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ABSTRACT OF THE DISSERTATION

Embracing Mmwave for XG in the Sky:

A Cross-Domain Approach

by

Zhehui Zhang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Songwu Lu, Chair

Drone-based applications are increasingly prevalent in surveillance, delivery, automation,

and many more usage scenarios. They all require seamless mobility support and high-

throughput data access. The mmWave communication in current cellular networks offers

the physical-layer technology candidate, but cannot deliver the required services. The root

cause lies in the fundamental limit of the legacy time-frequency domain design, where time-

frequency-based multiplexing amplifies Doppler effects and interference in the drone setting,

thus incurring packet losses and connectivity failures.

This dissertation tackles the problem from a novel cross-domain approach to embracing

mmWave for 6G and beyond cellular networks. The cross-domain design synthesizes the

delay-Doppler domain and time-frequency domain. The insight is that we may achieve the

best of both worlds if properly multiplexing signaling in both domains. Along this new direc-

tion, we seek to achieve three goals: high-fidelity channel estimation under aerial mobility, ef-

fective interference cancellation without pre-transmission negotiation, and readily-deployable

practical solutions in 6G and beyond.
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Our contributions can be summarized as follows: 1) We design a novel concurrent channel

state inference algorithm for drones by modeling the shared multipathing features between

cells. Our key insight is that the delay-Doppler domain reveals frequency-decoupled physi-

cal path features. We devise the delay-Doppler signaling that is embedded into the legacy

OFDM signals to enable Doppler-independent inference. Our design characterizes and de-

couples path delay, and infers multipath propagation. 2) We design a novel cross-domain

interference cancellation scheme by multiplexing signals and data across neighboring cells.

Unlike prior schemes that require pre-transmission negotiation of power and data rate, we

transform transmission-induced interference between cells into meaningful data, boosting

throughput among dense, interfering cells in the sky. Our solution is resilient to multiple

interferer scenarios under dense cell deployment. 3) We integrate cross-domain signals in

6G and beyond with practical system designs. Our design has one key objective: retain

the current data transmission pipeline within 3GPP standardized framework to maximize

the deployability. We devise an overlay to embed new delay-Doppler signals into the cur-

rent physical layer in the time-frequency domain. We then propose adaptive scheduling so

that cross-domain signals can be readily integrated into current standards. We assess the

feasibility of our approaches by prototyping and evaluating with an mmWave testbed.
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CHAPTER 1

Introduction

Drones are increasingly valuable in surveillance, delivery, and many more emerging appli-

cations [24]. The global commercial drone market was valued at 2.72 billion US dollars in

2020, and is projected to reach 21.69 billion by 2030 [35]. At the same time, drones pose ex-

tra challenges to the supporting network. These critical applications need seamless network

support to deliver high-throughput and real-time data in the sky. As required by always-on

surveillance or automated delivery, the network should always be available on demand to

deliver high-throughput traffic and offer low end-to-end latency.

The only promising network to enable drone-based applications is cellular networks, which

provide anywhere, anytime access to ubiquitous devices. With the advances of 5G mmWave

technology, above-24GHz frequencies provide multi-Gbps data rates with nearly 100x greater

channel bandwidths than what is available in the sub-6 GHz [25]. According to recent studies,

the ground devices witness boosted data rate of close to 3Gbps with the support of mmWave

technology [92]. However, it is not the case for drones. Although mmWaves communication

provides the physical-layer technology candidate with a wide channel bandwidth, it cannot

deliver the required services for highly mobile drones in the sky due to several challenges.

This dissertation tackles the challenges of embracing mmWaves for 6G and beyond from

a novel cross-domain approach. We next present the challenges of supporting highly-mobile

drones with mmWave bands in §1.1. We then detail our contributions in addressing the

challenges with innovative cross-domain designs in §1.2. Many application scenarios can

benefit from our designs. We introduce the application scenarios in §1.3. Finally, we present
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the organization of this dissertation in §1.4.

1.1 Challenges

There are many challenges to supporting networked drones due to unique propagation fea-

tures in the sky, especially with the emerging mmWave radio. While mmWave technology

successfully boosts data for ground devices under low mobility, it is vulnerable to dramatic

wireless dynamics from high mobility and complicated propagation in the sky. These chal-

lenges induce incorrect channel estimation and interference under mobility, resulting in high

packet loss and failures. Here we summarize the common challenges in two use scenarios:

channel estimation and interference management.

The first and foremost challenge is to tackle the time-frequency coupling under aerial mo-

bility for channel estimation. Current cellular networks and recently proposed approaches [120,

29, 137] are all based on the time-frequency domain. In the time domain or frequency do-

main, all paths are mixed, and the resulting phase and amplitude change with the delay,

Doppler, and attenuation of these paths. While existing approaches can formulate channel

estimation as a non-convex optimization problem with a simplified model, such approaches

can only find the multipath parameters that best fit the falsely measured channel response.

Besides, due to the strong inter-path dependency and the non-convex objective, the problem

is fundamentally challenging.

The second challenge is the interference in the sky. Signals are susceptible to high fading

and frequency coupling in the sky, which causes inaccurate channel state inference. Prop-

agation in the sky brings more interferences, which deteriorates data speed. Although the

operator attempts to relieve the problem by deploying more cells, overlapping cells only wors-

ens the problem. Interference-free transmission is impossible in the sky. The interference

amplifies inaccurate cell quality indicators and triggers poor cell selection.

The final challenge is to integrate the designs in the 6G and beyond cellular networks.
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While wireless access technologies are advanced with a wide spectrum, higher modulation,

etc., the system infrastructure remains unchanged. The current 5G system has designed a

complicated protocol stack to provide high performance for common application scenarios.

To support more challenging application scenarios, current 5G networks need to incorporate

new radio designs. However, replacing the protocol stack would incur prohibitive costs. We

desire a standard-compliant approach to enable fast deployment of our designs.

1.2 Our Contributions

In this dissertation, we focus on two goals that are critical to high-quality service.

• For mmWave communication from highly-mobile drones, how to perform accurate and

efficient channel estimation under wide spectrum?

•With multiple interfering cells in the proximity of the drones, how can the drones cancel

interferences for aerial transmission?

This dissertation takes a novel cross-domain approach to embrace mmWave for drones

on both goals. The cross-domain design synthesizes the delay-Doppler domain and time-

frequency domain. The insight is that we may achieve the best of both worlds if properly

multiplexing signaling in both domains. We address the issues of cross-domain multiplexing

with innovative transformation algorithms and practical system designs.

With our design, the system can utilize the delay-Doppler domain for explicit Doppler

modeling and other physical path features while keeping the time-Frequency domain for

data plane efficiency and deployability. Such a cross-domain approach also enables natural

interference separation between two domains. Along this new direction, we seek to achieve

three goals: high-fidelity channel estimation under aerial mobility, effective interference can-

cellation without pre-transmission negotiation, and readily-deployable practical solutions in

6G and beyond.
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1.2.1 Concurrent Channel Estimation for MmWaves

We first present our design CCE on high-fidelity channel state inference for drones under

mmWaves. The key innovation is the concurrent channel estimation algorithm. The algo-

rithm operates in two domains, the legacy time-frequency domain and the delay-Doppler

domain. We find that the delay-Doppler representation projects signals onto the 2D delay-

Doppler plane to separate out paths different in either delay or Doppler. Therefore, only the

paths that have a similar delay and similar Doppler can interfere, which are much fewer in

number. The algorithm extracts common features for cells that are located at different cell

towers in the spatial proximity of the mobile device. Therefore a single-cell measurement

from a given tower can reveal the channels for all other colocated cells.

Our channel inference algorithm exploits the benefits of both domains. The delay-Doppler

domain model makes inference accurate under mobility, since the model uses Doppler shifts

that are not explicitly tailored to time. The delay-Doppler path features separate path

delays from frequency domain coupling. By characterizing path delays, we can decouple

multiple path propagation with adaptive scheduling of delay-Doppler signals. High-fidelity

channel inference is further made possible over a wide spectrum by embracing fractional

Doppler shifts. With this algorithm, we can infer all cells residing on a tower via a single-cell

measurement.

We implement CCE on an SDR-based 5G NR testbed, and evaluate it with real-world

experiments and trace-driven emulations. We assess the concurrent channel inference algo-

rithm under a widespan of radio spectrum (2.45GHz - 5.55GHz for sub-6G channels and

58GHz - 62GHz over mmWave bands). The empirical validation shows that, CCE achieves

an SNR inference error of 0.37 dB to 1.03 dB at low mobility (∼10 km/h) and 0.39 dB

to 0.79 dB at high mobility (>200 km/h). CCE outperforms all state-of-the-art schemes by

reducing the error by more than 63%.

4



1.2.2 Embracing Interference with X-Domain Cancellation

We then show a novel cross (X)-domain interference cancellation scheme. We propose CODIM,

which takes a new perspective on interference cancellation and overcomes the limitations of

legacy time-frequency domain-based solutions. To handle mmWave scenarios, we address the

challenges of intra-domain interference by strategically interleaving interfering signals across

two domains. CODIM works well under both low/moderate and high mobility. It remains

effective over a wide span of the radio spectrum.

The key insight is to multiplex signal and data at both domains to cancel interference.

We discover the natural interference separation between two domains, which enables interfer-

ence estimation with cross-domain transformation. Unlike previous interference cancellation

schemes that require pre-transmission negotiation, we avoid heavy coordination between all

interfering cells. We further devise a cooperative decoding algorithm to utilize the high-

speed backhaul network between cells. CODIM transforms transmission-induced interference

between cells into meaningful data, boosting throughput among dense, interfering cells in

the sky.

We prototype CODIM in commodity software-defined radio and evaluate it with both

testbed-based experiments and trace-driven emulation. Compared to solutions today, CODIM

reduces packet losses by 63.2% on average. Even in high mobility, CODIM achieves comparable

failure ratios to static and low mobility scenarios. We also evaluate CODIM’s benefits for real-

world applications, including mobile VR/AR and data transfer. Our experiments show that

CODIM reduces disruption for mobile VR applications by 47.1%, improves object recognition

accuracy by 88.3% for mobile AR, and reduces stalls by 31.8%-46.2%. Meanwhile, CODIM

retains marginal overhead of signaling traffic and latency without hurting data transfer.
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1.2.3 Integrating X-Domain Designs in 6G and Beyond

Finally, we enable cross-domain designs within 5G PHY to enable integration in XG. Al-

though the cross-domain designs are attractive, it remains an open question on how to inte-

grate delay-Doppler signals with current OFDM-based PHY. We make three contributions.

We first devise an overlay to multiplex the OTFS-based reference signals in the standardized

OFDM PHY. With the dual-domain PHY, we propose adaptive scheduling, such that cross-

domain signals can be readily integrated into current 3GPP standards for PHY-above radio

layers. Other than the radio layers, we leverage a novel transform and inter-cell collaboration

to profile interference for control layers. Our proposed cell selection metrics solve the issue

of current OFDM-based cell quality indicators by capturing the impact of interference at

both uplink and downlink. We assess the feasibility of our approaches by prototyping and

evaluating them with an mmWave testbed.

We then extend our testbed into an open-radio platform, NEMONET, enabling researchers

to perform the trace-driven evaluation of new radio designs. The platform provides mmWave

support and offers an end-to-end evaluation pipeline. While the existing mmWave testbed

has been successful in supporting primitive data transmission, they are solely based on time-

frequency signals. NEMONET enables open research on more innovations in the synergy of

delay-Doppler domain and time-frequency domain.

1.3 Applications scenarios

The proposed fundamental technology achieves both wireless efficiency and mobility relia-

bility, enabling diverse application scenarios, including the following:

Drone applications Drones are increasingly valuable in surveillance, delivery, and many

more emerging applications [24]. These applications all require always-on network to enable

real-time control over the drones. For example, for surveillance, drones are required to
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monitor the real-time video of the site following the user’s commands. These applications

typically handle various environments, even extreme propagation conditions. Our proposed

technologies facilitate communication between drones.

In-the-sky networks The drones are not only clients, but can be a part of network

infrastructure. Recent work has been discussing the potential of drone-based mmWave net-

works [74], which facilitate line-of-sight group transmission with mmWaves. However, the

instability of wireless remains the main bottleneck to applying mmWaves as the transmission

medium. This dissertation can provide the technology for fundamental data transmission

and interference mitigation.

Extreme mobility With the advances in transport technology, clients are moving at a

faster speed. High mobility use scenarios become a norm rather than an exception, such

as the high-speed rails (with speed up to 350 km/h [129]), vehicle-to-everything (e.g., au-

tonomous driving and fleet management, with 6 million vehicles by 2022 [34]), drones, and

many more. We propose advanced wireless channel estimation to enable reliable mobility

management in this dissertation.

1.4 Organization

This dissertation is organized into the following chapters. §2 introduces the primer of cellular

network on PHY basics and critical cell selection procedures. §3 studies the limitations

of current channel estimation approaches and proposes two stage of solutions to enabled

concurrent channel estimation with cross-domain channel transformation. §4 investigates

how Doppler shifts under mmWave and mobility impede the effectiveness of cell selection.

Then a cross-domain-based interference management scheme is presented. §5 solves the

critical issues to enable cross-domain designs in current standardized framework. We propose

to embed OTFS signals into OFDM PHY in a standard-compliant fashion. Finally, we

summarize our works and insights, and discuss future works in §6.
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CHAPTER 2

State of the Art and Overview

We have witnessed major technical evolutions in cellular networks in the past decades. While

wireless access technologies are advanced with a wide spectrum, higher modulation, etc., the

system infrastructure remains unchanged. The misalignment between two key technologies

from the wireless and the infrastructure, mmWave and mobility management, induces bad

performance and even failures. This dissertation aims to achieve the synergy between efficient

wireless and reliable mobility.

This chapter discusses the state-of-arts and provides an overview of how our designs

complement the gap between wireless designs and mobility management technologies. We

introduce an overview of current 5G/6G architecture and fundamental technologies in §2.1.

In §2.3 we discuss the existing efforts to improve the synergy between wireless and mobility.

We give an overview of our designs in §2.4.

2.1 5G/6G Architecture

In cellular networks, devices connect to the network via local access stations and remote

core networks, forming a hierarchical mobility management model. Figure2.1 illustrates

an overview of the cellular network. In general, there are three parts: clients, network

infrastructure (including the access network and core network), and the wireless channel in

between. To provide ”anywhere, anytime” network access, cellular networks deploy base

stations at a large scale. Each base station may manage multiple cells (antennas), each of
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Figure 2.1: Illustration of 5G architecture.

which runs at various frequency bands with different coverage. We focus on wireless access

and the infrastructure in this dissertation. We next describe the state-of-the-art and recent

advances.

The wireless provides last-hop radio access to the clients. The data rate that the device

can achieve is mainly decided by the wireless link. Although the spectrum was the main

bottleneck before 5G, recent advances in mmWave technology opened a wide radio spectrum

for high-speed transmission. However, more radio spectrum does not mean a higher quality of

service. The wireless channel is dynamic and tends to diminish the gain of a wide spectrum.

In this dissertation, we discuss what innovation is needed to utilize the wide radio spectrum

robustly and efficiently.

The infrastructure bridges the wireless and the internet, providing seamless service to

devices. 3GPP standards regulate the user plane layers to deliver data and the control plane

layers to manage radio resources and mobility. Given the major scenarios in cellular networks

involve mobility, mobility support is paramount to user experiences. In this dissertation,

we revisit the legacy mobility management scheme and its deficiency in providing reliable

services under new wireless technologies.
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2.2 Key Technologies

In this section, we introduce the key technologies in the wireless link and the infrastructure.

Wireless access technologies evolve to enable a wider radio spectrum and improve access

efficiency. We focus on the key enabler of 5G, mmWave technology in §2.2.1. On the

network side, the key technology to enable seamless service is mobility management. We

summarize the current 5G mobility support in use and recent advances in §2.2.2.

2.2.1 MmWave communication

The mmWave communication is the key enabler for current 5G networks. The available

radio spectrum has been greatly expanded with 30–300 GHz frequency bands. above-30GHz

frequencies provide multi-Gbps data rates with nearly 100x greater channel bandwidths

than what is available in the sub-6 GHz [25]. These frequency bands are highly available but

under-utilized. According to recent studies, the ground devices witness boosted data rate of

close to 3Gbps with the support of mmWave technology [92]. However, such supremacy to

sub-6G bands diminishes upon mobility [92].

MmWave bands post high requirements on both channel estimation and interference

management. Channel estimation under mmWave is more challenging due to the fast fading

features of mmWave frequencies. As the center frequency increases, the time that a channel

remains stable (i.e., coherence time) reduces, leaving less time for channel estimation and

feedback. Interference management is the same challenging, if not more. Although existing

approaches attempt to leverage the high-speed backhaul networks to improve the efficiency

of interference cancellation, time-frequency domain multiplexing fails to handle Doppler.

Doppler mixes data and interferences, making it hard to separate them in the time-frequency

domain.

The main challenge is the applicability to mobility scenarios. Due to the ultra-short

wavelength, MmWave communication is susceptible to propagation fading and blockage,
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thus requiring highly directional links. However, the constant motion and relative position

changes to the cells during mobility introduces challenges in maintaining the orientation

of directional links. To this end, many recent works develop beamforming and nulling to

mitigate the interference [53, 74, 120, 86, 136].

2.2.2 Mobility Management

Mobility management is provided by two critical procedures, handoff and carrier aggregation,

in the current 5G. We next introduce how the current procedure works, challenges, and recent

advances.

Mobility support centers on the network side control. At a given location, a mobile

device accesses the network with one primary cell (aka primary component carrier). When

the device moves, the base station migrates its service to a cell that the device is heading to.

The migration procedure is called handoff. In order to boost throughput, the base station

would enable one or more secondary cells to deliver data to the device, so-called carrier

aggregation (CA).

Both handoff and carrier aggregation involve the selection of cells to serve the device.

Mobility support replies on the handoff procedure, during which the device switches from

the current primary cell to another. The primary cell is used as an anchor to manage

the service and signaling between the device and the core network. As a device leaves

the current primary cell’s coverage, it will be migrated to another one. Such procedures

follow the configurations and the handoff target decided by the base station. Based on

patents [84, 99, 135] and manuals [40, 39, 41], the base station make decision based on device

reports. Throughput boosting rely on another procedure called carrier aggregation, during

which the device aggregates a few secondary cells at a different frequency from primary cells

to boost throughput. Both procedures involve the decision of which primary cell to handoff

to and which secondary cells to aggregate with.
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The main challenge of mobility support is to decide which cells to connect to and

when/where to switch cells. Several recent studies seek to improve cell selection using the

standardized mechanisms in 4G/5G [73, 43, 64, 50, 79]. [73, 43] focus on better cell se-

lections with either network or device-centric solutions. Other prior efforts [64, 50, 79] use

resource scheduling or joint carrier selection to maximize utilization.

2.3 Limitations of the State of the Art

Recent advances push the limits of wireless efficiency and mobility reliability, respectively.

Nevertheless, the limitation of the coupling between these two is rarely discussed. This

dissertation tackles the disastrous coupling between wireless and mobility.

Inefficient wireless under mobility. The main limitation is the inefficiency under

mobility. Mobility introduces Doppler shifts to signals, harming wireless efficiency. The

key to high-speed wireless access is high-order channel coding, which needs to adapt to

the dynamic channels in an ultra-low time span. Given that the minimal granularity to

scheduling resources is sub-ms, the channel is expected to remain unchanged during this

time slot, which is however unrealistic under mobility.

The key requirement for mmWave efficiency is the accuracy of channel state estimation.

Without accurately synchronizing the channel states between the client and the network,

the core functions cannot fully work to utilize the best of the wide spectrum, e.g., the pre-

coding of data, beamforming management, and massive MIMO. This problem involves two

sub-problems, to accurately estimate the channel state at one side, and to synchronize the

state from one side to another. In this dissertation, we propose innovative channel estimation

algorithms to facilitate mmWave communication.

Unreliable mobility under mmWaves. The problem of mobility lies in the wireless-

strength-based design. Current mobility support centers on wireless-strength-based design.

Thus wireless and mobility are deeply-coupled. As the device is moving at high speed, the
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Figure 2.2: Research overview.

mobility management function relies on unreliable and inaccurate wireless metrics to perform

cell selection, which results in bad performance and failures. Even when the device is moving

at a low speed, the mobility reliability is affected by wireless interference.

The key requirement for reliable mobility is to decouple the instability of wireless with

the mobility functions. What’s more, the reliability should be guaranteed under various

application scenarios, no matter under low or high mobility, and low or high radio frequency.

In this dissertation, we take a new perspective. We unveil the fundamental limitations of

wireless-centric mobility design. We explore a cross-domain approach to accommodate the

expanding spectrum space (say, mmWave bands) and high mobility scenarios.

2.4 Research Statement and Overview

This dissertation aims to achieve both efficient wireless and reliable mobility support. We

identify two key issues, channel estimation under mobile mmWave (under random noise) and

interference under dense cell deployment, in supporting drones with mmWave technology in

current cellular networks. We contribute with a novel cross-domain approach and .

We visualize the relationship between our designs in Figure 2.2. We propose two novel

designs, concurrent channel estimation and interference management, to deal with frequency

coupling. The first step is to combat the mobility and wide radio spectrum under random

noise with concurrent channel estimation. The second step is to combat interferences, as well
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as the same challenges as the random noise scenario, fulfilled with cross-domain interference

management. With these two designs, we propose the readily deployable integration scheme

to incorporate our designs with the current protocol stacks, enabling continuous deployment

in 6G and beyond.

We propose three innovative systems, CCE for concurrent channel estimation under ran-

dom noise, CCE for interference management under dense cell deployment, and NEMONET for

practical integration in 6G and Beyond.

• CCE: Concurrent Channel Estimation for MmWaves (§3). We seek to parallelize channel

measurements over the wide spectrum provided by mmWave bands. The goal is to

enable efficient and high-fidelity channel estimation even under high mobility. The

main idea is that we estimate signals in the delay-Doppler domain and transform them

back to the conventional time-frequency domain.

• CODIM: Embracing Interference with X-Domain Cancellation (§4). We take a cross-

domain approach to estimate and cancel interference to relieve drones from interfering

transmission. Unlike the above system, the estimation is done under structural in-

terferences rather than random noise. The key insight is that by properly aligning

interferences at both domains, we can cancel interference from multiple interferers.

• NEMONET: Integrating X-Domain Designs in 6G and Beyond (§5). We propose practical

system designs to integrate the cross-domain approaches within current 3GPP stan-

dards. We also design cross-domain channel metrics to enable interference-perceptible

cell selection. The main innovation is the standard-compliant co-existence scheme of

cross-domain signals.
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CHAPTER 3

High-Fidelity Concurrent Channel Estimation for

MmWaves

This chapter is organized as follows. §3.1 presents our motivation of supporting concurrent

channel estimation and the challenges. After an overview in §3.2, we elaborate on the design

of CCE ’s core functions in two stages: single path (§3.3) and multi-path (§3.4). §3.5 presents

our implementation and evaluation. We discuss the extension of this work in §3.6. Finally,

we present related works on channel state estimation in §3.7.

3.1 Motivation

3.1.1 Primer and Issues

We first introduce the primer on 5G mobility management procedure.

