal

functions to converge faster and with less data than the corresponding compositional

network trained only on the mean-square error (MSE). In particular, adding more data

allows does not significantly change the shape or value of the interior nodal functions of

the deep MSN (DMSN) network (i.e. the nodal functions have converged). Interestingly,

we observe that although we are regressing only on the final output of the network, letting

the interior nodal functions be free, the nodes seem to converge to functions resembling

α + βmax2. This is not necessarily predicted by the theory.

Graph Objective # Parameters # Data Train MSE Test MSE Max Test Error
1 Layer MSE 603 100 2.9e-16 4.9e-1 2.0e0
1 Layer GMSN 603 100 3.8e-5 5.1e-2 1.2e0
2 Layer MSE 603 100 1.3e-8 2.0e-1 1.5e0
2 Layer DMSN (s = 1) 603 100 1.1e-6 1.1e-1 1.4e0
1 Layer MSE 603 1000 8e-3 2.2e0 4.2e1
2 Layer MSE 603 1000 3.3e-5 1.8e-2 2.3e0
2 Layer DMSN (s = 1) 603 1000 6.4e-4 1.9e-3 5.5e-1
1 Layer MSE 603 2000 1.6e-2 1.5e-1 3.0e1
2 Layer MSE 603 2000 8.1e-5 4.3e-3 2.5e0
2 Layer DMSN (s = 1) 603 2000 6.2e-5 8.0e-5 1.0e-1

Table 2.4: Approximation of max4 for different objective functions and # training data.
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Figure 2.4: Interior nodes of a compositional max4 without MSN (α2 = 0.0), for N = 2000.
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Figure 2.5: Interior nodes of a compositional max4 with MSN (s = 1, α2 = 1e− 6), for
N = 2000.

41



(a) No MSN α2 = 0.0

(b) MSN (α2 = 1e− 6

Figure 2.6: Performance vs training iteration for target function: max4, for N = 2000.

42



max-8, max-16, max-32

The trend continues for max8, max16, and max32, where more data is required to get

good generalization accuracy, but not exponentially more. We find that increasing the

data rate does encourage MSE-trained networks to converge to the true function, but

this convergence is not guaranteed and is much slower than DMSN-trained networks.

The disparity between the convergence of MSE-trained and DMSN-trained networks

is made apparent by observing the smoothness of the interior nodal functions of max8

(Fig. 2.7-2.8). The same trend continues for max16 and max32. Again, the nodes need not

converge to shifted and scaled versions of max2, but we do observe this in practice for

maxd, when 1 < log2(d) ∈ Z.

Graph Objective # Parameters # Data Train MSE Test MSE Max Test Error
1 Layer MSE 1407 2000 3.5e-3 4.2e-1 2.3e1
3 Layer MSE 1407 2000 2.7e-3 6.9e-2 4.9e0
3 Layer DMSN (s = 1) 1407 2000 1.6e-3 8.0e-3 1.4e0
1 Layer MSE 1407 6000 1.1e-2 2.3e-2 3.7e0
3 Layer MSE 1407 6000 1.2e-3 1.5e-2 2.8e0
3 Layer DMSN (s = 1) 1407 6000 1.2e-4 1.5e-4 1.5e-1

Table 2.5: Approximation of max8 for different objective functions and # training data.

max-16

Graph Objective # Parameters # Data Train MSE Test MSE Max Test Error
1 Layer MSE 3015 16K 4.3e-3 6.7e-3 1.4e0
4 Layer MSE 3015 16K 4.4e-4 8.66e-4 2.1e0
4 Layer DMSN (s = 1) 3015 16K 9.1e-5 4.1e-4 5.9e-1

Table 2.6: Approximation of max16 for different objective functions and # training data.
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Figure 2.7: Interior nodes of a compositional max8 without MSN (α2 = 0.0), for N = 6000.
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Figure 2.8: Interior nodes of a compositional max8 with MSN (s = 1, α2 = 1e− 6), for
N = 6000.
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The experiments show that using the deep minimum Sobolev norm (DMSN) objective

(Theorem 2.2.5) not only results in better generalization error, but allows the interior nodal

functions to converge as more training data is added (i.e. they are stable). Interestingly,

the nodal functions for maxd appear to be shifted and scaled copies of max2, although

this is not necessitated or predicted by the theory. Specifically, the numerical results show

that generalization performance at ε ≤ 0.001 can be achieved for maxd without requiring

the number of data samples or polynomial terms to scale as ε−d when the compositional

structure of the target G-function is utilized, hence breaking the curse of dimensionality

for this problem.

2.4 Conclusion

To summarize, in this chapter we saw that there are natural ways to implement theoretically-

sound approximation schemes, provided a constructive proof and stable numerical algo-

rithms. However, the theory generally requires density of the available input training

data, which is both unlikely and unfeasible for modern high dimensional problems. More-

over, even if the available training data is dense, the number of “units” or terms in the

approximation is often intractable since it grows exponentially as O(KD) or worse, where

D is the dimension of the input data and K represents a required polynomial order

(degree) determined by the mesh norm, the roughness of the target function, and/or

the required ε of accuracy. To this end, the solutions presented in this chapter centered

around two techniques: (1) judiciously picking polynomial terms via randomized sam-

pling and search-space constraints, and (2) utilizing the compositional structure of the

target function to provably remove exponential dependence in the number of terms and

empirically ameliorate exponential dependence on the amount of data required to train

the network. Both of these techniques yield significant empirical benefits in generalization

accuracy when combined with minimum Sobolev-norm approximation schemes, indicating
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the existence of fruitful avenues for effectively avoiding the curse of dimensionality in the

unasymptotic regime of modern high-dimensional classification and regression problems.

In the next chapter, we will see an alternative way to construct high-dimensional polyno-

mial approximations by carefully selecting the terms used in the approximation based on

the “physics” of the problem, a technique that is termed “Deep Algorithms”. In many

cases, these sparse and highly-structured polynomials can possess powerful approximation

properties for a large class of target functions without any training.
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Chapter 3

Deep Algorithms

In this chapter, we introduce alternative technique for constructing approximations in

the unasymptotic setting when the compositional structure and constituent functions of

the target function may be unknown. In particular, when we are given only input-output

pairs of a high dimensional function without an analytic or graphical description of their

relationship (e.g. DAG), we will show how the intuition of the human algorithm designer

can be used to extract a powerful, “deep” network representation that provides a useful

starting point as a regression model along with a natural weight initialization prior to any

numerical optimization. These network representations can be subsequently improved in

two ways: (1) via numerical optimization schemes such as random search, evolutionary

algorithms, or stochastic gradient descent using a corpus of training data (however sparse

in the input domain), and (2) via a process termed “tensorization” that utilizes abstract

concepts of algorithmic generalization to yield additional polynomial terms useful for

the regression problem. While we will primarily demonstrate the construction of deep

polynomial and deep rational function networks, this design principle can be naturally

combined with a number of other primitives, including traditional DNN-type operations

such as max, argmax, ReLU and sigmoid. In fact, in a broad stroke, this perspective

of “Deep Algorithms” serves as a theoretical and practical link between the previously
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presented compositional polynomial approximation technique and contemporary work in

designing DNN architectures for computer vision applications.

Despite an abundance of recent advancements in neural architecture design and their

contributions to improving the state-of-the-art in computer vision and pattern recognition

systems (including via automated discovery techniques such as AutoML), to-date the

science of DNN design is poorly understood, leading to frustrated opportunities in theory

and application. One of the primary reasons for this is that, in our view, conventional DNN

implementations utilize flexible, albeit generic computation units (e.g. neurons) whose

parameters are initialized generically, necessitating data-hungry non-linear optimization

routines (e.g. SGD). So, while DNN designers may place these units carefully using a set

of sensible meta-heuristics, concretely evaluating the efficacy of specific designs becomes

a challenge because it depends intimately on the dataset and training hyper-parameters.

Our key insight in this chapter is that traditional algorithms, such as those designed by

a human algorithm developer, represent high dimensional polynomial and rational function

networks with natural weight initializations, and that these highly-structured networks

can be tuned as differential programs when parameters of the corresponding algorithm are

set free for optimization. Similar to how we saw in the previous chapter that the use of

heuristics for sampling polynomial terms can gently introduce structure into the regression

model while maintaining a great amount of flexibility in how the terms are ultimately used,

in this chapter we will see how algorithmic heuristics correspond to a particular choice of

polynomial terms (and corresponding DAG structure) that can be flexibly interpreted as

both a polynomial network and as a traditional algorithm. This structured representation

is useful because it reflects the human algorithm designer’s view of the problem i.e.

an underlying compositional structure, even if this is not specified mathematically by

the problem or does not match the DAG of the target function exactly. Moreover, it

helps us quantify heuristic-based network designs via the polynomial terms and weight

initializations that are used, providing insight into the current wave of heuristic-based
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DNN designs used for computer vision problems. As we will see, the fluid interpretation

of algorithms as deep networks (and vice-versa) not only provides a convenient framework

for construction that is supported by basic approximation theory (e.g. universality), but

offers a promising alternative for efficient inference and new opportunities for network

design that leverage richness in the class of algorithms.

Why Deep Networks?

The original interest in neural networks arose from their connection with biology. Even

though the input and output of biological networks are continuous, much of the current

interest lies in static inputs and outputs. For such feed-forward networks there has existed

a strong theoretical foundation based on approximation theory since the pioneering work

of Cybenko, Hornik, Mhaskar, and others [53, 147, 96]. The recent resurgence of interest

arises from the practical success of deep feed-forward networks on image classification

problems, which in turn seems to be tied to several factors: the availability of massive

training datasets, the availability of large amounts of cheap computing power, and the

arrival of practical training algorithms [185, 200]. While the approximation theorists

have shown the existence of good, but relatively large and shallow networks, practitioners

have found success primarily with deep networks composed of several standard layers

(convolutional, max-pooling, etc.) [197, 121]. In particular, practitioners have primarily

worked with a lego-block style approach to design, where they successively add and remove

standard layers of varying tensor dimensions, until a sufficiently good design is arrived

upon. Each iteration requires careful tweaking of the learning parameters and a carefully

calibrated sense of when to pull the plug on a slowly converging network and try a new

design. There are many papers devoted to this art with many case studies [93].

But what is it, exactly, about deep networks that gives them an edge over traditional

approximation and machine learning methods? For instance, is it their width, their depth,

and/or chosen non-linearity? Or, are there finer features of their compositional structure
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that are not captured by traditional algorithms? Understanding these questions could

yield substantial improvements to the way modern networks are designed and tuned.

Some of these questions have been answered, while several more remain open:

• It is well known that wide single-layer networks offer universality but can be

impractical for modern problems due to requirements on sufficient width and size of

the training set [124].

• In single-layer networks, the specific non-linearity (e.g. squashing) used is not

important as long as it is non-polynomial [127]. The jury is still out for multi-layer

networks [176, 209].

• Increasing depth empirically increases performance [198], but only yields univer-

sal approximation with exponentially many layers and only under some specific

conditions [196, 165].

• As we saw in the Chapter 2, when the target function has a known compositional

structure that is mimiced exactly by a deep network, the deep network can avoid

the can avoid the curse of dimensionality. Although for practical image classification

problems, for example, the compositional structure is generally not known.

What is unsatisfactory about these findings is that, while they provide both empirical

success stories as well as failure examples, they do not yield constructive nor practical

(i.e. implementable) algorithms on modern high-dimensional data-defined problems [27].

On the other hand, several fruitful “heuristics” have been developed by practitioners

without a generalized theory to-date, e.g.:

• Going deeper: Stacking multiple layers to form what is now-called a deep neural

network (DNN) empirically yields enhanced performance [121, 81]. What is surpris-

ing is that, despite having millions of parameters more than the number of data

points, these networks seem to offer excellent generalization performance even for

high-dimensional problems [227, 64, 108].
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• ConvNets: Constraining deep networks by weight-sharing reduces the total number

of free parameters, but yields highly structured (e.g. Toeplitz or block-Toeplitz)

networks. What is interesting is that, while not in an asymptotically-converging

framework, this structured representation can reduce training data requirements

(e.g. translation equivariance) and offer better efficiency in parameters [51], yielding

better performance in some problems [198, 114].

• ResNets: Simple modifications of the sequential stacking architecture can yield

significant gains in computational feasibility, ease of optimization, and generalization

[199]. Although ResNets were originally motivated as a technique to improve the

efficiency of deep layers [94], several works have shown wide-residual networks are

just as powerful [225], suggesting the introduced structure is more important than

the deep vs. wide interpretation [217].

There are of course many other innovations—too many to name—that have been

integral in improving the state of the art. The purpose of this chapter is not to compete

with such methods, but rather to position them in the context of the original viewpoint of

approximation theory. In doing so, we realized that there is a deeper connection between

the theory and prior efforts in computer vision.

In particular, we propose an extension and generalization of today’s neural network

design principles to include a larger class of heuristics, namely those defined by programs.

These programs bring the flexibility of finite state machines to neural network designers

while maintaining expressivity and universality, as justified by approximation theory.

Consistent with the other approaches to approximation (Chapter 2), the justification

for this approximation scheme goes through polynomials and the Stone-Weierstrass

theorem, which in turn opens a window to high dimensional approximation by the way

of polynomials rather than by sigmoidal basis functions. By representing programs as

polynomials, we not only have a theoretical basis on which to judge the efficacy of heuristic

algorithms, but natural and well-studied techniques to optimize them [78, 14]. Thus,
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this viewpoint also provides a formal basis for approaching the design and training of

differentiable programs [163]. To be clear, these sentiments are not necessarily new; the

original proofs of universal approximation go through polynomials [53, 147, 96], and more

recently [132] points out that Turing machines can be approximated by polynomials.

However, where these works stopped short—and where the contribution of this chapter

lies—is that they do not provide examples of practical algorithms for problems of interest1.

On the other hand, we observe that heuristics are used pervasively in the design

of modern DNNs [152]. The heuristics here have generally been architectural and are

thus applied at a high level, relying on gradient-descent to fill in the low-level details

[185, 183]. In contrast, the paradigm described in this work shows how to fully-initialize

these heuristic-inspired networks designs with sensible parameters that yield a significant

baseline-level of performance prior to any training. What is surprising is that for many

problems a relatively small amount of data is sufficient to construct a performant network.

Moreover, when the human algorithm designer is stuck, the resulting networks can still

be optimized using additional training examples (e.g. when the chosen heuristic program

is differentiable, gradient descent can be used). The connection of these heuristic-based

polynomial networks with approximation theory provides an avenue for formalizing this

procedure, and provides insights about how to improve network performance on semantic

tasks (e.g. via architectural search). In fact, in this viewpoint, current network designs

are a special case of this general framework.

In short, our contributions are as follows:

• We introduce and formalize the use of heuristic programs as a network design

principle.

• We demonstrate several algorithms that exemplify this principle on both classical

and modern problems, utilizing both gradient and non-gradient optimization for

1There is a growing movement that embraces these changes with applications ranging from physics-
based simulation and imaging to control and robotics [210, 13, 80]. We use these case studies to motivate
our work.
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improved performance.

• We argue and demonstrate that problem-specific algorithms not only yield structured

networks, but provide a scalable technique for embedding prior knowledge into the

solution.

To provide some clarity to the broad range of questions we have raised, this chapter

is broken into two parts. In Section 3.1, we briefly describe the idea and theoretical

justification for representing programs as polynomial networks, an approach we term

“Deep Algorithms”. In Section 3.2, we provide a few deliberately simple examples of

networks that demonstrate these principles. In Section 3.3 we discuss performance in the

context of contemporary methods and suggest a path for blending the two.

3.1 Algorithms as Networks

Machine learning is normally used when the problem specification is so complicated as

to defy a compact mathematical presentation. Typical in this area are image and video

classification problems, where no precise mathematical formalism exists, but rather the

problem is presented as a large corpus of ground-truth data. However, machine learning is

also a valid approach when the mathematical problem is so difficult as to defeat the best

effort of human algorithm designers to come up with a well-performing algorithm (both

in terms of accuracy and speed). There are many classical problems that easily fall into

the latter category. A simple example that has deep roots in functional analysis, are root

finders for systems of polynomial equations. The literature on this area is classical and

vast, and yet one can safely say that there exists no reliable practical algorithm that can

be used in a black-box manner [16, 18]. So, whether the problem is specified by data or

mathematical formulas, one thing that is common is that the human algorithm designer

has reason to believe that the problem is solvable and even has ideas on how to do so. We

refer to these ideas as “heuristics” and will assume that they are presented as algorithms
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(or programs) that work reasonably well.

Our contention is that in many cases these heuristic algorithms can be viewed as

special cases of a very large family of algorithms that can be parameterized by many

real numbers. The initial heuristic itself can be viewed as a particular choice of these

numerical parameters.

For instance, when evaluating the similarity of two feature vectors x, y ∈ Rd, it is

natural to compare their distance in some norm. In the absence of other information, the

algorithm designer may pick a familiar norm like the Euclidean distance:

d(x, y) = ‖x− y‖2.

Being aware that this might not be the best choice, designers may generalize to the

Mahalanobis distance instead:

d2
2(x, y) = (x− y)TA(x− y)

where A ∈ Rd×d [150]. Notice, that the original distance measure is recovered for the

choice A = Id. We first observe that this is not the only such generalization. For example,

one might embed this computation into an even larger computation graph, as:

dk(x, y) = f
(
(Ik ⊗ (x− y))TAk(Ik ⊗ (x− y))T

)
where the original distance could be recovered for some suitable choice of f (e.g. average

of the trace) and Ak = Ik ⊗ A.

In particular, note that the original heuristic distance is being recovered in every

case by carefully selecting the numbers in a larger sparse matrix. That is, this process

corresponds to the insertion of additional edges in the computational graph of the original

heuristic with trivial weights. Thus, one can generalize this observation in another

direction too: by structure. For example by picking A to be a Toeplitz matrix we get a

convolutional layer, and if we pick A to be a Toeplitz-block-Toeplitz matrix we get a 2D
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convolutional layer. We can also choose A to be the product of Toeplitz matrices in which

case we would get several convolutional layers, and so on. Of course choosing A to be a

fully dense matrix would give us a full-connected layer at that stage of the computational

graph. In this case, all these expressions are naturally polynomials in x, y, and are thus

differentiable representations.

Furthermore, we observe that when these heuristic networks (differentiable or not) are

parametrized by real numbers, they can be tuned by special training algorithms. Popular

frameworks such as Tensorflow and PyTorch accomplish this via automatic differentiation

through standard neural network layers (dense, conv2D, maxpool), although there are

numerous other frameworks that attempt to accelerate this procedure for standard

programs instead (e.g. JAX [73], Flux [101]). In this sense, we can understand conventional

neural network architectures as a small subset in the class of programs.

3.1.1 Programs as Polynomials

The use and extension of heuristic programs as polynomial networks is justified by

approximation theory. Here, we summarize a line of reasoning that offers universality in

these representations.

The first observation, is that polynomial networks of polynomial size can express all

functions that can be implemented efficiently using a Turing machine [132].

Theorem 3.1.1 (Polynomial networks can express Turing Machines). Let Nt,n,σ2,L represent

the class of functions that can be implemented using a neural network of depth t, size

n, squared activation function (i.e. polynomial), with a bound L on the l1 norm of the

input weights of each neuron. Let T : N→ N, and let Fd be the set of functions that can

be implemented by a Turing machine using at most T (d) operations. Then there exists

constants b, c ∈ R+, such that for every d, the class Nt,n,σ2,L, with t = cT (d)log(T (d)) + b,

n = t2, and L = b, contains Fd.

The proof relies on the result of [162], and can be derived by constructing an approxi-
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mation of each component primitive (e.g. Boolean gates), as shown in [132].The basic

idea is that we can implement standard Boolean gates (AND, OR, NEG, Identity) using

polynomial networks of fixed depth and size. A shorter proof is to note that all Boolean

functions (and thus programs) can be expressed using a finite-depth circuit using a NAND

gate (i.e. they are functionally complete for Boolean functions). These gates can be

expressed exactly in a polynomial network by relaxing the Bools to real numbers and

performing the substitutions:

• NEG(x1) = 1− x1

• AND(x1, x2) = 1
4

(
(x2 + x1)2 − (x2 − x1)2

)
Then by [162], any Turing machine with runtime T can be simulated by an oblivious

Turing machine, where the position of the head at time t does not depend on the input

to the machine (i.e. the input can be embedded into the memory). We can simulate such

a machine by a network of depth O(T log T ), where the nodes at each layer contain the

state of the Turing machine, and the transition from layer to layer depends on a constant

sized circuit. Finally, this circuit can be implemented using a constant depth polynomial

network.

