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ABSTRACT OF THE DISSERTATION

Deep Unsupervised & Semi-supervised Methods for Health Applications

by

Sajad Darabi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Majid Sarrafzadeh, Chair

Recent success in machine learning for various applications such as image classification and

language generation via deep learning has encouraged similar development in other domains.

In particular with the ubiquity of health sensors, troves of data are being collected from

which useful information can be extracted to improve overall quality of life. For example,

electronic health records (EHR) have become widespread across hospitals where many data

modalities are collected during patient care. Although these datasets are befitting to the

supervised learning framework, often due to limited annotated data, extensive missingness,

and the temporal nature of the data, supervised models often generalize poorly. We address

this by introducing unsupervised and semi-supervised methods that leverage unlabeled raw

patient data to help downstream task generalization. To demonstrate the effectiveness of our

proposed methods, and show their utility on real-world public medical datasets, including

cohorts from hospitals, intensive care units, and wards. The set of methods introduced are

simple and effective at improving downstream performance.
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CHAPTER 1

Introduction

With the ubiquity of sensors and improving hardware, large amounts of data are being

collected that can be leveraged to extract valuable knowledge for many applications. To make

use of these troves of data, recent deep learning methods have demonstrated tremendous

success in learning from the raw input data without human expert or domain knowledge as

required in traditional machine learning [1]. Applications such as image classification [2],

and language translation [3] has seen enormous success through the use of deep supervised

learning frameworks. An application domain of interest for extending the deep learning

framework is healthcare. This can be a significant driving force for improving patient quality

of care and overall quality of life.

Clinical datasets are collected as part of routine health practice across a variety of health-

care institutions. These contain both heterogeneous structured data modalities such as text

and images as well as unstructured data modalities such as demographic information, diag-

noses, and laboratory results. These data sources can provide vital information for making

better clinical decisions on a patient’s prognosis as they are undergoing care. The measure-

ments on each patient vary based on their diagnosis and symptoms presented. Further, it

is typically the case that information on each patient is incomplete; that is, not all possi-

ble measurements are made but only a subset determined by a medical practitioner. As

such, patients with varying disorders may differ on multiple clinical measurements and their

response to treatments, making modelling patient trajectories a challenge.

With the availability of medical datasets and deep learning frameworks, many opportu-

nities arise for developing data-driven clinical decision support systems. However, compared

to images and text, health-care datasets suffer from challenges which researchers need to

address. There are many challenges to deploying an end-to-end machine learning pipeline

1



for personalized medicine from a computational standpoint. In this dissertation, the primary

focus is on limited data and the multi-modality challenges present in such datasets.

Multi-modality refers to multiple data sources available for inference as provided in Elec-

tronic Health Records (EHR). Research in this area tries to identify latent patterns from

these data sources amongst cohorts of patients that can contribute to their personalized

prognosis as they are undergoing care. Chapter 1 presents a method to learn unsupervised

patient representation from EHR considering clinical codes and clinical texts and handling

the longitudinal component of these data sources, showing it is a utility for various down-

stream prediction tasks. Similarly, In Chapter 2, an unsupervised method to learn patient

status representation from clinical codes and signals is presented using two auto-encoding

steps that cross-mix the representation from the data sources into a single representation

useful for downstream prediction tasks.

Clinical datasets generally suffer from limited labelled data, where only a few examples

contain human expert labels that can be employed in supervised learning. The lack of labels

is due to the high cost and time required to acquire such labels from medical doctors. In

such scenarios, naively employing deep learning models via supervised learning will lead to

overfitting and poor generalization. Large amounts of readily available unlabeled data in

the health domain can be leveraged instead to alleviate the limited data problem. Deep

unsupervised methods have been previously studied in such settings to extract general-

purpose representations in images or text [4, 5]. In the health domain, most datasets can be

considered as tabular, where a set of rows (examples) and columns (features) that may be

permutation invariant constitute the data. In Chapter 3, a semi-supervised is introduced for

tabular datasets with a limited number of samples. Lastly, Chapter 4 a simple framework

for dealing with a high-class imbalance in the tabular domain.

2



CHAPTER 2

Patient Electronic Health Record Representation

Effective representation learning of electronic health records is a challenging task and is be-

coming more important as the availability of such data is becoming pervasive. The data

contained in these records are irregular and contain multiple modalities such as notes, and

medical codes. They are preempted by medical conditions the patient may have, and are

typically recorded by medical staff. Accompanying codes are notes containing valuable in-

formation about patients beyond the structured information contained in electronic health

records. We use transformer networks and the recently proposed BERT language model

to embed these data streams into a unified vector representation. The presented approach

effectively encodes a patient’s visit data into a single distributed representation, which can

be used for downstream tasks. Our model demonstrates superior performance and gen-

eralization on mortality, readmission and length of stay tasks using the publicly available

MIMIC-III ICU dataset. Code avaialble at https://github.com/sajaddarabi/TAPER-EHR

2.1 Introduction

Electronic health records (EHR) are commonly adopted in hospitals to improve patient

care. In an intensive care unit (ICU), various data sources are collected on a daily basis

as preempted by medical staff as the patient undergoes care in the unit. The collected

data consists of data from different modalities: medical codes such as diagnosis which are

standardized by well-organized ontology’s like the International Classification of Disease

(ICD)1 and medication codes standardized using National Drug Codes (NDC)2. Similarly,

at various stages of the patient’s care physicians input text noting relevant events to the

1http://www.who.int/classification/icd/en
2http://www.fda.gov

3



Timeline

Prescriptions

Diagnosis

Procedures

Medical	Notes

visit	#1 visit	#2 visit	#3

Figure 2.1: Patient timeline during an ICU visit where different data points are collected.

These include prescriptions, diagnosis codes, procedure codes and medical notes.

patient’s prognosis. Additionally, lab tests and bedside monitoring devices are used to collect

signals each of which are collected at varying frequencies for a quantitative measure of the

patient care. There is a wealth of information contained within EHRs that has a significant

potential to be used to improve care. Examples of inference tasks using such data include

estimating the length of stay, mortality, and readmission of patients [6, 7].

The traditional approach for healthcare analysis has mainly focused on classical methods

for extracting hand-engineered features and designing rule-based systems. More recently,

deep learning has demonstrated state of the art results on a varying set of tasks, in which

learning intermediate representation is at the heart of all these analysis [8]. This represen-

tation can be obtained without domain-specific expertise by leveraging available EHR data.

Although such methods have demonstrated great performance on image, audio datasets,

leveraging deep learning techniques on healthcare data present new challenges as the data

entered are sparse and contain different modalities.

As is common in natural language processing tasks, the typical method for embedding

medical codes and text could be through the use of one-hot vectors; though these are natu-

rally high-dimensional and sparse resulting in poor performance. To alleviate this, the idea

4



of learning a distributed representations as applied to natural language processing [9] has

been also applied on medical data [10]. Such methods share a common intuition that similar

medical codes should share a similar context. Additionally, codes have varying temporal

context, as such patients may have multiple visits with a similar set of codes. As an exam-

ple, flu is short-lived whereas a diagnosis code for a more terminal disease such as cancer has

a longer scope and hence will be present on all of the patient’s visits. Due to the varying

temporal context, it is also important to take into account the temporal scope of codes and

texts assigned [11]. This demands for a model which takes the sequential dependencies of

the patient’s visits into account.

To capture the sequential dependencies present in medical data recurrent neural networks

(RNNs), and Long Short-Term Memory (LSTM) have become the go-to model. RNN auto-

encoder models are commonly augmented with attention mechanisms allowing the model to

attend to specific time steps either through soft/hard attentions resulting in improvement

and interpretability in the final representation obtained [12, 13]. In NLP tasks such attention

mechanisms are not required to be causal in time and hence can attend to both past repre-

sentation as well as future representations to generate the current representation. However,

in a healthcare setting, it is desirable to have the representation be causal in time as clinical

decisions are made sequentially. Recently, transformer models [14] were proposed for natural

language processing tasks, and have shown impressive results. It uses self-attention and as

the model creates intermediate representations of the input it attends to its representation

at previous and future timesteps when considering the present representation.

Majority of patient representation work has solely focused on embedding medical codes

or text as a patient representation for downstream tasks but not both. To address this, we

study the use of transformer networks to embed structured medical code data as well as a

language model to embed the text portion of visits. In this work, we propose to combine

the medical representation from text and medical codes into a unified representation which

can then be used for downstream prediction tasks. Lastly, the presented study takes into

account the temporal context of a visit and embeds subsequent visits given the patient’s

history. In the following sections, we briefly go over related works and present our method
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followed by experimental setup and results.

We have made our code and preprocessing steps available3.

2.2 Related Works

The idea of learning embeddings for sparse one-hot vector data types using back-propagation

was presented in [15]. Follow up work learned these embedding using neural networks Bengio

et al.[16]. Since its success in NLP Mikolov et al.[9] for language modeling, similar approaches

have been used in the health domain. The two intuitive methods that are commonly used

for word embedding are (1) skip-gram where a current word is said to predict surrounding

words, (2) continuous bag of words (CBOW) where a set of words are made to predict a

center word. In Choi et al. [17] medical codes (diagnosis, procedure, and medications) are

concatenated as one-hot vectors and embedded using the skip-gram model. The intuition

behind skip-gram model is: codes in a visit should be predictive of its surrounding immediate

patient visit codes as well. They also present an additional code loss term as regularization

to the objective. It follows the intuition that codes in a visit should also predict one another.

Similar to [17], Nguyen et al. [18] use the concatenation of code representation and apply

1D convolutional network to obtain a visit representation. Follow up work augment these

methods with external ontology’s and attention on such external data sources when learning

the representation [19, 20].

More recent work takes advantage of the hierarchical structure present in medical codes

as they are assigned to a patient. For example in [21], the final visit representation is

created hierarchically: first codes are embedded at a treatment level where a set of medi-

cation/procedures codes predict diagnosis codes, followed by diagnosis level where the rep-

resentations at this level are made to predict next visits codes. Empirically the method

can learn from a small set of samples and outperform earlier methods as presented on their

proprietary datasets. Although these methods achieve reasonable results they do not ex-

plicitly model temporal context. This is important as certain clinical codes are short-lived

3https://github.com/sajaddarabi/TAPER-EHR
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whereas others could be long-lived or be permanent. As a result, certain codes should not

be regarded as the context of one another although they may occur in the same visit or

subsequent visit. This has been studied in Cai et al.[11] where they train a CBOW model

with temporal attention on the code representations. Most of these methods are concerned

with medical code embedding and disregard physician notes which can potentially attribute

to an improved representation.

Medical notes contain a vast amount of information but have not been studied adequately,

especially for downstream tasks in the medical setting. Most works have focused on clinical

concept embedding instead. In a clinical setting, nurses and doctors document patients

progress. As notes are typically recorded using medical jargon, they do not necessarily follow

the common grammatical structure found in English text. As such building, a representation

from medical text using hand-engineered features is a challenge [22]. For example in [23] the

authors use unstructured EHR data and learn semi-supervised patient representation which

are then evaluated on downstream tasks such readmission, mortality and length of stay.

Along this line of work, in [24] text from EHR are used to embed patient text by predicting

billing codes and averaged for downstream tasks using neural networks. Similarly, in [25],

the authors evaluate different models for embedding clinical notes such as CNNs, LSTMs

and evaluate them on chronic disease prediction. Although they showed good results their

models are not expressive enough to capture all of the salience present in clinical text. To

this end, a recent model namely Bidirectional Encoder Representation Transformers (BERT)

language model presented by Devlin et al.[5] have recently outperformed previous methods

on many benchmarks. This model was used in [26] to embed medical notes of patients. They

evaluate their representations predictive performance on downstream tasks showing state of

the art results compared to other methods.

Few works have studied the combination of both text and clinical codes. Previous work

[27], trains skip-gram and word2vec models to jointly embed clinical concepts and clinical

text into a unified vector. Similarly, in [28] they use clinical text to predict clinical concepts.

Although both text and code are taken into account, they are different from transferring the

joint representation to downstream tasks that is the focus of our work.
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Figure 2.2: Overview of method used to obtain patient visit representation.

2.3 Method

The objective of this work is to create a distributed representation for a patient based on text

and medical codes. This representation is then fed to classifier for predictive analytics tasks

such as mortality, length of stay, and readmission (Fig. 5.1). We split the training into two

steps, (1) Skip-gram model using transformer networks to learn medical code representation,

(2) a BERT model is trained on medical notes and the resulting representations at a time

step are summarized using auto-encoder architectures [29, 30, 31]. The final representation

for a patient is a concatenation of these two. We discuss the approach in more detail in the

following subsections.

To present the problem setting, the sequence of EHR data under consideration consists

of a finite set of medical concepts C =M∪D∪P , whereM is the set of medication codes,

D is the set of diagnosis codes, and P is the set of procedure codes. Accompanying the codes

are medical notes T . We denote a patients longitudinal data as DT = {(c0, t0), · · · (cT , tT )}

with T visits where ci and ti correspond to the codes and texts assigned respectively within

the same visit window.
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Figure 2.3: The code representation module is a transformer encoder, which takes as input

patient clinical codes. The embedding matrix is a <d×C matrix. Clinical codes are embeeded

using the embedding matrix, which is then passed to the transformer encoder block.

2.3.1 Medical Code Embedding

We use skip-gram model to learn code embeddings as it is able to capture relationships and

co-occurence between codes. We briefly review skip-gram model presented by Mikolov et

al.[9]. Given a sequence of codes {c1, c2, . . . , cT}, where each code vector is a binary vector

ct ∈ {0, 1}|C|, the model is tasked to predict the neighbouring codes given a code ct. The

objective can be written as

1

T

T∑
t=1

∑
−w≤j≤w,j 6=0

c>t+jlog(ĉt) + (1− c>t+j)log(1− ĉt) (2.1)

Here w is the context window, and the softmax function is used to model the distribution

p(ct+j|ct). We use multiple transformer encoder layers with self-attention mechanism as the

model for skip-gram. This model is then trained on medical code sequence S = {c0, · · · cT}

by stacking code vectors into a matrix K ∈ {0, 1}T×|C|. The resulting set of codes are then

converted into a set of embedding codes ect ∈ <d using an embedding matrix W ∈ <|C|×d.

The embedding for the set of codes ct at visit t is obtained as

9



ect = W T ct (2.2)

As the model does not contain any recurrence or convolution, to enable the model to

make use of the ordering we need to inject information about the relative positioning of each

embedding. This is done by adding to each embedding position a sinusoidal with frequency

as a function of its timestamp t as suggested by the original transformer network. This

signal acts as positional-dependent information which the model could use to incorporate

time. The model is summarized in Fig. 2.3. We stack multiple transformer layers following

on top of the embedding matrix. By transformer layer, we mean a block containing the

multi-head self-attention sub-layer followed by feed-forward and residual connections. For

more details on this refer to [14] and the tensor2tensor library4. As multi-head attention

can attend to future time steps, to ensure that the model’s predictions are only conditioned

on past visits, that is embedding at time step t can only attend to previous time steps

t− 1, t− 2 . . . , we mask the attention layers with a causal triangular mask. This is the same

”masked attention” in the decoder component of the original transformer network. This

mask is applied to the set of embedding

E = {ec1 , ec2 , . . . ecT } (2.3)

Attention(Q,K,V ) = softmax(
QKT

√
d

)V (2.4)

in the encoder block to ensure causality. Where the query Q, key K, and value V are set

to the sequence of embeddings E, and d is the embedding dimension. To obtain the final

code representation for timestep t, the tth output of the self-attention output is used. We

call this code representation Ect .
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Figure 2.4: The text representation module takes as input patient text and pre-processes

them into tokens, which are embedded using BERT. Subsequently, it is fed to a text sum-

marizer autoencoder network. In this work, a LSTM-AE is used to learn the intermediate

patient representation.