As shown in Figure 3.1, the decision of primary cell and secondary cell for devices in

the active state involves four steps: configure, monitor, report, and decide. The decision

is controlled by the serving cell and assisted by the client. Different from active state de-

vices, idle state devices make handoff decisions by themselves. The decision logic of CA

management and active state handoff is not standardized. The network side measurement

could also affect the decision, but it is not visible to that. Once the client connects to

the base station, it starts to exchange signaling messages with the base station. In step

configure, the base station configures the devices with a list of configurations to mandate

15



CAk Freq 
Channels

Spectrum

CAk+1

1 GHz 6 GHz 100 GHz

low-band mid-band high-band (e.g., mmWave) 

… … …… … …… … …… ……

PCell 
Neighboring Cells

SCells 1 Configure

3 Report
4 Decide PCell

2 Measure … … … …

1 Configure

3 Report
4 Decide SCell

2 Measure … … … …

SCell(s) after PCell SCell iterations

Figure 3.1: Illustration of handoff and carrier aggregation.

the monitoring and reporting procedure. The configurations ask the devices to monitor the

serving/target cells’ signal strengths and standard triggering criteria (Table 3.1). Then the

device starts to monitor its connected cells and neighbor cells. This is the step monitor and

reports the feedback if any criteria are satisfied. The step report happens when standard

triggering conditions configured by the serving cell are satisfied. The device sends the report

to the serving cell. Upon receiving the client’s report that meets the criteria, the serving

cell moves to the decision phase. It runs its local policy to decide if more feedback is needed

(via reconfiguration), if handoff should start, and which cells to migrate to. In this process,

it may reconfigure the device by adding or deleting the triggering criteria or updating the

signal strength thresholds. If the serving cell decides on a handoff, it will send the handoff

command to the device. Then the device would follow the handoff command to move to

another cell.

5G standards [21, 16, 12] introduced many new technologies to improve reliability, such

as new radio physical design, cloud-native deployment, etc. However, the mobility manage-
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Table 3.1: Reporting triggering criterias. R stands for RSRP, RSRQ or SINR.

O stands for cell offset configured for each cell [5]

Event Criteria Explanation

A1 Rs > ∆A1 Serving cell becomes better than a threshold

A2 Rs < ∆A2 Serving cell becomes worse than a threshold

A3 Rn +On > Rs +Os +∆A3 Neighbor cell becomes offset better than primary cell

A4 Rn +On > ∆A4 Neighbor cell becomes better than a threshold

A5 Rs < ∆s
A5 & Rn +On > ∆n

A5 Serving cell becomes worse than a threshold, and

neighbor cell becomes better than a threshold

A6 Rn +On > Rs +Os +∆A3 Neighbor cell becomes offset better than secondary cell

ment mechanism stays the same. As the management is based on wireless signal strength, it

still follows the three phases, triggering, decision, and execution. The feedback and signal-

ing rely on OFDM-based transmission, which is unreliable for making handover decisions.

The decision policy tightly couples with signaling reliability, motivating operators to adopt

complex, even conflicting decision logic.

Challenges in the wireless channel. The wireless channel is dynamic by nature.

The impact of mobility on higher-frequency channels (say, those mmWave ones) is more

severe. Radio channels remain statistically coherent within the channel coherence time [119]:

Tc ∝ 1
fm

= c
v·f , where fm is the maximum Doppler shift, decided by the speed of light c,

velocity v, and frequency f . From 2.4 GHz to 39 GHz, higher-frequency channels vary 16×

faster at the same velocity, thus making measurement less reliable. Faster measurements are

needed to not miss good cells on higher frequency channels.

Challenges in cell selection. There are many challenges for the mobility management

in 5G. First, the density of cells increases in 5G, which implies more frequent handovers.

Especially in the non-standalone mode, each device is connected to a 4G cell and a 5G cell.

Thus, the device will experience more cell switching. Recent research on 5G mobility [92]

conforms to our statement that 5G handover is more frequent. Second, 5G adopts mmWave
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bands (e.g., 29GHz), where the Doppler spread is more severe. The 5G also added new

numerology with a shorter slot time [12], which is more susceptible to Doppler spread caused

issues.

Another challenge is the complicated cell selection with carrier aggregation. Carrier

aggregation (CA) aggregates multiple contiguous or non-contiguous frequency bands to boost

user throughput. It is a technique critical to utilizing the expanded radio spectrum in the

current 5G network and beyond [45, 25]. In 5G and beyond, the available radio spectrum is

expanding with <6 GHz bands and mmWave bands (i.e., >24 GHz) [27]. Although current

CA already boosted the data rate significantly (Figure 3.2), it remains an open question to

fully utilize the potential of a wide spectrum.

Although the mobility mechanism does not change, one might wonder whether the in-

frastructure change in 5G brings more benefits to optimize mobility performance. The main

infrastructure update from 4G to 5G is the adoption of cloud-native deployment. The con-

trol plane operations can be moved closer to the RAN to speed up the decision. However,

triggering delay is the main bottleneck. The measurement and reporting are still constrained

by the round-trip between the device and the base station. As the unstable OFDM-based

modulation remains unchanged, the problems with signaling and policy remain.

3.1.2 Reality Check With 5G

We next use a real-world example to illustrate the above issues. In Trace 1, the mobile

phone was looking for a new serving cell set to continue service. First, the phone was

configured to search PCell candidates on four frequency channels. The phone performed

sequential measurement for about 1.3s until finding a strong cell on frequency channel F9820.

After receiving the report, the network immediately selected that cell to keep connectivity.

Afterward, it took 3.5s to scan channels on 4G, 5G sub-6G and 5G mmWave bands; Finally,

a 4G cell and a 5G sub-5G cell were added as SCells. mmWave cells were unavailable for
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20:19:31.945 Configure measurement on freq. channel F850,F66486,F66661,F9820.

20:19:32.405 Measure cell #462 on F66486.

20:19:32.805 Measure cells #340,#162) on F2175.

20:19:33.045 Measure cell #61 on F9820.

20:19:33.685 Report cell #61 on F9820.

20:19:33.738 Select cell #61 on F9820 as PCell.

20:19:33.738-20:19:37.222 Search 4G SCell(s) on frequency channel F850,F5110,

F66486,F66661, F66936; Finally add SCell #370 on F66661.

20:19:33.886-20:19:37.222 Search 5G SCell(s) on mmWave channels F2253331,

F2251665,F2254997, and sub-6G channel F174270; Finally add SCell #561

on F174270 (5G sub-6G).

Listing 1: An illustrative example of CA (Frequency channels are represented

by F plus standardized ID).

the phone and data speed was about 15.7 – 56.3Mbps1. However, our experiments show

that there exists a superior option, PCell candidate on channel F850, at the same location.

It usually works with mmWave cells and achieves a data speed of 87.8 – 156.3Mbps. Due

to sequential measurement, it was missed when an early-measured cell got selected. Given

sequential, cell-by-cell selection, the network made a much worse choice without assessing

available SCells.

We study 5G mobility management in an empirical study with 3866 handover samples.

We run 45-hour driving experiments with 5G phones with low mobility. The experiments

are performed under AT&T, one of the largest wireless operators in the US. During the

experiment, the devices keep active connection by downloading files and sending heartbeat

to the servers. The driving speed ranges from 10-40 km/h to keep 5G connections. We

1The range is from p25 to p75 of all throughput samples.
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Speed (km/h) 0− 40

Average handover interval 41.9 s

Total failure ratio 2.7%

Feedback delay/loss 1.02%

Missed cell 0.32%

Handover command loss 0.7%

Coverage holes 0.67%

Table 3.2: Mobility in 5G.

collect signaling events with MobileInsight [78] to check handover events. Figure 3.2 shows

how the carrier aggregation improves the throughput.

We find that mobility reliability becomes even become worse in 5G since handover will be

more frequent and the issues persist. As shown in Table 3.2. The average handover interval

is 41.9s, which is even smaller than 50.2s in 4G with 0-100 km/h driving speed. The failure

ratio due to feedback delay/loss and handover command loss are 1.02% and 0.7%, which

are even higher than 0.78% and 0.61% in 4G. This proves that the unreliability of signaling

under mobility persists. The failure ratio due to missed cell and coverage holes dropped in

5G, which is benefited from the denser deployment. In conclusion, the signaling-strength-

based mobility management in 5G is still susceptible to signaling loss and unreliable channel

feedback. The policy-based decision is expedited due to denser deployment but the handover

frequency increases at the same time.

3.2 Design Goals and Overview

Our goal is concurrent channel estimation for all cells in the super set upon mobility. Ideally,

the super set includes every candidate cell the CA seeks to evaluate and select from. Note

that, these cells can be deployed on multiple cell towers in the spatial proximity of the mobile
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Figure 3.2: Carrier aggregation illustration.

device, with each tower having several colocated cells. To achieve the above goal, we address

two issues:

• Given multiple, colocated cells on a single cell tower, how to measure or infer the

channel quality of all the cells quickly?

• Given the superset of cells on multiple towers, how to minimize the measurement cost

to cover all the cells?

To achieve both goals, CCE uses two components, which work in concert to address all

two issues:

• New algorithm for channel inference under mobility. We adopt the delay-Doppler

domain channel matrix, and devise a matrix-decomposition-based algorithm to infer the

channel matrix. The algorithm is fast and robust under LoS scenarios. • New algorithm

for concurrent channel inference to decouple multipath. Our algorithm accurately

models the shared multipaths between the device and each colocated cell, and infers all cells

from a single measurement. It thus measures one and infers all.

It exploits the channel representation in the delay-Doppler domain. Since all cells are

colocated on the same tower, they generally share propagation paths. By modeling all

shared paths (by delays) and mobility impact (by Doppler shifts), the channel model can

be reused by all colocated cells. Moreover, By considering fractional Doppler shift, our
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inference algorithm remains accurate over the wider spectrum space (say, both sub-6GHz

and mmWave bands).

3.3 A Case with Single Path

3.3.1 Inference in Delay-Doppler Domain

We next introduce necessary details of wireless-mobility interplay for later sections. A time-

varying wireless channel can be represented in multiple ways. 4G/5G measures its OFDM

channel in the time-frequency domain. Equivalently, we can represent the same channel in

delay-Doppler domain [32]:

h(τ, ν) =
P∑

p=1

hpδ(τ − τp)δ(ν − νp), (3.1)

where P is the number of physical paths, hp, τp, νp are the p-th path’s complex attenuation,

path delay and Doppler frequency shift, respectively, and δ is the Dirac delta function. The

delay-Doppler representation reflects the geometry of the multi-path in the client movement.

Given h(τ, ν) and the sent signal s(t), a received signal can be obtained as

r(t) =

∫ ∞

−∞

∫ ∞

−∞
h(τ, ν)s(t− τ)ej2πνtdτdν

The time-frequency channel response H(t, f) in 4G/5G OFDM and delay-Doppler channel

function h(τ, ν) is related by

H(t, f) =

∫ ∞

−∞

∫ ∞

−∞
h(τ, ν)ej2π(tν−fτ)dτdν =

P∑
p=1

hpe
j2π(tνp−fτp)

The time-frequency plane represents signals with aM×N grid by sampling frequency and

time at intervals of subcarriers ∆f (Hz) and symbols T (seconds). An OFDM symbol x[m,n]

locates at (m∆f, nT ), where n = 0..N − 1 and m = 0..M − 1. An OTFS frame at delay-

Doppler plane is also represented with an M ×N grid by M delay taps 1
M∆f

and N Doppler

taps 1
NT

. An OTFS symbol of X[k, l] locates at ( k
M∆f

, l
NT

), where k = 0..M−1, l = 0..N−1.

22



Table 3.3: Table of Notations

X i[k, l] transmitted OTFS symbol at index (k, l) for cell i

xi[m,n] transmitted OFDM symbol at index (m,n) for cell i

Y i[k, l] received OTFS symbol at index (k, l) for cell i

yi[m,n] received OFDM symbol at index (m,n) for cell i

k indexes of Delay tap 1
M∆f

l indexes of Doppler tap 1
NT

m indexes of frequency tap ∆f

n indexes of time tap T

The transformation between OFDM and OTFS representation relies on ISFFT and

SFFT. The OTFS modulator converts X[k, l] to x[m,n] with the inverse symplectic finite

Fourier transform (ISFFT) and applies the Heisenberg transform to x[m,n] using a transmit

pulse to create a time domain signal. The signal is then transmitted over a wireless channel.

The receiver applies the Wigner transform and discretization to the received signal. The

resulting signal is y[m,n] in the time-frequency domain. Then SFFT is applied to derive

Y [k, l] in the delay-Doppler domain.

x[m,n] =
1

NM

M−1∑
k=0

N−1∑
l=0

X[k, l]ej2π(
mk
M

−nl
N
) (ISFFT, DD→TF) (3.2)

Y [k, l] =
M−1∑
m=0

N−1∑
n=0

y[m,n]e−j2π(mk
M

−nl
N
) (SFFT, TF→DD) (3.3)

3.3.2 Limitations of Time-Frequency Domain

We first illustrate the limitations of current channel estimation in the time-frequency domain.

In general, these algorithms can be categorized into two classes. One set of channel estima-
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tions stems from the communication theory in the time-frequency domain. This model class

is closely coupled with channel frequency. Specifically, the channel on the time-frequency

domain is:

ĥ(t, f) =
P∑
i=1

aie
j2π(tυi−fτi), (3.4)

where P denotes the total number of propagation paths, and the i-th path is characterized

by path attenuation ai, delay τi, and Doppler shift υi upon mobility.

It is clear from (3.4) that the channel at time t is coupled with Doppler υ over each path.

Without explicit decoupling of Doppler υ, the time-frequency model cannot be accurately

modeled under mobility.

The second class of algorithms uses machine learning based modeling, and includes

OptML [29] and R2F2 [120] for a sample of proposals in the literature. However, they do

not explicitly take domain knowledge into account, and may suffer from under/over-fitting

problems when seeking to improve the accuracy. Besides, they do not account for Doppler in

the modeling. Their models simplify ĥ(t, f) as ĥ(t, f) =
∑P

i=1 aie
−j2π

di
λ
+jΦi , where di is the

distance, λ is the wavelength, and Φi is the phase shift. Both OptML [29] and R2F2 [120] as-

sume that only λ is different for different frequency although both ai and Φi also vary across

different frequencies under Doppler effects. Some approaches require external sensor/GPS

assistance [58, 104], which limits their applicability.

3.3.3 Decomposition with Singularity

Sparsity for accuracy. We further leverage the sparsity of multi-path propagation to

improve estimation accuracy and efficiency. To improve the estimation accuracy, we show

that under the single path model, the SVD decomposition holds under no assumptions on

Doppler and delay. To improve efficiency, the sparsity of propagation paths serves as a

constraint to filter significant paths among possible min(M,N) paths.

Propagation path sparsity in high-speed rails originates from the environmental setting
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and operator deployments. Cellular networks for high-speed rails require dedicated antennas

to serve fast-moving users [115]. The dedicated antenna guarantees that the line-of-sight

(LOS) propagation path usually exists. The existence of the LOS path means a dominant

path presents higher amplitude [121]. Thus a single path model captures the channel quality.

This is why the single path model is adopted by the 3GPP high-speed-train propagation

model [9].

We first relax the condition on delay and Doppler with the insight of propagation path

sparsity. It relaxes the condition of SVD decomposition because the sparsity of propagation

indicates the sparsity of the channel matrix. The prior work sets constraints on path delay

and Doppler since the decomposed delay spread matrix Γ and Doppler spread matrix Φ

have to be semi-unitary. If the delay and Doppler are not integrals, the fractional delay

and Doppler cause coupling between paths, destroying the unitarity of the matrix. However,

there is no coupling between paths when there is a single path.

We prove that when there is a single path, SVD decomposition holds. Theorem 3.3.1

shows that the SVD decomposition holds under any delay and Doppler if the number of

physical paths is one, as shown in Appendix C. To summarize, the proof relies on the insight

that there is no coupling between paths. The prior work relies on the conditions on delay

τp and Doppler νp to eliminate the coupling between paths. After we show that the delay

spread matrix Γ and Doppler spread matrix Φ are unit vectors, the decomposition is thus

valid.

Theorem 3.3.1 (Single path decomposition). The compact SVD decomposition for a delay-

Doppler channel matrix H = UΣV is equivalent to decomposition H = ΓPΦ with U =

Γ,Σ = P,V = G when P = 1.

The condition of Theorem 3.3.1 holds when there is a single path. Theorem 3.3.1 indicates

the correlation between the path amplitude and the decomposed singular value. Even when

there are more paths, the dominant path corresponds to the major component of SVD
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decomposition. During our evaluation, we find out that the decomposition error is small even

when there are many propagation paths. This is because the dominant path is decomposed

correctly.

Avoid over-fitting. We adapt the algorithm to filter out weak propagation paths. This is

done by setting a threshold on the number of inferred paths to leverage path diversity. In the

algorithm line No. 2, we constrain the number of paths as Pmax. This design will not affect

Theorem 1’s validity since we perform path pruning after SVD decomposition. Specifically,

we first rank all potential paths by their amplitude and select the Pmax strongest ones. In

practice, there are two ways to decide the threshold. The operators can decide the number

of paths empirically based on 3GPP standards. For example, the number of paths is 5 for

driving scenarios in the reference propagation model.

Another way to decide the threshold is to compare the estimated path loss to the strongest

path. Inspired by the correlation between the path amplitude and the decomposed singular

value, we rank the decomposed components based on the singular value. The largest singular

value is mapped to the strongest path, which dominates estimation accuracy. Other weaker

paths can be affected by interference and noises. We thus omit the paths that are lower than

the strongest one. The offset to filter paths depends on the operators’ experiences.

We further leverage the sparsity of multi-path propagation to avoid the overfitting of the

SVD decomposition. Previous studies show that there is a limited number of paths in the

environment [66, 126, 42]. To avoid overfitting too many paths, we constrain the number

of paths. We thus set a threshold of maximum paths as Pmax. Constraining the number of

paths improves the efficiency as well. If Pmax = MIN(M,N), the optimization is reduced

to the naive estimation. With (M,N) = (1200, 560), there are 560 paths derived from SVD

decomposition. In such a case, setting Pmax = 9 reduces the computation of path by 62

times. The idea of constraining the number of paths adheres to the nature of SVD to reduce

data dimension. With SVD extracting the path loss with the singular values in P, the

algorithm can easily rank the diagonal matrix and filter out weak ones.
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Figure 3.3: Illustration of cross-domain transformation.

3.4 Concurrent Channel Estimation

3.4.1 Multi-Path Modeling

We next show how to retrieve the shared multi-path characteristics; this is the most chal-

lenging step (i.e., Step 2). Our key finding is to use the delay spread to decouple the multiple

paths in the delay-Doppler domain. To this end, we first show the limitations of the existing

algorithm REM [77], and then elaborate on our design details.

Limitations of REM. REM is a recent algorithm that uses singular value decomposition

(SVD) to decouple paths in the DD domain. However, its SVD based operation may only

extract a single path in the presence of fractional Doppler as we elaborate next.

The main idea behind REM is to decompose the channel matrix H into the Doppler

matrix G and the delay matrix F . They may satisfy SVD by assuming that each path’s

delay and Doppler are multiples of the quantization steps of the DD grid. Equivalently,

each path is located on the discrete DD grid with the integer coordinates κi =
υi
∆υ

, li =
τi
∆τ

.
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Note that the quantization step of Doppler ∆υ = 1
N∆t

depends on the grid duration N∆t

(Figure 3.3). In a typical 5G setting with carrier frequency fc = 38 GHz, N∆t = 5 ms2,

we have the Doppler resolution ∆υ = 200 Hz, equivalent to a resolution of 5.7 km/h when

mapped to the moving speed. Therefore, the assumption for REM does not hold in general;

so as to the decomposition. Note that SVD relies on the singularity of the matrix. Since

fractional Doppler violates the singularity condition, SVD will only yield a single path.

3.4.2 Delay-Based Decoupling

The foundation of CCE is to predict a single cell’s quality considering mmWave channels.

Wireless representation in delay-Doppler domain is applied to incorporate Doppler shift along

with high frequency. We first introduce how to make cross-channel estimation by exploiting

channel matrix decomposition. [77] has presented how to extract frequency-independent

and frequency-dependent channel parameters, and project them to a different frequency.

However, the prediction algorithm is not applicable to mmWave channels; the major reason

is that assumptions for channel decomposition do not hold anymore. In our work, we explore

new insights and techniques to overcome those challenges.

Challenges with mmWave channels. To speed up the measurement, the key is to sim-

plify the measurement of physically co-located cells. To fully enable cross-channel prediction

in 5G, it must be applicable to mmWave cells and new physical-layer settings in terms of

grid size and numerology. New challenges have arisen from the new context. Unfortunately,

the state-of-the-art algorithm on delay-Doppler domain [77] can tackle none of them. There

are three main challenges:

◦ C1. Channel estimation requires fractional Doppler to improve accuracy. The existing

mechanisms [77] assume the Doppler spread of each path is integral times of the Doppler

resolution 1
NT

. However, the representation is over-simplified and inaccurate as the integral

2Based on the duration of reference signal in 5G (i.e. SSB burst set) [12].
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resolution is quite low. We can translate the Doppler resolution to the speed resolution to

make an intuitive explanation. Assume a practical set of parameters: the carrier frequency

fc = 38 GHz, sub-carrier spacing ∆f = 15 kHz, T = 66.7µs, M = 12, N = 15. Therefore,

delay resolution ∆τ = 1
M∆f

= 5.5µs and it is sufficient to represent multiple paths. However,

the Doppler resolution ∆υ = 1
NT

= 1 kHz, corresponding to speed resolution of 28.4 km/h.

Such low resolution is hardly sufficient to represent the speed difference of paths. To make

things worse, 5G would adopt radio measurement blocks (SSB and CSI-RS) with less period

of time, which means smaller NT and larger spread of one integral Doppler. Therefore, it is

essential to estimate the fractional Doppler together.

◦ C2. Cross-channel prediction should be applicable to distant frequencies. Given a much

wider band, the channel spacing on mmWave bands is much higher. Predicting is much more

sensitive to Doppler estimation error as the error is exaggerated when mapped to a distant

frequency band. Unfortunately, the existing solutions like [77] could only work well with a

small frequency gap (say, only 20 MHz difference). Under 4G/5G CA context, the device

usually aggregates channels that are hundreds of MHz or even tens of GHz separated for

mmWave bands. REM performs poorly (i.e., overestimate by 160%) and the error is as high

as 5 dB. The estimation error affects both connectivity and CA efficiency. We thus need

fine-grained cross-band estimation.

◦ C3. Cross-channel prediction should take diverse numerology into account. There

are advanced physical-layer technologies to support variant sub-carrier spacing (∆f) and

symbol duration (T ) on different frequencies. As a result, the prediction algorithm should

map channel parameters to another frequency by coordinating the grid size and resolution

first.

Why can we predict channels? The intuition behind channel prediction is to retrieve

the channel profile from one frequency and then map it to another frequency. Cells on the

same base station share the physical paths of radio transmission to the user’s device. The
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wireless channel h(τ, υ) is represented by

h(τ, υ) =
P∑
i=1

hiδ(τ − τi)δ(υ − υi)

which consists of P propagation paths. Each path i is characterized by path coefficient hi,

path delay τi and path Doppler shift υi. Therefore, if we extract those channel parameters

from the measurement of one cell, then we can transform them to another frequency and

estimate channel quality there.