The second observation is that polynomials, themselves, are universal approximators

(Theorem 2.1.1).

Therefore, we can approximate or learn any function with a sequence of polynomials.

Heuristic programs are represented exactly as polynomial networks, and therefore cor-

respond to one polynomial in this sequence. The rest of the sequence can be generated

by successively building on or expanding the previous polynomial within a converging

framework that includes all the necessary terms. For example, if we have an approxima-

tion of f(x) for x ∈ [a, b]d, denoted pK(x) of maximum degree K, then a sequence can

be generated as p0, p1, ... pM , such that pM approximates f uniformly. However, the

conditions under which our approximation converges to the true function (e.g. in value)
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also depends on the practical scheme we use for construction and learning from a finite

number of samples. Clearly, the ResNet-like refinement pk3 = (1 + pk1) · pk2 is a heuristic

to construct deeper representations [199], albeit one that skips many low-order terms.

3.2 Designs for Networks

3.2.1 A Newton heuristic for systems of polynomial equations

Our first example is a root finder for a system of polynomial equations in d variables:

∑
i∈Rd,‖i‖1<N

aj,ix
i = 0, j = 1, . . . , d, (3.1)

where x ∈ Rd is the unknown. It is well-known that this is an extremely difficult problem

in floating-point arithmetic [16]. One approach is to convert it into a polynomial equation

in a single variable, but the price to pay is an exponential growth in the degree of the

polynomial and potentially in the size of the coefficients. Another popular approach is to

use a continuation technique [4]. However, the latter is notoriously difficult to implement

well in floating-point arithmetic and slow to boot. Therefore the most popular approach

is to use a locally convergent method like Newton, perhaps reinforced with some kind of

line search or back-stepping technique2. All of these methods fall into the category of

what we call heuristics, and they may be specified as “algorithms” or “programs”.

If we represent the polynomial system as F (x) = 0, then the simple Newton heuristic

could be expressed as follows. Pick an initial guess x0 and then, until ‖F (xn)‖ ≤ ε, apply

the update:

xn+1 ← xn + α(F ′(xn))−1F (xn) (3.2)

where α is a step length to be chosen and ε is a number to be provided by the user.

2It is difficult to get algorithms of this form to compute more than one root reliably due to deflation
[129].
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First note that there are some obvious numerical parameters that have to be chosen,

namely x0 and α. However, we note that we can easily make many more. For example

we could make α a matrix that depends on the iteration number: αn. Another possibility

is to borrow from accelerated gradient methods and other higher order methods and look

for an iteration of the form:

xn+1 ←
∑

0≤l<K

βn,lxn−l + αn,l(F
′(xn−l))

−1F (xn−l), (3.3)

where βn,l, αn,l ∈ Rd×d. We can go further and allow multiple choices per step and take

the best, as:

xn+1 ← arg min
xn+1,r

|F (xn+1,r)| (3.4)

with xn+1,r ←
∑

0≤l<K

βn,l,rxn−l + αn,l,r(F
′(xn−l))

−1F (xn−l), 1 ≤ r ≤ N.

This version of the algorithm can be thought of as a natural generalization of Newton’s

method with line search [85], and we notice it has a natural interpretation as a deep

rational function network 3 that resembles modern DNNs (Fig. 3.1).

Figure 3.1: The unrolled graph of Newton’s method with line search resembles a composi-
tional deep neural newtwork (DNN) or recurrent neural network (RNN) with pooling.

When we generalize so much it is good to observe that the original trusted Newton

3Direct computation of F−1 necessitates incorporation of a divide primitive, which is not present in
purely polynomial networks.
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method can be recovered for special choices of the new weight matrices αn,l,r and βn,l,r.

This is an important observation as when this heuristic is unrolled and trained via one’s

favorite machine learning framework we are assured of good starting weights with a known

performance threshold 4.

We now turn to our numerical experiments for this problem. For simplicity in our

initial tests, we consider the following classes of polynomials for F (x): F1(x) = x2−a0 = 0,

F2(x) = x5 − a0 = 0, F3(x) =
∑5

k=0 akx
k, and F4(x) =

∑2
i+j≥0 aj,ix

iyj, where k, ak, aj,i

are sampled over a large range to create large, disjoint training and testing sets. For

these classes, we compare the performance of three different network/algorithms fixed at

n = 3. The algorithms are all variants of Newtons method, except with different update

rules: f1, “Newton” – Newton’s method with no modification (Eq. 3.2), f2, “Newton-LS”

– Newton’s method (K = 2) with line-search (Eq. 3.3), andf3, “DeepNewton-LS” – a

parameterized Newton’s method (K = 2) with line-search (Eq. 3.4), with 3-tunable

step-sizes (initialized at αn,l,r ∈ {0.5, 1.0, 1.5} · Id) and memory-term (initialized βn,l = Id)

per iteration. We empirically initialized the step-sizes of the DeepNewton algorithm as

α∗ = {−0.5,−1.0,−1, 5} · Id, because these correspond to “undershooting”, vanilla, and

“overshooting” Newton’s method on the canonical convex examples that are typically

studied when using the method. For clarity, note here Id just indicates that we are

initially picking the same sized-step for each dimension of the unknown variable x.

Dataset

A dataset was generated as follows:

• In a given basis (we chose monomial for simplicity), for a given system size (i.e.

number of equations p, and degree of each polynomial in that system D), randomly

select coefficients for polynomials of one less degree D − 1. For the monomial

4Note that rather than arbitrarily setting x0 = 0 we could use a more complicated expression like
x0 =

∑
i∈Rd,j aj,iγj,i, or a intelligent class of heuristics based on root localization theorems [17].
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basis, the coefficients are chosen from the unit interval [−1, 1], and (without loss of

generality) the leading-coefficient was always picked as 1.

• In the unit interval [−1, 1], randomly pick a number as a root.

• Increase the degree of each of the previously generated polynomials by updating the

coefficients generated in Step (1) as necessary. For example, in the 1D monomial

basis, we would multiply a polynomial of degree D − 1 by the new root x0, as:

f(x) = pD−1(x)(x− x0) (3.5)

We did this repeatedly to generate many such systems (∼ 1000− 2000), with various

choices for d. For the presented experiments in the work, we picked D = 3, and P = 5

for 2-D polynomials. For the 1D-polynomials, we picked D = 6. We ran this twice, as to

generate both a “training” set (n = 1000), and a “testing” set (n = 2000).

For some special 1-D polynomials in the table (square-root and fifth-root), we generated

these polynomials by randomly picking several roots on the interval [−1, 1], and using

these to generate polynomials of the form xα − S = 0. Notice that this is just a special

case of the previous 1D systems for α = {2, 5} with all but the leading and lowest-order

coefficients zero-ed out 5.

Experiment

For each f∗, the performance of the network algorithm is measured by the mean magni-

tude of the residual r = ||Fs(fp(x, α, β))|| over the given dataset, where fp represents the

aforementioned feed-forward Newton heuristic networks. Notice that, while the problem

is specified entirely by the given Fs(x), there is no explicit ground-truth data (roots).

Furthermore, f1, f2, f3 are all differentiable, since they have entirely rational polynomial

5While we are guaranteed that there exists at least one root in the unit interval (by construction),
there may actually be many. And, in particular, we are not interested in which root the method converges
to, just that it does converge.
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representations. This allowed us (for f3 in particular) to utilize machine learning frame-

works to optimize the specified tunable parameters via a gradient descent-like method,

although non-gradient methods are also an option. Specifically, we experimented with

both stochastic gradient descent (SGD) and random search, also sometimes referred to as

random descent. Our experiments indicate that these two methods often yielded models

with comparable performance for these class of target functions, although the random

search method seemed to be able to escape local minima more often. The results presented

in this chapter are for networks trained with random search, which was implemented

using custom optimizer class in Tensorflow.

Results

In our experiments, summarized in Table 3.1 below, we observed a positive result; the

parameterization f2 significantly outperforms f1 on most tasks, and f3 consistently

performs better than f2.
Table 3.1: Relative testing performance (MSE) of selected methods on some polynomial
systems.

F1 F2 F3 F4

Newton 0.7658 2.2511 0.0588 -
Newton-LS 0.0195 0.1286 0.0699 0.0331

DeepNewton-LS 0.0070 0.0560 0.0287 0.0225

Figure 3.2: Performance of selected methods on the class of 1D polynomials: F2(x) =
x5 − a0 = 0 .

While the computation and metric calculations in Table 3.1 were computed point-wise

over a large family of polynomials, it is often interesting and educational to choose a small
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number of polynomials for visualization. This is visually depicted in Figure 3.2, where

we observe the improved accuracy for the family of 1D polynomials f(x) = x5 − a0 (this

family also has the benefit of having a known, analytic solution). This can be repeated for

many such families, although the plots increase in dimension according with the number

of non-zero ak in the expression.

In Figure 3.3, we visually depict the performance of the trained line-search algorithm

(DeepNewton) in comparison with the other methods for the family f(x) = x3−a0. In the

bottom portion of the figure, depicted “effective domain partition”, we plot the branch of

the network that was used to compute the approximation (the y-axis corresponds to a

unique, indexed branch number). What this plot shows is, that training enhances the

line-search algorithm by utilizing a larger number of active branches, especially when as

approximation becomes more difficult (near x = 0). This agrees well with what we would

expect from approximation theory: that more oscillatory functions (i.e. with high-valued

derivatives) will require wider networks.

Figure 3.3: Performance of selected methods on the class of 1D polynomials: x3− a0 = 0 .
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3.2.2 A simple matching-based heuristic for image classification

Our second example, applicable to modern deep learning tasks, is focused on image

recognition. We begin by considering the MNIST-like image classification problem, where

target objects have been pre-segmented and centered on a uniformly illuminated and

textured canvas, and the goal of the problem is to identify which mutually-exclusive class

each target belongs to. We contrast this with more natural settings for objects, such as

in the CIFAR and STL datasets, where targets appear unsegmented from unlabeled and

diverse background textures. The idea here is to establish the proposed design principle

on a simple example, to lay the foundation for more complicated experiments on trickier

problems that may require different or an expanded set of heuristics.

Figure 3.4: Example queries for 10-class image recognition datasets: (a) MNIST Digits,
(b) Fashion-MNIST, and (c) CIFAR-10.

As can be seen, there is no precise mathematical formulation of the problem other

than what is specifiable via the ground-truth in each dataset. Nevertheless, as humans we

have some notions of how renderings of natural objects can be recognized. For example,

we can use the common heuristic:

1. Choose a representative number of samples from the training data for each target

class.

2. Given a query image, compare it to the representatives using some appropriate

metric.
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3. Based on the query’s distance to the representatives, make a decision on the predicted

class.

The performance of this heuristic depends crucially on the image metric that is used.

It is well-known that classical norm-based distance functions tend to perform poorly and

many alternatives have been proposed in the literature [191]. We can capture many of

these variations by carefully parameterizing various choices in the above heuristic, as

follows. Let X, Y : R2 → Rd and

σ(X, Y ) = min
θ1≤θ≤θ2

‖W1(X − Y ◦Rθ)‖p, (3.6)

where Rθ denotes rotation by an angle θ, W1 denotes a linear operator, and ‖ · ‖p denotes

the standard p-norm. Note that σ measures the distance between two images of the same

size by considering the minimum over all rotations in the range from θ1 to θ2. Next let

φ(X, Y ) = min
|i|<w,|j|<h

σ(X, Y ◦ τi,j), (3.7)

where τi,j denotes translation by the vector (i, j). Let µ(X, Y ) ∈ R2 be defined such that

φ(X, Y ) = σ(X, Y ◦ µ(X, Y )). (3.8)

Let ν(X, i, j, s) denote the sub-image of X of size s× s centered at (i, j) with pixels

outside the region set to 0. Then we define the distance between image X and Y as

γ(X, Y ) =

∫
R2

φ (ν(X, x, y, s), ν(Y, x, y, s))w2(x, y)(1 + ‖∇2(µ (ν(X, x, y, s), ν(Y, x, y, s)))‖)dxdy

(3.9)

where w2 is a weight function, σ and φ are pooling layers, and W1 is trivially initialized

as Id.

65



In spite of its messy appearance, the image metric in Equation 3.9 is quite simple: it

is computing the distance between the pixels in X and Y by comparing patches of size

s× s, and when it compares patches it allows some translation and rotation, picking the

closest match in each case. Then it looks at the induced optical flow and further penalizes

those distances where the Laplacian of the flow is large. This type of heuristic is not

uncommon in the computer vision literature [221]. Moreover, we find that this heuristic is

already quite performant (Table 3.2) without any training and using an extremely small

number of training samples (10-25 per class). Here, prediction ŷ ← arg mink γ(X, Yk).

Table 3.2: Performance of a ClusterNet prior to optimization on using the training dataset.

Predicted Label
0 1 2 3 4 5 6 7 8 9

0 85.3 0.0 0.5 0.4 0.0 5.3 6.0 0.0 2.4 0.0
1 0.0 95.8 3.2 0.3 0.2 0.1 0.2 0.2 0.0 0.0
2 1.7 0.6 86.4 2.5 0.6 0.4 4.2 1.4 2.2 0.0
3 0.0 1.3 2.6 78.0 0.8 12.9 1.1 1.1 1.8 0.4
4 0.1 2.0 0.8 0.1 66.1 0.5 8.9 4.2 2.2 15.1
5 1.3 2.0 1.5 8.4 1.9 75.3 6.6 0.2 1.6 1.1
6 1.6 1.6 1.0 0.7 0.3 3.0 91.6 0.0 0.1 0.0
7 0.5 3.7 4.4 0.4 8.7 2.3 0.1 68.2 1.6 10.1
8 0.4 4.2 3.4 11.7 1.6 6.9 3.3 1.8 66.1 0.5
9 1.2 1.5 0.3 1.2 19.8 0.5 1.5 10.4 2.8 60.8

(a) MNIST, Pre-training Confusion Matrix, 10-samples/class, 77.4% accuracy.

Predicted Label
0 1 2 3 4 5 6 7 8 9

0 77.1 1.5 3.1 6.6 1.6 0.4 8.4 0.0 1.3 0.0
1 1.2 92.7 0.5 4.2 0.7 0.1 0.5 0.0 0.1 0.0
2 2.2 1.4 54.5 0.6 19.8 0.2 20.6 0.0 0.7 0.0
3 8.8 5.0 1.1 73.6 6.6 0.1 3.5 0.0 1.3 0.0
4 0.7 1.4 19.0 4.3 58.1 0.2 15.4 0.0 0.9 0.0
5 0.0 0.0 0.0 0.1 0.0 88.3 0.3 6.8 1.0 3.5
6 23.5 1.2 17.9 3.5 14.0 1.0 37.2 0.0 1.7 0.0
7 0.0 0.0 0.0 0.0 0.0 8.7 0.0 82.0 0.3 9.0
8 0.6 0.1 3.6 0.6 1.3 2.9 1.8 0.4 88.6 0.1
9 0.0 0.0 0.0 0.0 0.0 3.6 0.0 6.7 0.1 89.6

(b) FMNIST, Pre-training Confusion Matrix, 25-samples/class, 74.1% accuracy.
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Furthermore, this heuristic can now be unrolled into a network, tuned, and more

parameters introduced as needed. In particular, by a careful selection of weights in Step

3 of the common heuristic, we uncover a natural multi-layered representation of the

algorithm. For example, we can compute ŷ as:

ŷ = arg max
c

∑
k

bk · (Q · g)k (3.10)

where dk = γ(X, Yk) is computed for each of the established K representatives Yk

(“clusters-centers”) with 1-hot-encoded labels bk, g represents a soft weighting produced

by a softmax layer, and ŷ is taken to be the maximum class-index of the weighted average

of the cluster labels after multiplication with Q (i.e. a fully-connected layer with linear

activation). Notice, Q can be initialized trivially as identity, or with the eigenvectors of

the generalized Gram matrix of the cluster “centers”; this latter initialization corresponds

to an interpretation of the algorithm as a version of spectral clustering, or nonlinear PCA,

with respect to the heuristic distance function defined by γ [9, 100, 47].

Dataset

As described, here we use the free and publicly available MNIST [122] and Fashion-MNIST

datasets [218].

Experiment

We constructed the previously described network, making discrete choices for the various

parameters and operations (fixed-θ rotation matrices, sums instead of integrals, etc).

From high level, the network architecture is depicted in Figure 3.5. Here, “tensorization”

refers to the practice of generalizing the computation graph. In the case of ClusterNet,

for example, this could refer to trivially expanding the width at the first layer using more

prototype examples, but also to evaluating multiple choices for parameters.

We evaluated a number of different strategies for choosing cluster centers from the
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Figure 3.5: The computation (inference) graph of (a) a traditional weighted k-NN
algorithm, and (b) a rendition of the “tensorized” ClusterNet deep algorithm.

training data, such as k-means with random / Lloyd-type initialization. In the end, we

chose to initialize the cluster centers of our model with random samples from each class.

This was much quicker than the other methods, and often produced good/better results

than the k-means style methods, which looks at large chunk of the training data. The λ

factor on the Laplacian of the “matched” image was empirically initialized at 0.3.

Upon encoding networks with these parameters, we used a version of stochastic

gradient descent (Adam optimizer [109]) to optimize the various free parameters identified

in the network. We also experimented with using random search, as in the previous Deep

Newton example, but this was ultimately found to be computationally expensive within

the optimization framework developed using the Tensorflow API.

The total number of free parameters in our network can be computed as follows:
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• 28× 28 parameters x̂k for every N cluster center that was used as a template (we

initialized with p cluster centers per class).

• 10 × 1 parameters b̂k for each of these N cluster centers, which was the one-hot-

encoded vector describing the cluster center’s class membership.

• N ×N parameters for matrix Q, which was initialized as the eigenvectors of the

Grammian (for MNIST), or as identity. For Fashion-MNIST we froze this weight as

identity, so it was not a free parameter (although it could have been).

• 28× 28 parameters mk every N cluster center that was used as an image mask (only

for Fashion-MNIST).

• 1 parameter λ that was used for the the weight on the Laplacian (only for Fashion-

MNIST)

Therefore,

• for the MNIST dataset, our (10x10) ClusterNet implementation (shown in Table 3.3),

used 89, 400 parameters in total.

• for the Fashion-MNIST dataset, our (10x10) ClusterNet implementation (shown in

Table 3.3) used 157, 801 parameters in total.

All of these were initialized using the heuristic.

Note that the initial (untrained) performance of these networks is an example of

low-shot transfer learning, which is naturally made possible by the network. In this sense,

the heuristic-based design is favorable for application areas without a lot of initial training

data. As additional samples are made available, the network can be tuned (either via

expansion or via training) to accommodate additional variance in the input space.

Results

We observed another positive result with increased performance in our ClusterNet imple-

mentation despite the extremely small number of parameters used (Table 3.3). There
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are two prominent features of our ClusterNet implementation that are of significance:

(1) The network has a non-trivial baseline initialized performance with extremely less

training data and no training flops. (2): There are natural zero-flop ways to expand

the coverage and accuracy6 without departing from the understandability of the initial

heuristic (e.g. higher K, θ2 − θ1, w, h), a feature not common in DNN architectures.

Finally, the zero-flop algorithm can be embedded within a larger graph, and further

improved via optimization (gradient-based or otherwise). Thus, our experiment provides

further evidence that high accuracy is possible in relatively shallow networks, given the

right parameterization and initialization of weights [186].

Table 3.3: Relative testing performance of a ClusterNet implementation on some datasets.

Pre-Training (0 training flops) Post-Training (10 epochs) # Param.

MNIST [122] 77.4% 97.1% 89.4K
FMNIST [218] 74.1% 90.1% 157.8K

As a point of comparison, this heuristic is not yet optimized for natural images

such as from the CIFAR or STL datasets. In our initial tests on STL-10, the initialized

performance with 25 items per cluster was 26.1%, and the corresponding trained algorithm

achieved 46.9%. While this accuracy is not groundbreaking, we note that we are not

claiming the use of superior heuristics. We are simply showing that learning-based

optimization of existing heuristics can yield significant improvements in performance,

similar to the phenomena we see in deep neural networks. Thus, it is likely that an

alternate heuristic (e.g. based on segmentation and region-of-interest localization) may

perform much better on STL-10 and similar datasets. This is left as future work.

3.2.3 Targeting through fog

Our third example is an application of adaptive contrast enhancement for dim and un-

registered grayscale electro-optic (EO) and short-wave infrared (SWIR) imagery. Unlike in

6Accuracy gains from increasing K often plateau, but this can be mitigated via cluster-repulsion as in
[34].
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the previous cases, there is no precise mathematical test, nor is there explicit ground-truth

data, on which to evaluate the performance of the algorithm. Instead, we show how

human intuition about the problem can translate to a tunable heuristic with outputs that

agree with our perception.