2.3.2 Medical Text Embedding

An overview of the text module is shown in Fig. 2.4. The embedding for the medical

text sequence of a patient for time sequence {t1, t2, . . . , tT} is obtained by using a pre-

trained BERT model initialized from BioBERT [32] followed by a bidirectional GRU as

a text summarizer. This is done, as the pre-trained BERT model has a fixed maximum

sequence length of n limiting the sequential scope of the text. Further, medical notes could

get very lengthy during a visit and they contain different types of notes such as nurse notes,

pharmacy notes, discharge notes, etc. the aggregate length of these at a time step t could

surpass the fixed length size of n. As the aim is to obtain a single visit representation, the

aggregate notes at until time step T are batched into a set of sentences (u1, u2, · · · , um),

where ui ∈ Zn and m is the maximum occurring length in the corpus after batching each

visits text into sentences of n words. The resulting set of sentences for a visit is embedded

4https://github.com/tensorflow/tensor2tensor
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using the BERT model which results in a matrix U ∈ <m×dBERT .

h1:m = GRUenc(Um, h0) (2.5)

EUt = softmax(
h1:mhT1:m√

dtext
)h1:m (2.6)

Û = GRUdec(Um, hm) (2.7)

L(U1:m,t, Û1:m,t) =
m∑
i

(ui − ûi)T (ui − ûi) (2.8)

Subsequently, the set of sentence representations are summarized into a single patient text

representation using a text-summarizer module. This module follows an auto-encoder ar-

chitecture with GRU’s as the building block. The input is a set of sentence representations

∈ <dtext obtained by the BERT module applied on the aggregate text until time t followed by

a self-attention head on the hidden representations, where the decoder is tasked to output a

sentence representations ∈ <dtext following the bottleneck. The objective of the summarizer

is to reduce the MSE loss objective between the input sequence of the text embeddings and

the models predicted representation at the correspondingly same time-step. Finally, the

patients visit text representation is obtained by summarizing the set of sentence representa-

tions {U1, U2, ..., Um}, where the output of the attention head applied on the encoders hidden

representations is used as the representation.

2.3.3 Patient Representation

The final patient representation Zt at time t is obtained by concatenating the code, and text

representations. Additionally, the demographics dt of the patient recorded in visit at time

t is concatenated to the resulting vector. The demographics of patient contain information

such as age, gender, race, etc, where categorical values are coded as one hot vectors. The

final representation is denoted as Zt = [Ect ;EUt ; dt], where the size of this vector is the sum

of the components dembedding+denc+ddemographics. This representation is used for downstream

tasks.

We provide specific values for the dimensions of each component in our implementation

details in the experiments section.
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2.4 Experiments

2.4.1 Dataset

We evaluate our model on the publicly available MIMIC-III clinical Database [33]. It consists

of EHR records of 58,976 hospital admission consisting of 38,597 ICU patients from 2001 to

2012. On average, each patient has 1.26 visits. The database contains tables associated with

different data, where we extracted demographics, medical codes, and medical notes.

2.4.1.1 Readmission task

The first task is to predict 30-day unplanned readmission to the ICU after being discharged.

In this task, we formulate it as a binary problem, that is to predict whether a patient will be

readmitted within 30-days after being discharged. Text entered into the MIMIC database,

contains different reports, such as nurse notes, lab results, discharge summaries etc. We

limit the text for each visit to contain the discharge summaries or text entered within the

last 48h before the patient is discharged in the absence of discharge summaries.

2.4.1.2 Mortality task

The second task is to predict mortality of patient, whether they passed away after being

discharged or within the ICU. Similar to readmission it is formulated as a binary task. In

this task, mortality related codes are discarded from the dataset and patients who were

admitted for organ donations are removed. Additionally, the input text for each visit is

limited to the first 24h of the admission.

2.4.1.3 Length of stay task

: The third task is to forecast the length of stay (LOS) for patients. In this task, longer LOS

is an indication of more severe illness and complex conditions. We formulate this problem

as a multi-class classification problem by bucketing the length of stay into 9 classes: 1-7

correspond to one to seven days respectively, 8 corresponds to more than 1 week but less
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than 2, 9 corresponds to more than 2 weeks. The model is tasked to predict P (Y = L|Zt)

where L ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9 denoting the different time intervals defined previously.

2.4.1.4 Code prediction task

: In this task, clinical codes are predicted for new admissions of patients given past clinical

codes and historical data of the patient. The predicted vector is high-dimensional equal to

the size of unique codes.

2.4.2 Data preprocessing

We extracted procedure, and diagnosis codes for each patient visit. These codes are defined

by the International Classification of Disease (ICD9) and medications using the National

Drug Code (NDC) standard. The total number of ICD9 codes in MIMIC-III is 6984, the

number of drug codes is 3389, and the number of procedure codes is 1783. Codes whose

frequency are less than 5 are removed. We used the Clinical Classification Software for

ICD9-CM5 to group the ICD9 diagnosis codes into 231 categories. The Clinical Classifica-

tion Software for Services and Procedures6 was used to group the procedure codes into 704

categories. Additionally, patients of age under 18 were removed from the cohort. As medical

notes contain many errors, we correct grammatical errors and remove non-alphanumerical

characters. The text preprocessing closely follows [26]. After preprocessing, the average

recorded number of codes per visit is 20.52, the average number of words in medical notes

is 7898 and the average number of visits per patient is 1.29. The statistics of the compiled

cohort are depicted in Fig.2.5

5https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
6https://www.hcup-us.ahrq.gov/toolssoftware /ccs svcsproc/ccssvcproc.jsp
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2.4.3 Experimental Setup

2.4.3.1 Model Configuration & training details

The training follows the method discussed in Section 5.3. A medical concept model is

trained independently on clinical codes in an unsupervised manner and similarly, the text

summarizer is trained on the text portion.

To train the transformer encoder we explored different values for hyperparameters, namely

number of layers, number of multi-head attention heads nhead, dimension for each head dhead

and the final model representations dcode. We found 2 layers perform well. We set the models

representation dimension (dcode) to 128. Further, the self-attention module contains 8 head

(nhead), each with dimension 64 (dhead), which are a common configuration used in trans-

former networks. The network is trained using Adam [34] with a cosine annealing schedule

and with a period of 50 epochs. The initial learning rate is set to 0.00025. The window size

for the skipgram objective is set to 2.

We initialize the BERT model with the pre-trained weights on medical nodes as presented

in [35]. In this work, the BERT language model is initialized with BioBERT which is a model

that has been trained on a large corpus of public medical data such as PubMed, medical

abstracts, etc. Then the model was fine-tuned on the MIMIC-III clinical notes.

To train the text summarizer we use a 2-layer bidirectional GRU autoencoder with the

intermediate representation set to denc = 128. A teacher-forcing ratio of 0.5 is used with a

step learning rate schedule decay of 0.1 every 50 epochs with initial lr set to 10−3 [36]. We

have also tried using cosine annealing schedule, though this did not result in improvements.

Lastly, the classifier for downstream tasks is a simple 2-layer fully connected network. The

first layer contains
dcode+dtext+ddemographics

2
neurons with ReLU activation followed by a layer

which maps to number of classes in the downstream task. When training on downstream

tasks only the classifier weights are trained for 30 epochs with a step learning rate schedule

decay of 0.1 every 10 epochs. This setting is used for all downstream tasks.
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2.4.3.2 Implementation details

We implemented all the models with Pytorch 1.0 [37]. For training the models we use the

Adam optimizer [34]. In all experiments, the batch size is set to 32 on a machine equipped

with 1 NIVIDIA 1080TI CUDA 9.0, 32GB Memory & 8 CPU cores.

2.4.4 Evaluation Metrics

The compiled cohort consists of patientuids as keys that are unique to each patient which

are used to create the test/train split. This is done using k-fold with k = 7 on the patient

keys, which the unsupervised models are trained on the train portion and validated on test

(≈ 15% of total data). The output for a particular time step is evaluated using the patient

representation Zt at time t.

2.4.4.1 Area under the precision-recall (AU-PR)

this metric is the cumulative area under the curve by plotting precision and recall while

varying the outputs P (yt = 1|Zt) true/false threshold from 0 to 1.

2.4.4.2 Receiver operating characteristic curve (AU-ROC)

this metric is the area under the plot of the true positive rate against false positive rate while

varying outputs P (yt = 1|Zt) true/false threshold from 0 to 1.

2.4.5 Baselines

We compare our model with the following baselines

• Med2Vec [17]:

A multi-layer perceptron is trained on medical codes using the skip-gram objective

function on a visit basis. An additional loss term is used for the co-occurrence of

codes within the same visit as a regularization. The resulting output is a set of code
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representations in <d.

• ClinicalBERT [26]:

A BERT model is pre-trained on public medical data, which is then fine-tuned on

clinical text. Following this pre-training a BERT classifier is initialized with pre-trained

weights and further fine-tuned on downstream tasks. The input to this network is text.

• Time-aware Embedding [11]:

A multi-layer perceptron is trained on medical codes with an additional attention layer

to take into account the temporal context of medical codes. The resulting model is

trained using either skip-gram/CBOW.

• Patient2Vec [20]:

In this work a sequence of medical codes are embedded using word2vec model. The

sequence of visits with irregular time intervals is then binned into a set of subsequences

with standard intervals. Subsequently, the embedded vectors are stacked into a matrix

where convolution stacked with GRU and attention models are applied to obtain the

final patient representation.

• Joint-Skipgram[27]:

The embeddings are trained using both text and code as the vocabulary. In addition

to the traditional skipgram loss, i.e. codes in the same visit predicting surrounding

codes or text predicting surrounding text; the skipgram objective is modified such that

text in a visit predict codes in the same visit and vice versa.

• Deepr[18]:

A set of clinical codes are embedded using skip-gram model. As visits contain multiple

codes, the vectors corresponding to each code is stacked into a matrix, then the set of

matrices for each visit is fed to a convolutional neural network and max-pooling layers

to extract the final patient representation.

• Sgcode + Sgtext:

Embeddings for both code and text are learnt using the skipgram objective indepen-

17



dently. Subsequently for downstream tasks a patient representation is obtained by

concatenating the code and text embeddings.

• Supervised:

The BERT model and summarizer takes as input raw text and transformer model raw

codes, which is trained jointly on downstream tasks without pretraining.

We do not compare with more traditional text embeddings such bag of words (BOW) as

other work have shown the benefits of using BERT as text representation in NLP tasks.

We study the effect of different components presented by adding/removing text/code/demographics

representation to our final patient visit representation.
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Figure 2.5: Statistics of compiled cohort for both length of stay and readmission downstream

tasks.

2.5 Results

To show the expressiveness of our representation, we evaluate its performance compared to

baseline methods on downstream tasks and unsupervised learning tasks presented in the

experiment section. We present the results obtained by embedding both text and code as

patient representation on three downstream tasks: (1) 30-day readmission, (2) mortality,

and (3) length of stay (LOS). Note that in MIMIC-III database clinical codes are entered

into the database upon discharge of a patient, as consequently the presented results may

not be immediately clinically actionable in this case. Although, this may not be the case in

other datasets where codes are updated throughout a visit. To this end the codes on the

same visit are not fed to the model, but rather the previous set of codes are used.

20



10 20 30 40
recall@k

30

40

50

60

70

%
 re

ca
ll

ours
med2vec
Patient2Vec/Deepr
Time-aware Embedding
joint-skip-gram
skip-gram
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2.5.1 Code pre-training

The encoder network is trained on clinical concepts and as most patients have 3 hospital

visits after filtering to atleast 2 visits the window size for the loss term is set to 2. The

performance of our network is compared with baseline methods using recall@k. This metric

is evaluated by computing

recall@k =
# of relevant codes in top k

# number of relevant code

This metric mimics a practitioners method of arriving at a diagnosis or prescribing med-

ications where they generally have several sets of candidates as a presumed cause for the

underlying condition of the patient. As shown in Fig. 2.6 our code embedding consistently

outperforms the baselines. All baselines are fine-tuned on the same corpora by exploring dif-

ferent architectural hyper-parameters, except the embedding size which is fixed to dcode = 128

for all models. A comparison on recall for different codes (diagnosis, procedure) is also re-

ported in Table. 2.1. From the results the time-aware code representations outperform other

baselines.
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2.5.2 Ablation Study

To evaluate the different components of the proposed method we conduct an ablation study

on the inclusion/exclusion of the components in the final representation for downstream

tasks. The complete representation using demographics, text representation and clinical

code representation is the concatenation of these on a visit Zt = [Ect ;EUt ; dt].

2.5.2.1 Readmission

To better evaluate the effect of the different embedding components, we run an ablation

study. The results are reported in table 2.2.

Table 2.2: Downstream Tasks: Readmission

Method AUC-ROC PR-AUC

Text+Code+Demo 67.42% 68.03%

Text+Code 65.74% 65.43%

Text+Demo 61.44% 62.81%

Code+Demo 64.53% 67.68%

Text 56.44% 56.55%

Code 60.74% 57.89%

Demo 54.76% 59.01%

From the results, it can be seen both text and code are informative for classifying read-

mission. The complete combination of text, code, demographics outperforms others in this

case.
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2.5.2.2 Mortality

Mortality task is concerned with predicting whether a patient will pass away within a pre-

defined window. We predict mortality on a visit basis i.e. does the patient pass away in the

current visit to the ICU. An ablation is done in table 2.3. Similar, to previous ablations, the

combination of text, code, and demographics outperforms other combinations.

Table 2.3: Downstream Tasks: Mortality

Model AUC-ROC PR-AUC

Text+Code+Demo 63.42% 65.65%

Text+Code 59.75% 60.33%

Text+Demo 61.54% 64.07%

Code+Demo 60.41% 64.41%

Text 57.14% 57.72%

Code 56.91% 53.71%

Demo 60.10% 62.02%

2.5.2.3 Length of Stay

In general length of stay is a much more challenging task compared to readmission binary

task. In this classification task, we limit the medical text to the first 24-hours of the current

patient visit in which length of stay is being predicted. Limiting the note context window is

done as medical text could include information on date patient has been discharged. In this

task the network is trained on imbalanced class data split and tested on balanced data, this

is done as the majority of classes are discharged within 24h-48h.

As shown in table 2.4, the combination of text, code and demo outperforms others. We
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Table 2.4: Downstream Tasks: Length of Stay Top-1 avg over 5-fold cross validation

Method Top-1

Text+Code+Demo 25.57%

Text+Code 23.38%

Text+Demo 21.10%

Code+Demo 22.22%

Text 18.82%

Code 20.54%

Demo 20.13%

conclude in this set of experiments, solely using text and diagnosis codes is not predictive

enough to forcast the length of stay of patients.

