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List of Figures

1.1 Library molecules for high-throughput sequencing (HTS) consist of target DNA

fragments with adapter sequences ligated on either end. Adapters, with known

sequence complementary to primer sequences, allow a single primer pair to

amplify a diversity of DNA fragments, and another to be used for the sequencing

reaction, where labeled nucleotides are incorporated [125]. For ancient DNA

studies, HTS technology has allowed researchers to observe damage patterns at

ends of molecules and amplify a large variety of genomic DNA fragments of

unknown sequence. HTS size limitations are inconsequential, as ancient DNA

is usually highly fragmented. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.2 Overview of popular techniques for studying archaic admixture. a: Archaic

genome free methods are test statistics that can be used to infer archaic intro-

gression into modern individuals without archaic sequence data. Each is com-

puted on real data, then data simulated under various demographic models, and

compared. These are prone to errors in model specification and can produce

false positives. b: Local methods can be used to find specific genes or genomic

regions admixed individuals derive from one or another ancestral population.

These are tuned to detect detect long introgressed haplotypes but have reduced

power to detect old admixture events. c: Global methods consider individual

sites across the genome. Many are formal tests for admixture and/or can be used

to estimate admixture proportion. In each box, X” means true and S” means true

in some cases. *” indicates methods applied to haplotype sequences, to which

the concept of phasing does not apply. Note that, if sufficiently high-coverage

genome-wide sequence data are available, these can be transformed into SNP

calls if necessary. Also note that a method working on population-level data

requires reference population data by default, as all inputs are population-level. 4
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1.3 Adapted from [147]. Expected value of f3(C;A,B) under various tree topolo-

gies. Red lines trace genetic drift between populations C and A; blue lines trace

genetic drift between C and B. f3 measures drift between C and A that is also

shared between C and B. Drift is shared along branches where arrows going in

the same direction overlap. a and b: expected value of f3(C;A,B) with no ad-

mixture. If C is not a product of admixture between A and B, f3 is expected to be

positive. In the case where C is an outgroup to A and B (a), the value of f3 is pro-

portional to the distance separating C from A and B, which can also be thought

of as the amount of shared history between A and B. c-f: expected value of when

C is a product of admixture between A and B. α is the percent ancestry popula-

tion C derives from A, and β is the percent derived from B. Distance j represents

genetic drift between extant population A its ancestral population that admixed

to form the population ancestral to C in the past; distance k is proportional

to drift between extant population B and its admixing ancestral population.

Computation of f3(C;A,B) in this case requires tracing multiple paths through

the tree, since population C can share drift with population B that it received

through admixture with population A and vice versa. The expectation is the sum

of all shared drift: E[ f3(C;A,B)] = αβi+α2(i+ j)+β2(i+ k)+αβ(i− p−q).

This has the potential to be negative, although it can also be positive. Given that

negative values are impossible if C is not a result of admixture (a and b), a neg-

ative result can be taken as evidence of admixture; a positive result, however,

cannot be used to reject admixture. . . . . . . . . . . . . . . . . . . . . . . . 27
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1.4 Adapted from [181]. Visual explanation of expected values of f4(A,B;C,D) un-

der various tree topologies. Red lines trace genetic drift from A to B; blue lines

trace drift from C to D. f4 measures drift shared between A and B that is also

shared between C and D. Drift is shared along branches where arrows overlap

going in the same direction. a-c: Positive, negative, and zero values of f4 give

support for different tree topologies relating the four populations. d, e: visual

explanation of f4 ratio method for inferring admixture proportion. Population

X is a mixture of populations related to B and C; population D is an outgroup.

The quantity of interest, α, is the proportion of ancestry population X has re-

ceived from B. If the expected value of f4(A,D;B,C) = z (d), then the expected

value of f4(A,D;X ,C) = αz(e). It follows that α = f4(A,D;B,C)/ f4(A,D;X ,C)

(Patterson et al. 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1.5 Explanation of D statistic [56, 35]. Individuals are numbered according to the

D-statistic notation: D(P1,P2,P3,P4) and examples of individuals that could be

used to yield a positive D-statistic result when testing for Neanderthal ancestry

are given (D would be negative in this case if there had been gene flow between

the Yoruba and Neanderthal instead). a: genome-wide tree relating the four in-

dividuals, based on prior knowledge. b: trees at ABBA and BABA sites used to

compute D. In both, blue is used to represent a derived allele (does not match

chimpanzee); red represents an ancestral allele (matches chimpanzee). To cal-

culate D on sequence data, the number of sites with the topology of the left tree

is NABBA and the number of sites with the topology of the right tree is NBABA.

Then D = (NABBA−NBABA)/(NABBA +NBABA). . . . . . . . . . . . . . . . . . 29
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2.1 AD-LIBS accuracy on simulated data, using incorrect population parameters.

Simulations here used the single-pulse” admixture model (see Figure 2.2 A, C,

and E) except where otherwise noted, with 10kb windows, which were auto-

matically adjusted by AD-LIBS as necessary. Asterisks denote accuracy sig-

nificantly lower (p < 0.001) than that obtained using correct parameters. A:

AD-LIBS accuracy using different prior population size estimates (true N =

3000) and correct number of generations since admixture (1000). B: AD-LIBS

accuracy using different estimates for the number of generations since admix-

ture (true g = 1000) and correct population size (3000). C: AD-LIBS accuracy

using prior estimates of polar bear admixture proportion that differed from the

true value, rounded to the nearest 10%. D: Same as C, but using the migration”

admixture model (see Figure 2.2 B, D, and F), which produced a wider range of

true admixture proportions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2.2 AD-LIBS accuracy using simulated data. A, C, and E refer to simulations with

a single polar-brown bear admixture event 12,000 years ago, followed by iso-

lation (single-pulse model); B, D, and F refer to simulations in which a brown-

polar bear admixture event 12,000 years ago is followed by continual breeding

with unadmixed brown bears (migration model). A and B: percent of AD-LIBS

inferences correct and percent of true ancestry recovered in each ancestry state

(homozygous polar bear, heterozygous, and homozygous brown bear) for each

individual. C and D: Effect of using different numbers of reference ancestral in-

dividuals (1, 2, 3, 4, or 5 from each population) on overall accuracy, using 10kb

windows. Asterisks denote a distribution mean significantly lower (p < 0.001)

than the best distribution (5 individuals from both populations), according to

t-test. E and F: Effect of using different window sizes (5kb, 10kb, and 25kb),

with 5 reference bears from each ancestral population. Asterisks denote a dis-

tribution mean significantly lower (p < 0.001) than the best distribution (10kb

windows), according to t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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2.3 Accuracy of AD-LIBS estimates of the overall extent of polar bear ancestry, us-

ing simulated data. A and C refer to simulations with a single polar-brown bear

admixture event 12,000 years ago, followed by isolation (single-pulse model); B

and D refer to simulations in which a brown-polar bear admixture event 12,000

years ago is followed by continual breeding with unadmixed brown bears (mi-

gration model). All AD-LIBS runs in this figure used 5 reference individuals per

ancestral population and 10kb windows. A and B: Inferred percent polar bear

ancestry using AD-LIBS and f̂ versus true percent polar bear ancestry. C and D:

inferred percent polar bear ancestry of each type, according to AD-LIBS, versus

true percent polar bear ancestry of each type. Each point represents the percent

of a single simulated hybrid bear genome with a specific type of ancestry. E:

overall accuracy of AD-LIBS inferences versus true percent polar bear ances-

try, including both types of simulations. The line of best fit by least-squares

regression is also shown. Accuracy decreases slightly as polar bear ancestry

increases, probably due to the tendency of AD-LIBS to overestimate the extent

of heterozygous ancestry (C and D). . . . . . . . . . . . . . . . . . . . . . . . 79
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2.4 Results from downsampling four ABC Islands brown bears, three Scandinavian

brown bears, and four polar bears to 0.5x, 1x, 2x, 5x, and 10x coverage along

the longest genomic scaffold, running HAPMIX [160] and AD-LIBS on the

four ABC Islands bears at each coverage depth, and comparing these runs to re-

sults obtained from running both programs on the full-coverage versions of the

same individuals. Each line represents an individual ABC Islands bear and each

color represents a specific low coverage/full coverage comparison. A: percent

of full coverage calls recovered by running each program at low coverage. Val-

ues given are averages across the three ancestry states (homozygous polar bear,

heterozygous, and homozygous brown bear). B: percent of low coverage calls

that were correct, according to full-coverage calls. Values given are averages

across the three ancestry states. Some points are missing because HAPMIX

was unable to detect any polar bear ancestry at 0.5x coverage. . . . . . . . . . 80

xiii



2.5 Results from downsampling four ABC Islands brown bears, three Scandina-

vian brown bears, and four polar bears to 0.5x, 1x, 2x, 5x, and 10x coverage

along the longest genomic scaffold, running HAPMIX and AD-LIBS on the

four ABC Islands bears at each coverage depth, and comparing these runs to

results obtained from running both programs on the full-coverage versions of

the same individuals. Each line represents an individual ABC Islands bear and

each color represents a specific low coverage/full coverage comparison. A and

B assess homozygous polar bear (AA) calls, C and D assess heterozygous (AB)

calls, and E and F assess homozygous brown bear (BB) calls. A, C, and E mea-

sure the percent of low-coverage calls that were correct” according to the high-

coverage runs, while B, D, and F measure the percent of the high-coverage runs

calls that were also detected by the low-coverage runs. In almost every case,

AD-LIBS is more consistent with itself than other comparisons. We also note

that low-coverage AD-LIBS inferences of homozygous polar and brown bear

ancestry are more often correct, according to HAPMIX run at full coverage,

than HAPMIX run at low coverage (A and E). AD-LIBS may, however, erro-

neously call more windows heterozygous than HAPMIX does (C), leading to its

missing some windows of homozygous polar (B) and brown bear (F) ancestry. 81
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2.6 Comparing overlap of regions of different types of ancestry among hybrid bears.

For every combination of 2 or more American brown bears, we measured the

number of bases that AD-LIBS labeled with the same type of ancestry (homozy-

gous polar, homozygous/heterozygous polar, or homozygous brown) in each

bear. We also performed one random trial per real comparison, in which coor-

dinates comprising random regions were sampled from the reference genome,

producing sets of genome regions of the same size and number as the regions of

ancestry produced by AD-LIBS for each bear, but randomly scattered across the

genome. We then measured the overlap between these random ancestry regions

for the sake of comparing to the true overlap. Averages of every comparison

of each number of bears are shown as solid lines, and averages of every com-

parison of randomized versions of those same bears are shows as dashed lines.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.7 Geographic signal recovered in vectors of polar bear ancestry. A: principal com-

ponents analysis (PCA) of polar bear ancestry state of 10kb genomic windows

for 18 brown bears, using EIGENSOFT SmartPCA [148]. B: PCA of SNP data

from a previous study [108], including a subset of the bears in A. Both plots

show similar geographic patterns, with the Montana bear (GP01) falling close

to the Admiralty Island bear(s), but only the SNP data separates Finnish (RF01)

from Swedish brown bears. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xv



2.8 Illustration of cases where either a local ancestry detection method (like AD-

LIBS) or a global ancestry detection (like f̂ ) might succeed, partially succeed,

or fail. Each line represents a chromosome, with polar bear ancestry shown

in blue and brown bear ancestry shown in brown. All five individuals needed

for computation of are shown in each case. A: local and global methods both

succeed in detecting all of the hybrid individuals polar bear ancestry. B: local

and global methods both fail to detect the hybrid individuals polar bear ancestry.

C: local methods successfully detect the hybrid individuals polar bear ancestry,

since it is in a different part of the genome than the polar bear ancestry in the

genome of the model “unadmixed” brown bear. Global methods fail to detect

the hybrid individuals polar bear ancestry. Since global methods use genome-

wide averages, the hybrid individual is not seen to possess any more polar bear

ancestry than the model “unadmixed” brown bear. D: Both local and global

methods will detect the hybrids first segment of polar bear ancestry but fail to

detect the second segment, resulting in both types of methods underestimating

the hybrid individuals true percent polar bear ancestry. . . . . . . . . . . . . . 84
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2.9 The state space of AD-LIBSs hidden Markov model. The three round states

(AA, AB, and BB) are ancestry states that can emit scores. AA represents

regions where both homologous chromosomes derive ancestry from ancestral

population A, AB represents regions of heterozygous ancestry, and BB repre-

sents regions homozygous for population B ancestry. The three square states

(sAA, sAB, and sBB) are skip states, each associated with one of the three

ancestry states. Skip states can only emit scores representing windows of the

genome in which data are too sparse to infer ancestry. Each skip state is more

likely to transition back to its associated ancestry state than to one of the oth-

ers. Arrow colors represent different types of transition probabilities. Green

arrows are starting probabilities and are related to the pre-estimated percent an-

cestry derived from each ancestral population (A and B). Blue arrows represent

recombination events; their probability is related to the probability of a recom-

bination event having happened at a given site in the time since admixture, as

well as the probability of sampling a base from population A or B. Black arrows

are related to the probability of skipping a given window, computed from the

number of “N” bases encountered. Red arrows are transitions to the end state,

with probabilities related to the number of windows on the chromosome or scaf-

fold being scanned. Gold arrows represent probabilities that are computed after

other probabilities, by subtracting from 1 the sum of all other transition proba-

bilities out of a given state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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2.10 All possible combinations of events leading to transitions between the three an-

cestry states of the hidden Markov model. “A” and “B” denote chromosomes

derived from ancestral populations A and B, and the three states AA, AB, and

BB model regions where ancestry is homozygous from population A, heterozy-

gous, and homozygous from population B, respectively (AB and BA are repre-

sented by same state, but are shown separately here to clarify that the ancestry

of both separate chromosomes must be considered when computing probabil-

ities). The other columns denote possible recombination-related events on the

two parental homologues of a given chromosome (henceforth “homologue 1”

and “homologue 2”). A “Y” in the R1 column signifies that recombination took

place at a given base on chromosome homologue 1 in the time since admixture,

and a “Y” in the R2 column signifies that recombination took place at this base

on chromosome homologue 2. C1a and C1b refer to the ancestry of the bases

on chromosome homologue 1 immediately before and after the recombination

event, if it happened; C2a and C2b refer to the ancestry of the bases on chromo-

some homologue 2 before and after recombination. Z indicates that the same

ancestral recombination event, which happened in the time since admixture, was

sampled twice in the same individual (once on chromosome homologue 1 and

once on chromosome homologue 2). The parameter g is the number of genera-

tions since admixture, r is the recombination probability per site per generation,

assumed to be 1 cM/Mb or 10−8 per site, and z is the probability of resampling

the same ancestral recombination event twice in one individual, according to

genetic drift approximated by the Wright-Fisher model. . . . . . . . . . . . . 86xviii



3.1 A: example showing ARG inferred by parsimony. Columns are variable sites;

shaded cells denote shared derived mutations. Red-highlighted sites fail the

four haplotype test with other red- 5 highlighted sites (shown by brackets), ver-

tical dotted red lines mark ancestral recombination breakpoints. Site numbers

mark clades they tag in the trees, and red arrows show ancestral recombination

events. B: example of a recombination event joining together the blue haplo-

type upstream of the break point (dotted line) and the red haplotype downstream

of the breakpoint. Location of the blue and red haplotypes in a consensus tree

are shown above. C: how the daughter haplotype produced in B will appear

in an ARG: within the blue haplotypes clade upstream of the recombination

breakpoint and in the red haplotypes clade downstream of it. . . . . . . . . . . 89
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3.2 Example of algorithm for inferring branch movements between to trees known

a priori. For more information on terminology, see Methods. A: Two trees,

which differ by one branch movement. B: Clades from the two trees that fail the

four haplotype test. Left column shows clades from the first (upstream) tree and

right column shows clades from the second (downstream) tree; arrows indicate

four haplotype test failures. C: Graph showing all possible branch movements

that could explain the four haplotype test failures shown in B. The left and

right columns are “tree” nodes, while the center column lists candidate γ clades.

Colors indicate types of four haplotype test failures: red paths are conditional

on a failure being the α/α type, green on it being α/β, and blue on it being β/β.

In this case, a single candidate γ clade (C) has the most edges and can explain

all four haplotype test failures. This is interpreted as the clade C moving from

the smallest observed α clade in the first tree (CD) to the smallest observed β

clade in the second tree (CH). If no β clades from the second tree are observed,

the branch movement goes upward to a clade containing the union of all clades

failing the four haplotype test. If no α clades from the first tree are observed,

the branch movement goes downward from a clade containing the union of all

clades failing the four haplotype test. . . . . . . . . . . . . . . . . . . . . . . 92
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3.3 Schematic of data structure. For more information on terminology, see Meth-

ods. Top: rectangles are “tree nodes” representing clades in trees. Each has a

set of haplotypes (represented by letters A-G), and a start and end coordinate

(blue numbers in brackets) determined by coordinates of SNP sites tagging the

clade (yellow numbers in braces), along with a propagation distance parameter

(100 in this example). Parent/child edges (vertical arrows) also have start and

end coordinates determined by the nodes. Ovals are candidate nodes that can

explain four gamete test failures; colored edges indicate potential paths between

tree nodes through candidate nodes that could explain four gamete test failures

(colors indicate types of paths). The candidate node with the most edges is

eventually chosen as the most parsimonious branch movement, allowing for the

inference of new nodes; the two trees at the bottom show the “solved” ancestral

recombination event with the branch movement marked in red and all clades

inferred without SNP data marked with yellow stars. The coordinates of the re-

combination event (blue numbers in brackets) are taken to be midway between

the furthest-downstream upstream site and the furthest-upstream downstream

site involved in recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 A: Accuracy of SARGE on simulated data (defined as percent of all clades

correct according to the true ARG in the simulation), with increasing numbers

of human-like haplotypes from an unstructured population. Error bars are one

standard deviation across 5 replicates. B: Number of nodes per tree with in-

creasing number of haplotypes in simulated data. . . . . . . . . . . . . . . . . 95
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3.5 Properties of SARGE performance on simulated data with a sub-Saharan African-

like level of heterozygosity, constant population size history, and no structure.

Points are means; error bars show one standard deviation. A: Tree articula-
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Abstract

New Tools for Localizing Ancestry Across Genomes of Hybrid Individuals Provide

Insight Into the Genetics of Speciation

by

Nathan K. Schaefer

Understanding the processes by which new species arise has long been of interest to

evolutionary geneticists. In some cases, abrupt changes in habitat or niche can spur on adaptive

changes in one population that help lead to its genetic isolation from others. In cases where

diverging species ranges overlap, speciation genes, or fast-evolving genes which can negatively

affect an organism’s fertility or viability when divergent alleles from separating populations are

inherited together, are thought to spur on species divergence. Hybridization can be thought of

as a natural experiment in which semi-incompatible, divergent genomes are brought together

in a living organism. When this happens, natural selection should remove incompatible sets of

alleles from the genome and increase the frequency of beneficial introgressed alleles (adaptive

introgression). By sequencing the genomes of natural populations with hybrid ancestry and

identifying the ancestral origin of each part of the genome, it is possible to identify genes

involved in species divergence, as well as cases of adaptive introgression.

I review current techniques for studying hybridization using genomic data, as well

as what has been learned about ancient DNA and human history using such techniques. I then

present a new method for ancestry mapping using low-quality, low-coverage sequence data and

demonstrate its application on a population of hybrid brown/polar bears from North America. I

xli



also present a new heuristic ancestral recombination graph (ARG) inference algorithm, which

can be used for fine-grained ancestry mapping, as well as a wide range of other population

genomic applications. Finally, I use ARG inference to shed light on past human hybridization

with Neanderthals and Denisovans, and to identify regions of the genome that define human

genetic uniqueness.
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Chapter 1

Introduction

This section was published in the June 2016 journal Molecular Ecology under the

title Detecting Hybridization using Ancient DNA, with coauthors Beth Shapiro and Richard E.

Green. In it, I review existing methods for inferring admixture using genomic DNA, as well as

their applications in the field of ancient DNA research.

For more than two decades after the first DNA sequences were isolated from ancient

remains [70, 140], the field of ancient DNA was limited to cloning or PCR-based interrogation

of one or a few genetic loci. Such data can be useful for studying some aspects of past demog-

raphy such as population migrations and bottlenecks [68, 219]. For detecting subtle signals of

admixture, however, genome-wide data sets are necessary. These data are becoming routinely

available from ancient remains via high-throughput sequencing [125] of DNA. Beginning with

the retrieval of 13 Mb of the mammoth genome [155] and portions of the Neanderthal genome

[57, 135], a variety of approaches have been developed to extract DNA and make it available

for direct sequencing, ushering in the new era of paleogenomics [194].
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The field of ancient DNA has realized enormous benefits from the gains in efficiency

of high-throughput sequencing (HTS). First, HTS libraries and the machines used to read them

typically can accommodate a limited size fragment of DNA (up to several hundred nucleotides

for currently-popular platforms; [81]). Because DNA molecules retrieved from ancient remains

tend to be much smaller, this library and machine limitation is inconsequential. Second, to am-

plify library molecules during sequencing e.g. during bridge amplification or emulsion PCR a

common set of adapters must be ligated onto each molecule. These adapters provide a conve-

nient means to amplify the entire library before sequencing, effectively turning the library itself

into a semi-renewable resource (limited by the diversity of DNA fragments present in the sam-

ple) Figure 1.1. This is an important consideration for libraries derived from rare and precious

ancient samples. Third, library construction and sequencing is set up so that the natural ends

of each molecule are read from the sequencer. This has enabled observation of the patterns of

DNA base damage in ancient DNA molecules at their ends [55, 14], whereas efforts to charac-

terize damage in molecules amplified by primers specific to sequence within them [142, 14, 16]

were unable to do so. Finally, the sheer scale of data collection depending on the machine, up

to billions of reads allows a means to retrieve genome-scale data sets from DNA extracts that

are often mostly microbial DNA.

Driven by the accumulation of genome-scale data from ancient remains, a spate of

methods for detecting admixture has been recently described. An overview of these methods

and their requirements, strengths, and weaknesses is given in Figure 1.2; they will be described

in detail in the following sections. Paleogenomic data and these methods have revealed many

surprises in the evolutionary history of numerous species. Perhaps chief amongst these is that
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limited insert size is generally irrelevant
for aDNA fragments

adapter1

adapter1’

adapter2

adapter2’

DNA fragment

DNA fragment

single primer pair can amplify all library molecules
sequencing primers are placed to read from

natural ends of ancient DNA sequence

Figure 1.1: Library molecules for high-throughput sequencing (HTS) consist of target DNA
fragments with adapter sequences ligated on either end. Adapters, with known sequence com-
plementary to primer sequences, allow a single primer pair to amplify a diversity of DNA frag-
ments, and another to be used for the sequencing reaction, where labeled nucleotides are incor-
porated [125]. For ancient DNA studies, HTS technology has allowed researchers to observe
damage patterns at ends of molecules and amplify a large variety of genomic DNA fragments of
unknown sequence. HTS size limitations are inconsequential, as ancient DNA is usually highly
fragmented.

hybridization is extensive within the evolutionary history of many vertebrate species, including

our own.

1.0.1 Detecting admixture without archaic genomes

Before the first paleogenomes had been assembled, approaches to detecting ancient

admixture focused on analyzing data from present-day genomes, and in particular human genomes.

Part of the reason for this is that single-locus data from ancient hominins, namely Neanderthals,

were available for years before the first paleogenomic data that enabled definitive tests for ad-

mixture between Neanderthals and humans. By 2006, mitochondrial genomes were available

from several Neanderthals, and the genetic divergence between Neanderthal and modern hu-

man mitochondrial genomes led to the prevailing view that humans and Neanderthals had not

admixed [193, 58]. Others argued, however, that the data were not incompatible with admixture,
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Figure 1.2: Overview of popular techniques for studying archaic admixture. a: Archaic genome
free methods are test statistics that can be used to infer archaic introgression into modern in-
dividuals without archaic sequence data. Each is computed on real data, then data simulated
under various demographic models, and compared. These are prone to errors in model specifi-
cation and can produce false positives. b: Local methods can be used to find specific genes or
genomic regions admixed individuals derive from one or another ancestral population. These
are tuned to detect detect long introgressed haplotypes but have reduced power to detect old
admixture events. c: Global methods consider individual sites across the genome. Many are
formal tests for admixture and/or can be used to estimate admixture proportion. In each box,
X” means true and S” means true in some cases. *” indicates methods applied to haplotype se-
quences, to which the concept of phasing does not apply. Note that, if sufficiently high-coverage
genome-wide sequence data are available, these can be transformed into SNP calls if necessary.
Also note that a method working on population-level data requires reference population data by
default, as all inputs are population-level.

for example if gene flow were unidirectional and came only from males, or if enough time had

elapsed for genetic drift to remove Neanderthal mitochondrial variants from modern humans

[136, 57]. In the absence of a Neanderthal genome sequence, some sought to inform this debate

by analyzing patterns within genomes of present-day humans.
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Single-locus studies sought to find archaic alleles in present-day humans via a phylo-

genetic approach. Given sequence data from various human populations, researchers identified

haplotypes showing unusually high divergence from other haplotypes, meaning that their time

to most recent common ancestor (TMRCA) is much older than the genome-wide average. Data

about geographic distribution of alleles and even archaic sequence data, when available, are

incorporated to strengthen findings. This type of approach was used to detect a handful of

potentially introgressed haplotypes without ancient sequence data: one specific to present-day

Asians, at an X-linked pseudogene called RRM2P4 [54], which was later found in the Nean-

derthal genome [62], as well as other two other haplotypes at clinically significant loci [63, 44],

which were not found in the Neanderthal genome and are thus may have been false positives

[122]. More recent single-locus studies have incorporated sequence data from ancient hominins

and used similar techniques to discover archaic haplotypes of genes involved in the immune

response [4, 123, 122].

Plagnol and Wall [154] tested for Neanderthal-human admixture using linkage pat-

terns in modern human genomes. They reasoned that if humans had recently (e.g. 40,000

years ago) admixed with an archaic lineage, any introgressed variants should be tightly linked

and occur in long (e.g. 40kb) blocks, since recombination would have had insufficient time to

further erode the lengths of the archaic haplotypes. They defined a statistic called S*, which

seeks to identify sets of SNPs that span long distances and show strong pairwise correlation

between genotypes but are not necessarily adjacent, and computed S* over a data set of Eu-

ropean and West African individuals. Assessing significance by comparison with simulated

data, the authors concluded that European and West African genomes probably both carried
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genomic segments from separate ancient admixture events [154]. A follow-up study suggested

that the admixture events involved multiple archaic hominin species, and inferred a low level of

introgression into East Asians [217].

Other investigators have used a variety of techniques to infer archaic admixture from

modern sequencing data alone. As in the Plagnol and Wall study, such efforts rely on summary

statistics sensitive to admixture. These statistics are used to compare observed data to data sim-

ulated under a variety of demographic models, some of which include admixture. S* expanded

upon earlier statistics by Wall designed to quantify numbers of tightly correlated genotypes

and test demographic models [216]. Another group developed a summary statistic called pmc,

which identifies basal gene tree clades containing a large proportion of non-African haplotypes,

and used it to support the case for the archaic origin of the Asian-specific RRM2P4 haplotype

[27]. Another study that used S* to infer archaic introgression also devised three summary

statistics D1, D2, and D3 designed to measure time of admixture, split time between admix-

ing lineages, and extent of admixture, after placing all individuals under study into two groups

based on sequence similarity [62]. S* has also recently been used to infer archaic admixture in

modern African lineages, using whole-genome data [95].

Methods to detect admixture without archaic genomes suffer from several shortcom-

ings that can be avoided by the presence of sequence data from ancient individuals. Many tech-

niques rely, for example, on assumptions about the demographic history of the species under

investigation. Demographic model misspecification can thus bias results, as can misspecifica-

tion of model parameters like mutation and recombination rates. This has led to several cases

in which gene haplotypes inferred to have introgressed into modern humans from Neanderthals
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were not found in the Neanderthal genome [122]. For this reason, ancient sequence data have

proven useful.

1.0.2 Detecting admixture with archaic genomes

The availability of sequence data directly from ancient genomes has led many to use

as well as develop techniques for inferring admixture from genomic data. Although described

here for their utility in ancient DNA studies, these statistical approaches are general-purpose

and are used to study admixture in modern organisms as well. They can enable, for exam-

ple, the inference of ancestry for specific segments of an admixed individuals genome (local

methods), and genome-wide tests for admixture (global methods) that summarize the degree

of ancestry components in an admixed individual. Local methods have reduced power to de-

tect old admixture events compared to global methods [147], since they seek to identify long

stretches of common ancestry, which recombination will degrade over time. Nonetheless, both

categories of methods have developed considerably over the last several years, and both have

provided novel insights into species evolutionary trajectories.

1.0.3 Local methods

Local methods for ancestry detection are of use to researchers interested in uncover-

ing specific genes or genomic regions that an admixed individual derives from one or another

ancestral population. Although they were generally developed without ancient DNA in mind,

they have proven useful in recent attempts to investigate specific archaic variants that have been

lost or fixed in modern individuals after archaic admixture. They have also been used to re-

7



duce noise in data by uncovering variants that individuals have received via gene flow from

populations that are not of interest to investigators.

Local methods model an admixed individuals genome as a series of haplotype blocks,

each of which originated in a specific ancestral population. As this requires considering blocks

of linked polymorphisms rather than individual SNPs, hidden Markov models (HMMs) are pop-

ular local ancestry tools. HMMs are computational models in which sequences of observations

are treated as emissions from a set of predefined “states;” in this case, observations are drawn

from genotype or sequence data and states correspond to different sources of ancestry. The

Viterbi algorithm can then be used to determine the most likely path through states given a

sequence of observations [169, 39] and thus assign ancestry to regions of the genome. Early at-

tempts at this strategy were used for admixture mapping in disease studies [45, 74, 73, 146, 231].

Another generation of HMM-based local ancestry methods built upon the same concept but

sought to improve parameter estimation by using a more complex model, improving efficiency,

or calculating different statistics to use as input observations [208, 206, 160, 10, 15]. A popular

example, HAPMIX, uses unphased genotype data from admixed individuals to simultaneously

determine phase and infer ancestry. Since errors in phasing techniques can cause local ancestry

tools to mistake regions of heterozygous ancestry for transitions between ancestral haplotypes,

HAPMIX incorporates phasing into the process of inferring ancestry. This is done by represent-

ing phase as well as ancestry in the HMM state space and determining the most likely ancestry

of each genomic position over all possible phase configurations [160]. In addition to locating

introgressed regions, techniques like HAPMIX have been used to find and mask” regions of

European ancestry in Native Americans to improve inference of older population movements
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[180, 174].

Conditional random fields (CRFs) are another, similar tool for local ancestry infer-

ence. CRFs can be thought of as generalized hidden Markov models. Where HMMs require

each observation in a sequence to be a single data point, CRFs allow each observation to have

an arbitrary number of features; this allows a CRF to train on and classify multiple types of data

simultaneously [96]. This approach is useful when authors are uncertain which summary statis-

tics will be most useful for inferring ancestry. However, unlike HMMs, CRFs require training

data [169, 96], which usually comes from simulations with known ancestry. A CRF was used

in a recent effort to map Neanderthal ancestry in modern human populations [186]. The fea-

tures used for ancestry inference had to do with allele sharing patterns, sequence similarity to

Neanderthals, and linkage disequilibrium [186].

Given current computational resources and available reference data, ancestral recom-

bination graph (ARG) inference may soon become a feasible approach for local ancestry de-

tection [196]. The ARG is a representation of all coalescence and recombination events, which

join and split lineages going back in time, across all individuals and variable sites in a data set;

it is thus a complete description of the relationships between individuals in a population panel,

across their genomes [196]. ARG inference is computationally challenging, but at least two

heuristic implementations currently exist. ArgWeaver [176] constructs the ARG one individual

at a time, and uses Markov chain Monte Carlo (MCMC) sampling to draw from the distribution

of all possible ARGs when a new individual is added. Song & Heins Beagle [200], not to be

confused with popular haplotype-phasing software of the same name, conceptualizes the ARG

as a sequence of trees describing non-recombined haplotype blocks separated by recombination
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events. Beagle, which was not designed for genome-scale data sets, computes the most parsimo-

nious path between trees along the genome via dynamic programming. An accurate ARG could

be used, for example, to determine where in the genome individuals and populations fall in

clades with archaic hominins. Current implementations require high-quality, phased genotypes

[200, 176].

1.0.4 Global methods

Global methods for ancestry detection consider individual sites throughout the genome.

In this section, we will first describe the most commonly used global methods used to detect an-

cient admixture in paleogenomic data sets. We will then highlight some of the key discoveries

facilitated by these methods. We focus on admixture between humans and archaic hominins, as

this is the field in which the majority of the work using these statistics has been performed.

Several global methods arose from other areas of research before large numbers of

complete genome sequences were available, and all have limitations. Principal Components

Analysis (PCA), in which vectors of genotype data at many loci are projected onto the axes

that capture the most variation within them, has a long history and is famous for recapitulating

the geographic distribution of humans [124, 137]. Despite the visually interpretable results,

however, PCA is not a formal test [147] and an individuals intermediacy between two groups in

principal component space does not prove admixture [227]. EIGENSTRAT [159], which relies

on PCA to infer ancestry of individuals, thus may wrongly infer admixture in some problematic

cases. Structure [161] and ADMIXTURE [6] are common model-based clustering methods for

inferring population structure. These methods attempt to learn local genotype frequencies for
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a user-defined number of groups across the genome. Then, individuals are described as being

mixtures of one or more of these groups. ADMIXTURE provides an estimate of the extent of

admixture between groups. Neither of these tests explicitly for significance.

1.0.4.1 f -statistics

With the advent of paleogenomics came the need for a new set of statistics that

could describe tree topologies relating individuals and populations, formally test for admix-

ture, and estimate the percent ancestry that admixed individuals and populations derive from

ancestral groups. The f -statistics, which are included in the software package ADMIXTOOLS

[181, 147], are popular for this purpose. The f -statistics work on population-level data, and

each describes or tests a phylogenetic relationship by measuring genetic drift conceptualized as

variance in allele frequencies along tree branches that is shared between populations. To avoid

bias, f-statistics must be computed on sites ascertained in an outgroup to the populations being

compared [147].

The f3 statistic is a simple test for whether a population C is a product of admixture

between populations A and B. At a single site, f3(C;A,B) = (c− a)(c− b), where a, b, and c

are allele frequencies in populations A, B, and C. When calculated genome-wide, f3 is usually

positive because of genetic drift in the C lineage that is not shared with A or B (Figure 1.3 a,b).

When C is the product of admixture between A and B, however, f3 can be negative (Figure 1.3

c-f). Negative f3 is strong evidence for admixture, although a positive f3 does not necessarily

disprove admixture [181, 147]. f3(C;A,B) can also be used to approximate the relatedness

of populations A and B when C is a known outgroup to both (Figure 1.3 a); this is called an
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outgroup f3 statistic [174].

The f4 statistic is used to estimate the correct phylogenetic relationship between four

populations. At a single site, f4(A,B;C,D) = (a− b)(c− d), where a, b, c, and d are allele

frequencies in populations A, B, C, and D. Positive, negative, and zero genome-wide values

support different tree topologies (Figure 1.4 a-c). A technique called f4 ratio estimation can

also be used to estimate the percent ancestry an admixed population derives from an ancestral

population [146]. If data exist from admixing populations B and C, admixed population X ,

population A (which is more closely related to B than C), and outgroup population D, f4 ratio

estimation can approximate the percent ancestry α that X derives from B. The estimate for α is

given by f4(a,D;X ,C)/ f4(A,D;B,C) (Figure 1.4 d,e) [147].

Haak et al [61] used the f4 statistic in a more exploratory way, to identify popula-

tions that may have contributed DNA to an admixed population of interest, and to estimate

the amount of ancestry contributed by each of the admixing populations. The authors defined

a set of candidate admixing populations Re f1, Re f2, ... Re fN that may have contributed an-

cestry to the population of interest Test in unknown proportions α1, α2, ... αN . They then

chose three outgroup populations A, B, and C, none of which share recent gene flow with Test

or Re f1...Re fN . They observed that f4(Test,A;B,C) = ∑
N
i=1 αi f4(Re fi,A;B,C). After calcu-

lating f4 for each candidate reference population and every possible permutation of available

outgroups, the authors were able to calculate the αi admixture coefficients for each candidate

admixing population via linear regression [61].
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1.0.5 D-statistic

Another popular genome-wide test for admixture is the D-statistic [56, 35]. D can be

computed using either individual genomes or population allele frequency data [35]. In the case

of individual genomes, D requires sequence from two potentially admixed individuals, P1 and

P2, a candidate admixing individual, P3, and an outgroup P4. D always falls between -1 and

1; it is positive if P1 shares more derived alleles with P3 than P2 shares with P3. D is negative

if P2 shares more derived alleles with P3 than P1 shares with P3. The idea behind D is that,

if there has been gene flow from the population of which P3 is a member, then any admixed

individual (P1 or P2) will share more derived alleles with P3 than an unadmixed individual. To

calculate D, one scans the genome for sites where P2 shares a derived allele with a P3, termed

ABBA sites. To compensate for incomplete lineage sorting (ILS), this is subtracted from this

the number of sites at which P1 shares a derived allele with P3, termed BABA sites. Then

D = (NABBA−NBABA)/(NABBA +NBABA), where NABBA is the total number of ABBA sites and

NBABA is the number of BABA sites (Figure 1.5) [56]. Random processes like ILS and recurrent

mutation can produce ABBA and BABA sites, but should produce an equal number of both.

Admixture, if it occurs, will only increase ABBA or BABA counts in the admixed individual. D

is robust to fluctuating ancestral population sizes but can be confounded by ancestral population

structure [35]. One recent study, seeking to minimize the noise resulting from ancestral popu-

lation structure, restricted D to sites where individuals from a population believed to be free of

admixture matched the outgroup P4 and thus carried the ancestral allele. This technique is called

an “enhanced D-statistic” and can improve power to detect admixture, but it can also introduce

13



bias. If analysis is restricted to sites where individuals from unadmixed population P0 match

the outgroup P4, and populations P1 and P2 are equally related to P3 but not equally related to

P0, Denhanced(P1,P2,P3,P4) can deviate from zero, although the expectation of D(P1,P2,P3,P4)

is zero [126].

D can be used in other ways as well. Like the f statistics, D can be calculated on

population genotype data by replacing NABBA and NBABA with products of allele frequencies in

the four populations [35]. Another statistic f̂ [56, 35] uses D to estimate admixture propor-

tion: if P3a and P3b are two individuals from population P3, then f̂ = D(P1,P2,P3,P4)/D(P−

1,P3a,P3b,P4), and it can be understood as a ratio of D calculated on the admixed individual

to D calculated on an individual from the admixing population. D can also be calculated with-

out a candidate admixing individual P3, if a different outgroup P0 to P1 and P2 is available:

E[D(P2,P1,P0,P4)] ∝ E[D(P1,P2,P3,P4)], with the value changing slightly due to this statistics

dependence on the split time of P0 and the P1/P2 lineage, rather than the time of admixture [35].

Finally, Eaton and Ree introduced a variation on the D statistic, which they call the partitioned

D statistic [38] and used it to analyze RADseq data collected from a genus of flowering plants

within the broomrape family. This method is designed to remove the effect of shared ancestry

amongst multiple candidate admixing populations by quantifying the number of derived alleles

that are common in both and found in the admixed population.