Fortunately, channel representation in delay-Doppler domain directly leads to the separa-

tion of frequency-dependent and frequency-independent parameters. Cellular network places

grids on the physical channel along time and frequency dimensions. It consists of M × N

cubes, and each cube spans T and ∆f on time and frequency. One cube is the basic unit of

a signal sample. Correspondingly, it maps to a M × N grid on the delay-Doppler domain,

with delay resolution of 1
M∆f

and Doppler resolution of 1
NT

. In delay-Doppler domain, the

channel is

hw(τ, υ) =
x

e−j2πτ ′υ′
hτ ′,υ′w(τ − τ ′, υ − υ′) dτ ′dυ′

It incorporates the convolution operation due to windowing effect of the M × N grid, and

w(τ, υ) =
N−1∑
l=0

M−1∑
k=0

e−j2π(υlT−τk∆f). Therefore, the channel estimation on delay-Doppler grid

(k,l) has:

hw(k, l)

MN
=

P∑
p=1

γ(k, p)

M
· |hp| · ejθp−j2πτpυp

ϕ(l, p)

N
(3.5)

where γ(k, p) =
M−1∑
k′=0

e−j2π(τp−k∆τ)k′∆f and ϕ(l, p) =
N−1∑
l′=0

e−j2π(l∆υ−υp)l′T . Equation 3.5 can be

represented in a form of matrix decomposition: H = ΓPΦ in which H ∈ CM×N , Γ ∈ CM×P ,

P ∈ RP×P is a diagonal matrix, Φ ∈ CP×N and

H(k, l) =
hw(k, l)

MN
,Γ(k, p) =

γ(k, p)

M

P(p, p) = |hp|,Φ(p, l) = ejθp−j2πτpυp
ϕ(l, p)

N
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The matrices Γ and P contain frequency-independent parameters only, say τp and hp. While

the matrix Φ also has frequency-dependent parameters: the Doppler shift υp. We can calcu-

late the Doppler shift of a different frequency with υ′
p = f ′

c

fc
υp. [77] proposed to apply SVD

for decomposition under the assumption of integer Doppler. Therefore, we can retrieve the

accurate parameters, keep the independent part invariant, and map the dependent parame-

ters to a different frequency channel. The start-of-the-art fails to do so because they cannot

tackle challenges: fractional Doppler, wide frequency gap and heterogeneous numerology

setting.

To our best knowledge, this is the first work to enable delay-Doppler-based channel

prediction in 5G context. We make it happen by addressing aforementioned challenges with

the following insights.

I1. Fractional Doppler can be extracted due to the deterministic relation with

the observable channel matrix. The Doppler is composed of integer Doppler and

fractional Doppler, and each manifest itself differently in the channel representation. The

integer Doppler manifests as the peak index. The fractional Doppler manifests as inter-

Doppler-interference between different Doppler taps. With the decomposition, we estimate

each component separately. We find that the relation between fractional Doppler and max

Doppler matrix Φ intensity is deterministic (regardless of frequency). We exploit this finding

in our algorithm to estimate the fractional Doppler, after the integral part is retrieved.

I2. Insights to deal with variant numerology in practice. By modeling the rela-

tionship between the interference amplitude and the fractional Doppler, we derive fractional

Doppler after decomposing the channel matrix into frequency-dependent components and

frequency-independent components. Multi-paths may share similar Doppler frequencies.

Consider a common mobility case: fc = 38 GHz, v = 9 m/s, then the Doppler spread is

1.14 kHz. If we assume NT = 5×66.7 µs under the SSB setting, then the Doppler resolution

would be 3kHz. As a result, all paths probably share the same integral Doppler, and have

close fractional Doppler. Maybe this observation could explain the insights of using SVD
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with fractional Doppler: Φ becomes a one-rank matrix with a similar Doppler shift.

Algorithm. Our design CCE has addressed all challenges based on the insights. We first

walk through how the wireless channel is composed in delay-Doppler domain. Then we

derive the inverse function to get channel parameters, especially fractional Doppler from the

wireless channel representation. Our main contributions are:

• A lightweight algorithm estimates fractional Doppler in addition to an integral part by

transforming channel representation.

• A decomposition algorithm to estimate the number of paths to reduce complexity.

• Allow estimation across different numerology and grid settings for mmWave and low/mid

bands.

From delay-Doppler channel representation, we derive the fractional Doppler by modeling

the interference between different Doppler taps. Based on the channel representation with Φ,

we derive the inversion to design the transform. We haveΦ(l, p) = 1
N

∑N−1
n=0 e−j2π(l∆ν−νp)nT e−j(θp+2πτpνp),

for l = 0, ..., N − 1. We have two observations: 1) the maximum of Φ(l, p) is decided by

fractional Doppler. 2) the phase of maximum Φ(l, p) decided the sign of fractional Doppler.

We design the cross-band prediction algorithm as shown in Algorithm 1. The algorithm

takes three steps. It first decomposes the channel matrix with SVD to separate frequency-

independent and frequency-dependent parameters. Then it estimates the number of paths

and calculates fractional Doppler for each path. Finally, the channel matrix is derived based

estimated delay Doppler profile for each path. Our algorithm leverages the deterministic

relationship between the Doppler matrix profile and fractional Doppler.

Heterogeneous bands affect delay-Doppler estimation. We consider the impact of both

delay and Doppler. Delay is affected by different path delay sampling rates. If band 1 and

2 have different bandwidths (e.g., 15MHz V.S. 20MHz), we have M1 ̸= M2. But Mi decides
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Algorithm 1 Cross band estimation

Require: Band 1’s channel matrix H1, H1(k, l)

Ensure: Band 2’s channel matrix H2

1: Decompose H1 = ΓPΦ1 using SVD matrix factorization;

2: Estimate the number of path p← rank(P );

3: for each path p = 1, 2, ...p do

4: Derive ν1
p(int), ν

1
p(frac) based on Φ1(max);

5: Estimate ν1
p based on phase(Φ1(max));

6: ν2
p ← ν1

p
f2
f1
;

7: end for

8: Calculate Φ2 based on ν2
p ;

9: H2 ← ΓPΦ2;

the sampling rate of path delay as ∆τi =
1

Mi∆f
. Therefore, estimating band 2 based on band

1 may have accuracy loss due to different path delay sampling rates.

For Doppler, it causes carrier-specific frequency shifts. For each propagation path, the

Doppler frequency shift νi for band i depends on the carrier frequency fi, client speed v, and

path phase θ: νi =
v cos θ

c
fi. Given the same path, we have ν2 =

f2
f1
ν1 between band 1 and 2.

Since νi = li∆ν, ν = 1/NT, i = 1, 2, we have l2 = ⌈l1 f2f1 ⌉ That is, when mapping from band 1

to band 2, a fractional Doppler axis shift occurs for {y2p[k, l]}. This results in accuracy loss

and interference between Doppler axes.

We take a two-step approach. We first assume two bands’ carrier frequencies are identical

(f1 = f2) but with different bandwidths (M1 ̸= M2). In this situation, we adopt re-sampling

for cross-band estimation, and prove the estimation relationship between two bands. Then

we generalize the result to different carrier frequencies f1 ̸= f2.

Resampling theorem in Fourier transform. When f1 = f2, mapping from band 1 to

2 can be viewed as a resampling process (with sampling rate τ1 → τ2, τi =
1

Mi∆f
) along the
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delay axis. We start from the integer upsampling/downsampling process, and generalize it

to fractional resampling.

In the integer downsampling (e.g., estimating 5MHz band 2 from 20MHz band 1), let

M1 = TM2. Then we have

Proposition 1 (Integer downsampling). If x2[k, l] = x1[kT, l] and M2 = TM1, T ∈ N, then

band 2’s time-frequency signal after OTFS modulation can be derived from band 1 as

X2[n,m] =
1

T

T−1∑
q=0

X1[n, [m+ qM2]M1 ] (3.6)

and the received delay-Doppler signal in band 2 can be inferred from band 1 as

y2[k, l] =
1

NM2

M1−1∑
k′=0

N1−1∑
l′=0

h(k′∆τ1, l
′∆ν)c[k′T ]x1[[kT − k′]M1 , l − l′] + n[k, l] (3.7)

where [·]M1 denotes modulo M1 operations, and

c[k] =

1 if k=0,T,2T,...

0 otherwise
=

1

T

T−1∑
q=0

e−j 2π
T

qk

This is proved in Appendix A.3. The key result is that, without directly measuring band

2, we can get {y2[k, l]} from band 1, and then infer band 2’s SNR with given {x2[k, l]} pilots.

3.4.3 Combating Interference and Noise

The algorithm assumes a perfect channel response matrix. However, this might not be true

due to channel interference and noise. Channel interference and noise are common in wireless

networks due to the shared channel. This will lead to an inaccurate channel responses matrix

H and harm the accuracy of the Algorithm.

CCE takes two steps to combat channel interference and noise. First, we leverage exist-

ing interference cancellation algorithms to get an accurate channel response H. There are
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established channel response estimation schemes [106, 108] to get H for the measured chan-

nel. CCE leverages existing channel response estimation algorithms to calculate the channel

response matrix. CCE then applies the algorithm to estimate other unmeasured channels.

Second, CCE enhances the robustness of Algorithm 1 by calibration. The calibration is

done based on the computation with a row of the matrix H instead of a single element

|H[lp, 0]|. Specifically, the calculation is based on Theorem 3.4.1. For each row in H, CCE

extracts |H[lp, k]| and uses the square sum to derive path attenuation hp. Note the matrix

H is inaccurate and all rows might be non-zero due to errors. We thus count all rows as

possible paths.

Theorem 3.4.1. The path attenuation hp and channel response matrix H satisfy hp =

1

M2N2

√√√√N−1∑
k=0

|H[lp, k]|2

The calibration benefits cross-channel estimation in two aspects. By combining multiple

elements, the absolute error is constrained. Suppose |H ′[lp, k]| = |H[lp, k]|+n, where |H[lp, k]|

is the ground truth and |H ′[lp, k]| is estimated. If n is randomly distributed, the error in

h′
p calculated from |H ′[lp, k]| is no more than the most inaccurate |H ′[lp, k]|, indicated by
h′
p

hp

<= maxk(
|H ′[lp, k]|2

|H[lp, k]|
). Besides, the calibration reduces the impact of a single false

positive path. The calculation of path attenuation for each path is independent. Even if

noises cause false positive paths, the estimated false paths are weak as long as n is small.

The overall estimation is dominated by paths with strong hp. In practice, CCE drops weak

paths if the estimated hp of the path is 50 dB lower than the strongest path.
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Figure 3.4: Experiments settings.

3.5 Evaluation

3.5.1 Methodology

Our evaluation uses both testbed-based experiments and trace-driven emulations. We gauge

the accuracy and efficiency of concurrent channel inference with the SDR testbed under real-

world channels. We further quantify the throughput boost by CCE and its efficiency using

real-world traces.

Testbed and experiment settings. Figures 4.9 and 3.5 show our testbed setup. The

testbed supports both sub-6G and mmWave bands. The cell tower uses USRP X300 for

sub-6G, and operates with the 60GHz HMC6350 TX frontend [44] for mmWave. USRP

N210 acts as the sub-6G client device; USRP X300, together with HMC6350 RX frontend

and horn antennas, serves as the mmWave client. The USRPs run baseband processing and

feed signals to sub-6G and mmWave frontends. They are connected to the server running

Ubuntu 18.04 (Intel i7-9700k CPU with 32G RAM) for baseband signal generation. We

use the testbed to conduct indoor and outdoor experiments, in both static settings and

low-mobility (about 10km/h) scenarios.

Trace-driven emulation. Since CCE is not deployed by mobile operators, we use large-
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Figure 3.5: Indoor and outdoor setup.

scale datasets collected from commercial networks to perform trace-driven emulations. Ef-

fectively, it is a “what-if” study with the following steps. First, we run walking/driving tests

with file downloading tasks on phones. Cell deployment, throughput and signal strengths

are all recorded. Meanwhile, we extract logs on CA operations using MobileInsight [78]. Sec-

ond, for each CA instance, we assess all available cell combinations and remake the choice

on a group basis by exploiting many runs at the given location. As we cannot know the

actual signal strength and throughput of missed options at runtime, we feed the emulator

with statistical data in history to approximate those conditions. Table 3.4 shows the five

datasets used for emulations: (1-4) A-C1, V-C1, T-C1 and A-C2: We run tests with three

major operators (A, V and T short for AT&T, Verizon, and T-Mobile, respectively) in one

US Midwest city (C1). We also run experiments with A in one large city (C2). Both A

and V support 5G over both sub-6G and mmWave bands in the test areas, but T supports

only sub-6G. Since we need sufficient data on cell deployment and CA usage, we run exten-

sive experiments to scan the test regions (over 5,700 km and 400 hrs in total). We keep

downloading files (500MB each from Google Cloud) to measure the downlink throughput.

(5) 4G-HST: We use a public dataset [122] collected on High-Speed-Train (HST) commuting

between Shanghai and Beijing, China. 5G was not deployed on HST yet.
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Figure 3.6: SNR inference under low mobility.
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Figure 3.7: SNR inference under high mobility.

3.5.2 Concurrent Channel Inference Accuracy

We assess concurrent channel inference under a variety of settings on frequency bands, mo-

bility, locations and diverse propagation paths, in both indoor scenarios (in a lab space of

Figure 3.5a) and outdoor scenarios (at the top level of a parking structure of Figure 3.5b).

We compare CCE with prior schemes in the delay-Doppler domain (REM [77]) and in the

time-frequency domain (OptML [29] and R2F2 [120]). Both OptML and R2F2 require to

configure the number of paths for high accuracy. We use their optimal configurations in our

tests.

Channel inference accuracy. We first assess the inference accuracy under both low

and high mobility. We run low mobility experiments using a mobile cart that carries

the client devices and moves at the speed of about 10 km/h. We emulate high mobility
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Figure 3.8: Impact of frequency-to-measure.

Method Min Max Mean

CA++ (ms) 0.6 44.1 8.2

REM (ms) 2.0 131.1 51.7

OptML (ms) 213 288 239

R2F2 (s) 2.5 59.3 3.5

Table 3.5: Runtime.
in outdoor scenarios. We extract the propagation model from the low-mobility traces and

replay these traces with the mobility settings collected from the HST dataset (i.e., 150

km/h – 300 km/h). The propagation paths are extracted by fitting the channel responses

with the optimal Doppler shifts {(υi)}Pi=1. To replay the propagation paths under high

mobility, we scale the Doppler shifts according to the moving speed v, i.e., υi =
v
c
f . We

consider two frequency ranges: (1) sub-6GHz (i.e., measuring over 2.45 GHz to infer four

unlicensed sub-6G channels at 2.55 GHz/3.65 GHz/5.45 GHz/5.55 GHz) and (2) mmWave

(i.e., measuring over 58 GHz to infer 62 GHz). We assess the inference accuracy in terms of

SNR/RSRP/RSRQ errors. The results are similar (see next); we only present SNR results

in Figures 3.6 and 3.7, due to space limitation.

CCE outperforms over mmWave as well. Its error even goes down to 0.37 dB, much lower
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than 2.03 dB, 1.92 dB, and 4.60 dB by REM, OptML and R2F2, respectively. All schemes

perform better over mmWave, because the measurement-inference frequency gap becomes

relatively smaller (4GHz over 58-62 GHz versus >1 GHz over 2.45-5.55GHz except in the

2.55 GHz case). CCE performs much better, because its delay granularity increases with the

center frequency. We use the median error unless specified.

CCE outperforms other approaches even more under high mobility. Compared to low

mobility, the error is smaller over sub-6G (1dB → 0.4 dB) and slightly larger over mmWave

(0.37 dB → 0.64 dB). REM, OptML and R2F2 all perform worse over mmWave under high

mobility. For sub-6G bands, the inference errors grow to 3.94 dB–4.16 dB (REM), 6.3 dB–

10.2 dB (OptML) and 8.53 dB–11.0 dB (R2F2). CCE performs better under fast mobility,

because the Doppler shifts for diverse paths become more significant. All three prior schemes

cannot provide accurate estimation, as they fail to capture or precisely model time-varying

Doppler.

We note that, high accuracy gain tends to diminish over mmWave (ultra-high frequen-

cies). It confirms the fact that radio signal over ultra-high frequencies fades much faster

than over low frequencies.

Effectiveness over various frequencies and wide spectrum. CCE remains effective

regardless of measured frequencies. Figure 3.8 shows the results when measuring 5.55 GHz

(sub-6G) and 62 GHz (mmWave) under low mobility (outdoor). In fact, we run tests with all

five sub-6GHz channels, and omit the results using three other sub-6GHz channels because

they are consistent. CCE outperforms REM by about 2 dB, reducing the SNR errors from

2.16 dB/2.89 dB (min/max) to 0.5 dB/0.86 dB (min/max). This also applies to mmWave

(from 62 GHz to 58 GHz). CCE also does well for channel inference across sub-6GHz and

mmWave (the plot omitted). It outperforms REM, and reduces the SNR inference error by

a factor of 9.0, from 3.16 dB to 0.35 dB.

Robustness to measurement settings. CA++ is also invariant of the frequency to
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measure. Figure 3.8 shows that CCE (0.50 - 0.86 dB) still outperforms REM (2.16 - 2.89 dB)

by around 2 dBs. We also validated the performance under longer distance transmission,

where SNR drops from 30dB to 14dB. CCE causes an average error of 0.94 dB to 1.04 dB,

while REM causes an average error of 3.11 dB to 3.32 dB. CA++’s error increases by <0.5dB

while REM’s increases by >1dB. This is because CA++ is more robust in inferring path

attenuation under noises.

Robustness to various settings. CA++ is robust to various numerology settings. 5G

supports 4 numerology settings, with its subcarrier spacing being 15kHz, 30kHz, 60kHz,

120kHz(denoted with numerology index 0, 1, 2, 3). We test with various subcarrier spacing

∆f : 15kHz - 30kHz, 15kHz - 60kHz, 15kHz - 120kHz, and 60kHz - 120kHz under high mo-

bility (the plot is omitted). CCE contains the median error within 1dB for cross-numerology

channel inference.

We also gauge the inference accuracy under weaker signals and stronger noises, where

SNR degrades from 30dB to 14dB, as we move the client away from the cell tower (from

3 m to about 6 m). In case of measuring 2.45 GHz to infer other sub-6GHz channels, CCE

increases its inference error by <0.5 dB, whereas REM increases by > 1dB (Figures are

omitted). This is because CCE is more robust in inferring path attenuation under noises. We

also test CCE in indoor experiments under low-mobility (walking) or static settings (where

the cells are placed at one location and the clients are placed at the rest locations). CCE’s

inference accuracy is comparable in these indoor experiments (the plots are omitted).

Our algorithm provides high-fidelity inference under a widespan of radio spectrum (from

2.45GHz to 5.55GHz for sub-6G bands, and from 58GHz to 62GHz for mmWave bands). We

also tested under both outdoor and indoor environments under low mobility. We note that

the results under both settings are similar. In the outdoor setting, CCE yields a median error

of about 1 dB ([0.91 dB, 1.03 dB]) when measuring 2.45 GHz (over sub-6G). In contrast, REM

incurs a median error of about 3 dB ([2.66 dB, 3.21 dB]). In the indoor setting, Figure 3.9

shows that CCE and REM perform similarly. CCE induces an error around 1dB ([0.27 dB,
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Figure 3.9: SNR inference errors of indoor.

1.26 dB]), while REM induces a median error of [2.56, 4.17 dB] for sub-6G scenarios. For the

mmWave bands, CCE induces a median error of 0.54 dB, while REM induces a median error

of 2.38 dB. This is because the indoor propagation conditions are more complex in layout

with more obstacles. We also vary the position of the clients, and find that CCE consistently

outperforms REM. As shown in Figure 3.10a and Figure 3.10b, we move the client away from

the cell tower (from 3m to about 6 m). In the case of measuring 2.45 GHz to infer other

sub-6GHz channels, CCE increases its inference error by <0.5 dB, whereas REM increases

by > 1dB. For indoor experiments with 14 testing locations (Figure 3.10c), CCE’s inference

accuracy is comparable in these outdoor experiments.

Evaluation on RSRP and RSRQ. We compare RSRP, RSRQ, and SINR estimation

via CCE and legacy measurements. Figure 3.13 plots the inference errors under low mobility

(outdoor). Results under high mobility are similar and omitted. In Figure 3.13a, we combine

all samples when inferring each of four sub-6GHz channels using the measurements over

2.45 GHz. RSRP measurements are within [-140dBm, -45 dBm], and RSRQs are mostly

in [-20 dB, -4.5 dB]. The reported RSRP (RSRQ) values are quantized with a resolution of

1 dBm (0.5dB) [16, 11]. CCE consistently outperforms REM, regardless of the radio quality

metric. Compared with REM, CCE reduces the median error from 3 dB/dBm to below

1 dB/dBm over sub-6G. Its RSRP/RSRQ errors even go to zero (partly due to quantization)
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Figure 3.10: SNR inference errors at dif. locations.

over mmWave.

Achievable data rate. To quantify how the channel inference error affects achievable

data rate, we gauge the estimation error of data rate based on the SNR inference accuracy.

We use the standard SNR to spectral efficiency mapping to estimate achievable data rate in

5G [15]. The base stations decide the spectral efficiency by adapting modulation to received

radio quality reports. Figure 3.12 compares CCE with REM by data rate estimation error

for mmWave scenario. If the estimation is wrong, the base station will aggregate cells with

overestimated or underestimated quality, which causes under-utilization. We use 100MHz

setting to assess how the data rate deviates from the ground truth with CCE or REM under

different mobility and SNR. Under low mobility, CCE outperforms REM with 87% - 91%
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Figure 3.15: Signaling efficiency.

reduction of error. Under high mobility, CCE outperforms REM with 84% - 88% reduction

of error.

Efficiency. We compare the efficiency of all four algorithms by measuring the time needed

to get channel inference using the same set of data. Table 3.5 shows that CCE takes 8 ms

on average, compared with 52 ms by REM and 238 ms by OptML and 3.5 s by R2F2. CCE

and REM outperform OFDM-based algorithms by more than an order of magnitude as they

do not rely on optimization with many iterations. Compared to REM, CCE further reduces

the execution time by decoupling the sparse propagation paths and performing inference

separately. Such efficient inference makes CCE promising to accelerate the measurement;

The processing is faster than measuring one frequency in 5G, i.e., 40 or 80 ms.

3.5.3 Overall Improvements

We check the overall improvement by CCE. We use trace-driven emulations to assess the

overall improvement by CCE. Since the device never knows the runtime performance of those

un-selected cell sets, we use historical data to profile the performance of the cell sets available.

We perform a “what-if” study to compare the CA options enabled by CCE and selected by

the legacy (current) practice. Note that this assessment is only feasible for our 5G datasets;

The public 4G-HST dataset lacks sufficient speed tests.
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Measurement acceleration. We first estimate how much the group-based operation

could speed up measurement. Accelerated measurement leads to an earlier selection of

the next serving cell set, and thus prolonged time on a stable connection. As Figure 3.14

presents, the increased connection time (median) is 190.5 ms – 765.0 ms for 5G operators,

and 369.3 ms on the high-speed train. It will benefit all scenarios in our experiments. In

static/low-mobility cases, mobile users get more time to enjoy the complete aggregation of

all serving cells and thus higher data speed. Under extreme mobility like the high-speed

train, the network can provide smooth service with a lower risk of connectivity loss or acute

performance drop.

Comparing different datasets, we note that CCE further accelerates measurements as more

frequency channels are deployed. It yields faster measurements for AT&T 5G than Verizon

5G, T-Mobile 5G, and 4G on HST in China. This is because AT&T 5G has deployed more

frequencies than others (Table 3.4). A single measurement covers more colocated cells on

different channels. Our design thus yields more benefits with expanding spectrum resources

in 5G and beyond.

Signaling efficiency. We examine the efficiency of group-based feedback in terms of

signaling overhead. We compare the number of reports needed to include all eligible cells

under legacy CA and CCE. Figure 3.15 proves that CCE could save the signaling overhead.