2.5.2.4 Comparison with Other Work
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We ran all baseline models on three downstream tasks using the same pre-processing

steps. The final results are reported in table 2.5. To compare our method, we use the

combination of text, code, and demographics. As demographics has proven to have pre-

dictive power for the downstream tasks, other methods are augmented to use this as in-

put/concatenated to the output representation prior to prediction. From Table. 2.5 the

presented method outperforms others by a 1-2% margin, on all tasks demonstrating the

usefulness of unsupervised pre-training.

2.6 Conclusion

Effective representation learning for EHR data is an essential step to improving care. We

study embedding both medical codes and notes into a unified vector representation for down-

stream task prediction. The presented method effectively takes the temporal context of these

two data streams and provides a patient visit representation. The proposed method was eval-

uated on three tasks namely, readmission, mortality, and length of stay outperforming other

methods. An ablation study was also done showing the usefulness of both text and code

when modeling patient visits. Future work could focus on adding additional data streams to

the pipeline by taking into account real-time vitals and measurements taken from a patient

as they undergo care.
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CHAPTER 3

EICU EHR: Unsupervised Patient Signal & Clinical Codes as

Patient Status Vector

Effective modeling of electronic health records presents many challenges as they contain

large amounts of irregularity most of which are due to the varying procedures and diagnosis

a patient may have. Despite the recent progress in machine learning, unsupervised learning

remains largely at open, especially in the healthcare domain. In this work, we present a

two-step unsupervised representation learning scheme to summarize the multi-modal clinical

time series consisting of signals and medical codes into a patient status vector. First, an auto-

encoder step is used to reduce sparse medical codes and clinical time series into a distributed

representation. Subsequently, the concatenation of the distributed representations is further

fine-tuned using a forecasting task. We evaluate the usefulness of the representation on

two downstream tasks: mortality and readmission. Our proposed method shows improved

generalization performance for both short duration ICU visits and long duration ICU visits.

3.1 Introduction

Learning patient representation is a popular topic in health analytics. With the availability

of electronic health records (EHR) systems and increasing amounts of data, it has opened

avenues in learning these representations using deep learning methods. The general approach

for that matter is learning representations through the use of supervision signals. Whereas in

regimes, where labels are hard to acquire or not readily available unsupervised learning is used

to leverage the data regardless of the presence of labels. As healthcare naturally suffers from

limited labels and high costs with obtaining labels, learning reusable feature representations

from large unlabeled samples has been an area of active research. Unsupervised learning
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can be used to produce representations of general utility, which can be further used for

downstream tasks such as mortality, readmission, and length of stay.

Routine medical practice generates a wealth of patient time-series, most of which are

preempted by conditions a patient may have as they undergo care. Annotating the different

data inputs to the system often requires medical experts incurring high costs to label the

data. In addition to this, there are challenges in processing EHR data, and applying machine

learning methods on patient data is not immediately obvious due to complicating factors in

the collection process. To enumerate a few challenges: 1) the data is multi-modal (Fig.

3.1). 2) in the recorded values there are many missing and incomplete values requiring pre-

processing or imputation techniques. 3) there is a natural structure in the collection process

that may not be captured in a single patient, but more so when looking at a body of patients,

4) Temporal nature of clinical events. Representation learning can help overcome some of

these challenges.

The choice of representation plays a significant role in machine learning algorithms and

their performance [8]. Many efforts are put into developing methods that would enable learn-

ing representations that generally lends itself to improved predictive performance. There

are different approaches to representation learning, such as clustering, principal component

analysis, independent component analysis, and, more recently, deep-learning, which has

outperformed other methods [8]. Deep representation learning uses a set of non-linear trans-

formations of the input data, which results in more abstract features as the network depth

increases.

The use of unsupervised methods for learning representations is widely recognized for

solving problems with limited data and label information. Once a high-level representation

is learned downstream supervised tasks could become much easier for the model mapping the

representations to the desired output. Further, unsupervised learning typically imposes inter-

mediate optimizations which allow the network to learn the input distribution and learning

regularities present in the input. This might be helpful in avoiding scenarios where super-

vised learning would poorly generalize. Perhaps the most common unsupervised method is

autoencoder architectures that attempt to map the input to the same input with minimal
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distortion [38],[8]. Similar ideas are commonly employed in natural language processing tasks

that learn word embeddings [16],mikolov2013. Recently, these methods have been employed

to learn medical concepts and have shown promising results [17], [19],[11],[39].

Admission
Timeline

Medication

Diagnosis

Treatment

Heartrate

�
1

�
2

�
3

V
ita
ls

Figure 3.1: EHR patient timeline contains multi-modal sparse data each of which are entered

at varying frequencies.

Previous work at large use unsupervised learning solely on clinical concepts, and disre-

gard the patients progress throughout their ICU visit. It is not obvious how to combine

other data modes to obtain a patient representation. Also, as embeddings are made to pre-

dict the surrounding context, the data used to train the embeddings are limited to patients

with multiple visits, which could drastically reduce the dataset size. For medical and health-

care settings, it is essential to develop techniques that not only yield good performance on

supervised tasks but are also efficient and reliable [40]. In this paper, we propose to use

unsupervised learning on both clinical concepts and vital signals using networks that take

into account the sequential context of a patient leveraging good portions of the data. The

obtained representations can be later used as a patient’s status vector for downstream task

prediction.

The contributions of the paper are the following:

• We propose a two-step unsupervised fine-tuning task for embedding patient data: (1)
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a single visit autoencoding step followed by a (2) forecasting autoencoding step

• We use multi-modal data, namely, clinical concepts + vital signals and show improved

generalization performance for both long duration and short duration ICU stays on

the eICU dataset.

The paper is organized as follows: we describe related works in section 3.1, we then

present our proposed method for unsupervised pretraining in section 3.2, followed by section

3.3.2 which describes the experimental setup and the results of our proposed method in

section 3.4.4.

3.2 Related Works

The unsupervised learning used in this work stems from the widely used auto-encoding

principle [15],baldi2012autoencoders. Deep auto-encoder architectures are pre-trained and

followed by a supervised learning phase to train a top classifier layer that is fine-tuned on spe-

cific tasks [41],[42]. These have been naturally extended to other architectures and learning

methods such as variational, denoising, convolutional autoencoders[30],[43],[44]. In [9] they

extended this idea to natural language processing and introduced two intuitive methods for

word embeddings: (1) skip-gram where a current word is said to predict surrounding words,

(2) continuous bag of words (CBOW) where a set of words are made to predict a center word

[12]. As the text is naturally ordered, this idea was extended to sequential models, which are

more fitting for sentences and learning sequential dependencies. For example, the popular

Seq2Seq architecture is commonly used to learn language models for language generation

[45]. As these methods have become widespread in Natural Language Processing, they have

also been extended to medical settings.

Deep unsupervised representation learning has been successfully applied to various health

settings such as EHRs (clinical concepts), medical text, and imaging data with the propose

of phenotyping or classification. The general approach is to extract features using an un-

supervised model and to stack it with a classifier for downstream tasks. For instance, in
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[46], a stack of denoising autoencoder multi-layer perceptron was used to predict future dis-

ease codes. They run their method on a large database consisting of approximately 700,000

patients and show improved predictive performance. Similarly, in [17, 47], a multi-layer

perceptron using the skip-gram model was trained with an added regularization for the co-

occurrence of codes within a visit to embed the clinical concepts on MIMIC III. As EHR

data might have limited occurrences of specific codes and hence hinder the learning process

of deep models, later work suggested to add an attention mechanism on external ontology’s

[19]. More recent work on clinical concept embedding focused on leveraging temporal context

using attention [11]. From the results, they suggested learning time-aware representations is

critical to improving the performance for a clinical decision task. Generally, the aforemen-

tioned methods consider different flat representations from different sources and use their

concatenations. Other methods leverage a hierarchical prior to the learning process [21],

where medication and procedure codes are made to predict diagnosis codes enabling the

model to benefit from the structure present in EHRs. They further improve on this idea by

attempting to learn to have the underlying model learn the EHR structure [48]. Most of

these methods are mostly limited to clinical concepts and do not use other portions of EHR

data, such as vital signals.

Several works have studied unsupervised methods for clinical time series signals[49]. In

[47], they use LSTM autoencoders to learn a representation for clinical signals and evalu-

ate the overall performance of the AE architecture. Similarly, [50] preprocess signals using

frequency-domain transforms and further embed these using an autoencoder bottleneck re-

sulting in a final representation for detecting false arrhythmia alarms. More relevant work

[51], use a Seq2Seq model for learning representations of clinical time series with an au-

toencoder loss. Following this, they assess the representation by feeding them to an LSTM

classifier and evaluate on mortality/readmission tasks. They show the benefits of unsuper-

vised learning for limited data settings compared to supervised learning based on prediction

performance. In this paper, we focus on an unsupervised framework for learning a patient

status vector using these data streams as inputs.
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Figure 3.2: Overview of the proposed method: (a) autoencoding step for each datastream,

data fed at this stage is predicting data occuring in the same stay. (b) forecasting step using

the concatenation of the embeddings (PSVt). The next time step is predicted in this step.

3.3 Proposed Method

In the current presentation, we are interested in learning a patient embedding using both

clinical time-series signals and concepts. The overview of our method is a two-step unsuper-

vised task (Figure. 5.1): the first task is an auto-encoding task in which networks are forced

to compress the representation, and the second task is a unified forecasting task using the

concatenation of the learned intermediate representations incorporating surrounding context

into the representation.

To introduce the problem setting, consider a sequence of EHR data that consists of finite

number of medical concepts C = M ∪ D ∪ T , where M is the set of medication codes,

D is the set of diagnosis codes, and T is the set of treatment codes. Clinical codes are

typically treated as sets, in which order is not of significance. We simply concatenate the

codes in the order in which they are recorded in a patient’s record. Additionally, a set of

clinical time-series signals S are measured at varying frequencies, where different patients

could have different sets of signals.
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The EHR data record of a patient may contain multiple hospital admissions. The ad-

missions could each contain multiple visits to an ICU. As will be explained in section

3.3.2, the dataset we apply the method on does not provide enough information to dis-

tinguish the order of hospital visits for a patient. As a result, we treat each admission

independent of past hospital admissions and hence a patients data and timestamps are

limited to the hospital admission. With restriction in mind, then the longitudinal pa-

tient data for a hospital visit can be written as Dn = {I1, I2 · · · In}, where each Ii de-

notes an ICU visit with varying duration. An ICU visit contains the data sequence ITi =

{(m1, d1, tr1, s1), (m2, d2, tr2, s2) · · · (mT , dT , trT , sT )}, where formally time units in an ICU

visit can be defined as minutes, hours or days.

We will go through the training steps to obtain patient representation during hospital

admission.

3.3.1 Unsupervised Autoencoder

Briefly, an Autoencoder is a neural network that learns to reconstruct its original input with

the goal of learning a useful representation. The Autoencoder model contains an encoding

block followed by a decoder. The encoding maps the input x ∈ <d to an intermediate repre-

sentation <m. Typically m is chosen to be less than d, and is called a bottleneck mechanism

forcing the network to compress the high dimensional input to a smaller dimension. The

decoder is then tasked to map the representation back to the original data-space <d.

If we let fθ and gφ denote the encoder and decoder block respectively, where θ and φ are

the model parameters, then the objective can be written as follows:

e = fθ(x), x̂ = gφ(e)

L(x, x̂) =
1

N

N∑
i

||x− x̂||22

The MSE loss is used for real-valued reconstruction, whereas for multiclass one-hot vec-

tors, the cross-entropy loss is better suited. Ideally, a good performing autoencoder given
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sufficient context should reconstruct the input with minimal distortion.

3.3.1.1 Medical Concept Embedding

Clinical concepts are high dimensional and sparse. To embed this data input, we use an au-

toencoder, which takes as input clinical concepts occurring throughout a patient’s ICU visit.

As medical concepts are time stamped in an ICU visit, it is important to take into account

the sequential dependencies as well. To this end, we use multiple transformer networks layers

to learn the embeddings [14]. Transformers are known to be suited for sparse sequential data

and learning inherent structures present in the input by using the self-attention mechanism.

Each concept type is fed to its network with an autoencoder loss (Figure. 5.1a). As we

consider three code types, three transformer networks are trained independently on the re-

spective code inputs. More concretely the diagnosis network is given a sequence of diagnosis

codes {d1, d2 · · · dT} the codes are first embedded using an embedding matrix W ∈ <|D|×d,

where the embeddings are obtained as et = W Tdt. The set of embeddings {e1, e2, · · · , eT}

are then fed to transformer decoder layers. A triangular mask is applied so that the output

of the transformer at time t can only attend to previous time steps t− 1, t− 2, · · · to main-

tain causality. The objective of the network is then to predict the input following the AE

bottleneck

L(dt, d̂t) = −
∑
i

di log(d̂i) + (1− di) log(1− d̂i)

Where d̂i is the predicted set of diagnosis codes, and di is the input multi-hot vector.

3.3.1.2 Clinical Time Series Embedding

Seq2Seq models are well suited for scenarios that require mapping an input sequence to

an output sequence. While Seq2Seq models are commonly used for supervised tasks and

language modeling, we use it to embed the clinical time series of a patient into a repre-

sentation by minimizing the reconstruction error between the input and output. Similar to
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autoencoders, Seq2Seq models have both an encoder and a decoder block. We use Gated

recurrent units (GRU) cells, a recurrent neural network variant, which is known to benefit

from being able to learn faster and handle longer sequences, as the basic building block of

the encoder and decoder of the Seq2Seq model. The input to this network is a sequence

of time-series that accompanies the patient’s clinical concepts at the same corresponding

time denoted as {s1, s2 · · · sT}, where each sample st is a feature vector <|S|. As noted ear-

lier, patients may have missing attributes at each time step. To this effect, we present a

mask vector mt ∈ {0, 1}|S|, where a 1 represents whether the feature has been observed or

not. The Seq2Seq model is then trained by windowing the clinical time series, defined at

a particular granularity of time, with window size w and setting the objective to the MSE

autoencoder loss. We slightly modified the objective to penalize predictions solely when

there is an observed value at the corresponding same time step. Formally written as

L(S1:T , Ŝ1:T ) =
1

N

T
w∑
k

mwk:w(k+1)

·||swk:w(k+1) − ŝwk:w(k+1)||22

where mwk:w(k+1) is the mask ranging from time wk to w(k + 1), similarly ŝwk:w(k+1) is

the output of the seq2seq model and swk:w(k+1) is the input signal.

3.3.2 Unsupervised Forecasting Task

In the first step, the data streams were fed into their respective models independently.

Next, we want to incorporate in the encoder blocks with knowledge of other representations

obtained from other data streams. We do this by combining the representations following

the first pretraining phase and further fine-tuning on a forecasting task, that is, predicting

the next visits diagnosis, medication, treatment codes, and vitals (Figure.5.1 b).

To combine the learned diagnosis, medication, treatment and clinical time series we

simply concatenate the representations to create a PSVt = [edt ; emt ; etrt ; est ] at time t, which

we call the patient status vector (PSV).