1.0.5.1 Weighted block jackknife

A weighted block jackknife approach [93] can be used to assess significance of f and

D statistics. To overcome bias introduced by linkage disequilibrium (LD), the block jackknife
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technique divides the genome into M blocks, each of which must be long enough to overcome

LD between adjacent blocks. Appropriate block size can be determined by performing the block

jackknife repeatedly with increasing block sizes until standard error estimates converge [181,

56]. Each block is then removed from the genome in turn, and the test statistic is computed over

the rest of the genome. In the case of D, a single jackknife computation is Di for i = 1,2, ...M,

the mean Dµ = (1/M)∑
M
i=1 Di, and the weight of jackknife block i is Wi = (Ni)/(∑

M
j=1 N j) where

Ni is the number of informative sites in the block and ∑
M
j=1 N j is the number of informative sites

in the genome. The weighted variance of D in an individual is then given by ∑
M
i=1Wi(Di−Dµ)

2

and standard error is SED =
√

M ∑
M
i=1Wi(Di−Dµ)2 [56]. Since the expectation of D is zero, Z

scores can then be computed from D scores as Z = D/SED.

1.0.5.2 Other approaches

Other approaches to detecting archaic admixture use information about specific de-

mographic and evolutionary parameters, such as split times between populations, population

structure, and natural selection. The program δaδi [60] considers the derived allele frequency

in multiple populations at sites throughout the genome, termed the multi-population allele fre-

quency spectrum (AFS). The expected AFS under a model that can include selection and migra-

tion is computed by solving a diffusion equation that approximates AFS evolution over time.

Model parameters including extent of migration are then adjusted via (composite) maximum

likelihood estimation to fit the observed AFS [60]. diCal 2.0 builds on the theory of the se-

quentially Markov conditional sampling distribution [149], using a hidden Markov model that

trains on observed haplotypes and has states corresponding to discretized time points in the
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past. This HMM can be used to estimate parameters for demographic models that include pop-

ulation structure and migration [202]. TreeMix [153], MixMapper [105], and qpGraph from

ADMIXTOOLS [147] all build on the concept of fitting graphs rather than trees to genotype

data, allowing for migration between nodes.

Another set of methods seek to infer demographic parameters like admixture extent

from linkage disequilibrium patterns [157, 147, 64]. In a popular implementation of this ap-

proach, pairs of phased haplotypes are drawn from populations of interest, and the distribution

of lengths of identity state (IBS) tracts, or runs of identical sequence flanked by variable sites, is

computed [64]. This distribution is then compared to one expected under a demographic model

and used to optimize model parameters, which can include population growth rates, divergence

times, and rates of admixture [64].

1.0.6 Detecting admixture with archaic hominins

One of the most visible contributions of paleogenomic studies to current understand-

ing of admixture is the detection of gene flow between archaic hominins and modern humans.

The first direct genetic evidence of admixture between Neanderthals and anatomically modern

humans was from the 2010 publication of a draft Neanderthal genome sequence [56], which

expanded upon an earlier analysis of 1 megabase of the Neanderthal genome that hinted at pos-

sible Neanderthal-human admixture [57]. Using the D-statistic and sequences from modern

humans, Green et al. inferred Neanderthal gene flow into all non-Africans, and estimated the

Neanderthal proportion of non-Africans ancestry to be 1-4% [56]. A subsequent study using a

higher-quality Neanderthal genome revised this to 1.5-2.1% and concluded that the Neanderthal
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that admixed with modern Eurasians was more closely related to a Neanderthal from the Cauca-

sus than to Neanderthals from the Altai Mountains and Croatia, suggesting a possible location

for admixture [165].

Although the D-statistic can be confounded by ancestral population structure [35],

and some studies have suggested that such structure did exist in early humans [54], other lines

of evidence support Neanderthal-human admixture. First, patterns of linkage disequilibrium

(LD) in present-day humans suggest admixture occurred 47-65 kya, more recently than would

be expected if Neanderthal-like haplotypes were the result of ancestral population structure

[188]. Second, a comparison of the site frequency spectrum of real data with that simulated

under models of ancestral population structure and recent admixture also supported the recent

admixture scenario [226]. The most convincing evidence came, however, from a more recent

analysis of a previously unknown archaic hominin called the Denisovan. Denisovan DNA was

extracted from a 30-50,000 year old finger bone found in Denisova cave in southern Siberia

and was found to belong to a previously undiscovered hominin lineage [92, 179]. Phylogenies

inferred from Denisovan mitochondrial and nuclear DNA are discordant: mitochondrial DNA

suggests a deep, 1 mya divergence between the Denisovan lineage and a clade containing both

human and Neanderthal lineages [92], while nuclear loci place the Denisovan closer to Nean-

derthals ( 650 kya diverged) than to modern humans ( 800 kya diverged) [179]. This discordance

suggests either incomplete lineage sorting in a small population descended from a much larger

one or admixture with an as-yet unknown archaic hominin with a more ancient divergence from

humans and Neanderthals [179]. A subsequent study that included demographic simulations

supported the admixture hypothesis, while also detecting a small amount of gene flow from
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Neanderthals into the Denisovan [165].

Like Neanderthals, the Denisovan appears to have contributed to the modern human

gene pool. Using the D-statistic, about 3-6% of the genomes of present-day Australian aborig-

ines and Melanesians are of Denisovan-like origin [179, 126], as opposed to 0.2% of East Asian

and Native American genomes and little to none of the genomes of other groups [165]. A possi-

ble explanation for this pattern is admixture with the ancestors of Australians and Melanesians

followed by migration of admixed Oceanians to East Asia [165]. Another study suggests that

New Guineans were the source for Denisovan ancestry detected in all other groups, including

Australian aborigines [166].

This discovery that Denisovans admixed with modern humans has had two conse-

quences. First, it bolsters the case for Neanderthal-human admixture. If the signal of Neanderthal-

human admixture resulted from structure in the ancestral African population, then the Deniso-

van should exhibit excess allele sharing with all non-Africans and not just Australians and

Melanesians, because of the phylogenetic proximity of the Denisovan to Neanderthals [126].

Second, it creates a geographic mystery. Although the range of the Denisovan population is not

known, it is unclear how a Siberian population could have admixed with the ancestors of Aus-

tralians and Melanesians. This mystery is compounded by the recent discovery of a 400,000

year old hominin bone from Sima de los Huesos in Spain, which has Neanderthal-like mor-

phological features and mitochondrial DNA that is very similar to the Denisovan [127]. Given

that the Denisovan mitochondrial haplotype may have originated within another, unknown ho-

minin lineage [179, 165], this creates a connection between hominin lineages in western Europe,

southern Siberia, and Oceania that is yet to be fully understood [127].
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Ancient remains of modern humans have also helped inform the study of Neanderthal-

human admixture. In 2014, the genome of a 45,000 year old human male from the UstIshim

site in Siberia was sequenced [51]. Computational analysis, which included D-statistics to de-

tect gene flow and f4 ratio estimation to quantify the level of gene flow, determined that the

individual came from a population ancestral to both modern Europeans and Asians, and had

tracts of Neanderthal ancestry that were longer than those found in modern humans [51]. The

length distribution of Neanderthal haplotypes was used to estimate that the UstIshim individu-

als Neanderthal ancestor lived between 50 and 60 kya [51]. In addition to UstIshim, two other

ancient human genomes were found to have longer tracts of Neanderthal ancestry than modern

humans: a 36-39,000 year old individual from western Russia [192], and a 37-42,000 year old

human from Petera cu Oase in Romania [50]. In an analysis similar to the UstIshim study [51],

the latter was found to have a substantially larger Neanderthal component than present-day hu-

mans, with longer un-recombined Neanderthal haplotype blocks [50]. Fu et al. concluded that

the Petera cu Oase individual was only 4-6 generations removed from a Neanderthal ancestor

and may have had one or more other Neanderthal ancestors. This finding weakens the case for a

single human-Neanderthal admixture event and suggests that at least one admixture event may

have taken place in Europe.

The idea of multiple admixture events has been upheld by computational studies.

Contrary to initial reports, recent studies have detected more Neanderthal ancestry in East

Asians compared to Europeans [218, 186, 214]. One proposed explanation for this is that Ne-

anderthal alleles are generally deleterious and thus were able to drift to higher frequency in the

historically smaller East Asian population than in the historically larger European population,
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where purifying selection would have been more powerful [186]. Another explanation is a two-

pulse” model of admixture, in which the ancestors of East Asians admix with Neanderthals a

second time, after the population split from western Eurasians [214]. Simulations under dif-

ferent demographic models have upheld either the latter scenario or a more complex scenario

involving admixture with other groups, as more likely than the former [88, 215]. These stud-

ies are leading to a new view of hominin history in which barriers between divergent taxa are

porous and rapid adaptation to new environments may have been facilitated in part by gene flow

[141].

Many studies have moved beyond population genetics and sought to identify selective

consequences of Neanderthal and Denisovan alleles present in modern humans. In some cases,

there appears to have been adaptive introgression, as with several non-African human leukocyte

antigen (HLA) haplotypes that may have originated in Neanderthals and Denisovans, where

they probably arose under selective pressure from local pathogens long before modern humans

migrated to the same areas [4]. In other cases, deleterious alleles introgressed from an archaic

hominin and then went to high frequency in modern human populations, as with a set of disease-

related variants discovered by a whole-genome scan [186] and a Neanderthal-origin haplotype

across the gene SLC16A11 that poses high diabetes risk [222]. The diabetes risk allele could,

however, have originally conferred a selective advantage to ancient humans upon entering a

new habitat and adopting a new diet [171]. Other studies, reviewed in Racimo et al [171], have

discovered cases in which selection has apparently spread archaic alleles of genes involved

in immune defense, altitude adaptation, skin and hair phenotypes, and lipid metabolism. In

addition to uncovering many cases of adaptive introgression, two recent studies that mapped
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out Neanderthal ancestry in present-day humans found depletion of Neanderthal sequence in

and around coding regions, suggesting that natural selection may have acted to eliminate many

Neanderthal variants [186, 214].

1.0.7 Inferring modern human migrations

Beyond Neanderthals and Denisovans, ancient DNA and statistics for detecting ad-

mixture can be used to infer the movement of genes, and therefore people, between locations. In

addition to D and f -statistics, approaches to infer patterns of migration and admixture include

but are not limited to admixture graph fitting, demographic model fitting to the sequentially

Markovian conditional sampling distribution (diCal 2.0), and characterization of identity by

state (IBS) tract length distributions. Together, these statistical approaches have reframed the

existing view about the timing and nature of human movements across the globe.

In reconstructing the history of the peopling of Europe, for example, two early ob-

servations from paleogenomes demanded a context. First, the genome of tzi, a 5,300 year old

man from the Italian alps, was found to resemble the genomes of present-day Sardinians [84].

Second, the genome of a 24,000 year old boy from Malta in south-central Siberia was found to

share ancestry with both present-day European and Native American genomes [173]. A larger

study followed up on these findings, adding many present-day genomes as well as several from

ancient European farmers and hunter gatherers [98]. This study inferred that modern Europeans

descend from three genetic sources: western European hunter-gatherers, early farmers from

the Middle East, and a mystery population related to ancient Siberians and Native Americans

[98]. This study also showed that tzis affinity to modern-day Sardinians was a trait shared with
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other Neolithic farmers [98]. Two more recent studies, one with 69 [61] and another with 101

ancient genomes [7], provided greater detail about past human migrations. In particular, these

studies suggested that the mystery population identified earlier was probably a mixture of East-

ern European hunter-gatherers, which were related to the ancient Siberian samples and Native

Americans and to herders from the Eurasian steppe. This population was estimated to have

invaded Europe during the Late Neolithic, after which they contributed genes to all populations,

were a source for wheeled cart technology and Indo-European languages, and led to the rise of

the Corded Ware culture throughout Copper Age Europe [7, 61]. This same group, known as

Yamnaya, also spread east to create the Andronovo culture in the Altai region in Siberia, which

later changed as it received migrants from East Asia in the Iron Age [7].

Admixture-based analyses of ancient human genomes have also shed light on the on-

going debate about the peopling of the Americas, in particular about whether Native Americans

are descendants of a single group that migrated across the Bering Strait in the Late Pleistocene

or a more complex mixture of groups. To date, Native American paleogenomes have shown

strong continuity with present-day Native Americans, challenging hypotheses about ancient

admixture that were based on analyses of skeletal morphology [177, 178]. One recent study di-

vided Native Americans into three lineages:“First Americans,” Eskimo-Aleut speakers, and Na

Dene speakers, and concluded that each of these could have represented a separate migration

from Asia, with subsequent admixture and some possible back-migration from First Ameri-

cans to Asia [180]. In contrast, a subsequent larger study concluded that“First Americans” and

Na Dene speakers more likely diverged within the Americas, while the Inuit may represent a

separate migration [174].
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Several studies have also attempted to address the possible gene flow from Oceanians

into Native American populations, which was first detected by the observation of low levels of

Denisovan DNA in the New World [165, 166]. One study found a weak signal of differential

Oceanian ancestry in New World populations, and concluded that a small amount of Oceanian

ancestry made its way to different parts of the Americas via admixture first with East Asians and

later with Aleutian Islanders [174]. Another detects Oceanian admixture in several Amazonian

groups and argues for a larger Melanesian presence among New World populations [199].

One feature that distinguishes several of these recent ancient DNA investigations of

human migration and demography from past ones is an increase in both the number of samples

and the variety of analysis techniques used. In contrast to previous studies in which one or

several paleogenomes were analyzed, e.g. [179, 56, 165], several recent studies have used

dozens of samples [172, 174, 7, 61, 199].

Owing to the lack of well-preserved hominin remains, some global regions, like

Africa, have thus far been difficult to study using ancient DNA [194]. Using patterns of Ne-

anderthal ancestry, however, researchers have detected possible back-migrations from Eurasia

to eastern Africa [4, 165]. More recently, ancient human remains with high endogenous DNA

content were discovered in Ethiopia and yielded the first ancient African genome, called Mota

[53]. Furthermore, several groups have sought to expand upon the original discovery of possi-

ble archaic introgression into African groups based on S* [154, 217]. For example, one study

of noncoding autosomal loci inferred archaic gene flow into a variety of central and southern

African populations within the last 70,000 years, to the exclusion of a West African agricultur-

alist population [62]. Another group calculated S* across genomes of African hunter-gatherer
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populations and concluded that there had been multiple instances of archaic introgression, first

into the common ancestors of this group and later as regional admixture events [95]. Follow-up

studies will be needed to assess whether this signal might be the result of ancestral population

structure rather than admixture.

1.0.8 Detecting ancient admixture in other species

Although hominins remain the most popular lineage for ancient admixture studies, ad-

vances have also been made in understanding the history of gene flow in other species. Within

mammals, a recent study investigating the relationship between modern cattle and aurochs,

their extinct wild ancestor, used the D-statistic to detect a low level of gene flow from au-

rochs into British and Irish cattle breeds in the period since domestication [144]. While lacking

nuclear sequence data, another study using ancient DNA from mammoths analyzed mitochon-

drial genomes from the morphologically divergent Columbian mammoth and wooly mammoth

species. The authors found that the Columbian mammoths mtDNA fell within the diversity of

that of the wooly mammoth, and thus that the two species may have hybridized at some point

in time; this suggests a follow-up study involving nuclear data [43].

Admixture studies using ancient DNA have been applied to plants and fungi as well.

A group interested in maize, specifically its arrival in and adaptation to the US Southwest about

4,000 years ago, sought to settle a debate about its route of diffusion using ancient DNA. By

sequencing 32 ancient maize samples spanning much of the history of maize domestication and

geographic spread, the authors found, using the D-statistic, TreeMix, and a genotype clustering

method, that maize in the US Southwest likely spread from highland Mexico, with subsequent
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gene flow from coastal varieties [29]. Another study sought to clarify interspecific relation-

ships and centers of origin within the fungal genus Phytophthora, which includes the pathogen

responsible for late blight, the cause of the Irish potato famine. They found, using the same

methods, that P. andina, a species native to the Andes, appears to have arisen through hybridiza-

tion between a species closely related to that which caused the potato famine, and an as-yet

unknown outgroup to the other species examined [117].

It is worth noting that high-coverage ancient genomes from non-hominin species are

just now becoming available (e.g. [114, 143]). Just as studies of archaic hominin admixture have

been enabled by the growing diversity of genomic data from humans and their close relatives,

future progress in other taxa should enable detection and characterization of ancient admixture

events in lineages further removed from our own. These studies will no doubt provide impor-

tant insights into the effects of hybridization and gene flow on speciation and environmental

adaptation [3].

1.0.9 Conclusion

Recent advances in extraction, sequencing, and analysis of ancient DNA have led

the field away from studies of single loci and into the field of paleogenomics, where more

ambitious studies and detection of admixture and inter-population migration are now possible.

Such studies have both co-opted existing techniques and mandated the development of new tools

for detecting and quantifying admixture. With these, they have shed light on past admixture

events, in both the recent and distant past, that have changed our understanding of who we

are as a species. As reference data become more available, and ancient DNA studies become
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more ambitious in sequencing a larger portion of genomes of an expanding number of ancient

taxa, innovative new computational analysis techniques will follow. The result will be a wider

perspective on the complex web of interactions between species past and present that defines

Earths recent biological history.
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Figure 1.3: Adapted from [147]. Expected value of f3(C;A,B) under various tree topologies.
Red lines trace genetic drift between populations C and A; blue lines trace genetic drift between
C and B. f3 measures drift between C and A that is also shared between C and B. Drift is
shared along branches where arrows going in the same direction overlap. a and b: expected
value of f3(C;A,B) with no admixture. If C is not a product of admixture between A and B,
f3 is expected to be positive. In the case where C is an outgroup to A and B (a), the value
of f3 is proportional to the distance separating C from A and B, which can also be thought
of as the amount of shared history between A and B. c-f: expected value of when C is a
product of admixture between A and B. α is the percent ancestry population C derives from
A, and β is the percent derived from B. Distance j represents genetic drift between extant
population A its ancestral population that admixed to form the population ancestral to C in the
past; distance k is proportional to drift between extant population B and its admixing ancestral
population. Computation of f3(C;A,B) in this case requires tracing multiple paths through
the tree, since population C can share drift with population B that it received through admixture
with population A and vice versa. The expectation is the sum of all shared drift: E[ f3(C;A,B)] =
αβi+α2(i+ j)+β2(i+ k)+αβ(i− p− q). This has the potential to be negative, although it
can also be positive. Given that negative values are impossible if C is not a result of admixture
(a and b), a negative result can be taken as evidence of admixture; a positive result, however,
cannot be used to reject admixture.
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Figure 1.4: Adapted from [181]. Visual explanation of expected values of f4(A,B;C,D) under
various tree topologies. Red lines trace genetic drift from A to B; blue lines trace drift from C
to D. f4 measures drift shared between A and B that is also shared between C and D. Drift is
shared along branches where arrows overlap going in the same direction. a-c: Positive, negative,
and zero values of f4 give support for different tree topologies relating the four populations. d,
e: visual explanation of f4 ratio method for inferring admixture proportion. Population X is
a mixture of populations related to B and C; population D is an outgroup. The quantity of
interest, α, is the proportion of ancestry population X has received from B. If the expected
value of f4(A,D;B,C) = z (d), then the expected value of f4(A,D;X ,C) = αz(e). It follows that
α = f4(A,D;B,C)/ f4(A,D;X ,C) (Patterson et al. 2012).

28



a

b

Figure 1.5: Explanation of D statistic [56, 35]. Individuals are numbered according to the D-
statistic notation: D(P1,P2,P3,P4) and examples of individuals that could be used to yield a
positive D-statistic result when testing for Neanderthal ancestry are given (D would be nega-
tive in this case if there had been gene flow between the Yoruba and Neanderthal instead). a:
genome-wide tree relating the four individuals, based on prior knowledge. b: trees at ABBA
and BABA sites used to compute D. In both, blue is used to represent a derived allele (does not
match chimpanzee); red represents an ancestral allele (matches chimpanzee). To calculate D on
sequence data, the number of sites with the topology of the left tree is NABBA and the number of
sites with the topology of the right tree is NBABA. Then D = (NABBA−NBABA)/(NABBA +NBABA).
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Chapter 2

Inferring ancestry across low-coverage,

downsampled genomes

In this chapter, I describe a computational tool for locally mapping ancestry across

genomes of hybrid animals, using low-coverage and/or low-quality data, and I demonstrate its

use on a population of brown bears with known polar bear ancestry, as well as down-sampled,

pseudo-haploid modern human and Neanderthal genomes. This tool is well-suited to studies

of non-model organisms, in which panels of phased reference data are unavailable, and ancient

DNA studies, in which high-coverage sequencing data are unavailable. This was originally

published in April 2017 in BMC Bioinformatics under the title AD-LIBS: Inferring ancestry

across hybrid genomes using low-coverage sequence data, with coauthors Beth Shapiro and

Richard E. Green. I have added a small amount of text to what was originally published (the

“Functional consequences” section in Results, along with a paragraph about this section in the

Discussion, and a paragraph describing methods used for it in Methods).
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2.0.1 Background

Inferring the ancestry of different parts of admixed diploid individuals genomes has

been a goal of fields as diverse as disease gene mapping [45] and paleogenomics [186, 214].

Several computational approaches have been developed for ancestry detection. Among these,

global methods calculate genome-wide amounts of admixture but do not attempt to localize

admixture segments in the genome. In contrast, local methods for ancestry detection scan across

admixed individuals genomes to search for haplotype blocks originating from specific ancestral

populations [189]. Because haplotype blocks are broken down by recombination over time,

local methods sacrifice power to detect very old admixture events in exchange for the ability to

make specific, local statements about ancestry [189].

Many of the techniques for local ancestry inference were developed to investigate

human ancestry and therefore incorporate assumptions that may not be valid for analyses of

non-human data. For example, methods that compute on genotype calls rely on accurate call-

ing. Genotype calling from sequence data as implemented in applications such as GATK [121]

rely on pre-existing knowledge of polymorphic sites to make high-quality variant calls. This in-

formation is often unavailable for non-model organisms. In addition, some fields, such as pale-

ogenomics [194], are limited by the amount of data that can possibly be recovered. Specifically,

the degraded nature of recovered ancient DNA, and the upper limit imposed by the endogenous

DNA content of source material [194], often results in coverage well below the threshold of

20X that has is considered necessary for reliable genotype calling [134]. Additionally, popu-

lation genomic analyses may benefit more from sequencing many individuals to low coverage
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than sequencing fewer individuals more deeply [52], meaning that data collected for other types

of analyses may not be suitable for ancestry inference techniques that rely on genotype calling.

As an example, a recent study used ancient DNA from aurochs, the extinct wild ancestor of

domestic cattle, to produce a 6X coverage genome and infer gene flow into British and Irish

cattle breeds post-domestication [144]. These data would be unsuited to current local ancestry

inference techniques.

To address these challenges, we present AD-LIBS (Ancestry Detection through Length

of Identity By State tracts), which is a software application that performs local ancestry infer-

ence by analyzing genetic data across genomic windows rather than at individual sites. AD-

LIBS is designed for low-coverage shotgun resequencing data, and bypasses the need for variant

calling and phasing. Input data for AD-LIBS is a single haploid sequence for each individual

where every base is a random sample from one or the other chromosome, as has been done in

other studies to mitigate genotyping errors [19, 20]. AD-LIBS uses a hidden Markov model to

infer the most likely ancestral origin of each piece of the genome.

We test AD-LIBS using simulated data and find that it correctly infers 87-91% of

ancestry, with a true positive rate of 89% for identifying admixed, homozygous regions and

82-85% for identifying admixed heterozygous regions.

We then use AD-LIBS to assign ancestry in two real data sets: one comprising five

European humans with known Neanderthal ancestry and five West African individuals with-

out Neanderthal ancestry, and another consisting of 18 brown bears from North America and

Scandinavia with varying amounts of polar bear ancestry. In humans, we find that AD-LIBS

produces maps of Neanderthal ancestry in Europeans that overlap significantly with published
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maps [186, 214] and global Neanderthal ancestry estimates that fall within 0-2% of what is

expected from prior studies [56, 165]. In the bear data set, AD-LIBS identifies polar bear an-

cestry in all brown bear populations, including those believed previously to be unadmixed, and

recovers a geographic signal in patterns of polar bear ancestry. We also test AD-LIBS on down-

sampled, artificially low-coverage data from bears and find that it produces consistent results

down to about 2X genome-wide coverage, outperforming HAPMIX [160], an existing local an-

cestry inference tool, at coverage levels below this. In summary, AD-LIBS is an effective tool

for producing local ancestry maps for genomes of hybrid individuals when only low-coverage

sequence data are available and/or reference data are scarce.

2.0.2 Results

2.0.2.1 Overview of AD-LIBS

AD-LIBS (Ancestry Detection through Length of Identity-By-State tracts) uses a hid-

den Markov model to determine the ancestry of specific regions of hybrid individuals genomes

inferred from low-coverage shotgun sequence data. To circumvent problems inherent in geno-

typing and phasing individuals sequenced to low coverage, AD-LIBS uses non-overlapping

windows to scan pseudo-haploid sequence data, allowing all nucleotide positions in a given

window to“vote” on the correct ancestry of that window. AD-LIBS does not require phased

sequences from reference individuals nor does it require prior knowledge of polymorphic sites.

AD-LIBS does require prior estimates of the population size, the number of generations since

admixture, and the proportion of ancestry that the admixed population derives from each an-

cestral population. Although population size is best taken from census data, a rough estimate
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may be obtained from nucleotide diversity in the ancestral populations [23]. Admixture pro-

portion may be estimated using the f̂ statistic [56, 35] if an outgroup genome is available, and

time of admixture can be roughly inferred from the admixture proportion estimate together with

prior knowledge about the ancestral species historical ranges and demography. AD-LIBS in-

cludes programs to calculate both average nucleotide diversity and f̂ , and in practice, incorrect

estimates for these parameters do not have a large effect on results (Figure 2.1).

AD-LIBS scans across each hybrid individuals genome in windows of a fixed width.

In each window, AD-LIBS calculates a score based on average identity-by-state (IBS) tract

lengths between the admixed individual and each individual from each ancestral population.

AD-LIBS considers three possible types of ancestry in each window: homozygous for ances-

try from one of the two ancestral populations, or heterozygous. Thus, AD-LIBS works as an

ancestry genotyper for genomic segments and determines the most likely sequence of ancestry

states across each chromosome or scaffold, given expected score distributions under each type

of ancestry, computed from nucleotide diversity values. The probability of transitioning be-

tween ancestry states is related to the probability of recombination having occurred at specific

genomic loci in the time since admixture, as well as the overall prevalence of alleles from each

ancestral population in the admixed population.

AD-LIBS is designed to be efficient: its genome scanning and scoring components

are written in C and its hidden Markov model component uses a Cython package (https:

//github.com/jmschrei/pomegranate). AD-LIBS requires that the system running it pos-

sesses enough memory to hold the longest chromosome or genomic scaffold sequence for each

reference ancestral individual and a single hybrid in memory at once; for humans, this would
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Figure 2.1: AD-LIBS accuracy on simulated data, using incorrect population parameters. Sim-
ulations here used the single-pulse” admixture model (see Figure 2.2 A, C, and E) except where
otherwise noted, with 10kb windows, which were automatically adjusted by AD-LIBS as neces-
sary. Asterisks denote accuracy significantly lower (p < 0.001) than that obtained using correct
parameters. A: AD-LIBS accuracy using different prior population size estimates (true N =
3000) and correct number of generations since admixture (1000). B: AD-LIBS accuracy using
different estimates for the number of generations since admixture (true g = 1000) and correct
population size (3000). C: AD-LIBS accuracy using prior estimates of polar bear admixture
proportion that differed from the true value, rounded to the nearest 10%. D: Same as C, but
using the migration” admixture model (see Figure 2.2 B, D, and F), which produced a wider
range of true admixture proportions.
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comprise approximately 250 MB plus 250 MB RAM for each reference ancestral individual.

On an Intel Xeon 2.7 GHz processor with 377 GB RAM, we ran AD-LIBS on a single 2.3

Gb hybrid brown bear genome, using ten ancestral reference genomes with numeric parameters

pre-computed, in under 7.5 minutes. The same operation took approximately 9 minutes on a

comparable machine with 70 GB RAM. When scanning multiple hybrid genomes, AD-LIBS

can use multiple processes simultaneously to reduce execution time.

2.0.2.2 Simulations

To assess the accuracy of AD-LIBS, we generated 100 simulated hybrid genomes,

each consisting of ten, one-megabase (1 Mb) chromosomes. We assumed a demographic history

resembling that of the ABC Islands brown bears, a well-studied population of brown bears

known to have polar bear ancestry [19, 20, 108, 129, 40]. We used two demographic models,

one with a single polar-brown bear admixture event 12,000 years ago (single-pulse model),

and another incorporating continuous brown bear dispersal to the ABC Islands from the initial

admixture event until the present (migration model) (see Methods). We compared AD-LIBS

ancestry calls to the known ancestry of each simulated chromosome. AD-LIBS performed well,

with overall accuracy of 87% for the single-pulse model and 91% for the continuous migration

model, and accurately recovered polar bear ancestry (82-85% true positive rate for heterozygous

and 89% true positive rate for homozygous polar bear ancestry) (Table 2.1, Figure 2.2). While

choice of window size and number of reference individuals from each ancestral population

had a small effect on overall accuracy, simulations show that suboptimal choices for both e.g.

one reference individual per ancestral population, or large windows of 25kb reduce overall
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accuracy only by several percent (Figure 2.2). Additionally, we found that inaccurate prior

estimates of admixed population size, number of generations since admixture, and polar bear

ancestry proportion for individual hybrid bears had a similarly small effect on overall accuracy

(Figure 2.1).

Model Ancestry state Prop. calls correct Prop. truth detected
Migration AA 0.8858 0.931
Migration AB 0.8447 0.9633
Migration BB 0.9762 0.8459
Migration Average 0.9022 0.9134
Migration Overall accuracy 0.9069

Single-pulse AA 0.8933 0.9245
Single-pulse AB 0.817 0.9513
Single-pulse BB 0.9501 0.7134
Single-pulse Average 0.8868 0.8631
Single-pulse Overall accuracy 0.8694

Table 2.1: The accuracy of AD-LIBS ancestry inferences using simulated genomes. Two de-
mographic models representative of the ABC Islands bears history were used: one in which a
single admixture event between polar and brown bears takes place 12,000 years ago, followed
by isolation of the hybrid population (Single-pulse model), and one in which admixture takes
place at the same time but is followed by continuous brown bear migration from the mainland
(Migration model). Overall accuracy is the percent of all bases for which true ancestry matched
AD-LIBS-inferred ancestry. Since this number is weighted toward more common ancestry
states, the average across all three ancestry states is also given.

AD-LIBS was about as good at estimating each individuals extent of polar bear ances-

try as f̂ , a widely-used statistic that estimates admixture proportion by comparing genome-wide

frequencies of sites supporting tree topologies compatible and incompatible with admixture

[56, 35]. AD-LIBS tends to overestimate the amount of heterozygous ancestry by several per-

cent, however (Figure 2.3). This might explain why AD-LIBS was more accurate in identifying

ancestry under the migration model than the single-pulse model (Table 2.1, Figure 2.2 A, B).

Genomes simulated under the migration model tend to have a lower overall extent of polar
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AD−LIBS accuracy: simulated data, single−pulse modelA
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Figure 2.2: AD-LIBS accuracy using simulated data. A, C, and E refer to simulations with a
single polar-brown bear admixture event 12,000 years ago, followed by isolation (single-pulse
model); B, D, and F refer to simulations in which a brown-polar bear admixture event 12,000
years ago is followed by continual breeding with unadmixed brown bears (migration model). A
and B: percent of AD-LIBS inferences correct and percent of true ancestry recovered in each
ancestry state (homozygous polar bear, heterozygous, and homozygous brown bear) for each
individual. C and D: Effect of using different numbers of reference ancestral individuals (1, 2,
3, 4, or 5 from each population) on overall accuracy, using 10kb windows. Asterisks denote a
distribution mean significantly lower (p < 0.001) than the best distribution (5 individuals from
both populations), according to t-test. E and F: Effect of using different window sizes (5kb,
10kb, and 25kb), with 5 reference bears from each ancestral population. Asterisks denote a
distribution mean significantly lower (p < 0.001) than the best distribution (10kb windows),
according to t-test.
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bear ancestry (Figure 2.3 A, B), giving AD-LIBS less opportunity to overestimate heterozygous

ancestry. This causes the overall accuracy of AD-LIBS to fall by a rate of approximately 0.2

percent per percent polar bear ancestry (Figure 2.3 E; slope of best fit line by least squares re-

gression = -0.206; adjusted r2 = 0.687; F-statisic p-value < 2.2e−16, via linear model function

in R [168]), although this effect may level off as higher levels of polar bear ancestry will lead to

greater amounts of homozygous polar bear ancestry, which AD-LIBS detects more accurately.

2.0.2.3 Real data

We collected two data sets for our study. First, we obtained five CEPH European

(CEU) human genomes with Neanderthal ancestry (Green et al. 2010b) and five Yoruban

(YRI) human genomes with little to no Neanderthal ancestry [56] from the 1000 Genomes

Project [36], along with a single high-quality Neanderthal genome [165]. We used these data to

map Neanderthal ancestry in Europeans using AD-LIBS and compare the results to previously-

published local ancestry maps [186, 214] and global estimates of Neanderthal ancestry in Euro-

peans [56, 165]. We also collected previously published shotgun sequence data from four polar

bears, eighteen North American brown bears, and one American black bear [108, 129, 19, 20].

For a full list of bear samples used in this study, see Table 2.2. All reads were aligned to the

polar bear reference genome [108] before pseudo-haploidization and variant calling (Methods).

The black bear was used as an outgroup to perform f̂ [56, 35] calculations for comparison with

our findings.
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Sample Species Location Sex Coverage Study
PB7 U. maritimus Spitsbergen, Svalbard F 176.2X Miller et al. 2012 [129]
PB12 U. maritimus Qaanaq, Greenland F 26.0X Liu et al. 2014 [108]
PB68 U. maritimus Qaanaq, Greenland F 26.1X Liu et al. 2014 [108]
PB105 U. maritimus Disko West, Greenland F 26.2X Liu et al. 2014 [108]
OFS01 U. arctos stanvik, Sweden F 22.8X Liu et al. 2014 [108]
RF01 U. arctos Ruokolahti, Finland F 20.9X Liu et al. 2014 [108]
SJS01 U. arctos Slakka, Sweden F 15.2X Liu et al. 2014 [108]
Swe U. arctos Dalarna, Sweden F 11.0X Cahill et al. 2015 [20]
Den U. arctos Denali Natl. Park, AK F 12.1X Cahill et al. 2013 [19]

GP01 U. arctos Glacier Park, Montana M 16.8X Liu et al. 2014 [108]
GRZ U. arctos Kenai Peninsula, AK F 83.6X Miller et al. 2012 [129]

ABC01 U. arctos Baranof Island, AK M 20.0X Liu et al. 2014 [108]
ABC02 U. arctos Baranof Island, AK F 18.4X Liu et al. 2014 [108]
ABC03 U. arctos Chichagof Island, AK M 19.6X Liu et al. 2014 [108]
ABC04 U. arctos Chichagof Island, AK M 18.8X Liu et al. 2014 [108]
ABC05 U. arctos Chichagof Island, AK F 22.4X Liu et al. 2014 [108]
ABC06 U. arctos Admiralty Island, AK F 19.5X Liu et al. 2014 [108]
Adm1 U. arctos Admiralty Island, AK F 12.1X Cahill et al. 2013 [19]
Adm2 U. arctos Admirality Island, AK F 76.5X Miller et al. 2012 [129]

Bar U. arctos Baranof Island, AK M 49.1X Miller et al. 2012 [129]
Chi1 U. arctos Chichagof Island, AK F 9.2X Cahill et al. 2015 [20]
Chi2 U. arctos Chichagof Island, AK F 10.2X Cahill et al. 2015 [20]
Uam U. americanus Pennsylvania M 11.6X Cahill et al. 2013 [19]

Table 2.2: Sample details. All sequence data were published in previous studies and down-
loaded as reads from the NCBI SRA. Coverage levels shown were estimated from numbers
of raw reads before mapping to the reference genome. All samples were aligned to the polar
bear reference genome, then subjected to base and map quality filtering, indel realignment, and
duplicate removal.

2.0.2.4 Neanderthal ancestry in humans

AD-LIBS produced maps of Neanderthal ancestry in modern Europeans that agreed

with published data, including global estimates of Neanderthal ancestry proportion [56, 165]

as well as population-specific local ancestry maps [186, 214]. We prepared pseudo-haploid

genome sequences from five randomly selected admixed CEPH European (CEU) and five un-

admixed Yoruban (YRI) individuals from the 1000 Genomes Project [36], as well as two “hap-
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lotype” sequences from the Altai Neanderthal [165] (variants were randomly assigned to one or

the other haplotype at heterozygous sites; see Methods). We then ran AD-LIBS to infer Nean-

derthal ancestry in each European, using Neanderthal and Yoruban sequences as reference an-

cestral populations. For comparison, we also calculated each European individuals Neanderthal

ancestry via f̂ . Although choice of window size affects results, the estimate of each individuals

Neanderthal ancestry proportion from AD-LIBS, using appropriate parameters, is 0.80-1.90%

greater than the estimate (Table 2.3). AD-LIBS estimates are also 0.22-1.92% greater than the

published estimate of 1.5-2.1% in all modern humans [165]. We note that back-migration of

Europeans to West Africa has also contributed some Neanderthal ancestry to Yoruban individu-

als [4, 165], biasing estimates downward. We also compared the maps of Neanderthal ancestry

from AD-LIBS to those published for CEPH Europeans [186, 214]. The AD-LIBS map over-

lapped significantly (p of greater overlap = 0 in 500 random trials) with the two previously

published maps, although each map also finds Neanderthal ancestry in regions of the genome

where the other maps do not.

Individual AD-LIBS, 10kb AD-LIBS, 15kb f̂
NA11832 11.50% 2.35% 1.41%
NA11840 11.50% 2.32% 1.52%
NA12340 13.80% 3.42% 1.52%
NA12383 13.40% 3.39% 1.56%
NA12814 13.60% 3.29% 1.45%

Table 2.3: Results of running AD-LIBS on autosomal sequences of five randomly chosen Eu-
ropean (CEU) individuals from the 1000 Genomes Project, with the Altai Neanderthal and five
randomly chosen Yoruba (YRI) individuals from the 1000 Genomes Project as reference in-
dividuals from admixing populations. Using AD-LIBS with a window size (10kb) lower than
the recommended minimum of 14kb gives bad results, while using a window size above this
threshold (15kb) gives much more reasonable results.
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Due to the nature of the emission probability distributions that AD-LIBS uses to dis-

tinguish between regions with different types of ancestry (Methods), AD-LIBS produces in-

accurate results when the window size is too small and/or too much genetic variation within

the ancestral populations is also shared between them. This was the case when using 10kb

windows to scan for Neanderthal ancestry in Europeans (Table 2.3). When ancestral popula-

tions share a large amount of genetic variation between ancestral populations, the distributions

that AD-LIBS uses to distinguish between different types of ancestry tend to overlap. Using

larger window sizes can reduce the variance of these distributions, and AD-LIBS can suggest

an appropriate window size automatically (Methods). Using a window size of 15kb, above the

threshold recommended by AD-LIBS, produced more accurate estimates of Neanderthal ances-

try in Europeans (Table 2.3). When too much genetic variation within ancestral populations is

also shared between them, however, AD-LIBS is unlikely to be accurate no matter what window

size is chosen. This is likely to be the case when both admixing populations consist of modern

humans, and this problem can be avoided by choosing an alternative to AD-LIBS when genetic

differentiation between ancestral populations, as measured by statistics such as FST [75], is low.