Under low/moderate mobility and AT&T 5G in C1(C2), the legacy CA incurs 7(2) reports

as the median value, while CCE reduces the number to 3(1). Compared to AT&T 5G,

the benefit is slighter for other operators and scenarios. For Verizon 5G, T-Mobile 5G and

China Unicom 4G (on HST), CCE reduces signaling overhead in 13.2%, 66.2%, and 31.0% of

cases, respectively; And the median factor of reduction is 2 for all operators. This is because

fewer frequency channels are deployed by each cell tower. Therefore, the number of cells to

concurrently measure and include in one report is smaller and restricts the efficiency.
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3.6 Discussion

Infra side cooperation. Infrastructure side: Reduce the signaling overhead by predicting

the user movements, grouping their signaling operations (e.g., tunneling), and proactively

performing these operations without delaying user traffic. With our proposed wireless link

predictions in §4, the infrastructure can obtain more predictive channel measurements under

high-speed mobility and 5G mmWave. By replacing existing wireless estimation with OTFS-

powered ones, the wide-area roaming policies will obtain near-constant, predictable inputs

for efficient and robust handover decisions.

Client side prediction. Client-side prediction with small-data, latency-friendly dis-

tributed learning: To predict the upcoming handover, the client should first infer the oper-

ator’s handover decision logic. Inferring the network-side handover logic is challenging for

two factors. First, the connected-state handover decision logic can be operator specific. The

3GPP standards leave the freedom for operators to customize their decision logic. Second,

the device does not have full access to all network-side operations. It has to rely on its

observations.

Colocated cells on a tower. In case cells from the same tower use different propagation

paths to the device (say, deployed at different tower heights), we may categorize these cells

into a few classes based on their path differences to the device. Moreover, beamforming in 5G

[6] allows to adjust the antenna direction at runtime. In this case, CA would consider beam

management [51] by steering antennas. CCE also helps by treating the antenna orientation as

a new dimension on measurements and selection in CA. Intuitively, the device still performs

once-for-all measurements in each direction per tower. In the extreme case, CCE degenerates

to the current CA in both measurements and selection, but will never perform worse than

the legacy CA.
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3.7 Related Work

Channel state inference is becoming more challenging as the mobile network evolves with

new mmWave technologies. Recent studies focus on two directions: single-channel state

inference and cross-channel state inference.

Single channel state inference. Channel state inference is critical for link rate adapta-

tion and channel selection. Existing works predict the channel in the time-frequency domain

(e.g., OFDM). They adopt different approaches to capture the time-frequency domain pat-

terns, e.g. spatial-temporal correlation [81, 130, 90, 110]. The major approach for inference

is based on channel modeling and optimization [32, 87], machine learning [80], compressive

sensing [28, 33], and subspace algorithm [22]. However, such schemes are susceptible to

Doppler effects. Recent works [105, 108] focus on OTFS-based channel state inference with

embedded OTFS signals with a pure delay-Doppler domain approach. Nevertheless, these

approaches cannot be translated into time-frequency domain channel estimation.

Cross-channel state inference. With the emerging MIMO technology, cellular net-

works require an immediate downlink channel state without waiting for clients’ feedback.

R2F2 [120] is the first work that leverages reciprocity to transform uplink channel mea-

surements into downlink channel states, which is inspired by [68]. Recently, deep learning-

based approaches [60, 29, 83] are drawing more and more attention recently. Among them,

OptML [29] first recovers the underlying paths and then reconstructs the channel states but

Fire [83] performs estimation in an end-to-end approach. However, these approaches are

all limited by the machine learning models that are hard to generalize. Another related

domain is sensing algorithms and systems that leverage motion information for channel es-

timation with WiFi [23, 67, 111, 101, 69], mmWave [138, 125], RFID [123, 85], and acoustic

signals [133, 134, 91, 124]. However, these approaches usually ignore multipath profile and

focus on the dominant path only.
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Dataset A-C1 V-C1 T-C1 A-C2 HST [122]

Date Apr 2021 - March 2022 Nov 2018

Region 1.65×1.85 km2 1.2×1.0 1,300-km

Speed (km/h) driving: 10-40 (mostly); walking: <5 300 - 350

RAT 5G + 4G (T supports 5G over sub-6G only) 4G

Max# CA CH 6 5 5 7 3

# CA groups 5,681 2,037 492 3,031 534

Max CA CW 430 MHz140 MHz135 MHz 445 MHz 50 MHz

Summary of 5G cells

# sub-6G cells 62 21 55 38
N/A

# mmWave cells 372 100 0 39

# sub-6G CH 3 1 3 2
N/A

# mmWave CH 16 4 0 9

sub-6G freq. 826–2116 885 626–2608 826–2116
N/A

mmWave freq. 38.6–39.527.9–28.3 0 38.6–39.5

sub-6G CW 5 10 15–100 5
N/A

mmWave CW 100 100 N/A 100

Summary of 4G cells

# cells 1,719 1,228 878 1,490 1,910

# Channel 20 40 12 18 8

freq. (Mhz) 709–5824701–5825701–2539 709–5824 1740–2155

CW (Mhz) 5/15/10/20 MHz

Table 3.4: Datasets. CH: Channel. CW: Channel-Width. Sub-6G freq. are in

MHz. MmWave freq. are in GHz.
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CHAPTER 4

Embracing Interference with X-Domain Cancellation

This chapter is organized as follows. §4.1 introduces the requirements for interference can-

cellation. We then detail the problem statements and the challenges in §4.2. We devised two

essential components for interference management, interference estimation (§4.3) and inter-

ference cancellation (§4.4). §4.5 presents our implementation and evaluation. We discuss the

open issues in §4.6 and set our work apart from related works in §4.7.

4.1 Motivation

Drones are increasingly valuable in modern industry. We have witnessed the emergence of

drone-based surveillance, delivery, and many more new applications [24]. The mobility of

drones is qualified to enable applications in more challenging environments and more flexible

use cases. For example, drones can enable continuous and all-area 3D data collection at large

industrial facilities dueling automated processes and decisions. The remote control of drones

increases efficiency and practicality by reducing manual efforts. The drone applications need

seamless network support to deliver frequent and real-time data.

Nowadays, the only large-scale mobile network is cellular networks. Thus we ask the

question, Can cellular networks support drones? As required by always-on surveillance or

automated delivery, the network should always be available on demand and ready to deliver

high-throughput drone traffic. When the drone moves with three dimensional flexibility, it

needs seamless and reliable mobility support. Besides, emerging high-throughput applica-
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tions also requires real-time feedback from the other end. It thus demands high bandwidth

and ultra-low end-to-end latency.

Current cellular network is a promising approach to enabling drone-based demanding

applications with the advances of 5G high-capacity radio and cloud-based core network. In

5G and beyond, the operators are opening up hundreds of GHz bandwidth for demanding

applications [74] and offering low-latency services like URLLC [98]. However, there is no

study on whether the current cellular network can support drone-based applications. We thus

studied the state-of-the-art 5G networks. Unfortunately, we discovered two main problems,

mobility, and data reliability.

First, the performance on the move is restricted by poor handovers. Drones rely on han-

dover to gain seamless connection from one serving area to another. We find that handover is

more frequent and more error-prone for the cellular network in the air. Handover frequency

is two times higher for drones than ground devices along the same route. This is because

Drones can measure more cells due to lack of blockage compared with ground devices. More

measurements and inappropriate decision metrics trigger more handover. Besides, the han-

dover failure ratio is higher for drones. Drones rely on inaccurate cell quality indicators for

handover decisions.

The root cause lies in the design of the OFDM-based channel. OFDM-based handover

decision metrics are unreliable. These RSRP/RSRQ/SINR metrics are erroneous due to

interference. Thus measured the strength of resource elements is not accurate under Doppler

and inter-cell interference. We validated that the correlation between measured channel

quality indicators (RSRP/RSRQ/SINR) and ground truth SINR is weak. Besides, these

metrics are for the downlink only. However, the DL/UL have different channel quality, and

the interference can be very different. Finally, the interference due to drone communication

is difficult to eliminate. We discovered that cases where the OFDM SINR is strong, but

the BLER is high, which means cells with bad BLER are selected. This leads to handover

failures and connection failures.
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Interference also reduces the data rate, even in static cases. Our empirical study of

commercial networks shows that operators only use a limited number of frequency channels1

for a frequency band. For example, AT&T only uses two EARFCNs 850 (1.955GHz) /

976 (1.967GHz) in west LA. This overlapping deployment scheme facilitates intra-frequency

measurements. Operators deploy intra-frequency overlapping cells ubiquitously to guarantee

coverage even when the device only supports one frequency band. For drones, the problem

is more severe due to less blockage and side-lobe based propagation. The interference gets

high upon less attenuation of interference. Besides, ground-based tests are ineffective in

preventing interference in the air. High interference causes a high packet error rate and thus

a low data rate [75, 103].

We design CrOss-Domain Interference Management (CODIM) for next-generation cellular

networks. We find that the synergy between delay-Doppler domain and the time-frequency

domain eliminates interference and profiles interference with a new transformation. We

exploit the transformation for accurate channel estimation and interference cancellation.

4.2 Problem Statement and Challenges

4.2.1 Physical Layer Basics

Here we introduce the background of physical layer design in 4G/5G. We first introduce the

frame structure. We focus on the channel quality measurements and data demodulation.

Both rely on the characterization of the propagation channel.

Frame structure. 3GPP standards [12, 13, 14] adopts OFDM as the modulation scheme.

OFDM multiplex symbols at time-frequency domain. The multiplexing relies on quantized

resources by time slots and subcarriers. Each resource element is defined at a coordinate of

slot and subcarrier index. There are two types of symbols: signaling and data. Both signaling

1Frequency channel is identified by EARFCN in LTE, NR ARFCN in 5G
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Figure 4.1: Illustration of OFDM frame structure.

and data are scheduled into a set of resource elements. The physical layer finally sends the

multiplexed signal at the allocated time and frequency. The key signaling symbols are

reference signals. In 5G NR, there are three types of signaling at downlink, SSB blocks, CSI-

RS and data demodulation reference signal. These signaling blocks are scheduled with either

a subgrid or a set of subgrids in the time-frequency domain. Besides signaling, data symbols

are also scheduled based on user traffic. As shown in figure 4.1, a cell tower typically schedules

reference signals from different cells with different resources. However, data symbols can

collide, resulting in mixed data symbols.

Channel measurement. A key step for the wireless-based mobility management is

to measure each cell’s channel quality. This requires channel measurements at the physical

layer. As shown in figure 4.1, the cell tower schedules each cell’s reference signal at designated

grids. The device is configured with the specific grid locations by the cell and then starts

periodic or on-demand measurements. The device is usually able to measure all the cells

on one frequency channel. For example, the device can tune to band 2 and measure all

cells with frequency 1930 - 1990MHz. To measure the cells outside of this band, the device

has to disconnect with the current serving cell and finish measurement within a period

(usually 40ms-80ms [16]). Thus, the common practice is to reduce the measurement on

inter-frequency cells located outside the current serving frequency.
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In 4G/5G, such measurements are performed by the client at the physical layer in the

time-frequency domain, based on the input-output relationship: Y = HX + n, where X

is the transmitted signal vector, Y is the received signal vector, H is the channel impulse

matrix and n is the noises. By placing the reference signal with pre-defined values X, the

receiver can estimate H and n based on received value Y and pre-defined X, and then

estimate received signal power (RSRP), quality (RSRQ) and signal-noise-ratio (SNR) for

the handover decisions and cell selection under carrier aggregation[87, 9]. These physical

measurements are used for control plane procedures.

Data demodulation. Data demodulation relies on the transmission of demodulation

reference signals and data symbols. Data symbols can be control messages or user messages.

The device is configured with the resource allocated for each cell. As the client moves, the

channel will also vary over time. How fast a channel evolves with mobility depends on how it

is represented. In OFDM, the channel response H(t, f) remains approximately invariant in

a very short duration Tc ∝ 1
νmax

∝ c
vf

due to multipath fading [128], where Tc is the channel

coherence time and νmax ∝ vf
c
is the maximum Doppler frequency shift, v is client movement

speed and c is light speed. So a client under faster movements or higher carrier frequency

(e.g., mmWave) will experience more dramatic channel dynamics in OFDM (<1ms under

500km/h and 3.6GHz band).

4.2.2 Problem Statement

We formulate the problem of interference estimation in the context of the cellular network

for drones. To illustrate the problem, we first show how the interference happens. The client

is receiving the reference signal from cell 1. An interfering drone is transmitting data to

cell 2. Since there is no blockage, the data transmission in the air causes interference to

the reception of the reference signal. Besides, the uplink-intensive applications for drones

intensify the interference. Downlink interference can be generated in a similar setting as the

client is receiving the reference signal from cell 1. An interfering cell 2 is transmitting data
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to another drone. The interference will cause issues with reference signal measurements and

data decoding.

The problem here is how to estimate the channel response for a reference signal for

channel quality metrics. We categorize interference into intra-cell interference and inter-

cell ones based on where the interference comes from. Based on current practice, even in

the case of carrier aggregation [84, 99], a single cell will not multiplex users at the same

resource grid, thus orthogonality between transmission inside a single cell is guaranteed.

Nevertheless, inter-cell interference can be devastating. The interference might come from

the reference signals or data signals from other cells. Here we use data signals to denote all

signals, including both control plane and user plane traffic.

System settings Interference cancellation generally requires cooperation between cells

with the backhaul network. We assume that the cells can interchange configurations and

decode data via the backhaul network. Note that this requirement is satisfied by 3GPP

standards. The backhaul network is implemented as X2/Xn interface [18]. Besides, we

require the cells remain synchronized at the slot level. All 3GPP standard-compliant cells

shall satisfy the 3 µs synchronization requirement [11].

4.2.3 Challenges

4.2.3.1 Challenges of Interference Estimation

Interference from other clients can have an arbitrary channel response matrix and signal

structure. Thus it is inherently impossible to infer both matrices perfectly. From Channel

theory [119], we know that the possibility of decoding the signal depends on the SINR.

However, even when SINR is high, the decoded signal does not reveal the channel response

matrix. For example, we have yrecv = H1 ∗x1+H2 ∗x2, supposing x1 is the reference signal,

which is already known from broadcasting configurations. We can only decode the value of

H2 with accurate estimation of H1 and x2.
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The current interference handling is deficient in differentiating the reference signal and

data signal. In current cellular networks, reference signals are usually scheduled apart for

different cells. Such a scheme is effective in preventing interference between reference sig-

nals. However, this is not sufficient to prevent interference between reference signals and

data signals. Although cells can schedule data signals separately from reference signals to

prevent interference, it either requires the cell to exchange real-time scheduling information

or schedules persistent allocated resources for reference signals. It is thus difficult to strive

for a balance between the trade-off communication overhead and spectrum efficiency.

Therefore, CODIM shifts the intra-domain interference to inter-domain interference. Intu-

itively, by scheduling signals at different domains, interference can be minimized. However,

the signals will take the same resource elements, where orthogonality does not hold. There

are three main challenges to solve this problem.

◦ C1: Characterizing the frequency-selective channel. Channel in the time-frequency

domain exhibits frequency-selective fading. Such a feature improved OFDM’s efficiency

since data transmission with OFDM leverages frequency diversity to adaptively modulate

data symbols [127]. It’s a common practice for the cell to schedule a higher coding rate for

devices with lower fading. However, such frequency-selective scheduling requires the channel

estimation performed for every single sub-carrier. The frequency-selective fading implies

that the OFDM reference signal must be spread over the entire frequency band to capture

the fading coefficient at each sub-carrier.

◦ C2: Differentiating reference signals. OFDM symbols only contain phase and ampli-

tude, which reveals no information on the transmit signal power. Thus, reference signals

can only differentiate themselves based on the transmission location. In such a setting, each

cell occupies all sub-carriers of a symbol duration to transmit the reference signal. All other

cells cannot transmit data signals at that symbol duration. This results in two limitations:

scalability of overlapping cells and waste of resources.

◦ C3: Reciprocity does not hold for interference. Downlink interference can be measured.
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However, uplink interference cannot. And the common approach of leveraging reciprocity to

transform uplink and downlink channel characteristics does not hold. The uplink interference

must be measured to be estimated and analyzed. But the cellular network does not support

the device to send any signal for the cell to measure uplink. This is a negative outcome due

to hard handover. What’s worse, the device cannot send signals without disrupting data

transmission. Since each cell operates at different channels, the device has to switch to a

different frequency to send signals, which disrupts data. Besides, it might cause potential

security loopholes for the cell to accept and analyze the signal from a non-connected device.

4.2.3.2 Challenges of Interference Cancellation

Interference cancellation is an attractive technique to boost performance even under high

interference. The intuition is that by canceling strong interference sources, the client can

decode the remaining meaningful signal with better accuracy. To put it simply, we have

yrecv = Hi ∗ xi + H0 ∗ x0, where xi is the interference signal and x0 is the intended signal.

After decoding xi, the client can cancel Hi∗xi and decode x0. There has been extensive work

in this domain [57, 107]. However, there are two main challenges as discovered in previous

works.

First, the success of cancellation relies on the assumption of perfect channel estimation.

If the estimated channel response is erroneous, the client is not able to cancel interference

accurately even with the decoded signal. For example, with a simple two-client case, we

have the following equations to denote the remaining signal.

ŷ0 = yrecv − Ĥi ∗ xi = Hi ∗ xi − Ĥi ∗ xi +H0 ∗ x0

As shown in the equation, the remaining interference depends on the accuracy of estimated

channel response Hi. In the worse case, even with accurate decoding of interference signal,

the interference can even be higher after cancellation. Although the worse case is not common
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to happen, for realistic cases, the remaining interference can reduce the gain greatly.

Second, the gain of interference cancellation depends on the discrepancy between the

power of clients. If two clients are transmitting with similar power, the transmitting rate is

largely restricted by the capacity of decoding the interfering signal. We can derive the gain

of successive interference as the following in the two-client model.

Rlegacy = log(
Hi ∗ xi

H0 ∗ x0

), Rsic = log(
Hi ∗ xi

H0 ∗ x0

) + log(
H0 ∗ x0

Hi ∗ xi − Ĥi ∗ xi

)

By comparing the legacy capacity rate and SIC capacity rate, the gain will increase as the

stronger interferer gets stronger. However, the real-time coordination of power between

clients is challenging.

Finally, interference cancellation does not fit in the drone cases where there can be

multiple interferers. Due to lack of blockage, the drones can receive the interfering signals of

even remote cells. With interference from different cells, the legacy cancellation approach fails

to perform accurate cancellation successively for each interferer. For the multiple interferer

case, the problem of channel estimation error and power differentiation remains. Besides,

the problem is even more challenging upon the interference between OTFS reference signals.

The intra-domain interference is harder to cancel than the cross-domain interference.

4.3 Cross-Domain Interference Estimation

4.3.1 Insights from Delay-Doppler Domain

The delay-Doppler domain unveils client movement and multi-path propagation. Compared

with the time-frequency domain, it offers a more direct representation of propagation paths.

Besides, the delay-Doppler domain channel is resistant to frequency-selective fading. How-

ever, the direct application of the delay-Doppler domain affects the data transmission effi-

ciency since the beamforming and MIMO technology with OTFS is rather premature.

We propose to multiplex reference signals and data at both domains to break the trade-
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off of choosing the single domain. Our key insight is that, with reference signals at the

delay-Doppler domain and data transmission at the time-frequency domain, we can achieve

much more than a single domain. We highlight the following insights.

Insight 1. Cross-domain power differentiation. The co-existence of OTFS and OFDM

provides natural power control. When the OTFS signal is transmitted via the OFDM mod-

ulation, the power of the signal decreases since each symbol is spread among the entire

OFDM plane. If we are transmitting a signal of the same strength at the OTFS domain and

OFDM domain, the OTFS-generated signal in the time domain can be 10dB lower than the

OFDM-generated signal.

Insight 2. Cross-domain non-orthogonal multiplexing. We also find that non-

orthogonal multiplexing of OTFS and OFDM convert interference into beneficial signals.

Although the OTFS and OFDM generate overlapping waveforms, the processing at a dif-

ferent domain separates the signals apart. The client can decode both the reference signal

and the interfering data. The decoded data can be further canceled to improve transmission

efficiency.

Insight 3. Exploiting the synergy of both domains. With signals separated by

two domains, we achieve inherent differentiation of reference signal. At the delay-Doppler

domain, the reference signal goes through a frequency-inselective channel, thus the frequency-

selective fading is no longer a problem. However, the transformation between OTFS and

OFDM offers us the channel quality in both domains.

Besides, we observe the following features of propagation channels for drones.

Besides, we observe the following features of propagation channels for drones.

◦ Sparsity of paths. One unique feature of communication in the air is the sparsity of

paths. The sparsity of propagation paths is shown in many previous studies [66, 126, 42].
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The sparsity of paths leads to a sparse channel response matrix H in the delay-Doppler

domain. This simplifies the problem of estimating H given fewer unknown variables. Since a

known element H(k, l) implies a known Y (k, l), our target is simplified to infer a number of

unknown elements. With delay-Doppler domain representation, the complexity of frequency

selective fading is avoided. In the time-frequency domain, the frequency-selective fading can

only be captured with a full-rank channel matrix.

◦ Limited Doppler. The channel response matrix is decided by the scale of Doppler, which

is dictated by the relatively moving speed between the sender and the receiver. Due to the

restriction of drone moving speed2, Doppler is limited. We further find that the value of H

reaches the peak at the index corresponding to the Doppler scale. Since Doppler is limited,

the value of H is primarily decided by the first Doppler index given the small time span of

the reference signal. In a realistic setting of using 2 slots to transmit reference signal, the

Doppler tap is 1
N∗T = 7.5 kHz. With max speed as 100km/h, the Doppler is vf/c.

◦ Linear Transformation between OTFS and OFDM. While cross-domain separation

seems to be practical, which domain to perform channel estimation remains a question.

No matter from which domain, we will observe the mixed signals generated from both do-

mains. To differentiate these two, we derive a frequency-inselective approach leveraging the

sparsity of delay Doppler signals. Note that Time-frequency domain symbols are spread

over the delay-Doppler domain. We can recover some of Y with known y. Note that this

is impossible if both signals are sent in the time-frequency domain since each element is

independent.

4.3.2 X-Domain Estimation for Single Path

In this section, we begin with the formal formulation of the interference estimation problem,

then use an illustrative example to show how our design works at a high level. Finally, we

2According to FAA regulation [47], the maximum allowed speed for commercial drones is 100km/h.
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will elaborate on our algorithms step by step.

Problem formulation. We first formulate our problem formally as an optimization

problem. CODIM enables the co-existence of OTFS domain reference signal Y and OFDM

domain data signals y. The OTFS reference signal Y [k, l] is located at k th delay tap and

l th Doppler tap. The OFDM data signal y[m,n] is located at m th subcarrier and l th

symbol. The receiver receives Yrecv = YRS + Yinterf , where YRS is the reference signal and

Yinterf is the data signals from other cells. Our target is to estimate YRS. We can further

derive HRS since YRS = HRS ∗XRS.

Formulation of the transformation. A key step of our algorithm relies on the transfor-

mation between the delay-Doppler domain and the time-frequency domain. We use matrix

S to capture the transformation since it is linear. The transformation from y⃗ to Y⃗ is linear.