The dataset we are using to demonstrate this task was collected over several hours

in the Santa Barbara Harbor (Goleta, USA) between October 2016 and March 2017,

and consists of still EO and SWIR imagery of a portion of the harbor that includes an

off-shore oil rig. Due to the local climate, a human-perceptible view of the harbor and

the rig is obscured to varying degrees by transient fog. The problem is then: given an

EO/IR image-chip without a specified heading, identify and locate features of off-shore

structures. Thus, in lieu of manually labeling each image to identify the location and

outline of the structures that are present, there is no good prescription of ground-truth

data. The resulting system could, for example, be used to identify bearing angles with

respect to various landmarks (or seamarks).

This type of problem is typically approached via adaptive contrast enhancement,

where the desired level of contrast is estimated automatically for different regions of the

image based on features from the image itself (e.g. no side-information on the level of

fog) [220]. A common heuristic in this vein is to use an adaptive phase-screen, which is

based on a simple lightfield-based model of optics [49]. A simple version of the algorithm

proceeds by computing:

t(x) = 1− λ ∗ d(x)

A(x)
(3.11)

J(x) =
I(x)− A(x)

t(x)
+ A(x) (3.12)

where d represents the local “dark-channel” of input image I(x), A(x) is estimated

atmospheric light intensity, t(x) is the transmission map, J(x) is the defogged output, and

the parameter λ is either fixed or estimated by processing I(x). Clearly, this algorithm
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is a heuristic whose performance depends on a simple model of how fog degrades the

image. As such, considering simple extensions of this architecture are likely to yield

fruitful algorithms, especially coupled with an optimization strategy. For this application,

we push the this heuristic further via a simple algorithmic generalization, depicted in

Figure 3.6, which utilizes optimization to find a better sensor-fusion strategy. In essence,

the architecture composes two layers of the aforementioned heuristic, with a parallel

branch added during the training-phase to control the level of overfitting. To elucidate,

in addition to training the network using sub-images (chips) and with standard boosting

techniques (e.g. translation), we found that training an auxiliary network j(X) to identify

whether is a structure present improves the level clarify in the resulting J(X).

Figure 3.6: High-level architecture of the fused detection algorithm.

To construct a meaningful functional amenable to optimization routines e.g. gradient

descent, we manually selected a portion of the EO training data corresponding to clear

(no-fog) weather conditions to generate templates z of the structural features in the harbor

via spatial-domain filtering. By mapping chips of the remaining training and testing

data to the different templates, we generated a pseudo ground-truth binary-valued “label”

images Y for every image X. To account for the change in modality, from visible features

to edge-features, we evaluate the loss functional as follows:

||Y −∇x,yJ(X)||F + λ||y − j(x)||2 (3.13)
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Figure 3.7: (a-b) Examples of edge-detection from dim EO and fused EO-SWIR imagery,
taken from different geometric perspectives at various levels of fog. (c) A less exciting,
but important, test-case that is used to validate that network is not overfit.

where y takes binary values representing if a sub-image should contains any structure

pixels, and j(x) is the aforementioned (generic) auxiliary detection network.

Thus, we seek to match the gradient of the defogged EO/IR images to the gradient

of the clear EO image, while ensuring the intermediate representation can be used to

identify the presence of an object. This form of weak supervision has also been referred

to as “distant” supervision in the literature [151]. In typical scenarios it is important to

ask if J(X) produces meaningful information; considering the range to objects of interest

(1-2 miles) and the density of the fog, for this dataset we evaluate this by monitoring the

agreement of the gradients (Eq. 3.13) with respect to perceptual similarity between J(X)

and Y.

As depicted in Figure 3.7, the resulting algorithm produces surprisingly well-confined

object signatures when objects (however dim) are in the scene. Moreover, the addition of

SWIR information enhances detection in most cases and reduces the amount of background

speckle. While the result itself is somewhat unsurprising, given the demonstrated capabili-

ties and approximation power of modern DNNs, it is interesting that we can generate these

networks from an algorithmic point-of-view rather than via blind-application of generic
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prototypes. In particular, this application provides evidence that fully-convolutional

networks can also be interpreted via composition of various “sub”-algorithms that can be

parameterized (and initialized) in a sensible way [164]. Furthermore, the interpretability

of the trained algorithm can be controlled via constraints in the optimization strategy.

3.3 Discussion

As we have shown in this chapter, traditional algorithms and programs can be used to

construct highly-structured and performant interpolants for high-dimensional problems.

The curse of dimensionality is effectively broken in these problems when the algorithm

designer can identify and initialize the deep network with a suitable surrogate structure

for the approximation task. Initializing models with known algorithms has the benefit of

affording relatively simple architectures that can be further trained, or embedded within

a converging framework (e.g. a larger polynomial network or DNN), which is useful when

the algorithm designer does not have the exact graph of the target function or knowledge

of all the interior nodal functions.

From the perspective of computer vision, the main attractiveness of the Deep Algo-

rithms approach are: (1) natural 0-flop initialization, (2) potentially low data requirements,

and (3) interpretable parameters. In the defogging problem, for example, a λ parameter

generated inside the network can be directly interpreted as the inferred “level of fog”. In

the iEEG SoZ example, several parameters can be extracted indicating the sporadicity

and correlation between different neural firing patterns, which currently serve as clinical

diagnostic tools. Thus, while DNNs generally offer excellent performance in regression,

they are often require significant analysis post-training to extract additional (e.g. physi-

cally relevant) insights, whereas Deep Algorithms offer a way to extract these directly by

utilizing structure form the start.

As mentioned, this construction technique often yields an overall polynomial or rational-
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function form that is conveniently differentiable, but also a good way of understanding

the predictive power of models that is tied directly to the original approximation theoretic

results [214, 125, 158]. Although not explored in this chapter, one intrinsic benefit of

the polynomial representation is that the derivative of the approximation can be easily

computed and controlled, which can make using regularized learning rules more feasible

[131].

Connection to Related Work

The present work connects to and is motivated by the recent and renewed interest in

differentiable programming [15, 211]. The literature on this subject is vast, extending

back to the early work on automatic differentiation (AD) [12, 70] and learning via

gradient updates [185, 123, 84]. Early work focused on its use in accelerating numerical

computation in scientific applications [95, 52, 2], as well as for solving nonlinear problems

[175, 7]. From the perspective of approximation, it was well known that AD could be

used to accelerate the search for optimal fitting parameters given a forward model [113,

120], with applications in system identification and model-based control [79, 210, 13].

These early works laid the groundwork by establishing the machinery for using AD and

optimization for neural networks and pattern recognition problems in general [160, 54,

128, 187], although it wasn’t until recently that large problems were able to be handled

efficiently by commodity computing hardware [3]. To this end, early computer vision

techniques focused heavily on hand-tuned features [228, 56] and borrowed judiciously

from the optimization literature [14, 116, 5, 1]. In this context, it is not surprising that

modern DNNs utilize similar optimization and AD machinery for learning of semantic

tasks.

What is surprising, however, is that the community has found success with relatively

simple and abstract network designs (e.g. DNNs, RNNs, CNNs), with limited attention

given to bolstering previous computer vision techniques with modern computational
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firepower. Clearly, not every problem needs to be solved by a black-box DNN architecture.

In fact, for many problems DNNs are not optimal, and utilizing the true compositional

structure can provably yield more-accurate, faster-learning, and more-robust networks

with optimal rates of convergence [149, 144].

This sets the stage for our work, which elucidates how old hand-designed algorithms

are intrinsically connected to modern deep learning designs (e.g. ConvNets, ResNets),

and argues that these paradigms can work in harmony as an effective and scalable design

principle. From an systems perspective, the techniques presented here are in-line with

the modern views on differential programming and network design [137, 224], and in

the same spirit of more applications-focused works such as [45, 40, 140] that provide

ground-up visual interpretability. Previous works have also tried to formalize the idea of

incorporating Turing machines [83], or utilizing a programmer’s knowledge [179, 90, 138],

and even incorporating polynomials [21], but they have stopped short of realizing that

conventional human-designed algorithms often serve as capable “deep” architectures with

natural parameter initializations prior to any machine learning or numerical optimization.

Conclusion

Any sequential program in any programming language that has ever or will ever be invented

can be encoded as a polynomial network. While this is also true of other computing

frameworks (Turing machines, lambda calculus) and via universal approximators such

as neural networks, polynomial networks offer a direct, efficient, and scalable way to

encode that requires 0 training flops (e.g. to match network output to original function

output). This paradigm does not currently exist in the context of DNNs, and moreover

has (to-date) not been utilized in the context of machine learning despite nearly all neural

network “universal approximation” proofs relying directly on polynomials. Our work

points this out, and gives practical examples of how to construct/expand this encoding

on modern high-dimensional problems.
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There are numerous ways this idea of Deep Algorithms will influence the future of

deep learning, besides casting an umbrella over current trends in DNN design. From the

theoretical side, an open question is why deep networks are superior to shallow networks

in generalization performance, with a recent finding being that deep networks are able to

capture the compositional structure of the target function yielding better approximation

properties. Deep Algorithms offers a practical avenue for connecting these ideas with the

practice of deep learning, since for practical problems the true structure of the target

function is usually unknown, although algorithms often offer a surrogate compositional

representation that can be exploited in a similar way. On the algorithmic side, Deep

Algorithms can be used to expand the expressivity of current designs by exploiting the

richness of algorithms, including via internal and run-time objectives, as well as by

accelerating encoding of capsules.

77



Chapter 4

Applications in Imaging &

Recognition

In this chapter, we detail several problem domains where we apply lessons from polynomial

approximation, deep minimum Sobolev norm (MSN) networks, and Deep Algorithms to

modern imaging and recognition tasks.
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4.1 Wide-Area Aerial 3D LiDAR Recognition

Annotated models of natural and urban environments are desirable for a number of

applications, including geographical surveys, urban planning, and even civilian search-

and-rescue operations. As transistor switching times have decreased, light-detection-

and-ranging (LiDAR) has emerged in recent years as a viable option for surveying

large landscapes, as opposed to via optical RGB-images alone. LiDAR introduces new

information into surveys, primarily a “depth” channel that represents the distance from

the LiDAR camera/platform to optical scatterers in the scene (this can be re-referenced

to alternatively produce an earth-normalized height map). While such information could

be derived from stereographic 3D-reconstruction, LiDAR provides this information to

a much higher accuracy and is typically regarded as the gold-standard in structural

modeling and mapping applications. Today we find LiDAR systems nearly ubiquitously,

on ground-based, airborne, and–most captivatingly–on real-time autonomous vehicle

platforms.

Despite the increasing availability of wide-area LiDAR imagery, automated annotation

and scene understanding of this modality remains an open problem in computer vision.

While structural and geometric segmentation codes have proven useful for recognition

in small curated databases of 3D objects such as [226] and [115], these have recently

been out-performed by modern deep learning approaches both in terms of accuracy and

run-time performance [215, 65, 168]. However, demonstration of deep neural networks

(DNNs) on real-world 3D LiDAR remains in its infancy, perhaps due to the insatiable

amount of data required for these methods to be successfully validated and, more-generally,

the high cost of generating high-quality labels for classes of interest.

In an attempt to bridge this gap, we begin by outlining an automated and scalable

method for labelling wide-area geospatial data such as 3D LiDAR. We demonstrate that,

where available, public ledgers such as OpenStreetMap or GoogleMaps can be leveraged

to generate high-quality semantic segmentation masks for road, building, and natural
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features (among other interesting classes), that can be used to train and validate detection,

localization, and classification algorithms that we design. We show, that the method is

also flexible when imagery and/or labels exist in non-geographic coordinate systems (e.g.

the common case where small objects such as vehicles have labels in pixel-coordinate

space), and that having flexibility between both representations allows for interesting

real-time applications.

While this method can be used to automatically generate annotations of large wide-

area imagery datasets, it is inevitable that some portions of the data are mislabelled. For

example, in the case where labels are derived from a crowd-sourced database such as

OpenStreetMap (OSM), some annotations may be missing from the ledger. Thus, in this

scenario if a given segmentation or classification algorithm is “trained” with respect to an

objective function that matches the network output to a naively presumed target value,

the network is not only overfit, but will ultimately exhibit non-desirable performance in

the wild. We attempt to address this issue in wide-area urban LiDAR and RGBD imagery

in a two ways: (1) by collecting labels that geographically canvas the entirety of the

dataset, and (2) by carefully designing a loss function that balances positive labels with

dependence on the rendered depth channel. We show that incorporation of these techniques

results in excellent pixel-wise, intersection-over-union, and instance detection scores for

the geospatially-relevant object classes considered (roads, vegetation, buildings, and

vehicles).

The rest of this section is organized as follows. In Section 4.1.1 we briefly summarize

prior work related to 3D LiDAR segmentation in the context of geospatial annotation,

including some of our own work on fast clustering [34] and voxel-based classification of 3D

PCD [170]. In Section 4.1.2 we describe our method for automatic labelling of geospatial

data such as 3D LiDAR and co-incident 2D electro-optic (EO) imagery, including the

ability to manually stitch custom 3D models. In Section 4.1.3 we discuss some algorithms

for processing 3D LiDAR data and associated learning objectives and algorithms. Finally,
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in Section 4.1.3 we discuss the performance of the prototype system, and applications for

future research, including incorporation of these techniques in existing EO and LiDAR

map datasets.

4.1.1 Point-based and Voxel-based Algorithms

Processing and segmentation of 3D LiDAR point-cloud data (PCD) has been an active

research area for more than a decade. However, until recently, most methods of acquir-

ing point-clouds involved reconstructions based on stereo-images [62]. With increased

availability of platform-mountable LiDAR systems, there has been a renewed interest in se-

mantically segmenting and visualizing these point-clouds in real-time, e.g. for autonomous

vehicle navigation.

Initially, most methods for processing LiDAR point-cloud data were focused on the

2D topographical problem for applications such as urban and farmland surveys [99],

or even understanding and inference of 3D shape information [136, 135]. As consumer

computer hardware improved, and spurred by the development of data visualization

and filtering tools such as LAStools [102], direct processing of 3D PCD became a viable

option, albeit for time-insensitive renderings. Numerous methods for recognition of PCD

have been proposed, including 3D cluster-based approaches based on hierarchical point-

selection, density-estimation, and local neighborhoods [29, 212], as well as more-abstract

segmentation criteria such as graph-cuts, shape-priors, and rule-based segmentation [139].

These methods have demonstrated incredible advancements in 3D PCD processing, but

have been limited to small example databases due to the lack of large annotated LiDAR

PCD datasets and suitable fast algorithms for processing them.

In the wake of deep learning, modern learning-based approaches have come to match

the performance of these meticulously designed, classical, vision-based image-processing

approaches, both in terms of semantic segmentation accuracy and run-time performance

[215, 65]. Instead of rendering 3D voxel grids [229, 170], recent methods have focused on
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direct processing of 3D PCD using point-set neural networks [168, 167]. These approaches

have been validated on a large number of datasets of small segmented objects [216],

indoor scenes [55], and ground-based outdoor scenes [75, 193], while the application

to large real-world datasets remains an open challenge, in terms of both the required

processing resources and the size of the validation set. Some datasets do exist in attempt

to address this scenario, namely various versions of 2D/3D ISPRS challenge data [155] and

more-recently the (non-LiDAR) 2018 DeepGlobe challenge [58], but even these are limited

to small areas of a few city blocks, or limited in availability and usage. In addition, prior

work does exist in leveraging crowd-sourced OSM-labels for wide-area datasets [190, 57,

189], although these applications have largely been limited to classification tasks rather

than detailed semantic segmentation and analysis of a wide-area scene.

At this point, it is worth mentioning some of our prior contributions to the LiDAR

point-clustering and recognition problems.

Fast Indefinite Multi-Point Clustering (FIMP)

In [34], we introduced a new class of objective functions and an associated fast descent

algorithm that generalizes the K-means algorithm. Here, “fast” means that the algorithm

scales linearly with the number of points and also with dimension. The algorithm

represents clusters as unions of Voronoi cells and an explicit, but efficient, combinatorial

search phase enables the algorithm to escape many local minima with guaranteed descent.

The objective function has explicit penalties for gaps between clusters, which leads to

an indefinite objective function [112]. A brief literature review is included in [34], which

highlights the differences from our contribution to prior approaches.

Before defining our objective function and algorithm, we must first introduce some

notation.

Let R denote the set of reals, N the set of non-negative integers, and N+ the set of

positive integers. Let Np = {0, 1, . . . , p− 1}, for p ∈ N, with N0 = {}. Let ‖ · ‖ denote
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the standard Euclidean 2–norm. Let ‖ · ‖F denote the Frobenius norm. Let e denote the

column vector of all ones; the dimension will be apparent from the context.

Breaking from custom, we will place row indices on the left. For example, iAj will

denote the (i, j)-th entry of the matrix A. We will also use Aj to denote the j-th column

of A, while iA will denote the i-th row of A. We will use a double index notation for

block matrices. So p;Ak; will denote the (p, k)-th block sub-matrix of A, and p;iAk;j will

denote the (i, j)-th entry of the block p;Ak;. Frequently our row and column indices will

start with 0 rather than 1.

Let N,L,K ∈ N+. Let Y ∈ RN×L. Block partition the columns of Y into K blocks:

Y =
(
Y0; Y1; · · · YK−1;

)
.

Let λ ∈ NK
+ for K ∈ N+, and let Yk; ∈ RN×λk for k ∈ NK ; that is, λk denotes the number

of columns in Yk; and
∑

k∈NK λk = L. Using Y and λ, partition RN into K mutually

disjoint subsets Sk according to the following membership rule: x ∈ RN is assigned to Sk
if k is the smallest integer for which

min
l∈Nλk

‖x− Yk;l‖ = min
p∈NK

min
j∈Nλp

‖x− Yp;j‖.

Let Sk;l, for l ∈ Nλk , denote λk mutually disjoint subsets of Sk. The membership rule for

Sk;l is as follows: x ∈ Sk is assigned to Sk;l if l is the smallest integer for which

‖x− Yk;l‖ = min
n∈Nλk

‖x− Yk;n‖.

We will call Sk;l as a sub-cluster and Sk as a cluster. Let Xk;l denote the sub-matrix of X

that contains all the columns of X that lie in Sk;l.

Then, the problem can be defined as follows.

Let M,N ∈ N+. Let 1 < L1 ∈ N+. Let X ∈ RN×M and Ω ∈ RN be given. Let

α, β > 0 and ς, γ > 0 be given. Let Y ∈ RN×L for some 0 < L 6 L1. Let K ∈ N+ and
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N – Dimensionality of vectors to be clustered.
M – Number of vectors to be clustered.
X – N ×M matrix of vectors to be clustered.
L1 – Maximum number of sub-clusters allowed.

Table 4.1: FIMP Inputs.

K – Number of clusters found.
L – Total number of sub-clusters found.
Y – N ×K matrix of sub-cluster centers.
λ – K dimensional vector of number of sub-clusters in each cluster.
Yk; – N × λk matrix of sub-cluster centers of cluster k.
Yk;l – Center of sub-cluster l in cluster k.

Table 4.2: FIMP Outputs.

λ ∈ NK
+ such that

∑
k∈NK λk = L. Let

F (Y, λ) =
∑
k∈NK

∑
l∈Nλk

‖Xk;l − Yk;le
T‖2

F + α
∑
k∈NK

∑
l<n∈Nλk

‖Yk;l − Yk;n‖2

(4.1)

+
β

γ

∑
k<p∈NK

∑
l∈Nλk ,j∈Nλp

(1− γ‖Yk;l − Yp;j‖2) + ς‖Y − ΩeT‖2
F .

Given X, Ω, α, β, ς, γ, L1, find L, Y , K and λ, which solves the minimization problem

min
Y,λ

F (Y, λ), when β <
ς

2(L1 − 1)
.

For clarity, we have summarized the notation in Tables 4.1, 4.2 and 4.3. Note that

the term ‖Xk;l − Yk;le
T‖2

F is the usual penalty on the distance of a column of X from its

assigned sub-cluster center. The term ‖Yk;l − Yk;n‖2 is a penalty on the distance between

the centers of two sub-clusters that belong to the same cluster. The term −‖Yk;l − Yp;j‖2

is a penalty on the distance between sub-cluster centers belonging to two different clusters.