2.0.2.5 Polar bear ancestry in brown bears

We next used AD-LIBS to scan for polar bear ancestry in brown bears. We explored

the effect of low sequence coverage depth on AD-LIBS inferences, compared global polar bear

ancestry estimates from AD-LIBS to those produced using other techniques, and looked for

geographic patterns in the distribution of polar bear ancestry across brown bear genomes.

Determining the necessary level of coverage
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We sought to determine the effect of low sequence coverage depth on the accuracy of

AD-LIBS by downsampling reads to produce artificial low-coverage genomes. We selected four

admixed ABC Islands bears that were sequenced to at least 20X coverage (ABC01, ABC05,

Adm2, and Bar), four polar bears over 20X coverage (PB7, PB12, PB68, and PB105) and three

Scandinavian brown bears over 10X coverage (OFS01, RF01, and SJS01). The Scandinavian

brown bears were hypothesized to be unadmixed with polar bears [108]. We obtained a set of

variant calls and a pseudo-haploid genome sequence for each bear (Methods), and downsam-

pled every bear to 0.5X, 1X, 2X, 5X, and 10X coverage along the longest genomic scaffold

(scaffold1) to produce a set of variant calls and a pseudo-haploid sequence for this scaffold at

these different coverage levels. We ran AD-LIBS on each of the four admixed ABC Islands

bears at full coverage and at each downsampled coverage level, using the three Scandinavian

brown bears and four polar bears as unadmixed reference sequences. For comparison to AD-

LIBS, we then ran HAPMIX [160], a commonly-used tool for local ancestry inference, on the

same data. At each depth, we compared inferences from HAPMIX and AD-LIBS to the output

of both programs run on the full-coverage data.

Using the high coverage data, we found that AD-LIBS and HAPMIX produce com-

parable results, although AD-LIBS tends to label regions heterozygous that HAPMIX labels

homozygous polar bear (Table 2.4). At the lowest coverage levels, marker density after vari-

ant calling was too low for HAPMIX to produce interpretable results (Table 2.5). AD-LIBS

more consistently infers the same ancestry at low and high coverage than does HAPMIX. Ad-

ditionally, at coverage below 2X, ancestry calls made by AD-LIBS are more similar to the

full-coverage ancestry calls from HAPMIX than are the low-coverage ancestry calls from HAP-
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MIX (Figure 2.4). When grouping results by ancestry state, low-coverage homozygous ancestry

calls from AD-LIBS are more likely to match high-coverage calls than those from HAPMIX, al-

though AD-LIBS labels some regions as heterozygous that are homozygous according to HAP-

MIX (Figure 2.5). We infer from this experiment that AD-LIBS is consistent with itself down

to about 2X coverage, and that inferences of homozygous ancestry from AD-LIBS are more re-

liable than those from HAPMIX at low coverage, although AD-LIBS erroneously labels some

regions of homozygous ancestry heterozygous. By avoiding the need for variant calling, AD-

LIBS also outperforms HAPMIX in cases of very low (0.5X or 1X) coverage, when there are

not enough called variants to detect any polar bear ancestry. We note that genotype imputation

could help improve marker density when running HAPMIX on low-coverage data, but this is

only possible when studying species for which variant catalogs from large panels of reference

individuals are available, such as humans.

Measuring admixture proportion

We next sought to compare estimates of the genome-wide extent of polar bear an-

cestry in brown bears from AD-LIBS to those produced using other techniques. For each of

eighteen brown bears, we ran AD-LIBS using four polar bears and four Scandinavian brown

bears, the latter as potentially unadmixed models of ancestral populations (individual Scandi-

navian brown bears were excluded from the unadmixed reference brown bear set when treated

as hybrid bears). For each bear, we also estimated genome-wide polar bear ancestry using the f̂

statistic [56, 35], which was used in prior studies of polar bear ancestry in brown bears [19, 20].

For this analysis, we used PB7 and PB12 as model polar bears, Swe as a model brown bear, and

the American black bear as the outgroup. We also ran HAPMIX on all brown bears sequenced
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Bear Ancestry state AD-LIBS HAPMIX Agreement
ABC01 Hom. Polar 4.30% 7.30% 43.60%
ABC01 Heterozygous 28.70% 14.20% 46.70%
ABC01 Hom. Brown 67.10% 78.50% 84.20%
ABC01 Total 100% 100% 72.70%
ABC05 Hom. Polar 4.90% 8.39% 47.50%
ABC05 Heterozygous 28.30% 12.80% 44.20%
ABC05 Hom. Brown 66.80% 78.80% 84.00%
ABC05 Total 100% 100% 72.30%
Adm2 Hom. Polar 3.60% 6.52% 43.60%
Adm2 Heterozygous 26.80% 12.20% 42.60%
Adm2 Hom. Brown 69.60% 81.30% 84.70%
Adm2 Total 100% 100% 73.20%

Bar Hom. Polar 4.56% 7.68% 46.60%
Bar Heterozygous 27.80% 13.20% 44.60%
Bar Hom. brown 67.60% 79.10% 84.30%
Bar Total 100% 100% 72.80%

Table 2.4: Percent ancestry of each type, as called by AD-LIBS and HAPMIX, in the four bears
sequenced to sufficient coverage depth for variant calling. AD-LIBS calls more heterozygous
ancestry than HAPMIX and probably overestimates heterozygous ancestry genome-wide.

to at least 20X coverage, with all polar bears and the three Scandinavian brown bears above

20X coverage used as reference ancestral populations. For details about choices of parameters,

see Methods.

The admixture proportions detected with AD-LIBS were higher than our estimates

using f̂ (Table 2.6). AD-LIBS-inferred admixture proportions are also higher than estimates

from HAPMIX for the four ABC Islands bears of greater than 20x coverage (Table 2.6). We

note that f̂ is considered a lower bound on admixture proportion, since it can only detect mu-

tations that arose in the hybridizing lineages between the time of speciation and admixture

[35]. This was not the case in our simulations, however, in which AD-LIBS and both consis-

tently overestimated the polar bear admixture proportion by several percent (Figure 2.3 A,B).
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Coverage level Num. Raw variants Num. Filtered Num. Phased
10 490,705 410,174 410,174
5 443,470 288,761 288.821
2 353,433 44,706 44,706
1 268,595 1,494 1,494

0.5 172,214 14 14

Table 2.5: Numbers of variants obtained from four polar bears (PB7, PB12, PB68, and PB105),
three brown bears (OFS01, RF01, and SJS01), and four ABC Islands bears (ABC01, ABC05,
Adm2, and Bar) at different levels of coverage along the longest polar bear genomic scaffold.
At low coverage, marker density is too low for tools like HAPMIX to be useful or accurate.

Although overestimation of heterozygous ancestry could explain why AD-LIBS produces erro-

neously high polar bear admixture proportions, an alternative explanation is needed to explain

its discrepancy with f̂ . One possibility is that in real data, purifying selection in the brown bear

lineage could reduce nucleotide diversity below the level typical of neutrally-evolving regions

of the brown bear genome, but not below the level typical across the entire polar bear genome.

This could cause windows of the genome in which brown bear-specific selection has taken place

subsequent to the brown-polar bear split to appear erroneously heterozygous. It is also possible

that polar bear ancestry in the Scandinavian brown bears, which were assumed to be unadmixed

in calculations and in prior studies [19, 20], may also explain why f̂ estimates were lower than

estimates using both AD-LIBS and HAPMIX.

To be conservative, we recalculated all of our admixture proportions from AD-LIBS,

this time multiplying the numbers of bases called homozygous and heterozygous polar bear

by the rate at which these types of ancestry calls were correct in our simulations under the

“single-pulse” model (Table 2.1) (Table 2.6, “AD-LIBS conservative” column). Since bases

mis-called as heterozygous might actually be of either homozgyous polar bear or homozygous
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Bear Origin f AD-LIBS AD-LIBS conservative HAPMIX
ABC01 Baranof Island, AK 8.63% 18.60% 15.50% 14.40%
ABC02 Baranof Island, AK 8.87% 18.80% 15.70% 14.80%
ABC03 Chichagof Island, AK 9.63% 19.40% 16.20% N/A
ABC04 Chichagof Island, AK 9.03% 19.00% 15.80% N/A
ABC05 Chichagof Island, AK 8.93% 19.10% 15.90% N/A
ABC06 Admiralty Island, AK 6.56% 17.10% 14.20% N/A
Adm1 Admiralty Island, AK 6.12% 16.60% 13.80% N/A
Adm2 Admirality Island, AK 6.05% 17.00% 14.20% 12.60%

Bar Baranof Island, AK 8.14% 18.50% 15.40% 14.30%
Chi1 Chichagof Island, AK 8.57% 18.60% 15.50% N/A
Chi2 Chichagof Island, AK 8.69% 18.70% 15.60% N/A
Den Denali Natl. Park, AK 7.02% 14.50% 11.90% N/A

GP01 Glacier Park, Montana 4.37% 17.20% 14.30% N/A
GRZ Kenai Peninsula, AK 3.30% 13.00% 10.70% N/A

OFS01 stanvik, Sweden 0.46% 5.35% 4.41% N/A
RF01 Ruokolahti, Finland 0.32% 6.90% 5.67% N/A
SJS01 Slakka, Sweden 0.21% 5.27% 4.33% N/A
Swe Dalarna, Sweden 0%* 4.89% 4.02% N/A

Table 2.6: Percent polar bear for each brown bear in this study, calculated via , AD-LIBS, and
HAPMIX, if available. The asterisk indicates that Swe was used as a model unadmixed brown
bear in ′ f̂ calculations, making polar bear ancestry undetectable. HAPMIX was only run on the
four ABC Islands brown bears with minimum 20x coverage, to ensure that heterozygous variant
calls were reliable. The“AD-LIBS conservative” column shows AD-LIBS estimates corrected
according to the percent of homozygous and heterozygous polar bear ancestry calls that were
incorrect in simulations under the single-pulse model.

brown bear ancestry, treating them all as homozygous brown bear this way should produce

an under-estimate of polar bear ancestry. The observation that AD-LIBS tends to find less

homozygous polar bear ancestry than HAPMIX does (Table 2.4) also suggests that some of

the mis-called heterozygous ancestry should be treated as homozygous polar bear ancestry.

Regardless, we find using this technique that AD-LIBS still predicts more polar bear ancestry

than f̂ .

Comparing specific ancestry calls (homozygous polar bear, homozygous brown bear,
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and heterozygous) shows 72-74% overall agreement between AD-LIBS and HAPMIX, with

most discrepancy resulting from AD-LIBS overestimating the extent of heterozygous ancestry

(Table 2.4 and Table 2.7). It is possible that HAPMIX underestimates homozygous polar bear

ancestry as well, and that the problems described earlier with variant calling and phasing may

lower the reliability of inferences from HAPMIX.

Bear Hom. polar Heterozygous Hom. brown
ABC02 4.56% 28.50% 66.90%
ABC03 4.82% 29.10% 66.10%
ABC04 4.67% 28.60% 66.80%
ABC06 3.71% 26.70% 69.60%
Adm1 2.92% 27.40% 69.70%
Chi1 4.24% 28.70% 67.00%
Chi2 4.03% 29.30% 66.70%
Den 1.20% 26.60% 72.20%

GP01 3.43% 27.50% 69.10%
GRZ 1.72% 22.50% 75.80%

OFS01 0.44% 9.82% 89.70%
RF01 0.44% 12.90% 86.60%
SJS01 0.33% 9.88% 89.80%
Swe 0.34% 9.10% 90.60%

Table 2.7: Percent ancestry of each type called by AD-LIBS for all bears below 20x coverage,
for which HAPMIX was not run. Heterozygous calls are probably overestimates.

Shared patterns of ancestry

We next investigated the extent to which the same regions of the genome had the same

type of ancestry in multiple bears. For each possible combination of two or more bears, we

computed the number of bases in the genome for which all bears were inferred to have the same

type of ancestry. Considering each type of ancestry separately, we then created random ancestry

maps for each bear by sampling genomic coordinates comprising randomly-drawn regions of

the same number and size from the reference genome. Computing the overlap among these
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random ancestry maps for all bears in the set gave us a null model against which to compare

the extent of overlap among our true ancestry maps. For each group of bears and each type of

ancestry, overlap is greater than for random samples (Figure 2.6). This suggests that polar bear

introgression took place within the shared demographic history of all of the brown bears in this

study, as hypothesized by others [129, 40, 19, 20, 108].

As another way to visualize sharing of polar bear-derived haplotypes among brown

bears, we used principal components analysis (PCA), to test whether the ancestry data from

AD-LIBS contain a similar geographic signal of admixture to that which has been observed

previously from SNP data [108]. Using EIGENSOFT SmartPCA [148], we created vectors of

ancestry across 10kb genomic windows and performed PCA on these vectors for all 18 brown

bears. Principal components place individuals into groups based on geography, with the first

component corresponding to polar bear ancestry proportion. The ancestry results are largely

similar to those from SNP data (Figure 2.7). For example, the Montana bear clusters with the

Admiralty Island individual(s), to the exclusion of the Baranof and Chichagof Island bears. The

SNP PCA distinguishes bears from Finland and Sweden, however, while the ancestry PCA does

not, suggesting that polar bear ancestry in these individuals might stem from the same historical

event, despite different recent evolutionary histories.

2.0.2.6 Functional consequences

Overall, we find that polar bear ancestry extends over roughly 65% of the queryable

part of the genome (scaffolds of length 500kb or greater). We tested the set of all regions of polar

bear introgression in brown bears, and the set of regions free of polar bear introgression (the
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Map Features Dist. P Proj. P
polar genes 0.3363769 0.9834
polar exons 0.471 0.32
nopolar genes 0.028 1
nopolar exons 0.322 0.0000573

Table 2.8: Overlap of merged regions of polar bear ancestry among 11 brown bears, and regions
free of polar bear ancestry in 18 brown bears, with protein-coding genes and exons. The distance
p value is the Kolmogorov-Smirnov relative distance p-value and the projection p value is from
the projection test, which measures overlap, both implemented in the Genometricorr R package
[46].

complement of this set) for correlation and intersection with protein-coding genes and exons

of protein coding genes. We find no significant enrichment or depletion of overlap between,

or positional correlation between, polar bear-introgressed regions and protein-coding genes or

exons (Table 2.8).

To look for evidence of adaptive introgression, we took all protein coding genes and

exons that intersected regions of polar bear ancestry (in any bear), sorted them by the mean

frequency of polar bear ancestry across each gene, and performed a Wilcoxon-rank test for

enrichment of Gene Ontology terms using FUNC [164]. We find many terms related to immune

response, as has been found in many archaic-introgressed haplotypes in modern humans [171].

We also find the terms DNA repair, chromatin organization, and spermatid development (for

whole genes) (Table 2.9) and DNA repair (for exons) (Table 2.10). This is surprising, as we

would expect such terms to be related to genes often involved in hybrid incompatibility, rather

than adaptive introgression. Elucidating what these genes are, and why they appear to be in

relatively high-frequency introgressed haplotypes, merits further study.
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p GO ID GO term

9.34E-05 GO:0000122 negative regulation of transcription by RNA polymerase

II

0.00825521 GO:0002828 regulation of type 2 immune response

0.00462537 GO:0005979 regulation of glycogen biosynthetic process

0.00129983 GO:0006281 DNA repair

0.00483142 GO:0006325 chromatin organization

0.00719853 GO:0006691 leukotriene metabolic process

0.00370973 GO:0006909 phagocytosis

0.00327674 GO:0007286 spermatid development

0.00521529 GO:0007565 female pregnancy

0.00666644 GO:0009124 nucleoside monophosphate biosynthetic process

0.00277393 GO:0010922 positive regulation of phosphatase activity

0.00706058 GO:0016188 synaptic vesicle maturation

0.00758499 GO:0030857 negative regulation of epithelial cell differentiation

0.00687972 GO:0032436 positive regulation of proteasomal ubiquitin-dependent

protein catabolic process

0.00897533 GO:0032507 maintenance of protein location in cell

0.00999749 GO:0032570 response to progesterone

0.00719853 GO:0032753 positive regulation of interleukin-4 production

0.0066798 GO:0032784 regulation of DNA-templated transcription, elongation

51



0.00377917 GO:0042752 regulation of circadian rhythm

0.00840516 GO:0043044 ATP-dependent chromatin remodeling

0.00737313 GO:0043470 regulation of carbohydrate catabolic process

0.00785181 GO:0045581 negative regulation of T cell differentiation

0.00719853 GO:0045589 regulation of regulatory T cell differentiation

0.00686625 GO:0045683 negative regulation of epidermis development

0.00706058 GO:0045792 negative regulation of cell size

0.000941951 GO:0045892 negative regulation of transcription, DNA-templated

0.00534869 GO:0045893 positive regulation of transcription, DNA-templated

0.00303331 GO:0060850 regulation of transcription involved in cell fate commit-

ment

0.0075634 GO:0070372 regulation of ERK1 and ERK2 cascade

0.00719853 GO:0098930 axonal transport

0.00824451 GO:2001023 regulation of response to drug
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Table 2.9: Enriched biological process GO terms of whole genes

intersecting high-frequency polar bear haplotypes in brown bears.

Testing was done using the Wilcoxon rank-order test in FUNC

[164], with genes sorted by mean frequency of polar bear hap-

lotype (in all brown bears), with FUNC’s refinement routine to

account for hierarchical relationships among terms. Terms with

p < 0.01 after refinement are shown.

p GO ID GO term

0.00156607 GO:0000122 negative regulation of transcription by RNA polymerase

II

0.00592948 GO:0005979 regulation of glycogen biosynthetic process

0.00178018 GO:0006281 DNA repair

0.00946091 GO:0006590 thyroid hormone generation

0.00245489 GO:0010922 positive regulation of phosphatase activity

0.00664922 GO:0023058 adaptation of signaling pathway

0.00946091 GO:0032329 serine transport

0.004439 GO:0032436 positive regulation of proteasomal ubiquitin-dependent

protein catabolic process

0.00442608 GO:0032507 maintenance of protein location in cell
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0.00736052 GO:0032784 regulation of DNA-templated transcription, elongation

0.00857897 GO:0045066 regulatory T cell differentiation

0.00702846 GO:0045581 negative regulation of T cell differentiation

0.00429937 GO:0045792 negative regulation of cell size

0.00269204 GO:0045892 negative regulation of transcription, DNA-templated

0.00347511 GO:0050795 regulation of behavior

0.0089133 GO:0051006 positive regulation of lipoprotein lipase activity

0.00923071 GO:0051602 response to electrical stimulus

0.00994172 GO:0060338 regulation of type I interferon-mediated signaling path-

way

0.00538082 GO:0060712 spongiotrophoblast layer development

0.00360331 GO:0086091 regulation of heart rate by cardiac conduction

0.00946091 GO:0099622 cardiac muscle cell membrane repolarization

Table 2.10: Enriched biological process GO terms of protein-

coding gene exons intersecting high-frequency polar bear haplo-

types in brown bears. Testing was done using the Wilcoxon rank-

order test in FUNC [164], with genes sorted by mean frequency

of polar bear haplotype (in all brown bears), with FUNC’s re-

finement routine to account for hierarchical relationships among

terms. Terms with p < 0.01 after refinement are shown.
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p GO ID term
0.00221323 GO:0000122 negative regulation of transcription by RNA polymerase

II
0.0026105 GO:0043009 chordate embryonic development
0.00280615 GO:0016050 vesicle organization
0.00477465 GO:0003229 ventricular cardiac muscle tissue development
0.00490197 GO:0010922 positive regulation of phosphatase activity
0.00591571 GO:0021954 central nervous system neuron development
0.00731015 GO:0045620 negative regulation of lymphocyte differentiation
0.00795445 GO:0048745 smooth muscle tissue development
0.00806575 GO:0032436 positive regulation of proteasomal ubiquitin-dependent

protein catabolic process

Table 2.11: Enriched biological process GO terms of protein-coding genes intersecting regions
where none of 18 hybrid brown bears have any polar bear ancestry. Testing was done using the
hypergeometric test in FUNC [164], with FUNC’s refinement routine to account for hierarchical
relationships among terms. Terms with p < 0.01 after refinement are shown.

We then checked the possible functional significance of regions free from polar bear

introgression. To this end, we performed Gene Ontology enrichment analyses of both protein-

coding genes and protein-coding gene exons intersecting these regions. We found among our

enriched terms some related to neurodevelopment, as well as embryonic development (Table

2.11 and Table 2.12). Although catalogs of genes for which positive selection likely played a

role in the differentiation of brown and polar bears already exist [108], these new catalogs likely

contain the most important genes for driving the species apart, as hybridization and subsequent

backcrossing in these bears serves as a natural experiment in which divergent sets of alleles were

“tested” together in nature, and the most compatible combinations were likely to be those passed

on. Furthermore, where commonly used tests like dN
dS focus exclusively on non-synonymous

substitutions, our catalog is likely to include regulatory and splicing-related mutations as well.

This merits follow-up study of the specific genes in our sets.
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p GO ID term
0.000174025 GO:0001701 in utero embryonic development
0.00141049 GO:0000122 negative regulation of transcription by RNA polymerase

II
0.00578795 GO:0072384 organelle transport along microtubule
0.00776506 GO:0034968 histone lysine methylation
0.0087984 GO:0014033 neural crest cell differentiation
0.00994697 GO:0021955 central nervous system neuron axonogenesis
0.00994697 GO:0051055 negative regulation of lipid biosynthetic process

Table 2.12: Enriched biological process GO terms of protein-coding gene exons intersecting
regions where none of 18 hybrid brown bears have any polar bear ancestry. Testing was done
using the hypergeometric test in FUNC [164], with FUNC’s refinement routine to account for
hierarchical relationships among terms. Terms with p < 0.01 after refinement are shown.

2.1 Discussion

AD-LIBS is a new technique for the detection and analysis of ancestry in admixed

individuals, designed for use with low-coverage shotgun sequence data from non-model organ-

isms. The technique works well on both simulated and real data, requires only several reference

individuals from each ancestral population (Figure 2.2), and is accurate at coverage depths as

low as 2X (Figure 2.4).

AD-LIBS is unlikely to perform as well as other local ancestry inference techniques

when high-confidence genotype calls and phased data from reference populations are available.

Moreover, AD-LIBS overestimates heterozygous ancestry (Figure 2.3), although it has a lower

false positive rate for identifying regions homozygous for one or the other type of ancestry

(Figure 2.2) and infers the correct amount of homozygous, introgressed ancestry genome-wide

(Figure 2.3). Therefore, one can be confident in results from AD-LIBS when analyzing genomic

regions labeled as homozygous for ancestry from one or the other reference population but
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should use caution when describing regions heterozygous for ancestry.

Although AD-LIBS is robust to suboptimal choices of most parameters, window size

must be chosen carefully, and FST between ancestral populations [75] must also be considered.

The latter is important because overlap between the three emission probability distributions

that AD-LIBS uses to determine which type of ancestry produced the set of IBS tract lengths

in each window (see Methods) depends to a large extent on FST between the two ancestral

populations. If nucleotide diversity between populations is large relative to nucleotide diversity

within populations, then the means of the emission probability distributions will lie further apart

than distributions for ancestral populations with low FST (see Appendix A for expected emission

probability distributions). While increasing the window size can help mitigate this problem

by decreasing the variances of the distributions, it may be impossible to get accurate results

when dealing with populations with low FST between them. As an example, AD-LIBS is not

expected to give accurate results for human populations, in which within-population nucleotide

diversity is often very similar to between-population nucleotide diversity. With populations of

sufficiently high FST , such as polar and brown bears, users should either allow AD-LIBS to

determine an appropriate window size by measuring the overlap among emission probability

distributions (see Methods) or carefully evaluate results to ensure they are realistic. Using too

small a window size to distinguish populations that are closely related can result in error (Table

2.3).

Using AD-LIBS, we detected a greater amount of polar bear ancestry in 18 brown

bear genomes than has been previously reported using other methods [19, 19, 108, 129]. It is

possible that these polar bear ancestry estimates are inflated by several percent due to AD-LIBS
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overestimating the extent of heterozygous ancestry (Figure 2.3). If still valid, however, this

finding illustrates an advantage of using local ancestry inference techniques like AD-LIBS over

global techniques in admixture studies. If AD-LIBS is correctly inferring that Scandinavian

brown bears have some polar bear ancestry, then prior studies that used these bears as model

“unadmixed” brown bears may have underreported polar bear ancestry in all bears. The reason

for this underreporting is that the global ancestry inference techniques used in prior studies,

such as f̂ , are genome-wide averages relative to a genome presumed to be unaffected by past

admixture. As such, global ancestry inference methods cannot detect polar bear ancestry in an

individual brown bear as long as the model “unadmixed” brown bear to which it is compared has

the same amount of polar bear ancestry anywhere else in its genome. Local methods like AD-

LIBS and HAPMIX, conversely, can detect polar bear ancestry at a particular genomic locus

within an individual, as long as the model brown bear genome to which it is being compared is

free of polar bear ancestry at that same locus (Figure 2.8).

AD-LIBS maps of polar bear ancestry in brown bears also provide a look into the

geographic history of polar-brown bear admixture. Given that principal components analysis

(PCA) of polar bear ancestry groups bears geographically largely the same way as PCA of

SNP data (Figure 2.7), polar-brown bear admixture may have taken place before the present

day North American brown bear populations formed. The placement of the Montana brown

bear near bears from Admiralty Island in principal component (PC) space also suggests that

ABC Islands brown bears could have been the source of polar bear ancestry in mainland brown

bears, as previously hypothesized [20]. The existence of a small amount of polar bear ancestry

in Scandinavian brown bears, which is similarly observed in Finnish and Swedish bears in
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PC space despite these bears clear difference in genotype PC space, suggests that there may

have been a single, older polar-brown bear introgression event in Europe, independent from the

source of polar bear ancestry in North American brown bears. If true, this result is evidence

that hybridization between brown and polar bears may have been common in their evolutionary

history, and may be the expected outcome of shifting habitat boundaries in times of global

climate change.

Genes located in high-frequency introgressed regions, as well as those located in re-

gions free of admixture, are also likely to tell an interesting story about speciation and the

consequences of admixture. It is possible, for example, that our set of genes within regions

devoid of polar bear ancestry might include genes involved in hybrid incompatibility. It is also

noteworthy that we find evidence of adaptive introgression of some immune system-related

alleles, as was found to be the case in archaic introgression into modern humans [171].

2.2 Conclusion

AD-LIBS expands the potential range of admixture analyses both to non-model or-

ganisms and to data sets in which only low-coverage genomes are available. While AD-LIBS

should not replace existing approaches for high-coverage data or where phased reference panels

are available, AD-LIBS accurately identifies genomic regions in hybrids that are homozygous

for ancestry from a specific ancestral population, even with low coverage data. By thus reducing

the quantity and quality of data needed, AD-LIBS can make admixture mapping a viable tool

in a wider range of studies than was previously possible.
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2.3 Methods

2.3.1 Model description

AD-LIBS (Ancestry Detection through Length of Identity By State tracts) is designed

for use with low-coverage sequence data from diploid organisms. The insight behind AD-LIBS

is to consider windows of a genome, rather than individual SNP sites, when determining ances-

try. This allows groups of variants to vote together on the ancestry of windows in the genome,

decreasing the influence of individual sites that might be prone to genotyping or sequencing

error. AD-LIBS takes as input pseudo-haploid FASTA sequences, in which every base is ran-

domly sampled from one or the other homologous chromosome, rather than sets of genotype

calls at variable sites. This eliminates the need for variant calling, which can be problematic

without prior knowledge of polymorphic sites as in non-model organisms. It also avoids prob-

lems inherent in identifying heterozygous sites using low-coverage sequencing data [19, 19].

If an individual has ancestors from both population A and B, each window of that

individuals genome can be classified as a sample of two chromosomes from population A,

two from population B, or one of each. The state space of the hidden Markov Model (HMM)

used by AD-LIBS therefore includes three ancestry states: AA, which models genomic win-

dows in which both of an individuals chromosomes descend from population A; AB, which

models windows in which an individual derives one chromosome from each ancestral popu-

lation; and BB, which models windows in which an individual is homozygous for ancestry

from population B. Note that no attempt is made to phase” variants when ancestry is heterozy-

gous: AD-LIBS does not attempt to determine which of the two homologous chromosomes is
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of population A or B ancestry in the heterozygous state. In our model, we always designate the

ancestral population with lower genetic diversity as population A and the other as population

B. Figure 2.9 describes a cartoon of the HMM state space, including states not yet described.

AD-LIBS uses the Python Pomegranate library for hidden Markov model operations, available

at https://github.com/jmschrei/pomegranate.

2.3.2 Transition probabilities

The transitions between states are related to the probability of recombination having

occurred since admixture between the two ancestral populations. For this, AD-LIBS requires

an estimate of the genome-wide extent of admixture and the number of generations since ad-

mixture. Given that the number of generations since admixture is g, and the per-nucleotide

recombination probability per generation is r, the probability of a recombination event having

taken place at a single nucleotide position in the time since admixture is gr. AD-LIBS assumes

r to be a flat rate of 1 centimorgan per megabase, or 10−8 per site. If p, the extent of ancestry

from population A in the admixed population, is known, then the probabilities of switching

between state AA (homozygous population A ancestry), AB, (heterozygous ancestry), and BB

(homozygous population B ancestry) can be determined. This requires considering the per-site

probabilities of recombination events having happened or not in the time since admixture on

both homologous chromosomes, along with the probabilities of the next base on each homolo-

gous chromosome being derived from population A or B. Additionally, AD-LIBS accounts for

the effect of genetic drift: considering recombination events as alleles in the classic Wright-

Fisher model, it derives the probability of resampling the same ancestral recombination event
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twice in a single individual, hereafter referred to as z. The probabilities of transitions between

the three ancestry states are given in Figure 2.10.

As an example, two possible sets of events can lead to a transition from a region of

homozygous population A ancestry (AA) to a region of homozygous population B ancestry

(BB). One is that there has been a recombination event at the same site on both chromosome

homologues in the time since admixture, the probability of which is (gr)2, and that the base im-

mediately after the recombination event is of population B ancestry on both chromosome homo-

logues, the probability of which is (1− p)2. This set of events thus has probability (gr)2(1− p)2.

Conversely, if the two chromosome homologues have a recent common ancestor at the site of

interest, it is possible that a historical recombination event between a region of population A

ancestry and a region of population B ancestry happened once, but was inherited by both par-

ents of the individual of interest. The probability of the individual inheriting the same historical

recombination event from both parents is z, and the probability of the base immediately after

this recombination event deriving from ancestral population B is (1− p), making the probability

of this set of events z(1− p) (see Table 2.10).

Whereas r is a hard-coded approximation and g is a model parameter inferred from

prior knowledge, the parameters p and z can be calculated. A popular method for estimating

the admixture proportion p from sequence data is the statistic f̂ , an extension of the D statistic

used to estimate the extent of Neanderthal ancestry in modern humans [56, 35]. D is a genome-

wide measure of excess derived allele sharing between an admixed individual and candidate

introgressor; it compares numbers of sites, genome wide, that support alternative tree topolo-

gies. The statistic f̂ is a ratio of D computed on an admixed individual to D computed on an
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individual from the admixing population of interest. f̂ can be used to obtain a lower bound on

admixture proportion. When p is not supplied by the user, AD-LIBS requires a genome from an

outgroup individual and at least two individuals from admixing population A; these are used to

compute f̂ as an approximation of p. Sometimes, for example when the test individual derives

less of its genome from the introgressor than the individual hypothesized to be unadmixed, f̂

can yield negative values. In this case, and in every other case where p≤ 0, we set p to a min-

imum value of 0.001. This allows AD-LIBS to detect regions of population A ancestry even

when they were not originally expected, if the signal is strong enough.

The parameter z, or the probability of resampling the same ancestral recombination

event twice in an individual, is less straightforward to compute. Conceptualizing recombination

events of interest as alleles that arise within the admixed population during the time since admix-

ture, with the per-site, per generation probability r, a Markov chain can be used to compute the

probability of such a recombination event drifting to any frequency between 0 and (2N)/(2N)

where N is the number of individuals in the population, over the course of g generations [66].

This probability distribution can then be used to compute the probability of resampling the same

recombination event twice in a single individual. Since the transition probability matrix for this

Markov chain can become very large with large population sizes, making computation diffi-

cult, we implemented the solution to the diffusion approximation of this problem presented by

McKane and Waxman [120] in AD-LIBS. For a detailed explanation of how the value of z is

computed in AD-LIBS, see Appendix A.

In addition to the three ancestry states AA, AB, and BB, we defined three skip states,

sAA, sAB, and sBB, which each model windows in which there is insufficient data to make
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an inference about ancestry (Figure 2.9). Each of these states is only capable of emitting a

designated score representative of low-quality windows. Each is also much more likely to tran-

sition back to its associated ancestry state than to one of the others: the transition probability

P(AB|sAA) = p(AB|AA), p(BB|sAB) = p(BB|AB), and so on. This allows the HMM to have

memory of the state in which a sequence was before encountering windows of sparse data:

the probability of transitioning to a new ancestry state is the same, whether or not windows of

sparse data are encountered. The probabilities of transitioning from ancestry states to skip states

can only be calculated after scanning a sequence: windows with a percentage of ambiguous or

“N” bases above a user-specified threshold are designated “skipped,” and the skip probability

s is the number of skipped windows divided by the total number of windows in an input DNA

sequence. The transition probability from each ancestry state to its associated skip state, as well

as the probability of remaining in a skip state once there, is s. Since the emission probability

distributions of skip states are very different from those of ancestry states, in practice the mag-

nitude of s does not matter: windows intended to be skipped will be skipped whether s is high or

low. For a more detailed explanation of other transition probabilities, and how transition prob-

abilities are set on sequences belonging to the X chromosome (or Z chromosome for species

using the ZW sex determination system), see Appendix A.

2.3.3 Emission probabilities

Rather than considering individual genotypes at known variable sites, AD-LIBS di-

vides genomic sequences into windows and computes a score based on identity-by-state (IBS)

tract lengths in each window. Identity-by-state tract lengths have proven useful in quantifying
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parameters of demography and admixture and underlie some popular methods for demographic

inference [157, 64]. They are also easy to compute, can be measured without a set of high-

confidence genotype calls, and have a clearly defined expected distribution, which should not

be affected by the fact that our input data are pseudo-haploidized sequences rather than phased

haplotypes.

AD-LIBS computes scores based on IBS tract lengths in fixed-width genomic win-

dows. In each window, the “query” sequence from the hybrid individual is compared to all

available sequences from ancestral populations A and B. The score x in a given window is

log((1/(aw))∑
a
i=1[(1/n)∑

n
j=1 IBSi, j])− log((1/(bw))∑

b
i=1[(1/n)∑

n
j=1 IBSi, j]) where a is the

number of sampled individuals from population A, b is the number of sampled individuals

from population b, n is the total number of IBS tracts found in a given window between the

hybrid and another individual, IBSi, j is the length of the jth IBS tract with individual i sampled

from either population A or B, and w is the window size in base pairs. In simpler terms, x

is the ratio of the log transformed mean IBS tract length between the hybrid and individuals

from population A, and between the hybrid and individuals from population B. For its emission

probability distributions, AD-LIBS computes the expected distribution of x for each of the three

ancestry states, with slight adjustments for scores in windows along the X (or Z) chromosome.

For details, see Appendix A.

2.3.4 Potential pitfalls

One parameter that must be chosen carefully is the window size. Apart from upper

and lower bounds set on window size by mathematical limitations (see Appendix A), users have
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the ability to choose window sizes for their analyses. AD-LIBS can recommend a window size

by testing the amount of overlap among the three emission probability distributions. Since over-

lap among emission probability distributions can hinder the ability of AD-LIBS to distinguish

among different types of ancestry, and since the variance of all three distributions will decrease

as window size increases (see Appendix A), increasing window size can improve discrimina-

tive power while risking failure to detect short ancestral haplotypes. AD-LIBS recommends a

window size by computing the emission probability distributions for a range of window sizes

beginning at the minimum bound. At each window size, it integrates a function returning the

minimum value of each pair of distributions over those distributions full range, which gives a

measure of overlap [79]. The smallest window size for which the maximum pairwise distribu-

tion overlap is 0.5 or lower is recommended. If the chosen window size causes the maximum

overlap of any two of the three distributions to exceed 0.5, AD-LIBS iteratively multiplies the

standard deviations of all three emission probability distributions by 0.5 and recomputes the

overlap until it falls below 0.5. While this makes the model less realistic, it has the potential to

improve discriminative power.

2.3.5 Simulations

To test AD-LIBS, we used Hudsons coalescent simulator, ms [77], to simulate hap-

lotypes under a demographic model representative of brown bears, polar bears, ABC Islands

brown bears, and American black bears. We performed 20 trials in which ten 1 Mb pseudo-

haploid chromosomes were generated for each of five polar bears, five mainland brown bears,

five ABC Islands brown bears, and one black bear. Our demographic model is similar to that
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proposed by Cahill et al [19], in which hybridization between brown and polar bears takes

place on Alaskas Admiralty, Baranof, and Chichagof (ABC) islands at the end of the Pleis-

tocene epoch (the initial hybrid bear population consists of 50% polar bears and 50% brown

bears). We chose for our model 0.94 Mya for the split time between the American black bear

and brown and polar bears [94], 411 kya for the split between brown and polar bears [108],

and 12 kya, the approximate end of the Pleistocene epoch, as the time of hybridization between

mainland brown bears and the polar bears of the ABC islands [19]. Furthermore, we chose

a generation time of 11.35 years and a per-site, per-generation mutation rate of 1.825728108

[108], as well as a default recombination rate of 1 centimorgan per megabase, or per site. For

nucleotide diversity values, we used and estimated by Cahill et al [19], along with estimated

by Kutschera et al [94]; we converted these into effective population size values by dividing by

four times the mutation rate. Our full ms command, which produced two haplotypes for each

simulated individual, was ms 32 10 -t 1700.0 -r 931.135415571 1000000 -I 4 10 10 10 2 -n 1

0.235294117647 -n 4 1.23529411765 -es 0.0113546182949 2 0.5 -ej 0.0113546182949 2 1 -ej

0.0113546182949 5 3 -ej 0.3888956766 1 3 -ej 8.89445099767 3 4 T.

In each of the 20 simulations, ms generated two black bear haplotypes and 10 each

of polar bear, mainland brown bear, and ABC Islands brown bear haplotypes, with ten repe-

titions. After splitting the ms output files into individual repetitions, we then used Seq-Gen

[175] with the Hasegawa, Kishino, and Yano (HKY) nucleotide substitution model [67] and a

4:1 transition:transversion ratio to convert each haplotype from each repetition into a DNA se-

quence. The full Seq-Gen command was seq-gen -mHKY -t 4 -l 1000000 -s 0.0017 -p

[number of trees in ms output file] [ms output file]. We then sampled two hap-
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lotypes per individual and, using a Python program, randomly choose the base from one or the

other haplotype at each position to generate 1 Mb pseudo-haploid chromosome sequences. Fi-

nally, we concatenated the 1 Mb haploid sequences for each individual across the ten repetitions

to yield 10 Mb simulated genomes for 5 polar bears, 5 mainland brown bears, 5 ABC Islands

brown bears, and one black bear.