Each code representation {edt , emt , etrt} is obtained by embedding the set of codes until
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time t and taking the final hidden representation of the transformer network as the represen-

tation of the code. For example, the set of diagnosis codes {d1, · · · dt} are embedded using

the transformer network creating a set of representations Hd = {hd1 · · ·hdt}. Then the final

hidden representation edt = hdt is used.

On the other hand as there are many more data points for clinical time series, the accumu-

lated vitals until time t are first windowed using the same window size w in the autoencoding

step. The resulting is a set of sequences {s1:w, sw:2w, · · · sw( t
w
−1):t}. Subsequently, a hidden

representation is obtained from the encoder cell in the Seq2Seq model Hs = {hs1 , · · · , hst}

and the representation for the signal portion is obtained as

est = [hst ; maxpool(Hs); meanpool(Hs)]

where the components are concatenated, this is done as the time-series signals could get

very lengthy and information may get lost if we were only to consider the last representation

of the time series. Intuitively, by taking the max-pool, we are looking at a part of the signal

resulting in high activation, the mean-pool a baseline measure, and the final representation

as to the most recent condition of the patient’s signal.

Additionally, we add the patients demographics zt ∈ <|Z| containing, age, weight, height,

and gender where discrete values are coded as one hot vectors. The final representation is

obtain as

PSVt = [edt ; emt ; etrt ; est ; zt]

This representation is used for the forecasting task, which has two components: 1) pre-

dicting the set of codes at the next time step and 2) predicting the set of vitals for the next

time window. This objective of the unsupervised forecasting step can be written as

1

2T

T∑
t=1

∑
0≤j≤w,j 6=0

log(p(ct+j|psvt))+

1

2T
w

T
w∑
i

mwk:w(k+1) · ||swk:w(k+1) − ŝwk:w(k+1)||22
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where a fully connected layer followed by softmax is used to model p(ct+j|PSVt). On

the other hand, ŝt is a GRU decoder model with hidden input as the concatenation of

medical code representations along with the generated encoder representations. Intuitively,

this pretraining step will force the networks to learn the surrounding context of other data

streams, which could help in predicting a patient’s status.

Based on the suggested representation learning scheme, the trained networks from the

autoencoding and forecasting steps are used to embed patients given a medical record. This

embedding is fed to a simple multi-layer perceptron classifier for downstream tasks. Training

details and hyperparameters used for each specific task are detailed in the experiment section.

3.4 Experiments

3.4.1 Data

The dataset used is the publicly available eICU collaborative Research Database v2.0 [52].

The eICU consists of over 200,000 Intensive Care Unit (ICU) records collected from over 250

hospital sites in the United States, between 2014 and 2015. The data is indexed through

unique patient identifiers, where each patient could have multiple hospital admissions, and

within each hospital admission, they could be admitted to an ICU multiple times. Times-

tamps in a patient’s record are referenced from the ICU admission stay, in which patients

could have a certain delay before being admitted to an ICU. As the tables provided in the

dataset do not allow one to order hospital admissions, the downstream tasks are limited to

within hospital admissions, and further, the patients’ history is limited to ICU visit. From

the encounter records, we extract diagnosis codes, medication codes, and treatment codes.

Additionally, we extract periodic vital signals collected regularly by bedside monitors.

3.4.1.1 Preprocessing

Encounters in the ICU vary significantly from patient to patient. As a result, we preprocess

the dataset to include sufficient examples for learning. Patients younger than 16 years of
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age are removed. The dataset contains patients with burns and organ donors or admission

after a transplant which are also removed from the dataset. The periodic bedside monitoring

devices are down-sampled to median values every 5 minutes by the original creators of the

dataset; We further down-sample by binning the values every 60 minutes (12 samples). The

median is used for each bin. Following the preprocessing steps, we normalize signals and

patient demographics to have zero mean and unit variance. We summarize the statistics

of the compiled cohort in Table 3.1. Two cohorts are considered of different lengths: short

ICU visits of 1 hour to 24 hours, and extended ICU visits of 24 hours to 720 hours duration.

Our preprocessing steps closely resemble that of APACHE IV [53], a gold-standard metric

in which we have used similar exclusion criteria.

Table 3.1: Cohort Statistics of Compiled Data

1h-24h 24h-720h

# hospital visits 44190 95649

# ICU stays 46664 110270

# of diagnosis codes (avg/visit) 918 (1.17) 918 (3.075)

# of medication codes (avg/visit) 1412 (8.52) 1412 (21.66)

# of treatment codes (avg/visit) 2711 (1.12) 2711 (2.85)

length of signals (avg, min, max) (14.6, 0, 205) (87, 0, 832)

# of in-hospital mortality 3249 6157

# of within visit ICU readmissions 10858 21742

3.4.2 Downstream tasks

To evaluate the usefulness of the learned representation, we train a classifier on top of the

representation on downstream tasks and evaluate its generalization performance.

Mortality: Given a patient’s record and patients history, predict the patient’s death
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during the ICU stay. This is a binary prediction task.

Readmission Similarly, in this task, we focus on predicting whether the patient will be

readmitted to ICU again within the same visit.

3.4.3 Training Details & Evaluation & Baselines

The unsupervised training follows the method described in Section 3.2.

The medical concept autoencoder blocks are transformer layers with multi-head attention,

as described in [14]. This block contains multiple hyperparameters namely number of multi-

head attention heads nhead, dimension for each head dhead and the final model representations

dcode. We set these to 8, 64, and 256 respectively for all three medical concept embedding

blocks two such layers are stacked. The network is trained using Adam [34] with a cosine

annealing schedule and a period of 50 epochs. The initial learning rate is set to 0.00025.

The Seq2Seq model is trained by setting the window size for clinical signals to 24 (i.e.,

a full day). Missing values are imputed with the median of the statistics of the complete

dataset if the patient does not have any history for the vital; otherwise, the patient’s average

is used to impute the corresponding missing signal. The encoder and decoder blocks are

bidirectional GRU cells where the encoder hidden layer dimension is set to denc = 128, and

the decoder is set to 256. A step learning rate with initial lr set to 0.001, and step decay

rate of 50 is used to train the network for 100 epochs.

Following the autoencoding training, the dataset is filtered to contain visits with multiple

ICU stays for the forecasting step. To avoid catastrophic forgetting, we gradually unfreeze

the blocks and allow them to train for 2 epochs [54]. This is similar to chain thaw proposed

in [55], where each layer is trained at a time. Though here, we gradually unfreeze the whole

model and allow it to learn altogether. Our final patient status vector representation is of

dimension 1762 fed to a two-layer fully connected layer with ReLU as activation and dropout

set to 0.1 in between layers.

We implemented all the models with Pytorch 1.0 [37]. For training the models, we use

the Adam optimizer [34]. In all experiments, the batch size is set to 64.
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3.4.3.1 Evaluation

For all experiments, we use 15% of the data selected randomly as the test set. The remainder

is used for training/validation splits. In all experiments, the presented values are the average

of 5 experiments for each task.

Area under the precision-recall (AU-PR): this metric is the cumulative area under

the curve by plotting precision and recall while varying the outputs P (y = 1|(c1 : t, s1 : t))

true/false threshold from 0 to 1.

Receiver operating characteristic curve (AU-ROC): This metric is the area under the

plot of the true positive rate against false positive rate while varying outputs P (y = 1|(c1 :

t, s1 : t)) true/false threshold from 0 to 1.

3.4.3.2 Baseline Models

• Transformer Embedding: The set of medical concepts in the records are embedded

by training a transformer network using the skip-gram model. This representation is

used as a patient representation for downstream tasks.

• Seq2Seq (Unsupervised): A Seq2Seq model is trained on clinical times series portion

of the data, which can then be used to embed patients signals for the downstream task.

• Seq2Seq (Semi-supervised): A Seq2Seq model is trained on clinical times series por-

tion of the data, and further fine-tuned on downstream tasks.

• Transformercode + Transformersignal Two transformer networks are fed indepen-

dent data streams and concatenated for downstream supervised tasks. The method is

supervised.

• Ours - Supervised: The proposed model with the same complexity is trained with

the raw data and directly trained on downstream tasks.

We also perform an ablation on different components of the patient status vector by
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including/excluding portions of the representations

3.4.4 Limited Data Setting

To show the usefulness of unsupervised pretraining, we run our pretraining method in a

limited data setting. That is, the model is pretrained on a small subset of the dataset

and evaluated on the rest. We run experiments on random train splits sizes of [0.05, 0.15,

0.25, 0.5, 0.75, 0.9]%. Our model is then compared to the proposed model with the same

complexity in terms of network size and trained with supervised signal given raw input.

Ideally, the model should outperform the supervised method when there is limited data as

pretraining allows the network to generalize better by avoiding bad local minimas, which the

supervised method would fit into.

3.5 Results

To evaluate the PSV representation, we consider both a short duration cohort and a long

duration cohort. This is done as the dynamics of short term ICU stays, and long term ICU

stays vary greatly. The results for both downstream tasks are summarized in Table 3.2&3.3.

From the tables, the ablation of the different components for the PSV model is done by

first pretraining the model in an unsupervised fashion and freezing the pre-trained network

on downstream tasks. Empirically, from both tables, it is evident that the network benefits

from both code and signal representations on the defined tasks.

Two of the presented baseline models use only portions of the complete data under

consideration, and to make a fair comparison, we can compare them with the respective

components of the PSV model accordingly. For example, Seq2Seq [51] can be compared to

PSV (Signal). Similarly, Transformer [39] can be compared to PSV (Code). In both cases,

the difference is largely in the unsupervised training step. As a result, by leveraging both

single visit ICU data and multi-visit ICU patients, we can achieve a better initialization for

downstream tasks leading to improved predictive performance.
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We also compare our method with baselines that make use of the same inputs of our com-

plete PSV model. Referring to both tables, both supervised methods which have comparable

sizes to our model converge to lower accuracies. This makes sense as unsupervised pretrain-

ing allows the network to learn model distribution, whereas supervised methods tasked with

directly learning the input to output mapping, making it harder to optimize the model’s

parameters.

Lastly, from the results, the prediction performance drops (significantly in some cases)

when comparing short visits and long visits. This could largely be due to dynamics that are

present in longer ICU visits or human factors that are not present/captured in the dataset.

3.5.1 Calibration

The reliability of a model’s confidence is critical in health settings and calibration plots

are a common measure for the model’s reliability [56, 57]. A method for learning patient

representation should lend itself to well calibrated model, which intuitively, means a model

predicting with 80% confidence should be correct 80% of the time. Generally, more recent

methods are found to not be well calibrated [56]. To this end, we provide calibration plots

of our model for both readmission and mortality tasks in Fig. 3.3. The plots are obtained

by binning the models predictions and evaluating the models accuracy at each bin level.

From this figure, we can see that the model accuracy increases as its confidence in prediction

also increases. The readmission task follows the ideal scenario more closely compared to the

mortality task. Note that in a binary classification problem for any classifier the baseline

confidence is 0.5.

3.5.2 Visualization

We illustrate the t-SNE plot for our learned representation for both readmission and mor-

tality tasks by reducing the patient status vector across all sample points to its 2 largest

principal components. Referring to Fig 3.4 a), the readmission task is relatively better

1Results reported using our re-implementation, further the input are limited to the same set of vitals/codes under
consideration.
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Table 3.2: Mortality downstream task ablation, and comparison with baselines. Results

reported are average of 5 runs on a test split of 15% and the std are reported in parenthesis.

Dataset (Mortality task) 1h-24h 24h-720h

PR-AUC ROC PR-AUC ROC

PSV (Code+Signal) 62.46 (± 0.20) 90.06 (± 0.12) 48.88 (± 0.13) 85.90 (± 0.09)

PSV (Code) 45.35 (± 0.22) 81.69 (± 0.29) 30.50 (± 0.22) 77.98 (± 0.14)

PSV (Signal) 49.42 (± 0.18) 82.27 (± 0.04) 31.32 (±0.10) 82.27 (± 0.04)

PSV (Semi-supervised) 65.40 (± 0.35) 89.10 (± 0.59) 53.76 (± 0.26) 85.15 (± 0.66)

Seq2Seq [51]1 7.73 (± 0.60) 51.32 (± 0.31) 8.17 (± 0.05) 61.90 (± 0.19)

Seq2Seq (Semi-supervised) 8.58(±0.32) 51.23(± 0.22) 19.22 (± 0.06) 61.63 (± 61.63)

Transformer [39]2 11.18 (± 0.35) 53.01 (± 0.64) 10.67 (± 0.30) 50.45 (± 0.88)

Transformer (Code) + (Signal) 58.12 (± 0.46) 78.28 (± 0.39) 47.71 (± 0.35) 83.45 (± 0.29)

PSV (Supervised) 64.61 (± 0.32) 88.38 (± 0.13) 51.24 (± 0.31) 81.25 (± 0.26)

clustered compared to the mortality task.

3.5.3 Limited Data Setting

Finally, we also show the usefulness of unsupervised pre-training in limited data settings.

Referring to Fig 3.5, our semi-supervised model consistently outperforms its supervised coun-

terpart, more so in the lower end.
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Figure 3.3: Calibration plots for both readmission (a) and mortality (b) tasks. The ideal

calibration plot is plotted in grey for both Figures.
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Figure 3.4: t-SNE visualization for different subset of learned representations for both read-

mission and mortality task. From the Figures in the case of a) the positive targets mainly

surround the border whereas in the mortality case b) they are clustered more so in the center.
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Table 3.3: Readmission downstream task ablation, and comparison with baselines. Results

reported are average of 5 runs on a test split of 15% and the std are reported in parenthesis.

Dataset (Readmission task) 1h-24h 24h-720h

PR-AUC ROC PR-AUC ROC

PSV (Code+Signal) 61.25 (± 0.26) 80.99 (± 0.11) 57.86 (± 0.19) 80.94 (± 0.09)

PSV (Code) 57.24 (± 0.56) 79.58 (± 0.12) 49.63 (± 0.38) 76.15 (± 0.24)

PSV (Signal) 30.47 (± 0.13) 59.35 (± 0.15) 30.34 (± 0.10) 59.22 (± 0.14)

PSV (Semi-supervised) 69.02 (± 0.42) 83.40 (± 0.23) 68.04 (± 0.51) 82.25 (± 0.24)

Seq2Seq [51]2 26.43 (± 0.56) 51.45 (± 1.13) 20.30 (± 0.18) 52.35 (± 0.34)

Seq2Seq (Semi-supervised) 26.68(± 0.19) 51.80 (±0.54) 22.31 (± 0.11) 52.18 (± 0.42)

Transformer [39]2 28.22 (± 0.60) 58.82 (± 0.43) 27.70 (± 0.79) 59.45 (± 0.91)

Transformer (Code) + (Signal) 56.23 (± 0.34) 75.98 (± 0.53) 54.79 (± 0.49) 76.45 (± 0.36)

PSV (Supervised) 60.12 (± 0.33) 80.73 (± 0.43) 58.41 (± 0.21) 78.79 (± 0.44)

3.6 Conclusion

In this paper, we have introduced an unsupervised patient status vector embedding scheme

for EHR patient longitudinal data. The method effectively leverages both single-visit ICU

patients and multi-visit ICU patients using a two-step autoencoding step. We have evaluated

the proposed method using two cohorts compiled from the eICU EHR dataset of different

duration by using periodic vital signals and medical codes as input to our model. From

empirical results on downstream tasks, the proposed unsupervised learning approach out-
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Figure 3.5: Comparison of supervised and unsupervised PSV model trained on limited data.

performs previous work. Lastly, presented in the results, long-stay ICU visit patients present

a bigger challenge for modeling; as EHR data do not necessarily contain human factors that

could play in the prognosis of a patient, future work could leverage different modes of data,

which were not considered in this work.
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CHAPTER 4

Contrastive Mixup: Semi-Supervised learning for Tabular Domain

Recent literature in self-supervised has demonstrated significant progress in closing the gap

between supervised and unsupervised methods in the image and text domains. These meth-

ods rely on domain-specific augmentations that are not directly amenable to the tabular

domain. Instead, we introduce Contrastive Mixup, a semi-supervised learning framework

for tabular data and demonstrate its effectiveness in limited annotated data settings. Our

proposed method leverages Mixup-based augmentation under the manifold assumption by

mapping samples to a low dimensional latent space and encourage interpolated samples to

have high a similarity within the same labeled class. Unlabeled samples are additionally

employed via a transductive label propagation method to further enrich the set of similar

and dissimilar pairs that can be used in the contrastive loss term. We demonstrate the

effectiveness of the proposed framework on public tabular datasets and real-world clinical

datasets.