Note the negative sign as we want this term to be large in absolute value. This is also the

term that makes the objective function indefinite. The term ‖Y − ΩeT‖2
F is a penalty

on the distance of the sub-cluster centers from Ω and is there to prevent the objective

function from becoming unbounded from below.
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Ω – Best chosen to be the mean of the columns of X.
α – Larger values forces sub-clusters of a single cluster to lie closer together.
β – Larger values forces clusters apart.
γ – Larger values increases minimum gap between clusters.
ς – Small number that prevents the Y ’s from drifting too far from Ω.

Table 4.3: FIMP algorithm parameters.

The global optimum is hard to find, so we settle for a “local” minima, though the

word “local” is dubious in a discrete setting. The bound on β is needed to ensure that

F is bounded from below. We recommend choosing γ to be reasonably small so as to

discourage the formation of empty sub-clusters. A good default choice for Ω is the global

mean Ω = Xe
M

. The role of α is to encourage sub-clusters belonging to a single cluster to

be close together, while the role of β and γ is to encourage clusters to be well-separated.

The role of ς is purely technical at this point; it keeps F bounded from below when some

sub-clusters become empty.

There are several components to this problem and it is difficult to find a linear

presentation. Assuming that the reader is familiar with the K-means algorithm, we

provide a rough outline of the algorithm and then present the details. Our goal is a

guaranteed descent algorithm to a local minimum. Additional details can be found in the

main text of [34].

The algorithm is a form of block coordinate descent, complicated by the presence of

a combinatorial part. The algorithm proceeds in multiple stages, and in each stage we

guarantee that F is non-increasing.

1. Initialize Y (essentially randomly from columns of X) with K = L1.

2. Assign columns of X by a nearest center rule.

3. Repeat:

(A) Compute C, T and R.

(B) For each column Yk;l:
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(a) If sub-cluster Sk;l is empty delete if descent is possible.

(b) Else among the following choices, pick the one with maximum descent:

(i) Split off sub-cluster into its own cluster if descent is possible.

(ii) Transfer sub-cluster to another cluster if descent is possible.

(iii) Swap with another sub-cluster if descent is possible.

(c) Update λ, T , R and other variables as needed.

(C) Freeze all partitions Sk;l and move Y to the nearest critical point.

(D) For each column Xj:

(a) If L < L1 and if Xj = YK;0 would lead to descent take this path.

(b) Else assign to nearest Yk;l (guarantee descent).

(c) If Xj changed membership, freeze all the partitions Sk;l and modify Y to

reach nearest local minimum (guarantee descent).

4. Until no (significant) descent

As mentioned earlier, the K-means objective can be attained by forcing all clusters to

have only one sub-cluster, thereby skipping step 3B and effectively eliminating the first

penalty term in the objective function F . We point out a key difference with what most

people call Lloyd’s [133] or Forgy’s [72] version of the K-means algorithm: we update

the centers every time Xj is re-assigned. This second version of K-means is known to

be more efficient in the Euclidean case [119, 194]. Furthermore, it guarantees (modulo

floating-point errors) that no empty clusters will be produced by K-means, which is a

frequent problem in Forgy’s version.

Proposition 4.1.1. The cost of one loop, steps 3(B), 3(C) and 3(D), is O(NML + L2)

flops. Each step of the loop is guaranteed not to increase the objective function.

Proof. Established in the propositions in the main text of [34].
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Despite this fast algorithm, the performance can be limited when the density of

3D LiDAR points is very high (e.g. 100M points). Moreover, to process real-world

LiDAR data even semi-automatically requires a fair bit of tuning of the objective function

and algorithm parameters, e.g. to learn data-dependent patterns of targets of interest

(e.g. buildings, vehicles, etc.). To this end, we began exploring other representations

of the data that are more amenable to fast processing over large geographic regions.

Object Recognition from 3D-Voxelized Grids

An alternative to point-data processing, is to process voxelized grids. In [170], we were

one of the first to employ 3D CNNs to classify real-world point-cloud imagery. In this

work, small geographic cut outs (20m × 20m) were extracted from the 3D PCD and

gridded in X, Y, and Z dimensions at a resolution roughly equal the mesh norm of an

interpolated point-cloud. The networks we built were built were relatively small (∼ 150K

parameters), but employed 8-10 layers to achieve robust performance (≥ 90%) over the

variety of different target-class variations we tested on. The algorithms were trained

and validated using distinct geographic regions in the large 2007 OGRIP [159] dataset,

which was initially labelled. Using a technique based on OpenStreetMap (OSM), we

labeled a number of areas as highway or building, and wrote in-house 3D stitching tools

to insert rendered (simulated) 3D LiDAR models of various real-world vehicles into a

variety of natural locations in the LiDAR data. Overall, the scheme worked extremely

well at classifying and localizing targets within imagery, including by investigating the

3D activation maps generated by the convolutional layers.
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However, the scheme was ultimately too expensive for searching a wide-area scene

covering e.g. 10-20 km2 or larger in a reasonable amount of time. This complexity only

increases with higher-resolution LiDAR datasets. While the initial idea was to queue

regions of interest that were roughly clustered by the previous FIMP algorithm to the

3D CNN networks, this route was ultimately abandoned. As mentioned, FIMP is a “fast”

algorithm, but it requires looking at all the data point before even one iteration of the

algorithm completes. As such, even rudimentary heuristics, such as via octree sorting

often yielded much better results in terms of the overall run-time latency to detect targets

in large previously un-segemented and un-curated geographic point-clouds. Notice that

such structured search algorithms exploit locality in the data, and thus are extremely

simple to implement directly at the edge device or sensor (e.g. LiDAR platform) since

data is collected locally. In this vein, we developed a more scalable technique to quickly

analyze large area point-clouds via relatively inexpensive 2.5D representations prior to

full 3D exploitation, as discussed in the next section.

4.1.2 Developing Wide-Area LiDAR Datasets

One of the primary goals of this work is to enable the full exploitation of publicly-available

wide-area LiDAR datasets such as 2013 Vancouver [50], 2015 Dublin [117], 2017 OGRIP

[159], and 2018 District of Colombia [157], which are all high resolution scans of rural

and urban terrain, but with no associated labels for semantic classes of interest. We focus

on the 2015 Dublin dataset here, because the structure of the dataset is typical of many

geospatial imagery-collections, and thus these processing algorithms are highly applicable

to various other datasets, including other modalities such as EO, synthetic aperture radar

(SAR), and ground-based imaging (when camera, orientation, and position information

are readily available).
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Imagery Dataset

In this work we use the 2015 Dublin LiDAR data collection, which is freely available at

https://geo.nyu.edu [117]. The dataset was collected via an airborne platform containing

both a full-waveform LiDAR sensor (TopEye system S/N 443), as well as a Phase One

imaging system that captured multiple modalities, including geo-referenced RGB imagery,

color-infrared imagery, and video data. In this work, we choose to work exclusively with

the LiDAR and RGB optical measurements, since these are the most commonly available

modalities in geographical surveying and search-and-rescue operations, and have the

clearest applicability to modern scenarios, e.g. autonomous vehicles.

Data was collected along 41 different flight paths over two sessions at an average

altitude of 300m, canvasing a 3km x 3km region around Dublin, Ireland, as shown in

Figure 4.1. EO images were recorded at regular intervals along each flight-path, and

LiDAR from each path was integrated, referenced, transformed, and merged into a single

LAS point-cloud. Thus, for each of the 41 flight paths, the dataset consists of an large

number of EO images (50+ images of resolution 9000 x 6732 pixels), and one LAS

point-cloud. In post-processing, these flight-path (FP) point-clouds were also merged

into a single “composite” LAS point cloud, that was subsequently tiled by geographic

area for processing efficiency. This merged format is the most common in mapping

applications, since it provides the densest representation of large stationary objects, such

as buildings, roads, and natural features. We are able to process these formats, but we

note that for real-time applications, the flight-path LiDAR is more representative in terms

of data-sparsity. For comparison, the density of the flight-path LiDAR is roughly 100

points/m2, whereas the density of the composite PCD varies from 100-335 points/m2

depending on the number of flight paths covering that region. Thus, each flight path

image of 60.5M pixels corresponds to upwards of 12M LiDAR points. To make these

numbers more manageable for real-time processing, we downsampled the RGB imagery

by a factor of 4 prior to registration with the 3D LiDAR PCD.
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Figure 4.1: Flight-paths of the data-collection from the 2015 Dublin dataset. Boxes
indicate the aforementioned geographic tiles, while the green and orange lines represent
different flight-paths.

Mining OpenStreetMap

As mentioned, the biggest issue in exploiting such wide-area imagery datasets is the lack

of labels for relevant classes of interest. To alleviate this issue to a significant degree,

we developed an automated technique for mining labels from the public ledgers, such as

crowd-sourced OpenStreetMap (OSM) databases. For the purposes of this work, we use

freely available annotation data provided by (German) Geofabrik servers in the OSM

XML and ESRI Shapefile formats, though it is obvious how the presented method can be

extended to other annotation formats.

OpenStreetMap is conceptually organized as a set of elements of type node, way,

or relation. The distinction between these is fairly obvious: nodes represent objects

at some scale (e.g. a building vs a neighborhood), ways represent roads and trafficked
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regions, and relations represent logical associations between nodes. Each element is

additionally assigned several keyword attributes (such as feature-type, location, polygon

information, etc.), which can be further qualified with a predicate. In the data that

we collected from OSM, these elements are typically represented as GeoJSON objects

amenable to filtering, which are accessed as simple Python dictionaries (e.g. Fig. 4.2).

Figure 4.2: A collected OSM-element (GeoJSON object) is augmented with binary-
classification vector y ∈ Bk.

To extract useful information automatically from such data, we first collected and

queried all the objects existing within the extents of the 2015 Dublin dataset (specified via

WGS-84 bounding-box coordinates), and sorted them to identify unique class-types. In the

case of the Geofabrik data that we used, many classes were already adequately separated

(e.g. as building, road, water) into separate shapefiles, though some classes needed

custom sorting rules (e.g. extracting man-made structures from the points-of-interest

shapefile, etc.). While a range of natural language processing (NLP) tools can be used

to automatically sort these elements in the general case, it is often more convenient and

accurate to leverage the various tags that are associated with different classes of objects,

and to write simple rules that match keywords and their associated predicates. For a

more general example, see the approach used in [170]. In this work, we used a set of

simple rules to match elements with mutli-class labels.

Once the relevant label-extraction rules are identified, we may begin the process of

mining the labels. The algorithm begins by collecting geospatially-referenced imagery,
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identifying its geographic extents (e.g. as a polygon), and querying an OSM-API for

elements in the region specified by the extents. The OSM-API can be implemented in

various ways, e.g. in [170] it is implemented via the overpass Python-API, similar to the

use of Overpass-Turbo in [71]. As implied, in this work we created custom functions to

read (offline) the data provided by Geofabrik servers. Once these elements are collected,

they are semantically classified, and archived as polygon objects for subsequent use in

the labelling steps. Unfortunately, not all OSM annotations have shape-information;

as described in the next section, in some cases we can employ simple heuristics to still

leverage portions of these annotations.

Labelling 3D LiDAR Data and EO Imagery

With extracted and classified polygon shape-information, it is relatively straight-forward

to label 3D point-cloud data. When the labels are to be applied to stationary, optically-

opaque ground-attached objects (e.g. buildings, structures) it is usually reasonable to

assume all points at a geographic index correspond to the same object. Thus, the

algorithm should look at each polygon, query the point-cloud for indices that exist within

the polygon, and “mark” each point as belonging to that class. To implement this in

the general multi-class setting, for example, one could mark points with a binary vector

(y ∈ Bk) representing assignment to each of k pre-identified classes. In this representation,

labelling does not need to include a gridding step (which is computationally expensive,

and ultimately prohibitive for wide-area imagery datasets).

Unfortunately, the shape information of OSM ways (which represent roads, walkways,

bikepaths, etc.) currently do not contain polygon-type information, and instead include

only LineString information that represents the start and end of a particular road-

segment, along with some auxiliary information on the type of road. In our application,

recognition and segmentation of roads is immensely useful, so we chose to infer this

geometric information from the OSM tag (details are provided in the Appendix). However,
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in estimating these geometries, care must be taken in the labelling algorithm to not

replace well-trusted labels (e.g. building annotations) with those that are only estimated.

To this end, we opted for non-mutually-exclusive labels that are eventually handled by

our loss function and prediction rendering routines (Sec. 4.1.3).

Figure 4.3: Co-registration between LiDAR PCD and depth images allows sharing of
geographic and pixel-space annotations.

While identification of stationary objects is incredibly useful for geographical and

urban planning applications, for some applications identification of ephemeral features

such as vehicles is also of interest. These would not be stored accurately in a database

such as OSM, but luckily can be manually identified with relative ease using conventional

EO / RGB imagery. To this end, we labelled a subset of the 2015 Dublin data in the

native RGB pixel-coordinate system (row-col), and transferred these labels into the

flight-path PCD representation after applying a semi-automated geo-registration process

on the whole dataset [63, 23]. Similarly, using this registration information, we were able

to also project earth-referenced PCD information to the perspective of the camera frame,

to generate a co-registered “depth” channel for the EO images (i.e. derived from the

LiDAR PCD), along with corresponding OSM-derived label information (Fig. 4.3). In this
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way, we were able to generate a high-quality semantically-labelled RGB-D dataset that

covers a large portion of Dublin, Ireland. In the following, we emphasize the construction

of this 2.5D representation of sparse LiDAR from flight path imagery because, in addition

to mapping directly to the morphology of data in a real-time application, it provides

a powerful representation that efficiently captures correlations across different spectral

bands, as described in the next section.

Synthetic Models

As in [170], we maintain the ability to augment both the conglomerate and flight-path

PCD, as well as the camera-rendered depth-channel imagery, with synthetic models of

real-world objects. This is useful when processing datasets where no objects of a particular

class exist, but it is still of interest to train algorithms to detect them. While realistic

augmentation in the EO/RGB modality can be a challenging problem, the problem is

simplified in the LiDAR/PCD modality and can greatly augment datasets (Fig. 4.4).

Stitching can be implemented, for example, by identifying or generating canonical chips

of the background class and using direct, patch-based replacement of portions of the

point-cloud, as opposed to more computationally expensive techniques such as solving

Poisson’s equation in 3D [59]. This was used extensively in our work in [170], although in

[171] we preferred manual vehicle annotations.

Figure 4.4: Synthetic models can be naturally stitched into LiDAR. Shown here is a
simple example using a coarse voxel grid.
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4.1.3 Recognition in Sparse 3D and 2.5D Imagery

With the dataset in place, we now turn to algorithms for detecting, localizing, and

classifying objects in wide-area LiDAR scenes. There are various approaches this problem,

some casting it as a problem in cluster-based segmentation, but for the purposes of this

work we will focus on a formulation as regression problem. In this case, given a target

function f : Rm → Rm specified only by data (i.e. input-output pairs x ∈ Rn, y ∈ Rm),

the task is to design a function f̂ which closely approximates f w.r.t. some measure,

say ||f(x) − f̂(x)||∞, where f : x → y. In practice, the target function f is unknown

analytically, so the problem of finding a suitable approximation f̂ consists of two steps:

(1) finding an adequate model (classically, the most minimal model) for f̂ , and (2) finding

its parameters. In this work we do not tackle the open design problem, rather we present

techniques for refining the parameters of a given model function f̂ using wide-area 2D

and 3D imagery. To do so requires first defining a suitable model for x and y.

Data Model

A modern approach to the function-approximation-based segmentation and recognition of

imagery is to use a convolutional neural network (CNN) [215, 65, 168]. The basic idea is

that a spatially-invariant non-linear filter-bank can be used to detect hierarchies of shapes,

or portions of shapes, in 2D and 3D imagery, and these detections can be used to classify

input images by producing a continuous-valued output y ∈ Rk, that can be thresholded

to a multi-class vector yb ∈ Bk indicating class-membership. However, in many instances,

especially involving wide-area imagery, this type of chip-level classification can be an

expensive approach to finding or localizing objects of interest (e.g. for the task of finding

all the green cars in a M-km2 region) [170, 188].

Instead, a variant of CNNs termed fully-convolutional neural networks (FCNNs) have

emerged as a promising approach to the segmentation problem, that is able to produce

pixel-level multi-class membership predictions while operating on regions larger than a

95



typical image chip. In truth, the convolutional-structure is not essential to the generation

of pixel-level predictions, but utilizing convolution to guide segmentation is generally

viewed as a rational choice (see [192] for details regarding the size of the receptive field),

especially considering that in the space of possible designs convolutional structures have

efficient CPU/GPU implementations. The application of FCNNs has a strong connection

with conditional random fields (CRF) and other techniques that try to predict class-

membership densities at each pixel location [43]. These techniques can be used, for

example, in conjunction with a chip-level classifier or a subsequent instance segmentation

routine [156].

However, one issue with these FCNN (and similar) codes is that they are typically

only defined for input signals that appear on a regular grid, e.g. x ∈ Rn. While this

does not pose a problem for typical 2D imagery, it does for the task of segmenting and

classifying 3D LiDAR point-clouds, since in a given region there are typically an indefinite

number of points, whose value is generally not as meaningful as its location. That is,

in LiDAR PCD, data-points are given as 3-tuples of the form {(xk, yk, zk)|k = 1, ..., K},

where K depends on the density of the point-cloud collected by the LiDAR platform in a

particular viewing geometry.

The typical and most common approach to this problem is to just grid the LiDAR

PCD, by constructing a mapping from the space where the points lie to voxels, or cells that

represent the extent of the space. To reduce the problem complexity for topographical

mapping applications, where multi-bounce LiDAR responses are less useful, typically the

3rd dimension is collapsed and a 2D grid is written as x ∈ Rn1×n2 , where the value at

each grid-cell is a surrogate for a measure of the “height” (e.g. average, median) of the

corresponding region in the point-cloud. Note that in cluster-based approaches, this type

of gridding is not essential, and 3D-points can be directly segmented, albeit expensively.

Unfortunately, to date such algorithms do not have efficient software implementations

amenable to processing large point-clouds in near-real-time. Even point-set neural
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networks such as [168, 167], for example, are relatively untested on sets > 20K points.

For comparison, in our high-resolution dataset, this would correspond to an approximate

area of 60m2, which is much smaller than the areas of ∼ 0.08km2 that we consider at

one-time in this work.

Figure 4.5: Overview of the data model.

Instead, we propose a hybrid algorithm that features a “gridded” 2D representation

of the LiDAR PCD to first localize objects quickly, followed by a utilization of the full

3D model. In many cases, the 2D representation is sufficient to detect the super-class

of objects (e.g. vehicle, building, road, etc.), whereas the 3D representation is more

telling in the intra-class discrimination task (e.g. sedan vs truck), as evidenced by our

low false-positive rates. In this work we will focus on recognition and localization from

the initial 2D representation, since a more in-depth analysis of the cost of modern 3D

extensions is required (see [170, 30] for a practical implementation of recognition in using

the full 3D representation, albeit using voxel-grids), and because for many applications

a 2D representation can be sufficient if collected from a non-nadir perspective resulting

in a “2.5D” representation of LiDAR as a depth-channel image. Furthermore, when

co-incident co-registered RGB imagery is available, as in the 2015 Dublin dataset, the

2.5D representation is actually preferable since we can directly form RGBD images that

enhance scene understanding capabilities via a structured representation of color, texture,

shape, and intensity information [167, 142, 25].
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U-net Network Architecture

As an initial demonstration, we use an adapted (smaller) version of the U-Net architecture

that is popular for segmenting 2D RGB images [181]. In short, we realized an imple-

mentation of a fully-convolutional neural network that operates on 2D input images of

arbitrary size and depth, and produces output predictions on a grid of equal size to the

input. In our implementation for the 2015 Dublin dataset, the size of the receptive field,

measured by considering how many input pixels potentially influence an output pixel’s

value, is at most 26× 26 pixels, which corresponds on average to a ground-sample area of

60m2 in the nadir imagery (Fig. 4.6). In training, we use tiles of 512× 512 pixels, each

covering an area of roughly 0.01km2, but this number is flexible and can be increased

dramatically for inference (e.g. 2-4x larger).

Figure 4.6: Example operation of a multi-channel extension of the U-Net FCNN architec-
ture [181] for recognition in LiDAR depth- (D) and LiDAR intensity- (I) fused RGBD/I
imagery.

In our implementation, we noticed that several factors influence the quality of the

output segmentation maps. First, the size of the receptive field, which is adjusted by

controlling the size and stride of the filter-windows, should be sufficiently large to provide

context into the segmentations but also small enough that the network will not learn
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biased, dataset-specific representations of where objects may lie (e.g. cars are always

on labelled roads, next to buildings). Empirically, we found a good range to try is

15× 15 ≤ R ≤ 30× 30. Second, the depth of the U-net should be adjusted such that for

the smallest input image, a spatially-meaningful “encoded” pattern should be available.