We used the trees from ms to produce maps of “true” ancestry for each hybrid bear

in order to validate AD-LIBS results for each trial. We output trees with the t parameter of

ms and used these to produce BED files of the true ancestry of each segment of the simulated

chromosomes for all five ABC Islands bears. To do this, we used a Python program to parse the

trees describing the relationship of all simulated haplotypes at each segment of the simulated

chromosome. For each ABC Islands brown bear haplotype at each segment, we computed the

time to most recent common ancestor (TMRCA) with all polar bear haplotypes and with all

brown bear haplotypes. In order to distinguish admixture from incomplete lineage sorting, we

designated an ABC Islands bear haplotype as having polar bear ancestry only if its TMRCA

with all polar bear haplotypes was more recent than its TMRCA with all brown bear haplo-

types, and if its TMRCA with all polar bear haplotypes postdated the polar-brown bear split. If

both haplotypes comprising a pseudo-haploid ABC Islands bear chromosome have polar bear

ancestry in a given region, that region is designated “AA” for homozygous polar bear ancestry;

if both have brown bear ancestry, it is designated “BB;” if there is one haplotype with each type

of ancestry, it is designated “AB;” and if none of these is the case, no ancestry call is made.

These are used as maps of “true” ancestry across the simulated chromosomes.

We then ran AD-LIBS on each simulated hybrid bear and assessed its accuracy using
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its map of “true” ancestry. For our initial estimate of polar bear ancestry in each hybrid bear,

we calculated using the first two polar bear sequences, the first mainland brown bear sequence,

and the black bear sequence as an outgroup. We then ran AD-LIBS with an admixed population

size of 3000 and 1000 generations since admixture, and nucleotide diversity values that were

calculated directly from the generated sequences. We note that only having 10 megabases of se-

quence for each bear may have hurt the accuracy of our calculations, since f̂ is a genome-wide

average that requires a large number of single-site observations to disentangle true admixture

from incomplete lineage sorting [56, 35]. For each simulated ABC Islands brown bear chro-

mosome, we tried running AD-LIBS with one polar bear and one brown bear sequence to use

as reference data, then two of each, three of each, four of each, and five of each, to determine

whether the number of reference sequences affected output. We also used three different win-

dow sizes – 5 kb (slightly above the minimum threshold set by AD-LIBS, given the nucleotide

diversity in the sequences), 10 kb, and 25 kb – for the same reason. After generating the results,

we compared the output of AD-LIBS to the BED files of “true” ancestry by compiling the inter-

section of AD-LIBS ancestry features with the true ancestry features using BEDTools intersect

[167] and determining the true ancestry across each window by majority vote of true ancestry

regions contained within. For each state, then, we calculated the percent of bases for which the

HMMs classification was correct, as well as the percent of bases for which the true ancestry

was recovered by the HMM. Admixture proportion was calculated as two times the number of

bases in homozygous polar bear windows, plus the number of bases in heterozygous windows,

all divided by two times the total number of windows for which AD-LIBS produced a label.

To compare performance, we repeated this experiment, but this time used a demo-
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graphic model in which polar bears on the ABC islands are gradually converted into brown

bears by continuous gene flow from mainland American brown bears. In this model, we al-

lowed mainland bears to migrate to the ABC islands population at a rate of 0.001 (0.1% of

each generation of the ABC Islands population is composed of brown bear migrants), begin-

ning 12,000 years ago and continuing until the present. This model produces ABC Islands bears

more varied in their polar bear ancestry proportion, and possibly more similar to the true ABC

Islands bears. The full procedure for simulations with this model was the same as above, but

using the ms command ms 32 10 -t 1700.0 -r 931.135415571 1000000 -I 4 10 10 10 2 -n 1

0.235294117647 -n 4 1.23529411765 -m 2 3 93.1135415571 -em 0.0113546182949 2 3 0 -ej

0.0113546182949 2 1 -ej 0.3888956766 1 3 -ej 8.89445099767 3 4 T. We refer to the former

model, with a single hybridization event, as the “single-pulse” model and the latter model, with

continuous gene flow, as the “migration model.”

2.3.6 Human and Neanderthal data

We ran AD-LIBS on human and Neanderthal data as a further test of AD-LIBSs abil-

ity to correctly calculate admixture proportion, since high-coverage human and Neanderthal

sequencing data are readily available, many studies have already sought to identify Neanderthal

admixture proportions in modern humans and FST between humans and Neanderthals is reason-

ably high. We chose to scan European genomes for Neanderthal ancestry, because Neanderthal-

human admixture is well studied, and we chose European over East Asian individuals because

the history of Neanderthal-European gene flow may be simpler and involve fewer admixture

events than that of Neanderthal-East Asian gene flow [214, 88, 215]. We randomly selected
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five European (CEU) individuals and five Yoruba (YRI) individuals from phase 3 of the 1000

Genomes Project [36], downloaded BAM files mapped to reference genome hg19 for each, and

created a haploidized genomic sequence for each individual using the samtools mpileup utility

[104] with map and base quality cutoffs of 20, along with a program that chooses a random

base from the set that passed filters at every position, filtering out bases where coverage was

greater than the 97.5th percentile of coverage genome-wide. The European individuals used

were NA11832, NA11840, NA12340, NA12383, and NA12814; the Yoruba were NA18504,

NA18870, NA18934, NA19099, and NA19238. We then downloaded variant calls for the high-

coverage Altai Neanderthal [165] and generated two “haplotype” sequences in hg19 coordi-

nates using a program that transforms VCF to FASTA format, randomly assigning each variant

at heterozygous sites to one or the other haplotype. Treating YRI and Altai as the two reference

populations, we then calculated πAltai = 0.000303, πY RI = 0.001525, and πAltai−Y RI = 0.001763

from these sequences and chose a population size of 10,000, based on prior estimates [182],

and 2,000 generations since admixture, roughly based on inferences drawn from Neanderthal

haplotype block lengths in ancient human genomes [51, 50]. Neanderthal admixture propor-

tions were estimated by calculating using both Neanderthal haplotype sequences, the Yoruba

individual NA18504, and the reads from chimpanzee genome release PanTro4 [25], mapped to

hg19 coordinates by the UCSC Genome Browser team [87]. After running AD-LIBS on each

individual, we computed admixture proportion using the same technique as described in the

Testing with simulated data section.
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2.3.7 Bear data preparation

Our bear sequence data were all published as part of previous studies [129, 19, 20,

108]; sample details are given in 2.2. We selected for study 11 hybrid brown/polar bears

from Alaskas Admiralty, Baranof, and Chichagof (ABC) islands (ABC01, ABC02, ABC03,

ABC04, ABC05, ABC06, Adm1, Adm2, Bar, Chi1, and Chi2), one brown bear from Mon-

tana known to have polar bear ancestry (GP01), two brown bears with some polar bear ances-

try from the Alaskan mainland (Den and GRZ), four Scandinavian brown bears hypothesized

to be free of polar bear ancestry (OFS01, RF01, SJS01, and Swe), and four polar bears se-

lected for high coverage depth (PB7, PB12, PB68, and PB105). Most data were downloaded

as reads from the NCBI SRA, subjected to adapter removal and read merging using Seq-Prep

(https://github.com/jstjohn/SeqPrep) and mapped to the polar bear reference genome

[108] using BWA MEM [102], sorted and indexed with samtools [104], and subjected to in-

del realignment via GATK, followed by duplicate removal via PicardTools [121]. The Denali

park brown bear (Den), Swedish brown bear (Swe), Admiralty Island brown bear (Adm1), and

American black bear (Uam), however, were processed as published in previous studies [19, 20]:

adapter trimming using Trimmomatic (Bolger, Lohse, and Usadel 2014), mapping using BWA

aln [103], and duplicate removal using samtools rmdup [104] followed by GATKs indel re-

alignment [121]. Following this, we selected four polar bears (PB7, PB12, PB68, and PB105),

two Scandinavian brown bears (OFS01 and RF01), and four ABC Islands brown bears (ABC01,

ABC05, Adm2, and Bar), each of which had a minimum of 20x genome-wide average coverage,

and performed variant calling on these using GATKs Unified Genotyper. We set a minimum
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base and map quality of 30, and then discarded variants with a genotype quality lower than

30 or a variant quality lower than 50. We also filtered to exclude sites for which coverage

was lower than 4 or greater than the 97.5th genome-wide percentile for any individual bear;

this yielded 16,635,425 SNPs and 3,054,975 indels. In addition to using these variant calls for

downstream analysis, we used BEAGLE [17] with no reference panel, no imputation, and five

iterations to phase our SNPs, resulting in a panel of 15,637,657 (94% of the original SNPs)

phased polymorphic sites.

To compensate for our inability to reliably identify heterozygous sites in low-coverage

(¡ 20x) individuals, and to format our data for use with AD-LIBS, we generated pseudo-haploid

sequences in reference genome coordinates for all bears by choosing a random base with min-

imum map and base quality of 30 at every site, skipping sites where coverage was greater than

the 97.5th percentile of genome-wide coverage [19, 20]. This was done using samtools mpileup

with the polar bear reference genome and map and base quality filters, then piping to an in-

house program that selects and outputs a random high-quality base at each position, yielding

a FASTA file. Genome-wide coverage was computed using bedtools genomecov [167]. We

then filtered these sequences to only scaffolds with a minimum length of 500kb in the reference

genome and calculated πpolar = 0.000615, πbrown = 0.00233, and πpolar−brown = 0.003564 us-

ing a utility included with AD-LIBS on these sequences. We then ran AD-LIBS on all bears,

assuming an admixed population size of 3,000 and 2,000 generations since admixture, using

PB105, PB12, OFS01, and Uam to estimate each admixed bears admixture proportion via f̂ .

For the Scandinavian bears OFS01, RF01, SJS01, and Swe, assumed to be free of polar bear

admixture [20, 108], we specified an admixture proportion of 0.001 in order to allow the model
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to detect polar bear ancestry if it existed. We inferred ancestry for each of our brown bears using

a window size of 10kb (the size that worked best using simulations), a skip threshold of 0.25

(which gave very similar results to runs with skip thresholds of 0.1, 0.5, and 0.75), and using

an X chromosome model for scaffolds determined belong to the X chromosome in a previous

study [19]. We set the time since admixture to 1000 generations ago, the approximate end of the

Pleistocene epoch assuming a generation time of 11.35 years [108] and an admixed population

size of 3,000 individuals.

We also used our panel of phased SNPs to infer ancestry for our four ABC Islands

bears that had at least a 20x average depth of coverage (ABC01, ABC05, Adm2, and Bar), using

HAPMIX [160], with GENOTYPE=1, OUTPUT SITES=1, THETA=0.08, LAMBDA=900.0,

RECOMBINATION VALS=600 600, MUTATION VALS=0.2 0.2 0.01, and MISCOPYING VALS=0.05

0.05. This gave us an independent map of polar bear ancestry for these four bears against which

to compare AD-LIBSs results. We note that our HAPMIX results are not as reliable as those for

human data, since our reference panel was phased computationally and thus subject to switch

errors. After running HAPMIX, we converted output to BED files that could be compared to

AD-LIBS results using an in-house program. This program assigns an ancestry state (homozy-

gous population A, heterozygous, or homozygous population B) to each site by choosing the

highest ancestry probability output by HAPMIX, or skipping sites where two or more probabil-

ities are equal. It then merges runs of sites with the same ancestry into contiguous regions of

ancestry and prints results in BED format.
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2.3.8 Low-coverage tests

To test AD-LIBSs performance on low-coverage data, we used the same alignments

as our full-coverage data. We chose to limit analysis, however, to the four hybrid ABC Islands

bears for which we were able to run HAPMIX at full coverage (ABC01, ABC05, Adm2, and

Bar), owing to the fact that these bears were sequenced to minimum 20X coverage and thus

yielded reliable genotype calls. For unadmixed “reference” bears, we included all four polar

bears (PB7, PB12, PB68, and PB105), as well as the three Scandinavian brown bears sequenced

to at least 10X coverage (OFS01, RF01, and SJS01). We note that our full-coverage HAPMIX

runs used only the Scandinavian bears over 20X coverage (OFS01 and RF01), and so our low-

coverage HAPMIX runs actually had one more reference individual available than our high-

coverage runs. For computational efficiency, we limited analysis to the longest scaffold of the

polar bear reference genome (scaffold1, 67.4 Mb). For each bear, we compiled a random set of

properly-paired reads that mapped to scaffold1 with minimum map quality 30 using samtools

view, samtools bamshuf, and samtools bam2fq [104]. We then calculated, for each bear, the

number of reads from these random sets required to obtain 0.5X, 1X, 2X, 5X, and 10X coverage

across scaffold1. We then took subsets of our sets of high-quality mapping reads and, for each

bear at each coverage level, mapped these reads to polar bear scaffold1 using BWA MEM

[102], then performed GATKs [121] indel realignment on the resulting BAM files. We did not

remove duplicates, since the BAM files were already deduped prior to downsampling. We used

our previously described strategy for preparing pseudo-haploid FASTA sequences (samtools

mpileup and a program that randomly chooses a base at each position that passes quality filters),
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with map and base quality cutoffs of 20, to prepare data for use with AD-LIBS. We also used

GATKs UnifiedGenotyper to call SNPs along scaffold1 for every bear at each coverage level,

removing sites with map or base quality below 20, as well as indel or non-biallelic variants.

Following this, we phased variants using BEAGLE [17] with no reference panel, no imputation,

and five iterations at each coverage level.

We ran HAPMIX on each bear for each coverage level using the same parameters

as for full-coverage data (see Data preparation section), and its results were converted to BED

files for easy comparison to AD-LIBSs results. AD-LIBS was then run on each hybrid bear

at each coverage level with the same parameters as the full-genome runs, with the exception

that nucleotide diversity values were computed from the haploidized FASTA files rather than

using the previously-calculated values, the skip threshold was set to 0.75 to accommodate more

missing data, and prior estimates of polar bear ancestry proportion were all set to 0.08, as they

were in all HAPMIX runs. To compare output of HAPMIX and AD-LIBS runs to each other,

we used the same technique as we did when comparing AD-LIBS results for simulated data to

the BED files of true ancestry, described in the Testing with simulated data section.

2.3.9 Shared polar bear ancestry

To test for sharing of the same types of ancestry across the same regions of the

genomes in multiple bears, we used a custom Python program, along with several existing

tools. We first created merged BED files of each specific type of ancestry for each bear using

BEDTools [167], grouping heterozygous and homozygous ancestry together for one ancestry

type. We also used BEDTools intersect to compute the size (in base pairs) of the intersection of
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each group of bears for each ancestry type, and random samples were taken from the polar bear

genome using BEDTools shuffle, limited to the polar bear genomic scaffolds that were at least

500kb long the same set of scaffolds on which AD-LIBS was run.

In order to run EIGENSOFT SmartPCA [148] on the bear ancestry data, we used a

custom script to convert AD-LIBSs BED files into EIGENSTRAT format, using the starting

coordinate of each window as the position of each “variant,” dropping “scaffold” from scaffold

names, setting genetic distance to 0 (the default) for each “variant” so that a flat recombination

rate can be assumed across each scaffold, and coding each homozygous polar bear window as

2, heterozygous windows as 1, and homozygous brown bear windows as 0.

For the SNP-based PCA run, we downloaded the set of polar and brown bear SNPs

published as part of a recent study [108], excluded all polar bears, converted to EIGENSTRAT

format, and ran EIGENSOFT SmartPCA [148] the same way as with our ancestry data. Only

the first two principal components were considered.

2.3.10 Functional analyses

We performed all tests of overlap and correlation of genomic intervals using the Geno-

metricCorr R package [46]. We note that our tests might be slightly biased, since we do not have

a map of centromeric and telomeric regions to exclude from analyses; such regions should be

devoid of genes. We performed all gene ontology enrichment tests using FUNC [164], using the

Wilcoxon rank order test for introgressed segments and the hypergeometric test for polar bear-

free genomic regions. In both cases, we used the refinement script to account for the hierarchy

of terms, with a p-value cutoff of 0.01. For Gene Ontology terms, we used the October 29, 2018
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version of the Gene Ontology tables [1]. To compute frequencies of introgressed haplotypes,

we first created BED files for two pseudo-“haplotypes” for each hybrid brown bear, assigning

each homozygous polar (AA) segment to both haplotypes and each heterozygous (AB) ancestry

segment to one of the two haplotype files. We then compiled all files using bedtools multiinter

[167] and divided by the number of haplotypes possessing each feature by 36 (2 times the num-

ber of bears) to obtain frequencies. Means of these frequencies were used to rank genes when

performing Wilcoxon rank-order Gene Ontology enrichment tests.
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Figure 2.3: Accuracy of AD-LIBS estimates of the overall extent of polar bear ancestry, using
simulated data. A and C refer to simulations with a single polar-brown bear admixture event
12,000 years ago, followed by isolation (single-pulse model); B and D refer to simulations in
which a brown-polar bear admixture event 12,000 years ago is followed by continual breed-
ing with unadmixed brown bears (migration model). All AD-LIBS runs in this figure used 5
reference individuals per ancestral population and 10kb windows. A and B: Inferred percent
polar bear ancestry using AD-LIBS and f̂ versus true percent polar bear ancestry. C and D:
inferred percent polar bear ancestry of each type, according to AD-LIBS, versus true percent
polar bear ancestry of each type. Each point represents the percent of a single simulated hy-
brid bear genome with a specific type of ancestry. E: overall accuracy of AD-LIBS inferences
versus true percent polar bear ancestry, including both types of simulations. The line of best fit
by least-squares regression is also shown. Accuracy decreases slightly as polar bear ancestry
increases, probably due to the tendency of AD-LIBS to overestimate the extent of heterozygous
ancestry (C and D).
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Figure 2.4: Results from downsampling four ABC Islands brown bears, three Scandinavian
brown bears, and four polar bears to 0.5x, 1x, 2x, 5x, and 10x coverage along the longest
genomic scaffold, running HAPMIX [160] and AD-LIBS on the four ABC Islands bears at
each coverage depth, and comparing these runs to results obtained from running both programs
on the full-coverage versions of the same individuals. Each line represents an individual ABC
Islands bear and each color represents a specific low coverage/full coverage comparison. A:
percent of full coverage calls recovered by running each program at low coverage. Values
given are averages across the three ancestry states (homozygous polar bear, heterozygous, and
homozygous brown bear). B: percent of low coverage calls that were correct, according to
full-coverage calls. Values given are averages across the three ancestry states. Some points are
missing because HAPMIX was unable to detect any polar bear ancestry at 0.5x coverage.
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Figure 2.5: Results from downsampling four ABC Islands brown bears, three Scandinavian
brown bears, and four polar bears to 0.5x, 1x, 2x, 5x, and 10x coverage along the longest
genomic scaffold, running HAPMIX and AD-LIBS on the four ABC Islands bears at each
coverage depth, and comparing these runs to results obtained from running both programs on
the full-coverage versions of the same individuals. Each line represents an individual ABC
Islands bear and each color represents a specific low coverage/full coverage comparison. A and
B assess homozygous polar bear (AA) calls, C and D assess heterozygous (AB) calls, and E and
F assess homozygous brown bear (BB) calls. A, C, and E measure the percent of low-coverage
calls that were correct” according to the high-coverage runs, while B, D, and F measure the
percent of the high-coverage runs calls that were also detected by the low-coverage runs. In
almost every case, AD-LIBS is more consistent with itself than other comparisons. We also
note that low-coverage AD-LIBS inferences of homozygous polar and brown bear ancestry
are more often correct, according to HAPMIX run at full coverage, than HAPMIX run at low
coverage (A and E). AD-LIBS may, however, erroneously call more windows heterozygous
than HAPMIX does (C), leading to its missing some windows of homozygous polar (B) and
brown bear (F) ancestry.
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Figure 2.6: Comparing overlap of regions of different types of ancestry among hybrid bears.
For every combination of 2 or more American brown bears, we measured the number of
bases that AD-LIBS labeled with the same type of ancestry (homozygous polar, homozy-
gous/heterozygous polar, or homozygous brown) in each bear. We also performed one random
trial per real comparison, in which coordinates comprising random regions were sampled from
the reference genome, producing sets of genome regions of the same size and number as the
regions of ancestry produced by AD-LIBS for each bear, but randomly scattered across the
genome. We then measured the overlap between these random ancestry regions for the sake
of comparing to the true overlap. Averages of every comparison of each number of bears are
shown as solid lines, and averages of every comparison of randomized versions of those same
bears are shows as dashed lines.
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Figure 2.7: Geographic signal recovered in vectors of polar bear ancestry. A: principal com-
ponents analysis (PCA) of polar bear ancestry state of 10kb genomic windows for 18 brown
bears, using EIGENSOFT SmartPCA [148]. B: PCA of SNP data from a previous study [108],
including a subset of the bears in A. Both plots show similar geographic patterns, with the Mon-
tana bear (GP01) falling close to the Admiralty Island bear(s), but only the SNP data separates
Finnish (RF01) from Swedish brown bears.
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Figure 2.8: Illustration of cases where either a local ancestry detection method (like AD-LIBS)
or a global ancestry detection (like f̂ ) might succeed, partially succeed, or fail. Each line rep-
resents a chromosome, with polar bear ancestry shown in blue and brown bear ancestry shown
in brown. All five individuals needed for computation of are shown in each case. A: local and
global methods both succeed in detecting all of the hybrid individuals polar bear ancestry. B:
local and global methods both fail to detect the hybrid individuals polar bear ancestry. C: local
methods successfully detect the hybrid individuals polar bear ancestry, since it is in a different
part of the genome than the polar bear ancestry in the genome of the model “unadmixed” brown
bear. Global methods fail to detect the hybrid individuals polar bear ancestry. Since global
methods use genome-wide averages, the hybrid individual is not seen to possess any more polar
bear ancestry than the model “unadmixed” brown bear. D: Both local and global methods will
detect the hybrids first segment of polar bear ancestry but fail to detect the second segment, re-
sulting in both types of methods underestimating the hybrid individuals true percent polar bear
ancestry.
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Figure 2.9: The state space of AD-LIBSs hidden Markov model. The three round states (AA,
AB, and BB) are ancestry states that can emit scores. AA represents regions where both ho-
mologous chromosomes derive ancestry from ancestral population A, AB represents regions
of heterozygous ancestry, and BB represents regions homozygous for population B ancestry.
The three square states (sAA, sAB, and sBB) are skip states, each associated with one of the
three ancestry states. Skip states can only emit scores representing windows of the genome in
which data are too sparse to infer ancestry. Each skip state is more likely to transition back to
its associated ancestry state than to one of the others. Arrow colors represent different types
of transition probabilities. Green arrows are starting probabilities and are related to the pre-
estimated percent ancestry derived from each ancestral population (A and B). Blue arrows rep-
resent recombination events; their probability is related to the probability of a recombination
event having happened at a given site in the time since admixture, as well as the probability of
sampling a base from population A or B. Black arrows are related to the probability of skipping
a given window, computed from the number of “N” bases encountered. Red arrows are transi-
tions to the end state, with probabilities related to the number of windows on the chromosome
or scaffold being scanned. Gold arrows represent probabilities that are computed after other
probabilities, by subtracting from 1 the sum of all other transition probabilities out of a given
state.
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Figure 2.10: All possible combinations of events leading to transitions between the three an-
cestry states of the hidden Markov model. “A” and “B” denote chromosomes derived from
ancestral populations A and B, and the three states AA, AB, and BB model regions where an-
cestry is homozygous from population A, heterozygous, and homozygous from population B,
respectively (AB and BA are represented by same state, but are shown separately here to clarify
that the ancestry of both separate chromosomes must be considered when computing proba-
bilities). The other columns denote possible recombination-related events on the two parental
homologues of a given chromosome (henceforth “homologue 1” and “homologue 2”). A “Y”
in the R1 column signifies that recombination took place at a given base on chromosome homo-
logue 1 in the time since admixture, and a “Y” in the R2 column signifies that recombination
took place at this base on chromosome homologue 2. C1a and C1b refer to the ancestry of
the bases on chromosome homologue 1 immediately before and after the recombination event,
if it happened; C2a and C2b refer to the ancestry of the bases on chromosome homologue 2
before and after recombination. Z indicates that the same ancestral recombination event, which
happened in the time since admixture, was sampled twice in the same individual (once on chro-
mosome homologue 1 and once on chromosome homologue 2). The parameter g is the number
of generations since admixture, r is the recombination probability per site per generation, as-
sumed to be 1 cM/Mb or 10−8 per site, and z is the probability of resampling the same ancestral
recombination event twice in one individual, according to genetic drift approximated by the
Wright-Fisher model.

86



Chapter 3

A method for fast, heuristic ancestral

recombination graph inference

In this section, I describe a new algorithm for quickly inferring an ancestral recombi-

nation graph (ARG) over a set of phased haplotypes. In addition to many other applications, an

ARG can be used to map ancestry across hybrid or admixed genomes. The algorithm I present

here is demographic model-free and uses only parsimony (in mutations as well as ancestral re-

combination events) as a guiding principle. I then demonstrate its use on simulated genomes

and find that it produces trees that are 80-90% accurate on average. It scales to run on thou-

sands of haplotypes, although more trees contain ambiguities (polytomies) as more haplotypes

are added.
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3.1 Background

Many methods have been developed for mapping ancestry across hybrid or admixed

genomes. S*, a statistic summarizing linkage between SNPs, has been used to detect [154],

map [214], and test the existence of [211] recent archaic hominin ancestry in modern humans,

without the need for an archaic hominin reference genome. Gene tree topologies and branch

lengths have been used for the same purpose [62, 4], although such approaches have produced

false positive results [97, 122]. Other studies have taken an ensemble approach, combining mul-

tiple locus-specific statistics using techniques like linear regression [37] or conditional random

fields [186].

Ancestral recombination graph (ARG) inference [59] provides an appealing alterna-

tive method for ancestry mapping, with higher resolution and fewer built-in assumptions. An

ARG is a series of trees, mapped to individual sites, over all phased haplotypes in a genomic

data set. Ancestral recombination events, or sites at which chromosome segments with differ-

ent histories were joined together by historical recombination, form boundaries between trees.

Each ancestral recombination event manifests as a clade of haplotypes, all of which descend

from the first ancestral haplotype to possess it, moving from one position in the tree upstream

of the event to a new position in the downstream tree [200] (Fig. 3.1). ARGs are complete

descriptions of phylogenomic data sets and present for recombining genomes what simple trees

present for nonrecombining ones. As prior techniques for ancestry mapping can be thought of

as summaries of the ancestral recombination graph, higher resolution ancestry maps could be

produced if the ARG were known.
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B C

A

Figure 3.1: A: example showing ARG inferred by parsimony. Columns are variable sites;
shaded cells denote shared derived mutations. Red-highlighted sites fail the four haplotype test
with other red- 5 highlighted sites (shown by brackets), vertical dotted red lines mark ancestral
recombination breakpoints. Site numbers mark clades they tag in the trees, and red arrows show
ancestral recombination events. B: example of a recombination event joining together the blue
haplotype upstream of the break point (dotted line) and the red haplotype downstream of the
breakpoint. Location of the blue and red haplotypes in a consensus tree are shown above. C:
how the daughter haplotype produced in B will appear in an ARG: within the blue haplotypes
clade upstream of the recombination breakpoint and in the red haplotypes clade downstream of
it.

Although software exists to infer ARGs, Existing ARG inference techniques often do

not scale well to genome-wide data sets with many samples. These include BEAGLE, which

was designed for smaller data sets [200], ArgWeaver, which uses powerful statistical techniques

that limit scalability [176], and Rent+ [131]. Furthermore, some techniques produce fully artic-
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ulated trees and therefore describe relationships not knowable from the data [176, 131]. Another

technique, Margarita, randomly samples histories at ancestral recombination event boundaries

and does not seek to produce parsimonious recombination histories [130]. A recently described

approach, tsinfer, overcomes many other techniques problems with scalability but does not in-

fer branch lengths and assumes that each mutation’s frequency is correlated with its age [83].

Since this assumption is violated at loci undergoing either admixture or selection, this technique

is poorly suited for mapping archaic ancestry in modern humans.

We present a new heuristic, parsimonious ARG inference algorithm called SARGE

(Speedy Ancestral Recombination Graph Estimator) that can run on thousands of phased genomes,

makes no prior assumptions other than parsimony, estimates branch lengths, and represents un-

certainty due to missing mutations as polytomies in output trees. We validate SARGE using

simulated data and demonstrate that it is as accurate as existing methods. We also demonstrate

that it is suited to the analysis of real data, using a set of 279 human genomes from the Simons

Genome Diversity Project panel [116] together with several genomes from archaic hominins

[165, 126, 163].

3.2 Results

We developed a parsimony-based ARG inference technique, SARGE, that uses ances-

tral recombination events to help articulate trees. Our method relies on the four-gamete test (or

four-haplotype test) [76], a simple test that identifies discordant clades between a pair of loci.

The crux of our technique is a simple algorithm for choosing the branch movement(s) capable
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of explaining the highest number of discordant clades. In short, if the full topology of two trees

adjacent in the genome is known ahead of time, one can compile the list of four-gamete test

failures between the two trees. Each four-gamete test failure then implies one of three possible

edits (or branch movements [200]) to transform the upstream into the downstream tree. One

can create a graph, where each four gamete test failure becomes two nodes (the upstream clade

and the downstream clade failing the test), and each possible tree edit is another type of node.

For each pair of nodes failing the four-gamete test, an edge is drawn from the upstream node,

through each candidate “edit” node, to the downstream node. This can result in up to 3 possible

paths between each pair of nodes (any candidate edit node that fails the four gamete test with

a node in either tree is omitted from the graph). Once the graph is drawn, the edit node with

the most edges represents the most parsimonious way to edit the first tree to transform it into

the second, or the edit that can explain the most four-gamete test failures. Under parsimony,

this edit serves as a solution to the problem of which ancestral recombination events happened

between two adjacent trees (Fig. 3.2).

To expand this algorithm to more general use, we created a graph data structure where

every node is a clade over a contiguous genomic region. Nodes keep track of genomic sites that

tag them and have genomic start and end coordinates, as do their edges to parent and child

nodes. Each node is only allowed to be compared with other nodes within a set distance of their

furthest upstream and downstream sites. When a node’s clade fails the four gamete test with

another node, candidate “edit” or moving nodes are created, with potential edges through them,

as described in the above algorithm (Fig. 3.3). The way our data structure is currently designed,

we require input data to be phased in advance.
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Figure 3.2: Example of algorithm for inferring branch movements between to trees known a
priori. For more information on terminology, see Methods. A: Two trees, which differ by one
branch movement. B: Clades from the two trees that fail the four haplotype test. Left column
shows clades from the first (upstream) tree and right column shows clades from the second
(downstream) tree; arrows indicate four haplotype test failures. C: Graph showing all possible
branch movements that could explain the four haplotype test failures shown in B. The left and
right columns are “tree” nodes, while the center column lists candidate γ clades. Colors indicate
types of four haplotype test failures: red paths are conditional on a failure being the α/α type,
green on it being α/β, and blue on it being β/β. In this case, a single candidate γ clade (C) has
the most edges and can explain all four haplotype test failures. This is interpreted as the clade
C moving from the smallest observed α clade in the first tree (CD) to the smallest observed
β clade in the second tree (CH). If no β clades from the second tree are observed, the branch
movement goes upward to a clade containing the union of all clades failing the four haplotype
test. If no α clades from the first tree are observed, the branch movement goes downward from
a clade containing the union of all clades failing the four haplotype test.

One benefit of our method is that it can infer clades in trees from shared ancestral

recombination events. This helps circumvent a foundational problem in ARG inference: un-

recombined segments of chromosomes often do not contain enough genetic diversity to fully

articulate trees. Therefore, even if the boundaries of all ancestral recombination events were
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Figure 3.3: Schematic of data structure. For more information on terminology, see Methods.
Top: rectangles are “tree nodes” representing clades in trees. Each has a set of haplotypes
(represented by letters A-G), and a start and end coordinate (blue numbers in brackets) deter-
mined by coordinates of SNP sites tagging the clade (yellow numbers in braces), along with
a propagation distance parameter (100 in this example). Parent/child edges (vertical arrows)
also have start and end coordinates determined by the nodes. Ovals are candidate nodes that
can explain four gamete test failures; colored edges indicate potential paths between tree nodes
through candidate nodes that could explain four gamete test failures (colors indicate types of
paths). The candidate node with the most edges is eventually chosen as the most parsimonious
branch movement, allowing for the inference of new nodes; the two trees at the bottom show
the “solved” ancestral recombination event with the branch movement marked in red and all
clades inferred without SNP data marked with yellow stars. The coordinates of the recombina-
tion event (blue numbers in brackets) are taken to be midway between the furthest-downstream
upstream site and the furthest-upstream downstream site involved in recombination.
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known a priori, many organisms would lack the level of nucleotide diversity necessary to

observe enough clades within each segment to build a complete tree. In the case of high-

heterozygosity organisms, one would observe more ancestral recombination events than in low-

heterozygosity organisms, thus making the lengths of un-recombined segments smaller and

leading to the same problem. In our method, when an ancestral recombination event is “solved,”

we can often infer the existence of clades implied by the recombination event, without observ-

ing them in the input SNP data (Fig. 3.3). In addition to helping articulate the trees, this process

also allows us to use sites upstream and downstream of the ancestral recombination event, but

not affected by it, to articulate the trees.

One other feature of our method is that it produces results that are always consistent

with the input data. This means both that it is fairly accurate and that it often avoids making a

statement when there is no evidence for any possible inference. This manifests in output data

as polytomies (clades with more than two children).

For the sake of quality control, we created a simulated data set consisting of haplo-

types drawn from a constant-size, unstructured population with a level of heterozygosity simi-

lar to that of modern-day sub-Saharan Africans. Our algorithm’s performance on this data set

should be a lower bound on actual performance, because we expect population structure to result

in more derived alleles and ancestral recombination events tagging groups, thus making ARG

trees easier to articulate. We sampled increasing numbers of haplotypes from our simulated

data set, inferring an ARG on each set of haplotypes and assessing performance. We find that

our algorithm is on average 84.76% correct (95% C.I. 84.75-84.77%), with both accuracy and

the number of polytomies increasing with the number of input haplotypes (Fig. 3.4). We also
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find that there is an asymptote to how articulated trees can become and how many clades can

be inferred from ancestral recombination events, given increasing numbers of input haplotypes

(3.5A,B). It is also reasonably fast, requiring approximately 1 hour to infer an ARG over 1 Mb

of sequence with 5000 input haplotypes (3.5D).
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Figure 3.4: A: Accuracy of SARGE on simulated data (defined as percent of all clades correct
according to the true ARG in the simulation), with increasing numbers of human-like haplotypes
from an unstructured population. Error bars are one standard deviation across 5 replicates. B:
Number of nodes per tree with increasing number of haplotypes in simulated data.

Next, we compared the performance of our ARG inference algorithm to two other

scalable, recently-published alternatives. We omitted ArgWeaver [176], often considered the
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Figure 3.5: Properties of SARGE performance on simulated data with a sub-Saharan African-
like level of heterozygosity, constant population size history, and no structure. Points are means;
error bars show one standard deviation. A: Tree articulation as a percent of all nodes possible
(given the number of haplotypes), with increasing number of haplotypes. B: Percent of all clades
(across all trees) inferred from solving recombination events (rather than shared mutations).
C: Number of trees across the chromosome with two children of the root node (no root-level
polytomies). D: Execution time as a function of the number of input haplotypes. Real data,
where SNPs and recombination events cluster in the genome, is likely to increase execution
time.

state of the art, from this analysis because it does not run efficiently on data sets of the size we

considered. We ran both tsinfer [83] and RENT+ [131] on our simulated data and compared

the performance of SARGE to both. We find that SARGE produces the least-articulated but

most accurate trees of the three programs. Although it is slower than tsinfer, it is orders of

magnitude faster than Rent+ (Fig. 3.6). Given that tsinfer does not infer branch lengths and
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makes an assumption that is violated in cases of admixture and selection, we believe SARGE

to be a useful alternative method for exploring data sets of similar size.

Next, we assessed the performance of SARGE on a real data set consisting of 279

human genomes [116] together with three archaic hominin genomes [165, 126, 163]. We were

able to infer an ARG over all haplotypes in approximately 5 days, using 24 cores and never

over 10 GB of RAM total. In this data set, an average 13.2% of clades SARGE inferred were

learned solely from ancestral recombination events and are not observed in the input SNP data.

Additionally, a genome wide tree inferred from shared ancestral recombination events agrees

well with one produced from SNP data (Fig. 3.7A), suggesting that its inferences are reliable.

We also observe that tree articulation is positively correlated with the mutation rate to recombi-

nation rate ratio, as expected (Fig. 3.7B; Spearmans rho = 0.40; p < 2.2e−16).

3.3 Discussion

We have presented a new ancestral recombination graph inference algorithm that

scales to run on hundreds (or thousands) of input haplotypes and produces results that are

always consistent with input data. Our algorithm is slower than tsinfer, but it provides data

(branch lengths) unavailable using that technique, and it achieves greater accuracy by being

more conservative.

In addition to many other uses, ARGs present a promising new way to map ancestry

in hybrid genomes, as well as scan for evidence of selection. These two concepts could be

combined to look for cases of adaptive introgression. One could also look for genomic regions
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where admixture is absent across a panel of genomes to infer the existence of hybrid incompat-

ibility loci.

One current shortcoming of our method is that it requires phased data. Although

experimental phasing techniques are becoming more widely available, another version of our

algorithm that incorporates phasing would be useful. This would require an expansion of the

data structure such that each clade would have multiple potential versions, each including or

excluding specific haplotypes based on potential phase configurations. One could then solve

ancestral recombination events in a way that minimizes their overall number. This would be a

large undertaking, but it would be useful.

3.4 Methods

We downloaded data from the Simons Genome Diversity Project (SGDP) panel [116],

along with two Neanderthal [165, 163] genomes and one Denisovan [126] genome. The Si-

mons data were downloaded in pre-phased form from https://sharehost.hms.harvard.

edu/genetics/reich_lab/sgdp/phased_data; phasing was done using SHAPEIT2 [33].

We note that the hosts of the data state that the genotypes they provide at sites lacking a homol-

ogous chimpanzee are unreliable; we discarded all such sites from analysis.

Existing variant call sets for the ancient samples were either created using a genotype

caller that did not account for ancient DNA damage [165, 126] or were subjected to a mappa-

bility filter that discarded many sites in the genome [163]. Because our method is sensitive to

genotype errors and seeks to make inferences at every possible site in the genome, we chose
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to re-call variants in these three genomes using the ancient DNA-aware genotype caller snpAD

version 0.3.0 [162]. For all snpAD runs, we required a minimum base quality of 25 and treated

different types of libraries separately, separating UDG-treated and non-UDG treated libraries in

the case of the Vindija Neanderthal, and separating single-stranded and double-stranded library

data for the Altai Neanderthal and Denisovan.

Although the SGDP data were already phased, phasing posed a challenge for the

Neanderthal and Denisovan data, for which there is no reference panel and for which DNA is

fragmented into short segments. Fortunately, the comparatively low nucleotide diversity in these

archaic hominins results in the presence of long runs of homozygosity, which are phased by def-

inition. As an unbiased first step, we performed read-backed phasing using WhatsHap version

0.16 [145] (with default parameters, plus ignore-read-groups). Before filtering SNPs for

quality and coverage, this phased 722,828 of 11,746,838 heterozygous sites (6.2%) in the Altai

Neanderthal, 346,992 of 48,083,469 heterozygous sites (0.7%) in the Vindija Neanderthal, and

514,575 of 33,951,346 heterozygous sites (1.5%) in the Denisovan. Many of the remaining,

unconfidently phased heterozygous sites were later removed from analysis, however: after fil-

tering our data, we were left with only 1,677,774 of 49,876,210 total SNPs (3.4%) for which at

least one archaic hominin individual was heterozygous and not phased by read-backed phasing.