4.1 Introduction

Deep learning has shown tremendous success in domains where large annotated datasets

are readily available such as vision, text, speech via supervised learning. Implicitly learned

by these models is an intermediate representation that lends itself useful for downstream

tasks. Unfortunately, in many settings such as healthcare, large annotated datasets are

not readily available to enable learning such valuable representations. As a result, there

has been a push towards learning these in an unsupervised or semi-supervised manner as

unannotated data on the other hand may be readily available for free and a lot of it in

many cases. Recent literature has shown significant progress towards learning these useful
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representations without human-annotated data, closing the gap between supervised and

unsupervised learning, and in some cases demonstrating superior transfer learning properties

compared to its supervised counterpart [58, 59].

Self-supervised methods have emerged as a promising approach to achieving appealing

results in various applications without requiring labeled examples. This is typically done via

pretext tasks closely related to the downstream tasks of interest and typically differs from

domain to domain. For example, in the image domain colorization [60], jigsaw puzzle[61],

rotation prediction [62] have been previously presented as pretext tasks useful for learning

such representations. Similarly, in the text domain, commonly used pretext tasks, such as

predicting masked words and context words, have been widely used [63, 5]. More recently,

contrastive learning methods introduced leverage domain specific transformations to create

multiple semantically similar examples such as random cropping or flipping for images that

preserve the semantic meaning and encourage the network to be invariant to such transfor-

mations achieving great success. Such pretext tasks and transformations cannot be readily

applied that do not have the same structural information, as an example tabular data1.

It is not clear how to generate new semantically similar examples for tabular data. More-

over, in many settings, tabular data contains both categorical and continuous features which

require different treatment. In this work, we focus on tabular data settings that contain a

small set of annotated samples and a relatively sizeable unlabeled set of samples. Specifically,

we propose a framework for improving downstream task performance in this semi-supervised

setting. Our method consists of a semi-self-supervised pretraining step where a feature re-

construction pretext task and a supervised contrastive loss term are used. Various forms

of Mixup augmentation [64] has been used in the image domain, where new examples are

created by taking convex combinations of pairs of examples. This may lead to low probable

samples in the dataspace for tabular data. Instead, we leverage the manifold assumption 2

and mix samples in the latent space to create multiple views for our contrastive loss term.

The unlabeled subset is further leveraged by pre-training the encoder and using label prop-

1Tabular data contains a set of rows (examples) and columns (features) that may be permutation invariant.
2Manifold Assumption: High-dimensional data lies (roughly) on a low-dimensional manifold.
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agation [65] to generate pseudo-labels for the unlabeled samples. Subsequently, the trained

encoder and samples, for which we have generated pseudo-labels for, are transferred to a

downstream task where a simple predictor with Mixup [64] augmentation is trained. We

show that our proposed framework leads to improvements on various tabular datasets, such

as UCI and Genomics (UK Biobank).

4.2 Related Works

Our work fits the semi-supervised learning framework [?] where both labeled and unlabeled

samples are used to improve downstream task performance. We draw from recent literature

in self-supervised representation learning, pseudo-labeling [66] and Mixup based supervised

learning [64].

At the core of the self-supervised methods are pre-text tasks, where labels are created from

the raw unlabeled data itself, and supervised losses are then used to learn useful representa-

tions for downstream prediction tasks. In these lines of works, examples of domain-specific

pre-text tasks such as jigsaw puzzle [67], colorization [60], relative positioning prediction [68]

have been introduced for images, masked word prediction [63, 69], next sentence prediction

[70] for text. There is also existing work on self-supervised/semi-supervised learning meth-

ods. For example, a similar in-painting task [71] can be used to predict masked features in a

row as done in [72, 73]. On the other hand, many recent self-supervised methods are based

on contrastive representation learning [59], in which domain-specific augmentation (e.g., ran-

dom crop, random color distortion for images) are used to create ”similar” samples, and the

normalized cross-entropy loss [74, 75] is used to increase the similarity of ”positive” pairs in

the latent space, and decrease the similarity of ”negative” pairs. A downside of generating

negative and positives without label information is that examples belonging to the same class

may be pushed apart. In [76] authors leverage label information to consider many ”similar”

examples to be pulled closer to one another and farther away from the dissimilar examples.

As these methods leverage properties inherent to the raw data, they are not amenable to the

tabular domain, which is the focus of this work.
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The setting we are considering fits the semi-supervised learning framework. Prior work

on semi-supervised learning can be broadly separated into two main categories: methods

that add an unsupervised loss term to the supervised task as a regularizer, e.g., [61, 77, 78]

and methods that assign pseudo labels [66] to the unlabeled samples. Recently, [79] proposed

VIME, a state-of-the-art semi-supervised method for the tabular domain where they leverage

consistency regularization and in-painting [71] inspired augmentation. In [66] the current

network trained on labeled samples is used to infer pseudo-labels on unlabeled samples using

a confidence threshold, which is then treated similar to labeled samples to minimize entropy.

Transductive learning is more generic in that instead of training a generic classifier, the goal

is to used patterns in the labeled set to infer labels for the unlabeled set. Label propagation

has been widely used in transductive learning in the image domain in an online fashion

where CNN features are used for few-shot learning [80]. Along this line of work, recently

[65] use label propagation in an offline fashion by treating the labeled and unlabeled samples

as a bipartite graph where edges computed via diffusion similarity [81]. In this work, we

propose a semi-supervised framework for the tabular domain where we leverage Mixup [64]

based augmentation, which interpolates samples using a convex combination and assigns

soft labels according to the mixing ratio in the latent space [82] and encourage samples

interpolated from the same class to have high similarity.

To present our method we formulate the self-supervised and semi-supervised problem.

Consider a dataset with N examples: Our assumption is that there is a small subset of

this dataset for which labels are available: DL = {(xi, yi)}NLi=1, and the rest of the dataset

is unlabeled: DU = {(xi)}NUi=1 where xi are observations sampled from a data-generating

distribution p(x) and yi ∈ {0, 1, · · · , c} is a discrete label set. We consider settings where

the majority of the data is unlabeled i.e. |DL| � |DU |. In supervised learning a classifier

f : X → Y ∈ F is a function learned by an ML algorithm which aims at optimizing f for

a given loss function lA(·) i.e. f = minf∈F
∑N

i=1 lA(f(xi), yi). In this limited labeled data

regime a supervised model is most likely to overfit, hence we propose to use the unlabeled

samples to improve the models generalization.
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4.2.1 Self-Supervised Learning

Self-supervised methods leverage unlabeled data to learn useful representations for down-

stream prediction tasks. Many techniques have been proposed for images where useful visual

representations are learned through pre-text tasks such as in-painting, rotation, jig-saw [67,

71, 62], and more recently, the gap between supervised and unsupervised models have drasti-

cally been reduced through contrastive representation learning method [58, 59]. Generally, in

contrastive representation, learning a batch of N samples is augmented through an augmen-

tation function Aug(.) to create a multi-viewed batch with 2N pairs, {x̃i, ỹi}i=1···2N where

x̃2k and x̃2k−1 are two random augmentations of the same sample xk for k = {1, · · · , N}.

The samples are fed to an encoder e : x → z which takes a sample x ∈ X , to obtain a

latent representation z = e(x). Typically when defining a pre-text task, a predictive model

is trained jointly to minimize a self-supervised loss function lss.

min
e,h

E(x,ỹ)∼P (X,Ỹ )

[
l(ỹ, h ◦ e(x)] (4.1)

where h maps z to an embedding space h : z → v. Within a mutliviewed batch, i ∈ I =

{1, · · · 2N} the self supervised loss is defined as

l =
∑
i∈I

−log
( exp(sim(vi, vj(i))/τ)∑

n∈I\{i} exp(sim(vi, vn)/τ)

)
(4.2)

Here, sim(·, ·) ∈ <+ is a similarity function (e.g. dot product or cosine similarity), τ ∈ <+

is a scalar temperature parameter, i is the anchor, A(i) is the positive(s) and I\{i} are the

negatives. The positive and negative samples refer to samples that are semantically similar

and dissimilar respectively. Intuitively, the objective of this function is to bring the positives

and the anchor closer in the embedding space v than the anchor and the negatives, i.e.

sim(va, v+) > sim(va, v−), where va is the anchor and v+, v− are the positive and negative

respectively.
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4.2.2 Semi-Supervised Learning

In semi-supervised learning (SSL), the dataset is comprised of two disjoint sets DL. DU ,

where predictive model f is optimized to minimize a supervised loss, jointly with an unsu-

pervised loss. In other words:

min
f

E(x,y)∼P (X,Y )

[
l(y, f(x))

]
+ βE(x,yps)∼P (X,Yps)

[
lu(yps, f(x))

]
(4.3)

The first term is estimated over the small labeled subset DU , and the second unsupervised

loss is estimated over the more significant unlabeled subset. The unsupervised loss function

lu is defined to help the downstream prediction task, such as consistency loss training [67, 77],

or in our case, a supervised objective on pseudo-labeled samples [66].

4.3 Method

This section describes our proposed method Contrative Mixup, a semi-supervised method

for multi-modal tabular data where structural (spatial or sequential) data augmentations

are not readily available. To this end, we first propose our semi-supervised training to learn

an encoder and subsequently propose to train a classifier using the pre-trained encoder and

pseudo-labels.

4.3.1 Semi-Self-Supervised Learning for Tabular Data

We make use of the manifold assumption where high dimensional data roughly lie on a low

dimensional manifold and then leverage Mixup [64] based data interpolation for creating

positive and negative samples. By doing so we mitigate creating low-probable samples in

the original data space.

In our setting we represent the mutli-modal tabular data rows xi as a concatenation of

discrete D = [D1, · · · , D|D|] and continuous features C = [C1, · · · , C|C|]. The raw features

xi ∈ <d are fed through an embedding layer E : x → x̄ that results in a feature vector

x̄ ∈ <|C|+
∑|D|
i d|Di| , that is a concatenation of the continuous features C and embedded dis-

crete features D, where d|Di| is the embedding dimension for each discrete feature Di. The
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Figure 4.1: Overview of our semi-self-supervised framework. The encoder is trained using

both labeled and unlabeled subsets via the reconstruction loss and contrastive loss terms.

Pseudo-labeles are used

embedded features are fed to an encoder z = e(x̄), and subsequently fed to a feature es-

timation pre-text task, as well as a semi-supervised contastive loss term shown in Figure

5.1.

In the tabular domain, data augmentation commonly used in the image domain cannot

be used. Instead, we propose to interpolate between samples of the same class to create

positive examples and use a supervised contrastive loss term in the latent space. Given

a batch of labeled examples DB = {xk, yk}Kk=1, we create a new labeled sample (x̂, ŷ) by

interpolating within the same labeled pair of examples

x̂ = λx1 + (1− λ)x2 (4.4)

where λ is a scalar sampled from a random uniform λ ∼ U(0, α) with α ∈ [0, 0.5]. The

newly generated sample x̂ will be λ close to x1 and 1−λ to x2 with the same label as x1 and

x2, i.e. y1 = y2 = ŷ. As opposed to randomly interpolating between samples and enforcing

closeness between samples of different labels, we encourage samples of the same label to lie

close to one another in the latent space.

Applying Mixup in the input space for tabular data may lead to low probable samples

due to the multi-modality of the data and presence of categorical columns. Instead, we map
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samples to the hidden space and interpolate there. More concretely, given an encoder e, that

is comprised of T layers ft, for t ∈ {1, · · ·T}. The samples are fed through to an intermediate

representation ht at layer t. This layer contains a more abstract representations of the input

samples x1 and x2. The samples are interpolated within this intermediate layer as

h̃t12 = λht1 + (1− λ)ht2 (4.5)

where hti is obtained by feeding samples x̄i through the encoder until layer t. Subsequently,

the newly generated samples h̃ti′i as well as the original samples hti are fed through the

rest of the encoder layers t, · · · , T to obtain the latent representation z. In this space we

distinguish between zl and zu, which are the latent representation of labeled and unlabeled

samples respectively in. Note that initially we only consider the labeled portion for the

contrastive term, i.e. (zl, yl) in Figure. 5.1. We define the contrastive loss term to encourage

samples created from pairs of the same class to have high similarity. It is common practice

to introduce a separate predictive model to map the latent representations to an embedding

space via a projection network hproj where the contrastive loss term is defined. We use

supervised contrastive loss [76] for the labelled set DL as our augmentation views are within

a class. It generalizes Eqn. 4.2 to an arbitrary number of positive samples, due to the

presence of labels and examples belonging to the same class are encouraged to have high

similarity, making the loss term more sample efficient.

lsupτ =
∑
i∈I

−1

P (i)

∑
p∈P (i)

log
( exp(sim(hproji , hprojp )/τ)∑

n∈Ne(i) exp(sim(hproji , hprojn )/τ)

)
(4.6)

In the above, P (i) = {p|p ∈ A(i), yi = ỹp} is the set of indices of positives with the same

label as example i, |P (i)| is its cardinality, and Ne(i) = {n|n ∈ I, yi 6= yn}. This objective

function will encourage mixed-uped labeled samples and anchors of the same sample to be

close leading to a better cluster-able representation. In addition to the above loss term the

encoder is trained to minimize the feature reconstruction loss via a decoder fθ(·)

lr(xi) =
|C|
d

|C|∑
c

||fθ ◦ eφ(xi)
c − xci ||22 +

|D|
d

|D|∑
j

dDj∑
o

1[xdi = o] log(fθ ◦ eφ(xi)
o) (4.7)

The semi-self supervised objective function can then be written as

L = E(x,y)∼DL
[
lsupτ (y, f(x))

]
+ βEx∼DU∪DL

[
lr(x)

]
(4.8)
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The encoder is trained using this loss term over K epochs, to warm-start the representations

in the latent space prior to pseudo-labeling and leveraging the unlabeled samples.