We denote y⃗ and Y⃗ as the vectorization of y[m,n] and Y [k, l]. We have: Y⃗ = Sy⃗, where

S is a MN ∗MN matrix. Based on ISFFT, S[idx(k, l), idx(m,n)] = e−j2π(mk
M

−nl
N
), where

idx(k, l) is the function to get the index after vectorization with idx(k, l) = lM + k. For

example, we have Y [k, l] =
[
1 ... e−j2π(mk

M
−nl

N
) ... e−j2π(

(M−1)k
M

− (N−1)l
N

)

]
y⃗. Note that S is

full-rank. For simplicity, we use SR = {S[idx(k, l), :]}(k,l)∈R,0≤:<MN to represent the row vec-

tors to transform y⃗ to YR, where R denotes the indexes of selected Y⃗ . In general, We have

Y⃗R = SRy⃗.

An illustrative example. We first show an illustrative example on how we solve the

unknown YRS and Yinterf . In this example, we assume that there is only a single propagation

path and a single interferer. In such a case, we have YRS = HRS ∗ XRS, where HRS is a

matrix with a single non-zero element at [0, 0]. For simplicity, we assume XRS is a matrix

with a single one at [0, 0]. Our target is to infer the value of HRS[0, 0]. Equivalent, we can

derive our target from either YRS[0, 0] or Yinterf [0, 0]. We will next show how Yinterf [0, 0] is

derived from cross-domain transformation.

Different from legacy channel estimation where we only infer the channel from the features
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Algorithm 2 Estimating interference for a single path

Require: Received signal Yrecv, Reference signal XRS, delay-Doppler grid setting

N,M,∆υ,∆τ

Ensure: Channel response H

1: Initialize transformation matrix S with Equation 3.3;

2: Update transformation matrix SR∗\(0,0),C∗\(m,n) by removing the column corresponding

to element [m,n];

3: Get Yinterf ← S[0,0]inv(SR∗\(0,0),C∗\(m,n))Y⃗
i
R∗\(0,0) according to Equation 4.1;

4: YRS ← Yrecv − Yinterf ;

5: Calculate H based on XRS and YRS with H = YRS/XRS;

6: Derive time-frequency domain signal yRS

7: Calculate SNR/RSRP/RSRQ from signal yRS and interference yinterf ;

of the channel, we actually infer the interference since the interference is more structured.

We now need to solve unknown Yinterf [0, 0]. We will first show how it is feasible with the

knowledge of yinterf [M − 1, N − 1] = 0. Later, we will remove this assumption and prove it

works in general cases.

We use y or Y instead of yinterf and Yinterf since the following proof works for general

OFDM signals. Note that when k = l = 0, we have Y [0, 0] =
[
1 ... 1 ... 1

]
y⃗. SR={(0,0)}

as a all-ones vector with length MN . We use R∗ to represent all row vectors. We have

SR∗\(0,0) to denote the MN − 1 ∗ MN transformation matrix to transform y⃗ to YR∗\(0,0).

Since we know YR∗\(0,0), if Y [0, 0] is a linear combination of YR∗\(0,0), we can get Y [0, 0]. Note

that SR∗\(0,0) is a full rank matrix if we delete any column (proven in Lemma 4.3.4). If the

removed columns constitute a full-rank submatrix.

Estimating a single path. We devise Algorithm 2 to estimate interference in a single

path scenario. This is to represent the case where the transmitter and receiver have LoS

(Line-of-Sight) propagation path. The single path makes sense for drones since the propa-
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gation is LoS, especially between drones. The limitation of Doppler also holds due to the

drone’s speed limitation.

The algorithm requires the received signals at the time-frequency domain. This input

can be guaranteed with legacy 4G/5G support. With received signals, the client performs

transformations between the time-frequency domain and the delay-Doppler domain. By

imposing the restriction of sending the signal, the client is able to recover the signals at

both domains. Essentially, it decouples the signals from two sources by enforcing both sides

transmit with certain rules.

The algorithm works in three steps. The client first transforms time-frequency domain

signals y to delay-Doppler domain signals Y . Note that the signals at both domains are

mixed. After getting signals at two domains, the client removes noisy Y and gets a clean

estimation of y according to the cross-domain transformation. Finally, the client infers

missing Y based on estimated y. In the final step, the estimated y is complemented with

the prior information on the transmitted signals.

We next show how the transformation works in rigorous proofs. Note that in step 2, the

client gets the noisy Y . However, the Y is only noisy at the elements with the reference

signal. Due to the sparsity of reference signals, we can eliminate these noise elements. The

key idea here is that even with incomplete y, we can recover complete Y with Equation 4.1.

Y i[0, 0] = S[0,0]inv(SR∗\(0,0),C∗\(m,n))Y⃗
i
R∗\(0,0) (4.1)

We rely on Theorem 4.3.1 to recover Y . We show the detailed proofs in Appendix B.1.

Theorem 4.3.1 (Solvability under single path model). Under the single path propagation

model, Y [0, 0] can be derived with the knowledge of any y[m,n].

Theorem 4.3.1 requires the client to know at least one element of any y[m,n]. There are

two realistic conditions that make these possible. First, the sender can keep y[m,n] = 0 as

a guard symbol. This can easily hold since the first several slots are reserved for control
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signaling. In 4G/5G, it already holds that different cells use specific slots. This is true

in current practice. We are only required to spare one slot. Even for a 600 * 2 grid, the

condition still holds. Especially for TDD mode, the drone only sends data in the uplink. The

downlink slots are empty most of the time. The second condition is that y[m,n] = y[i, j],

which is practical when the channel matrix H does not change during coherence time, and

the transmitted signal X is the same. We find that this condition is easy to satisfy for uplink

due to the existence of padding data. When the client is assigned more resource elements

than the buffer size, it will fill up the remaining elements with zeros or ones. As long as the

placeholders are the same, we can use them as prior knowledge for interference estimation.

Error due to noises One possible concern is how the noise affects estimation accuracy.

If the received signal is not zero or the equivalence is not guaranteed, the recovery can still

work with controlled errors. Theorem 4.3.2 shows that the error is constrained by the error

of the assumed-to-know element in the time-frequency domain. Given that the common

noise level is tens of dB lower than the signal, the error is controlled. The detailed proof is

shown in Appendix B.2.

Theorem 4.3.2 (Approximation under single path model). Under the single path propaga-

tion model, Y [0, 0] can be derived from Yrecv with an error M ∗ N ∗ y[m,n]. The resulting

SINR error is linear to y[m,n].

4.3.3 Multiple Paths and Multiple Interferers

For drones, the propagation paths can be more than one when there are reflecting paths.

Besides, there can be multiple sources of interference since the drone is able to receive signals

from many cells. We next show how our solution deals with multiple paths and multiple

interferers.

Challenges and insights. There are two challenges. First, given there are more paths,

there are more unknown path variables. For example, the channel response might have
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several peaks. Second, the path variables are in unknown delay indexes. Although different

paths can be decoupled by the delay indexes, the specific index of each path is unknown.

This implies the number of unknown variables is decided by the maximum delay.

We make two observations to simplify the problem. First, the sparsity of the path guar-

antees a limited number of unknown path variables. The number of paths is equivalent to

the number of unknowns. With more unknowns, we need more prior knowledge regarding

time-frequency domain interference. The next observation is the limited delay in the air.

The major in-the-air indirect path would be caused by ground or building reflection. Mea-

surements of drone networks [55] profile the max delay for drones as 500 ns delay, which is

equivalent to a distance of 150m. With the setting of M=600, N=2, ∆f=15kHz, Delay tap

is 100ns. Thus the unknown delay indexes will be 5 at maximum.

Estimating multiple paths. Multi-pathing increases the number of unknown channel

response variables. To reveal them, we devise the recovery based on the nice features of the

transformation matrix S. We prove that P paths are recoverable if we know P of vector y⃗.

The idea is that P paths corresponds to the first P elements for Y⃗ [p, 0], p = 0, ..., P − 1.

Theorem 4.3.3 backups our idea. The detailed proof is shown in Appendix B.3.

Theorem 4.3.3. Y⃗P can be inferred with the knowledge of any P unique elements from y⃗[p, i]

for slot i.

Linearity of Multiple interferers. We discover that the interference from multiple

sources is linearly aggregated at the receiver. Since we recover the unknown channel re-

sponse variables based on linear transformation, the linearity of interference guarantees the

applicability even under more than one interferer. For a single path, the derivation is a

known linear transformation, which is decided by the M/N grid setting only. We want to

infer Y [0, 0]. However, there are I interferers. We need to deduct the sum of interferer

at Y [0, 0]. Given F interferer, we have Y [0, 0] = Yrecv[0, 0] −
∑F

f Y f [0, 0]. Thus we have∑F
f Y f [0, 0] =

∑F
f S[0,0]inv(Sknown)Y⃗

f
known. The equation holds when S for all the interfering
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cells are the same. Since S are the same for all interferers, we have

I∑
i

Y i[0, 0] = S[0,0]inv(SR∗\(0,0),C∗\(m,n))
I∑
i

Y⃗ i
R∗\(0,0)

For the case of multi-pathing, we want to infer Y [p, 0], However, there are I interferer.

We need to deduct the sum of interferer’s energy Y [p, 0]. . We have

I∑
i

Y i
P = SPinv(SR∗\P,C∗\K)

I∑
i

Y⃗ i
R∗\P (4.2)

, where P denotes unknown delay-Doppler domain indexes and K denotes known time-

frequency domain indexes. Note that we also require that all senders have the same M/N

grid setting. This requirement is easy to satisfy in the context of cellular networks. For cells

interfering with each other, they are operating on the same frequency since the operators

only deploy on certain frequencies. Thus the M/N grid setting is the same. The second

requirement is that all the cells operating at the same area are synchronized and all follow

the prior knowledge of y. Given all interferers at the same frequency channel are slot level

synchronized [11], all the cells operating at the same area will sync. The operator just needs

to send configurations to each cell to control the transmission. The detailed proof is shown

in Appendix B.4.

Theorem 4.3.4. Y⃗P can be inferred with the knowledge of any P unique elements from y⃗[p, i]

of all interferers for slot i if all senders holds the same grid setting.

Step-by-step algorithm. Algorithm 3 shows how the client estimate interference with

the received signals at the time-frequency domain. With received signals, the client per-

forms transformations between the time-frequency domain y and delay-Doppler domain Y .

The main difference is how the client removes noisy Y and gets a clean estimation of y

according to the cross-domain transformation. Different from the single path algorithm,

the transformation matrix S is derived by removing all the columns corresponding to the

known time-frequency domain signal. With estimated missing y, the client estimates the

interference at the time-frequency domain and reference signal at the delay-Doppler domain.
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Algorithm 3 Estimating interference for multipathing

Require: Received signal Yrecv, Reference signal XRS, delay-Doppler grid setting

N,M,∆υ,∆τ

Ensure: Channel response H

1: Initialize transformation matrix S with Equation 3.3;

2: for each known [m,n] from K and unknown [k, l] from P do

3: Update transformation matrix SR∗\P,C∗\K by removing the rows and columns;

4: end for

5: Get Yinterf ← SPinv(SR∗\P,C∗\K)
∑I

i Y⃗
i
R∗\P according to Equation 4.2;

6: YRS ← Yrecv − Yinterf for unknown indexes P;

7: Calculate H, yRS and SNR/RSRP/RSRQ;

Transformation back to OFDM. The paradigm of cross-domain transmission is promis-

ing. But one headache is how to transform the channel response derived from the delay-

Doppler domain to the time-frequency domain. This is the final step to derive the channel

quality metrics like RSRP, RSRQ, or SINR. Current 5G networks support all three met-

rics [16]. The accuracy of the metrics is paramount to select the best cells during handover

and even initial connection setup. How to transform the derived channel matrix to get SINR?

This is trivial since we already separated the received signals and interferences. Then the

derivation of RSRP and RSRQ is obvious. We calculate RSRP by the power of the received

signal. For RSRQ, we divide the RSRP by the average amplitude of interference and noise.

Overhead analysis. We require all the senders follow the rules to send guard symbols

for channel estimation. The overhead of resources depends on

P = max {number of path, number of delay indexes}.

Note that the number of paths is restricted. It can be 14 paths as specified by the maximum

number of paths by 3GPP [7], The challenge is the number of delay indexes. For mmWave

bands, the delay index would be more fine-grained. For example, with ∆f = 240kHz, the
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delay tap is around 10 ns, which is equivalent to 3 m. For paths with 150 m distance, the

max delay index could be up to 50. When P is 50, the overhead is 50/1200 = 4.2% (assuming

M=600, N=2). We can further reduce the overhead for mmWave scenarios at the loss of

accuracy. For mmWave, path propagation loss increases as the distance increases. Energy

will be concentrated on paths with smaller delays. The 100 ns delay spread covers most path

energy. Recent measurements [36] show 40-60 ns delay spread dominates.

4.4 Cross-Domain Interference Cancellation

4.4.1 Insights

The main challenge for interference cancellation is how to cancel interference from meaningful

data. With cross-domain interference estimation, the client can derive the interference for

the slots of the reference signal. However, canceling interference is non-trivial. It requires

the client to not only estimate the interference but also derive the interference for other time

slots. The following insights enable the precise derivation of OTFS reference signals and

interference over the shared grid.

Insight 1. Cross-domain scheduling. The co-scheduling of the time-frequency and

delay-Doppler domain signals facilitates interference cancellation. A cell needs to differ-

entiate the interference from other cells to cancel it. Facilitated by the accurate channel

estimation, the cell can not only infer the channel response of the reference signal, but also

recover the data from the interference. Note that the interference is derived from data chan-

nel response and data. After data is decoded, the cell can infer the data channel response.

Co-scheduling also enables intelligent power control. Even when two clients adjust OFDM

sending power independently, the received OTFS sending power is different. With such nat-

ural power differentiation, the sender can better leverage channel diversity for a higher data

rate.
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Insight 2. Cooperative decoding with backhaul. Base stations utilize backhaul

networks to exchange UE traffic and control information. Our solution utilizes an inter-

BS backhaul network for cooperative decoding. The cooperative decoding facilitates two

cells to decode mixed signals with cancellation. Note that cancellation relies on the accurate

estimation of channel response and decoded interference (data signal). The estimated channel

response H for reference signals still applies for the entire slot. The decoded interference can

be sent to all overlapping cells. For a single cell, it can try to decode the signal from itself or

other cells. After decoding the strongest signal, it cancels it with the channel response and

then proceeds to decode other data signals.

Insight 3. Slot-level synchronization with cloud infrastructure. Synchronization

enables slot-level coherence. Per required by 3GPP standards [10], cells operating at the

same frequency band are synchronized. The synchronization is realized with the high-speed

backhaul network and precise time synchronization protocols. Benefiting from synchroniza-

tion, the coherence time is guaranteed to cover a slot (14 symbols). Therefore, the channel

response matrix H for data and reference signal are the same within coherence time (2 slots).

For example, when F = 3GHz and v = 160 km/h, the Doppler shift is 450Hz. We can derive

the coherence time as T 1/ν (2.2 ms), while slot time is 1 ms. This implies, for a single slot,

the cell is able to infer the channel response matrix for all other cells sending at the shared

slot.

4.4.2 Design

We first use an illustrative example to show the intuition of our algorithm. We will then

detail the design, including the requirements and each design component.
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Figure 4.2: Illustration of interference between two clients.

4.4.2.1 An Illustrative Example

Figure 4.2 shows an example of two cells operating in the same area. The transmission from

client 2 of cell 2 will interfere with the communication between client 1 and cell 1. Here we

use Hij to denote the channel response matrix between client i and cell j. If we look at the

received signal at cell 1, we can formulate the following equations.

YI = H11 ∗XRS
1 (OTFS) + S ∗ h21 ∗ xData

2a (OFDM) (4.3)

YII = S ∗ h11 ∗ xData
1a (OFDM) + S ∗ h21 ∗ xData

2b (OFDM) (4.4)

YIII = S ∗ h11 ∗ xData
1b (OFDM) +H21 ∗XRS

2 (OTFS) (4.5)

We categorize two types of interference: cross-domain interference as formulated by Equa-

tion 4.3 and Equation 4.5, and intra-OFDM domain interference as shown in Equation 4.4.

For cross-domain interference, CODIM guarantees that there is only one cell transmitting

the reference signal at one time. Thus the receiver is able to decode the channel response

from all senders. For intra-OFDM domain interference, CODIM utilizes the accurate channel

estimation to decode data. The accuracy benefits from the cooperation between cells.

At a high level, the receiver performs three steps to cancel interference: 1) estimate
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interference; 2) decode the strongest data and cancel it; 3) iterate to decode the remaining

signal. In this example, the receiver first estimated H11 and H21 at OTFS domain given XRS
1

and XRS
2 . This is achieved through Algorithm 3. Then the receiver cancels the reference

signal by H21 ∗XRS
2 and decodes xData

1b with h11. Note that h11 is derived from H11. As the

final step, the receiver decodes xData
1a with H11 and H21 by two options depending on which

cell first decodes the signal. The first option is to let the Cell 2 send decoded Data2b to Cell

1 and Cell 1 then eliminates S ∗ h21 ∗ xData
2b and decodes xData

1a . The second option is to let

Cell 1 decode xData
1a and send it to Cell 2 for cancellation. Which option is adopted depends

on the SINR at both cells. The cell with higher SINR will decode the data faster and initiate

cooperative decoding. Note that the decoded data from two cells will not conflict due to the

ID-bonded CRC checking.

Compared with legacy OFDM-based interference cancellation, CODIM outperforms mainly

due to accurate interference estimation. With OFDM, we might adopt similar steps, but

the effective decoding is lower given inaccurate channel estimation and power control. Our

solution infers accurate H11 and H21 while the OFDM-based approach cannot reach the

ideal SINR with inaccurate channel estimation. Besides, our solution perfectly cancels the

interference of other cells’ reference signals. Thus the effective decoding rate for Data 1b is

H11∗Data1b
H21∗RS2+Noise

with OFDM, while with OTFS, the rate is H11∗Data1b
Noise

. Finally, our solution can

recover with accurate channel estimation. The cancellation will remove the signal without

leaving any remaining interference.

4.4.2.2 Requirements and Design

The key problem is to accurately cancel decoded data signal interference. There are three

major goals for interference cancellation. First, the intra-cell interference shall not affect the

multiplexing between clients. Second, the intra-OTFS interference is minimized to mitigate

reference signal estimation error. Thirds, inter-domain interference should be canceled with

high accuracy. With all three goals, CODIM is composed of three components to mitigate and
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Figure 4.3: The overall design.

embrace interference. Figure 4.3 shows the overall design of CODIM.

Persistent and runtime scheduling. CODIM utilizes persistent scheduling and runtime

scheduling to flexibly allocate resources while guaranteeing channel estimation accuracy. To

avoid intra-OTFS-domain interference, we require that each cell reserves slots for OTFS

reference signal. Such persistent scheduling places OTFS reference signals and OFDM data

signals over the same grid. One requirement is to prevent interference between OTFS refer-

ence signals. Note that intra-delay-Doppler domain interference diminishes if the signals are

transmitted at separate time-frequency grids. To do so, CODIM schedules reference signals

apart at the time-frequency domain. Our design guarantees the flexibility of the cells to

design its over reference signal inside the allocated subgrid.

One feature provided by runtime scheduling is informative modulation. For the decoded

signal, it embeds the cell ID. The cell ID indicates the location of a reference signal. Thus

the receiving cell can map the decoded data and the corresponding reference signal together.

CODIM proposes to combine current CRC checking with ID binding. During CRC checking,

the receivers get the UE-specific scrambling code. CODIM will embed cell ID into the scram-
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Algorithm 4 Interference cancellation at the receiver

Require: Received signal Y recv
j at cell j, Reference signal XRS

i for cell i, delay-Doppler grid

setting N,M,∆υ,∆τ

Ensure: Decoded data xData
ij from client i to cell j

1: Initialize transformation matrix S with Equation 3.3;

2: for each cell i with XRS
i at grid Gi do

3: Estimate channel response Hij via Algorithm 3;

4: Derive Y data
i ← Y recv

i −Hij ∗XRS
i for each grid;

5: Perform successive interference cancellation for inv(S)Y data
i ;

6: end for

7: Transform delay-Doppler channel response Hij to time-frequency domain hij

8: for grids Gk without other cells’ reference signals do

9: Check each channel response hij for equalization to yrecvk ;

10: Broadcast decoded data xData
ij to neighboring cells;

11: end for

bling code together with the UE ID to guarantee that decoded data can be differentiated.

Cross-domain cancellation. The key component of CODIM is Algorithm 4. The algo-

rithm relies on the prior configurations of each cell’s reference signals and OTFS grid setting.

During the configuration, each cell is assigned with specific reference signal slots. When it

sends out its data signal, the data signal embeds the cell ID. For a cell to decode data, it

will check the ID after decoding it. If the ID is itself, it stops the process. Otherwise, it

will keep decoding. Nonetheless, the receiver will send the decoded data to other cells for

cancellation no matter who generates the data.

Note that the algorithm deals with inter-domain interference and intra-OFDM interfer-

ence differently. The inter-domain interference is resolved by deriving the channel response

matrix at the delay-Doppler domain. Then the receiver transforms the channel response to
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the time-frequency domain. This is because the interference cancellation is performed at

the time-frequency domain. For intra-OFDM interference cancellation, the receiver adopts

a simplified equalization procedure that benefits from the accurate channel response. The

receiver will try with each channel response to identify the strongest signal. If decoding

succeeds, the receiver cancels the interference and proceeds on the remaining signal.

Gain analysis. We compare the performance with our design to legacy OFDM-based

interference cancellation. The gain is different for cross-domain interference cancellation

and intra-OFDM interference cancellation. For the first type, we have Equation 4.3 and

Equation 4.5. The gain with OTFS is
S ∗ h21 ∗ xData

2a

n
while the legacy OFDM can only

provide
S ∗ h21 ∗ xData

2a

H11 ∗XRS
1 + n

. CODIM provides better gain because the receiver can differentiate

data and reference signal with cross-domain transformation. Considering a realistic case

with 20 dB SNR, 5 dB SIR and nominal Gaussian noise, the gain with CODIM is 20 dB while

the gain is 5 dB with the legacy approach assuming perfect interference estimation. Even

under a common 12% error, CODIM still provides 10 dB gain. As SIR gets lower, CODIM will

provide higher gain compared with the legacy approach.

For intra-OFDM interference, CODIM provides a similar gain for decoding the strongest

signal. However, for the later signals, CODIM provides better gain since the accurate channel

estimation cancels the strongest signal. Specifically, CODIM provides
S ∗ h21 ∗ xData

2b

n
gain for

second strongest signal (assuming 1a is stronger than 2b). We have accurate cancellation

with correct h11. However, the gain is only
S ∗ h21 ∗ xData

2b

herr
11 ∗ xData

1a + n
with legacy OFDM. Note that

even small drifting of herr
11 deteriorates the gain since the amplitude for Data 1a is much

higher. For the previous setting assuming the legacy approach fails to eliminate half of the

interference, CODIM offers 14dB gain while the legacy offers 3dB.
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4.4.3 Practical Problems

Extension to multiple interferers. It is very likely that decoded time-freq signal is

from multiple interferers. For example, we need to decode the mix of data from three or

more cells. CODIM could decode the strongest signal first and then cancel it. The benefits

of managing cross-domain interference canceling provide accurate channel estimation for all

interferers. For cross-domain interference cancellation, the performance is the same regard-

less of the number of interferers. For intra-OFDM interference, performance will drop upon

more interferer. However, CODIM still outperforms the legacy approach due to more accurate

channel response estimation.