Following read-backed phasing, we merged archaic hominin VCF files (using bcftools

merge from bcftools version 1.8 [101]) and then phased the merged files using Eagle2.4 [110],

with the 1000 Genomes Project data [2] as a reference panel. We used Eagle2s default param-

eters, but specified that it should not impute missing data (–noImpMissing) and that it should

output alleles that it could not phase (–outputUnphased). After this, we randomly assigned both

99



alleles at every unphased heterozygous site to one or the other haplotype. Although this deci-

sion, along with the use of a modern human reference panel, undoubtedly introduced haplotype

switch errors, we deemed this preferable to excluding sites that were not confidently phased

(which would require us to exclude data from all of the Simons Genome Diversity Project

individuals at the same sites). To mitigate problems arising from this decision, we avoided per-

forming any haplotype-specific analyses on the archaic hominin genomes. When creating maps

of archaic hominin ancestry in modern humans, for example, we track only whether a modern

human haplotype is in a clade with one or more archaic hominin haplotypes at each site, but not

which specific archaic hominin haplotype is in the clade.

We merged the phased archaic hominin files with the SGDP data, using bcftools

merge with the missing-to-ref option, and then used bcftools norm to remove duplicate

alleles (-d). To avoid mis-identifying all SGDP samples as homozygous reference at sites that

were originally excluded from the SGDP data set, we limited the variant call set for each chro-

mosome to the sites between the first and last site in the SGDP data on that chromosome. To

mitigate the same problem, we also removed any site for which all non-reference alleles in our

SGDP data were private to archaic hominins, but for which non-reference alleles were present

in modern humans within the 1000 Genomes data set [2]. We then discarded all sites for which

any individual had a missing genotype or genotype quality below 25 or for which any archaic

sample fell within the upper or lower tail of its genome-wide coverage distribution (extracted

from the VCF file). The allowed coverage ranges (determined by eye) were 23-70X for the

Altai Neanderthal, 10-43X for the Denisovan, and 10-47X for the Vindija33.19 Neanderthal.

Finally, we polarized our variant call set into ancestral and derived alleles, using the
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chimpanzee reference genome panTro4 [25] (mapped to hg19 by the UCSC Genome Browser

team [21] and downloaded in AXT format) as an ancestral sequence, discarding any variant that

was an indel, had more than two alleles, or lacked a known chimpanzee homolog. We chose

panTro4 as an ancestral sequence rather than a composite ancestral sequence as some other

studies have done (e.g. [36]) because it allowed us to more easily estimate branch lengths, at

the cost of discarding some sites. Additionally, because our approach assumes the infinite sites

model of mutation, we excluded all CpG dinucleotide sites from analysis, as methylated cy-

tosines in CpG dinucleotides are highly mutable and are thus more likely than other nucleotides

to undergo repeated mutations [41].

3.4.1 Ancestral recombination graph inference

We developed an ancestral recombination graph inference program called SARGE

(available at https://github.com/nkschaefer/sarge), which is optimized for speed and

low memory usage, in addition to making minimal model assumptions. SARGE assumes parsi-

mony and the infinite sites model and uses the four gamete test [76] as a central insight. SARGE

avoids using statistical techniques to smooth branch lengths or infer clades, opting instead to

describe only that which can be inferred directly from the input data. The result is a set of trees

that contain polytomies and have relatively low-resolution branch lengths.

Our algorithm centers on the observation that a single tree cannot contain two clades

that share members unless one is a superset of the other. We assume that every shared derived

allele in our data set defines a clade. It has been shown that, under this assumption, pairs of sites

for which the inferred clades share members, but for which neither is a superset of the other,
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mark ancestral recombination events, or breakpoints between different trees. This is referred to

as the “four haplotype test” or “four gamete test” [76, 200]. One could use this technique to map

ancestral recombination events, which mark boundaries between trees, articulate trees using the

sites within these boundaries. In practice, however, this can only produce minimally articulated

trees. In the case of organisms with low nucleotide diversity, this is because there will not often

be enough polymorphic sites between ancestral recombination breakpoints to observe many of

the possible clades per tree (Fig. 3.1). In the case of organisms with high nucleotide diversity,

however, it will be possible to detect far more ancestral recombination events, thus making the

size of “bins” between ancestral recombination breakpoints smaller and leading to the same

problem.

Our algorithm therefore seeks to infer all relevant information about each ancestral re-

combination event. An ancestral recombination event can be conceptualized as a branch move-

ment [200], and so each consists of a set of haplotypes moving from one clade in an upstream

tree into a new clade in a downstream tree. Given two clades that share members, but for which

neither is a superset of the other (henceforth described as a failure of the four haplotype test),

and assuming that this four haplotype test failure describes only one ancestral recombination

event, there are then three possible branch movements than can explain it (Fig. 3.8). We refer

to the clade in the upstream tree from which a subclade moved as α, the clade in the down-

stream tree into which a subclade moved as β, and the subclade that moved positions as γ. Four

haplotype test failures are possible between the following sets of clades (with the clade in the

upstream tree listed first and the clade in the downstream tree listed second): α/α, α/β, and

β/β. In the case of an upward branch movement, all four haplotype test failures are α/α, and
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all four haplotype test failures are of the type β/β in the case of downward branch movements.

The members of the moving clade γ can then be inferred once the type of four haplotype test

failure is known. Denoting the members of the upstream clade as U and the members of the

downstream clade as D, γ contains U \ D in the α/α case, U ∩ D in the α/β case, or D \ U in

the β/β case.

3.4.2 Inferring branch movements between two trees

With this insight, we developed a simple algorithm to infer the most parsimonious

ancestral recombination event (branch movement) between two trees, if the trees are known a

priori and fully articulated. First, all clades in the upstream tree are compared to all clades in

the downstream tree to collect four haplotype test failures. We then create a graph with a node

for every upstream or downstream clade involved in a four haplotype test failure. Then, for each

pair of nodes (U, D) failing the four haplotype test, where U is the set of haplotypes belonging

to the upstream clade and D is the set of haplotypes belonging to the downstream clade, we

create three nodes representing candidate γ clades: U \ D, U ∩ D, and D \ U. Each of these

candidate γ nodes is added to the graph only if it does not fail the four haplotype test with any

clade in the upstream or downstream tree. Additionally, if the node already exists, it is retrieved

from the graph rather than created anew. For each four haplotype test failure, we then create

edges connecting the upstream and downstream node through an intermediate candidate γ node;

these edges store the type of four haplotype test failure (α/α, α/β, or β/ β), conditional on the

candidate γ node in the path.

Once all paths have been added, the candidate γ node with the most edges is chosen
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as the most parsimonious branch movement explaining the data (Fig. 3.2). If the chosen γ node

is connected to both α nodes in the upstream tree and β nodes in the downstream tree, then the

branch movement is inferred to be lateral; the node moved from the smallest upstream α to the

smallest downstream β. If the γ node is not connected to any downstream β nodes, the branch

movement is inferred to be an upward movement from the smallest upstream α clade to a clade

containing the union of all clades connected to the chosen γ node. If the γ node is not connected

to any upstream α nodes, then the branch movement is inferred to be a downward movement

from a clade containing the union of all clades connected to the chosen γ node to the smallest

downstream β node. If multiple γ are tied, then there are multiple equivalent ways to describe

the same branch movement.

After a given γ is chosen, the set of four haplotype test failures is revisited in case

multiple branch movements are required to explain the data. If for a given set of clades U and

D, the chosen γ equals U \ D, U ∩ D, or D \ U, then U and D are removed from consideration.

Otherwise, new candidate γ nodes are created from the clades U \ D \γ, (U ∩ D) \γ, and D \

U \γ. The graph is then rebuilt using remaining four haplotype test failures, and another most

parsimonious γ is chosen. This process is repeated until there are no four haplotype test failures

remaining.

3.4.3 General case algorithm

Extrapolating this approach to ARG inference poses several problems. First, it cannot

be known a priori which clades belong together in trees. Grouping clades together into upstream

and downstream sets is therefore a difficult problem that we solve by exploring many possible
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groupings and bound using heuristic assumptions (see Heuristic). Second, many of the clades

that could inform ancestral recombination events will be unobserved, if they are not tagged by

mutations at sites in the data set.

Knowing this, we infer ancestral recombination events using the available mutations

and then use these inferred ancestral recombination events to infer clades that they imply (Fig.

3.5B). Namely, we assume that γ clades should exist as clades in the ARG, whether or not they

are tagged by mutations, because the haplotypes in γ share at least one ancestral recombination

event. All subclades within the upstream α clade, with the γ clade haplotypes removed, must

also exist as clades in the downstream tree. Likewise, all subclades within the downstream β

clade, with the addition of γ haplotypes, must also exist in the upstream tree. Finally, in the

case of an upward or downward branch movement (inferred by the absence of any β clades or

α clades in the four haplotype test failures, respectively), the union of all clades failing the four

haplotype test should exist as a clade in the ARG.

The other key component of our algorithm is a “propagation distance” parameter, p.

This parameter describes how far upstream and downstream (in physical distance) each sites

clade is allowed to communicate its existence. Because the all-versus-all clade comparisons

required by our algorithm would become very computationally expensive without knowing a

priori which clades belong to adjacent trees, this parameter helps bound the number of com-

parisons and thus the execution time. It also allows us to avoid storing an entire ARG over a

chromosome in memory at once. As we read new sites into memory, we can identify nodes

sufficiently far away upstream to be unaffected by the new data. We can then “solve” ancestral

recombination events for those upstream nodes, and other nodes even further upstream, whose
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ranges leave them unaffected by the newly-solved recombination events, can be written to disk

and erased. Because errors and violations of the infinite sites model (such as back-mutations)

invariably exist, this parameter has the extra benefit of limiting how far along a chromosome

erroneous data can propagate (although a cascade of incorrect clades inferred by recombination

could hypothetically propagate errors outside of the range of the original, erroneous node).

This leads us to define a graph containing two types of nodes: “tree nodes,” which are

part of the ARG, and “recombination nodes,” which represent candidate γ clades for unsolved

ancestral recombination events. Each tree node represents a given clade over a contiguous

genomic span and has a start and end coordinate, a set of positions of SNPs that tag it, and

a set of other sites at which it was inferred to exist as part of a recombination event. Tree

nodes have parent/child edges, also with start and end coordinates, and there is a single root

node that spans the entire chromosome. Node range coordinates are initially set to the furthest

upstream site owned by the node minus the propagation distance, up to the furthest downstream

site owned by the node, plus the propagation distance. When a node encounters another node

with which it fails the four haplotype test, however, its coordinates are adjusted either its

end coordinate is set to the furthest-downstream site at which it is known to exist, or its start

coordinate is set to the furthest-upstream site at which it is known to exist. Nodes also can

have recombination edges, which point to nodes with which they fail the four haplotype test,

with paths through recombination nodes (Fig. 3.3). These edges are analogous to the edges

described in the two-trees algorithm (Fig. 3.2). When a recombination event is solved, all

nodes implied by the recombination event are created as tree nodes in the ARG (Fig. 3.3), with

“solved” recombination edges describing the inferred recombination event, to avoid creating
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redundant recombination events in the future. Furthermore, when no possible γ node explaining

a four haplotype test failure can exist (i.e. all three possible clades fail the four haplotype test

with existing ARG nodes within the ranges over which they must exist), we add “unsolvable”

recombination edges connecting the two nodes that fail the four haplotype test. These edges

allow us to adjust start and end coordinates of the nodes without inferring the branch movement

that separates them.

The propagation distance parameter p allows us to bin the ARG into regions 2*p bases

wide, each of which undergoes a different process simultaneously. Denoting the coordinate (in

base pairs) of the most recently-read site in the input file as c, ARG nodes whose range ends

within the range [c - 2*p, c] are subject to gain new parents, children, and/or recombination

edges from comparison with newly-read sites. ARG nodes whose range ends in the bin [c

4*p, c-2*p), however, can no longer be affected by new sites read from the input file and are

thus candidates to have their ancestral recombination events solved via the ARG version of the

two trees algorithm. ARG nodes whose ranges end in the bin [c 6*p, c-4*p) cannot share

recombination edges with nodes in the bin [c 4*p, c-2*p) and thus are candidates to be written

to disk as trees. Finally, nodes with ranges that end upstream of c 6*p cannot affect the topology

of branch lengths of trees at sites in the bin [c 4*p, c-2*p) and thus can be deleted. We note

that this scheme is designed primarily for the sake of memory and time efficiency and that it is

not perfect; namely, any time a recombination event is solved,” new nodes can be created that

will create new parent/child relationships and recombination edges outside of the bin [c 2*p,

c]. It would be relatively straightforward to create a version of SARGE that keeps the entire

ARG in memory. This would result in the inference of more ancestral recombination events and
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therefore potentially fewer polytomies in output trees at the cost of higher execution time and

memory usage. For the sake of this study, however, we note that limiting the number of clades

we infer by binning the ARG this way makes our inferences conservative and ensures that our

results do not over-interpret the SNP data.

We determine branch lengths when writing trees. Since each tree is defined only at a

single site, we determine a nodes branch length by counting the number of mutations it owns

within the range defined by the edge to its parent at the current site. If this parent/child edge

expands beyond the range [s− p,s+ p], where s is the current site and p is the propagation

distance, we limit to mutations found only within that range. We then divide the number of mu-

tations by the number of bases in the range over which they were collected. In the case where a

parent/child edge is valid only at a single site, this will lead to the extremely large branch length

of 1. To help compensate for this, when we load trees from an output file, we scale each branch

length by dividing it by the total height of the tree, both above and below that branch length.

This puts all branch lengths on a scale between 0 and 1. When all fixed differences between

the ancestral sequence and the reference genome are included as sites that can contribute to the

root branch length in the ARG (as in this study), these branch lengths can then be multiplied by

two times the divergence time between the ancestral and reference genomes to get approximate

(low resolution) branch lengths. We note that many clades in our ARG have branch lengths of

zero, meaning that no mutations were observed on those lineages. We also note that the number

of times a given node serves as a clade in an ancestral recombination event also provides a

measure of age. Although we store these values, we do not use them when computing branch

lengths in this study, since it is difficult to reconcile time measured using two different types of
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units (mutations and shared recombination events). Thus, clades inferred solely from ancestral

recombination events will have branch lengths of zero.

3.4.4 Simulations

For the sake of assessing our and other ARG inference programs, we simulated sam-

pling an increasing number of haplotypes from a single panmictic population with no history

of growth or bottlenecks. We did this using msprime [82]. We chose a recombination rate of 1

centimorgan per megabase and a mutation rate of 1 ∗ 10−9 per year with a 25-year generation

time, giving a per-generation mutation rate of 2.5 ∗ 10−8. Additionally, we chose a heterozy-

gosity value of 10.1 per 10,000 bases, comparable to the rate in modern sub-Saharan Africans

[165]. We simulated 1 megabase of sequence per run, running 5 replicates each of simula-

tions with 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, and 5000

haplotypes. The complete command used was mspms X 1 -t 1010.0 -r 404.0 1000000

--precision 6 T, where X is the number of haplotypes. Whenever there were duplicate base

positions in a simulated data set, we ignored the allele data at all but the first occurrence of each

position. We then ran SARGE on each data set with a propagation distance of 25,000 bases,

along with tsinfer [83] (converting its output to a sequence of trees linked to specific variable

sites) and Rent+ [131] with the t option to infer branch lengths. For each inferred tree, we

loaded the tree output by msprime for the same variable site and defined the percent of clades

correct as the fraction of all clades in all inferred trees that existed as clades in the msprime tree

at the same sites. Other metrics were straightforward to compute, including the Kendall-Coljin

distance, which was calculated as described in [85].
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3.4.5 Plotting tree articulation against mutation/recombination rate ratio

We binned the genome into 50kb blocks and measured tree articulation as the mean

number of nodes per tree, across all trees within each window. We then measured the muta-

tion rate by sampling the branch length of the root node of each ARG tree (this is the num-

ber of mutations separating all hominin lineages from the chimpanzee genome, collected over

2*(propagation distance) bases and reported in units of mutations per base). Assuming 6.5 mya

for the hominin-chimpanzee split and a 25-year generation time, we transformed numbers of

mutations into a per-site, per-generation mutation rate by dividing by 13,000,000 divided by

25 and taking means across windows. Finally, we took the mean recombination rate in cM/Mb

from the sex-averaged Oxford map contained within Eagle2 [110] and converted it to Morgans

per base, to get a value in the same units.
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Figure 3.6: Comparisons of SARGE to two other ARG inference programs, using a simulated
data with sub-Saharan African-like heterozosity, constant population size, and no structure. In
each comparison, error bars represent one standard deviation across 5 replicates and ARGs were
inferred across data sets with increasing numbers of haplotypes. A: percent of nodes correct,
given the true ARG from the simulation. B: Number of nodes per tree. C: Kendall-Coljin
distance [85] from true trees, without considering branch lengths. This metric was used in
another study [83] and is negatively affected by polytomies. D: Execution time. Since tsinfer is
a python module, its execution time does not include writing data to disk, while the other two
execution times do. E: Same as D, but with Rent+ excluded.
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Figure 3.7: A: Genome-wide UPGMA trees from SNP data (top and bottom) against similarity
matrix from shared recombination events inferred by SARGE. Dark red (similar) groups are
Native Americans and Papuans. Outliers (dark lines) are S Naxi haplotypes; another study
reported likely improper phasing in this sample [83]. B: Number of nodes per tree against the
ratio of mutation rate to recombination rate in 50kb windows.

Figure 3.8: Different types of four haplotype test failures. In each, the γ clade is highlighted in
purple, α in red, and β in blue. A: Lateral branch movement. Four haplotype test failures of type
α/α, α/β, and β/β are observed. B: Upward branch movement. Only α/α four haplotype test
failures are observed. C: Downward branch movement. Only β/β four haplotype test failures
are observed.
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Chapter 4

Insights into human history from ancestral

recombination graph inference

In this section, I apply the algorithm described in the previous chapter to a panel of

human genomes, along with several archaic hominin genomes. I use the results to describe the

demography of admixture between humans and archaic hominins, and I also explore possible

functional consequences of admixture. Finally, I describe regions of the human genome free of

both admixture and incomplete lineage sorting with archaic hominins, which may contain some

of the key genes involved in human speciation.

4.1 Background

Genomic studies have made clear that admixture between subpopulations and hy-

bridization between species are common; this holds true in our own species [189]. One conse-

quence of this is that species divergence must proceed in the face of periods of gene flow [3].
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For this to happen, hybrids must have reduced fitness relative to non-hybrids. This can result

from the accumulation of inter-species genetic incompatibilities; hybrids that inherit different

species-specific alleles at these loci will have reduced fitness [224, 225]. Prior studies examin-

ing Neanderthal and Denisovan ancestry at specific loci in modern humans have seen evidence

of this process. In general, genomic regions depleted for archaic ancestry in modern humans are

enriched for genes [186, 214, 213, 187], and introgressed archaic alleles appear to be expressed

at lower levels in the brain and testis [119]. Of all loci contributing to hybrid incompatibility,

a subset should represent human-specific lineages that arose around the time of speciation. A

catalog of these lineages would help illuminate not only where in the genome hybrid incompat-

ibilities arose, but which specific mutations were important in distinguishing modern humans

from our archaic relatives.

Although a variety of techniques have been used to map ancestry across genomes of

hybrid individuals, ancestral recombination graph (ARG) inference provides the best opportu-

nity to pinpoint the true boundaries of ancestry segments in the genome (rather than binning

the genome into windows). Branch lengths in ARG trees also enable further study of genomic

regions of interest, such as admixed regions. One could use lengths of haplotypes and branch

lengths within them to pinpoint episodes of selection, for example.

We ran our ARG inference program, SARGE, on a set of 279 phased human genomes

from around the world [116], with the addition of two high-coverage Neanderthal genomes

[165, 163] and one high-coverage Denisovan genome [126]. We then used the results to create

human haplotype-specific archaic ancestry maps and uncover instances of both adaptive intro-

gression and likely selection against introgressed archaic lineages.
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Group TMRCA (% ) Uncorr. TMRCA Min. TMRCA Max. TMRCA
Denisovan 0.00511 66,500 137,000 157,000

Vindija33.19 0.00469 61,000 111,000 126,000
Altai 0.00498 64,700 185,000 195,000

Neanderthals 0.00985 128,000 213,000 226,000
Archaic hominins 0.029 377,000 455,000 471,000

Humans 0.0364 473,000 473,000 473,000
All hominins 0.0492 639,000 640,000 640,000

Table 4.1: Times to most recent common ancestor (TMRCA) of various given groups, averaged
across all sites in the ARG. Values given in years assume 6.5 million years human-chimpanzee
divergence (and thus 13 million years for mutations to accumulate). First TMRCA value is given
as a percent of human-chimp divergence. Corrected values use approximate branch shortening
values from [163] (minimum and maximum values given are based on minimum and maximum
values in the paper). The TMRCA of all humans has only one value because there is no need
to correct for branch shortening. Since more sites were included in this analysis than in previ-
ous studies focused on genome-wide statistics (i.e. no mappability filter was applied), archaic
branch lengths might be slightly inflated from false singletons inferred from DNA damage.

4.2 Results

Having judged our results reliable (see Chapter 3), we first calculated the time to most

recent common ancestor (TMRCA) of all groups within the ARG data set. We did this by taking

the mean of the TMRCA of each group across all trees, genome-wide. Since these values have

been estimated by others, this provided a simple test for the accuracy of our results. We find

that the values we calculated agree with prior estimates (Table 4.1).

We used our ARG to produce haplotype-specific maps of archaic hominin ancestry

in modern humans by first scanning for clades that grouped modern human haplotypes with

one or more archaic hominin haplotypes, to the exclusion of other modern human haplotypes.

To reduce false positives produced by large polytomies, we used an outgroup consisting of the

most basal lineages of sub-Saharan Africans (Mbuti, Biaka, and Khomani-San) and required
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such clades to contain 10% or fewer outgroup haplotypes. We then disentangled admixture

from incomplete lineage sorting (ILS) using a technique designed to minimize cross-population

variance in the amount of incomplete lineage sorting (Appendix B, Fig. 4.1). This gave us

genome-wide Neanderthal ancestry estimates close to, but lower than, those produced using an

estimator based on the genome-wide D-statistic [56, 35] (Fig. 4.2A, Table 4.2). In the case of

Denisovan ancestry, however, we underestimated the proportion in Oceanians by 2% relative

to the D-statistic, with a relatively large amount ( 0.3%) detected in other populations (Fig.

4.2A, Table 4.2). One possible explanation for this is that many clades in which Oceanians have

Denisovan-like ancestry also tend to include outgroup haplotypes. This could be because the

outgroup haplotypes possess ancestry from other, as-yet-unsequenced archaic hominins (here-

after referred to as “super-archaic” ancestry) [62, 37], which are about as diverged from the

sequenced Denisovan genome as the source of Denisovan-like ancestry in Papuans. Some of

the haplotypes we call Denisovan might be of Neanderthal origin, due to incomplete lineage

sorting and admixture among the archaic lineages [165].

The distribution of Neanderthal ancestry in modern humans largely agrees with prior

studies. Considering only high-confidence (p < 0.001) Neanderthal-like haplotypes, the mean

TMRCA to Neanderthal across each is consistent across populations, centered around 63 kya

in all populations except those in Africa (Fig. 4.2B, Table 4.3, Fig. 4.3). This suggests that

available Neanderthal genomes are good models for the introgressing Neanderthal(s) and that

introgression probably took place around the time of the out-of-Africa migration. We also

detect a number of Neanderthal-like haplotype blocks in sub-Saharan African populations, with

the highest amount in Somali (0.8%) and the lowest in Mbuti (0.3%) genomes. TMRCAs to

116



H H HN H H HN

A

AdmixtureILS

Admixture

ILS

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ●

●
●

● ● ●
●

● ●
●

●
●

●
● ● ● ● ● ●

●
● ●

● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
● ●

● ●
●

●
● ● ● ● ●

●
●

● ●
●

●

● ●
●

●
●

●
●

● ● ● ● ● ● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
p−value cutoff

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

C

ILS

Admixture
D

B

Admixture

ILS

ILS

Admixture

Figure 4.1: Separating admixed haplotypes from incomplete lineage sorting (ILS). A: cartoon
of properties expected of ILS vs. admixed haplotypes. B: Using the true ARG from a simulation
involving Neanderthal admixture into modern humans 50kya, ILS is separable from admixture
by considering both the TMRCA to admixer and the length of the haplotype. C: In real data,
these two distributions are not separable. We computed an admixture p-value for each haplotype
and binned haplotypes into admixture and ILS based on varying p-value cutoffs, and for each
bin plotted the coefficient of variation (standard deviation divided by mean) in the overall extent
of ILS and admixture across SGDP populations. We expect the true coefficient of variation in
ILS to be low across populations, so we chose a p-value cutoff that minimized this value (p =
0.16). D: Real data from the SGDP data set binned using the p-value determined in C.

Neanderthal appear to be nearly twice as old in the basal African lineages used as an outgroup

as in non-African populations (113 kya), with TMRCAs to Neanderthal in the rest of sub-

Saharan Africa (106 kya) intermediate between the two. This appears to be the result of two

different components, one unique to Africa and fairly diverged from sequenced Neanderthal

genomes, and the other shared predominantly with West Eurasian genomes and likely the result

of ancient back-to-Africa migration [152]. This is further supported by our observation that the
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Figure 4.2: A: Genome-wide percent Neanderthal, Denisovan, and ambiguous (either Nean-
derthal or Denisovan) across SGDP populations, using the ARG and the D-statistic. D-statistic
calculations considered only one archaic population at a time as introgressor and thus does not
detect ambiguous ancestry and also might count some Denisovan ancestry as Neanderthal, and
vice-versa. B: Times to most recent common ancestor of confidently introgressed (p < 0.001)
segments across SGDP populations. Conversions assume 6.5 mya human-chimpanzee diver-
gence time and branch shortening values from [163]. C: Mean frequency in all humans of
each confidently introgressed (p < 0.001) segment across SGDP populations (top panel) and
mean within-population frequency of each segment across SGDP populations (bottom panel).
D: Sharing (Jaccard statistic) of Neanderthal-introgressed haplotypes (matrix). Haplotypes are
ordered by a UPGMA tree using input SNP data (top and left). Populations are colored the
same way as in B and C, and self-self comparisons are set to 0 similarity in order to not saturate
the color scale. E: Sharing (Jaccard statistic) of Denisovan-introgressed haplotypes (matrix).
Haplotypes are ordered by a UPGMA tree using input SNP data (top and left).
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Population Neanderthal Denisovan ambiguous Nea. freq. Den. freq.
Africa 0.62% 0.42% 0.16% 4.00% 4.40%
Africa2 0.30% 0.27% 0.09% 2.50% 1.80%
America 1.60% 0.34% 0.15% 6.90% 7.90%

CentralAsiaSiberia 1.60% 0.34% 0.16% 6.10% 7.30%
EastAsia 1.60% 0.35% 0.16% 5.80% 6.20%
Oceania 1.70% 1.00% 0.30% 4.90% 3.10%

SouthAsia 1.50% 0.34% 0.16% 5.00% 7.10%
WestEurasia 1.40% 0.30% 0.15% 5.40% 13%

Table 4.2: Demographic parameters of Neanderthal and Denisovan admixture from ARG in-
ference. Genome-wide percents given are the percent of the genome assayed (excluding sex
chromosomes) classified as Neanderthal or Denisovan origin (or one of the two; ambiguous col-
umn), using a score cutoff chosen to minimize the cross-population variance in ILS (Appendix
B, Fig. 4.1). Frequencies are means of frequencies of individual admixed segments. Frequency
numbers reported are calculated using only confidently admixed haplotypes (p < 0.001) and
are the frequencies across all human haplotypes in the Simons Genome Diversity Project Panel.
Africa2 is a population of the most basal African lineages (Mbuti, Biaka, and Khomani-San)
which were used as an outgroup in which no more than 10% of haplotypes were allowed to be
admixed for any individuals in the data set were allowed to be called admixed.

highest percent of Neanderthal haplotypes in non-basal sub-Saharan Africans are shared with

West Eurasia (Fig. 4.7), that the highest percent of those in basal sub-Saharan Africans are

shared with other sub-Saharan Africans (Fig. 4.8), and that the mean TMRCA to Neanderthal

of African haplotypes shared with other populations is lower than that for haplotypes unique

to Africa (Fig. 4.15). We note that gene flow between these basal and non-basal sub-Saharan

African groups has already been documented [191], and therefore some of their Neanderthal-

like haplotypes could be of Eurasian origin as well.

Next, we computed the frequency across all humans of each high-confidence (p <

0.001) Neanderthal-like haplotype block and mapped the means of these frequencies across

human genomes in different parts of the world (Fig. 4.2C, Table 4.2, Fig. 4.4). We hereafter

refer to this value as the “global frequency” of an introgressed haplotype. Because bottlenecks
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Figure 4.3: Worldwide distribution of times to most recent common ancestor (TMRCA) to the
closest Neanderthal haplotype of Neanderthal-like haplotypes in modern humans. Haplotypes
are from the confident set (p < 0.001), and points are averages across all haplotypes within all
genomes from each location. Numbers are corrected for branch shortening, using the mean of
the values given for the two Neanderthal genomes in [163].

from migration should increase these frequencies, we expected to see the lowest frequencies

in places where introgression events took place. We observe low global frequencies in South

Asia (Fig. 4.2C), with global frequency increasing in a gradient from South Asia through East

Asia to the Americas (Fig. 4.4). A previous study similarly found Peruvians to carry the most

high-frequency Neanderthal alleles of all studied populations [170]. We interpret this to mean

that introgression likely took place near South or Southwest Asia, before most non-African

populations had formed, with admixed individuals migrating to the east and undergoing succes-

sive bottlenecks. This is supported by the observation that sharing of Neanderthal haplotypes

is relatively high within extant human populations, and especially so within the American and

Oceanian populations, which have undergone multiple founder events (Fig. 4.2D). We also ob-
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Figure 4.4: Worldwide distribution of frequencies of individual Neanderthal-like haplotypes
in modern humans. For each introgressed haplotype, its frequency in all humans worldwide
was computed, and these values were averaged across all haplotypes within all human genomes
from each geographic location.

serve low global frequency of Neanderthal-like haplotypes in sub-Saharan Africa; although we

cannot rule out the possibility that these are segments of incomplete lineage sorting (ILS) that

we falsely classified as admixture, it is possible that many of these haplotypes are the result of

population-specific instances of super-archaic admixture. In Oceania, where we also see low

global frequencies of Neanderthal-like segments, we suspect some Neanderthal-like haplotypes

are actually a result of Denisovan-like introgression, which is largely specific to that popula-

tion. This is supported by a slightly higher mean TMRCA to Neanderthal within Neanderthal-

like haplotypes specific to Oceanians than within Neanderthal-like haplotypes shared between

Oceanians and other populations (Fig. 4.15).

Denisovan-like ancestry segments appear more likely than Neanderthal-like segments

to have multiple origins. As in other studies, we find most Denisovan-like haplotypes in Ocea-
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Figure 4.5: Worldwide distribution of times to most recent common ancestor (TMRCA) to
the closest Denisovan haplotype of Denisovan-like haplotypes introgressed in modern humans.
Haplotypes are from the confident set (p < 0.001), and points are averages across all haplotypes
within all genomes from each location. Numbers are corrected for branch shortening, using the
mean of the values given for the Denisovan genome in [163].

nia (1.0% average), primarily in Papuans (1.2% average), with most Oceanian Denisovan-like

haplotypes unique to Oceanians (Fig. 4.12). We find that the mean TMRCA to Denisovan

in Denisovan-like segments is much higher than for Neanderthal-like segments, however, with

the highest value (in basal sub-Saharan African lineages) higher than the TMRCA of the two

Denisovan haplotypes genome-wide (Fig. 4.2B, Table 4.3, Table 4.1). Additionally, admixture

times estimated from haplotype lengths are less concordant with the TMRCAs to Denisovan

than these two values computed for Neanderthal-like haplotypes (Table 4.3). We take this to

mean that the available Denisovan genome is not a good model for the introgressor. We also

observe that the distribution of TMRCAs to Denisovan in Denisovan-like haplotypes is less

consistent across populations than for Neanderthal-like haplotypes (Fig. 4.2B). Notably, the
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Figure 4.6: Worldwide distribution of frequencies of individual Denisovan-like haplotypes in
modern humans. For each introgressed haplotype, its frequency in all humans worldwide was
computed, and these values were averaged across all haplotypes within all human genomes
from each geographic location.
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Figure 4.7: Percent of archaic-introgressed haplotypes in Africa (excluding Biaka, Mbuti,
and Khomani-San) shared with other SGDP populations. Africa2 consists of most basal sub-
Saharan African lineages (Mbuti, Biaka, and Khomani-San) used as an outgroup in which all
introgressed haplotypes were required to be < 10% frequency.
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Figure 4.8: Percent of archaic-introgressed haplotypes in basal African lineages used as an
outgroup (Biaka, Mbuti, and Khomani-San) shared with other SGDP populations.
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Figure 4.9: Percent of archaic-introgressed haplotypes in America shared with other SGDP
populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and
Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Figure 4.10: Percent of archaic-introgressed haplotypes in CentralAsiaSiberia shared with other
SGDP populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka,
and Khomani-San) used as an outgroup in which all introgressed haplotypes were required to
be < 10% frequency.
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Figure 4.11: Percent of archaic-introgressed haplotypes in EastAsia shared with other SGDP
populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and
Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Figure 4.12: Percent of archaic-introgressed haplotypes in Oceania shared with other SGDP
populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and
Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Figure 4.13: Percent of archaic-introgressed haplotypes in SouthAsia shared with other SGDP
populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and
Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Figure 4.14: Percent of archaic-introgressed haplotypes in WestEurasia shared with other SGDP
populations. Africa2 consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and
Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Figure 4.15: TMRCAs to Neanderthal for confident (p < 0.001) Neanderthal-like haplotypes
(left panel) and TMRCAs to Denisovan for confident (p < 0.001) Denisovan-like haplotypes
(right panel), corrected for branch shortening using values in [163] and plotted by whether
unique to a specific SGDP population or shared among multiple populations.
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Pop. Nea. TMRCA Den. TMRCA Nea. date Den. date
Africa 106 kya 161 kya 72 kya 82 kya
Africa2 113 kya 157 kya 80 kya 84 kya
America 63 kya 113 kya 68 kya 73 kya

CentralAsiaSiberia 62 kya 106 kya 67 kya 72 kya
EastAsia 62 kya 104 kya 67 kya 70 kya
Oceania 63 kya 109 kya 67 kya 72 kya

SouthAsia 63 kya 119 kya 64 kya 75 kya
WestEurasia 64 kya 133 kya 65 kya 83 kya

Table 4.3: Times to most recent common ancestor (TMRCAs) with admixers for confidently
introgressed (p < 0.001) Neanderthal and Denisovan-like segments, as well as dates estimated
using haplotype block lengths and assuming neutral evolution, with a 1 cM/Mb recombination
rate and 25 year generation time. Since the TMRCA to admixer and haplotype length were
both used to determine the scores of admixed segments and separate ILS from admixture, these
values are affected by the score cutoff chosen (p < 0.001) and should be treated cautiously.
Comparisons between populations should still be valid.

mean TMRCA to the Denisovan genome in Denisovan-like haplotypes is lower in genomes

from East Asia, Central Asia, and the Americas than it is in Oceania. The source of these

lower-TMRCA haplotypes appears to be East Asia: East Asia has more unique Denisovan-like

haplotypes than America or Central Asia (Fig. 4.9, Fig. 4.10, Fig. 4.11) and the mean TM-

RCA of Denisovan-like haplotypes unique to East Asia is notably lower than that of haplotypes

shared among multiple populations (Fig. 4.15; 82 kya vs. 108 kya). Although sampling bias

caused by the low overall number of Denisovan haplotypes could affect our results, these ob-

servations contradict the model of Denisovan admixture into Oceanians, followed by migration

of admixed individuals to mainland Asia [165, 166]. Our results agree, however, with a re-

cent study that inferred two pulses of Denisovan-like ancestry into modern humans, with one

component specific to mainland Asia and more closely related to the Denisovan genome than a

second component specific to South Asia and Papua [18]. Additionally, another prior study has
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detected a potential ancient ancestry component of unknown origin in East Asians [132]; this

may be related.

The mean global frequencies of individual Denisovan-like haplotypes are mostly con-

cordant with the model of Denisovan gene flow into Papuans, followed by subsequent migra-

tion: we see low frequencies of Denisovan-like haplotypes in Oceania, with a gradient of in-

creasing frequencies moving from East Asia to Central Asia and the Americas. We also see very

low frequencies for Denisovan-like haplotypes in sub-Saharan Africans, as with Neanderthal-

like haplotypes (Fig. 4.2C, Fig. 4.6). Furthermore, whereas population-specific frequencies of

Neanderthal-like haplotypes are fairly consistent, population-specific frequencies of Denisovan-

like haplotypes in mainland Asia are lower than in Oceania (Fig. 4.2C), suggesting that those

populations may have already been established when gene flow happened (either by admixture

with archaic introgressors or with a human population already carrying archaic ancestry). This

is further supported by the observation that mainland Asian and South Asian genomes share

Denisovan-like haplotypes much less than they share Neanderthal-like haplotypes (Fig. 4.2D-

E). The fact that contradictory inferences can be drawn from analyses of the TMRCA to the

Denisovan genome and the global frequencies of Denisovan-like haplotypes suggests that the

Denisovan-like haplotypes we detect might stem from multiple introgression events with dif-

ferent archaic hominins, all of which are somewhat, but not closely, related to the sequenced

Denisovan genome. Our observation of a small number of Denisovan-like haplotypes in West

Eurasia, highly shared within that population, and with high global frequency (Fig. 4.2C,E,

Fig. 4.6) also presents a mystery and might be the result of incompletely sorted haplotypes

mislabeled as admixture.
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We tested our maps of introgressed archaic hominin ancestry for overlap with various

genomic features, as well as with each other. We find that our Neanderthal and Denisovan an-

cestry maps significantly overlap each other (Table 4.4), possibly due to previously-documented

gene flow between Neanderthals and Denisovans [126]. We find depletion of Neanderthal an-

cestry at regulatory element binding sites, concordant with the observation that Neanderthal-

introgressed alleles are preferentially downregulated in humans [119]. Otherwise, we do not

find significant positional correlation or overlap between introgressed regions and genes or ex-

ons (Table 4.4), suggesting that much of the introgressed sequence might be randomly dis-

tributed. We do find nearly-significant enrichment of exons in Neanderthal-introgressed se-

quence, however, suggesting perhaps some cases of adaptive introgression. To locate the most

important cases of adaptive introgression, we sorted our confidently-called Neanderthal-like

and Denisovan-like haplotypes in decreasing order of length times global frequency. In order to

minimize the effect of random choices made in ARG inference, we removed any haplotype that

did not intersect a haplotype detected using an ARG inferred over a randomly chosen subset of

50 human haplotypes and all archaic hominin haplotypes. Because most long Denisovan-like

haplotypes have low global frequency, most outlier Denisovan-like haplotypes are short and

high-frequency (Fig. 4.16). Of the top five Neanderthal and top five Denisovan-like outlier

haplotypes, three contain transmembrane proteins in the TMEM family, a group with many

uncharacterized members which has also turned up in prior studies of archaic introgression

[171]. The top Neanderthal haplotype contains TMEM236, a transmembrane protein of un-

known function and MRC1L1 (MRC1), a mannose receptor that plays a role in the uptake of

HIV-1 particles by macrophages [204]. Other genes in the top five outlier Neanderthal-like
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Map Features Dist. P Proj. P
Nea. genes 0.884 0.745
Nea. exons 0.229 0.977
Nea. reg elt. 0.461 0.99736*
Nea. Den. 6.01E-03* 0*
Den. genes 0.682 2.51E-02
Den. exons 0.721 0.676
Den. reg elt. 0.781 0.782
Den. Nea. 0* 0 *

Table 4.4: Overlap of confidently-called (p < 0.001) Neanderthal and Denisovan haplotypes
with various genomic features. Genes are whole protein coding genes from Gencode [49], using
Ensembl version 94 on human genome version GRCh38 lifted over to GRCh37 coordinates.
Exons are for protein-coding genes from the same annotation. Regulatory element binding
sites are from the filtered double-elite” set in the GeneHancer database [48], obtained from
the UCSC Genome Browsers Table Browser utility [21]. Distance-based p-values are from the
“relative distance” Kolmogorov-Smirnov test and projection p-values measure overlap, both
implemented in the GenometricCorr R package [46]. Significant (p < 0.01 or p > 0.99) values
are marked with asterisks.

haplotypes include ZNF605 and ZNF26, both C2H2-like zinc finger proteins that serve as tran-

scription factors, BAZ2B, a transcription factor subunit [139], PPP2R5A, a component of a

protein complex that binds kinetochores and plays a role in the control of mitotic cell division

[158], and TMEM206, another transmembrane protein of unknown function. The top outlier

Denisovan-like haplotype contains the uncharacterized transmembrane protein TMEM248, and

other outlier Denisovan-like haplotypes include CNGA1, a cyclic GMP-activated cation chan-

nel involved in phototransduction by rod cells in the retina [228], HSD3B2, an enzyme involved

in catalysis of steroid hormones [183], and FAHD2B, a relatively uncharacterized gene that with

possible hydrolase activity.