In this case, we found that having at least 16 pixels in the “middle” layer, produced

desirable results for more-than-reasonable training times. Finally, when training this

architecture, care must be taken to select examples images at a sufficiently large scale to

provide relevance to the output detections (e.g. multiple different classes and boundaries

present in the image), while providing sufficient attention to any given object, as to

properly penalize any gaps in the output detections.

Note that other neural network architectures, such as DeepLab-v3 and InceptionResnet,

were also considered. In our testing, these did not result in sufficient quantitative or

perceptible improvements over U-net for this dataset and modality, and are thus not

included in this work. Incorporating an enhanced multi-objective architecture such as

Mask-RCNN or similar [156], on the other hand, is expected to improve localization

accuracy beyond the semantic segmentation and grid-based instance detection methods

we use in this work. However, significant changes to the operation and training of these

architectures are required to accommodate issues of data and label sparsity, making this

a candidate for future work.

Balanced Loss for Aerial LiDAR Imagery

There are several special considerations for training pattern recognition algorithms in

sparse wide-area LiDAR imagery. In our application, the first consideration is that LiDAR

returns may not be dense everywhere, resulting in gaps or holes in the imagery even

though generated semantic labels are typically expected to be geographically dense. There

are several possibilities to address this issue, such as (a) regressing on dense polygonal

labels independent of the point-cloud density, and (b) regressing on point-data alone
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and ignoring labels outside the labelled pixels/voxels. The issue with these approaches

is that they trade specificity (dependence on LiDAR features to indicate a class) for

sensitivity (point-wise accuracy), or vice-versa. Said another way, naively regressing on

point-data alone encourages improvements in the true positive rate at the expense of the

true negative rate, and potentially the false positive rate.

The second consideration is the availability of accurate and dense labels. In this case,

shapefile information derived from OSM is generally quite accurate, but may not include

annotations for all objects in the area (e.g. for buildings or vegetation) [170]. This

prevents an accurate measure of the false positive rate for some classes. On the other hand,

the OSM-derived road labels are spatially overestimated, providing an overly-pessimistic

measure of the (pixel-wise) false negative rate. Luckily, manual annotations such as those

for vehicles are fairly complete and accurate, albeit for a small set of images (typically

smaller than the size of available training data). Thus, a good training strategy will use

these priors to balance the precision and recall of the multi-class semantic segmentation

and instance detection algorithms.

To address both of these issues we realized a scheme for training sparse LiDAR depth-

rendered RGBD imagery via careful design of the loss function. The loss function that we

use is based on the categorical cross-entropy loss that is commonly used to train DNNs

and FCNNs except with some modality and data-specific modifications. In particular, we

explored two different versions of this technique. In both cases, we define loss for each

example as:

g(x, z) =−
P∑
i

(
zi log(ẑi) · C(z) · BOOL(minxi)

)
+ λsgd (4.2)

where ẑ ← f(x) and z respectively represent multi-channel softmaxed-prediction and

label images of P pixels, BOOL(minxi) indicates the presence of a LiDAR return at pixel i,

and C(z) represents a user-defined mask with the same dimensions as ẑ indicating which
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classes or voxels of the output prediction to consider for a given training image. Despite

its messy appearance, the logic of this objective is fairly simple. It first discounts the loss

from pixels that lack an underlying LiDAR point. Then, it discounts the negative labels for

some classes at some pixel locations that are considered to be misleading for the objective

function. As we will see in the following, when the target function is a multi-class semantic

segmentation of fairly diverse and spatially-broad object classes, this loss function with

λd = 0 is a sufficient surrogate for wide-area detection metrics of interest w, provided

that the pixel mask C(z) is selected properly. Note that non-mutually-exclusive labels

are necessary in this case, e.g. for detection of vehicles in parking lots atop buildings.

In our first version, we took C(z) = 1 ∀ z, meaning that we accept and penalize

incorrect predictions at any location where there is a LiDAR point. As mentioned

previously, this presents an issue for OSM-labelled regions since some annotations are

inevitably missing from the public ledger, yielding a significant number of false negative

ground-truth labels. Since typical neural network training algorithms currently do not

accommodate this kind of label-data uncertainty, we propose the use of a new term in the

objective which encourages agreement between input imagery and the output predictions.

In LiDAR-derived image channels (e.g. depth and height maps), we notice that the object

boundaries often lie where the gradient changes; in fact, this was previously a popular

heuristic used in computer vision to aid in segmentation. To this end, we tuned λd > 0

and defined gd as:

gd(x, ẑ) = ||p1(∇d(x))− p2(∇d(ẑ))|| (4.3)

where p∗ can be taken to be a simple non-linear function that conforms the number of

dimensions (e.g. ReLU with max-pooling), and ∇d denotes the 2D spatial derivative of

its argument. In essence, the gd term seeks to encourage matching not-only the target-

function’s value, but also its agreement with the spatial-derivative of the original image
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as to promote desirable network performance when some ground-truth labels are missing.

Notice that with the right choice of p∗, when the predicted labels are accurate with respect

to the input signal, gd is zero; further, when the label information is correct we do not

expect g and gd to present competing objectives. In cases where RGB-D images are the

inputs, the definition of gd is modified to only consider the depth channel, since it is

known this is not an ideal heuristic in color-space [89, 88]. We will see that while the

addition of the gd does not strictly improve performance with respect to the conformally

defined groundtruth, it does improve the robustness of the network both perceptually

and with respect to the Sobolev norm. Note that directly penalizing the Sobolev norm of

U-net, or similar DNN structures, is extremely expensive in modern neural network APIs

and is thus only used as a measurement tool.

In the second version, we took C(z) = pz ·max zi, meaning that we accept and penalize

incorrect predictions only at points with both a LiDAR point and at least one positive

label. The idea here is to focus on positively labelled examples that we have much higher

confidence in, although in many cases the polygons for some classes (e.g. buildings) are

grossly overestimated. As we will see, this simple definition for C(z) significantly improves

the performance of the system when training over large geographic areas with labels

that more-or-less densely canvas each image. The insight here is that having confident

multi-class true positive labels effectively regularizes against overfitting to false negative

labels. In particular, we are able to pick λd = 0 without significant consequence.

Performance Metrics

Due to the disparate nature of our labels, we use the following metrics to benchmark

the performance of our system, defined here in brief in terms of pixel-wise (PW-) and

instance-wise (IW-) true positive (TP), false positive (FP), true negative (TN), and false

negative (FN) rates:
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• Pixel-wise Accuracy

PW-Acc =
TP + TN

# valid positive or negative voxels
(4.4)

• Pixel-wise Sensitivity or True Positive Rate

PW-TPR =
TP

# valid positive voxels
(4.5)

• Pixel-wise Intersection-Over-Union (IoU)

PW-IoU =
TP

# valid positive voxels + FP
(4.6)

• Instance Detection Sensitivity or True Positive Rate

IW-TPR =
TP

TP + FN
=

TP

# positive instances
(4.7)

• Instance Detection Precision

IW-Prec =
TP

TP + FP
(4.8)

Note that these metrics are being defined for the non-mutually-exclusive multi-class

problem, so true positives and true negatives are pixels that are being predicted correctly

above or below some threshold. Similarly, the instance detection rates are computed

based on a threshold on the percentage of positive detections in a small detection area

(empirically chosen to be 30 × 30 pixels). Note that our crowd-sourced labels do not

provide a good measure of the IW-FN rate.

Of the 41 available flight paths in the Dublin datset, we selected 33 training and

the remaining for testing. The training and testing sets were split geographically over
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the extent of the dataset, such that ground-points (latitude, longitude) that are in a

geographic bounding box corresponding to the optical (EO) or LiDAR field of view during

a flight path appear mutually-exclusively in either the train or test set. We manually

annotated 9 flight paths with vehicle polygons using a custom in-house software labelling

tool, 7 of which were used for training, and the remaining used for testing. A majority

of these polygons are bounding boxes, while a smaller number are free polygon shapes.

Thus, many of the training flight paths did not have vehicle labels. This mismatch was

handled by effectively picking aforementioned pz in C(z) to ignore the corresponding

vehicle channel for those images.

Results and Discussion

The pixel-wise IOU scores for the first objective (λd ≥ 0, C(z) = 1) on the various

versions of the Dublin LiDAR dataset are summarized in Table 4.4. These are broken

down by class and modality for the flight path data in Table 4.5. The effect of including

the heuristic term gd in the objective via λd > 0 is depicted in Table 4.6. A illustrative

example is in Figure 4.7.

Water Park Road Building
Composite LiDAR – nadir-view (C-N) .62 .52 .63 .61
Flight Path LiDAR – nadir-view (FP-N) .61 .45 .57 .57
Flight Path RGBDI – camera-view (FP-C) - .39 .51 .49

Table 4.4: Per-class IOU ratio for various semantically-labelled OSM-annotated classes,
trained using the first LIDAR objective (corresponding to λd > 0, C(z) = 1).

D DI RGB-DI
Composite (nadir) 0.45 0.59 x
FlightPath (nadir) 0.41 0.53 x

FlightPath (camera-view) 0.38 0.42 0.46

Table 4.5: Comparison of mean IOU performance with different data models and input
modalities. Values in the table represent average test IOU for building, road, and
vegetation for networks trained using the first LIDAR objective (corresponding to
λd > 0, C(z) = 1).
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D DI RGB-DI
λd = 0 0.41 — 1.0 0.43 — 1.0 0.45 — 1.0
λd > 0 0.42 — 0.09 0.42 — 0.18 0.46 — 0.11

Table 4.6: Effect of the LiDAR edge-based regularization term gd on mean IOU perfor-
mance in the FlightPath RGBDI dataset, when C(z) = 1. For a given performance level,
the relative Sobolev norm is much lower for networks that include a contribution from gd.

Clearly, the dense representation of the data yields the best performance for the OSM

classes, and the inclusion of the edge-based heuristic in the objective function improves the

“robustness” of the network with respect to the Sobolev norm. Note that the observation of

performance increase, as measured using this format of the data and ground-truth labels

can be a little misleading and pessimistic, since pixels with false negative groundtruths

are affecting this mean IOU score. This issue was remedied in the next experiment using

the second objective.
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Figure 4.7: Examples of test-set detections on the various input-modalities in the OSM-
labelled 2015 Dublin dataset using the first objective (λd > 0, C(z) = 1). This
rendering uses the following color legend for Prediction and Ground-Truth columns:
Grey–roads, Blue–water, Green–vegetation, Orange–buildings, Purple–structures
/ other buildings.
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The pixel-wise and instance detection results for the second objective (λd = 0, C(z) =

pz · max zi) are summarized in Table 4.7 and Table 4.8 below. These results are both

visually and quantitatively better than those of achieved with the previous objective. Due

to the strength in these numbers, we take this version of the network as our prototype

system. Of course, in vacuum these metrics are not telling of the full performance of our

system. In general, we visually observe excellent detection accuracy with a very low false

positive rate and a strong correspondence with the underlying RGB imagery, as seen in

Figures 4.8-4.9. The semantic segmentation is disassembled in Figure 4.11 in order to

visualize the multi-class and pixel-wise performance.

Road Vegetation Building Vehicle
PW-Acc 0.796 0.975 0.845 0.932
PW-TPR 0.721 0.900 0.833 0.700
PW-IoU 0.644 0.8259 0.7034 0.674

Table 4.7: Pixel-wise performance metrics on “Test” data.

Road Vegetation Building Vehicle
IW-TPR 0.869 0.927 0.932 0.918
IW-Prec - - - 0.980

Table 4.8: Instance-wise performance metrics on “Test” data.

Figure 4.8: Aerial RGBD imagery (9000px × 6732px native) is rendered along a flight
path via automated registration of electro-optic RGB and sparse 3D LiDAR PCD, and
fed to a fully-convolutional neural network for semantic and instance segmentation of
classes of interest.
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Figure 4.9: Semantic segmentation results are visualized atop native resolution RGB
imagery. At each pixel, the color corresponding to the class with the highest activation is vi-
sualized. Colors: Purple–roads, Green–vegetation, Orange–buildings, Red–vehicles.

Figure 4.10: Additional wide-aperture visualization of semantic segmentation outputs.
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Figure 4.11: The prototype system exhibits excellent localization performance simulta-
neously on several classes of interest. Notice that our network correctly identifies trees
as vegetation and ignores gaps in buildings, highlighting its resilience to imprecise
groundtruth.

J

Figure 4.12: Additional example of RGBDI semantic segmentation results.
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In addition to the IoU segmentation and instance precision scores, the performance

of our system can be measured by how well it localizes targets in wide-area imagery at

minimal latency. Our simple prototype system is able to process 1km2 of imagery in under

3 seconds, albeit without exploiting the full 3D morphology of LiDAR PCD. The idea here

is that highly-performant and relatively-inexpensive initial 2D semantic segmentation can

queue subsequent fine 3D semantic and instance segmentation algorithms. However, as

seen in Figure 4.13, the proposed 2.5D representation already serves as a good, fast, and

cheap surrogate for a full 3D segmentation. In this vein, future work is focused on jointly

refining 2D and 3D instance segmentations, disentangling the dependence on the EO and

LiDAR modalities, and validating the robustness to changes in the aspect angle.

Figure 4.13: 2D semantic segmentation is projected onto LiDAR PCD, indicating a close
correspondence with the 3D groundtruth. Black points indicate unlabelled (shadowed)
PCD. Despite some obvious errors, the 2D-to-3D approach performs surprisingly well.
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As we have seen, the ability to leverage new modalities such as wide-area aerial LiDAR

are intimately dependent on the availability of high quality ground truth annotations and

clever schemes to fully exploit them. Therefore, in this work we explored a technique to

label wide-area imagery and carefully optimize around the quirks of the data modality

and label statistics. Current and future work is focused on extending our models with

enhanced 2D and 3D instance segmentation architectures by incorporating point-set

neural networks.

More generally, the presented techniques suggest interesting extensions to pre-existing

datasets, such as those currently used to validate for autonomous-vehicle platforms

(e.g. KITTI, comma.ai), since OSM labels can be readily projected into these scenes,

augmenting manually-generated segmentation labels. Moreover, with increased interest in

image-fusion technologies, generating large wide-area datasets for RGBD imagery is crucial

to developing robust and generalizable architectures for real-time scene understanding

on these platforms [141, 98]. In this spirit, the presented technique and results on an

airborne platform can be easily applied to ground-based platforms.
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4.2 Electrocardiographic Imaging

Mapping of electronic cardiac potentials remains an important tool in electrophysiology,

particularly for diagnosing and treating various types of cardiac arrhythmia including

premature ventricular contractions (PVC), ventricular tachycardia (VT), atrial flutter, and

atrial fibrilation (AF). While a majority of arrhythmia cases can be identified from multi-

electrode body-surface electrocardiogram (ECG) measurements, clinicians performing

interventions often rely on more local electronic mappings of the cardiac tissue (e.g. using

multi-probe catheters) to classify the type of arrthymia, localize its source, and determine

whether an intervention procedure such as an ablation is recommended for the patient [91,

24]. Unfortunately, physical contact between the catheter probes and the epicardial or

endocardial tissue is typically a requisite to build these descriptive 3D cardiac potential

maps, forcing clinicians to perform these procedures during planned surgical interventions.

From a diagnostic perspective, studying the time-resolved 3D cardiac map of a patient

prior to surgery can improve patient outcomes by helping clinicians identify and localize

dominant AF or PVC sources, determine whether an ablation procedure would be an

effective treatment (e.g. for long-standing AF, or when AF sources cannot be localized),

and monitor patients’ electrophysiology condition over time and during regular physical

activity [195, 177]. In this vein, the goal of this work is to outline a new noninvasive

technique that can aid in the construction of these cardiac potential maps.

This problem is known in the field as electrocardiographic imaging (ECGi), and

has been studied extensively by a number of research groups [184, 110, 161]. The core

mathematical problem of ECGi can be thought of as a special case of the more-general

inverse scattering problem of electromagnetics, which involves determining characteristics

of an object (in this case, the potentials of the heart), based on data of how it scatters

incoming radiation.

Even in linear homogeneous media however, the problem is often ill-posed because

the number of measurements is small relative to the number of unknown physical or
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geometric parameters required in the model. To this end, various groups have approached

this problem by (1) modeling the forward electromagnetic problem using computationally

efficient linear formulations, such as the boundary-element method, (2) “inverting” the

transformation to represent the inverse solution, and (3) adding a regularization constraint

on the solution to both mitigate the ill-posed nature of the problem and help find a

unique solution [134, 31]. Although such methods have shown promise in a number

of imaging applications, including ECGi, the reconstruction accuracy has (empirically)

been limited by the complexity of the forward and inverse models. Said another way,

the reconstruction accuracy in these applications is typically reflective of the chosen

forward and inverse models’ ability to capture the intricate relationship between cardiac

source-potentials and body-surface measurements, and is thus degraded when assumptions

(e.g. of linearity, homogeneity, and source-free regions) are violated. In particular, in

patient-specific applications, where it is common for a number of the materials and

geometries to be estimated with high uncertainty or entirely unknown, simple forward

models of linear homogeneous media and corresponding inverse models are often only

sufficient as a first-order reconstruction heuristic [69, 180], and largely insufficient for

accurately reconstructing higher-order spatial and temporal harmonics.

While these simplifying assumptions in the forward model have historically been

integral to the formulation of classical imaging techniques and the field of Fourier optics,

in this section we demonstrate how a direct, non-linear parameterization of the inverse

problem can lead to more accurate reconstructions of cardiac potentials from torso

measurements. That is, while the majority of previous ECGi studies have focused on

developing the forward and inverse map from idealized material geometries, we instead cast

the problem of inverse imaging as a task in function approximation, where the material

parameters can be either postulated or entirely unknown. In line with techniques used in

non-linear optics, the described technique relies on an approximation of the inverse map

using a high-degree polynomial, but whose gradient is bounded. The parameters of this
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model are found by “training” or optimization using historical data of cardiac potentials

(measured using catheter probes), corresponding body-surface potentials, and their relative

3D location on the surface of real patients who underwent surgical interventions. In

general, this historical data can include reconstruction parameters extracted from past

measurements of the same patient, or from a database of different patients with varying

torso and cardiac geometries. The idea here, is to replace the classically simple, but rigid

geometrical models of the torso with more flexible parametrizations that can adapt to

more realistic patient geometries involving multiple dielectric media, even when these are

not explicitly known in the forward model.

In this vein, we note that the presented inversion technique can be used in two

modes: (1) for initialization and fine-tuning of the inverse map from BS potentials to

endocardial potentials, and (2) for non-invasive electronic imaging of cardiac tissue. Mode

(1) can be used, for example, to study properties of the interstitial tissue between the

torso and the endocardium (e.g. density, permetivity, etc). Whereas, mode (2) would

used at a later time, when such catheters are removed from the patient, and only BS

potentials are available to study cardiac activity (e.g. accurate localization of the site of

origin of PVC or focal VT) and for personalized procedure planning (e.g. ablation, or

other surgical interventions). While current ECGi methods provide this capability in a

number of ways [213], they have been limited in their reconstruction accuracy, limiting

their effectiveness in understanding and non-invasively localizing the source of AF, PVC,

and VT [76]. To this end, the presented algorithms attempt to increase the accuracy

of reconstructed endocardial potentials by incorporating a learning framework with a

naturally-parametrized nonlinear reconstruction model. The resulting system is capable

of using an array of electrocardiogram (ECG) signals (with corresponding electrode

locations), target mesh locations, and a parametric reconstruction model (summarized

as a polynomial network with variable coefficients), to produce an accurate 3D cardiac

potential map.
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From a practical viewpoint, we believe our approach can improve the analysis capa-

bilities of cardiologists and electrophysiology specialists who are interested in studying

cardiac events in live patients. Compared with linear formulations, the presented approach

provides enhanced spatio-temporal resolution and reconstruction accuracy, which can help

in identifying, localizing, and characterizing dominant sources of AF and PVC including

higher-order temporal harmonics from high-quality localized maps of cardiac potentials,

rather than simple projections of this information [87, 161, 213].

4.2.1 Experimental Dataset

The experimental data in this section was provided through the Consortium for Electro-

cardiographic Imaging (CEI), a group of engineers, scientists and clinicians who develop

clinically and physiologically meaningful tools for simulation, modeling, statistical, and

comparison studies of electrocardiographic imaging. The experiments were conducted at

the Hospital General Universitario Gregor Maranon in Madrid, Spain in collaboration

with the Universitat Politecnica de Valencia in Valencia, Spain. In this work, we examine

electrical measurements of one male patient (aged between 40-50 years old), who was

admitted for drug-refractory paroxsymal Atria-Fibrilation. The voltage measurements

were comprised of both body surface (BS) potentials mappings and endocardial surface

potentials. The body surface potential maps were obtained on the surface of the patients

torso with a custom made electrocardiographic vest, and the endocardial potentials were

measured through an electrical catheter probe in contact with the surface of the atria

[161, 87].