Specifically, CODIM provides
hi ∗ xData

i∑I
j=i+1 hj ∗ xData

j + n
gain for i strongest signal. We have

accurate cancellation with correct hk for ∀k < i. Therefore, the capacity is only inverse-

proportional to the remaining signal from client j after cancellation. However, the gain

is only
hi ∗ xData

i∑i−1
k=1 h

err
k ∗ xData

k +
∑I

j=i+1 hj ∗ xData
j + n

with legacy OFDM. The error in channel

estimation aggregate and affect the decoding of all successive packets.

Downlink interference cancellation. Downlink is more challenging than uplink since

clients cannot exchange decoded data. With such constraints, each client can only per-

form successive interference cancellations independently. We propose that the cell configures

the clients with new configurations to support cell-specific ID. Besides, the cell estimates

downlink channel response and aligns interference through coordination.

Our design is backward-compatible with legacy clients without the capacity to decode

advanced configurations. Although our design of uplink cancellation leverages the backhaul

network between base stations, the backhaul traffic is not necessary for interference cancel-

lation. For downlink interference cancellation, we can still keep the primary steps to decode

overlapping reference signals and data signals. We expect a smaller gain but still benefit

from accurate channel estimation.
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Figure 4.4: Architecture at the network side.

4.5 Evaluation

In this section, we evaluate the performance of our design with both real-world experiments

and large-scale trace-driven simulations.

4.5.1 Implementation and Setup

We detail the implementation of pre-processing before our estimation algorithm and cancel-

lation. The overall architecture is shown in Figure 4.4.

Configuration engine. Cells rely on the configuration engine to coordinate for inter-

ference management. There are three components in the configuration engine, ID manager,

reference signal scheduler, and data exchange policy manager.

Data transmission. After configuration, each cell is prepared to transmit and decode

data with the existence of interference. There are four key components at this stage.

◦ Interference profiling. Each cell profiles the interference with the cross-domain interfer-

ence estimation algorithm 3. After each client is configured with a sounding reference signal,

it sends a periodic reference signal and data demodulation reference signal. These reference

signals assist with interference profiling.

◦ Cooperative decoding. The decoding Algorithm 4 is implemented at both the cell and
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client side. For the cells, they exchange the decoded data via backhaul network through

X2/Xn interface [17]. For the clients, they do not exchange decoded data.

◦ Noise estimation. We use the legacy least square scheme to estimate noise. Given

Gaussian-distributed noises, the least square scheme works well. Typically, the noise level

compared with signals and interference is small.

◦ Carrier frequency offset. We estimate frequency offset based on the synchronization sig-

nal. After detecting the synchronization signal, the client calculates the frequency offset and

demodulates the received waveform. Our implementation assumes static carrier frequency

offset for simplicity.

Experimental setup. To approximate real extreme mobility, we run trace-driven emu-

lations over a USRP-based testbed. Our testbed consists of servers running OAI [1] cellular

protocol stack and the USRPs as clients and base stations. The servers run OAI [1] cellular

protocol stacks. We have USRP B210/N210 to test with real channels, which are connected

to servers with Intel Xeon CPU E5-2420 v2 and 16GB memory. To emulate operational

settings, we configure the testbed based on the above datasets. Specifically, we extract

protocol configurations and mobility policies for each cell from the dataset and test with

various settings. To compare CODIM with legacy 4G/5G, we replay the mobility traces from

our datasets and evaluate if CODIM can prevent failures under the same settings. Note we

run the USRPs under the unlicensed 2.45G band and 58G band instead of licensed ones to

comply with FCC regulations.

4.5.2 Overall Performance

We evaluate our algorithm’s benefits for mobility and data rate. Our algorithm provides

better channel quality indicators with accurate interference profiling. We first compare the

accuracy of predicted channel quality indicators and the impact on mobility support. We

then evaluate the data rate and packet loss ratio with interference cancellation, comparing
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CODIM and legacy OFDM.

Reduction of packet loss. We show how interference cancellation reduces packet loss at

different SINR and even mobile cases. We compare our solution with legacy OFDM-based

as a baseline, where we estimate the channel with the legacy approach and cancel it. For

current indoor 2.45GHz setting, CODIM reduces the loss from >24% to 0.5% compared

with the legacy 5G (Figure 4.5). From static to low mobility case, packet loss ratio with

legacy scheme increase from 24.5%→ 28.4% while CODIM is not affected by mobility (0.5%

→ 0.4%). Under mmWave setting (Figure 4.6), CODIM reduces the loss from 19.1% to

3.5%. Under low mobility case, CODIM reduces the loss from 36.8% to 9.4%.

We also show the results from the optimal approach (Figure 4.7). We assume the channel

estimation is perfect and cancel it. The OTFS-based solution is where we adopt the designed

algorithm and we estimate reference signal response and cancel it. On average, our design

reduces the BER from 23.9% to 8.8%. Our solution is close to the optimal interference

cancellation.

Data rate gain. We evaluate the data rate gain with CODIM compared with the legacy

approach. We estimate data rata based on the SINR before and after cancellation. We

compare CODIM with the legacy. We combine all the samples shown before that are collected

in both indoor and outdoors. As shown in Figure 4.8, CODIM improves the data rate from

23-38Mbps to 148-244Mbps. The improvements are significant regardless of the moving

speed of the clients.

4.5.3 Benefits for Applications

How can CODIM benefit real applications with enhanced mobility and efficiency? In this

section, we evaluate the performance improvement for emerging applications with stringent

latency requirements like AR/VR.

Experimental setup. To evaluate the performance of mobile VR/AR applications, we
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use Pixel 2XL as the client and deploy the edge server with the testbed. The overall setup is

shown in Figure 4.9. The client is connected with the base station within the coverage of the

USRP, so handover will not be triggered without channel dynamics in the lab environment.

Therefore, we replay HSR traces to emulate the scenario with and without CODIM. Specifically,

we inject handover to the testbed and control the delay based on replayed traces.

We launch AR/VR demo applications to test performance. The following settings are

consistent with either legacy mobility management or CODIM. We deploy the VR and AR

engine at the edge server co-located with the core network. For the mobile VR application,

we consider VR streaming of medium quality with the same setting as [114]. The client sends

motion updates to the server, expecting to receive a streamed VR frame and render the view
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Figure 4.10: Performance of mobile VR/AR.

with the updated frame. We evaluate performance by checking whether the request frame is

missing after the client renders an updated view. In our experiments, we let the client send

periodic motion updates. For the mobile AR application, the client streams real-time video

to the edge server for object detection. After receiving the identified location of recognized

objects, the client will render the bounding box of the object on the current frame. If the

object recognition result is delayed due to network failure, the rendered bounding box might

not overlap with the ground truth bounding box. We use the same streaming content for

Mobile VR and AR to guarantee the results are not affected by streaming content. We

quantify the timeliness of the recognition result for evaluation.

80



Disruption reduction for mobile VR. We evaluate the disruption that a requested

frame is missing when the user updates its view. Figure 4.10a shows CODIM reduces the

median (95th-percentile) disruption from 82.5 (508.7) ms to 78.5 (418.4) ms for affected

frames. We also evaluate the disruption under the static case. The median (95th-percentile)

disruption is 74.0 (415.8) ms, which proves CODIM reduces the median disruption added by

handover failure by 47.1%. Note not all frames experience disruption; we find that the

percentage of affected frames is similar for the case with and without CODIM. CODIM outper-

forms legacy 4G/5G since it mitigates the disruption by reducing failure-caused disruption

to normal handover latency.

Recognition performance for mobile AR. We evaluate the performance based on

Intersection over Union (IOU), which is a common metric to evaluate whether the identified

object bounding box matches with the ground truth in object detection and tracking [71].

Figure 4.10a shows shows CODIM improves the median (95th-percentile) IoU from 0.18 (0.43)

to 0.24 (0.59) for affected frames. To quantify the overall performance, we take the IoU

threshold as 0.25 as proposed in [71]. The ratio exceeding the threshold is 49.7% (88.3%

improvements) with CODIM compared with 26.4% in the case without CODIM. We notice that

CODIM’s benefit is more significant under low-IoU samples. This is because CODIM reduces

the probability of handover failure where IoU is low due to failure-caused disruption.

4.6 Open Issues

We discuss the limitations of interference cancellation.

Deployability of CODIM. The interference estimation needs to be deployed at both the

device side and the base station side. At the first stage, incremental deployment is feasible

with dynamic scheduling of OFDM-based reference signal and OTFS-based reference signal.

Thus both legacy receivers and OTFS-enabled receivers can estimate channels from the

corresponding reference signal. For interference cancellation, the deployment solely depends
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on the base station side. The client only needs to send a sounding reference signal per

configuration. The deployment of the backhaul exchange network is Open-RAN [117] friendly

since the RAN is implemented in the cloud in Open-RAN.

Synchronization at the network side. Our design requires that the network side

coordinates reference signals when sharing the spectrum. With the recent advances in time-

synchronization techniques like PTP (Precision Time Protocol) [65], the under-ms synchro-

nization is no longer challenging. When the backhaul network exchanges packet informa-

tion for interference cancellation, there is no synchronization requirement. However, the

processing and transmission need to be completed before the deadline for sending packet

acknowledgment. Looking forward, we expect that strong synchronization will be feasible in

the near future. At that time, strong-consistent interference cancellation will provide better

accuracy for cancellation.

Sensing with OTFS. We note that sending with OTFS can enable more applications,

e.g., differentiating UE type. We note that drones and ground devices require different

handover policies. However, drones have arbitrary trajectories and flexible moving patterns.

Operators can not tune handover parameters for both drones and ground devices at the

same time. In 4G/5G, operators adjust handover triggering time and condition to reduce

failure rate for devices with different speed [41]. We thus identify a key application: how

to differentiate drones and ground devices? The key insight is that we can leverage a single

UE & single BS to estimate the device height or speed pattern. The UE could estimate the

distance to all antennas of the serving BS. We leave this as future work.

4.7 Related Work

Interference cancellation has been studied for decades under the context of WLANs and

cellular networks [26]. There are two approaches in general, pre-transmission-based and

post-transmission-based.
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Pre-transmission-based. Before transmission, access points can coordinate the an-

tennas to mitigate and even cancel interference. This approach is commonly used for

802.11-based WLANs since there is no synchronization between access points. Recent stud-

ies [132, 136] investigated how to apply cancellation under the context of MIMO, achieving

a high throughput boost compared to legacy approaches. On the receiver side, there is

another stream of work called Interference alignment [53], which requires the receivers to

tune antennas for interference alignment. These approaches are generally restricted by their

practicality in obtaining accurate channel state estimation.

Post-transmission-based. A representative post-transmission based approach is succes-

sive interference cancellation (SIC) [57, 107]. However, naive SIC is known to be less effective

when the power gap between senders is not coordinated [107]. Another practical approach

to resolving collision without canceling the interference is another stream [72]. These earlier

approaches do not consider the cooperation between access points through the backhaul net-

works. The exploration of backhaul is also analyzed in [59, 137, 31] as the inter-cell networks

have higher bandwidth. However, existing approaches are still restricted to negotiating data

rates before transmission.

Our approach of cross-domain interference cancellation is inspired by the cross-technology

interference cancellation [52]. These works view interference as informative features instead

of random noises. Our work builds on the same idea but adopts a fundamentally different

approach; it explores the diversity between domains without the requirement of negotiated

orthogonality in improving the throughput of wireless networks.
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CHAPTER 5

Integrating X-Domain Designs in 6G and Beyond

This chapter is organized as follows. We first introduce the goals (§5.1) and the challenges of

integration (§5.2). We then detail the design of a novel overlay to enable standard-compliant

integration in §5.3. We elaborate on the details of implementation in §5.4. §5.5 presents the

evaluation. We discuss the extension of this work in §5.6 and related works in §5.7.

5.1 Introduction

We first enable group-based measurements within 5G PHY. As shown in Algorithm 1, a single

cell measurement is used to infer the entire group of cells residing on the same tower. We

next address two issues: (1) How to multiplex the cells’ reference signals in the standardized

OFDM PHY? (2) How to cope with heterogeneity among co-located cells inside a group? Our

solution uses two ideas to address both issues: (a) embedding the delay-Doppler reference

signals into the current 5G OFDM PHY as an overlay; (b) transforming measurements for

cells with heterogeneous PHY configurations.

In this chapter, we describe NEMONET (NExt-gen MObile NEtwork Testbed), which enables

researchers to perform trace-driven emulation with real-world traces collected by off-the-shelf

mobile devices in the commercial network. It includes two parts, the open radio platform

and the trace-driven emulator.
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5.2 Challenges of Integration

Although attractive, OTFS cannot be directly applied to signaling traffic only. It suffers

from the coexistence with OFDM data. We are neutral to whether data should also use

OTFS. OTFS for data would also reduce Doppler shifts for faster data speed [122, 56], but

at the cost of more processing delays and system complexity. Instead of mandating if OTFS

should be used for data or not, we leave this decision to operators and future designs, and

offer a universal and seamless solution for both choices. To function correctly, OTFS requires

a continuous M×N OFDM grid. But in 4G/5G, both the mobility signaling traffic and data

are multiplexed over the OFDM grid1. In case data still uses OFDM, the signaling traffic

may span on discontinuous OFDM resource elements, and cannot apply OTFS directly.

One solution is to decouple the data and signaling channels, which requires redesigning the

4G/5G physical channel and thus not backward compatible. Our solution should naturally

support coexistence and backward compatibility with OFDM data, without changing the

4G/5G physical channel designs.

5.3 Integration with Existing Standards

5.3.1 Embedding OTFS Signal Over OFDM

The algorithms rely on transformations in the delay-Doppler domain at the client and the

cell tower. We thus embed the signaling in the DD domain to the current 5G signals. To

this end, we adapt Orthogonal Time Frequency Space (OTFS), a delay-Doppler modulation

scheme, onto the current physical layer (PHY) measurement blocks. Therefore, our design

still fits in the current 5G OFDM-based PHY.

Our design requires standard-compliant changes on measurement blocks of the PHY

1RRC signaling traffic is also transmitted over PDSCH/PUSCH as data, not PDCCH/PUCCH.
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Figure 5.1: Concurrent channel inference in delay-Doppler domain (OTFS em-

bedded into OFDM).

layer. 5G NR utilizes two types of resource blocks for cell measurement, SSB blocks and

CSI-RS blocks [12]. Each cell schedules SSB blocks with reserved resources (i.e., subcarriers

and symbols) for measurements. Multiple SSBs are transmitted continuously, which form

an SSB burst (spanning 1∼5ms and 240 frequency subcarriers). Different from SSB, CSI-RS

blocks are dynamically scheduled for each device with more flexibility. One CSI-RS block

can take up to 2 symbols and 4 sub-carriers. The cell might prompt the device to measure

several CSI-RS blocks to cover wider bandwidth during measurement.

We construct an OTFS overlap upon the current 3GPP standardized OFDM layer. We

place OTFS grids over the SSB burst and dynamic CSI-RS blocks for measurements. Since

an SSB burst is a whole chunk on the time-frequency domain, NEMONET can place an OTFS

grid over it and measure cells on the delay-Doppler domain. A burst may last 1 - 5 ms

and appear with periodicity of 5 - 160 ms2. This way, the mobile network can avoid the

prohibitive cost of completely changing the modulation scheme.

2The options include 5, 10, 20, 40, 80 or 160 ms.
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We place new OTFS grids over the existing OFDM ones (illustrated in Figure 5.1), and

largely reuse the current scheme to multiplex reference signals from different cells. Specif-

ically, OTFS symbols are placed at the same locations as SSB burst and dynamic CSI-RS

grids for cell measurements. In Figure 5.1, a 4x2 grid for Cell 1 is scheduled for SSB. NEMONET

transforms OTFS into a 4x2 OFDM grid and embeds it into the OFDM frame. We thus

obtain OTFS measurements via the OTFS overlay on top of existing OFDM grids. We

then run Algorithm for the entire cell group. With measurements from the OTFS signals,

we further transform the measurements into standard-compliant SNR/RSRP/RSRQ metrics

on radio signal level and quality [12]. RSRP and RSRQ are used for cell selection in the

current practice [43]. The transformation from OTFS to OFDM is realized with ISFFT. We

thus transform the OTFS signal into the OFDM domain, compute the adopted metrics, and

follow the current 5G practice.

Note that, the OTFS scheme is used for reference signals only, whereas OFDM is still

used for other data types (e.g., packet delivery). We thus reduce the prohibitive cost of

completely revamping the OFDM based modulation at PHY.

Handling block heterogeneity. In the above framework, we make further changes to

address heterogeneity in numerology and subgrid size. First, 5G NR adapts the grid to

handle heterogeneity over a much wider range of frequency spectrum. Cells with frequen-

cies far apart probably have different numerology, i.e., symbol duration ∆t and sub-carrier

∆f 3. Therefore, the transformation to the DD domain brings diverse numerology (∆τ,∆υ).

NEMONET tackles the diversity by mapping multi-path profiles from one grid to a different one.

Figure 5.1 illustrates the details with an example of inferring cell-2 based on cell-1; Two cells

use different numerologies. First, we estimate cell-2’s multi-path profile based on parameters

retrieved from cell-1. Next, we map those parameters to coordinates on the OTFS grid with

cell-2’s numerology.

35G currently supports 4 numerologies, with 15kHz, 30kHz, 60kHz, 120kHz as subcarrier spacing ∆f
(extended to 960kHz in recent releases) [16]
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Second, the subgrid size can be different for different cells with flexible scheduling of

SSB and CSI-RS blocks. Because the inference algorithm can handle fractional Doppler,

the selection on grid size (i.e., N,M) becomes much more flexible. The state-of-the-art [77]

relies on long duration of symbols on TF grid (i.e. large N equivalent to 40ms) to achieve

acceptable accuracy of integer Doppler (i.e. fine-grained ∆υ). As NEMONET takes fractional

parts into account, it could relax the above restriction and adopt a grid lasting as short as

an SSB burst. As shown by Figure 5.1, the reflection path can be represented with fractional

Doppler coordinates on cell-2, as the Doppler step runs larger and is less precise. Choosing

a smaller N would save time spent on OTFS signaling and thus improve wireless efficiency

by allocating more blocks for OFDM data. In the example of Figure 5.1, cell-1 utilizes only

a (4x2) subgrid and cell-2 utilizes a (2x2) subgrid.

5.3.2 Dynamic Scheduling for Signaling

We design a dynamic overlay via scheduler adaptation at the base station. As shown in Fig-

ure 5.1, the base station’s scheduler can allocate all resource elements for signaling messages

(e.g. measurement reports and handover command) to an M ′ × N ′ subgrid of the 4G/5G

resource grid (M ′ ≤ M,N ′ ≤ N). In this way, All signaling messages can directly apply

OTFS in M ′ ×N ′ sub-grid.

Our solution supports the following features. 1) Backward compatible with 4G/5G. All

data traffic can still use OFDM today; No interference between signaling and data; No

change for the physical channel design, backward compatible with 4G/5G: Only refine base

station’s traffic scheduler, which is simply an implementation and operational issue. 2)

Always achievable with marginal impact on scheduler today, because signaling traffic (SRB)

has the highest priority by design [5, 16]. Given signaling and data, signaling traffic will

always be transferred first due to its importance; Signaling traffic is always scheduled first due

to its importance for functional correctness. So the base station can always find a sub-grid for

signaling traffic first, and then allocate the remaining for data transfer; 3) Marginal impact
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on scheduler today, which has already prioritized signaling traffic (though not necessarily

allocate them into a sub-grid); In 4G/5G design, the base station schedules the traffic based

on a per-logical-channel (rather than per-user) basis. So different users’ signaling traffic

can be bundled together to occupy the M ′ × N ′ sub-grid; 4) Efficient spectral utilization:

(M ′, N ′) will dynamically adapt with runtime signaling traffic volume, so no resource waste

or additional signaling overhead.

Overhead for signaling. AdditionalO(M ′N ′log(M ′N ′)) SFFT/ISFFT pre/post-processing

cost for signaling only (similar to LTE/5G uplink SC-FDMA’s overhead compared to down-

link OFDMA). There is no additional overhead on data.

Limitation. M ′, N ′ can be small (depending on signaling traffic volume) to sample real

Doppler shift and path delay. Nevertheless, the cost is unavoidable if data does not use

OTFS; To improve it, the scheduler may allocate more guard resource elements to enlarge

M ′, N ′, at the cost of resource waste. Such a tradeoff is similar to 5G’s additional DMRS

for high mobility today [12], but is better than DMRS since it helps stabilize the signaling

channel. If data uses OTFS, this problem will disappear since M ′ = M,N ′ = N .

5.3.3 Design of Channel Quality Metrics

Channel profiling before handover. One missing piece of channel estimation is that

uplink channel quality is not measured for drones. Current 4G/5G adopts hard handover,

with no uplink traffic before handover succeeds. Our finding on the uplink interference

features enables NEMONET to derive the uplink channel quality of the target cell without uplink

measurement. The main challenge is that reciprocity does not apply to interference. We

leverage the separation of channel quality into path-dependent channel response and receiver-

location-dependent interference. The interference depends on the location of the receiver

only. For example, all UEs’ uplink at a base station share the same uplink interference. Given

that 4G/5G enables uplink interference measurement with uplink sounding signal, which is
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Table 5.1: Standardized QCI characteristics [8]

QCI Type Priority Delay budget (ms) Loss rate

3 GBR 3 50ms 10−3

6 Non-GBR 6 300ms 10−6

9 Non-GBR 9 300ms 10−3

constantly sent by the UE for uplink channel estimation, NEMONET shares the measurement

of other UEs without adding over-the-air transmission.

The näıve way to measure uplink interference is to configure the client to send the over-

the-air signal. However, this approach is infeasible in the cellular network since it requires

every potential client to send the signal to the candidate cell. The signaling storm will

paralyze the candidate cell, let alone cause high interference with other cells. Our approach

is efficient without adding over-the-air signaling. The client A sends the measured downlink

channel response to the serving cell. The candidate cell sends the interference measure by

sounding the reference signal of active clients to the serving cell of client A. The serving

cell combines the channel response and interference to make a handover decision. It’s worth

noting that communication between cells can be resource-wasting. We propose an event-

based scheme to reduce the signaling overhead between BSes. Only when UL interference

drops more than a threshold, the cells sends updated interference level to other cells.

5.4 Implementing the Next-Gen Open Radio Platform

5.4.1 Scalability Under MmWaves

In 2018, we extended NEMONET for the below-IP user-plane analytics. Different from the

control plane, the user plane faces an explosive growth of over-the-air messages. This poses

challenges to energy-efficient, real-time analytics in commodity devices.
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Characteristics of user-plane analytics. Compared to control-plane messages, user-

plane messages are simpler with fewer fields, but more intensive with a massive amount of

packets to deliver. Figure 5.2 shows the user plane’s messages are 2∼3 orders of magnitude

more frequent than the control plane’s.

We next quantify how well the initial NEMONET tackles user-plane analytics inside devices.

We enable all messages in Table 5.2 to evaluate the initial NEMONET’s runtime responsiveness,

energy, and CPU usage. We repeat this test with data collection only, collection + message

parsing, and collection + parsing + analysis. For energy usage, we also compare NEMONET

with the worst-case background scenario when the screen is always on. Figure 5.4 shows the

results. We make three observations:

• Real-time responsiveness. Surprisingly, even with intensive user-plane messages,

NEMONET can still timely process them before the next message arrives. For each message, we

define its accumulative lag as the elapsed time that its processing is after the next message’s

arrival. Figure 5.3 shows NEMONET can analyze ≥95% user-plane messages with ≤1ms lag.

The maximal lag is ≤8ms. This is because most user-plane messages are simple to process.