To uncover biological processes that may have been acted upon by selection on in-

trogressed variants, we performed a Wilcoxon rank-sum test on Gene Ontology terms [1] an-
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Figure 4.16: A: Confident (p < 0.001) Neanderthal-like haplotypes that were also detected us-
ing an ARG inferred over a subset of the samples. The top five outliers (ordered by length times
frequency in all humans) are marked with the genes they contain (one contained no genes). B:
The top outlier Neanderthal haplotype (by length times frequency), showing 250kb upstream
and downstream and genes contained within. C: Confident (p < 0.001) Denisovan-like hap-
lotypes that were also detected using an ARG inferred over a subset of the samples. The top
five outliers (ordered by length times frequency in all humans) are marked with the genes they
contain (one contained no genes). B: The top outlier Denisovan haplotype (by length times
frequency), showing 250kb upstream and downstream and genes contained within. This region
also coincides with a Neanderthal haplotype detected in some populations.

notating genes that overlapped introgressed haplotypes, ranking each term by the frequency

in modern humans of its parent introgressed haplotype. Although this test did not consider

specific variants and thus is prone to false positives, we detected terms related to G-protein
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coupled receptor signaling, keratin, metal ion homeostasis, and immune processes for both

types of introgressed ancestry (Table 4.5, Table 4.6). In order to hone in on possible effects

of specific introgressed variants, we also compiled all single-nucleotide variants tagging these

introgressed haplotypes and intersected them with a catalog of significant GWAS hits from

many studies [115] (Table 4.7). As GWAS studies are focused on medically and socially rel-

evant traits, this is not an unbiased test, but it provides insight into phenotypic relevance of

introgressed variants. We find high-frequency ( > 1%) Neanderthal variants implicated in traits

related to immune dysfunction as well as nutrient levels, which agrees with the prevailing nar-

rative that many adaptively introgressed Neanderthal variants largely had to do with dietary

and immune adaptation to the Eurasian environment [171] but may be maladaptive to modern

lifestyles [197]; many of our GWAS hits are the same as those found in other studies [187]. In

the case of introgressed Denisovan variants, we do not find any significant GWAS hits at greater

than 1% frequency in modern humans.

p-value GO ID GO term

4.19E-14 GO:0050911 detection of chemical stimulus involved in sensory per-

ception of smell

7.49E-08 GO:0007186 G protein-coupled receptor signaling pathway

6.90E-05 GO:0060333 interferon-gamma-mediated signaling pathway

8.94E-05 GO:0061844 antimicrobial humoral immune response mediated by an-

timicrobial peptide

0.000146995 GO:0031424 keratinization

133



0.000167407 GO:0071280 cellular response to copper ion

0.000203636 GO:0007565 female pregnancy

0.000227352 GO:0010469 regulation of signaling receptor activity

0.000321707 GO:0006954 inflammatory response

0.000378327 GO:0071222 cellular response to lipopolysaccharide

0.000574185 GO:0070268 cornification

0.000739217 GO:0051281 positive regulation of release of sequestered calcium ion

into cytosol

0.00123207 GO:0006882 cellular zinc ion homeostasis

0.00124776 GO:0002684 positive regulation of immune system process

0.0014972 GO:0006397 mRNA processing

0.00153823 GO:0048247 lymphocyte chemotaxis

0.00206373 GO:0071346 cellular response to interferon-gamma

0.00209769 GO:0010043 response to zinc ion

0.00210984 GO:0010273 detoxification of copper ion

0.00210984 GO:0051238 sequestering of metal ion

0.00213432 GO:0042742 defense response to bacterium

0.002301 GO:0006357 regulation of transcription by RNA polymerase II

0.00235922 GO:0006376 mRNA splice site selection

0.00239173 GO:0030593 neutrophil chemotaxis
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0.00257379 GO:0046686 response to cadmium ion

0.00300734 GO:0002475 antigen processing and presentation via MHC class Ib

0.00363107 GO:0071356 cellular response to tumor necrosis factor

0.00410772 GO:0031638 zymogen activation

0.00424668 GO:0052697 xenobiotic glucuronidation

0.00425411 GO:0032823 regulation of natural killer cell differentiation

0.00483847 GO:0032495 response to muramyl dipeptide

0.00488235 GO:0050832 defense response to fungus

0.00500499 GO:0071549 cellular response to dexamethasone stimulus

0.00501819 GO:0043392 negative regulation of DNA binding

0.00505791 GO:0071347 cellular response to interleukin-1

0.00515977 GO:0051187 cofactor catabolic process

0.00516876 GO:0014003 oligodendrocyte development

0.00523049 GO:0032689 negative regulation of interferon-gamma production

0.00523293 GO:0032570 response to progesterone

0.00551232 GO:0007597 blood coagulation, intrinsic pathway

0.00601035 GO:0050776 regulation of immune response

0.00604952 GO:0006054 N-acetylneuraminate metabolic process

0.00604952 GO:0032966 negative regulation of collagen biosynthetic process

0.00604952 GO:0046007 negative regulation of activated T cell proliferation
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0.00604952 GO:1904526 regulation of microtubule binding

0.0061107 GO:0071242 cellular response to ammonium ion

0.00636598 GO:0009749 response to glucose

0.00662589 GO:0031349 positive regulation of defense response

0.0068822 GO:1903707 negative regulation of hemopoiesis

0.00691491 GO:0008380 RNA splicing

0.00710093 GO:0001580 detection of chemical stimulus involved in sensory per-

ception of bitter taste

0.00710981 GO:0098581 detection of external biotic stimulus

0.00731573 GO:0045907 positive regulation of vasoconstriction

0.00732096 GO:0009264 deoxyribonucleotide catabolic process

0.00755721 GO:0002467 germinal center formation

0.00772887 GO:0045687 positive regulation of glial cell differentiation

0.00775419 GO:0042772 DNA damage response, signal transduction resulting in

transcription

0.00847483 GO:0045109 intermediate filament organization

0.00856996 GO:0003207 cardiac chamber formation

0.0086391 GO:0019221 cytokine-mediated signaling pathway

0.00864698 GO:0045869 negative regulation of single stranded viral RNA replica-

tion via double stranded DNA intermediate
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0.00864698 GO:0052696 flavonoid glucuronidation

0.00864698 GO:0061004 pattern specification involved in kidney development

0.00880768 GO:0031640 killing of cells of other organism

0.00921992 GO:0044060 regulation of endocrine process

0.00945952 GO:0031343 positive regulation of cell killing

0.00948689 GO:0051412 response to corticosterone

0.00956698 GO:0071294 cellular response to zinc ion

0.00973362 GO:0021515 cell differentiation in spinal cord

0.00978883 GO:0010888 negative regulation of lipid storage

0.00985606 GO:0017001 antibiotic catabolic process

0.00997497 GO:0002637 regulation of immunoglobulin production

Table 4.5: Significantly enriched biological process Gene Ontol-

ogy (GO) terms, via a Wilcoxon rank-order test on genes overlap-

ping high-confidence (p< 0.001) Neanderthal-introgressed haplo-

types in modern humans, ranked by the frequency (in all humans)

of the introgressed haplotype.

!
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p-value GO ID GO term
8.31E-03 GO:0000245 spliceosomal complex assembly
1.82E-04 GO:0007186 G protein-coupled receptor signaling pathway
3.99E-03 GO:0007187 G protein-coupled receptor signaling pathway, coupled to

cyclic nucleotide second messenger
9.95E-03 GO:0007631 feeding behavior
0.00109767 GO:0009952 anterior/posterior pattern specification
0.00983203 GO:0010043 response to zinc ion
0.00149728 GO:0010469 regulation of signaling receptor activity
0.0091891 GO:0010677 negative regulation of cellular carbohydrate metabolic

process
0.00641595 GO:0010830 regulation of myotube differentiation
0.00843255 GO:0019731 antibacterial humoral response
0.00100468 GO:0031424 keratinization
0.00680734 GO:0032355 response to estradiol
0.00981516 GO:0032677 regulation of interleukin-8 production
0.00789479 GO:0035821 modification of morphology or physiology of other or-

ganism
0.00876491 GO:0046916 cellular transition metal ion homeostasis
0.00816657 GO:0048706 embryonic skeletal system development
8.16E-09 GO:0050911 detection of chemical stimulus involved in sensory per-

ception of smell
0.000818869 GO:0051179 localization
0.0091891 GO:0055069 zinc ion homeostasis
0.00545075 GO:0060337 type I interferon signaling pathway
0.00787755 GO:0061844 antimicrobial humoral immune response mediated by an-

timicrobial peptide
0.00334059 GO:0070268 cornification
0.00365757 GO:0072676 lymphocyte migration
0.0073354 GO:0098542 defense response to other organism
0.00311815 GO:0140053 mitochondrial gene expression

Table 4.6: Significantly enriched biological process Gene Ontology (GO) terms, via a Wilcoxon
rank-order test on genes overlapping high-confidence (p < 0.001) Denisovan-introgressed
haplotypes in modern humans, ranked by the frequency (in all humans) of the introgressed
haplotype.
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chr Position (hg38) Allele Frequency

(modern

humans)

Trait Ref

7 129041008 T 0.102150538 Sjögren’s syndrome [100]

7 129043485 A 0.102150538 Primary biliary cirrhosis [107]

7 129044262 C 0.102150538 Systemic sclerosis [118]

6 121409576 A 0.086021505 Heart rate [34]

12 40346421 C 0.082437276 Crohn’s disease [31]

12 40346421 C 0.082437276 Inflammatory bowel disease [31]

19 32962753 T 0.082437276 Creatinine levels [22]

2 118406151 C 0.077060932 Bone ultrasound measure-

ment (broadband ultrasound

attenuation)

[133]

2 69679438 C 0.073476703 Adolescent idiopathic scol-

iosis

[106]

3 154337010 T 0.069892473 Coronary artery disease [212]

2 222184302 A 0.066308244 Vitamin D levels [8]

1 92543881 C 0.064516129 Cholesterol, total [210]

1 92543881 C 0.064516129 Cholesterol, total [221]

3 119498262 C 0.044802867 Blood protein levels [42]
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1 150351808 T 0.043010753 Autism spectrum dis-

order, attention deficit-

hyperactivity disorder,

bipolar disorder, major

depressive disorder, and

schizophrenia (combined)

[28]

2 156055088 T 0.041218638 Cognitive performance

(MTAG)

[99]

2 156055088 T 0.041218638 Cognitive performance [99]

2 156055088 T 0.041218638 Intelligence (MTAG) [71]

9 30915161 A 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 30916632 A 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 30926855 A 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 30928041 T 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 30934831 A 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]
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9 30955026 G 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 30957907 G 0.037634409 Post bronchodilator

FEV1/FVC ratio

[113]

9 34656482 A 0.037634409 Blood protein levels [205]

10 64725315 C 0.037634409 Central corneal thickness [78]

10 94991513 C 0.037634409 Dehydroepiandrosterone

sulphate levels

[230]

2 81441684 C 0.034050179 Aging traits [112]

2 118563482 C 0.034050179 Erosive tooth wear (severe

vs non-severe)

[5]

7 95826533 T 0.032258065 Dementia and core

Alzheimer’s disease neu-

ropathologic changes

[11]

7 95826533 T 0.032258065 Dementia and core

Alzheimer’s disease neu-

ropathologic changes

[11]

1 207843629 A 0.03046595 Reaction time [30]

2 118078265 A 0.03046595 Cholesterol, total [221]

2 118078265 A 0.03046595 LDL cholesterol [221]
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11 85186530 A 0.03046595 Self-reported math ability

(MTAG)

[99]

9 89001928 A 0.028673835 Monocyte percentage of

white cells

[9]

13 74421523 G 0.02688172 Immune reponse to small-

pox (secreted IFN-alpha)

[86]

11 116568134 A 0.025089606 Clozapine-induced cytotoxi-

city

[32]

2 156270452 G 0.023297491 Menarche (age at onset) [150]

11 63147874 G 0.023297491 Sex hormone levels [185]

13 38041119 C 0.023297491 Alanine aminotransferase

(ALT) levels after remission

induction therapy in actute

lymphoblastic leukemia

(ALL)

[109]

4 105887024 C 0.021505376 Post bronchodilator FEV1 [113]

4 122478336 G 0.021505376 Rheumatoid arthritis [138]

4 122532956 A 0.021505376 Allergic disease (asthma,

hay fever or eczema)

[47]

1 159566423 A 0.019713262 Blood protein levels [205]
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2 156320222 T 0.019713262 Highest math class taken

(MTAG)

[99]

1 149937602 A 0.017921147 HDL cholesterol [91]

10 6749072 G 0.017921147 Hip circumference (psy-

chosocial stress interaction)

[198]

11 25271868 G 0.017921147 Peripheral arterial disease

(traffic-related air pollution

interaction)

[220]

11 103145464 A 0.017921147 Diisocyanate-induced

asthma

[229]

17 39897636 C 0.016129032 Subcutaneous adipose tissue [26]

4 161890417 T 0.014336918 Risky sexual behaviors (al-

cohol dependence interac-

tion)

[156]

11 103097123 C 0.014336918 Interleukin-10 levels [209]

12 71105594 G 0.014336918 Adolescent idiopathic scol-

iosis

[106]

17 1672578 T 0.014336918 Blood protein levels [42]

20 59644708 T 0.014336918 General cognitive ability [30]
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7 101642897 G 0.012544803 Response to serotonin re-

uptake inhibitors in major

depressive disorder (plasma

drug and metabolite levels)

[80]

Table 4.7: Significant GWAS hits that coincide with Neanderthal-

introgressed variants in high-confidence (p < 0.001) haplotypes,

sorted by decreasing Neanderthal haplotype frequency. Only high-

frequency (> 1%) variants are shown; there were no such variants

in Denisovan-introgressed haplotypes.

In addition to cases of adaptive introgression, genomic regions free of, and possi-

bly resistant to the incursion of, archaic hominin ancestry have been previously studied [186].

We expand upon this idea of archaic hominin ancestry “deserts” by searching for regions de-

void of both archaic admixture and incomplete lineage sorting. “Deserts,” defined this way,

denote regions of the genome in which modern humans comprise a distinct lineage from all

other archaic hominins; they therefore should contain the alleles responsible for uniquely hu-

man phenotypic traits. We find that only about 10% of the autosomal genome lacks lineages

that group together any modern human haplotypes with archaic hominins (henceforth called

archaic hominin deserts) and 1.5% of the autosomal genome has a history in which all modern

humans form a single clade (henceforth called human-specific regions). We are confident that

we have sampled enough human genomes to find the correct extent of the deserts: an ARG
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inferred on a random subsample of 100 human haplotypes, with all archaic sequences, labeled

approximately the same proportion of the genome as belonging to deserts and human-specific

regions (Fig. 4.17A). In comparison, a (neutral) coalescent simulation with human demographic

parameters inferred from data and a single pulse of Neanderthal admixture 50 kya (Appendix B)

produced deserts over 44% and human-specific lineages over 42% of the genome (Fig. 4.17B).

We note that although the percent of the genome in which we find archaic hominin admix-

ture (60%) is higher than in our simulation, it slightly lower than what has been previously

reported (70%; [214]). Additionally, the simulation did not include widely-hypothesized selec-

tion against weakly deleterious archaic alleles, which would increase the size of deserts in real

relative to simulated data; this is the opposite of what we observe. One explanation for this dis-

crepancy is further admixture with other as-yet-unknown archaic hominin lineages reducing the

size of deserts and increasing the amount of the genome labeled as admixture and incomplete

lineage sorting.

Human-specific regions appear to at least partly be the result of natural selection.

Compared to deserts, where a human-specific mutation does not necessarily exist, human-

specific regions are on average 275% larger (Fig. 4.17C). Additionally, the mean TMRCA of all

humans across individual human-specific regions is much more variable than across individual

deserts (Fig. 4.17D), suggesting cases of purifying selection (lower tail of the distribution) as

well as neutral evolution or positive selection long ago in the past (middle and upper tail of

the distribution). As deserts represent the widest possible span of true regions devoid of ILS

and admixture (there could be unobserved clades marking ILS or admixture in these regions),

testing them for enrichment or depletion of genomic features is a conservative test. Nonethe-
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less, we find that positions of deserts are tightly correlated with positions of both exons and

regulatory element binding sites, and that deserts tend to overlap both genes and regulatory ele-

ment binding sites (Table 4.8). Human-specific regions, which represent very confident deserts

of ILS and admixture, are correlated with positions of both genes and exons, and enriched for

overlap with genes, exons, and regulatory element binding sites, but are not position-correlated

with regulatory element binding sites (Table 4.8). We take this to mean that genes, exons, and

regulatory element binding sites are highly enriched in true deserts, and that the positional corre-

lation of human-specific regions with genes may even imply that they also often occur upstream

and/or downstream of genes, at as-yet-unknown regulatory element binding sites. Gene Ontol-

ogy enrichment analysis shows both desert and human-specific regions to be heavily enriched

for biological process terms related to brain development, with homophilic cell-cell adhesion

showing the highest enrichment (Table 4.9, Table 4.10). Because human-specific regions con-

tain mutations shared by and specific to all humans, we focus our analyses of individual genes

on those contained within human-specific regions.

p-value GO ID term

1.25E-11 GO:0007156 homophilic cell adhesion via plasma membrane adhesion

molecules

8.26E-07 GO:0070588 calcium ion transmembrane transport

4.35E-06 GO:0030335 positive regulation of cell migration

4.79E-06 GO:0051056 regulation of small GTPase mediated signal transduction

4.98E-06 GO:0030198 extracellular matrix organization
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5.14E-06 GO:0007411 axon guidance

1.93E-05 GO:0035725 sodium ion transmembrane transport

2.54E-05 GO:0090630 activation of GTPase activity

3.40E-05 GO:0035249 synaptic transmission, glutamatergic

6.09E-05 GO:0007160 cell-matrix adhesion

8.82E-05 GO:0048813 dendrite morphogenesis

0.000122942 GO:0035556 intracellular signal transduction

0.000127814 GO:0043547 positive regulation of GTPase activity

0.000142609 GO:0045332 phospholipid translocation

0.000142941 GO:0007009 plasma membrane organization

0.000150135 GO:0050808 synapse organization

0.000160949 GO:0009967 positive regulation of signal transduction

0.000188395 GO:2000300 regulation of synaptic vesicle exocytosis

0.000193259 GO:0048008 platelet-derived growth factor receptor signaling pathway

0.000225242 GO:0034332 adherens junction organization

0.000226518 GO:0050900 leukocyte migration

0.000288477 GO:0006805 xenobiotic metabolic process

0.000400207 GO:0048488 synaptic vesicle endocytosis

0.000408619 GO:0007269 neurotransmitter secretion

0.00042998 GO:0030334 regulation of cell migration

147



0.000430334 GO:0072583 clathrin-dependent endocytosis

0.000432366 GO:0010976 positive regulation of neuron projection development

0.000457578 GO:1903530 regulation of secretion by cell

0.000465516 GO:0007155 cell adhesion

0.00051065 GO:0007215 glutamate receptor signaling pathway

0.000530815 GO:0030534 adult behavior

0.000610593 GO:0060078 regulation of postsynaptic membrane potential

0.000623651 GO:0008361 regulation of cell size

0.000700357 GO:0010885 regulation of cholesterol storage

0.000729067 GO:0060079 excitatory postsynaptic potential

0.000836436 GO:0007097 nuclear migration

0.00086671 GO:0015872 dopamine transport

0.000876401 GO:0043269 regulation of ion transport

0.000906691 GO:0021537 telencephalon development

0.000914601 GO:0035023 regulation of Rho protein signal transduction

0.0010915 GO:0030010 establishment of cell polarity

0.00110164 GO:0060045 positive regulation of cardiac muscle cell proliferation

0.00120304 GO:0016032 viral process

0.0012365 GO:0061001 regulation of dendritic spine morphogenesis

0.0013301 GO:1905039 carboxylic acid transmembrane transport
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0.00134639 GO:0048013 ephrin receptor signaling pathway

0.00137139 GO:0003231 cardiac ventricle development

0.00142556 GO:0046854 phosphatidylinositol phosphorylation

0.00147866 GO:0061912 selective autophagy

0.00148203 GO:0014065 phosphatidylinositol 3-kinase signaling

0.00150962 GO:1902115 regulation of organelle assembly

0.00153611 GO:0001525 angiogenesis

0.00158847 GO:1903779 regulation of cardiac conduction

0.00158936 GO:0010811 positive regulation of cell-substrate adhesion

0.0015957 GO:0098659 inorganic cation import across plasma membrane

0.00167132 GO:0001666 response to hypoxia

0.00172151 GO:0015698 inorganic anion transport

0.00172479 GO:1903827 regulation of cellular protein localization

0.00174498 GO:0038083 peptidyl-tyrosine autophosphorylation

0.00174498 GO:0042558 pteridine-containing compound metabolic process

0.00174498 GO:0045773 positive regulation of axon extension

0.00181725 GO:0097484 dendrite extension

0.00184518 GO:0048729 tissue morphogenesis

0.00184571 GO:0015812 gamma-aminobutyric acid transport

0.00184571 GO:0097091 synaptic vesicle clustering
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0.00199382 GO:0051336 regulation of hydrolase activity

0.00200355 GO:0007416 synapse assembly

0.0020374 GO:0007229 integrin-mediated signaling pathway

0.00210686 GO:0120035 regulation of plasma membrane bounded cell projection

organization

0.00225378 GO:1903146 regulation of autophagy of mitochondrion

0.00227195 GO:0045807 positive regulation of endocytosis

0.00230044 GO:0007399 nervous system development

0.00237396 GO:0022603 regulation of anatomical structure morphogenesis

0.00238578 GO:0043122 regulation of I-kappaB kinase/NF-kappaB signaling

0.00245267 GO:0048048 embryonic eye morphogenesis

0.0024626 GO:0014912 negative regulation of smooth muscle cell migration

0.00252995 GO:0002791 regulation of peptide secretion

0.00256057 GO:0000904 cell morphogenesis involved in differentiation

0.00259392 GO:0030201 heparan sulfate proteoglycan metabolic process

0.0026916 GO:0007169 transmembrane receptor protein tyrosine kinase signaling

pathway

0.00277874 GO:0035850 epithelial cell differentiation involved in kidney develop-

ment
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0.00282556 GO:0038096 Fc-gamma receptor signaling pathway involved in phago-

cytosis

0.00283451 GO:0008360 regulation of cell shape

0.00286755 GO:0003179 heart valve morphogenesis

0.00286755 GO:0016339 calcium-dependent cell-cell adhesion via plasma mem-

brane cell adhesion molecules

0.00286755 GO:1903307 positive regulation of regulated secretory pathway

0.00300608 GO:1902476 chloride transmembrane transport

0.0030823 GO:0086014 atrial cardiac muscle cell action potential

0.00312522 GO:0032835 glomerulus development

0.00318401 GO:0090090 negative regulation of canonical Wnt signaling pathway

0.00343277 GO:0019228 neuronal action potential

0.00352809 GO:0003014 renal system process

0.00358537 GO:0018108 peptidyl-tyrosine phosphorylation

0.00363324 GO:0042493 response to drug

0.00366202 GO:0002063 chondrocyte development

0.00366202 GO:2000114 regulation of establishment of cell polarity

0.00369162 GO:0001667 ameboidal-type cell migration

0.00378185 GO:0045860 positive regulation of protein kinase activity

0.00378546 GO:0050919 negative chemotaxis
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0.00380318 GO:0015721 bile acid and bile salt transport

0.00380318 GO:0048169 regulation of long-term neuronal synaptic plasticity

0.00403981 GO:0010977 negative regulation of neuron projection development

0.00415122 GO:0071495 cellular response to endogenous stimulus

0.00418701 GO:1901888 regulation of cell junction assembly

0.00431272 GO:0001952 regulation of cell-matrix adhesion

0.00433836 GO:0030516 regulation of axon extension

0.00444817 GO:0010107 potassium ion import

0.00444817 GO:0046638 positive regulation of alpha-beta T cell differentiation

0.00455429 GO:0045913 positive regulation of carbohydrate metabolic process

0.00467259 GO:0001657 ureteric bud development

0.00469898 GO:0051494 negative regulation of cytoskeleton organization

0.00471349 GO:0019216 regulation of lipid metabolic process

0.00473483 GO:0014866 skeletal myofibril assembly

0.00473483 GO:0071871 response to epinephrine

0.00473983 GO:2001257 regulation of cation channel activity

0.00478298 GO:0097120 receptor localization to synapse

0.00479548 GO:0003151 outflow tract morphogenesis

0.00482812 GO:0060041 retina development in camera-type eye

0.00482831 GO:0010594 regulation of endothelial cell migration
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0.00482831 GO:0010611 regulation of cardiac muscle hypertrophy

0.00482831 GO:0071320 cellular response to cAMP

0.0048604 GO:0050807 regulation of synapse organization

0.0048613 GO:0051592 response to calcium ion

0.00486339 GO:0001845 phagolysosome assembly

0.00486339 GO:0006828 manganese ion transport

0.00486339 GO:0033539 fatty acid beta-oxidation using acyl-CoA dehydrogenase

0.00486339 GO:0036465 synaptic vesicle recycling

0.00486339 GO:0072178 nephric duct morphogenesis

0.00486339 GO:1903651 positive regulation of cytoplasmic transport

0.00493842 GO:0045446 endothelial cell differentiation

0.0050549 GO:0001676 long-chain fatty acid metabolic process

0.00514139 GO:0010975 regulation of neuron projection development

0.00514139 GO:0043647 inositol phosphate metabolic process

0.00524807 GO:0034220 ion transmembrane transport

0.00542368 GO:0003323 type B pancreatic cell development

0.00542368 GO:0032332 positive regulation of chondrocyte differentiation

0.00542368 GO:0035455 response to interferon-alpha

0.00542368 GO:0043046 DNA methylation involved in gamete generation

0.00548774 GO:0003176 aortic valve development
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0.00548774 GO:0050855 regulation of B cell receptor signaling pathway

0.0054889 GO:0030100 regulation of endocytosis

0.00575316 GO:0090287 regulation of cellular response to growth factor stimulus

0.0057689 GO:0120161 regulation of cold-induced thermogenesis

0.0058732 GO:0046329 negative regulation of JNK cascade

0.0058732 GO:2001222 regulation of neuron migration

0.0059561 GO:0007212 dopamine receptor signaling pathway

0.00602533 GO:0060291 long-term synaptic potentiation

0.00627833 GO:0033036 macromolecule localization

0.00629847 GO:0019229 regulation of vasoconstriction

0.00629847 GO:0061098 positive regulation of protein tyrosine kinase activity

0.00638947 GO:0048593 camera-type eye morphogenesis

0.00642035 GO:0007010 cytoskeleton organization

0.00648286 GO:0030336 negative regulation of cell migration

0.00663261 GO:0050775 positive regulation of dendrite morphogenesis

0.006678 GO:1902904 negative regulation of supramolecular fiber organization

0.00672647 GO:0110020 regulation of actomyosin structure organization

0.00679646 GO:0034329 cell junction assembly

0.00683878 GO:0051147 regulation of muscle cell differentiation

0.00697793 GO:0030036 actin cytoskeleton organization
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0.00709914 GO:0043149 stress fiber assembly

0.00724958 GO:0009812 flavonoid metabolic process

0.00724958 GO:0098911 regulation of ventricular cardiac muscle cell action poten-

tial

0.00724958 GO:0098969 neurotransmitter receptor transport to postsynaptic mem-

brane

0.00727583 GO:0007162 negative regulation of cell adhesion

0.00740288 GO:0007041 lysosomal transport

0.00756096 GO:0016310 phosphorylation

0.00761249 GO:0072593 reactive oxygen species metabolic process

0.00764409 GO:0031623 receptor internalization

0.00772882 GO:0030111 regulation of Wnt signaling pathway

0.00774189 GO:0043393 regulation of protein binding

0.00782428 GO:0048041 focal adhesion assembly

0.00782915 GO:0045667 regulation of osteoblast differentiation

0.00784108 GO:0030155 regulation of cell adhesion

0.0078806 GO:0003433 chondrocyte development involved in endochondral bone

morphogenesis

0.0078806 GO:0014898 cardiac muscle hypertrophy in response to stress

0.0078806 GO:0098661 inorganic anion transmembrane transport
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0.0078806 GO:0098810 neurotransmitter reuptake

0.00789408 GO:0034145 positive regulation of toll-like receptor 4 signaling path-

way

0.00789408 GO:0042415 norepinephrine metabolic process

0.00789408 GO:0061469 regulation of type B pancreatic cell proliferation

0.00789408 GO:1904322 cellular response to forskolin

0.00799742 GO:0003177 pulmonary valve development

0.00799742 GO:0007063 regulation of sister chromatid cohesion

0.00799742 GO:0032011 ARF protein signal transduction

0.00799742 GO:0035024 negative regulation of Rho protein signal transduction

0.00799742 GO:0036119 response to platelet-derived growth factor

0.00799742 GO:0071305 cellular response to vitamin D

0.00799742 GO:0097062 dendritic spine maintenance

0.00799742 GO:1901017 negative regulation of potassium ion transmembrane

transporter activity

0.00799742 GO:2000310 regulation of NMDA receptor activity

0.00799742 GO:2000737 negative regulation of stem cell differentiation

0.00810685 GO:0062013 positive regulation of small molecule metabolic process

0.00811039 GO:0098657 import into cell

0.00811968 GO:0000902 cell morphogenesis
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0.0082919 GO:0033627 cell adhesion mediated by integrin

0.00831191 GO:0051899 membrane depolarization

0.00842463 GO:0009887 animal organ morphogenesis

0.00869904 GO:0006942 regulation of striated muscle contraction

0.00870789 GO:1905037 autophagosome organization

0.00887433 GO:0010595 positive regulation of endothelial cell migration

0.00914977 GO:0048639 positive regulation of developmental growth

0.00915116 GO:0016242 negative regulation of macroautophagy

0.00915116 GO:0044091 membrane biogenesis

0.00915116 GO:0044319 wound healing, spreading of cells

0.00915116 GO:1900006 positive regulation of dendrite development

0.00918547 GO:0055074 calcium ion homeostasis

0.00931042 GO:0031076 embryonic camera-type eye development

0.00931042 GO:0051590 positive regulation of neurotransmitter transport

0.0093559 GO:0043200 response to amino acid

0.0093695 GO:0099536 synaptic signaling

0.00940916 GO:0060411 cardiac septum morphogenesis

0.00941286 GO:0030833 regulation of actin filament polymerization

0.00950095 GO:0007613 memory

0.00955764 GO:0050804 modulation of chemical synaptic transmission
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0.00964434 GO:0032273 positive regulation of protein polymerization

0.00971488 GO:0030193 regulation of blood coagulation

0.00976581 GO:0035418 protein localization to synapse

0.00983252 GO:0043588 skin development

Table 4.9: Enriched biological process Gene Ontology [1] terms

in desert regions. Enrichment testing was done using the hyperge-

ometric function in FUNC [164], with refinement and a cutoff of

p = 0.01.

p-value GO ID term

8.92E-10 GO:0007156 homophilic cell adhesion via plasma membrane adhesion

molecules

1.45E-05 GO:0099072 regulation of postsynaptic membrane neurotransmitter re-

ceptor levels

3.26E-05 GO:0048813 dendrite morphogenesis

8.09E-05 GO:0071625 vocalization behavior

0.000106681 GO:0070588 calcium ion transmembrane transport

0.000111693 GO:0071417 cellular response to organonitrogen compound

0.000137589 GO:0050804 modulation of chemical synaptic transmission

0.000202768 GO:0007268 chemical synaptic transmission
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0.00021313 GO:0071313 cellular response to caffeine

0.000269131 GO:0030010 establishment of cell polarity

0.000293738 GO:0007416 synapse assembly

0.00041081 GO:0051272 positive regulation of cellular component movement

0.000434341 GO:0007264 small GTPase mediated signal transduction

0.000441847 GO:0010976 positive regulation of neuron projection development

0.000458796 GO:0036465 synaptic vesicle recycling

0.000459866 GO:0016339 calcium-dependent cell-cell adhesion via plasma mem-

brane cell adhesion molecules

0.000464144 GO:0086014 atrial cardiac muscle cell action potential

0.000476936 GO:1904322 cellular response to forskolin

0.000481311 GO:0098698 postsynaptic specialization assembly

0.000485931 GO:0042297 vocal learning

0.000984275 GO:0007409 axonogenesis

0.00104939 GO:0021942 radial glia guided migration of Purkinje cell

0.00105734 GO:1905114 cell surface receptor signaling pathway involved in cell-

cell signaling

0.00107765 GO:1903539 protein localization to postsynaptic membrane

0.00116814 GO:0015872 dopamine transport

0.00117966 GO:0000904 cell morphogenesis involved in differentiation

159



0.00119672 GO:0097120 receptor localization to synapse

0.00151518 GO:0035235 ionotropic glutamate receptor signaling pathway

0.00152567 GO:0061912 selective autophagy

0.00183832 GO:0034329 cell junction assembly

0.00188633 GO:0003192 mitral valve formation

0.00188633 GO:0034727 piecemeal microautophagy of the nucleus

0.00235145 GO:0044351 macropinocytosis

0.00246344 GO:0035735 intraciliary transport involved in cilium assembly

0.00281075 GO:0051494 negative regulation of cytoskeleton organization

0.0028388 GO:0010793 regulation of mRNA export from nucleus

0.0028388 GO:0051552 flavone metabolic process

0.00290296 GO:0030335 positive regulation of cell migration

0.00290771 GO:0071466 cellular response to xenobiotic stimulus

0.00314583 GO:1901021 positive regulation of calcium ion transmembrane trans-

porter activity

0.00354249 GO:0035023 regulation of Rho protein signal transduction

0.00385041 GO:0051491 positive regulation of filopodium assembly

0.00395873 GO:0043547 positive regulation of GTPase activity

0.00422597 GO:0007256 activation of JNKK activity

0.00422597 GO:0061000 negative regulation of dendritic spine development
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0.00473981 GO:0019886 antigen processing and presentation of exogenous peptide

antigen via MHC class II

0.00480876 GO:0034332 adherens junction organization

0.00493758 GO:0060078 regulation of postsynaptic membrane potential

0.005337 GO:0048639 positive regulation of developmental growth

0.00553232 GO:1990138 neuron projection extension

0.00568608 GO:0031589 cell-substrate adhesion

0.00597595 GO:0019530 taurine metabolic process

0.00597595 GO:0060956 endocardial cell differentiation

0.00597595 GO:2000210 positive regulation of anoikis

0.00599516 GO:0055007 cardiac muscle cell differentiation

0.00621657 GO:0010975 regulation of neuron projection development

0.00632312 GO:0017156 calcium ion regulated exocytosis

0.00634401 GO:0010880 regulation of release of sequestered calcium ion into cy-

tosol by sarcoplasmic reticulum

0.00634401 GO:0021680 cerebellar Purkinje cell layer development

0.00634401 GO:0032369 negative regulation of lipid transport

0.00634401 GO:0046058 cAMP metabolic process

0.00648969 GO:1903779 regulation of cardiac conduction

0.00654834 GO:0006298 mismatch repair
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0.00656229 GO:0071380 cellular response to prostaglandin E stimulus

0.00665707 GO:0098609 cell-cell adhesion

0.00666753 GO:0001525 angiogenesis

0.00676885 GO:0007399 nervous system development

0.00678893 GO:0010507 negative regulation of autophagy

0.0068467 GO:0014878 response to electrical stimulus involved in regulation of

muscle adaptation

0.0068467 GO:0018916 nitrobenzene metabolic process

0.0068467 GO:0033594 response to hydroxyisoflavone

0.0068467 GO:0035022 positive regulation of Rac protein signal transduction

0.0068467 GO:0042853 L-alanine catabolic process

0.0068467 GO:0046449 creatinine metabolic process

0.0068467 GO:0050923 regulation of negative chemotaxis

0.0068467 GO:0061669 spontaneous neurotransmitter secretion

0.0068467 GO:0071922 regulation of cohesin loading

0.0068467 GO:0072757 cellular response to camptothecin

0.0068467 GO:0090116 C-5 methylation of cytosine

0.0068467 GO:0097118 neuroligin clustering involved in postsynaptic membrane

assembly
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0.0068467 GO:1903377 negative regulation of oxidative stress-induced neuron in-

trinsic apoptotic signaling pathway

0.00690902 GO:0003300 cardiac muscle hypertrophy

0.0069647 GO:0016446 somatic hypermutation of immunoglobulin genes

0.0069647 GO:0038007 netrin-activated signaling pathway

0.0069647 GO:1903651 positive regulation of cytoplasmic transport

0.00706799 GO:0072659 protein localization to plasma membrane

0.00730382 GO:0006935 chemotaxis

0.00751327 GO:0007017 microtubule-based process

0.00766163 GO:0007610 behavior

0.0077158 GO:0010769 regulation of cell morphogenesis involved in differentia-

tion

0.00783274 GO:0003283 atrial septum development

0.00825468 GO:0031646 positive regulation of neurological system process

0.00833621 GO:0099560 synaptic membrane adhesion

0.00833621 GO:0099590 neurotransmitter receptor internalization

0.008398 GO:0006928 movement of cell or subcellular component

0.00843191 GO:0048489 synaptic vesicle transport

0.00898072 GO:0051492 regulation of stress fiber assembly

0.00926198 GO:0001504 neurotransmitter uptake
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0.0094164 GO:0006544 glycine metabolic process

0.0094164 GO:0071044 histone mRNA catabolic process

0.00967361 GO:0051965 positive regulation of synapse assembly

0.00999857 GO:0014909 smooth muscle cell migration

Table 4.10: Enriched biological process Gene Ontology [1] terms

in human-specific regions. Enrichment testing was done using the

hypergeometric function in FUNC [164], with refinement and a

cutoff of p = 0.01.