Non-invasive reconstruction of the potential maps on the atria’s surface requires

mapping of the body surface potential across the subject. To measure the Body Surface

Potential Maps (BSPMs), multiple electrocardiograms (ECGs) were measured at discrete

positions on the patient’s torso. A total of 54 ECGs were measured with Body Surface

(BS) leads placed on the torso surface and electrically referenced to the Wilson Central
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Terminal (WCT). To determine the locations of the BS leads, a 3D model of the patient

was constructed from multiple optical images captured prior to the data collection.

Additionally, the surface geometry of the patient’s torso and atria were obtained from

pre-scanned XRCT images with a resolution of 5mm. These CT images were then co-

registered to the optically generated 3D models to ensure the BS lead locations, torso

surface, and atria surface geometries were also referenced to the same coordinate system

[68, 92]. It can be noted that the proposed reconstruction method, does not explicitly

require high accuracy positional information.

Figure 4.14: The surface mesh of the torso (a) and heart (b) are shown here, along with
the corresponding locations of the electrical leads.

Similar to the BSPMs, multiple endocardial potentials were also recorded internally

at different spatial positions. These electrical signals were acquired with a 64-pole basket

catheter (Constellation, Boston Scientific, Natick, MA), surgically placed in contact with

the surface of the atria. The position of the catheter leads were recorded through the

catheter’s internal body navigation system. The positional accuracy of the leads was

reported to be < 10mm with respect to the geometry of the atria’s surface. A rendering of

the torso’s surface mesh and heart surface mesh along with the locations of the electrical

leads can be seen in Fig. 4.14. The ECG recordings for both the endocardial leads and BS

leads were acquired simultaneously at a fixed sampling rate of 2035.5Hz. A total length

of 7.4 seconds of data was recorded from all channels, which was used to help construct
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our inversion model as discussed in more detail in Section 4.2.2.

4.2.2 Inverse Function Modelling

As mentioned, conventional approaches to ECGi have considered inversion techniques

based on simplifications of the more general inverse scattering problem, e.g. by assuming

linearity, the number and geometry of dielectrics, and the distribution of excitation sources

within the endocardium. To a large extent, these approaches to the linear inverse problem

can be summarized as modeling the relationship between the potentials on the atrial

surface UA and potentials on the torso UT as:

UT = M · UA (4.9)

where M represents a linear operator that can be constructed in a number of ways

from the assumed geometry, material parameters (e.g. permittivities and permeabilities),

governing equations of the medium (e.g. Maxwell’s equations, Coulumb’s Law), and

the chosen discretization and associated approximation scheme (e.g. diffeo-integral

equation formulation as boundary-elements, finite-volumes, or finite-differences). While

in general M represents a infinite-dimensional operator, in practice it is realized as a

finite-dimensional operator Mk representing a subset of the corresponding rows of M .

However, for clarity in our presentation, we will use M to refer to Mk.

Of course, to a large extent the materials and geometries of the torso can be estimated

with considerable accuracy, using noninvasive techniques such as x-ray computed tomog-

raphy (XRCT) and magnetic resonance imaging (MRI) techniques, as well as historical

anatomical measurements from cadavers. In fact, these are often used to initialize dis-

cretized models of M used in the forward formulation, even though the condition-number

of this matrix is typically large, resulting in large changes to the unknown UA with respect

to relatively small perturbations of the known UT . This property is reflective of the
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inherent ill-posed nature of the inverse problem, and is typically handled by addition of a

regularization parameter that is computed as a part of the reconstruction. For example,

in medical imaging the zero-order Tikhonov method, which is a type of L2 regularization,

is used as:

UA = (MT ·M + λI)−1MTUT (4.10)

where the regularization parameter λ is chosen heuristically during the image formation

process, and the choice λ = 0 corresponds to the usual least-squares solution to a discrete

form of Eq. 4.9.

In this work, we consider a simple modification to this formulation that allows us to

optimize and reduce uncertainty in the material parameters and geometries that arise

in discrete matrix M based on historical data of patients, thereby resulting in a lower

overall reconstruction error. In short, we consider the replacement of the Moore-Penrose

operator used in the least-squares solution, by a power-series expansion. For example, if

A = M is a finite-dimensional square invertible matrix, its inverse can be written down

exactly as:

p(A) = An + cn−1A
n−1 + · · ·+ c1A+ (−1)n det(A)In (4.11)

where the coefficients ci are given by elementary symmetric polynomials of the eigenvalues

of A, and these polynomials can be re-written using Newton identities in terms of the

power sum symmetric polynomials of the eigenvalues sk =
∑n

i=1 λ
k
i = tr(Ak), as:

A−1 =
(−1)n−1

detA
(An−1 + cn−1A

n−2 + · · ·+ c1In),

=
1

detA

n−1∑
k=0

(−1)n+k−1A
n−k−1

k!
Bk(s1,−1!s2, 2!s3, . . . , (−1)k−1(k − 1)!sk) (4.12)

where the Bk represent the Bell polynomials of order-k, and n is the dimension of A.
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Besides allowing for better numerical control over the inverse, using this expansion also

enables us to directly optimize parametrizations of the matrix M , i.e. by finding more

suitable dielectric parameters, attenuation or absorption coefficients, that minimize the

maximum residual error between ground truth measurements of UA and transformations

of the input UT , denoted as ÛA. In practice, we truncate the series at a smaller number

p < n for run-time efficiency, even though a slightly higher number is typically used

during the optimization phase for optimal results.

Polynomial Neural Network

We generalize this scheme to scenarios where M is slightly non-square [106, 105], by intro-

ducing additional weighting parameters that are used as a surrogate for the determinant

computation (i.e. scaling), and empirically mitigate the effects of series truncation. In

particular, by noticing that the expansion in Eq. 4.12 represents an (n − 1)-th order

polynomial expression in A, we can re-interpret the reconstruction algorithm as a high-

dimensional polynomial approximation algorithm, or neural network [148, 149]. That is,

we can generalize Eq. 4.12 as:

A−1 ≈
n−1∑
k=0

ωk(A) · An−k−1 (4.13)

≈
p∑

k=0

ω̂k(A) · Ak (4.14)

where we have intentionally absorbed both the geometry dependent and independent

coefficients of the summation into the parameters ω̂k, and truncated the series to a

summation of the first p powers of A. The benefit of this formulation is that it can

be easily expanded to mimic even more general polynomial approximation algorithms.

For example, in our experiments we naturally expanded this formulation (Eq. 4.14) by

composition, as:
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ÛA =

p∑
k=0

ωk � (M · UT )k (4.15)

where � represents the element-wise Schur-product, ÛA is the reconstructed Rm×1 po-

tential map, we allow ωk ∈ Rm for M ∈ Rm×n, and we empirically chose p = 3 in our

experiments. We note that when ωk = 0 ∀ k 6= 0 and ω0 = em, the reconstruction

algorithm is exactly equivalent to the linear case. From a practical point of view, we

believe this initialization yields desirable improvements in the overall accuracy even when

trained with only simple descent strategies, as described in the the following.

Regularized Gradient Descent with Line Search

As mentioned, in our experiments the parameters of M were found via optimization using

instantaneously-corresponding pairs of body-surface (torso) potential UT and endocardial

potential UA that were measured in vivo. Starting from an initial estimate of the

parameters (based on simple forward/inverse models of the problem), gradient descent

with line search was used to optimize our inverse model with respect to the available

patient training data. That is, the “optimal” parameters of M can be found by minimizing

the objective:

M̂ = arg min
M

E = arg min
M

||ÛA − UA||22 (4.16)

where ÛA was computed from Eq.4.15, and UA represents the ground truth atrial voltage

signal. To mitigate the effects of limited data (e.g. small apeture size), discretization, and

modeling errors during reconstruction, we augment this objective with a Sobolev-norm

regularization term, as:

M̂ = arg min
M

E = arg min
M

||ÛA − UA||22 + λ||∇UT ÛA||ss (4.17)
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which provides a bound on the roughness of the reconstruction algorithm with respect

to the input data. The Sobolev-norm is known in approximation theory to be a natural

surrogate for conventional L2 regularization such as total-variation (TV) or Tikhonov

regularization, which are often sensitive to the choice of λ [203, 182]. Instead, weighting

the objective function by the Sobolev-norm of the differentiable inverse map allows

practitioners to analytically tune the sensitivity of the reconstruction algorithm to the

input data, rather than using perceptual image-quality metrics on the output reconstruction

(e.g. graphical L-curve method) [39, 208]. It is worth noting that in this formulation

regularization is applied only during the “training phase” and not during reconstruction.

In our experiments, different values of M were found and evaluated via the update

strategy:

Mt+1 = Mt + γt∇ME (4.18)

where ∇ME represents the normalized direction of the gradient of the objective function

with respect to the parameters of M , and γt ∈ [−1, 1] is the step-size that was selected to

minimize the objective at training iteration t. In practice, γt is selected from a discrete set

of r trials, by applying updates along the gradient direction (with different magnitudes),

evaluating the objective at these various points as Et,r(M), and selecting the update that

yields the lowest error.

Measurement of Errors

In the described experiments, we used the raw BS and endocardial measurements available

in the described dataset, with little to no pre- or post-processing. The reported absolute

and relative errors were computed directly from the output of the polynomial network at

each discrete time-point k and averaged as follows:
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e[k] = |U [k]− Û [k]| (4.19)

Mean Absolute Error [mV] =
1

T

T∑
k

e[k] (4.20)

r[k] =
|U [k]− Û [k]|2

U [k]
∀ U [k] 6= 0 (4.21)

Mean Relative Error [%] =
1

T ′

T ′∑
k

r[k] ∀ k ∈ T ′ s.t. U [k] 6= 0 (4.22)

In particular, we note some measurements (a total of 6 time-points over the entire

dataset) were excluded from the relative error computation (i.e. when the recorded

endocardial potential value was effectively 0) for interpretability. Measuring both the

absolute and maximum error ameliorates the missing data in these cases.

4.2.3 Results and Discussion

To evaluate the proposed approach, a set of medical data was analyzed to determine the

effectiveness of the presented reconstruction technique with respect to other contemporary

methods, such as formulations based on the Boundary Element Method (BEM). The

accuracy of our inverse solution is strongly dependent on the precision of historical

measurements that are used to optimize our inverse operator. Due to this dependency, we

identified a curated open-source data archive of high-quality in vivo measurements collected

for physiological and medical study of the cardiovascular system. For this experimentation,

the electrical measurements were acquired with precision medical instrumentation to

ensure high accuracy, and other medical imaging data was also collected to supplement

the ECG data [161]. In this section, we highlight our results through visualizations of

imaging and reconstruction results, as well as the accuracy of the reconstructions.

122



Non-invasive Imaging and Reconstruction of Endocardial Potentials

The inverse model was optimized on the set of body-surface potential measurements

(BSPM) and invasive endocardial measurements that were used to reconstruct the endo-

cardial potential map, as described in Section 4.2.1. Given that both these measurements

were recorded simultaneously for the given data set, sufficient information was available

to train a model to estimate this inverse function. To achieve this with the limited data

source, the body surface and endocardial measurements were separated into two disjoint

sets. From the original data, time samples were randomly chosen to serve as the training

data. After the training data was used to optimize the inverse network, the remaining

data was used to test the reconstruction accuracy. Because the time samples were chosen

at random sample instances, the learned inverse model is implicitly time invariant.

(a) (b)
Figure 4.15: Reconstruction of the endocardial potentials (a) and measured ground truth
endocardial potentials (b) on the heart.

With the catheter endocardial measurements available, we were able to compare

our reconstruction estimate to a “ground truth” measurement. Furthermore, with the

geometry of the atria obtained from XRCT imagery, the reconstructed endocardial

potentials were mapped to spatial positions on the endocardial surface for an accurate

visualization of the voltage spatial profile as in Fig. 4.15. The reconstructed potential

is compared to the ground truth measured potentials again, and close correspondence
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between the two mappings is clear. The spatial-potential information here is a useful tool

to determine and isolate concentrations of electrical activity in the atria, to further aid in

noninvasive study of the electrophysiology of the cardiovascular system.
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Figure 4.16: Shown here are small-window time-domain reconstructions of endocardial
potentials from body-surface potentials via the presented nonlinear imaging technique.

Two important factors under consideration when interpreting inverse mappings of

BSPM to endocardial potentials are preservation of temporal features like harmonic

content and waveform shape, and also the smoothness of the spatial profile of the voltage

pattern of the heart’s surface. A temporal plot of the endocardial reconstructed voltage

signal at multiple points on the heart’s surface can seen in Fig. 4.16, which can be used to
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develop intuition into how the inversion model reconstructs the signal. The reconstructed

signal accurately tracks slowly changing features in ground truth signals over the 7-second

measurement interval. The low-frequency content indicates accurate preservation of lower

order harmonics by the inversion model, which is an important feature for spatio-temporal

understanding of the physiology of AF. Furthermore, the relative magnitude and scale is

also preserved in the reconstruction without the need for estimated scaling parameters,

so as to provide interpretable results for users not familiar with the specific inversion

method. The reconstructed signals in Fig. 4.17 are also representative of this qualitative

analysis.

Accuracy of Reconstructed Endocardial Voltage Potentials

The performance of the reconstruction model was evaluated using several statistics. The

mean absolute error, mean relative error, and their standard deviation of both are displayed

in Table 4.9. The average absolute error over the entire test data set was found to be

0.327mV, which yielded a 12.47% average relative error with respect to the recorded data.

Additionally, the training results are of similar accuracy to the reconstruction results,

indicating that the model is robust to new test data and has not been over-fitted to the

training data, which is an important quality for any inversion approach.

These results indicate that a high degree of confidence may be placed in the recon-

struction of the endocardial potential distribution using the proposed methodology. As

a comparison in Table 4.9, we list the accuracy of the inverse computed BEM results

reported in [161]. Here, it should be noted that relative accuracy was reported for the

normalized voltage signals of the endocardium due to numerical scaling issues when

computing BEM inverse solutions. This metric describes how well the inversion procedure

preserves the overall shape of the endocardial waveform, if not the true scale. Here, our

proposed reconstruction method noticeably outperforms the BEM solution on average

over the entire data set.
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Figure 4.17: The presented nonlinear imaging technique produces high-quality time-
domain reconstructions of endocardial potentials at various catheter positions.

Absolute Error [mV] Relative Error [%]
Training Results 0.310± 0.321 mV 12.07%

Reconstruction Results 0.327± 0.221 mV 12.47 %
Normalized Reconstruction Results 0.327± 0.146 mV 12.43 %

Normalized BEM Results [161] – 35.8%

Table 4.9: Reconstruction Performance
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The average reconstruction error for each sensor was also averaged across the entire

time series, as can be seen in Fig. 4.18. Here the average error does not exceed 0.7mV

over the various sensor positions, indicating that the reconstruction model does not suffer

from any spatial bias. Therefore at any point in time, given body surface potential

measurements, this model could be used to accurately reconstruct endocardial voltage

potentials of the heart to within a prescribed tolerance.

(a) (b)

Figure 4.18: The average reconstruction error (a) is small over the spatial area where
ground truth data was collected, with a maximum absolute error less than 0.70 mV. This
figure is compared in the context of the average signal level (b), which varies by as much
as 12 mV over the different catheter sites.

Discussion

The results summarized here demonstrate the potential of a flexible inverse model that can

be optimized with real, high-quality measured data. The optimization can help mitigate

the effects of unknown physical quantities and parameters typically associated with inverse

problems. The accuracy of the reconstructed cardiac potentials in the spatial-temporal

domain is indicative of the validity of our optimized inverse model in comparison to other

techniques. This is an important finding given that our inversion method differs from

direct inversion of the forward model problem, and suggests that improvements can be

made on the simplified physical models that are typically used.

Boundary-element method (BEM) solutions to the inverse problem have shown some
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success in the reconstruction of relatively smooth cardiac potential maps. However, if the

potential map is highly varying over time, the regularization introduced in the inversion

will tend to smooth out complex features that are exhibited during AF events and thus

decrease accuracy. Given that our inversion model was optimized over BPSMs and

endocardial data acquired from a patient being treated for AF, these complex patterns in

the potential maps are properly reproduced by our model (Fig. 4.19c).
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(b) Catheter No.8 Time Reconstruction Zoomed
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Figure 4.19: Time-domain reconstructions using a standard BEM method can produce
significant error in the voltage signal (a-b). The presented polynomial reconstruction
technique can both recover a significant portion of the missing large-signal information
(c), but still exhibits some temporal inaccuracies in the small-signal reconstruction due to
the inherent time-invariant nature of the model (d).

While our inverse model exhibited the high accuracy in voltage potentials in the time

domain, there were some observed limitations in the spectral accuracy of the reconstruction.
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Specifically low amplitude, high frequency transients were difficult to estimate with the

model. This type of feature was observed in the original data, as can be seen in Fig. 4.19d

along with our reconstruction result. This limitation is due to the small error contributed

to overall objective function measured over the entire data set. The optimization will

instead reconstruct a mean constant value during these events that still yields a low-

average error for the entire duration of the signal. In this respect, proper fidelity of high

frequency content of the endocardial signals continues to be a limitation faced by other

inverse solutions [166].

The acceptance of a particular solution to inverse solutions in ECGi is still contested

in the field [69]. The debate focuses on identifying and defining the optimal features

in cardiac potential mappings that best serve clinical and diagnostic goals. In general

spatio-temporal accuracy is almost universally regarded as critical for successful inversion

of BPSMs, as invasive techniques used in ablation procedures mainly rely on surgeons

manually probing the endocardium and/or epicardium in real-time to identify sources

of AF. Although our approach optimized error in the temporal potential maps, other

waveform constraints could easily be incorporated in our objective functions to help detect

features of interest. This could be achieved, for example, by including a generalized

Tikhonov regularization in addition to the Sobolev-norm regularization that was used,

e.g. via a non-uniformly weighted-norm, or band-pass filter.

Finally we note that while the presented methods have demonstrated quantitative

improvements in the time-domain-independent reconstruction of cardiac potential maps

from BS potentials, the ultimate utility of this application depends on the clinical and

diagnostic needs of electrophysiologists who would rely on such information to refine

patient prognosis. In particular, the presented approach to non-invasive cardiac mapping

provides a promising outlook for the use of non-invasive ECGi to monitor and study

cardiac disease, because it offers a flexible learning-based framework that leverages past

measurements to refine features of cardiac reconstructions that hold diagnostic value.
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4.3 X-ray Computed Tomography

As deep neural networks (DNNs) have gained popularity, so has their use in medical

imaging applications. In x-ray computed tomography (XRCT) and magnetic resonance

imaging (MRI), for example, researchers have investigated the use of DNNs for performing

both classification and reconstruction [107, 230]. In these and numerous other works,

researchers have used standard DNN-prototype elements, such as convolutional, fully-

connected, and pooling layers (originally developed in the signal processing and machine-

learning community) to emulate various portions of the reconstruction process [230]. In

Chen et al., for example, both a deep CNN and autoencoding neural network (a topology

that feeds data through a bottleneck layer) were used to directly improve reconstruction

performance in a patch-by-patch fashion from a limited number of projection angles [41,

42]. In Jin et al., a direct inversion formula extracted from a spectral iterative algorithm

is combined with subsequent filtering by an autoencoding U-net architecture to improve

artifacts introduced by initial higher-order method [104]. In Kang et al., a CNN is used

to weight the wavelet coeffcients more optimally, resulting in noise suppression while

maintaining understandability in the final layers [107]. In Zhu et al., this approach is

taken a step further by using a convolutional neural network (a type of DNN topology) to

emulate the fast-Fourier transform (FFT) or back-projection operation that is common

to many k-space reconstruction algorithms based on Fourier theory [230].

Common to these algorithms is construction by first replacing (at a high level)

components of the image-reconstruction algorithm with “equivalent” neural network

models, which are either previously trained by an auxiliary objective (e.g. autoencoder

architectures that seek to reconstruct an image its non-linear projections) or via mapping to

a conventional classification task (e.g. location of a pathology). While classification results

for these heuristically-designed black-box networks show promise as an emerging analysis

and diagnostic tool, from the perspective of imaging they leave many unanswered technical

questions (e.g. stability, resolution, accuracy) that brings understandable questions of
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their reliability as a clinical tool, free from training-bias [8].