• Energy deficiency. The initial NEMONET’s responsive real-time user-plane analytics

is at the cost of huge energy and CPU usage. Figure 5.4c shows that, with all messages

enabled, NEMONET consumes 21% battery in 1 hour, which is 1.5× compared to the scenario

with the always-on screen. The battery is mostly used by software, since the data collection

from the chipset consumes comparable energy to the scenario without NEMONET. Its energy

consumption is proportional to message volumes.

• Heavy CPU usage. With all messages, Figure 5.4b shows the initial NEMONET

occupies one core and uses 12–23% CPU in total. The CPU usage is proportional to message

volumes, and dominated by message parsing (≥99%) in software space.

Vanilla solution: Domain-specific independent sampling. To save the battery and

CPU, NEMONET should reduce the cost of processing intensive link/physical-layer messages
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Figure 5.2: Runtime messages at the control and user planes.

and retain high analytics accuracy. For non-real-time tasks, NEMONET can collect raw mes-

sages in device and analyze them offline. For real-time analytics, NEMONET can sample the

messages to analyze. The initial version of NEMONET’s user-plane analytics uniformly sam-

pled each physical/link-layer’s messages independently. Figure 5.4b implies sampling can be

approximated by parsing only a subset of messages in software. This approach still retains

all the raw data in the collection phase to facilitate full-fledged offline analysis. Figure 5.5a

confirms it effectively reduces the CPU usage.

Moreover, the sampling can be optimized with domain-specific knowledge. We find 4

types of messages (MAC buffer status, block error rate, serving cell measurements, and up-

link transmission power) contribute ≥71.8% of total messages. We customize their analytics

to be sampling-aware, treat un-sampled messages as missing data, and optimize their analyt-

ics accuracy with the missing data inference. Figure 5.5b exemplifies the customization for

the uplink MAC-layer queuing delay for each segment. To track a segment’s queuing delay,
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NEMONET needs two timestamps for it when entering and leaving the buffer. The naive sam-

pling is unaware of this timestamp dependency and simply samples the MAC logs uniformly.

This is prone to miss one of the timestamps and thus failure of tracking the latency. Instead,

by tracking logs continuously to cover both timestamps for each segment, the optimized

sampling is more accurate under the same sampling ratio.

Our solution: Domain-specific cross-layer sampling. However, independent sam-

pling turns inaccurate in cross-layer analytics. An IP packet will traverse across link/physical

layers for delivery, during which it can be divided into multiple RLC segments and MAC

blocks based on available physical radio resources. If messages from different layers are

sampled independently, the cross-layer dependency between the IP/PDCP packets, RLC

segments, MAC blocks, and physical resources can be lost. This causes not only inaccurate

analytics, but also inefficient sampling since sampled messages across layers are mismatched

and wasted. Figure 5.5c exemplifies this deficiency when tracking the uplink packet latency.

With 10%, 20% and 50% sampling ratio, independent sampling only ensures 0.04%, 0.52%

and 11.38% of IP packets can be fully tracked across layers. This leads to 34.2%, 33.6% and

8.6% estimation errors for uplink packet latency, respectively.

To this end, we devise cross-layer sampling. Rather than independent sampling among

layers, NEMONET first uniformly samples the IP packets at PDCP based on the target sampling

ratio. Then for each sampled IP packet, NEMONET runs the cross-layer dependency tracking to

locate the corresponding messages related to its RLC segments, MAC blocks, and PHY radio
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Figure 5.4: The initial NEMONET’s user-plane analytics.

resource allocation. NEMONET only parses (samples) these messages and drops the remaining

for efficiency. In this way, the cross-layer dependencies for these sample IP packets are

all retained for high analytics accuracy. This approach is applicable to both uplink and

downlink data transmission, because the dependency across the PHY, MAC, RLC, and

PDCP layers exists for both uplink and downlink.

Figure 5.5 evaluates NEMONET’s cross-layer sampling. In terms of its accuracy, Figure 5.5c

shows NEMONET reduces the data latency estimation error by 4.1×, 4.5×, and 3.4× with

10%, 20%, and 50% sampling ratio, respectively. It retains comparable actual sampling

ratios (i.e., the percentage of IP packets that can be correctly tracked across layers) to the
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Figure 5.5: NEMONET’s energy-efficient real-time user-plane analytics (uplink data

latency analysis as an example).

target. Figure 5.5d confirms viable energy saving (by up to 47.6%) with NEMONET’s cross-

layer sampling. Due to the variance of traffic and battery drain, the energy saving is not

strictly proportional to the actual sampling ratio. This suggests more energy savings are

possible with further refined solutions.
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# Initialize an online monitor
src = OnlineMonitor()
# Initialize the KPI manager
kpi = KPIManager()
# Enable KPI analyzer on handover latency
kpi.enable_kpi("Mobility.HANDOVER_LATENCY")
# Bind the analyzers to the monitor
kpi.set_source(src)
# Start analysis
src.run()

# check whether handover is triggered 
# by tracking the RRC state machine
if ho_istriggered(event): 
    HO_triggered = True
    ts = event.timestamp
# check whether handover is completed
# by tracking the RRC state machine
if HO_triggered and ho_iscomplete(event): 
    latency = event.timestamp - ts
    HO_triggered = False

KPI analyzers Simplified underlying implementation

Figure 5.6: APIs of KPI analyzers in NEMONET (handover disruption latency as an

example).

5.4.2 Standard-Compliant Analytics

The new features empower NEMONET with deep mobile network analytics. But they were not

widely used as expected, since they are unfriendly to new users because of their low-level

natures. So in 2019, we started to streamline NEMONET’s analytics to balance its comprehen-

siveness and user-friendliness.

We extend NEMONET with user-friendly, extensible performance indicator (KPI) analyzers.

Table 5.3 summarizes the latest NEMONET’s available KPIs from 3GPP standards [20, 19] and

user requests. They have covered the control and user planes, and various aspects such as

reliability, performance, and energy efficiency. They are not available from the legacy mobile

OS APIs. Compared to the protocol/packet state machines in basic NEMONET analyzers,

KPIs are more intuitive for users to understand runtime mobile network operations. The

KPI analyzers can simplify many usage scenarios by the community.

Figure 5.6 exemplifies NEMONET’s APIs for the runtime KPIs (control-plane handover

latency as an example). NEMONET defines user-friendly hierarchical names (category.kpi name)

for the KPIs in Table 5.3. For each KPI, NEMONET defines a KPI analyzer, and calls the

corresponding state machine-based analyzers to track it. Instead of calling the complex

low-level analyzers, a new user can easily track KPIs by simply declaring them via names,
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Figure 5.7: Edge based remote rending.

without worrying about the low-level details of mobile network protocols. Meanwhile, an

experienced user can dive into the underlying behaviors related to KPIs. NEMONET supports

both periodic and event-driven runtime KPI reporting. By locally storing the historical data,

it allows users to query the aggregated KPI statistics by time, location, network node (e.g.,

cells) and client.

5.5 Evaluation

5.5.1 Efficiency

Testbed setup. We evaluate end-to-end latency with an edge-based remote rendering

video streaming system on a private LTE testbed as shown in Figure 5.7. The LTE testbed

consists of an eNodeB with LTE release 12, a data interceptor and a co-located edge server.

The eNodeB manages two cells running on band 30 with 10MHz channel bandwidth. The

packet interceptor user plane function (UPF) implements local breakout and routes edge

cloud traffic to the edge server. Other general traffic is routed via the regular path onwards
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to the SGW and PGW. The PGW is connected to the Packet Data network (PDN). The

testbed establishes dedicated bearers for different QCIs and routes traffic through dedicated

bearers based on IP/Port/Protocol filters. The edge server is deployed as a VM with eight

CPU cores and 16GB memory. The MEC platform complies with ETSI specifications [46].

We tested with Samsung Galaxy S7 and Samsung Galaxy Note 9.

Remote Rendering Application. Since our main focus is on measuring network side

latency, we develop a simplified application to simulate the behavior of the thin-client system

in [82]. On the server side, we read a video file (H.264, 1080p, using I and P frame only)

and store every video frame in memory. Each frame size ranges from 41 KB to 368 KB with

an average of 58.3 KB. The client sequentially transmits a fetch request for one frame and

the server replies with the frame data upon receiving the request. After receiving the full

frame, the client uses MediaCodec that calls hardware codec APIs to decode the video and

display it on the screen. We use TCP in our experiments to guarantee reliable delivery. In

an accompanying paper, we have also observed that TCP outperforms UDP for VR delivery

using MEC [109]. The client only runs the streaming application unless specified. This

simplified application allows us to accurately measure the end-to-end system latency for

every frame and easily separate the latency caused by network and mobile devices. We

consider rendering and transcoding latencies on the server to be negligible. Note that cloud

platforms typically take 5ms to process one frame [93].

Data collection and analysis. We collect three types of traces to quantify network la-

tency: (i) the application logs on server and client; (ii) the LTE network signaling traces

with MobileInsight [78]; and (iii) the TCP/IP traces on clients and servers with tcpdump.

We measure end-to-end latency on the client side. Since the server processing latency is

negligible, the overall latency is broken down into network latency and client latency. To

compare client latency and network latency, we further extract network latency by times-

tamping when the frame request was sent and when the frame was received. In total, we

analyzed 35.6 million frames traces in both the testbed and the simulation.
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We begin by looking at overall latency performance and dissect network latency from

the whole. The end-to-end latency composes of network latency, server-side latency and

client-side latency. Here we define network latency as the time elapsed from the packet sent

to the time response received at the client-side application layer. Since the server side only

transmits pre-render frames in our experiments, the server-side latency is negligible. As

shown in Figure 5.8, device latency is stable compared with network latency. Also, network

latency constitutes 77.5% of total latency (96.1 ms of 124.0 ms). The medians are 81 ms

and 112 ms for network latency and total latency. Though device side latency depends on

device capability, we believe Samsung S7 and Note 9 are mid to high-performance phone

models.

We then investigate the root cause of abnormal network latency. As compared with the

ping latency, the median of ping latency is only 61 ms and the minimum is 31 ms. Since

ping latency is collected using ICMP probing packets, the latency shall be longer than the

data packet. The reason why the ping latency is less than the network latency for the

streaming application can be one of the followings: processing latency, transmission latency

and queuing latency caused by congestion. Since there is only one device connected with

the cell during testing, there should be minimum congestion. As shown in Figure 5.8, the

minimum network latency is only 61 ms, which is far beyond standardized 4ms processing

delay limits [4]. So we can safely assume the prolonged latency is transmission latency.

We further investigate the root cause of prolonged transmission latency. We prove that

transmission latency is not prolonged by limited bandwidth but the retransmission. With

256QAM enabled, peak throughput is around 50.7Mbps during frame transmission. So the

normal transmission latency for a single 58KB frame only takes 9 ms. In our experiments,

0.4% packets are retransmitted by TCP, which is higher than previously measured 0.06%

in [61]. The retransmission delay is 154 ms on average. Packet loss can happen at the

wireless channel, interceptor, or the end hosts. We validate that the wireless channel packet

corruption is all recovered by RLC retransmission. Then we can conclude that packet loss
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Figure 5.9: Latency with conflicting traffic.

happens at either the interceptor or the end hosts. We further check the interceptor logs

and validate that no packets are discarded. So we conjecture that TCP retransmits packets

because packets are lost over the core network.

Takeaway: Network latency is the key driver of overall latency, rather than device processing

latency. Excessive network latency mostly comes from TCP retransmission rather than frame

transmission.
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5.5.2 Effectiveness for Latency Measurements

As discussed in the previous section, TCP retransmission prolongs network latency. Another

portion of network latency is queuing latency especially when the base station needs to

schedule limited radio resources between multiple users. According to a recent study [30],

most base station tends to serve only one user at a time, which add queuing latency to other

waiting users. In this section, we study how congestion prolongs queuing latency.

We conducted experiments with two congestion scenarios: single phone and cross phone

scenario. In the single phone scenario, the VR application and the traffic generator run on

the same phone. The single phone scenario mimics the case of simultaneously downloading

large files (at a data rate of around 10Mbps) or streaming background video frames (at a

data rate of around 6.8Mbps) [70]. In the cross-phone scenario, two applications run on

different phones. The cross-phone scenario emulates a congested cell with crossing traffic.

Experiment with testbed shows that under crossing traffic the overall latency will increase

significantly. As shown in Figure 5.9, latency increases in both the single-phone scenario

and the cross-phone scenario. In the single-phone scenario, per-frame network latency with

crossing traffic increases by 56.9% (86.3 ms to 135.4 ms). Latency 75 percentile increase from

91 ms to 168 ms. In the cross-phone scenario, per-frame network latency with crossing traffic
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increases by 8.2% (86.3 ms to 93.4 ms) for video traffic and 19.6% (86.3 ms to 103.2 ms) for

file traffic. Latency 75 percentile increases from 91 ms to 100 ms and 103 ms, respectively.

The intuitive solution to avoid competition between latency-sensitive traffic and latency-

insensitive traffic is to guarantee latency requirements by differentiating these two traffic and

priority latency-sensitive ones. In current streaming frameworks, pre-fetched based scheme is

commonly adopted since it masks long latency to users [102, 70]. However, when pre-fetching

fails, the user needs to wait for an entire round trip for an emergent frame request. The user

tolerance difference motivates us to differentiate emergent frame requests from pre-fetching

frame requests.

Crossing traffic significantly prolongs network latency, especially for crossing traffic from

the same device. The network side should differentiate emergent streaming traffic and serve

with higher priority.

Varying testbed configurations. Each operator can customize radio configurations

to guarantee service quality at different network entities. For example, different operators

might assign different profiles for the same VoLTE traffic. It is often neglected by researchers

how radio configuration can make impacts beyond the radio connection part. In this section,

we will show how inappropriate radio configuration deteriorates latency performance. Since

in 5G, the layering design does not change significantly and studied radio configurations are

still effective [5], the following findings still hold in 5G.

We first examine the generality of testbed radio configurations by comparing them with

existing configurations in operational LTE networks. We analyze traces from LTE-VR

database [113], which includes 3.2 million cellular messages collected over 8 months on four

major operators in the U.S. Our analysis of operational LTE networks aligns with our testbed

setting. We checked configurations from all four major operators by examining RRC signaling

messages [5]. All of them use RLC AM mode for default bearer, which is the same in our

testbed. In addition, the RLC re-transmission timer range from 35 ms to 60 ms in all four
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operators with 38 ms on average, which corresponds with 40 ms setting in the testbed. Thus

we believe testbed configurations align with real-world scenarios and measurement should

be consistent with experiments in the wild.

To investigate the impact of radio configurations, we consider three QoS with significantly

different QoS parameters listed in Table 5.1. Note that QCI 3 and QCI 6 are for the dedicated

bearer and QCI 9 is for the default bearer. We first show a comparison of two non-GBR

bearers, QCI 6 and QCI 9, the former with higher priority than another. We then show a

comparison of QCI 3 (GBR bearer) and QCI 9 (non-GBR bearer). Since the single phone

experiments show more latency, we adopt the experiment setting of a single phone generating

the crossing traffic.

We first compare two non-GBR bearers setting of QCI 6 and QCI 9. We observe latency

reduces by sending traffic through a dedicated bearer with QCI 6 as shown in Figure 5.10.

Per frame network latency with the dedicated bearer (QCI 9) is smaller than the default

bearer (QCI 6). Average latency reduces by 26.7% (135.4 ms to 106.9 ms). The 75 percentile

reduces from 177 ms to 115 ms. From the above analysis, we can draw the conclusion that

network-side service differentiation can reduce network latency significantly.

We then compare the non-GBR bearer of QCI 9 with the GBR bearer of QCI 3. The

network should allocate resources to QCI 3 bearers prior to QCI 9 bearers. However, We

observe that sending traffic with QCI 3 does not reduce latency. Average latency increases

by 55.6% (135.4 ms to 210.7 ms). The root cause is improper radio configurations under

GBR bearer that prolong packet loss recovery latency. RLC layer configuration for QCI 3

bearer is unacknowledged (UM) mode in the testbed. RLC mode defines whether RLC layer

recovery is enabled. Since RLC is configured as UM mode, packet loss recovery solely relies

on TCP re-transmission, which could potentially prolong latency. We also get testbed side

limited logs to verify our findings. Based on eNodeB side records, the queuing latency for

the dedicated bearer is 8.2 ms, while for the default bearer is 16.0 ms. The default dearer

IP packet discard rate is 0, while the dedicated bearer IP packet discard rate is 1.2 Kbps.
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Prioritizing streaming traffic can help to reduce latency only when radio configurations

are properly configured. Configuration sacrificing reliability help to reduce queuing latency

but increase transport layer re-transmission, which prolongs overall latency even under good

channel quality.

Efficiency of analytics. This section uses network latency to exemplify how NEMONET

empowers in-device mobile network analytics. We run a 5-year longitudinal study to unveil

and understand end-to-end (E2E) latency over operational mobile networks. More results

have been available from NEMONET with the collected dataset being released. In this work,

we showcase how to use NEMONET’s new modules, and how these modules unveil some new

insights that were not visible. Note these lessons become visible until NEMONET’s new cross-

layer analytics, user-plane analytics, and user-friendly KPIs become available.

Since 2016, we have sporadically collected 4G/4.5G LTE over-the-air messages with the

evolving NEMONET and accumulated a five-year dataset. We ran NEMONET over the test phones

when using ping (primary), iperf, web, video streaming, or virtual reality applications in

static, walking and driving scenarios. summarizes our dataset as of August 15, 2020. It

has been collected from 50+ phone models and 58 global operators over 20+ countries and

regions, including the USA, China, India, South Korea, Singapore, France, Spain, Germany,

Norway, Hungary, Egypt, Australia, New Zealand, etc. Most data (82%) is collected in

the US (AT&T, Verizon, T-Mobile, Sprint, Google Fi), covering 39 states and 260,000+

miles. The early tests in 2016–2018 only enabled the control-plane messages and partial

user-plane messages. With NEMONET’s user-plane features in §5.4.1, we further enabled full

link/physical-layers messages for cross-layer analytics in late 2018 and afterwards. We ran a

large-scale across-the-US driving test in May - July 2019, resulting in a surge of the dataset

size in 2019 Q2.

Analytics methodology. We apply NEMONET’s new features to analyze the mobile net-

work latency. We group our dataset by quarter/month and device contexts (phone models,

mobility patterns, and locations) and replay them to extract the mobile network latencies
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Figure 5.11: Ping RTT latency over the US (AT&T).

using KPI analyzers in §5.4.2. As summarized in Table 5.3, these KPI analyzers provide

simple interfaces to unveil the user-perceived network latencies from the control plane, user

plane, and across planes. They depend on the cross-layer analytics and sampling (§5.4.1) for

efficient and accurate KPI extractions. To analyze the root causes of the latency variations,

we further perform the cross-layer analytics over the dataset to track the signaling proce-

dures at the control plane, IP packet delivery across link/physical layers at the user plane,

and the interplays between the control and user plane.

5.5.2.1 Latency analysis with NEMONET

Figure 5.11 plots ping latency (round-trip time) measured in AT&T in the past year (Q2 2019

- Q2 2020). Results for other carriers in the U.S. (Verizon, T-Mobile, Sprint and Google

Fi) are similar and omitted. Unsurprisingly, E2E latency varies over the location (much

worse in freeways, mountain and rural areas than in big cities). In particular, the 1th (a

robust estimate of minimal latency), 50th (median) and 95th percentiles of RTT are below

40ms, 70ms and 120ms in almost all the cities; But the 1th percentile is > 80ms in mountain

areas and > 40 ms over the freeways across the US. These results are consistent with other

measurement studies by FCC [49, 48], Ookla speedtest [94, 3] and OpenSignal [95, 96, 97],

but offer finer-grained spatial analysis.

NEMONET’s KPI analyzers report that, in the past 5 years, LTE network latency has

decreased at both the control and user planes overall. At the control plane, the signaling
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protocols take time to establish the radio connectivity and migrate it in device mobility,

before which all data delivery will be blocked. For a fair comparison, we examine the

latency evolution in one eastern U.S. city using AT&T. Similar trends hold for other cities

and operators in the same dataset. Results show a 38.2% average latency reduction in radio

connectivity setup, and 48.1% reduction in handover. Note the missing data will incur

the incomplete signaling procedure (e.g., lost connectivity setup), which is not counted in

this figure. The sampling is not applied because the control-plane signaling messages are

marginal (Figure 5.2). At the user plane, we observe a 50.0% average reduction of the first

uplink packet’s delivery latency after radio connectivity setup, and an increment of downlink

bandwidth (thus faster transmission).

Different mobile devices have heterogenous hardware modems and capabilities that affect

their latencies and bandwidth. Based on NEMONET’s runtime physical-layer logs, Figure 5.12c

shows the maximum radio bandwidth allocated for each device. In general, a device with

earlier or lower-end generations of hardware modem has less bandwidth and thus a slower

data speed. With advanced radio technologies in newer chipsets, and the device can enjoy

more bandwidth and less latency at runtime.

5.6 Discussion

Beamforming and MIMO. Beamforming is one of the selling points for 5G. With

the increasing need for high bandwidth, beamforming and MIMO have become the norm

of broadband communication. Our testbed is extensible to beamforming and MIMO with

hardware upgrade of the RF frontends and software upgrade of beamforming/MIMO man-

agement. For example, to support 2x2 MIMO, the testbed should have 2 TX and 2 RX.

Our testbed with USRP X300 supports simple 2x2 MIMO. In the next-gen cellular network,

MIMO is expected to reach the capability of up to 512 TX/RX. Our design of channel state

inference will still benefit the applications of beamforming/MIMO.
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Figure 5.12: The device context’s impact on LTE latency.

Variants of PHY. The testbed only supports OFDM and OTFS-based PHY for now.

To embrace future variants of PHY, we devise the PHY-MAC API to be open and standard-

compliant. In order to support another variant of PHY, e.g., visible light communication,

the PHY entity only needs to provide standard compliant API by encapsulating the variants

of the coding scheme, channel state inference, etc. Our design of trace-driven emulation of

the above-PHY still applies to the variants of the PHY layer.

Beyond RAN. Our testbed only discusses the design and implementation of the last

hop, RAN and device side. Beyond RAN, the core network is another battlefield of next-

gen cellular network design. The cloudification of the core network indicates future core

will be closely tied with the commercial core. There are mnay options of core networks,

e.g. magma[100], OpenEPC[2]. Our prior work on Flora[54] builds on open-source core

Magma [100] and supports customized over-the-air communication between the core and the

customized SIM. We leave the integration of this testbed with Flora as future work.
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5.7 Related Work

Onward to 6G and beyond, there are generally two types of innovations, the wireless side,

and the system side. On the wireless side, there are different approaches to boost bandwidth

and enable more radio technologies, e.g., full-duplex radio to better utilize spectrum [38, 62],

backscattering to enable ubiquitous access [37]. These approaches are still at the prototype

stage. There are active efforts to study commercial networks and re-design the protocols

on the system side. The major stream of these works focuses on improving the throughput

using different techniques. Recent works [73, 43] re-design cell selection with either network

or device-centric solutions. Another stream of studies investigates resource scheduling in the

context of carrier aggregation or multiple connectivity [64, 50, 79]. Compared with these

efforts, our work is readily deployable while fundamentally changing the lower radio layer to

enable more usage scenarios and applications.
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Table 5.2: Available messages from NEMONET.