Long human-specific regions are more likely to be the result of natural selection and

may contain genes important in differentiating humans from archaic hominins. We find the

mean TMRCAs of all humans across human-specific regions to be negatively correlated with

the length of the regions (Spearmans rho = -0.166; p< 2.2e−16), suggesting that longer regions

are more subject to purifying selection than shorter regions. Furthermore, human-specific re-

gions are enriched for interacting sets of genes (interaction score > 700 in the STRING database

[207]; permutation test p = 0.006 of more interactions in 1000 trials). The longest two human-

specific regions contain zinc finger proteins with unknown function but likely to have transcrip-

tion factor activity, ZNF626, ZNF726, and ZNF737. Taking the set of all genes that intersect the

50 longest human-specific regions, we find additional zinc finger proteins: ZNF561, ZNF562,

ZNF675, ZNF707, and ZNF846. Of these, ZNF675 (TIZ) is known to have a likely role in

osteoclast differentiation [195]; the others are less well understood. The 50 longest human-
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Map Features Dist. P Proj. P
Deserts genes 0.14 0*
Deserts exons 2.87E-09* 4.53E-01
Deserts reg. elt. 2.12E-09* 0*
Human-specific genes 4.57E-04* 5.88E-14*
Human-specific exons 2.51E-03* 3.70E-10*
Human-specific reg. elt. 9.47E-01 2.61E-06*

Table 4.8: Overlap of archaic hominin ancestry deserts and human-specific regions with various
genomic features. Genes are whole protein coding genes from Gencode [49], using Ensembl
version 94 on human genome version GRCh38 lifted over to GRCh37 coordinates. Exons
are for protein-coding genes from the same annotation. Regulatory elements are from the fil-
tered “double-elite” set in the GeneHancer database [48], obtained from the UCSC Genome
Browsers Table Browser utility [21]. Distance correlation p-value comes from the relative dis-
tance Kolmogorov-Smirnov test and projection p-value, which measures overlap, were both
computed using the GenometricCorr R package [46]. All significant (p < 0.01 or p > 0.99)
values are marked with an asterisk.

specific regions also include one (chr12:11121063-11248363) containing salivary proteins as

well as a cluster of seven bitter taste receptors, including 2 of 3 identified in previous studies

as outliers for having broad specificity [128] (Table 4.11). This hints that dietary change may

have been a potential factor in human speciation. Another long human-specific region encom-

passes a cluster of PRAMEF genes, which are cell surface antigens that probably play a role

in cell proliferation in gonadal tissues and cancer [203], suggesting a possible role in hybrid

incompatibility. Another noteworthy find is a set of 9 members of the β-protocadherin gene

cluster. So-called clustered protocadherin genes undergo extensive alternative splicing, and the

combinatorial expression of protocadherins on cell surfaces is thought to guide developing neu-

ral projections by allowing self-recognition and avoidance. Furthermore, genes in the Pcdhα

cluster, which intersects with and extends downstream of another human-specific region, are

probably involved in cleaning up cases of incorrect neural wiring [69]; we find a small human-

specific region in the upstream-most portion of the γ-protocadherin cluster as well. For a visual
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representation of human-specific regions and allele frequencies within them in the region of all

three protocadherin clusters, see Fig. 4.18. In all, we find 48 of 158 (30%) of autosomal genes

with the GO term “homophilic cell adhesion via plasma membrane adhesion molecules” in our

human-specific regions, suggesting that other cadherins were also important in differentiating

the human lineage from archaic hominins. Slit/Robo signaling has been proposed as another

mechanism for axon repulsion, among other processes important in neurodevelopment [12], and

we find both ROBO1 and ROBO2 in human-specific regions, suggesting that regulation and/or

splicing of self-recognition and repulsion in developing neurons underwent changes important

in the human lineage.

gene chrom start end length TMRCA

AC005488.1 7 72373953 72484431 110478 0

AC010760.1 15 22376613 22549285 172672 0

AC018630.1 12 11121063 11248363 127300 0.001835365

AC091057.6 15 30882290 30980523 98233 0

AC108868.1 2 107014665 107109876 95211 0

AC134980.3 15 22376613 22549285 172672 0

AC135068.3 15 22376613 22549285 172672 0

AC244517.10 5 140538160 140622981 84821 0.000171793

ALMS1 2 73705219 73780914 75695 0.000834066

ANKRD30A 10 37399546 37488981 89435 0.000490825

ARHGAP11B 15 30882290 30980523 98233 0
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C1orf158 1 12819122 12945655 126533 0.000125513

CCDC166 8 144742887 144836457 93570 1.62E-05

CD8B2 2 107014665 107109876 95211 0

CLEC18B 16 74372357 74460377 88020 0.000461297

FAM83H 8 144742887 144836457 93570 1.62E-05

FLT4 5 180059136 180162268 103132 8.77E-07

GML 8 143862328 143946821 84493 8.81E-05

GOLGA8H 15 30882290 30980523 98233 0

H3.Y 5 17600702 17675089 74387 0.000157675

HLA-B 6 31304861 31378939 74078 0

HLA-DQA1 6 32589966 32689385 99419 0

HLA-DQB1 6 32589966 32689385 99419 0

HLA-DRB1 6 32495832 32573989 78157 0

HLA-DRB5 6 32495832 32573989 78157 0

HNRNPCL1 1 12819122 12945655 126533 0.000125513

HRH2 5 174990878 175090975 100097 0.000299065

IQANK1 8 144742887 144836457 93570 1.62E-05

LINC02203 15 22376613 22549285 172672 0

LY6D 8 143862328 143946821 84493 8.81E-05

MAPK15 8 144742887 144836457 93570 1.62E-05
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METTL2A 17 60518577 60598285 79708 6.00E-06

MICA 6 31304861 31378939 74078 0

MTRNR2L6 7 142353927 142431384 77457 0

NPIPA1 16 15036996 15118351 81355 0.001525955

NPIPB15 16 74372357 74460377 88020 0.000461297

NSUN5 7 72651982 72730656 78674 0.007747081

OR4N4 15 22376613 22549285 172672 0

PCDHA1 5 140094294 140179492 85198 6.69E-06

PCDHA2 5 140094294 140179492 85198 6.69E-06

PCDHB10 5 140538160 140622981 84821 0.000171793

PCDHB11 5 140538160 140622981 84821 0.000171793

PCDHB12 5 140538160 140622981 84821 0.000171793

PCDHB13 5 140538160 140622981 84821 0.000171793

PCDHB14 5 140538160 140622981 84821 0.000171793

PCDHB16 5 140538160 140622981 84821 0.000171793

PCDHB7 5 140538160 140622981 84821 0.000171793

PCDHB8 5 140538160 140622981 84821 0.000171793

PCDHB9 5 140538160 140622981 84821 0.000171793

PDXDC1 16 15036996 15118351 81355 0.001525955

POM121 7 72373953 72484431 110478 0
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POM121C 7 75049912 75152873 102961 0.000161375

PRAMEF1 1 12819122 12945655 126533 0.000125513

PRAMEF11 1 12819122 12945655 126533 0.000125513

PRAMEF12 1 12819122 12945655 126533 0.000125513

PRAMEF2 1 12819122 12945655 126533 0.000125513

PRAMEF4 1 12819122 12945655 126533 0.000125513

PRB1 12 11390844 11540562 149718 0

PRB3 12 11390844 11540562 149718 0

PRB4 12 11390844 11540562 149718 0

PRH1 12 11121063 11248363 127300 0.001835365

PRH1-PRR4 12 11121063 11248363 127300 0.001835365

PROP1 5 177333734 177425706 91972 0.000580695

RGPD3 2 107014665 107109876 95211 0

SLC6A2 16 55738787 55816560 77773 0.000965875

SPDYE5 7 75049912 75152873 102961 0.000161375

TAF11L12 5 17600702 17675089 74387 0.000157675

TAF11L13 5 17600702 17675089 74387 0.000157675

TAF11L14 5 17600702 17675089 74387 0.000157675

TAS2R14 12 11121063 11248363 127300 0.001835365

TAS2R19 12 11121063 11248363 127300 0.001835365
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TAS2R20 12 11121063 11248363 127300 0.001835365

TAS2R31 12 11121063 11248363 127300 0.001835365

TAS2R43 12 11121063 11248363 127300 0.001835365

TAS2R46 12 11121063 11248363 127300 0.001835365

TAS2R50 12 11121063 11248363 127300 0.001835365

TLK2 17 60518577 60598285 79708 6.00E-06

TRIM50 7 72651982 72730656 78674 0.007747081

TRIM74 7 72373953 72484431 110478 0

UGT3A1 5 35946482 36069762 123280 0.001710388

UGT3A2 5 35946482 36069762 123280 0.001710388

ZNF561 19 9729793 9864085 134292 0.000109891

ZNF562 19 9729793 9864085 134292 0.000109891

ZNF626 19 20709939 20911175 201236 0

ZNF675 19 23782867 23892190 109323 0

ZNF707 8 144742887 144836457 93570 1.62E-05

ZNF726 19 23973277 24177630 204353 1.98E-06

ZNF737 19 20709939 20911175 201236 0

ZNF846 19 9729793 9864085 134292 0.000109891

170



Table 4.11: Genes within the top 50 human-specific regions, by

length. Coordinates given are for the boundaries of the human-

specific region (hg19 coordinates). TMRCAs are means across

sites within the human-specific regions and reported as a fraction

of human/chimp divergence (approx. 13 my).

Next, we sought to determine which mutations in human-specific regions may have

affected gene regulation, which biological processes may have been affected by these mutations,

and when in history these mutations may have arisen. Using the heavily-filtered double elite”

set of regulatory element binding sites and regulatory targets from the GeneHancer database

[48], we compiled a list of fixed derived alleles in modern humans intersecting these binding

sites, along with the TMRCA of all humans in each. We then investigated which of these bind-

ing sites target genes interact with each other, and for each such interacting pair, compared

the TMRCAs of the mutations in the genes regulators binding sites. We expected this to shed

light on which mutations clustered together in time, with the hypothesis that mutations affect-

ing regulation of genes involved in specific biological processes may have arisen around the

same time. We find three clusters of TMRCAs this way: one from roughly 33-42 kya, one from

145-185 kya, and another from 300-400 kya (Fig. 4.17D). This appears to suggest three differ-

ent “bursts” of adaptive changes, although the most recent (33-42 kya) is too young to predate

the geographical spread of all humans this number is therefore probably biased downward by

continual purifying selection reducing the amount of diversity in modern humans, or by an in-
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creased locus-specific mutation rate in humans compared to chimpanzees artificially inflating

the human-specific branch length. Additionally, although many regulatory mutations affecting

interacting genes have approximately the same TMRCA (on the diagonal in the plot), we find

many off-diagonal effects as well, suggesting that different bursts of selection may have acted

on some of the same biological processes. To locate which genes may have played the biggest

role in the history of the human lineage, we counted the number of genes in our list of targets

of regulatory elements with human-mutated binding sites with which each other gene in the list

is known to interact. We then ordered our list of genes by this number times the number of

regulatory element binding site mutations we found; top candidates in this list should be genes

involved in multiple biological processes, with potentially large changes in human-specific ex-

pression from the ancestral state. The top two genes we find this way are SF1 and SRRM1, both

important splicing factors [184]. The other top five genes are FYN, a protein tyrosine kinase

that regulates neuronal migration [111], KAT5 (TIP60), a histone acetyltransferase subunit in-

volved in chromatin remodeling and Notch1 signaling [89], and TRIM63 (MuRF1), which is

involved in regulation of atrophy in skeletal muscle [13].

4.2.1 Discussion

Our findings pertaining to the demography of ancient admixture in modern humans

largely agree with prior studies. We find a similar amount of Neanderthal ancestry in modern

humans, but less Denisovan ancestry, than has been previously reported using genome-wide

statistics [165]. Furthermore, our model of Neanderthal admixture (a main pulse after the out-

of-Africa migration but before the diversification of modern Eurasian populations) agrees with
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what has been previously suggested [56]. In the case of Denisovan ancestry, the lower global

amount of ancestry we recovered per individual is comparable to what has been detected in

other studies using local ancestry scans [213]. The fact that we observe shorter Denisovan than

Neanderthal haplotype block lengths, and that this contradicts previous inferences of a more re-

cent Denisovan than Neanderthal introgression time [132] may hint that the Denisovan genome

is not a good model for the true introgressor, which may have itself been a hybrid [223]. This is

supported by much higher TMRCAs to Denisovan in Denisovan-like haplotypes than TMRCAs

to Neanderthal in Neanderthal-like haplotypes. The possibility that a separate Denisovan-like

component exists in mainland Asians than that in Oceanians merits further study.

Our detection of highly-diverged archaic-like haplotypes in sub-Saharan Africa using

both Neanderthal and Denisovan haplotypes as the subjects of ancestry scans suggests that we

may have located pieces of previously-described super-archaic admixture [62, 37], although

this merits further study. Performing specific analyses of these haplotypes, and following them

along the ARG after the archaic hominin haplotypes they contain recombine out of them, might

allow us to uncover their full extent. Furthermore, scans based entirely on the TMRCA and

genomic span of clades, rather than requiring the presence of archaic hominin haplotypes, might

uncover more segments of super-archaic ancestry.

We find similar evidence as in previous studies (e.g. [186]) of introgressed alleles

being slightly deleterious on average. Namely, we see enrichment of protein-coding genes and

exons in human-specific genomic regions, as well as enriched intersection of human-specific

regions with regulatory element binding sites. As in previous studies, we also find many of the

same types of genes to be within these introgressed haplotypes, including genes related to diet,

173



keratinogenesis, and immune function. We also find evidence that some previously-adaptive

archaic alleles may contribute to modern maladaptive phenotypes.

According to our analysis, only about 1.5% of the genome (at minimum) and 10%

of the genome (at maximum) is completely sorted and devoid of admixture between modern

and archaic hominins, implying that this fraction of the genome alone makes modern humans

a unique species. We find these regions to be enriched for genes, particularly those related to

brain development and function. This finding is compatible with previous research suggesting

that archaic-introgressed alleles cause downregulation of genes expressed in the brain [119]. In

particular, the existence of completely sorted genomic regions intersecting all three protocad-

herin gene clusters on chromosome 5, as well as 48% of 158 total genes involved in homophilic

cell-cell adhesion, suggests that these genes may prove to be particularly interesting targets

of further analysis. The fact that exons of these genes are often spliced together in a unique

manner to produce unique combinations of cell surface proteins to guide neurite growth [24]

hints that changes in splicing, as well as amino acid changes and changes to gene regulation,

may have been important in our evolutionary history. The finding that recurrent human-specific

mutations happened in regions regulating multiple splicing factors, dating back to the oldest

evolutionary “burst” we detected in human evolutionary history circa 400-500 kya, helps bol-

ster this narrative. Furthermore, the abundance of C2H2-containing zinc finger proteins in the

longest completely sorted genomic regions hints at their importance in human evolution; learn-

ing whether these proteins regulate the expression of other genes, and where they bind in the

genome, could be illuminative.

We believe that ancestral recombination graph inference has much to bring to the
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study of archaic hominin admixture and human evolution and hope that future studies will

expand upon our approach. Furthermore, assays that make use of gene-edited human stem cells

will allow many of the human specific changes we find to be tested in the lab for phenotypic

effects; this is a crucial next step in determining what makes us a unique species.

4.3 Methods

4.3.1 Data processing

All data were processed as described in the previous chapter. This study used phased

human genomes from the Simons Genome Diversity Project [116], along with the high-coverage

Altai [165] and Vindija33.19 Neanderthals [163], and the high-coverage Denisovan genome

[126].

4.3.2 Simulations

Our demographic simulation was done using scrm [201] because it allows users to

sample haplotypes from time points in the past, mimicking the branch shortening due to “miss-

ing evolution” when analyzing ancient genomes. For this simulation, we combined a popular,

three population demographic model for modern humans [60] with populations meant to ap-

proximate the Altai [165] and Vindija [163] Neanderthals. We again assumed a 1 centimorgan

per megabase recombination rate and a 1∗10−9 per year mutation rate, along with a 25-year gen-

eration time, giving a per-generation mutation rate of 2.5∗10−8. In addition to the demographic

model parameters listed in [60], we modeled a Neanderthal/human split time of 575kya [165],
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an Altai/Vindija split time of 137.5kya, and modeled the heterozygosity in all Neanderthals as

1.6∗10−4 [163]. Additionally, we chose 100kya as the divergence time between the Vindija and

introgressing Neanderthal, and we modeled human/Neanderthal introgression as a single pulse

50kya, in the population ancestral to both Europeans and Asians, with a 5% admixture propor-

tion. Finally, we assigned 57.kya of missing evolution to the Vindija haplotypes and 123kya of

missing evolution to the Altai haplotypes [163]. Our simulated chromosome was 25 megabases

long, and we sampled 2 haplotypes from each Neanderthal (but not the introgressing Nean-

derthal), as well as 20 haplotypes from each modern human population (African, Asian, and

European). The full command was scrm 64 1 -t 17253.7128713 -r 7342.00547714 25000000

-T -I 6 20 20 20 0 0 0 -eI 0.0772268560362 0 0 0 0 0 2 -eI 0.167529158597 0 0 0 2 0 0 -n 1 1.68

-n 2 3.74 -n 3 7.29 -n 4 0.231834158238 -n 5 0.231834158238 -n 6 0.231834158238 -eg 0 2

116.010723 -eg 0 3 160.246047 -m 2 3 2.797460 -m 3 2 2.797460 -ej 0.028985 3 2 -en 0.028985

2 0.287184 -es 0.0681012839825 2 0.95 -ej 0.0681012839825 7 5 -ej 0.136202567965 6 5 -ej

0.197963 2 1 -en 0.303501 1 1 -ej 0.187278530952 5 4 -ej 0.783164765799 4 1. We discarded

all but the first instance of every unique base position in the output file, and we converted the

“true” trees into SARGE format for running analyses.

4.3.3 Admixture scans

The central challenge of creating admixture maps is to disentangle incomplete lineage

sorting (ILS) from admixture. Both processes create local trees in the genome that group can-

didate admixed haplotypes with admixer haplotypes. Clades resulting from ILS are older than

those resulting from admixture, however; they should therefore persist for shorter stretches
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along the genome and have older times to most recent common ancestor (TMRCAs) (Fig.

4.1A). In “true” ARG trees from our demographic simulation, clades resulting from admix-

ture were indeed easily distinguishable from incompletely sorted lineages, using these two

metrics (Fig. 4.1B). In the ARG we inferred using SARGE, however, the low-resolution na-

ture of branch lengths inferred using mutations made the cutoff between ILS and admixture

more difficult to determine (Fig. 4.1C,D). To map Neanderthal and Denisovan ancestry, we first

scanned through ARG output for all clades that grouped some modern human haplotypes with

one or more admixer haplotypes (Neanderthal and/or Denisovan) to the exclusion of some other

modern human haplotypes. Since SARGE produces many polytomies, this carries the risk of

observing a parent of one or more true admixed clades, but not the true admixed clade. This

would manifest as a clade containing many modern humans, in addition to one or more archaic

hominins, and would falsely be interpreted as a very high-frequency archaic-introgressed hap-

lotype. To mitigate this problem, we defined the Mbuti, Biaka, and Khomani-San genomes as

an outgroup and discarded any clade that contained more than 10% of the outgroup members.

We also discarded one extremely long candidate haplotype that spanned a centromere. For each

clade that passed our selection criteria, we visited each non-archaic hominin member and de-

termined whether that member possessed candidate Neanderthal, Denisovan, or undetermined

ancestry by assessing whether it was closer (by tree topology, ignoring branch lengths) to a

Neanderthal or Denisovan haplotype, or equidistant to both. We then computed the mean time

to most recent common ancestor (TMRCA) between each human member and the candidate

archaic introgressor across each haplotype, not accounting for branch shortening.

This provided a set of haplotypes resulting from both admixture and incomplete lin-
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eage sorting. To separate these two categories of haplotypes, we computed a p-value (which

we used as a score) designed to be low in cases of admixture and high in cases of ILS. We first

computed the TMRCA of all lineages under study, using SARGE output; this value was ap-

proximately 639 kya. Assuming a 1 cM/Mb recombination rate, we consider an unrecombined

haplotype in the ancestor of all lineages to be 100 Mb long. We assume that neutrally-evolving

haplotype block lengths are exponentially distributed with a mean equal to 100 Mb divided by

the number of generations that have passed. We then define, for each haplotype block length

x, plen = e−
639000
1e8∗25 x. Next, since TMRCAs in SARGE output trees appear to be exponentially

distributed, we define a p-value that a given TMRCA y results from this lineage, as a percent

of human-chimp divergence rather than in years, assuming 6.5 mya human-chimp divergence

and using a pseudocount of 0.01: pT MRCA = 1− e−(
13e6

639000+0.001)(y+0.01). We then compute a

combined p-value, or score, as pcombined = plen ∗ pT MRCA.

The central insight of the D-statistic, a popular genome-wide statistic used for de-

tecting and quantifying admixture, is that admixture should affect certain human populations

more than others, while ILS is expected to affect all approximately equally [56, 35]. We used

this reasoning to determine a score cutoff for binning candidate admixed haplotypes into ILS

and true admixture. Using score cutoffs ranging from 0 to 1 and offset by 0.01, we selected all

haplotypes with combined p greater than or equal to the cutoff (ILS) and less than the cutoff

(admixture). We then computed, for each haploid human genome, the percent of the queryable

genome (excluding sex chromosomes and unplaced scaffolds) belonging to regions of ILS and

regions of admixture. We then computed the coefficient of variation (standard deviation divided

by mean) of this value across SGDP populations. We hypothesized that the cross-population
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coefficient of variation in ILS should be low around the ideal threshold, while the coefficient

of variation in admixture should be higher but stabilize. We found that this is the case around

a score cutoff of 0.16 (Fig. 4.1C). Haplotypes classified as admixture and ILS using this score

cutoff are shown in Fig. 4.1D, and binning this way produced reasonable estimates of the global

extent of admixture (Fig. 4.2A). For subsequent, haplotype-specific analyses, however, we lim-

ited to a more conservative set of admixed haplotypes, with a score cutoff of 0.001. We do not

seek to interpret these p-values beyond their use as a score for separating admixture from ILS.

4.3.4 Testing for overlap

All overlap-related tests were done using the GenometricCorr R package [46]. We

loaded each “reference” and “query” BED file, along with the lengths of all hg19 autosomes,

We then limited all tests to a list of regions deemed queryable by the ARG. We defined these

regions as 50kb windows of the genome that contained at least one site in our ARG input files;

these “queryable” windows should therefore exclude non-genic regions of the genome such as

centromeres and telomeres. We set the number of permutations in each test to zero, as we were

only interested in two parametric tests implemented in the package.

4.3.5 Analysis of introgressed haplotypes

We merged and computed the frequencies of confidently introgressed (score ¡ 0.001)

Neanderthal and Denisovan haplotypes using BEDTools multiinter [167] and dividing by the

number of haploid human genomes under study. For GO enrichment analyses, we used the

Wilcoxon test implemented in FUNC [164], with the October 29, 2018 release of the Gene
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Ontology tables [1], ranking GO terms by the frequency of the Neanderthal or Denisovan hap-

lotype containing them. We used FUNCs refinement routine to account for the hierarchy of GO

terms, and we used a p-value cutoff of 0.01.

For our GWAS analysis, we obtained the GWAS catalog from the European Bioinfor-

matics Institute [115] on hg38 coordinates, discarding any hits that were not on autosomes. We

then extracted every derived allele in our data set shared between humans and archaic hominins

whose frequency in modern humans equaled the frequency of its parent archaic-introgressed

haplotype. We used liftOver [72] to port these alleles to hg38 coordinates and then compared

them with the significant GWAS hits, considering only alleles within introgressed haplotypes

with frequency greater than 1% in modern humans. There were no such GWAS hits coinciding

with high-frequency Denisovan-introgressed alleles.

4.3.6 Determining size of deserts

After obtaining our set of deserts and human-specific regions using real data, we

scanned our inferred ARG on data from the demographic simulation (see Simulations section)

for deserts, human-specific regions, and admixture. Due to the small size of the simulated chro-

mosome, the small number of simulated samples, and the lack of an unadmixed outgroup, we

did not use the same technique as in real data to detect admixture. Instead, we first scanned

for all clades that grouped one or more modern human haplotypes with archaic hominin haplo-

types to the exclusion of other modern human haplotypes, without the use of an outgroup. This

produced a set of clades representing both admixture and incomplete lineage sorting. Next, we

repeated this process, using true ARG trees from scrm output and plotted the mean TMRCA
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to Neanderthal against the length of each candidate introgressed haplotype; this allowed us to

easily separate admixture from ILS by eye, since branch lengths were exact rather than inferred

from mutations (Fig. 4.1B). We created a BED file of each true admixed haplotype thus de-

tected, and we labeled all candidate introgressed haplotypes from our inferred ARG data as

truly introgressed if they intersected one of these true admixed haplotypes. Merging this file

(using BEDTools merge [167]) and counting the number of bases gave us the overall amount of

admixture in our simulations.

To determine if the deserts and human-specific regions we detected represent the full

extent of those regions across all humans, or whether they are a superset that would decrease

with the examination of more genomes, we randomly sampled (without regard to population

or phylogenetic position) sets of 10, 50, and 100 human haplotypes from the SGDP data set

and added all archaic hominin haplotypes (Altai, Vindija33.19, and Denisovan) to each set. We

re-ran SARGE on each of these data sets, with the same parameters as the full run (excluding

CpG sites, and with 25kb propagation distance) and scanned the results of each for deserts and

human-specific regions.

4.3.7 Analysis of human-specific alleles in deserts

We conducted Gene Ontology enrichment analysis using the hypergeometric test im-

plemented in FUNC [164], with the October 29, 2018 release of the Gene Ontology tables [1],

using FUNCs refinement routine and a p-value cutoff of 0.01.

To study the age of candidate functional mutations in these regions, we first searched

ARG output for clades containing all modern humans and noted the TMRCA of each clade.
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We then intersected these sets of positions with positions of confidently-called binding sites for

regulatory elements, obtained from the “double-elite” set within the GeneHancer database [48],

downloaded from the UCSC Genome Browser [21] (“interactions” table on hg19). We then

took the target genes for each regulatory element and searched for interactions with other genes

in this set in the STRING database [207], with a minimum interaction score of 300. We then

determined time bins containing the most genes by eye, after plotting.
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Figure 4.17: Properties of desert regions (free of admixture and ILS) and human-specific re-
gions (all humans share a derived lineage). A: Sizes of deserts and human-specific regions
detected in real data, with different numbers of randomly subsampled human haplotypes. Num-
ber of haplotypes refers to modern human haplotypes only; all archaic hominin haplotypes were
included in each run. B: Proportions of the autosomal genome containing archaic hominin ad-
mixture, ILS, and in deserts and human-specific regions, in real data and data simulated under a
popular demographic model, with a single pulse of Neanderthal admixture 50 kya. C: Lengths
of deserts and human-specific regions (bp). D: Mean TMRCA of all humans across each desert
and human-specific region. E: For loci where all humans share a derived lineage in a regulatory
element binding site, genes regulated by elements that bind at that site are considered, and all
pairs of genes in this set whose products interact are considered. For each interacting pair of
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in the pair are shown. Selected time bins with the most genes are 33-42 kya, 145-185 kya, and
400-500 kya.
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Chapter 5

Conclusion

I have introduced two new methods for localizing introgressed segments in the genomes

of hybrid individuals, one suited to low-coverage data, especially from non-model organisms

where large panels of phased reference data are unavailable, and another suited to large panels

of phased data. Although AD-LIBS, the hidden Markov model-based approach, has a fairly

specific use case, SARGE, the ancestral recombination graph inference program, can be used

for a wide variety of analyses not limited to admixture mapping. Both programs are freely

available to other researchers at https://github.com/nkschaefer.

I have used these two programs to analyze the inheritance of introgressed ancestry in

two different species, brown bears and modern humans. These two cases have some qualities in

common. First, both sets of hybridizing species diverged very recently (350-500 kya [108] for

brown and polar bears and 500-600 kya for humans and archaic hominins [163]). Second, both

involve gene flow from a relatively genetically homogenous population into one with higher

nucleotide diversity, and gene flow in both cases appears to have been (at least mostly) unidi-
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rectional [56, 19]. Therefore, comparing and contrasting these two data sets can be illuminative.

The genomic distribution of hybrid ancestry in in both species generally follows the

accepted wisdom that hybrid ancestry is somewhat deleterious [65]; introgression-free regions

are enriched for functional elements in both species, although evidence for adaptive introgres-

sion exists in both species as well. Intriguingly, we find evidence of adaptively introgressed

immune-related genes in both species. This could be due to the fact that diversity in MHC

alleles is useful for defending against a variety of pathogens, and introgression is therefore a

universal source of divergent MHC alleles. It could also be the case that both Neanderthals

and polar bears were the first species to become specialized for life in a particular environment,

and the defenses they evolved against local pathogens later proved beneficial to those they hy-

bridized with as they colonized new environments. This has been suggested previously in the

human-Neanderthal case [4]. The functions of other potentially adaptively introgressed regions

provides an interesting topic for future study. These include genes involved in DNA repair,

spermatid development, and circadian rhythm in bears, and zinc finger transcription factors

(Neanderthal) and a gene involved in phototransduction (Denisovan), as well as transmembrane

proteins of unknown function (both) in humans.

Genomic regions free of introgressed ancestry in both species (and also free of in-

complete lineage sorting in humans) provide another interesting avenue for further study. These

regions in both species contain genes involved in neurodevelopment, although they are likely to

be different sets of genes. Looking at derived alleles fixed in both species within these regions,

and those alleles’ proximity to functionally consequential genome features, could shed light on

the significance of these regions. This would be especially useful in the case of human-specific
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regions within the three protocadherin clusters, where alternative splicing regulation may have

been important in the differentiation of modern from archaic hominins. Another avenue of anal-

ysis is to look for evidence of hybrid incompatibility in these regions, for example, by locating

interacting sets of genes with members in separate introgression-free regions. This could help

determine whether there are certain genes (or pathways) universally involved in hybrid incom-

patibility, or if hybrid incompatibility loci in humans and bears are fundamentally different from

those already discovered (i.e. in Drosophila [151]).

Ancestral recombination graph inference using large panels of data also promises

to enable many new types of population genetic analyses. As many existing anlyses act on

statistics that are in effect summaries of the ARG [196], these could be re-created using ARG

output, and perhaps become more accurate in the process. The ARG could also be used to

disentangle complicated demographic questions, such as the true phylogenetic position and

demographic history of Denisovans.
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Appendix A

Supplementary methods for Chapter 2

A.1 HMM transition probabilities: computing z

Transition probabilities in AD-LIBS depend primarily on the values of g, the number

of generations since admixture, r, the recombination probability per site per generation, and z,

the probability of resampling the same ancestral recombination event twice in a single individual

(see Materials and Methods and Figure 2.10). While g and r are simple to conceptualize and

compute, z is more challenging, and we describe the computation of z in this section.

The Wright-Fisher model, in which populations are modeled as constant-sized un-

structured groups of randomly mating individuals with non-overlapping generations, can be

used to set up a calculation of z. Hartl and Clark [66] conceptualized allele frequencies under

genetic drift in a Wright-Fisher population as a Markov chain problem: they described a state

space of size 2N, where each state corresponds to an allele frequency in a diploid population of

size N. Each entry in the transition probability matrix T, where is the probability of transition-
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ing from i to j copies of an allele in a diploid population of size N in one generation, is given

by Ti j =
(2N

j

)( i
2N

) j(2N−i
2N

)2N− j
. Given that recombination events arise with probability r, then in

this case T0, j>0 = 2Nr j and T0,0 = 1−∑
2N
j=1 T0, j and the probability of a single recombination be-

ing resampled in an individual after allowing g generations of random drift is ∑
2N
j=2 T g

0, j(
j

2N )
2).

While conceptually appealing, this formulation quickly becomes computationally intractable

when there is a large population size N or number of generations since admixture g.

To improve computational efficiency, continuous approximations to the genetic drift

problem, based on the mathematics of diffusion, have been proposed. [90] made an influential

contribution, but his solution did not account for the so-called “absorbing” states of loss and fix-

ation. We implemented the solution to the pure drift equation, without selection or migration,

given by [120]. Given a population size N, a number of generations t, and an initial allele (or

recombination) frequency of 1/2N, the probability density of allele frequency x in the tth gener-

ation is given by ∑
∞
n=0[(2n+3)(n+1)(n+2)2F1(−n,n+3;2; 1

2N )2F1(−n,n+3;2;x)e
−(n+1)(n+2)t

4N ,

the probability of allele loss is a Dirac delta function with weight (1− 1
2N )∑

∞
n=0[(

1
2N )(2n+

3)2F1(−n1,n+3;2; 1
2N )e

−(n+1)(n+2)t
4N , and the probability of allele fixation is a Dirac delta function

with weight ( 1
2N )∑

∞
n=0[(1− 1

2N )(2n+3)−1)n+1
2 F1(−n,n+3;2; 1

2N )e
−(n+1)(n+2)t

4N , where 2F1(a,b;c;z)

is the hypergeometric function.

In our implementation, we terminate the infinite sums when newly added terms are

lower than 10−20 and we divide the allele frequency spectrum into 500 bins (or 2N-1 bins, if

2N-1 ¡ 500), plus one bin each for the probabilities of allele loss and fixation. For any given

number of generations t, we use the above equations to compute probability density at the upper

and lower limit of each bin, obtain probabilities from probability density via the trapezoid rule,
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and map the probability of each bin to the frequency value at its midpoint, giving a vector of

probabilities V and a vector of allele frequencies F , each with 502 entries corresponding to

bins indexed by b, where b ∼ [0,501]. We then iterate over each generation 0 ≤ i < g, and

compute V and F for an allele that arose in generation i at frequency 1
2N and underwent t = g− i

generations of drift. For each of these vectors, then, we compute the per-site probability of

resampling this allele (or recombination event) twice in an individual in generation g: if r is

the recombination probability per site, b ∼ [0,501] is the bin index, Vb is the probability of a

given bin, and Fb is the mean allele frequency associated with that bin, then the probability of

resampling the same allele or recombination event twice in an individual is ∑
501
b=0 rVbF2

b . The

overall probability of resampling the same ancestral recombination event twice in an individual

is then z = ∑
g−1
i=0 [∑

501
b=0 rVi,bF2

i,b].

With these values, the transition probabilities between the three ancestry states can

be computed per site as in Figure 2.10. To transform these into transition probabilities between

windows, each can be multiplied by the window size w, so that the transition probabilities
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between ancestry states are as follows:

p(AB|AA) = 2grw(1− p)(gpr−gr+1)

p(BB|AA) = w(1− p)(−g2 pr2 +g2r2 + z)

p(AA|AB) = 2pw(g2 pr2−g2r2 +gr+ z)

p(BB|AB)+2w(1− p)(−g2 pr2 +gr+ z)

p(AA|BB) = wp(g2 pr2 + z)

p(AB|BB) = 2gprw(1−gpr)

A.2 HMM transition probabilities

In addition to the three ancestry states and three skip states described in Materials

and Methods, AD-LIBS also has start and end states. The probability of transitioning to the end

state from any other state is 1/l, where l is the number of windows in a genomic input sequence.

The transition probabilities from the start state are based on the percent ancestry the admixed

population derives from population A, p, and the distribution of population A-like bases under

Hardy-Weinberg equilibrium (s is the skip probability):
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p(AA|start) = p2(1− s)

p(sAA|start) = p2s

p(AB|start) = 2p(1− p)(1− s)

p(sAB|start) = 2p(1− p)s

p(BB|start) = (1− p)2(1− s)

p(sBB|start) = (1− p)2s

When all other probabilities have been determined, the probability of any ancestry

state transitioning to itself is defined as one minus the sum of all other transition probabilities

from that state. This is also how transition probabilities from skip states back to their associated

ancestry states are determined. For example:

p(AA|AA) = 1− p(AB|AA)− p(BB|AA)− p(sAA|AA)− p(end|AA)

p(AA|sAA) = 1− p(sAA|sAA)− p(AB|sAA)− p(BB|sAA)− p(end|sAA)

AD-LIBS can also optionally account for the approximate general reduction in het-

erozygosity due to genetic drift, as formulated by Hartl and Clark [66]: given an initial level

of heterozygosity H0, a population of N diploid individuals, the level of heterozygosity after

t generations of genetic drift is Ht ≈ H0e
−t
2N . This is approximated in AD-LIBS using t =the

number of generations since admixture g and population size N. We then reduce the probability
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of transitioning from any state to the heterozygous state according to this predicted reduction

in heterozygosity, and compensate for this by increasing the probability of staying in or transi-
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tioning to one of the homozygous ancestry states:

p(AA|AA) = p(AA|AA)+(
p(AA|AA)

p(AA|AA)+ p(BB|AA)
)(p(AB|AA)− p(AB|AA)∗ (Ht/H0))

p(AA|sAA) = p(AA|sAA)+(
p(AA|sAA)

p(AA|sAA)+ p(BB|sAA)
)(p(AB|sAA)− p(AB|sAA)∗ (Ht/H0))

p(BB|AA) = p(BB|AA)+(
p(BB|AA)

p(AA|AA)+ p(BB|AA)
)(p(AB|AA)− p(AB|AA)∗ (Ht/H0))

p(BB|sAA) = p(BB|sAA)+(
p(BB|sAA)

p(AA|sAA)+ p(BB|sAA)
)(p(AB|sAA)− p(AB|sAA)∗ (Ht/H0))

p(AA|BB) = p(AA|BB)+(
p(AA|BB)

p(AA|BB)+ p(BB|AA)
)(p(AB|BB)− p(AB|BB)∗ (Ht/H0))

p(AA|sBB) = p(AA|sBB)+(
p(AA|sBB)

p(AA|sBB)+ p(BB|sAA)
)(p(AB|sBB)− p(AB|sBB)∗ (Ht/H0))

p(BB|BB) = p(BB|BB)+(
p(BB|BB)

p(AA|BB)+ p(BB|BB)
)(p(AB|BB)− p(AB|BB)∗ (Ht/H0))

p(BB|sBB) = p(BB|sBB)+(
p(BB|sBB)

p(AA|sBB)+ p(BB|sBB)
)(p(AB|sBB)− p(AB|sBB)∗ (Ht/H0))

p(AA|AB) = p(AA|AB)+(
p(AA|AB)

p(AA|AB)+ p(BB|AB)
)(p(AB|AB)− p(AB|AB)∗ (Ht/H0))

p(AA|sAB) = p(AA|sAB)+(
p(AA|sAB)

p(AA|sAB)+ p(BB|sAB)
)(p(AB|sAB)− p(AB|sAB)∗ (Ht/H0))

p(BB|AB) = p(BB|AB)+(
p(BB|AB)

p(AA|AB)+ p(BB|AB)
)(p(AB|AB)− p(AB|AB)∗ (Ht/H0))

p(BB|sAB) = p(BB|sAB)+(
p(BB|sAB)

p(AA|sAB)+ p(BB|sAB)
)(p(AB|sAB)− p(AB|sAB)∗ (Ht/H0))

p(AB|AA) = p(AB|AA)∗ (Ht/H0)

p(AB|sAA) = p(AB|sAA)∗ (Ht/H0)

p(AB|AB) = p(AB|AB)∗ (Ht/H0)

p(AB|sAB) = p(AB|sAB)∗ (Ht/H0)

p(AB|BB) = p(AB|BB)∗ (Ht/H0)

P(AB|sBB) = p(AB|sBB)∗ (Ht/H0)
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Since many transition probabilities depend upon the window size w, we risk obtaining

sums of transition probabilities from individual states that are greater than 1 when the window

size is large. We take two steps to prevent this: first, we cap both the skip probability s and

the probability of ending the sequence 1/l at maximum values of 0.05. In our experience, this

number is high enough to still allow the model to detect skipped windows and to end sequences

in the appropriate places. Second, given the other model parameters, we calculate the maximum

possible window size that will allow the sum of transition probabilities out of each state to fall

below 1. If the user chooses a window size that exceeds this threshold, the program notifies the

user and exits.