4.3.2 Psuedo-labeling Unlabeled Samples

Thus far, we have only used the labelled set DL in the contrastive loss term lsupτ . To make

use of the unlabeled set using DU we proposed to use label propagation [65, 81] after K

epochs of training with the supervised contrastive loss term Lsup. Given the encoder trained

on DL for K epochs, we map the small labelled set DL, and a subset of the unlabeled set

SU ⊂ DU to the latent space z and construct an affinity matrix G

gij :=


sim(zi, zj) if i 6= j and zj ∈ NNk(i)

0 otherwise

(4.9)

where NNk(i) is the k nearest neighbor of sample zi and sim(·, ·)<+ is a similarity measure,

e.g. zTi zj. We then obtain pseudolabels for our unlabeled samples by computing the diffusion

matrix C and setting ỹi := arg max
j
cij, where

(I − αA)C = Y

Similar to [65, 83] we use conjugate method to solve linear equations to obtain C to enable

efficient computation of the pseudo-labels. Here A = D−1/2WD−1/2 is the adjacency matrix,

W = GT + G and D := diag(W1n) is the degree matrix. Once we’ve obtained the pseudo-

labels for the unlabeled subset SU , we train the encoder with unlabeled samples treating the

generated labels as ground truth

L = E(x,y)∼DL
[
lsup(y, f(x))

]
+ γE(x,yps)∼SU )

[
lsup(yps, f(x))

]
+ βEx∼DU

[
lr(x)

]
(4.10)

The pseudo-labels are updated every f epoch of training with the above loss term.

4.3.3 Predictor

Following the semi-supervised pre-training, the encoder is transferred to the downstream

task along with the generated pseudo-labels to train the predictor on the downstream task.
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Encoder 

Unlabeled Dataset

Labeled Dataset

Pseudolabel

MLP

Mixup

Figure 4.2: Overview transfering the semi-supervised pre-training steps to the downstream

task. Encoder e(x̄) is fixed and the predictor - multilayer perceptron (MLP) is trained using

Mixup augmentation. lxce is the generic cross-entropy loss split into supervised (sup) for

labeled subset and unsupervised (unsup) for the unlabeled subset.

We leverage Mixup augmentation [64] in the latent space and feed samples to a set of fully

connected layers as depicted in Figure 4.2.

4.4 Experiment & Emperical Results

This section applies the proposed framework on a set of different tabular datasets and appli-

cation domains to demonstrate its effectiveness. We compare our semi-supervised framework

with VIME [79] another semi-supervised approach for the same problem set as a benchmark.

To evaluate the pre-training phase, we compare with auto-encoder. We also compare with

other semi-supervised method manifold mixup [82]. As a baseline, we include supervised

methods, Logistic Regression, a 2-layer multi-layer perceptron network (MLP) that is used

as the same architecture amongst other deep methods as the predictor network, and we also

include CatBoost [84] as a gradient boosting tree method widely used on tabular data as it

supports categorical columns. Additionally, we provide results for including various compo-

nents of the proposed framework as ablation for the usefulness of each part of the method.

In the experiments, self/semi-supervised use the labelled and unlabeled sets DL, DU during

training, and supervised models only used the labelled sets DL. We normalize the continuous

columns to 0, 1 using Standard-scaler3. The implementation of ContrastiveMixup can be

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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found at https://github.com/¡anonmous¿/ContrastiveMixup

4.4.1 Public Tabular Datasets

We compare the proposed method on four public UCI4 datasets: MNIST, where examples are

interpreted as 784-dimensional feature vectors, UCI Adult, UCI Covertype, more details, are

available in the supplementary. We use 10% of the data as labelled and the rest as unlabeled;

if the dataset contains an original test set, we use this to evaluate the methods; otherwise,

we split the dataset 80% train and 20% test, and the ratios mentioned above follow. As we

introduced embedding layers for categorical columns in our method, we choose the best of

one-hot encoding categorical columns or embedding layers for other methods. The different

variants of our methods for the ablation study are as follows:

• Supervised: the pretraining is removed and only the predictor is trained (i.e. MLP)

• Self-SL only: the pre-training consisting of labeled contrastive loss term and unsu-

pervised reconstruction loss without pseudolabeling. (i.e. λ = 0

• Self-SL + PL: This is the pre-training with pseudolabeling component added, without

mixup component when training the predictor.

4https://archive.ics.uci.edu/ml/datasets.php

57

https://github.com/<anonmous>/ContrastiveMixup
https://archive.ics.uci.edu/ml/datasets.php


T
ab

le
4.

1:
C

om
p
ar

is
on

on
p
u
b
li
c

ta
b
u
la

r
d
at

as
et

s.

D
a
ta

se
t

T
y
p

e
M

e
th

o
d

M
N

IS
T

A
d
u
lt

B
lo

g
F
e
e
d
b
a
ck

C
o
v
e
rt

y
p

e

S
u
p

e
rv

is
e
d

L
og

is
ti

c
90

.1
2

(±
0
.0
0
9
8
)

82
.4

1
(±

0
.0
4
1
3
)

78
.9

1
(±

0
.0
2
2
)

70
.5

4
(±

0
.0
0
8
7
)

M
L

P
93

.6
9

(±
0
.0
2
3
4
)

83
.1

9
(±

0
.0
6
6
3
)

79
.6

3
(±

0
.0
5
1
9
)

75
.9

5
(±

0
.0
2
0
2
)

C
at

b
o
os

t
(±

)
-

(±
−
)

-
(±

−
)

-
(±

−
)

C
at

b
o
os

t
(1

00
%

)
97

.4
1

(±
0
.0
0
9
8
)

87
.5

4
(±

0
.0
0
7
5
)

85
.0

8
(±

0
.0
0
8
8
)

88
.6

4
(±

0
.0
0
7
7
)

S
e
m

i-
su

p
e
rv

is
e
d

A
E

94
.7

2
(±

0
.0
1
2
7
)

84
.1

8
(±

0
.0
0
7
8
)

80
.0

9
(±

0
.0
1
9
9
)

79
.6

7
(±

0
.0
2
9
6
)

M
an

if
ol

d
M

ix
u
p

94
.9

2
(±

0
.0
0
1
2
)

84
.6

8
(±

0
.0
2
7
9
)

80
.2

4
(±

0
.0
6
5
2
)

78
.7

9
(±

0
.0
1
3
5
)

V
IM

E
95

.7
1

(±
0
.0
0
1
3
)

84
.5

4
(±

0
.0
4
0
8
)

81
.3

6
(±

0
.0
3
0
1
)

79
.0

2
(±

0
.1
3
2
9
)

O
u
rs

(A
b
la

ti
o
n
)

S
u
p

er
v
is

ed
93

.6
9

(±
0
.0
2
3
4
)

83
.1

9
(±

0
.0
6
6
3
)

79
.6

3
(±

0
.0
5
1
9
)

75
.9

5
(±

0
.0
2
0
2
)

S
el

f-
S
L

95
.8

2
(±

0
.0
1
3
1
)

85
.1

6
(±

0
.0
2
4
9
)

81
.3

8
(±

0
.0
3
7
3
)

79
.4

6
(±

0
.0
4
6
3
)

S
el

f-
S
L

+
P

L
97

.0
1

(±
0
.0
0
6
6
)

85
.2

6
(±

0
.0
2
0
7
)

81
.6

5
(±

0
.0
3
7
0
)

79
.9

2
(±

0
.0
6
8
2
)

O
u
rs

9
7
.5

8
(
±
0
.0
0
7
8
)

8
5
.4

2
(±

0
.0
2
1
0
)

8
1
.8

8
(±

0
.0
1
2
3
)

8
0
.4

1
(±

0
.0
2
0
5
)

58



In Table 4.1 we show that our method consistently out performs previous methods. Further,

through our ablation we demonstrate the various components of our framework each provide

benefit in improving downstream task performance, allbeit the level of the effectiveness is

dataset dependant. As a reference Catboost trained on 100% of the labeled samples is

provided as well. Our results on 10% labeled MNIST with the help of pseudo-labeling we

outperform this reference point.

4.4.2 Genomics Datasets

We assessed the accuracy of our method on the UK Biobank genotypes consisting of around

300,000 individuals genotyped at around 10 millions SNPs. In this experiment, we restricted

our analysis to SNPs with minor allele frequency larger than 1%. Moreover, SNPs that fail

the Hardy-Weinberg test at significance threshold 10−7 were removed. We restricted our

analysis to self-reported British white ancestry individuals. We selected four complex traits

measured in UK Biobank. Including all SNPs in our analysis is computationally expensive.

Therefore, for every trait, we selected around 1000 SNPs with smallest p-value based on a

publicly available summary statistics. Note that the set of selected SNPs is different across

traits after p-value filtering.

To explore the efficacy of our semi-supervised framework on limited labeled data sets in

practical setting, we compared the accuracy of our method with state of the art methods by

varying the number of labeled individuals and using the remaining individuals as unlabeled

samples. The results on four phenotypes are shown in Figure ??. From these figures we

can see the semi-supervised methods outperform logistic regression model for cases where

we only have access to a few thousand labeled samples. For two out of the four phenotypes

logistic regression model outperforms the deep supervised models when adequate labeled

samples are available i.e. > 104. This may be due to only a subset of features being selected

using p-value threshold and hence making deeper models prone to overfititng.
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4.5 Conclusion

Tabular data presents a different challenge compared to images and text, as similar structure

or semantics aren’t present, hence mitigating the transfer-ability of methods from those

domain to the tabular domain. As a result extending semi-supervised methods that work

well in those domains is more challenging for the tabular domain. Additionally, as most of the

literature revolves around images and text not many pre-text tasks, and transformations have

been investigated for such unstructured datasets where ”correlations” or semantic meanings

aren’t immediately present in the data. Instead, we propose a framework for extending the

recent contrastive learning paradigm to the tabular domain and help propel it’s success in

this domain as well. We do this by mapping samples to the latent space and creating new

examples interpolating between samples in this space. We empirically show the effectiveness

of the proposed method, and demonstrate how it improves learning from tabular data with

limited labels. Further, improvements on pre-text tasks or augmentation methods for tabular

datasets will dramatically improve the applicability of deep learning for these data modalities.
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CHAPTER 5

Multi-modal Over Sampling Framework for Tabular Data

Real-world binary classification tasks are in many cases imbalanced, where the minority class

is much smaller than the majority class. This skewness is challenging for machine learning al-

gorithms as they tend to focus on the majority and greatly misclassify the minority. Adding

synthetic minority samples to the dataset before training the model is a popular technique

to address this difficulty and is commonly achieved by interpolating minority samples. Tab-

ular datasets are often multi-modal and contain discrete (categorical) features in addition

to continuous ones which makes interpolation of samples non-trivial. To address this, we

propose a latent space interpolation framework which (1) maps the multi-modal samples to

a dense continuous latent space using an autoencoder; (2) applies oversampling by interpo-

lation in the latent space; and (3) maps the synthetic samples back to the original feature

space. We defined metrics to directly evaluate the quality of the minority data generated and

showed that our framework generates better synthetic data than the existing methods. Fur-

thermore, the superior synthetic data yields better prediction quality in downstream binary

classification tasks, as was demonstrated in extensive experiments with 27 publicly available

real-world datasets.

5.1 Introduction

Imbalanced classification tasks arise naturally, for example, consider the problem of credit

card fraud detection where the vast majority of transactions are legitimate and only a few

are fraudulent. This imbalance is challenging for machine learning (ML) algorithms as they

tend to classify the majority well while poorly classifying the minority. This phenomenon

occurs because the ML algorithms optimize a different metric than the user is interested in,
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resulting in an undesirable bias in the final trained model. Oversampling the minority class

and under-sampling the majority class before training the ML algorithm are popular methods

to address this challenge. They are effective because they yield an augmented dataset for

which the algorithm’s loss function and the desired loss function are more similar. See the

formal description in Section 5.3.1.

As opposed to random oversampling or increasing the weight of the minority class,

SMOTE was the first method to propose balancing the dataset by adding synthetic mi-

nority samples [85]. In SMOTE, the synthetic minority samples are created by interpolating

pairs of the original minority points, hence instead of working in the original sample space by

replicating samples, it generates new samples in the feature space. However, while effective

for densely sampled feature spaces, When the feature space is sparse, the linear interpolation

of samples might yield unrealistic low probability samples. Thus, SMOTE only interpolates

pairs of points that are relatively close in the feature space. However, this strategy is ineffi-

cient when the feature space is high-dimensional, see [86].

Many real-life tabular datasets are multi-modal and include not only continuous numeric

features but also categorical features e.g. gender, color, marital status, etc. We will denote

the former continuous and the latter discrete. It is common to assume that the classification

of each feature (continuous or discrete) is known. When interpolating samples of a multi-

modal dataset with discrete features we face two challenges: (i) how to calculate distances

between samples? and (ii) how to set the discrete feature values for the synthetic samples?

In other words, how can we interpolate ”dog” and ”cat”? The original SMOTE paper

introduced SMOTE-NC which is a SMOTE variant that supports discrete features by: (i)

using a heuristic to estimate the distance implied by the discrete features and (ii) the discrete

feature values are set to be the majority of the k nearest neighbors.

Since its’ inception, more than 100 extensions and variants of SMOTE were proposed.

However, to the best of our knowledge, SMOTE-NC is the only variant that supports discrete

features. A common method used to apply any interpolation method to discrete features

is to encode them using ordinal integers and consider them to be continuous, see e.g. [87].

This method results in synthetic samples that are continuous rather than discrete, thus

63



not realistic. Moreover, many algorithms are optimized for handling discrete features (e.g.

Catboost[88], lightGBM[89] and deep networks[90]) and such augmentation will render these

optimizations useless.

Considering high-dimensional multi-modal data, it is commonly assumed that the data

resides on an unknown lower dimensional manifold. For such sparse high-dimensional data,

simple linear interpolation of samples can result in low probability synthetic samples. Mo-

tivated by this, we propose a latent space interpolation framework based on autoencoders

that we name Tabular AutoEncoder Interpolator (TAEI ). In summary, our method consists

of a dimensionality reduction step where samples are mapped to a dense continuous latent

space. Subsequently, samples of interest are interpolated in the learned latent space (using

SMOTE or any other interpolation technique) before being mapped back to the original

feature space. Since our framework interpolates points in the dense latent space, it creates

more genuine synthetic samples thus improving prediction performance. Additionally, our

approach shifts the challenge of the discrete features from the interpolation method to the

encoder-decoder, where we can leverage previous research. Thus, by mapping the discrete

and continuous features to a unified continuous latent space, we enable dozens of previously

proposed smote variants and extensions to produce multi-modal data. An overview of our

method is shown in Figure 5.1.