Protocol Message Types # Msg # Element

4G-PHY PDSCH signal; Cell Measurement 24 N/A5

4G-MAC Uplink/downlink transport blocks; MAC

config; Buffer status report

5a 54

4G-RLC Control/data packet data unit 2a N/Ab

4G-PDCP Control packet data unit 1a N/Ab

4G-RRC System info blocks; Connection

setup/release/re-establish/reconfig; Han-

dover command; Measurement con-

trol/report; Radio capability equerry;

Paging; Security model command

45 185

3G-RRC Same as 4G-RRC 32 108

3G-MM/GMM Attach/detach; Authentication re-

quest/response; Location update; Se-

curity mode control; Identification re-

quest/response; Service request; Paging

41 63

4G-EMM Same as 3G-MM/GMM 32 108

3G-CM/SM Session (EPS bearer/PDP context)

setup/modify/release; PDN con-

nect/release/modify

58 54

4G-ESM Same as 3G-CM/SM 22 71

CDMA/EvDo Paging information; connectivity establish-

ment/release; radio link protocol status

5a N/Ab
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Table 5.3: Available runtime KPIs from NEMONET.

Category Key performance indicator (KPI) Protocol

Radio Signal strength (RSRP, RSRQ, RSSI, EvDo, RSCP) PHY

Channel estimation (CQI, PMI, RI) PHY

Modulation and coding scheme PHY

Radio resource block allocation PHY

Block error rate (BLER) PHY

Downlink path loss PHY

Accessibility Radio connection setup success rate RRC

Attach success rate MM

Session setup success rate SM

Service request success rate RRC+MM

Session QoS/billing class MM+SM

Mobility Tracking area update success rate MM

Tracking area update latency RRC+MM

Handover success rate RRC

Handover disruption latency RRC

Handover HOL blocking latency RLC+RRC

Retainability Abnormal RRC connection drop rate RRC

Integrity Data throughput PDCP

Packet loss ratio PDCP

Link-layer data loss ratio RLC+MAC

Energy Uplink transmission power PHY

Downlink reception power (DRX) PHY+RRC
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CHAPTER 6

Conclusion

This chapter briefly summarizes our work, highlighting the novel designs with a new domain

to overcome wireless dynamics. We then present insights and lessons learned during the

investigation. Finally, we discuss the future work in embracing new radio design in aerial

networks.

6.1 Summary

Our approach is inspired by the delay-Doppler domain, which reveals frequency-decoupled

physical path features. With explicit physical path modeling, we design practical systems

in the delay-Doppler domain to profile channel states and interferences. We further exploit

the shared features between cells to enable decentralized access. Based on this approach, we

make three main contributions.

Concurrent channel state inference. The legacy approach of channel state inference

is performed by each cell independently, ignoring the common path features shared by cells.

We exploit the similarity benefitted from shared physical paths. We present our design

on multipath decoupling that enables high-fidelity channel state inference for drones. The

delay-Doppler path features separate path delays from frequency domain coupling. By char-

acterizing path delays, we can decouple multiple path propagation with adaptive scheduling

of delay-Doppler signals. We also show that our design improves the accuracy by orders of

magnitude compared with existing approaches.
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Interference cancellation with cooperative decoding. The main challenge to high-

throughput data transmission is interference. Although interference cancellation is promising

to turn interference into assisting data, it usually requires data rate and power coordination,

adding restrictions on spectrum utilization. We show a novel cross-domain interference

cancellation scheme, which requires no coordination between cells. The insight is that sharing

channel state knowledge between cells enables decoding for all modulation. We leverage

cross-domain multiplexing of signal and data to cancel interference. Hence, we can transform

interferences into meaningful interference profiles to boost data speed.

Interference management for high-fidelity cell selection. The characteristics of

air propagation (e.g., lack of blockage, side-lobe-based antenna) cause excessive interference.

The receivers cannot accurately profile interference and decode data without redesigning

the channel estimation algorithm. Given current OFDM-based cell quality indicators fail

to capture interference, we leverage a novel transform and inter-cell collaboration to profile

interference. The intuition is that interference only depends on the location of the receiver.

Therefore, we design the collaborative interference profiling algorithm to exchange interfer-

ence knowledge between cells leveraging 5G high-speed backhaul. We quantify the impact

of interference and improve the channel estimation accuracy to enhance the performance.

Experimental testbed for XG. We presented an open-radio platform enabling re-

searchers to perform the trace-driven evaluation of new radio designs. The platform provides

mmWave support and offers an end-to-end evaluation pipeline. Unlike existing mmWave

platforms with signal-level testing, we assisted experiments with abundant traces collected

during driving and high-speed train. Therefore, users can replay the traces with desired

channel and mobility setting. We show several use cases to demonstrate how researchers can

leverage our platform for PHY layer optimization. We hope our work can add something to

the developing record of the field.
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6.2 Insights and Lessons Learned

During the investigation of how to innovate the legacy cellular network designs to adapt the

networks in the sky, We discovered the following insights and lessons.

Physical paths are sparse and of low variability. With the rolling-out of mmWave

bands, there turns out to be a gap between the PHY design and the wireless link. The

PHY design in current cellular networks assumes that the link is stable in the microscopic

view. However, the wireless channel changes much faster than the assumption. Our design

thus unravels the variant wireless channel features by modeling physical paths. We solve

the major obstacle to profiling the multi-pathing effect with detailed modeling of per-path

features. Besides, the sparse path features are shared between co-located cells, which matches

the increasingly dense cell deployment trend.

Cross-domain multiplexing compresses interferences. Our designs are all based on

overlaying OTFS modulation with OFDM modulation. Our main insight is that the non-

orthogonality causes strategical interferences, which can be transformed into benign signals

or assisting signals for data decoding. The cross-domain approach is different from the legacy

approach in that all signals and data are coupled in a single domain. The intra-domain cou-

pling posts restrictions on how to improve transmission gain under multiple interferers. With

a cross-domain approach, the interferences between domains can be easily canceled. Besides,

there is no restriction on what signal the cells send at the time-frequency domain. The funda-

mental reason why the cross-domain approach enables cancellation is that the delay-Doppler

domain spreads signals over the entire frequency band, causing linear correlation between

frequencies. The correlation can thus be interpreted into channel knowledge.

Adapt to new radios with software designs. Embracing new radios into cellular net-

works is challenging. While mmWaves bring a wide spectrum and potential of high band-
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width, it is difficult to fully release the potential due to the complexity of the wireless

environment. Our insight in defeating the complex propagation hassles in mmWave is that

we finally rely on software designs to enable a high-performance PHY layer. We also gain

wisdom that bringing new innovations in protocol designs can be easy and fast as long as

the initial design is flexible and open. Looking forward, we expect the integration of cross-

domain signals into 6G or beyond to be easy since the overall mechanism stays the same.

This benefitted from the current flexible PHY frame design.

6.3 Future Work

We envision the following future work to continue our exploration in a cross-domain multi-

plexing design with integration of the delay-Doppler domain.

Incorporating IoT devices. In the foreseen future, personal-use IoT devices will largely

increase together with the network with wider coverage [89]. Compared with commodity

phones or professional drones, IoT devices are constrained by limited battery power. Funda-

mentally, the communication based on time-frequency domain scheduling is power-consuming

since the power change drastically for all the sub-carriers. Recent works discuss how the

OTFS domain solution relieves IoT devices from battery-consuming modulation [112, 131].

We expect the design of cross-domain multiplexing shed light on a future exploration into

cross-domain multiplexing-enabled power saving. Besides, as IoT devices become prevailing,

the mmWave-enabled short-range network is expected to cover more devices. In the long

term, we envision IoT devices enabling learning-based paradigms with coarse-grained data.

All diverse devices could share their network knowledge and achieve collaborative mobile

network intelligence.

Cross-layer design with new radios. The current deployment of mmWaves is still

constrained by the limited beam setting offered by the physical hardware. We expect that

the integration of mmWaves with software-defined PHY enables more flexible services with
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mmWaves. For such services, the PHY has to provide ultra-low latency to adapt to the

short symbol duration at high frequency. In our design of OTFS-based signaling, we add

an extra layer to coordinate OFDM and OTFS symbols. To further enable coordination

between different beams, we need a slim layer for PHY management for beam, modulation,

coding, and so on. By separating management from lower-layer signal transmission, the

design enables more innovation with closer integration between the PHY and the upper

application layers.

Future of aerial networks with ground networks. With mmWaves in aerial com-

munication, drones can act as a replay between ground networks. Such deployment reveals

a large potential of bandwidth wasted due to NLOS transmission. Past work has shown the

potential of supporting ground networks with mmWaves. However, the details on how to

overcome the interference between drones are not clear. Our design of cross-domain inter-

ference cancellation removes the obstacles due to interference. However, the practicality of

such a design remains to be validated in a real deployment.

Applicability to emerging satellite networks. Another direction for aerial networks

is closely bonded with emerging satellite networks. Starlink [116, 118] will include 4,425

LEO satellites (57 available until 2019) at an altitude of 550–1,150 km. All satellites use

high-frequency bands (12– 18GHz Ku band or 26.5–40GHz Ka-band), and traveling at high

speeds (around 7.3km/s). Such a setting results in a viable Doppler effect (300KHz-900KHz

frequency shift) and dramatic wireless dynamics (thus latency variations). The unique prop-

agation features bring extra challenges [76]. We expect to witness more innovations in the

cooperation between low-height drone-based networks and satellite networks.
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Appendix A

Supplementary Materials for Chapter 3

A.1 Proof for Theorem 2

Proof. We prove that the SVD decomposition leads to perfect decomposition under single

path model. We first prove that the channel matrix H = ΓPΦ is a possible compact SVD

decomposition. We then prove that the compact decomposition is unique.

The decomposition H = ΓPΦ is only a SVD decomposition when P is a diagonal matrix

with non-negative real numbers. Given P = 1, we construct P as a 1 × 1 matrix with

P(1, 1) = |hp|. Thus P satisfy the condition. We then prove the delay spread matrix Γ is

semi-unitary. Note that Γ is a M × 1 vector. We only need to prove that the delay spread

matrix satisfies ||Γ|| = 1. Note we only need to consider the case that τp is divisible by ∆τ .

In the delay-Doppler domain, we have

Γ(k) =
1

M

M−1∑
d=0

e−j2π(τp−k∆τ)d∆f

. Since ∆τ = 1
∆fM

based on the grid setting, we have

|Γ(k)| = | 1
M

1− e−j2π(
τp
∆τ

−k)

1− e−j2π(
τp
∆τ

−k)/M
| = | 1

M

sin(πx− πk)

sin(π (x−k)
M

)
|

, where x = τp
∆τ

. Proving ||Γ|| = 1 is equivalent to prove that

M−1∑
d=0

|sin(πx− πd)

sin(π (x−d)
M

)
|2 = |sin(πx)|2

M−1∑
d=0

csc2(π
(x− d)

M
) = M2
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From the series representation of csc funtion, we have

csc2(π
(x− d)

M
) =

∑
r∈Z

1

(π (x−d)
M
− rπ)2

Through the expansion, we have

M−1∑
d=0

csc2(π
(x− d)

M
) =

M−1∑
d=0

∑
r∈Z

1

(π (x−d)
M
− rπ)2

=N2
∑
r∈Z

M−1∑
d=0

1

(πx− rπ)2
= N2 1

sin(πx)

Similarly we can prove Φ is also semi-unitary when νp is not divisible by ∆ν. Thus we

conclude that Γ, P and Φ satisfy the SVD decomposition.

According to [63], the SVD decomposition is unique if the values of eigenvalues are

distinct. Since there is only one eigenvalue for P , the compact SVD is distinct. The compact

SVD decomposition of H results in the delay spread matrix Γ, attenuation P, and Doppler

spread matrix Φ.

A.2 Number of Paths

Proof. The channel matrix representation H = ΓPΦ indicates that

rank(H) = rank(ΓPΦ) ≤ min(rank(Γ), rank(P), rank(Φ))

By Sylvester’s rank inequality [88], we have

rank(ΓPΦ) ≥ rank(Γ) + rank(P) + rank(Φ)− 2P

Assuming condition (i) and condition (ii), Γ and Φ are unitary matrix. We have rank(Φ) =

P and rank(Γ) = P , where P is the number of physical paths. Then rank(H) = rank(P) =

P .
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A.3 Proof of Proposition 1

Proof. We detail (3.6)’s proof; (3.7)’s proof follows similar procedure. Let xT [k, l] = x1[k, l]c[k],

then x2[k, l] = xT [kT, l] = x1[kT, l]c[kT ] = x1[kT, l]. Then

X2[n,m] =

M2−1∑
k=0

N−1∑
l=0

x2[k, l]e
−j2π(mk

M2
−nl

N
)

=

M2−1∑
k=0

N−1∑
l=0

xT [kT, l]e
−j2π(mk

M2
−nl

N
)

(Let k′ = kT . Note M2T = M1, and xT [k, l] = 0 if k ̸= k′T )

=

M1−1∑
k′=0

N−1∑
l=0

xT [k
′, l]e

−j2π( mk′
M2T

−nl
N
)

=

M1−1∑
k′=0

N−1∑
l=0

1

T

T−1∑
q=0

x1[k
′, l]e−j 2π

T
qk′e

−j2π(mk′
M1

−nl
N
)

=
1

T

T−1∑
q=0

M1−1∑
k′=0

N−1∑
l=0

x1[k
′, l]e

−j2π(
(m+

qM1
T

)k′
M1

−nl
N
)

=
1

T

T−1∑
q=0

X1[n, [m+
qM1

T
]M1 ] =

1

T

T−1∑
q=0

X1[n, [m+M2]M1 ]

thus concluding the proof.
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Appendix B

Supplementary Materials for Chapter 4

B.1 Single Path Estimation

Proof. Here we give the proof for Theorem 4.3.1. We show the general case where we have

a general y[u, v]. We will prove that the the columns of S are linear independent. We first

formulate the vector equations

∑
(m,n)̸=(u,v)

α(m,n)e
−j2π( 1

M
)mke−j2π(− 1

N
)nl = 0, for ∀k, l ̸= (0, 0)

, where α(m,n) is the coefficient of column corresponding to y[m,n]. For each row, we use

βn
k =


∑

m α(m,n)e
−j2π( 1

M
)mk, if n ̸= v∑

m ̸=u α(m,n)e
−j2π( 1

M
)mk, otherwise

(B.1)

to represent the coefficient for e−j2π(− 1
N
)nl. For l varying from 0 to N , for any k, we have

∑
(m,n)̸=(u,v)

α(m,n)e
−j2π( 1

M
)mke−j2π(− 1

N
)n∗0 = 0→

∑
n

βn
k e

−j2π(− 1
N
)n∗0 = 0

∑
(m,n)̸=(u,v)

α(m,n)e
−j2π( 1

M
)mke−j2π(− 1

N
)n∗1 = 0→

∑
n

βn
k e

−j2π(− 1
N
)n∗1 = 0

. . .∑
(m,n)̸=(u,v)

α(m,n)e
−j2π( 1

M
)mke−j2π(− 1

N
)n∗(N−1) →

∑
n

βn
k e

−j2π(− 1
N
)n∗(N−1) = 0
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Thus we can formulate a N ∗N matrix that
e−j2π(− 1

N
)0∗0 e−j2π(− 1

N
)1∗0 . . . e−j2π(− 1

N
)(N−1)∗0

e−j2π(− 1
N
)0∗1 e−j2π(− 1

N
)1∗1 . . . e−j2π(− 1

N
)(N−1)∗1

. . .

e−j2π(− 1
N
)0∗(N−1) e−j2π(− 1

N
)1∗(N−1) . . . e−j2π(− 1

N
)(N−1)∗(N−1)

 ∗ β⃗k = 0

Note that the left matrix is full rank since it is a Vandermonde matrix with distinct scale

factor e−j2π(− 1
N
)n for each column n = 0, ..., N − 1. Thus we have βn

k = 0 ∀k, n. Note that

βn
k =

∑
m α(m,n)e

−j2π( 1
M

)mk. For n = v, we have βv
k =

∑
m ̸=u α(m,v)e

−j2π( 1
M

)mk = 0. Varying

k form 1 to M − 1, we can formulate a M − 1 ∗M − 1 matrix that
e−j2π( 1

M
)0∗1 . . . e−j2π( 1

M
)(u−1)∗1 e−j2π( 1

M
)(u+1)∗1 . . . e−j2π( 1

M
)(M−1)∗1

. . . . . . . . . . . . . . . . . .

e−j2π( 1
M

)0∗(M−1) . . . e−j2π( 1
M

)(u−1)∗(M−1) e−j2π( 1
M

)(u+1)∗(M−1) . . . e−j2π( 1
M

)(M−1)∗(M−1)

∗α⃗v = 0

Note that the left matrix is full rank since it is a Vandermonde matrix with distinct scale

factor e−j2π( 1
M

)m for each column m ̸= u. Thus αm,v = 0 ∀m. Next we show that αm,n =

0 ∀n ̸= v. We have∑
n̸=v

α(m,n)e
−j2π( 1

M
)mke−j2π(− 1

N
)nl = 0, for ∀k, l ̸= (0, 0)

we formulate that A
⊗

B, where A = e−j2π(mk
M

) and B = ej2π(
nl
M

), n ̸= v, l ̸= 0.

We then show how A and B are both full rank. We only need to prove A, a M ∗M

matrix, is full rank, where

A =



1 1 1 1 ... 1

1 e−j2π( 1
M

) e−j2π( 2
M

) e−j2π( 3
M

) ... e−j2π(M−1
M

)

1 e−j2π( 2
M

) e−j2π( 4
M

) e−j2π( 6
M

) ... e−j2π(
2(M−1)

M
)

... ... ... ... ... ...

1 e−j2π( k
M

) e−j2π( 2k
M

) e−j2π( 3k
M

) ... e−j2π(
(k−1)(M−1)

M
)

... ... ... ... ... ...

1 e−j2π(M−1
M

) e−j2π(
2(M−1)

M
) e−j2π(

3(M−1)
M

) ... e−j2π(
(M−1)(M−1)

M
)
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, where k varying from 1 to M-1. Note that A is a Vandermonde matrix. Thus the determi-

nant of A is the product of each row’s scalar factor.

det(A) =
∏

1≤i<t≤M−1

(e−j2π( i
M

) − e−j2π( t
M

))

To prove the determinant of A is non-zero, we model the e−j2π( i
M

) as vectors of length 1

at plane constructed by 1 + 0j and 0 + 1j. Note these vectors are not the same. Thus the

determinant of A is non-zero, which means A is full rank.

Now we prove B is full rank. We write it out as
e−j2π(− 1

N
)0∗1 . . . e−j2π(− 1

N
)(v−1)∗1 e−j2π(− 1

N
)(v+1)∗1 . . . e−j2π(− 1

N
)(N−1)∗1

. . . . . . . . . . . . . . . . . .

e−j2π(− 1
N
)0∗(M−1) . . . e−j2π(− 1

N
)(v−1)∗(N−1) e−j2π(− 1

N
)(v+1)∗(M−1) . . . e−j2π(− 1

N
)(N−1)∗(N−1)


Each column of this matrix is a geometric progression with scaling factor e−j2π(− 1

N
)l, l =

1, ..., N − 1.. This is also a Vandermonde matrix with distinct scale factor. Thus rank(B) =

N − 1.

We have

rank(S) = rank(A) ∗ rank(B) = M(N − 1)

This concludes out proof that S is full rank. Thus αm,n = 0 ∀n ̸= v. We have αm,n = 0 ∀m,n.

This is equivalent to prove that S is full rank.

B.2 Approximation

We provide the proof for Theorem 4.3.2.

Proof. We calculate Y [0, 0] with ˆY [0, 0] = S[0,0]inv(SR∗\(0,0),C∗\(m,n))Y⃗R∗\(0,0). The ground

truth is Y [0, 0] = S[0,0]inv(SR∗\(0,0),C∗\(m,n))Y⃗R∗\(0,0)−S[0,0]inv(SR∗\(0,0),C∗\(m,n))S⃗R∗\(0,0),C=(m,n)∗

y[m,n] + y[m,n]. We have

ˆY [0, 0]− Y [0, 0] = S[0,0]inv(SR∗\(0,0),C∗\(m,n))S⃗R∗\(0,0),C=(m,n) ∗ y[m,n]− y[m,n]
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We will show that inv(SR∗\(0,0),C∗\(m,n))S⃗R∗\(0,0),C=(m,n) is a vector of all-negative-ones −̃1.

It’s equivalent to prove that SR∗\(0,0),C∗\(m,n))−̃1 = S⃗R∗\(0,0),C=(m,n). This is equivalent to

prove each row of SR∗\(0,0),C∗ is 0.

To prove that SR∗\(0,0),C∗ is 0. We have the first row (M=4 as an example)[
1 e−j2π( 1

M
) e−j2π( 2

M
) e−j2π( 3

M
) 1 e−j2π( 1

M
) e−j2π( 2

M
) e−j2π( 3

M
)

]
We only consider the first half. Thus the sum is

∑
m e−j2π(m

M
) = 1−e−j2π(M

M
)

1−e−j2π( 1
M

)
. This holds for

rows. For row k, we have
∑

m e−j2π( km
M

).

B.3 Multiple Paths

Proof. The (MN-P) * (MN-P) submatrix of transformation matrix S is full rank. Assume

we have N = 2. We can reformat the matrix H. We keep the removed rows and columns

within the same block. 0 (1− ej2π
1
N ) ∗ A\P,K

A ej2π
1
N ∗ A\∅,,K


Then we can show A\P,K is full rank. Note that the complete A is full rank, we need to prove

reduced A is still full rank,

A, a M ∗M matrix, is full rank, where

A =



1 1 1 1 ... 1

1 e−j2π( 1
M

) e−j2π( 2
M

) e−j2π( 3
M

) ... e−j2π(M−1
M

)

1 e−j2π( 2
M

) e−j2π( 4
M

) e−j2π( 6
M

) ... e−j2π(
2(M−1)

M
)

1 e−j2π( 3
M

) e−j2π( 6
M

) e−j2π( 9
M

) ... e−j2π(
3(M−1)

M
)

... ... ... ... ... ...

1 e−j2π( k−1
M

) e−j2π(
2(k−1)

M
) e−j2π(

3(k−1)
M

) ... e−j2π(
(k−1)(M−1)

M
)

... ... ... ... ... ...

1 e−j2π(M−1
M

) e−j2π(
2(M−1)

M
) e−j2π(

3(M−1)
M

) ... e−j2π(
(M−1)(M−1)

M
)
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, where k varying from 1 to M-1. In the case of multiple path propagation, the unknown

paths constitute the first P rows of A. We then need to select P columns to make the

remaining A\P,K invertible.

Please note that for any columns removed, the remaining columns remaining a geomet-

ric progression, with the scaling factor e−j2π(m
M

). Since the scaling factors are unique, the

Vandermonde matrix A\P,K is invertible. We have Y⃗P = SPinv(SR∗\P,C∗\K)Y⃗R∗\P.

B.4 Multiple Interferers

Given F interferer, we have Y [0, 0] = Yrecv[0, 0]−
∑F

f Y f [0, 0]. Thus we have
∑F

f Y f [0, 0] =∑F
f S[0,0]inv(Sknown)Y⃗

f
known. The equation holds when S for all the interfering cells are the

same. Since S are the same for all interferers

I∑
i

Y i[0, 0] =
I∑
i

S[0,0]inv(SR∗\(0,0),C∗\(m,n))Y⃗
i
R∗\(0,0)

= S[0,0]inv(SR∗\(0,0),C∗\(m,n))
I∑
i

Y⃗ i
R∗\(0,0)

For the case of multi-pathing, we have

I∑
i

Y i
P =

I∑
i

SPinv(SR∗\P,C∗\K)Y⃗
i
R∗\P

= SPinv(SR∗\P,C∗\K)
I∑
i

Y⃗ i
R∗\P

, where P denotes unknown DD domain indexes and K denotes known TF domain indexes.
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