Further, while DNNs and similar non-linear regression techniques may be capable

of harnessing powerful approximation properties that yield algorithms with superior

resolution and accuracy, an approach to quantitatively measure or validate these properties

on a trained network has thus far been elusive, beyond the standard technique of evaluating

an asymptotically-intractable number of test cases. In fact, current research shows that

conventional DNNs are easily fooled [154], suggesting that measuring classification accuracy

on a withheld test-set is in many cases insufficient for demonstrating robustness, since

even simple problems are severely under-sampled with respect to the dimensionality of

their defining input and output maps. This is especially true in imaging applications such

as computed tomography (CT), where the number of input/output pixels is commonly on

order of ≥ 105 (e.g. 30 projection angles with a camera of 64 x 64 pixels, or reconstruction

volume of ≥ 643 voxels).

This issue is not limited to the application of DNNs. Within the imaging literature

itself, many models have been proposed and iterated on through the years, incorporating

e.g. corrections for noise [126], motion of the patient [61], and sparsity constraints [219,

48, 223]. However, unlike typical DNN approaches, these models are usually designed

to intrinsically satisfy a large (often infinite) number of mathematical constraints that

correspond to our physical intuitions of the underlying physics problem, with the important

caveat that inputs and parameters must belong to an assumed class of functions. Of

course, when these assumptions are violated, as is common in real-world imaging scenarios,

we observe degradation in the reconstruction that is in addition to (and compounds)

other issues such as statistical emmisivity, noise, detector models, etc. that are typically

handled separately.

As a practical note, this highlights the benefit of using a data-driven machine-learning

approach, which may overcome these limitations when equipped with a sufficient amount

of exemplary training data. But, as mentioned, the downside of using a black-box data-
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driven approach such as DNNs is multi-faceted and compounding. Namely: (1) DNNs

suffer from a lack of understandability that impedes the algorithm designer’s ability to

propose sensible modifications of the algorithm e.g. to incorporate priors and improve

baseline accuracy1, and (2) typical DNNs provide minimal theoretical guarantees or

summaries of their assumptions, instead requiring a number of benchmark tests to assess

an imaging algorithm’s utility for a particular application. As such, there remains several

complications with these methods such as the basin of convergence or quantification

of achievable resolution. Moreover, this is a compelling reason why classical methods

continue to be used despite their provably sub-optimal performance. In this vein, it seems

useful to ask whether the understandability and predictability of classical approaches to

imaging can be combined with modern data-driven machine learning techniques.

To this end, the purpose of this work is to outline a new scheme for designing deep

learning algorithms for computed tomography and medical imaging applications, which

leverages the abundance of literature that exists on the subject to develop more robust

and accurate reconstruction algorithms without sacrificing interpretability. As an initial

example, we pick a simple iterative algorithm for XRCT and SPECT, and show how these

can be utilized to construct a deep imaging algorithm initialized at a well-understood

baseline of performance. In particular, we show the performance is initially equivalent to

the original algorithm, but with a natural representation that can be further expanded

and trained as a neural network. The construction of the network should make it clear

how this method can be applied to a number of different physical models of propagation

or material interactions, such as attenuation, scattering and noise. We provide with some

initial experiments to demonstrate the learning and predictive capability of such networks,

and conclude by reminding readers that applying such techniques in a clinical setting will

require a more careful treatment of algorithm optimization than is afforded by considering

1We conjecture that a large source of the confusion stems from the ad-hoc use of non-linearalities
as information bottlenecks in the algorithm. This seems to prevent sensible weight initializations in
multi-layer DNNs.
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a single reconstruction metric on a small training set.

4.3.1 Iterative-Reconstruction Algorithms for CT

There are a number of different iterative-reconstruction formulations for computed to-

mography of x-ray data that are used in practice. These methods fall broadly into one of

two categories: Fourier-based methods or algebraic methods. Spectral (Fourier) meth-

ods are based on explicit, deterministic inversion formulas for reconstruction a function

from its line integrals (Radon transform), or small generalizations thereof. In contrast,

algebraic techniques are based on minimizing or maximizing an objective, formulated

by incorporating the expected stochastic variation in photon counts and other factors.

Of course, the two categories are intimately related to the physics model of x-ray wave

propagation in media, but recently there has been a push towards using model-based

algebraic techniques for their ability to easily incorporate new models of emission and

transmission as priors. We will focus on iterative techniques, since they are the most

common algebraic techniques used in practice.

The basic idea of these iterative algebraic reconstruction is to (1) guess a distribution of

parameters, (2) measure whether this guess makes sense with respect to the recorded data,

and (3) use this measure to update the estimate of the parameters. To elucidate, in medical

applications of transmission and emission tomography, the task is typically to estimate

a 3D distribution of attenuation coefficients (an attenuation map) and concentration

of radioactive molecules (activity-centers), respectively. To estimate these parameters,

x-rays are collected at various projection angles by rotating a detector with respect to

a patient or a sample. So, a fundamental question is how to use the measured x-ray

projections to update an estimate of the distribution of parameters.

The central technique in many model-based algorithms revolves around evaluating

(2) by simulating projections of the current estimate. This can be done in a number

of ways, e.g. incorporating a full-wave model of wave propagation, attenuation, noise,
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multiple bounces, scattering, etc. In the simplest formulation, we could consider a simple

ray-tracing model where the recorded count at detector i (positioned at angle θ) depends

on the path of photons from each voxel, summarized as:

pi =
∑
j∈Ii

cijλj (4.23)

where cij represents the effective transmission coefficient from voxel j to detector i, Ii

represents the set of voxels contributing to detector i, and λj represents the initial photon

magnitude in voxel j in the straight-line direction to detector i. Notice that in this

expression cij can summarize almost all information about the geometry and propagation

of x-rays through media, including attenuation, recombination, and scattering.

Assuming a formula (e.g. Eq. 4.23) for simulating the projections at various θ, the

first step is measuring how well this matches up with the recorded projection (photon

count). The most basic comparisons are suprisingly simple, e.g. a measure of pixel-wise

mean-square error:

rMSE = ||pi − Yi||22 (4.24)

or, the pixel-wise ratio:

rratio =
Yi
pi

(4.25)

where Yi is the measured projection at detector i, and r∗ represents a residual or type

of error signal. In any algorithm, we would like rMSE to tend towards zero, whereas we

would like rratio to approach one.

Using this residual as feedback, the next step is to update the estimate of the unknown

parameters. While there are many possible update rules, in general the update strategy

that is chosen should be compatible with the choice of aforementioned feedback. For
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example, the Newton-Raphson update in transmission tomography can be defined as:

τ k+1 = τ k + α · F (τ k, Y )

F ′(τ k, Y )
(4.26)

where F (τk, Y ) denotes the computation of a residual such as rMSE with respect to

the current estimate τ k, and F ′(τ k) represents its first-derivative with respect to the

parameters τ k. That is, we are seeking the root of the equation F (τ k, Y ) = 0 for variable

τ k (with the complete set of measured projections Y is a constant).

The Newton-Raphson method is simple, but can be computationally expensive when

the underlying physics model is complicated, since it is necessary to compute F ′(·). Still,

it is a strong method and is popular for reconstruction of attenuation coefficients in

transmission-mode x-ray CT (XRCT).

We will now briefly work-through a simple classical derivation of the Maximum-

Likelihood Expectation-Maximization (MLEM) algorithm for emission-mode CT [118],

since this has been shown to have superior convergance properties compared to the

Newton-Raphson method in many applications and for SPECT.

Maximum-Likelihood Expectation-Maximization (MLEM) Algorithm for Emis-

sion CT

Suppose the observed data is a only a sample y of a random-vector Y , that is described

by a density function g(Y,Λ), where Λ is the vector of parameters to be estimated (e.g.

the intensity of source voxels in the sample). g(Y,Λ) may be hard to know empirically,

or model explicitly, because it is in general a function of the sample geometry, detector

geometry, and the various source-elements we are looking for. This makes it hard to

maximize g(Y,Λ) w.r.t Λ. For this reason, many EM algorithms consider the “embedding”

of Y into a larger sample-space, such that Y = h(X), where X is supposed to have a

density function f(X,Λ) (of some assumed form) with respect to some measure µ(X). In
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the discrete version of this problem, we can formulate the relation:

g(Y, λ) =
∑
µ

f(X,λ) s.t. {X : h(X) = Y } (4.27)

Now the expectation-maximation (EM) iteration is simple. In the E-step of the n-th

iteration, we form the conditional expectation:

E
[
ln
(
f(X,λ)

)
|Y,Θn

]
(4.28)

where ln denotes the natural logarithm, and Λn denotes the current vector of parameter

estimates. Then, in the M-step of the n-th iteration, we fix Λn, and maximize the

expectation with respect to Λ.

While such an algorithm generally has some nice convergence properties [178], there

is uncertainty both in the specification of h(·) and the choice of f(·,Λ).In particular,

there can be many ways of embedding Y into a larger sample-space, including physics-

inspired techniques (e.g. particle considerations, ray-tracing, count-statistics). Thus,

from a practical viewpoint, the art of using this simple EM algorithm lies in choosing

an appropriate specification for X [118]. We will exploit this freedom later in our

deep-learning formulation.

To use this EM formulation for emission computed tomography we must, essentially,

define the expectation given in Eq. 4.28 explicitly in terms of Y , the samples we collect

in the detector. This can be achieved using physical considerations; for example:

The mean number of detected photons originating from pixel j during the i-th

projection could be computed as:

∆tiλjbij = cijλj (4.29)

where i is the projection subscript, j is the pixel subscript, ∆ti length of time over which

the i-th projection is collected, bij is the probability that a photon leaving pixel j reaches

136



the i-th detector, and λj is the unknown source intensity we are looking for. Note that in

the this formulation, bij and ∆ti summarize the physical features of the detector geometry

and assumed attenuation constants; consequently, cij is assumed to be known and fixed

with respect to an assumed (linear) physics model.

Further, using the ray-tracing model that is conventional applicable when considering

the particulate-nature of radiation, we could define the total number of recorded photons

for projection i to be:

Yi =
∑
j∈Ii

Xij (4.30)

where it is clear from context that Yi is the vector representing counts at all the

detector locations, Ii is the subset of source-locations contributing to the detector counts

(it could be all of them), the mean of Xij is cijλj, and that Yi is Poisson-distributed if

Xij is assumed to be Poisson-distributed.

Using these assumptions, we can write the EM iterative-reconstruction algorithm

explicitly as a method of moments estimate, as:

λn+1
j =

λnj∑
i∈Jj cij

·
∑
i∈Jj

cijYi∑
k∈Ii cijλ

n
k

(4.31)

where Jj is the set of projects to which pixel j contributes, and λn+1
j is the new estimate

of the source-intensity at pixel j at the after the n-th iteration. In this form, it is obvious

that the update-rule is a multiplicative update, that incorporates the ratio of recorded

data Yi to a simulated-projection
∑

k∈Ii cijλ
n
k , that is re-weighted and applied to the

current estimate of sources. This is a well-known derivation, for perhaps one of the

simplest EM formulations for emission CT. We will now show even this simple algorithm

is capable of deep inference.
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4.3.2 Deep Iterative-Reconstruction Algorithms for CT

We begin by noticing that the both of the aforementioned iterative-reconstruction al-

gorithms can be re-written as neural networks by simply writing out their data-flow

graphs [169]. For example, we notice that the update rule (Eq. 4.31) can be thought of as

a simple network that takes the initial estimate of the source-intensity λn as input, and

produces the next estimate λn+1 as output. In the simplest case the parameters, or weights

of this network, are the assumed constants cij that incorporate the model and detector

geometry and the assumed physical attributes, such as the attenuation or probability of

detection. Although these are considered known constants in the vanilla-version of the

EM algorithm, it is easy to see that they are based on simplistic assumptions of operative

physics that are known to intimately affect the quality of the reconstruction (i.e. the

art). In short, by considering the optimization of such parameters with respect to the

input-output pairs we provide (e.g. phantom experiments, known cases where analytic

solutions are possible, etc.), we can develop more-accurate imaging algorithms that are

informed by real data and experiments, and flexible to modification in specific cases. This

interpretation has a strong analogue to approaches that incorporate deformations of the

original model [130, 6].

While Eq. 4.26 and Eq. 4.31 by themselves resemble shallow 1-layer networks with

simple additive normalization2, we further notice that by considering more than one

iteration we can easily generate arbitrarily deep networks. That is, we can understand

the output of the original Newton-Raphson or EM algorithm after r iterations to be the

result of r nested function compositions, which resembles a DNN f with pooling [169]:

λr = f(λ0, C) (4.32)

= pr−1

(
pr−2

(
pr−3(...p0(λ0

j , C0), Cr−2)Cr−1

)
, Cr

)
(4.33)

2e.g. to respect strict equality constraints that may arise, such as
∑

i

∑
j∈Ii cijλ

n
j =

∑
i Yi
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where λ0 denotes the initial guess of the target distribution in vector form, λr denotes

the reconstruction estimate after r iterations (loops), pk represents the update operator

at step k, and Ck denotes the system matrix at step k with entries cki,j representing the

contribution from voxel j at detector pixel i (as in the standard notation). Notice here,

that we have generalized to allow the system matrix to change at each iteration of the

algorithm. This can take a physical interpretation as resolving or correcting for different

physical effects as the iterative refinement progresses. Care must be taken here to either,

not violate the convexity of the objective (e.g. in the EM case), or to ensure the basin of

convergence is at least equivalent if not larger than the original algorithm.

In addition to growing deep, we can also grow wide, by considering algorithmic

generalizations of the update rule used at each step. While the cij ∈ C traditionally

denote the various fixed parameters of the model, representing a summary of the various

physics models that are assumed for the contribution of a voxel j to detector i, uncertainties

in the parameters of these constituent models can be considered as free-variables ripe for

optimization. As a simple example, emission-mode the photon contribution from voxel j

can be modeled as:

β−1(e−βt
1
i − e−βt2i )λjbij = cijλj (4.34)

When there is uncertainty in the parameters {β, t1i , t2i }, they can be tuned (either at

run-time or apriori) to give the best reconstruction performance 3. This was known even

in the early literature, e.g. Lange and Carson point out that, for emission-mode SPECT,

the MLEM algorithm can be modified to update the additional unknowns such as the

“effect of randoms” in the detector count, as:

3In this formulation, with everything else held constant, this is a non-linear problem.
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Yi =
∑
j∈Ii

Xij + Ai (4.35)

so that, Nij =
cijλ

n
j Yi∑

k∈Ii cikλ
n
k + ani

(4.36)

where ani is the estimate of ai at the nth iteration [118]. However, as the number

of unknowns increase, this strategy can be intractable for near-real-time algorithms of

satisfactory performance, so we will focus our attention on the second, data-driven strategy

of minimizing these stationary parameter uncertainties apriori with respect to a measure

of quantitative performance on a representative set of training and validation data.

Just as the uncertainty in parameters of one model are amenable to optimization,

when there is uncertainty in which physics models are at play, the contribution of each

chosen model and its parameters can also be jointly optimized. For example, we could

consider the effect anisotropic transmission, and the represent the attenuation map as a

tensor. Initializing at the isotropic case, we could allow the parameter-update (learning)

algorithm to determine how important each possibly-anisotropic transmission coefficient

is to the final reconstruction. In this vein, we might want to enforce more structure to the

distribution of cij (e.g. by asking that the effective transmission map is locally smooth

or C is sparse) to incorporate what we know about the distributions these values are

sampled from, while also providing flexibility for when our assumptions could use some

tweaking.

Pushing the envelope further, we might allow cij to vary from iteration to iteration

(either through global updates or data-dependent refinements), denoting them as crij.

Even more radically, we could postulate multiple possible values for crij, evaluate them

all, and pick the best estimate with respect to some local (e.g. time-of-flight) or global

(e.g. total-variation, reconstruction error) measure of performance M, as:

crij = arg maxM [wc
r
ij] (4.37)
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This formulation in particular may represent a family of auto-focussing algorithms, which

iteratively selects which physical degradation or system models to correct for at various

stages of the reconstruction.

Clearly, there are many such parametrizations that have highly-interpretable physical

and algorithmic analogues. These algorithmic generalizations add many more parame-

ters to the algorithm (similar to conventional DNN-based approaches), except that the

overall structure and operation of the network of the original reconstuction algorithm is

maintained. In fact, when we generalize so much, it is good to realize that the original

Newton-Raphson or MLEM algorithm is easily recovered for specific choices of crij . Specif-

ically, we suggest initializing any free-parameters with the effective constants used in the

original version of the algorithm, so that a baseline of performance is achieved, prior to

machine-learning-based optimization.

While the aforementioned generalizations provide robustness with respect to different

models for cij , we see that we can also generalize in another way. Borrowing from the the

consideration raised by Lange and Carson, for example, we can generalize Equation 4.36

further via a power-series approximation as:

Nij =

∑∞
p=0 γ

p
ij(bijλjYi)

p∑
k∈Ii

∑∞
p=0 α

p
ik(bikλk)

p
(4.38)

or suitable moments thereof, for a relevant choice of αpij and γpij. Of course, a different

basis expansion or parameterization may also be preferable to cover a different range of

physical scenarios. We note that Equation 4.38 accounts for non-linearities that are both

global and data-dependent (e.g. scattering only at particular voxels).

In short, by explicitly preserving the structure of the imaging algorithm within

our deep architecture, and training within these constraints, we believe we can fill

the gap between generic DNN approaches and classical reconstruction algorithms [174,

173, 172]. In particular, for this application we must show that such networks have
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equivalent approximation power but offer greater control over unwanted oscillations

(i.e. overfitting) [26].

Training

We note that all the formulas presented thusfar can be seen as rational polynomials, and

therefore represent easily-differentiable functions amenable to optimization by gradient

like methods. In particular, we can use higher-order stochastic gradient descent algorithms

popular in the machine learning community, such as those that incorporate momentum

terms into the update, as:

ωn+1 =
∑

0≤l<K

βn,lωn−l + αn,l(F
′(ωn−l, Y ))−1F (ωn−l, Y ) (4.39)

where ω represents the vectorized collection of weights from the deep algorithm, Y

represents the projection/sample data, F represents the deep imaging algorithm, and F ′

in this context refers to the gradient of F with respect to the parameters ω. In this work,

we will stick to using the Adam optimizer [109].

4.3.3 Numerical Experiments and Discussion

In this section, we outline results from a series of small-phantom experiments on

transmission-mode and emission-mode (SPECT) reconstruction tasks. In each case,

we adopt a mild version of the generalization of a vanilla reconstruction algorithm, and

show that with training the performance of the optimized algorithm has superior perfor-

mance than the original formulation. To maintain fairness in our tests, we pick training

and testing phantoms from disjoint sets, and randomize the attenuation and activity

distributions.
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Transmission-mode Reconstruction (XRCT)

We generalized a basic Newton-Raphson update, as follows:

τk+1 = arg min
r

F
(
τk − αrk

F (τk, Y )

F ′(τk, Y )
, Y
)

(4.40)

with F (τk, Y ) =

|Y |∑
i

||pi,k − Yi||22, (4.41)

pi,k = ReLU
( L∑

l

(
ζlexp(−l · Aτk)

))
, (4.42)

and F ′(τk, Y ) = ReLU
(
∇̂τkF (τk, Y ) + ε

)
(4.43)

where τk represents the reconstruction estimate at iteration k, Y represents the recorded

projection data, ReLU represents the rectified linear unit (alternatively implemented as

the maximum of quantity and zero), ∇̂τk represents the “normalized” derivative operator

with respect to τk (its output is a unit vector indicating the gradient direction), and ε

was chosen empirically as 1e-4 to prevent early termination due to zero-valued gradients.

In this initial investigation, we fix the number of projection angles at 8, spaced equally

from 0◦ to 180◦.

We implemented this algorithm as a polynomial (rational function) neural network

in Tensorflow, and optimized the aforementioned parameters with respect to the overall

reconstruction loss, which we defined as:

L2 =
∑
b

||x̂b − xb||22 (4.44)

where x̂b represents the estimate of the reconstructed volume (output of the network),

and xb represents the true volume (phantom), of the b-th item in each training batch.

To help control the behavior of the algorithm, additional constraints were placed on the

projection-error in each iteration, as:
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L = L2 +
∑
b

∑
k

γk

|Y |∑
i=0

||bpi,k −b Yi,k||22 (4.45)

where bpi,k represents the simulated projection at pixel i at each internal algorithm

iteration k (e.g. Newton-iteration or MLEM-iteration) for the b-th item in the batch,

bYi,k represents the recorded value at the corresponding pixel, and γk represents a weight

that is chosen according to the desired convergence criteria (e.g. γk+1 ≥ γk). Notice these

additional terms represent an unsupervised objective, that only asks that the simulated

projections get closer to the true projections. Therefore, independent optimization of

these auxiliary terms could be used to train this algorithm on real-CT data, rather than

phantoms (i.e. when the true geometry is not known).