When adding minority synthetic samples to the training data in order to improve pre-

diction quality, intuitively, it’s desired that the distribution of synthetic minority samples

will mimic the underlying minority samples distribution. That is: (i) synthetic points will

be generated wherever the underlying minority distribution is high and (ii) will not be gen-

erated where the underlying minority distribution is low. There is a trade-off between the

two requirements above: For example, an oversampler can ”play it safe” and create minority

samples only where it has high confidence thus satisfying (ii) but not (i). Or, an oversampler

can ”take a risk” and create minority samples in larger regions thus satisfying (i) but not

(ii). Two metrics are defined in Section 5.4 to capture these notions: cover and error for

(i) and (ii) respectively. Then, by extensive experimentation with artificial data we map

the methods proposed in the literature and our framework to the cover -error plane. As the

64



Figure 5.1: Overview of our proposed method. The sparse data is encoded into a dense latent

space where synthetic samples (in red) are generated by interpolation. The interpolated

samples are then decoded and added to the original data.

best cover -error balance is unknown, we identify the cover -error Pareto-optimal curve and

show that the oversamplers of our framework constitutes its mid-range so other methods

yield either much higher error, worse cover or sub-par performance for both. Furthermore,

by experimentation with 27 real-world binary classification datasets we show that the supe-

rior quality data generated by our proposed method yields better prediction quality for the

downstream tasks.

To summarize, the contributions of our work are1:

1. We propose a new minority oversampling framework for tabular multi-modal data.

2. We introduce novel metrics to directly measure the quality of the generated data and

demonstrate the effectiveness of our approach in generating high-quality synthetic data.

3. Our framework is decomposable with any auto-encoding technique for multi-modal

data and any continuous interpolation method, allowing it to take advantage of future

advancements in both fields (auto-encoding and interpolation)

1Implementations of the oversamplers proposed here can be found at https://github.com/aws/sagemaker-scikit-
learn-extension/tree/master/src/sagemaker sklearn extension/contrib/taei
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5.2 Related Work

Since SMOTE ’s inception, more than 100 extensions and variations have been published.

Due to their large number, we will not survey all SMOTE variants but only the methods that

resemble our approach. Moreover, to the best of our knowledge only SMOTE-NC proposed

in the original paper supports discrete features. In fact, the two recent survey papers do not

even mention discrete features or multi-modal data, see [91, 87]. [87] empirically compared

85 variants of SMOTE on 104 imbalanced datasets including both continuous and discrete

features. The paper does not describe how the discrete features were processed. We believe

that they were simply treated as continuous after being encoded as ordinal integers. The

best method was found to be Poly [92] which, similarly to SMOTE, interpolates points in

the feature space, but using a slightly different scheme. Differently from SMOTE, Poly

allows interpolating of minority points that are not very close to each other. The second

best performing algorithm, ProWSyn[93], also allowed interpolating of far apart minority

samples.

Several variants of SMOTE share the idea of mapping the samples to another space which

has some desired properties, interpolate in the new space and map the synthetic samples back

to the original feature space. [94] proposed to map the samples using local linear embedding

aiming to create a lower-dimensional space where the data is more separable. [95] similarly

proposed to use isometric feature mapping (Isomap). Kernel functions were also used to map

the features[96, 97]. When the classifier is an SVM, oversampling could be done directly in

the kernel space[98].

As they are very natural, autoencoders were previously proposed as a means to provide

the bi-directional mapping. [99] proposed to create synthetic samples by adding Gaussian

noise to the original samples in the latent space and then decode them back to the feature

space. Later, the same authors proposed to apply SMOTE in the latent space, see [100].

However, there are two key differences between their approach and ours: (1) they train the

autoencoder on the minority class samples only which, due to the low number of samples,

force them to train shallow models and (2) they did not consider discrete features. [101]
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proposed to encode the samples and train the classifier in the latent space. To improve

unsupervised anomaly detection, [102] proposed to use adversarial auto encoders to encode

the features into a Gaussian mixture latent space and interpolate samples near the boundaries

of the distribution. Some methods incorporate mapping the feature to other spaces but

use the new space differently. MOT2LD[103] first maps each training sample into a low-

dimensional space and then applies clustering and weighting heuristics in the low-dimensional

space. In ADOMS[104] each sample neighbors are derived in the original feature space,

however, the synthetic sample is then created along with the first principal component of

the k neighbors.

Synthetic data generation has been studied extensively in the context of deep learning for

image collections. For example, [105] is an interpolating framework very similar to SMOTE

intended for deep networks. Interpolation in the latent space using autoencoders was also

proposed [106, 107]. Similarly to our work, the quality of the resulting synthetic samples was

directly studied in [108] using artificial data. However, the study on image collection is not

easily transferable to tabular datasets as image collections have different characteristics. For

example, image data is spatially coherent. Furthermore, image collections usually contain

hundreds of thousands of images while the number of samples in our tabular datasets is

usually two or three orders of magnitude smaller. In fact, the median and average number

of samples in our dataset collection are about 10k and 3k respectively.

Nevertheless, inspired by study of image collections, generation of tabular multi-modal

data was studied in the context of generative adversarial networks (GANs). The challenge

of synthesizing the discrete features was addressed using three methods: noising the discrete

data [109], using a Gumbel softmax [110, 111] or using an autoencoder to map the data to a

continuous latent space and train the GAN in that space [112]. FAST-DAD [113] generates

multi-modal synthetic samples by augmenting existing samples using Gibbs sampling. The

Gibbs based augmentation method requires a pre-trained conditional expectation model for

all features and another model is used to label the new samples.
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5.3 Method

5.3.1 Oversampling Overview

Consider a dataset (X, Y ) = {(xi, yi)}Ni=1, where xi are observations sampled from a data-

generating distribution p(x) and yi ∈ {0, 1}. We consider a multi-modal setting where xi is

a concatenation of discrete D = [D1, · · · , D|D|] and continuous features C = [C1, · · · , C|C|].

In classification tasks, the goal is to obtain a classifier function f : X → Y ∈ F optimizing

a given loss function l(·, ·)

f = min
f∈F

l (f(X), Y )

Where f(X) is the vector of predictions or class probabilities and Y is the vector of true

labels. For imbalanced binary classification, l(·, ·) is commonly ROC-AUC, F1-score or G-

score which are not additive (as defined below).

We consider the common case of obtaining the classifier f by training an ML algorithm.

To the best of our knowledge, all mainstream ML algorithms assume additivity of the loss.

Formally, they optimize an additive loss function lA such that:

lA (f(X), Y ) =
N∑
i=1

l′A(f(xi), yi)

Where lA is commonly logistic loss, cross entropy or hinge loss. The challenge stems from the

desired loss l(·, ·) being different from the loss the algorithm optimizes lA(·, ·). Oversampling

schemes address this challenge by adding minority class synthetic samples (X ′, Y ′) to the

dataset aiming at making f ∗A that minimizes lA (f(X ∪X ′), Y ∪ Y ′) more similar f ∗ that

minimizes l (f(X), Y ).

5.3.2 Method Overview

Our proposed framework is based on the standard autoencoder scheme proposed in [41].

As we are concerned with multi-modal data, for every categorical column D, we introduce

an embedding layer W ∈ <|D|×d|D| . The input which is a concatenation of discrete and

continuous features is passed through the embedding layer resulting in a feature vector
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xi ∈ <|C|+
∑|D|
i d|Di| that is used as the input to the autoencoder

z = gφ(x)

Where gφ(·) is a high capacity deep neural network, such as a set of fully connected layers.

As in traditional autoencoders, a decoder module hθ(z) is used to map the latent points

back to the feature space x. The objective minimized while training the autoencoder is the

reconstruction loss:

min
θ,φ

Ep(x)[d(hθ(z), x)]

In a multi-modal setting, the reconstruction contains both discrete and continuous variables

therefore the function d(·) is a sum of the softmax loss and mean squared error (MSE):

Jrecon(D; θ, φ) =
∑
xi

|C|∑
c

||hθ(zi)c − xci ||22

+ α
∑
xi

|D|∑
d

∑
o

1[xdi = o] log(hθ(zi)
o)

Where α is a constant controlling the weight of the softmax loss. In our experiments α = 0.3

was used.

Once we have a fully trained autoencoder we leverage existing interpolation methods

to synthesize minority samples in the latent space and using the decoder to map them

back to the feature space. In our experiments SMOTE and Poly [92] were used. Poly is

a simple interpolation technique that was selected based on it’s superior performance in

the experiments of [87]. Nevertheless, our framework and the published code support any

underlying interpolation method.

5.3.3 Autoencoder Schemes

As samples are interpolated in the latent space, it is desired that the latent space manifold

will be dense and without holes i.e. without low probability regions surrounded by high

probability ones. When the latent space manifold contains holes, pairs of points from high

probability regions might by interpolated into these low probability regions which can result
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in the generation of unrealistic samples. Vanilla autoencoders do not have such guarantees,

hence we studied several other autoencoders with the motivation of creating a dense latent

space in which linear interpolation of samples from the manifold will reside on the manifold

as well. Formal description of the models described below can be found in Appendix ??.

Auto Encoder (AE) We compose both our encoder gφ and decoder hθ as fully connected

layers FC-BN-ReLU with depth 3 and the size of all layers was either 100 or 200. The latent

representation dimension was 20 or 40. For each discrete feature, the embedding size is set

to min(600, round(1.6 ∗ |D|0.56) where |D| is the number of unique values for the discrete

column.

The latent space representation for a sample x is given by z = gφ(x). It is decoded back

by x′ = hθ(z). The objective minimized while training the autoencoder is the reconstruction

loss:

Ep(x)[Jrecon(hθ(gφ(x)), x)]

Where

Jrecon(X; θ, φ) =
∑
xi

|C|∑
c

||hθ(zi)c − xci ||22

+ α
∑
xi

|D|∑
d

∑
o

1[xdi = o] log(hθ(zi)
o)

Where α is a constant controlling the weight of the softmax loss. In our experiments α = 0.3

was used. AE oversampler is provided by AEOversampler of our package.

Variational autoencoder (VAE) Due to their probabilistic nature, VAEs naturally yield

a smooth latent space manifold. We have used the vanilla VAE[114] with embeddings for

the discrete columns and Jrecon as defined above.

We have used the vanilla VAE[114] with embeddings for the discrete columns as de-

scribed above. The encoder and decoder an reconstruction loss are the same as for AE. VAE

oversampler is provided by VAEOversampler of our package.

Regularized autoencoder (RAE) Recent developments have shown that adding a regu-

larization loss in the latent space results in a deterministic autoencoder with similar prop-
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erties as in VAEs [115], all be it much faster and easier to train. Thus, in RAE, norm 2

regularization is added to the latent space representation (z) and to the decoder weights.

RAE is based on our AE with regularization on the latent space i.e., instead of optimizing

only Jrecon we optimize

Ep(x)[Jrecon(hθ(gφ(x)), x) + r1 · ||z||22 + r2 ·
∑
w∈hθ

||w||]

where w are the weights of the decoder layers and || · || is the Frobenius norm. r1 and r2

are the weights for these regularization terms. In our experiments we used 1e− 3 for both.

RAE oversampler is provided by RAEOversampler of our package.

Adversarial autoencoder (AAE) Similarly to [102], we train the autoencoder in an

adversarial setting vs a discriminator in the latent space. The discriminator tries to classify

real samples latent representations vs vectors drawn randomly from a Gaussian distribution

and the autoencoder aims at minimizing Jrecon while fooling the discriminator.

AAE is based on our AE with regularization on the latent space using an adversarial

scheme. A discriminator was added, a classification net with the same structure as the

decoder with the task of predicting whether a latent space representation is of a real point

or sampled from a Gaussian distribution. Backward propagation for the encoder-decoder

network using the reconstruction loss and for the discriminator loss were run intermittently

with the same learning rate. AAE oversampler is provided by AAEOversampler of our

package.

Interpolate adversarial autoencoder (IAAE) IAAE is introduced in order to directly

penalize invalid interpolation in the latent space. It is achieved in an adversarial setting

using a discriminator with the task of classifying real samples latent space representations

vs latent space interpolated point. In order to fool the discriminator, the encoder learns a

latent representation in which interpolated samples are similar to real ones

IAAE is based on our AE with regularization on the latent space using an adversarial

scheme. A discriminator was added, a classification net with the same structure as the

decoder with the task of predicting whether a latent space representation is of a real point
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or results from an interpolation of two samples in the latent space. Backward propagation

for the encoder-decoder network using the reconstruction loss and for the discriminator loss

were run intermittently with the same learning rate. At each of the discriminator’s back

propagation steps, half of the samples were randomly interpolated with the other half in

the latent space to create the discriminator ”false” samples. The discriminator task was to

separate these interpolated ”false” samples from the real ones. IAAE oversampler is provided

by IAAEOversampler of our package.

Adversarially constrained autoencoder interpolation (ACAI) Adaptation of the au-

toencoder proposed in [108] for tabular datasets. The autoencoder is regularized by mixing

two samples with ratio α and 1− α in the latent space. The adversarial critic network tries

to predict α given only the decoded interpolated sample.

Adaptation of the autoencoder proposed in [108] for tabular datasets. The autoencoder is

regularized by mixing two samples with ratio α and 1−α in the latent space. The adversarial

critic network tries to predict α given only the decoded interpolated sample. ACAI is based

on our AE with a critic regression net with the same structure as the decoder. At each of the

critic’s back propagation steps, half of the samples of the batch were randomly mixed with

the other half using a random vector α with components i.i.d selected uniformly from [0, 0.5].

The interpolated samples were decoded back to the feature space where the critic predicted

the αs. Backward propagation for the encoder-decoder network using the reconstruction loss

and for the critic loss were run intermittently with the same learning rate. ACAI oversampler

is provided by ACAIOversampler of our package.

Training the autoencoders When training these networks all samples in the training set

are used (minority & and majority samples). In all experiments Adam optimizer[34] was

used to train the autoencoders with an initial learning rate of 1e − 3 decayed every epoch

by a factor of 5e− 3 and trained for a maximum of 10k epochs (recall that our datasets are

small) with early stopping on the loss of the validation set. For the adversarial autoencoder,

the same learning rate and decay were used to train the discriminator network.
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5.4 Evaluation on Artificial Data

In the spirit of [108], we use artificial datasets to evaluate the quality of the synthetic minor-

ity samples generated by the oversamplers. As opposed to real datasets, for artificial ones we

know the underlying distribution thus we can directly measure the quality of the synthetic

data. Generally, artificial datasets are created by defining the minority and majority distri-

butions in feature space and sampling from them. In our experiments these distributions are

defined by two non-overlapping manifolds: the minority manifold and the majority mani-

fold. The artificial datasets are created by sampling uniformly from these two manifolds. To

create multi-modal data, the artificial samples are partially discretized as described below.

To create artificial sparse data, we (1) define a low-dimension manifold in feature space

and (2) split the manifold into minority manifold and majority manifold. So it is guaranteed

that the minority and majority samples reside in separate regions of the same low-dimension

manifold. For a d-dimensional feature space, the manifold is a d-dimensional unit sphere

(which is a (d − 1)-dimensional manifold). The minority manifold is a thin slice of the

sphere. Formally, for a D-dimensional feature space the minority manifold is defined by

||X|| = 1 ∧ |x0| ≤ α and the majority manifold is given by ||X|| = 1 ∧ |x0| > α where || · ||

is the euclidean norm and x0 is the first coordinate of the vector X. α is a constant set so

the density of both manifolds will be the same. For example, when the minority samples are

5% of the samples as was used in the experiments, α = 0.06.
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In Table 5.4. Cover and error of the oversamplers averaged over artificial datasets. (a)

results averaged over all artificial datasets; (b) results averaged over all continuous artificial

datasets; (c) results averaged over all multi-modal artificial datasets. The oversamplers of

the Pareto-optimal front are above the mid-line and our proposed methods are in bold.