Our implementation also considers some of the unique properties of the X chromo-

some [190]. Since there are fewer copies of the X chromosome than any autosome in a given

population, the X chromosome only recombines approximately 2/3 as often as the autosomes.

We therefore build a different model on chromosome sequences or genomic scaffolds specified

to belong to the X chromosome: on these sequences, the r parameter is taken to be 2/ of its

default, autosomal value: rx = (2/3)r. Furthermore, the z parameter quantifies genetic drift

and thus depends on the population size N, but the effective population size of the X chromo-

some is 3/4 of the autosomal value, again owing to there being fewer copies of X chromosomes

than autosomes in circulation in a population. We therefore recompute z using the same tech-

nique described earlier, but with Nx = (3/4)N, to give zX , used in place of z on X chromosome

sequences. Finally, users can specify which individuals are male, and for these individuals a

haploid model is created instead of the default, diploid model on X chromosome sequences. In

this model, there is no heterozygous ancestry state (AB) or heterozygous skip state (sAB), and
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transitioning from one ancestry state to the other only requires a single recombination event,

followed by sampling the next base from the set of bases of the opposite type of ancestry:

p(BB|AA) = gr(1− p)

p(AA|BB) = grp

The transition probabilities from the start state are also different in the haploid X

chromosome model, due to the absence of the heterozygous state:

p(AA|start) = p(1− s)

p(sAA|start) = ps

p(BB|start) = (1− p)(1− s)

p(sBB|start) = (1− p)s

If the organisms under study follow the ZW rather than the XY sex determination

system, the same concept holds, except that the “X chromosome sequences” supplied to AD-

LIBS should be the names of sequences or genomic scaffolds belonging to the Z chromosome,

and the “males” specified to AD-LIBS should actually be females.
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A.3 Emission probability distributions: expectation

For a description of emission “scores” used by AD-LIBS, see Materials and Methods.

In this section, we describe the expected distributions of these scores used by AD-LIBS.

The expected distribution of IBS tracts between two haplotypes depends only on the

parameter π, or average nucleotide diversity per site between those two haplotypes. We there-

fore, as a first step, compute the average genome-wide nucleotide diversity per site within pop-

ulation A, referred to as πA, within population B, referred to as πB, and between the two pop-

ulations, referred to as πAB. Given that π describes how often one expects to see a nucleotide

difference, 1/π is the expected length of a haplotype before a difference is observed. IBS tract

lengths tend to follow an exponential distribution with π as a parameter. Since our model con-

siders samples of IBS tracts within genomic windows, however, we expect our mean IBS tract

lengths to follow a normal distribution with a mean equal to the expected value and a standard

deviation equal to the expected sample standard deviation, with the expected number of samples

equal to the window size times π:

µ =
1

wπ

σ =
1

π
√

wπ−1

There are five such distributions to consider when computing scores. In genomic

regions where a hybrid individual is homozygous for population A ancestry, sample mean IBS

tracts with population A follow such a distribution with π= πA and sample mean IBS tracts with

population B follow such a distribution with π = πAB. Where there is homozygous population
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B ancestry, mean IBS lengths with population A have π = πAB and IBS lengths with population

B have π = πB. In heterozygous regions, mean IBS lengths with population A have π = (πA +

πAB)/2 and mean IBS lengths with population B have π = (πB +πAB)/2. For each of these five

distributions, we calculate normal µ and σ as above and then transform the standard deviation

into the equivalent for a log-normal distribution:

σ
′ =

√
log(

σ2

µ2 +1) =

√
log(

w2

2π−1
+1)

We then use these values to compute the parameters for the three emission probability

distributions. Since each is the ratio of two distributions, the variances of the emission proba-

bility distributions are the sum of the variances of the two mean IBS tract length distributions

they compare:

µAA = log(
1

wπA
)− log(

1
wπAB

)

µBB = log(
1

wπAB
)− log(

1
wπB

)

µAB = log(
1

w(πA +πAB)/2
)− log(

1
w(πB +πAB)/2

)

In AD-LIBS, all three emission probability distributions are modeled as normal dis-

tributions, due to successful performance on training data. We also reserve a specific value to be

used as a “skip” score; distributions are set such that the skip score has zero probability under

all three emission probability distributions. We also create an emission probability distribution

for the three skip states that is only capable of emitting this value.
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As with the transition probabilities, sequences belonging to the X chromosome present

an edge case in which changes to the model are necessary. Since the effective population size

of the X chromosome is 3/4 that of the autosomes, we multiply πA, πB, and πAB by 3/4 before

calculating the emission probability distribution parameters.

Whereas the need to keep transition probabilities below 1 sets an upper bound on

window size, our expected emission probability distributions set a lower bound on window

size. If πA is the lowest value of π, then per the standard deviation calculations above, we

require wπA > 1 to avoid division by zero (standard deviation calculations can involve division

by zero if the expected number of IBS tract observations in a given window is less than one). It is

generally preferable to choose the smallest possible window size for which there is a reasonable

lack of overlap among emission probability distributions (see Materials and Methods).
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Appendix B

Supplementary methods for Chapter 3

B.1 Adding nodes to the ARG

Every node in the ARG must be “anchored” at one or more genomic positions. This

is because each node’s start and end coordinates depend on these positions, along with the

propagation distance p. When a node’s range is interrupted by a new node with which it fails

the four haplotype test being created in the middle of its range, for example, the set of genomic

sites the node “owns” are used to determine its new range. Additionally, to make it easier to

look through the ARG, we store a mapping of sites to ARG nodes with those sites. Since it

is set up this way, we do not allow any node to be created if the site at which it is originally

anchored already is tied to an existing ARG node with which it fails the four haplotype test.

When a new node is to be created, we first check to see if it can be merged with an

existing node. This is the case if there already exists a node with the same clade whose range

overlaps the new node, and if no node that fails the four haplotype test with either of these nodes
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exists at any site in between them. If this is the case, then rather than create the new node, the

existing node’s range is expanded to take over the new node’s range, and the new node’s sites

are added to the old node. A special case exists when the new node’s range overlaps with two

existing nodes (one upstream and one downstream). In this case, the two node’s ranges are

expanded to one another’s outer limits, and then the two nodes are merged; sites belonging to

the new node are then given to the merged existing node instead. It is also possible that a new

node’s range falls completely within the range of a single existing node; in this case, the new

node’s sites are given to the existing node.

If a new node does not merge with an existing node, then the first step is to determine

its range by detecting all four haplotype test failures it will encounter. All nodes whose end

coordinate plus p is greater than or equal to the new node’s start coordinate minus p, or whose

start coordinate minus p is less than or equal to the new node’s end coordinate plus p, undergo

the four haplotype test with the new node. Next, all relevant node’s coordinates are adjusted

according to these four haplotype test failures. If the new node is in the middle of an existing

node’s range and the new node fails the four haplotype test with that node, then that existing

node is split into two nodes. Otherwise, start and end coordinates are adjusted so that if the

new node is closer to an existing node than every other node with which the existing node fails

the four haplotype test, then the end coordinates of both node’s ranges are set to the furthest-

reaching sites owned by those nodes. In other words, if p = 50 and node 1 with range [0,100]

and a site at position 50 fails the four haplotype test with node 2, which has range [100, 200]

and a site at position 150, then node 1 will now have range [0,50] and node 2 will now have

range [150,200]. In another case, where node 3 has range [0,200] and sites 50 and 150 and fails
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the four haplotype test with node 4, which has range [50,150] and has site 100, node 3 will be

split into one node with range [0,50] and site 50, and another node with range [150, 200] and

site 150. Node 4 will have its range reduced to one site, [100,100] (Fig. B.1).

Once all node ranges have been adjusted according to four haplotype test failures,

then all parent/child relationships are created. To do this, a depth-first search is performed

across the ARG down from the root, across the entire range of the new node. If a node’s clade is

a superset of the new node’s clade, then that node’s sub-ARG is searched, and then the superset

node is added to a set of parent nodes. Once all parent nodes are collected, they are sorted by

increasing clade size and one by one added as parents of the new node. If the new node is a

parent of an existing child of the parent node at a given range of sites, then that child is removed

from the parent over that range and stored to later be added as a child of the new node (children

are added in order of decreasing clade size). When adding parent/child edges, existing edges

are sometimes split. All parent/child edges are bidirectional – the child node must store the

same edge with the same coordinates to the parent as the parent stores to the child.

After all parent/child edges are added, recombination edges are added to the graph.

Beginning with the set of four haplotype test-failing nodes stored from earlier (when start and

end coordinates were adjusted and nodes were split as necessary), these nodes are divided into

those upstream and those downstream of the new node. The upstream and downstream nodes

are then both sorted by increasing distance from the new node. If there are two four haplotype

test-failing nodes B and C downstream of node A, where B is closer to A than C, and B and

C also fail the four haplotype test, then node C will not be connected to A with recombination

edges. Otherwise, recombination edges are added. In this case, the ranges of the two nodes

202



are expanded to the limits of the previously-solved recombination events, and any new clades

that can be inferred are created as new nodes (see “Solving ancestral recombination events”

section).

The process of adding recombination edges begins with checking to see if edges al-

ready exist between the two nodes (possibly from a solved or unsolvable recombination event).

If so, nothing is done. If there are edges representing a solved recombination event connecting

one of the two nodes to another node, and that recombination event’s node matches one of the

potential γ clades that could explain the new four haplotype test failure, then solved recombina-

tion edges are added between the two new nodes and the node for the γ clade from that solved

recombination event.

If no previously-solved or unsolvable recombination event can explain the four hap-

lotype test failure between any two nodes, then candidate recombination edges are added. In

this case, each candidate moving clade is created as a node that is not inserted into the ARG

via parent/child edges, but stored in a separate set of potential nodes. If a candidate γ clade

already exists as a node in this set, then it is reused and its start and end coordinates are set to

the narrowest interval between upstream and downstream nodes that fail the four haplotype test,

with that γ clade connecting them. If there is more than one node in the set of candidate γ clade

nodes whose range overlaps with the interval between the upstream and downstream nodes that

fail the four haplotype test, then all such nodes are merged into one. Once an appropriate γ clade

node is found, candidate recombination edges are added connecting it to both the upstream and

downstream node that fail the four haplotype test.

Once start and end coordinates are adjusted, parent/child relationships are added, and
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recombination edges are added, the new node is “finished” and stored in the data structures that

allow lookup by genomic position and clade.

A special case for adding nodes exists for clades where every haplotype shares the

derived allele. These sites can only contribute to the branch length of the root node. Therefore,

we store a single root node whose start and end coordinates span the entire chromosome. If a

mutation is observed for which every haplotype shares the derived allele, it is added to the root

node. Inferred (non-mutation) sites with this clade are ignored and not added to the root node.

Similarly, clades where every haplotype shares the ancestral allele are not informative

for the ARG and are skipped altogether.

Figure B.1: How node indices are adjusted when four haplotype test failures are encountered.
Black letters represent clades, yellow numbers in curly braces represent site indices, and blue
numbers in brackets represent start and end coordinates (inclusive). Red text indicates an ad-
justed value. Red arrows show four haplotype test failures, and black arrows represent changes
made to nodes. A: a simple case where the furthest donwnstream site owned by node 1 (50) is
upstream of the furthest upstream site owned by node 2 (150). In this case, node 1’s end co-
ordinate is set to its furthest downstream site, and node 2’s start coordinate is set to its furthest
upstream site. B: Node 4 interrupts the range of node 3. Node 3 must be split into two nodes,
and all three resulting nodes must have their ranges adjusted.
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B.2 Solving ancestral recombination events

The process of “solving” ancestral recombination events consists of finding a node

with unsolved recombination edges connecting it to one or more nodes downstream, finding a

subgraph of the ARG containing other nodes involved in this or possibly other recombination

events, filtering the subgraph so that it only describes a single recombination event, and then

choosing the most likely node that could explain the recombination event (similar to the “two-

trees” algorithm, Fig. 3.8). Finally, the chosen γ node is added to the ARG as a standard

tree node, the start and end coordinates of all nodes involved are adjusted to account for the

inferred recombination event, and any nodes that do not exist in the ARG but whose existence

is implied by the recombination event are created (Fig. 3.2B). This process is the core of the

ARG inference algorithm, as it allows for the creation of nodes not directly observed in the

input SNP data.

One concept used by several stages of this algorithm is that of tree-compatibility

between two nodes. Two nodes are tree-compatible if, according to their clades, genomic po-

sitions, and genomic positions of their four haplotype test-failing partner nodes, they can both

exist in the same tree. At this stage in ARG building, start and end coordinates have not yet

been finalized, so we cannot define compatibility based on coordinates alone. However, if two

nodes already have overlapping start and end coordinates, then they must be compatible. In an-

other simple case, two nodes that fail the four haplotype test cannot be compatible. Otherwise,

we must rely, for upstream nodes, on the upstream-most start coordinate of all downstream tree

nodes connected to the node via recombination edges. Likewise, for downstream nodes, we
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consider the downstream-most end coordinate of all upstream tree nodes connected to the node

via recombination edges. We refer to this value, in both cases, as the “closest recombination

partner” of the node; this determines how far, in theory, the nodes end coordinate (if upstream

of a recombination event) or start coordinate (if downstream of a recombination event) could

be extended in the ARG. Whether or not any two tree nodes are tree-compatible depends on the

location of both nodes closest recombination partners. Imagining node A upstream of node B,

node B must be upstream of node A’s closest downstream recombination partner and node A

must be downstream of node B’s closest upstream recombination partner to be tree-compatible

(Fig. B.2).

Figure B.2: Tree-compatibility in three different situations. Gray squares are nodes, black
letters are clades, yellow numbers in curly braces are genomic positions, and blue numbers in
brackets are start/end coordinates. Red arrows indicate four haplotype test failures, and green
ovals denote tree compatibility. A: three pairs of nodes are compatible (can belong to the same
trees as each other). B: only two pairs of nodes are tree-compatible. C: Only one pair of nodes
is tree-compatible.

The central problem in solving ancestral recombination events is to find a subgraph

of the ARG containing a set of tree-compatible upstream nodes U, a set of tree-compatible
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downstream nodes D, and a set of candidate γ nodes L that connect together nodes in U and D.

Ideally, U, D, and L should correspond to a single ancestral recombination event; however, in

practice, there are situations in which a single event is difficult or impossible to distinguish from

multiple events (Fig. B.3). We will hereafter refer to this ARG subgraph used to infer ancestral

recombination events as a “recombination graph.”

Collecting a recombination graph begins with a “key” node k, which is a tree node

in the ARG with unsolved recombination edges to downstream nodes. To begin, we visit each

candidate γ node downstream of k and add it to L. Next, we visit all upstream tree nodes con-

nected to every node in L and add them to U, if they are tree-compatible with k. We then follow

all recombination edges from nodes in U, through candidate γ nodes, to tree nodes with start

coordinates downstream of the end coordinate of k. These nodes are added to D, and all candi-

date γ nodes along their paths to nodes in U are added to L. We then revisit nodes in U; any that

are not connected via recombination edges to nodes in D are removed from U.

Because ranges of candidate γ nodes are difficult to determine and subject to change, it

is possible at this stage for L to contain multiple γ nodes that really represent the same candidate

γ clade. To merge identical γ nodes, we compile all sets of nodes in L with the same clade, which

also have start and end coordinates whose ranges fall within the range defined by the minimum

end coordinate of nodes in U and the maximum start coordinate of nodes in D. If there is such a

set of nodes M in L, and the nodes in M are connected to one or more upstream nodes that are

tree-compatible with k, then these compatible upstream nodes are added to U, we follow their

recombination edges through nodes in M to downstream tree nodes and add them to D, and then

all nodes in M are merged together into a single node, which is added to L. We then undertake
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Figure B.3: An example case in which multiple ancestral recombination events may be con-
sidered as one. A: The true ARG across three adjacent genomic regions. Clades involved in
recombination are marked α and β; subscripts denote the recombination event (first or second)
to which they correspond. Clades observed in SNP data appear below each tree in the order in
which they are observed; colors mark the true tree to which each clade belongs. Purple branches
are true γ clades, and purple arrows show ancestral recombination events. B: The correct group-
ing of nodes path through them in a recombination graph. First, (J) moved downward from
(ABCDEFGHIJ) to (EFGHIJ). Then, (E) moved from (EFGHI) to (ABCE). C: A likely incor-
rect inference made, if nodes are not grouped correctly into trees. It appears most parsimonious
to say that (J) moved down from (ABCDEFGHIJ) in the first tree to (FGHIJ) in the third tree,
skipping the middle tree altogether. If this choice is made, genomic positions for the ancestral
recombination event will also be wrong, as it chooses the narrowest possible interval, which
would place it between the first and second tree. Note that observing the clade (ABCE) in the
third tree might help avoid this problem.

a simple filtering step designed to remove nodes involved in recombination events upstream or

downstream of the main ancestral recombination event we are trying to solve. First, we sort

all nodes in U by end coordinate and all nodes in D by start coordinate. If any node in U
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has a closest downstream recombination partner upstream of the furthest-upstream node in D,

then the upstream node is removed from U. Likewise, if any node in D has a closest upstream

recombination partner downstream of the furthest-downstream node in U, then the downstream

node is removed from D. After this process, if any node in U lacks recombination edges to all

nodes in D, or if any node in D lacks recombination edges to all nodes in U, then that node is

removed from the set to which it belongs.

The next step is to filter U, D, and L to a set of nodes describing only a single recom-

bination event. This is the most memory intensive part of the algorithm, as it must explore a

large set of choices. At this stage, the recombination graph is likely to represent several dif-

ferent recombination events, which must be pared down to one before a branch movement can

be inferred; the final recombination graph should have a set of fully tree-compatible U nodes

and a set of fully tree-compatible D nodes that are all tree-incompatible with each other. In this

step, we enumerate all possible inclusion/exclusion decisions and try to make the best one, or

else defer decision making until later, when other ancestral recombination events will have been

solved, reducing the number of recombination edges and thus making the recombination graph

simpler the next time it is visited.

We store a collection of pairs of “decision” sets, each representing a choice to make

either eliminate all nodes in the first set or eliminate all nodes in the second set. We call this

collection of decision set pairs C, each consisting of (u,d), which is a pair of sets u is a set of

nodes in U that can be eliminated, and d is a set of nodes in D that can be eliminated instead.

For each node in U, the set of all nodes in D that are tree-compatible with it are gathered, and

for each node in D, the set of all nodes in U that are tree-compatible with it are gathered. This
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forms a decision set pair; if starting with an upstream node, then u contains only that node and

d contains all tree-compatible nodes in D. If starting with a downstream node, then d contains

only that node and u contains all tree-compatible nodes in U. All sets are then combined into

as few decision sets as possible: if in a preexisting decision set pair (u’, d’), u’ ⊆ u and d’ ⊆ d,

then elements of u are added to u and elements of d are added to d (the same operation is carried

out if u and d are flipped). Otherwise, if d = d’, then elements of u are added to u.

We also store a collection of pairs of “partner” sets P. These are the opposite of de-

cision sets: they are pairs of nodes for which including one requires also including the other.

The logic behind partner sets is that to include a node in U or D in the final recombination

graph, we must also include its closest recombination partner. These sets of nodes are collapsed

into as few as possible: for each set of an upstream node and its closest downstream partner,

or a downstream node and its closest upstream partner (u,d), we visit each existing partner set

(u’,d’); if u and u share members or d and d share members, then the node in u is added to u and

the node in d is added to d. If this cannot be done, (u,d) is added to P.

Given all choices described by the node sets in C and P, we now build a set S, where

each entry is a set of upstream and downstream nodes (U,D) that could describe a single recom-

bination event. To populate S, we first enumerate all possible choices in C, then filter according

to the constraints imposed by the pairs in P. If S is empty, we take a pair (u,d) in C, create

two sets representing the two possible choices: (u, d) and (u,d), and add them to S. Otherwise,

for each (u,d) in C, we visit all pairs (u’,d’) in S. If u and u share members and d and d share

members, then we create the new pairs (u’\ u, d’) and (u’,d’\ d) and add them both to S, if both

sets in the pair are non-empty. We then filter the node sets in S using the constraints in P. For
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each (u,d) in S, we visit each (u’d’) in P. If u and u share members or d and d share members

and it is not the case that u and d are both supersets or equal to their u and d counterparts, then

members of u are removed from u and members of d are removed from d. If either u or d = /0,

then is removed from S.

We now have in S a set of choices of full recombination graphs. In the spirit of parsi-

mony, we choose the set with the highest total node count (the recombination graph containing

the most possible four haplotype test failures). If there is a tie, we choose the set of upstream

and downstream nodes (u,d) with the shortest genomic span, defined by the furthest downstream

end coordinate in D minus the furthest upstream start coordinate in U.

Before solving the recombination event, we check pairs of upstream and downstream

nodes in the recombination graph and eliminate any pair whose four haplotype test failure could

be explained by a previously-solved recombination event. Previously-solved recombination

events are stored in a special type of recombination edge. By iterating through all previously-

solved recombination events and transforming clades accordingly (removing γ clades from α

clades or adding γ clades to β clades going downstream; doing the reverse going upstream),

we can see if the two clades that fail the four haplotype test still fail the four haplotype test

after being transformed according to previously-solved recombination events. If not, they are

removed from the recombination graph.

We also check the recombination graph for evidence that it describes multiple re-

combination events, before attempting to solve it. There are many boundary cases in which it

is impossible to determine if a given recombination graph describes one or more recombina-

tion events (Fig. B.3). Because of this, we keep track of how many times a given k node has
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been visited in the interest of solving recombination events. If we gather a recombination graph

around k and see evidence that the graph might describe multiple recombination events, we stop

trying to solve the event. Other recombination graphs with different k nodes might then be less

ambiguous, and solving them can eliminate recombination edges that complicated solving the

graph around k. The next time k is visited, then, the recombination event may be easier to solve.

Regardless, the second time a given node is visited, its recombination events are “force solved,”

meaning that checks for evidence of multiple recombination events are skipped altogether.

The first sign that a recombination graph might describe multiple recombination events

is if the downstream most node in U, Ud , does not fail the four haplotype test with the upstream-

most node in D, Du. If this is the case, then we could gather two alternative recombination

graphs. One would exclude Ud and instead add to D other further-downstream recombination

partners of other nodes in U; the other would exclude Du in favor of other further-upstream

recombination partners of other nodes in D. For both of these alternative recombination graphs,

we calculate the genomic span of all nodes they contain; if either has a smaller span than the

current chosen recombination graph, we take this as evidence of multiple recombination events

and defer solving the recombination graph.

The last step before solving the recombination graph is to filter the nodes in L to a set

of γ clades that are compatible with tree nodes already in the ARG. We therefore traverse nodes

in the ARG that own SNP positions that fall between the downstream-most position owned by

the downstream-most node in U and the upstream-most position owned by the upstream-most

node in D. If any such nodes clade fails the four haplotype test with a candidate γ clade, the

node with that clade is removed from L.
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At this stage, we have a reasonably confident set of nodes U, D, and L, representing

tree nodes upstream and downstream of a single ancestral recombination event, along with

choices for a clade that changed positions between trees. The final step is to count the number

of edges connecting each node in L to each pair of upstream and downstream nodes in U and

D. If one node has the most edges, it is chosen as the most likely branch movement, analogous

to the “two trees” algorithm (Fig. 3.2). If there is a tie, then we compute the maximum distance

along the genome each candidate γ clade belonging to nodes in L could persist in the ARG

(propagated in both directions) before encountering a four-haplotype test failure (or reaching the

propagation distance parameter p). We also compute this number for each other clade implied

by the γ clade: the difference of each upstream α clade and γ and the union of each upstream

β clade and γ, propagated upstream, as well as the union of each downstream α clade and γ

and the difference of each downstream β clade and γ, propagated downstream. The mean of

all of these numbers gives a measure of how compatible a given γ clade is with the current

ARG topology; therefore, the γ clade with the highest mean clade persistence distance across

all clades it implies is chosen as the correct clade.

With a γ clade chosen, the remaining inferences to make are the genomic coordinates

at which the recombination event happened, and which clade the γ belonged to immediately

before and after the recombination event. To determine the parents of γ immediately before and

after recombination, we follow all recombination edges between nodes in U and D that pass

through the chosen γ node, noting the type (α or β) of each node implied by the recombination

edge. We track the smallest α clade encountered in U, the smallest β clade encountered in

D, and the union of all clades. If no downstream β was encountered, the branch movement is
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determined to be upward from the smallest upstream to the union of all clades. If no upstream

α was encountered, the branch movement is determined to be downward from the union of all

clades to the smallest downstream β. Otherwise, we infer a lateral branch movement from the

smallest upstream α to the smallest downstream β.

Determining the coordinates of the recombination event is less straightforward. With

the goal of eventually determining a site x immediately upstream of recombination and a site

y immediately downstream of recombination, we define 3 possible starting points for x: x1, x2,

and x3. We also define two starting points for y: y1 and y2. We set x1 to the downstream-most

site in U and y1 to the upstream-most site in D. We then set x2 to the downstream-most upstream

recombination partner of any node in D and y2 to the upstream-most downstream recombination

partner of any node in U. Finally, for each node in D, we gather an initial, unfiltered recombi-

nation graph (U’,D’) using that node as the key node k; x3 is set to the downstream-most site in

U across all such recombination graphs. Next, we set x to the maximum of x1 and x2 and y to

the minimum of y1 and y2. At this point, if x3 was set and is between x and y, then we set x to

x3. Finally, we locate a pair of adjacent sites in the ARG halfway between x and y and set x to

the upstream site and y to the downstream site. If the choice is ambiguous (i.e. if the midpoint

between x and y lands on a single site rather than between a pair of sites), we randomly either

assign the middle site as x and the next site downstream as y, or assign the middle site as y and

the next site upstream as x.

With all parameters of the ancestral recombination event inferred, the last steps are to

adjust the ranges of all involved nodes, create new nodes implied by the recombination event,

and add “solved” recombination edges between nodes marking this event. First, if any node in
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U has an end coordinate upstream or downstream of x, it is set to x. Likewise, if any node in

D has a start coordinate upstream or downstream of y, it is set to y. Next, the chosen γ clade

is created as a node in the ARG, anchored to both sites x and y, with start coordinate x-p and

end coordinate y+p. We create new versions of all upstream nodes, anchored at y and with the

range [y,y+p], with clades adjusted by recombination (α clades have members of γ subtracted

and β clades have members of γ added). We then create new versions of all downstream nodes,

anchored at x and with the range [x-p,x], with clades adjusted by recombination (α clades have

members of γ added and β clades have members of γ subtracted). If the recombination event

was inferred to be upward or downward, we also create a clade containing the union of all

clades in the recombination graph, with the range [y-p,y+p] and anchored at y (if upward) or

[x-p,x+p] and anchored at x (if downward). If any of these nodes already existed in the ARG,

this process will add sites to the node that do not affect its branch length and possibly extend

its range. After this, we add “solved” recombination edges between each pair of upstream and

downstream nodes that fail the four haplotype test.

B.3 Finalizing ARG node ranges

Because of the heuristic nature of our method, some ancestral recombination events

go unsolved. Additionally, some may be unsolvable (for example, if all three candidate γ nodes

for a four haplotype test failure fail the four haplotype test with other, existing ARG nodes at

sites between the two four haplotype test failing nodes). When this is the case, we seek to

expand the ranges of all nodes involved in recombination to their fullest extent. In other words,
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for every pair of nodes that fail the four haplotype test with each other, we want to ensure that

the upstream nodes end coordinate and the downstream nodes start coordinate are set to sites

approximately in the center of the genomic interval between the two nodes. If this is not done,

there will be additional polytomies in the ARG. Therefore, when we are about to write a tree at

site index s to disk, we seek to ensure that site index s + 1 will be covered either by a node in

the tree covering s or by a downstream node that fails the four haplotype test with a node in the

tree covering s.

To this end, we gather a set of upstream nodes U and a set of downstream nodes D,

all of which are candidates to cover site s + 1. We visit each node n in the tree covering site

s whose range ends upstream of s + 1. We then traverse all solved, unsolved, and unsolvable

recombination edges from n to downstream nodes. If no such downstream nodes range covers s

+ 1 and s + 1 is within the eligible range of n (its downstream-most site + p), we add n to U. We

then add each downstream recombination of partner n to D, if its start coordinate is downstream

of s + 1. Finally, we add each upstream recombination partner of every node in D to U, if its

end coordinate is upstream of or equal to s. For each site z between s and the upstream-most

site owned by a node in D, we then gather a set Uz of upstream nodes eligible to cover z and a

set Dz of downstream nodes eligible to cover z. To be eligible, an upstream node must have an

end coordinate upstream of z, no downstream recombination partner upstream of z, and z must

be within its eligible range (downstream-most site + p). Likewise, an upstream node must have

a start coordinate downstream of z, no upstream recombination partner downstream of z, and z

must be within its eligible range (upstream most site p). If |Uz| = 0, we expand the nodes in

Dz upstream, and if |Dz|= 0, we expand the nodes in Uz downstream. Otherwise, we determine
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whether the downstream-most site owned by all nodes in Uz or the upstream-most site owned

by all nodes in Dz is closer to z (if a tie, we choose randomly). Ranges of all nodes in the set

found to be closer to z will be expanded to cover site z.

B.4 Collapsing to trees

To avoid making it necessary to hold the ARG over an entire chromosome in memory

at once, or to load the entire ARG for all analyses, we represent the ARG on disk as a series of

trees. At every site, the ARG collapses to a tree, so we write out each tree independently to disk,

along with its chromosome and base position, in a custom serial binary format. We find that

our files compress well with GZIP, and we provide utilities for indexing and retrieving specific

genomic regions from files, and for converting our trees to Newick format.
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R. Nichols, a. W. Nolte, C. Parisod, K. Pfennig, a. M. Rice, M. G. Ritchie, B. Seifert,
C. M. Smadja, R. Stelkens, J. M. Szymura, R. Väinölä, J. B W Wolf, and D. Zinner. Hy-
bridization and speciation. Journal of Evolutionary Biology, 26(October 2011):229–246,
2013.

[4] Laurent Abi-Rached, Matthew J Jobin, Subhash Kulkarni, Alasdair McWhinnie, Klara
Dalva, Loren Gragert, Farbod Babrzadeh, Baback Gharizadeh, Ma Luo, Francis A Plum-
mer, Joshua Kimani, Mary Carrington, Derek Middleton, Raja Rajalingam, Meral Bek-
sac, Steven G E Marsh, Martin Maiers, Lisbeth A Guethlein, Sofia Tavoularis, Ann-
Margaret Little, Richard E Green, Paul J Norman, and Peter Parham. The shaping of
modern human immune systems by multiregional admixture with archaic humans. Sci-
ence (New York, N.Y.), 334(6052):89–94, 10 2011.

[5] Viivi Karoliina Alaraudanjoki, Salla Koivisto, Paula Pesonen, Minna Männikkö, Jukka
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lander, Patricia B Munroe, Louise Nordfors, Afshin Parsa, Leena Peltonen, Brenda W
Penninx, Esperanza Perucha, Anneli Pouta, Inga Prokopenko, Paul J Roderick, Aimo
Ruokonen, Nilesh J Samani, Serena Sanna, Martin Schalling, David Schlessinger, Georg
Schlieper, Marc A J Seelen, Alan R Shuldiner, Marketa Sjögren, Johannes H Smit,
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Junttila, Stefan Kääb, Bart Kanon, Shamika Ketkar, Kay-Tee Khaw, Joshua W Knowles,
Angrad S Kooner, Jan A Kors, Meena Kumari, Lili Milani, Pivi Laiho, Edward G Lakatta,
Claudia Langenberg, Maarten Leusink, Yongmei Liu, Robert N Luben, Kathryn L
Lunetta, Stacey N Lynch, Marcello R P Markus, Pedro Marques-Vidal, Irene Ma-
teo Leach, Wendy L McArdle, Steven A McCarroll, Sarah E Medland, Kathryn A Miller,
Grant W Montgomery, Alanna C Morrison, Martina Müller-Nurasyid, Pau Navarro, Mari
Nelis, Jeffrey R O’Connell, Christopher J O’Donnell, Ken K Ong, Anne B Newman, An-
nette Peters, Ozren Polasek, Anneli Pouta, Peter P Pramstaller, Bruce M Psaty, Dabeeru C
Rao, Susan M Ring, Elizabeth J Rossin, Diana Rudan, Serena Sanna, Robert A Scott,
Jaban S Sehmi, Stephen Sharp, Jordan T Shin, Andrew B Singleton, Albert V Smith,

224



Nicole Soranzo, Tim D Spector, Chip Stewart, Heather M Stringham, Kirill V Tarasov,
Andr G Uitterlinden, Liesbeth Vandenput, Shih-Jen Hwang, John B Whitfield, Cisca Wi-
jmenga, Sarah H Wild, Gonneke Willemsen, James F Wilson, Jacqueline C M Witteman,
Andrew Wong, Quenna Wong, Yalda Jamshidi, Paavo Zitting, Jolanda M A Boer, Dor-
ret I Boomsma, Ingrid B Borecki, Cornelia M van Duijn, Ulf Ekelund, Nita G Forouhi,
Philippe Froguel, Aroon Hingorani, Erik Ingelsson, Mika Kivimaki, Richard A Kronmal,
Diana Kuh, Lars Lind, Nicholas G Martin, Ben A Oostra, Nancy L Pedersen, Thomas
Quertermous, Jerome I Rotter, Yvonne T van der Schouw, W M Monique Verschuren,
Mark Walker, Demetrius Albanes, David O Arnar, Themistocles L Assimes, Stefania
Bandinelli, Michael Boehnke, Rudolf A de Boer, Claude Bouchard, W L Mark Caulfield,
John C Chambers, Gary Curhan, Daniele Cusi, Johan Eriksson, Luigi Ferrucci, Wiek H
van Gilst, Nicola Glorioso, Jacqueline de Graaf, Leif Groop, Ulf Gyllensten, Wen-Chi
Hsueh, Frank B Hu, Heikki V Huikuri, David J Hunter, Carlos Iribarren, Bo Isomaa,
Marjo-Riitta Jarvelin, Antti Jula, Mika Kähönen, Lambertus A Kiemeney, Melanie M
van der Klauw, Jaspal S Kooner, Peter Kraft, Licia Iacoviello, Terho Lehtimäki, Marja-
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K E Magnusson, Rick Jansen, Eric Jorgenson, Young-Ae Lee, Dorret I Boomsma, Cata-
rina Almqvist, Robert Karlsson, Gerard H Koppelman, and Lavinia Paternoster. Shared
genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Na-
ture genetics, 49(12):1752–1757, 12 2017.

[48] Simon Fishilevich, Ron Nudel, Noa Rappaport, Rotem Hadar, Inbar Plaschkes, Tsippi
Iny Stein, Naomi Rosen, Asher Kohn, Michal Twik, Marilyn Safran, Doron Lancet, and
Dana Cohen. GeneHancer: genome-wide integration of enhancers and target genes in
GeneCards. Database : the journal of biological databases and curation, 2017, 2017.

[49] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jun-
greis, Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel Arm-
strong, If Barnes, Andrew Berry, Alexandra Bignell, Silvia Carbonell Sala, Jacqueline

229



Chrast, Fiona Cunningham, Toms Di Domenico, Sarah Donaldson, Ian T Fiddes, Carlos
Garcı́a Girón, Jose Manuel Gonzalez, Tiago Grego, Matthew Hardy, Thibaut Hourlier,
Toby Hunt, Osagie G Izuogu, Julien Lagarde, Fergal J Martin, Laura Martı́nez, Shamika
Mohanan, Paul Muir, Fabio C P Navarro, Anne Parker, Baikang Pei, Fernando Pozo,
Magali Ruffier, Bianca M Schmitt, Eloise Stapleton, Marie-Marthe Suner, Irina Sycheva,
Barbara Uszczynska-Ratajczak, Jinuri Xu, Andrew Yates, Daniel Zerbino, Yan Zhang,
Bronwen Aken, Jyoti S Choudhary, Mark Gerstein, Roderic Guigó, Tim J P Hubbard,
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Bonet, Can Alkan, Kay Prüfer, Matthias Meyer, Hernn a Burbano, Jeffrey M Good, Rigo
Schultz, Ayinuer Aximu-Petri, Anne Butthof, Barbara Höber, Barbara Höffner, Madlen
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Rodriguez, Solbritt Rantapää-Dahlqvist, Lisbeth Arlestig, Hyon K Choi, Yoichiro Ka-
matani, Pilar Galan, Mark Lathrop, RACI consortium, GARNET consortium, Steve Eyre,
John Bowes, Anne Barton, Niek de Vries, Larry W Moreland, Lindsey A Criswell, Eliz-
abeth W Karlson, Atsuo Taniguchi, Ryo Yamada, Michiaki Kubo, Jun S Liu, Sang-Cheol
Bae, Jane Worthington, Leonid Padyukov, Lars Klareskog, Peter K Gregersen, Soumya
Raychaudhuri, Barbara E Stranger, Philip L De Jager, Lude Franke, Peter M Visscher,
Matthew A Brown, Hisashi Yamanaka, Tsuneyo Mimori, Atsushi Takahashi, Huji Xu,
Timothy W Behrens, Katherine A Siminovitch, Shigeki Momohara, Fumihiko Matsuda,
Kazuhiko Yamamoto, and Robert M Plenge. Genetics of rheumatoid arthritis contributes
to biology and drug discovery. Nature, 506(7488):376–81, 2 2014.

[139] Mariano Oppikofer, Tianyi Bai, Yutian Gan, Benjamin Haley, Peter Liu, Wendy San-
doval, Claudio Ciferri, and Andrea G Cochran. Expansion of the ISWI chromatin re-
modeler family with new active complexes. EMBO reports, 18(10):1697–1706, 2017.
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Guo, Per Hall, Ute Hamann, Robin Haring, Catharina A Hartman, Andrew C Heath, Al-
bert Hofman, Maartje J Hooning, John L Hopper, Frank B Hu, David J Hunter, David
Karasik, Douglas P Kiel, Julia A Knight, Veli-Matti Kosma, Zoltan Kutalik, Sandra Lai,
Diether Lambrechts, Annika Lindblom, Reedik Mägi, Patrik K Magnusson, Arto Man-
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