Figure 4.20: Performance of “Deep Newton-CT” for transmission tomography on 20x20x20
phantoms (a) averaged per-batch over the training period. (b) over internal algorithm
iteration number.

The optimization was done using a version of stochchastic gradient descent, with the

standard Adam optimizer (initial learning rate chosen empircally) with a batch size of

100, 20 x 20 x 20 phantoms for 50K training iterations. The training results, depicted

in Figure 4.20, show a good correspondance between performance on the training and

validation data. This is expected since the training, validation, and testing phantoms

were all initialized randomly from a distribution. This highlights an important point that

adjusting the distribution of training examples or objective constraints will be important
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for using this data-driven method to overcome specific artifacts of interest, e.g. scattering,

anisotropy, etc., in phenomenological- and detector-specific applications.

Emission-mode Reconstruction for SPECT

We generalized a basic MLEM update, as follows:

λn+1
j =

λnj∑
i∈Jj

∑P
p dk(ρi,j)

p
·
∑
i∈Jj

∑P
p bk(ζi,j)

p∑
k∈Ii

∑P
p ak(γij)

p
(4.46)

with ρij = ReLU
(
(0Wij · cij) ·1 Wij

)
, (4.47)

ζij = ReLU
(
(0Wij · cij) ·1 Wij · Yi

)
, (4.48)

and γij = ReLU
(
(0Wij · cij) ·2 Wij · λk

)
(4.49)

where λnj represents the estimated activity concentration of voxel j at iteration n, cij is the

standard effective-transmission matrix (e.g. using simple, linear ray-like physics), and we

have added the free parameters ρ, ζ, γ, a, b, c in a structured format. In this formulation,

additional freedom can be gained by allowing these parameters to vary independently at

each iteration of the algorithm. An algorithimic analogue of this approach is correcting

for different artifacts at each iteration, as they become apparent to the algorithm or

technician.

Clearly Eq. 4.46 is an embedding of the original rational (polynomial) function

(Eq. 4.31) into a much larger function space of the same class. This network has the

benefit of growing wide (by increasing P ) and also deep (n −→∞), while also maintaining

the structure, intilialization, and understandability of the original MLEM algorithm. Of

course, understanding the physical analogue and evaluating the reasonableness of the

parameters that arise from such a model (deep or otherwise) remains an important task

for any imaging scientist.

In this initial investigation, we fix the number of projection angles at 10, spaced equally

from 0◦ to 360◦. Parameters were initialized with all ones, except for ak 6=1, bk 6=1, and ck 6=1;

this initialization allows the MLEM algorithm to start at the performance identical to
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the original algorithm.

Similar to the Newton-Raphson case, we implemented the “Deep MLEM” as a

polynomial neural network in Tensorflow, that was further trained using stochastic

gradient descent (Adam optimizer) on randomly sampled activity and attenuation maps

(30, 10 x 10 x 10 phantoms) that were generated as perturbations of a 3D Shepp-Logan-

type phantom. The lower batch size was needed since the number of voxels that are

assumed to contribute to a single detector pixel is much larger in the emission case than

in the transmission case. The training results, depicted in Figure 4.21, again show a good

correspondence between performance on the training and validation data. In particular,

we recorded the convergence of the method at various levels of training, and show that

this can systematically be enforced via training on the absolute error, and penalizing the

rratio at successive iterations (layers) of the algorithm (network). Of course, for this size

of phantom, the mean-absolute error (MAE) may not have much room for growth, as

the rratio error is already quite small after a few iterations; this highlights a good reason

why optimizing the overall reconstruction task can be preferable when ground-truth is

available.

Discussion

The models presented in this section demonstrate a more-natural way to incorporate

deep learning into physics-based imaging, without necessarily targeting a classification

application. In particular, the presented framework is general enough to be applied

to both Fourier and iterative image reconstruction methods that are popular in the

high-energy medical imaging communities (e.g. XRCT, PET, SPECT, MRI, etc.). Of

course, the convergence and resolution properties of any deep imaging algorithm developed

using this methodology needs to be rigorously assessed; what we are providing here is a

framework for approaching those tasks that leverages both our understanding of classical

reconstruction algorithms, and new computational tools such as deep neural networks.
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Figure 4.21: Performance of “Deep MLEM” for a SPECT task on 10x10x10 phantoms (a)
averaged per-batch over the training period. (b) over internal algorithm iteration number
after various levels of training (iteration number).

While the results presented here show systematic improvement in reconstruction

performance, there are many difficulties in structuring the optimization to yield good

and physically-meaningful results. One issue is potential bias introduced by the choice

of training phantoms; the set of all possible input-output sequences is quite large, even

when considering only medically-relevant distributions, and an appropriate subset must

be chosen for practical optimization routines. Instead, we suggest initially using this

methodology to investigate and explore whether addition of some parameters can aid

in reconstruction or model the underlying physics. In this case, where the number of

parameters and non-linearities are carefully added, incrementally, only a small number of

phantoms should be required. We plan to explore this application in future work.
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Another issue is that the initial reconstruction algorithm must perform reasonably

well for the target application prior to the addition of additional free parameters. If this

is not the case, it is possible that the actual improvements may be marginal. Adding

more parameters is likely to increase the performance of even these initially suboptimal

networks, but may make it difficult to traverse the function landscape to find a desirable

local (or global) optima. Starting with a good algorithm not only provides guarantees of

baseline performance, it defends against overfitting via addition of too many uninitialized

(and uninterpretable) parameters.

Finally, we would like to point out that our methodology does not yet solve the problem

of designing deep imaging algorithms for computed tomography, but rather introduces a

platform on which machine learning algorithms should be tested and benchmarked (i.e. in

comparison to existing methods). Further work, such as those investigating suitable

optimization algorithms for constrained networks, or those that defend against training

bias, should be investigated in future work.
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Chapter 5

Conclusion

In this thesis, we used well-established techniques of polynomial approximation as a

vehicle to investigate and understand the unreasonable effectiveness of deep learning in

image reconstruction and image recognition problems. An outcome of this research is a

set of conjectures relating the structure and performance of deep networks, and a set of

design principles that realize this for practical problems.

As we saw in Chapter 2, deep networks can provably avoid the curse of dimensionality

with respect to the degree of approximation when they utilize the compositional structure

of the target function. Such networks also have provably small generalization error near

training data. We conjecture that utilization of the compositional structure also yields

benefits to the requisite data rate for a desired level of performance, which would otherwise

grow exponentially in the dimension. In the case of maxd, this was empirically shown to

be the case up to d = 32 for point data sampled randomly in the unit hypercube R[−1,1].

The extension of this idea for high dimensional (d ≥ 1000) image recognition problems is

left as future work.

In particular, we note that to avoid the curse of dimensionality, the compositional

representation must feature low in-degree nodes. For very high dimensional problems,

this implies very deep networks. Numerical concerns arise in the training of these deep
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networks. Various schemes can be used, but of immediate interest and concern is the

numerical stability of backpropagation for gradient-based optimization of polynomial

networks. This is left as future work.

On the other hand, there are many compositional structures (albeit of high in-

degree) that have been discovered both by traditional algorithm designers (e.g. clustering,

Newton’s method, filtered back-projection) and by DNN practitioners (e.g. VGG-16,

U-Net, ResNet) that indicate good performance on modern problems. Thus, an important

line of investigation would be to ask how the approach of deep minimum Sobolev norm

networks could be applied the training of these networks, and what guarantees on the

generalization error can be derived. For example, conventional DNNs can be approximated

by a deep polynomial network with a tractable expression for the Sobolev norm that is

a simple (fixed) formula of the weights. It would be fruitful to ask if such networks are

more robust, e.g. with respect to adversarial attacks.

More generally, there are many open questions. For example:

• Given samples of a high dimensional function, how do we uncover its compositional

structure?

• Is there a penalty for using a graph structure that is larger than the compositional

graph structure of the target function?

• Is there a paradigm for removing the acyclic requirement for the compositional

structure of the target function, i.e. can we approximate functions with recurrent

networks?

• Are there other classes of problems that can be encoded efficiently with deep

networks, e.g. combinatorial problems or dynamic programming algorithms?

Answering these questions will help extend deep learning to address many open

problems in imaging and image recognition, including accelerating the solution to several

classes of inverse problems that are currently considered intractable [44].

150



Bibliography

[1] Ajith Abraham and Lakhmi Jain. “Evolutionary multiobjective optimization”. In:

Evolutionary Multiobjective Optimization. Springer, 2005, pp. 1–6.

[2] Howard M Adelman and Raphael T Haftka. “Sensitivity analysis of discrete

structural systems”. In: AIAA journal 24.5 (1986), pp. 823–832.

[3] Omar Y Al-Jarrah et al. “Efficient machine learning for big data: A review”. In:

Big Data Research 2.3 (2015), pp. 87–93.

[4] Eugene L Allgower and Kurt Georg. Numerical continuation methods: an introduc-

tion. Vol. 13. Springer Science & Business Media, 2012.

[5] Amir A Amini, Terry E Weymouth, and Ramesh C Jain. “Using dynamic pro-

gramming for solving variational problems in vision”. In: IEEE Transactions on

Pattern Analysis & Machine Intelligence 9 (1990), pp. 855–867.

[6] Habib Ammari et al. “Electrical impedance tomography by elastic deformation”.

In: SIAM Journal on Applied Mathematics 68.6 (2008), pp. 1557–1573.

[7] Peter Arbenz and Walter Gander. “Solving nonlinear eigenvalue problems by

algorithmic differentiation”. In: Computing 36.3 (1986), pp. 205–215.

[8] Ahmed Ashraf et al. “Learning to Unlearn: Building Immunity to Dataset Bias in

Medical Imaging Studies”. In: arXiv preprint arXiv:1812.01716 (2018).

151



[9] Pierre Baldi and Kurt Hornik. “Neural networks and principal component analysis:

Learning from examples without local minima”. In: Neural networks 2.1 (1989),

pp. 53–58.

[10] Andrew R Barron. “Approximation and estimation bounds for artificial neural

networks”. In: Machine learning 14.1 (1994), pp. 115–133.

[11] Andrew R Barron. “Universal approximation bounds for superpositions of a

sigmoidal function”. In: IEEE Transactions on Information theory 39.3 (1993),

pp. 930–945.

[12] LM Beda et al. “Programs for automatic differentiation for the machine BESM”.

In: Inst. Precise Mechanics and Computation Techniques, Academy of Science,

Moscow (1959).

[13] R Berber and C Brosilow. “Insights into the Relationships Between Linear and

Nonlinear Model Based Control and Issues for Further Research”. In: Nonlinear

Model Based Process Control. Springer, 1998, pp. 87–114.

[14] Dimitri P Bertsekas. “Nonlinear programming”. In: Journal of the Operational

Research Society 48.3 (1997), pp. 334–334.

[15] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Vol. 5.

Athena Scientific Belmont, MA, 1996.

[16] Dario Bini and Victor Y Pan. Polynomial and matrix computations: fundamental

algorithms. Springer Science & Business Media, 2012.

[17] Dario Andrea Bini. “Numerical computation of polynomial zeros by means of

Aberth’s method”. In: Numerical algorithms 13.2 (1996), pp. 179–200.

[18] Dario Andrea Bini and Giuseppe Fiorentino. “Design, analysis, and implementation

of a multiprecision polynomial rootfinder”. In: Numerical Algorithms 23.2-3 (2000),

pp. 127–173.

152



[19] Chris M Bishop. “Neural networks and their applications”. In: Review of scientific

instruments 65.6 (1994), pp. 1803–1832.

[20] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford

university press, 1995.

[21] Mathieu Blondel et al. “Polynomial Networks and Factorization Machines: New In-

sights and Efficient Training Algorithms”. In: International Conference on Machine

Learning. 2016, pp. 850–858.

[22] Ranko Bojanic and Fuhua Cheng. “Rate of convergence of Bernstein polynomials

for functions with derivatives of bounded variation”. In: Journal of Mathematical

Analysis and Applications 141.1 (1989), pp. 136–151.

[23] Andrew P Brown, Michael J Sheffler, and Katherine E Dunn. “Persistent electro-

optical/infrared wide-area sensor exploitation”. In: Evolutionary and Bio-Inspired

Computation: Theory and Applications VI. Vol. 8402. International Society for

Optics and Photonics. 2012, p. 840206.

[24] Hugh Calkins et al. “Treatment of atrial fibrillation with anti–arrhythmic drugs or

radio frequency ablation: Two systematic literature reviews and meta–analyses”.

In: Circulation: Arrhythmia and Electrophysiology (2009), CIRCEP–108.

[25] Luca Caltagirone et al. “LIDAR–camera fusion for road detection using fully

convolutional neural networks”. In: Robotics and Autonomous Systems 111 (2019),

pp. 125–131.

[26] Emmanuel J Candès. “Harmonic analysis of neural networks”. In: Applied and

Computational Harmonic Analysis 6.2 (1999), pp. 197–218.

[27] Emmanuel J Candès. “New ties between computational harmonic analysis and

approximation theory”. In: Approximation Theory X (2002), pp. 87–153.

[28] Emmanuel Jean Candes. “Ridgelets: theory and applications”. PhD thesis. Stanford

University Stanford, 1998.

153



[29] Matthew Carlberg et al. “Classifying urban landscape in aerial LiDAR using

3D shape analysis”. In: Image Processing (ICIP), 2009 16th IEEE International

Conference on. IEEE. 2009, pp. 1701–1704.

[30] Ozgun Cciccek et al. “3D U-Net: learning dense volumetric segmentation from

sparse annotation”. In: International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer. 2016, pp. 424–432.

[31] Judit Chamorro-Servent et al. “Improving the Spatial Solution of Electrocar-

diographic Imaging: A New Regularization Parameter Choice Technique for the

Tikhonov Method”. In: International Conference on Functional Imaging and Mod-

eling of the Heart. Springer. 2017, pp. 289–300.

[32] S Chandrasekaran, CH Gorman, and HN Mhaskar. “Minimum Sobolev norm

interpolation of derivative data”. In: arXiv preprint arXiv:1710.01419 (2017).

[33] S Chandrasekaran and HN Mhaskar. “A construction of linear bounded interpola-

tory operators on the torus”. In: arXiv preprint arXiv:1011.5448 (2010).

[34] S Chandrasekaran and A Rajagopal. “Fast indefinite multi-point (IMP) clustering”.

In: Calcolo 54.1 (2017), pp. 401–421.

[35] S Chandrasekaran et al. “Minimum Sobolev Norm schemes and applications in

image processing”. In: Wavelet applications in industrial processing VII. Vol. 7535.

International Society for Optics and Photonics. 2010, p. 753507.

[36] Shiv Chandrasekaran et al. “Higher order numerical discretization methods with

sobolev norm minimization”. In: Procedia Computer Science 4 (2011), pp. 206–215.

[37] Shivkumar Chandrasekaran, CH Gorman, and Hrushikesh Narhar Mhaskar. “Min-

imum Sobolev norm interpolation of scattered derivative data”. In: Journal of

Computational Physics 365 (2018), pp. 149–172.

154



[38] Shivkumar Chandrasekaran, KR Jayaraman, and Hrushikesh Narhar Mhaskar.

“Minimum Sobolev norm interpolation with trigonometric polynomials on the torus”.

In: Journal of Computational Physics 249 (2013), pp. 96–112.

[39] Shivkumar Chandrasekaran and Hrushikesh Narhar Mhaskar. “A minimum Sobolev

norm technique for the numerical discretization of PDEs”. In: Journal of Compu-

tational Physics 299 (2015), pp. 649–666.

[40] Chaofan Chen et al. “This looks like that: deep learning for interpretable image

recognition”. In: arXiv preprint arXiv:1806.10574 (2018).

[41] Hu Chen et al. “Low-dose CT via convolutional neural network”. In: Biomedical

optics express 8.2 (2017), pp. 679–694.

[42] Hu Chen et al. “Low-dose CT with a residual encoder-decoder convolutional neural

network”. In: IEEE transactions on medical imaging 36.12 (2017), pp. 2524–2535.

[43] Liang-Chieh Chen et al. “Semantic image segmentation with deep convolutional

nets and fully connected crfs”. In: arXiv preprint arXiv:1412.7062 (2014).

[44] Victor C Chen. Inverse Synthetic Aperture Radar Imaging; Principles. Institution

of Engineering and Technology, 2014.

[45] Xi Chen et al. “Infogan: Interpretable representation learning by information max-

imizing generative adversarial nets”. In: Advances in neural information processing

systems. 2016, pp. 2172–2180.

[46] Fuhua Cheng. “On the rate of convergence of Bernstein polynomials of functions of

bounded variation”. In: Journal of approximation theory 39.3 (1983), pp. 259–274.

[47] Youngmin Cho and Lawrence K Saul. “Kernel methods for deep learning”. In:

Advances in neural information processing systems. 2009, pp. 342–350.

155



[48] Jiyoung Choi et al. “Sparsity driven metal part reconstruction for artifact removal

in dental CT”. In: Journal of X-ray Science and Technology 19.4 (2011), pp. 457–

475.

[49] Lark Kwon Choi, Jaehee You, and Alan Conrad Bovik. “Referenceless prediction

of perceptual fog density and perceptual image defogging”. In: IEEE Transactions

on Image Processing 24.11 (2015), pp. 3888–3901.

[50] City of Vancouver. 2013 Dublin LiDAR Dataset. 2013. url: https://data.

vancouver.ca/datacatalogue/LiDAR2013.htm.

[51] Taco Cohen and Max Welling. “Group equivariant convolutional networks”. In:

International conference on machine learning. 2016, pp. 2990–2999.

[52] Annie AM Cuyt and Louis B Rall. “Computational implementation of the mul-

tivariate Halley method for solving nonlinear systems of equations”. In: ACM

Transactions on Mathematical Software (TOMS) 11.1 (1985), pp. 20–36.

[53] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:

Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[54] George Cybenko. “Mathematical problems in neural computing”. In: Signal Pro-

cessing Scattering and Operator Theory and Numerical Processing 3 (1989), pp. 47–

64.

[55] Angela Dai et al. “Scannet: Richly-annotated 3d reconstructions of indoor scenes”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2017, pp. 5828–5839.

[56] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human

detection”. In: international Conference on computer vision & Pattern Recognition

(CVPR’05). Vol. 1. IEEE Computer Society. 2005, pp. 886–893.

[57] Zolzaya Dashdorj et al. “Classification of news by topic using location data”. In:

Joint International Semantic Technology Conference. Springer. 2016, pp. 305–314.

156

https://data.vancouver.ca/datacatalogue/LiDAR2013.htm
https://data.vancouver.ca/datacatalogue/LiDAR2013.htm


[58] Ilke Demir et al. “Deepglobe 2018: A challenge to parse the earth through satellite

images”. In: ArXiv e-prints (2018).

[59] Arnaud Dessein et al. “Seamless texture stitching on a 3D mesh by Poisson blending

in patches”. In: Image Processing (ICIP), 2014 IEEE International Conference on.

IEEE. 2014, pp. 2031–2035.

[60] Ronald A DeVore, Ralph Howard, and Charles Micchelli. “Optimal nonlinear

approximation”. In: Manuscripta mathematica 63.4 (1989), pp. 469–478.

[61] Joyoni Dey and Michael A King. “Theoretical and numerical study of MLEM and

OSEM reconstruction algorithms for motion correction in emission tomography”.

In: IEEE transactions on nuclear science 56.5 (2009), pp. 2739–2749.

[62] Umesh R Dhond and Jake K Aggarwal. “Structure from stereo-a review”. In: IEEE

transactions on systems, man, and cybernetics 19.6 (1989), pp. 1489–1510.

[63] Min Ding, Kristian Lyngbaek, and Avideh Zakhor. “Automatic registration of

aerial imagery with untextured 3d lidar models”. In: Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[64] Gintare Karolina Dziugaite and Daniel M Roy. “Computing nonvacuous general-

ization bounds for deep (stochastic) neural networks with many more parameters

than training data”. In: arXiv preprint arXiv:1703.11008 (2017).

[65] Martin Engelcke et al. “Vote3deep: Fast object detection in 3d point clouds using

efficient convolutional neural networks”. In: Robotics and Automation (ICRA),

2017 IEEE International Conference on. IEEE. 2017, pp. 1355–1361.

[66] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics.

American Mathematical Society, 2010. isbn: 9780821849743. url: https://books.

google.com/books?id=Xnu0o\_EJrCQC.
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