To create a continuous artificial dataset of size N with µ of the samples being minority:

(1) sample uniformly N(1−µ) majority samples from the majority manifold and Nµ minority

samples from the minority manifold, and (2) rotate the sphere randomly. To create a multi-

modal dataset with both continuous and discrete features: (1) create a continuous artificial

dataset, (2) discretize some of the features using M bins equally spaced between −1 and

1, and (3) randomly change the order of bins. The order of bins is randomized in order

to remove the geometric information from the ordinal representation i.e., avoid bin 0 being

the leftmost, 1 being the one next to it and so on. We experimented with D ∈ [6, 10],

N ∈ [1k, 10k, 100k], M = 7 and µ = 0.05 so we had 6 continuous and 6 multi-modal classes

of artificial datasets. In the multi-modal datasets half of the features were discretized. In

our experiments, 7 artificial datasets were generated for each of the 12 classes using different

random seeds and the results were averaged over them.

As previously discussed, when synthesising minority data for classification, it’s desired

that the distribution of synthetic minority samples will mimic the underlying minority sam-

ples distribution. That is: (i) synthetic points will be generated wherever the underlying

minority distribution is high and (ii) will not be generated where the underlying minority

distribution is low. However, generating synthetic minority samples in regions in feature

space that have low minority density and high majority density is more harmful than gen-

erating them in regions with low minority and majority densities. Thus, we reformulate (ii)

as: do not generate minority samples in regions where the majority density is higher than

the minority density. The metrics used to measure these notions are formally defined as:

Cover (Cov) measures how well the synthetic minority samples cover the minority man-

ifold. Cover is calculated by (1) using the oversampler to create 10k synthetic minority

samples, (2) sampling 500k minority samples from the minority manifold, (3) for each ”real”
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minority sample, calculate the distance to the closest synthetic point, (4) cover is defined as

the average of these distances. Note that for cover, lower is better.

Error (Err) quantifies how much the synthetic minority samples are reliable as minority.

It is calculated by (1) using the oversampler to create 10k synthetic minority samples, (2)

sampling 500k minority samples from the minority manifold and 500k majority samples

from the majority manifold, (3) for each synthetic sample find the closest ”real” sample. A

synthetic sample is invalid if the closest ”real” point is a majority point. Error is defined as

the ratio of invalid synthetic points to the number of synthetic points generated.

Both cover and error rely on a distance metric in the feature space. Euclidean distance

was used for continuous feature spaces. For multi-modal, as they have an underlying geome-

try, the discrete features where converted back to the continuous space before calculating the

Euclidean distance. It was achieved by replacing each discrete feature value with the center

of the bin previously used for discretizing. It was done for both the generated synthetic

samples and the ”real” ones.

As previously discussed, there is a trade-off between optimizing cover and error. An

oversampler can ”play it safe” and create minority samples only where it has high confidence

thus yielding a lower error but also a higher (worse) cover. On the other hand, an oversampler

can ”take a risk” and create minority samples in larger regions thus lowering (improving)

cover but increasing the error. Since the preffered balance is unclear, and the optimal cover -

error ratio probably varies for different datasets, we are interested in the Pareto-optimal

front.

Recall that there are very few methods that allow generation of multi-modal tabular

data including both continuous and discrete features. We compared our autoencoder based

oversamplers to all available methods:

SMOTE/NC : As SMOTE supports only continuous datasets and SMOTE-NC supports

only datasets that have both numeric and discrete features (fails otherwise) we paired them

together under the name SMOTE/NC.
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CTGAN[111]: A recent generative GAN model specifically designed to handle tabular

datasets by conditioning on discrete columns. The open source implementation was used2.

TGAN[116]: The TGAN network trained using Wassertein GAN loss. The open source

implementation was used3.

Poly : An interpolation method that supports only continuous features thus was included

only in the experiments with continuous artificial datasets. Poly was included as it performed

the best amongst the 85 SMOTE variations evaluated in [87].

No OS : Not oversampling - using the original minority points. In addition to providing a

baseline, the random oversampling used in Section 5.5 yields the same cover and error as

No OS.

As CTGAN and TGAN generate both majority and minority samples, they were used by:

(1) considering the label to be an additional discrete feature in the training phase; (2) when

oversampling, generate more samples then required and filter out the majority samples; (3)

repeat the previous step until the desired number of minority samples is generated.

The resulting Cover and error of the oversamplers are presented in Table 5.4. The

Pareto-optimal oversamplers are above the mid-line. The results averaged over all artificial

datasets can be found in Table 5.4a and Figure 5.2. The results averaged over several slices

of the artificial datasets can be found in Tables 5.4b, 5.4c and 5.4.

Overall, TGAN yields the best cover. However, this comes with the price of very high

error. No OS yields the worst cover but with an error of zero, hence it’s always a part

of the Pareto-optimal front. From our proposed autoencoders, the VAE and AE based

oversamplers consistently outperform the others. Overall (Table 5.4a) VAE and AE fill

the mid-range between TGAN and No OS and outperform all other oversamplers in that

range. Poly supports only continuous features hence it was omitted for multi-modal datasets.

However, for continuous datasets it performs well and belongs to the Pareto-optimal front,

see Table 5.4b.
2https://github.com/sdv-dev/CTGAN
3https://github.com/Baukebrenninkmeijer/On-the-Generation-and-Evaluation-of-Synthetic-Tabular-Data-using-

GANs
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Figure 5.2: Cover and error for the oversamplers averaged over all artificial datasets. The

Pareto-optimal curve is presented by a blue line.

We postulated that the GAN based methods, TGAN and CTGAN, would benefit from

training on a large datasets. However, this was not the case as the results are consistent for

large and small datasets, see Table 5.4 for the results on artificial datasets comprising 100k

samples.

An example of our framework generating more realistic synthetic data compared to

SMOTE is presented in Figure 5.5.

5.5 Evaluation on Real-World Data
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Cov Err

P
a
re

to
-o

p
ti

m
a
l SMOTE+VAE 0.265 0.084

SMOTE+RAE 0.274 0.043

SMOTE+AE 0.275 0.031

No OS 0.287 0.000

SMOTE/NC 0.276 0.061

Poly+VAE 0.283 0.326

SMOTE+ACAI 0.290 0.053

Poly+RAE 0.302 0.204

Poly+ACAI 0.306 0.162

SMOTE+AAE 0.311 0.260

TGAN 0.314 0.617

Poly+AE 0.323 0.153

CTGAN 0.339 0.645

Poly+AAE 0.360 0.357

SMOTE+IAAE 0.385 0.361

Poly+IAAE 0.391 0.386

Table 5.4: Cover and error of the oversamplers averaged over artificial datasets with 100k

samples. Our proposed methods are in bold.
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Figure 5.3: *

(a) SMOTE

Figure 5.4: *

(b) Our framework

Figure 5.5: An example of the synthetic minority samples generated by SMOTE and our

framework. The artificial manifold is a 3d sphere thus the minority manifold resembles a

2d ring. The real minority samples are marked by orange dots and the generated synthetic

samples by blue ×s. See (a) where SMOTE generates some low probability sample inside

the ring. On the other hand, see (b), where our framework by interpolating samples in the

dense latent space generates realistic samples i.e., closer to the underlying minority manifold,

on the ring as opposed to in it.
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In this section we carry out experiments to compare the effectiveness of different over-

samplers in addressing imbalanced binary classification challenges. To summarize, it is done

by using the various oversamplers to augment the training fold before training the classifier

and comparing the classification quality on the test fold.

Data We evaluated the oversampling methods on the 27 public datasets included in

imbalanced-learn4[117], with a varying number of samples, dimensions, and ratios of contin-

uous/discrete features. The preprocessing comprised of normalizing the continuous features

to have a unit variance and encoding the discrete features as ordinal integers. The prepro-

cessing was done using RobustOrdinalEncoder and RobustStandardScaler from sagemaker-

scikit-learn-extension5.

Metric ROC-AUC (area under the receiver operating characteristic curve) was used due

to it’s popularity for binary classification tasks.

Oversamplers We experiment with the oversamplers listed in Section 5.4 with a few

modifications: As Poly and SMOTE do not support discrete features, we applied the common

method of encoding the discrete features as ordinal integers and considered them to be

continuous, see e.g. [87]. In that case, these features were marked as continuous for the

classifier. As SMOTE-NC supports only datasets that have both numeric and discrete

features (fails otherwise), we did not run it for all datasets and it was not included in

the summary tables. As the VAE and AE based autoencoders oversamplers performed the

best in the synthetic data experiments, we experimented with only them. An additional

oversampler introduced is the random oversampler (ROS ) which augments the dataset by

adding random duplicates of samples from the existing minority samples.

Method Each dataset was randomly stratified split into training, validation and test

folds with ratios 60%, 20% and 20% respectively. To evaluate the oversampling methods,

the training fold was oversampled using each of the oversamplers. The oversamplers that

require training, were trained on the training fold with early stopping on the validation

fold when possible. Catboost[88] was used as the classifier due to its popularity and strong

4https://imbalanced-learn.org/stable/
5https://github.com/aws/sagemaker-scikit-learn-extension/
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performance on multi-modal tabular data. Catboost was trained on the augmented training

fold with early stopping on the (not-augmented) validation fold. Finally, ROC-AUC scores

for Catboost’s predictions on the validation and test folds were calculated. For each triplet

of {dataset, oversampler, HPs} the experiment was repeated 7 times with different random

seeds and different data splits and the ROC-AUC scores were averaged over these 7 runs.

Hyper-parameters (HPs) For each oversampler, we considered several HP configura-

tions including the number (or ratio) of synthetic samples to generate which was 10%, 20%

or 30%. For example, Poly+VAE had 24 HP configurations, CTGAN and TGAN had 18

each and SMOTE had 9.

The choice of HPs can greatly effect the experiment results. A common practice is to use

the set of HPs that provides the best results. This practice is explicitly mentioned in [87]

and is frequently implicitly employed e.g., [99, 102]. It is reasonable, for example, when the

scientist have some previous experience with similar data and knows a-priori how to properly

set the HPs. ROC-AUC scores for all oversamplers on all datasets utilizing this practice are

displayed in Table 5.8 and aggregation over all datasets is displayed in Table 5.11a. When

no such prior knowledge exist, it is common to select for each dataset and oversampler the

HP configuration that maximizes ROC-AUC on the validation fold (and use it to calculate

ROC-AUC scores on the test fold). Aggregated results with HPs selected in that manner

are presented in Table 5.11b.

When using the best HPs (Table 5.11a), the top four oversampler are the VAE and AE

based methods. They are followed by the simple Poly, SMOTE and the random oversampler

(ROS ). CTGAN performs slightly worse than ROS but still better than training without any

oversampling (No OS ). Finally, oversampling using TGAN yields worse results than No OS.

When selecting HPs based on the validation fold scores (Table 5.11b), the top performing

oversamplers are Poly+AE and the two VAE based oversamplers. Other than that, only

ROS provides better prediction quality than the baseline (No OS ).
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ROC-AUC

Poly+VAE 0.923149

SMOTE+AE 0.921254

SMOTE+VAE 0.920189

Poly+AE 0.920062

Poly 0.920055

SMOTE 0.919713

ROS 0.917974

CTGAN 0.917878

No OS 0.913276

TGAN 0.912950

Table 5.9: *

(a) Best HPs

ROC-AUC

Poly+VAE 0.916506

Poly+AE 0.915963

SMOTE+VAE 0.913652

ROS 0.913593

No OS 0.913276

SMOTE+AE 0.913224

Poly 0.912299

CTGAN 0.911949

SMOTE 0.908617

TGAN 0.902926

Table 5.10: *

(b) Best validation HPs

Table 5.11: ROC-AUC averaged over all 27 datasets. In (a) the best oversampler HPs, for

each dataset, were used. In (b) the oversampler HPs that yielded the best score on the

validation fold, for each dataset, were used. Methods below the mid-line performed worse

than than the baseline which is training on the original training data (No OS ). Our proposed

methods are in bold.
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5.6 Discussion

Comparison of Tables 5.11a and 5.11b reveals that oversampler HPs have a major effect on

prediction quality. With best HPs, all but a single oversampler yield a better prediction

quality than the baseline (No OS ) while with best validation HPs, No OS was ranked 5th

among 10. Moreover, in Table 5.11a the best model improves ROC-AUC by 0.009 compared

to No OS while in Table 5.11b, the improvement of the best model was only 0.003.

The autoencoder based approaches using VAE and AE outperformed all other methods

in both scenarios with the only exception being ROS slightly outperforming SMOTE+AE

in the best validation HPs scenario. So the balance between cover and error these methods

provide, demonstrated in the artificial datasets study, improves prediction quality for real

datasets. Also note that the wrapped oversamplers outperformed their underlying method in

all cases. Specifically, SMOTE+AE and SMOTE+VAE outperform SMOTE and Poly+AE

and Poly+VAE outperform Poly.

Other than our autoencoder based approaches, the only method that consistently outper-

formed the baseline is the simple random oversampler (ROS ). While not improving cover,

ROS provides better prediction quality by increasing the relative weight of the minority

samples in the training set. Surprisingly, the relatively simple SMOTE and Poly did not

improve over the baseline without optimized HPs. Note that our experiments agree with the

results of [87] in that Poly demonstrates better performance than SMOTE using both HP

selection practices.

The advanced GAN based methods recently proposed, CTGAN and TGAN, performed

poorly even when compared to the simple interpolation methods. In the artificial data

experiments these methods yielded a good cover with very high error which implies that they

tend to generate many synthetic minority points in feature space regions that ”belong” to the

majority class. Recall that these are general generative methods which are not intended for

oversampling the minority and that the label was used as a discrete feature during training.

Perhaps better results can be achieved by emphasising the label during model training.

Moreover, due to the complexity of these methods, training them requires considerably more
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hardware and is more expensive compared to our simpler autoencoder based method. In

particular TGAN is the slowest and most resource hungry amongst all tested methods, due

to the large set of parameters contained within each head representing different columns.

TGAN failed training on isolet dataset, probably because it includes 617 features - the most

in our dataset collection.

5.7 Conclusion

Little attention has been devoted towards generation of synthetic multi-modal tabular data

including both continuous and discrete features. We addressed the multi-modal data chal-

lenge by proposing a family of oversamplers based on the principle of encoding the data in

a dense continuous latent space, interpolate there and map the samples back to the original

feature space. We experimented with real and artificial datasets using several autoencoder

schemes, two underlying interpolation methods and several other previously proposed over-

samplers. Our approach yields a superior prediction quality for real-world datasets and

generates better synthetic data compared to all other methods.

We are interested in further exploring the proposed framework in several directions: As we

currently train our autoencoders in an unsupervised fashion, we plan to study how the labels

can be incorporated in the autoencoder training phase to encourage better interpolation. We

also plan to investigate how can our framework be used to benefit other problem types e.g.,

”balanced” classification or regression. Additionally, modern tabular datasets might include

data types such as free text, images, and audio. Support for synthesising of multi-modal

data that includes these data types is an interesting avenue for future work.

89



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[3] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation models,” in Pro-
ceedings of the 2013 conference on empirical methods in natural language processing,
2013, pp. 1700–1709.
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