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ABSTRACT OF THE DISSERTATION

Robust Selfie and General Video Stabilization

by

Jiyang Yu

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2020

Professor Ravi Ramamoorthi, Chair

Video stabilization is one of the most widely sought features in video processing. The

problem of video stabilization typically consists of two steps: video motion analysis and stabilized

frame synthesis. Traditional video motion analysis relies heavily on local image features and is

prone to error in the presence of occlusions and motion blur. It is also challenging to avoid visual

artifacts in the stabilized frame synthesis due to complexity of the scenes, e.g. parallax, dynamic

objects. In this dissertation, we focus on exploring video stabilization methods that generate high

quality stable results and are generalizable to real world videos.

We start from selfie videos, which is a special type of video that is challenging for all

video stabilization methods due to the dynamic occlusion. Our solution is to analyze motion of

xiv



the foreground/background separately and jointly stabilize the motion. Specifically, we seek to

use 3D human face model as a prior information of foreground motion. For the background, our

approach tracks random pixels using optical flow. We exploit non-linear least squares optimization

to stablize both the foreground/background motion. To make the process practical for commercial

applications, we also designed an online version of the pipeline using a sliding window scheme.

We also exploit deep learning techniques to replace optimization, resulting in orders of magnitude

speed improvement compared to the state-of-the-art optimization based approaches.

Our works also generalize to the general video stabilization context. General video

occlusion is free-form, therefore a more general scheme is required to appropriately constrain

the video stabilization. We proposed two different solutions based on this principle. Both of our

approaches use optical flow to analyze the motion and generate a dense warp field for stabilizing

input frames. Our first approach seeks to constrain the frame warp field using a global linear

transformation. In the second we designed specific metrics based on optical flow to exclude

dynamic occlusions and motion boundaries. Our experiments show that our approach is more

generalizable and produces both visually and quantatively better results compared to previous

video stabilization methods.
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Chapter 1

Introduction

Video stabilization is a commonly used feature in both video capturing hardware(e.g.

Steadicam, gimbal) and video processing software(e.g. Adobe Premiere, Deshaker). For amateurs,

using specific video stabilization equipment is usually difficult and expensive. This makes

software video stabilization an important topic in computational photography research. In typical

video stabilization methods, video motion is first analyzed by feature tracking or optical flow.

The motion is then stabilized using optimization over the entire sequence, solving for 2D image

transformations or novel camera views to synthesize the stabilized frame.

However, problems exist in the traditional video stabilization pipeline that prevent these

methods from being robust to various real-life videos. First of all, feature detection and tracking

and optical flow are prone to error themselves. Traditional video stabilization methods either as-

sume the motion detection is accurate and stabilize the video blindly according to this information,

or utilize constraints directly derived from these pre-computed motions(e.g. SfM for 3D feature

points, maintain spatial location among feature tracks). This makes the feature tracking/optical

flow become a performance overhead for video stabilization. In reality, these methods often

produce unexpected artifacts due to the complex nature of videos(motion blur, occlusions, rolling

shutter etc.). Second, traditional video stabilization algorithms use full-frame, grid homography

1



or a dense warp field to synthesize the stabilized frames. This is essentially a difficult trade-off:

simple parameterized warping cannot handle non-linear motions like rolling shutter, while a

dense warp field easily generates artifacts near motion boundaries due to the lack of constraints.

Third, video stabilization requires a significant amount of future motion information for motion

smoothing, making it difficult to be applied to real-time applications.

In this dissertation, we aim to solve the above challenges from several aspects. In

Chapter 2, we start from selfie videos containing dynamic occlusions that are common limitations

of video stabilization methods. We re-design the optimization based pipeline in Chapter 2 into

learning-based online video stabilization in Chapter 3, making it pratical to be deployed in

real-time applications. In Chapter 4, we generalize our work to general videos and use a linear

warping constraint on the warp field used for stabilizing the frames. In Chapter 5, we propose a

fully automatic learning-based method that generates a warp field for stabilization directly from

optical flow fields computed from input video.

For selfie videos, our goal is to automatically generate stabilized video that has optimal

smooth motion in the sense of both foreground and background. In Chapter 2, we propose a novel

algorithm for stabilizing selfie videos. The key insight is that non-rigid foreground motion in

selfie videos can be analyzed using a 3D face model, and background motion can be analyzed

using optical flow. We use second derivative of temporal trajectory of selected pixels as the

measure of smoothness. Our algorithm stabilizes selfie videos by minimizing the smoothness

measure of the background, regularized by the motion of the foreground. Experiments show that

our method outperforms state-of-the-art general video stabilization techniques in selfie videos.

Optimization based selfie video stabilization in Chapter 2 requires future frames and

is computationally expensive. Based on the same principle that 3D face model can be used to

analyze the foreground motion, we design a deep learning based selfie video stabilization. In

Chapter 3, we propose a novel real-time selfie video stabilization method that is completely

automatic and runs at 26 fps. We use a 1D linear convolutional network to directly infer the

2



rigid moving least squares warping which implicitly balances between the global rigidity and

local flexibility. Our network structure is specifically designed to stabilize the background and

foreground at the same time, while providing optional control of stabilization focus (relative

importance of foreground vs. background) to the users. To train our network, we also collect a

selfie video dataset with 1005 videos. Compared to our previous offline selfie video method, our

approach produces comparable quality with a speed improvement of orders of magnitude.

In Chapter 4, we generalize our focus to general videos. Unlike traditional video stabiliza-

tion techniques that involve complex motion models, we directly model the appearance change of

the frames as the dense optical flow field of consecutive frames. We introduce a new formulation

of the video stabilization task based on first principles, which leads to a large non-convex problem

that is hard to solve. In this chapter, we propose a novel optimization routine that transfers this

problem into the convolutional neural network parameter domain. While we exploit the general

benefits of CNNs, including standard gradient-based optimization techniques, our method is a

new approach to using CNNs purely as an optimizer rather than learning from data. Our method

trains the CNN from scratch on each specific input example, and intentionally overfits the CNN

parameters to produce the best result on the input example. By solving the problem in the CNN

weight space rather than directly for image pixels, we make it a viable formulation for video

stabilization.

Chapter 4 explored the possibility of using a neural network as an optimizer for video

stabilization. A natural question to ask is if we can pre-train a network that works for arbitrary

videos. In Chapter 5, we propose an automatic learning-based solution that infers the per-pixel

warp fields for video stabilization from the optical flow fields of the input video. We also propose

a pipeline that uses optical flow principal components for motion inpainting and warp field

smoothing, making our method robust to moving objects, occlusion and optical flow inaccuracy,

which is challenging for other video stabilization methods. This method gives a ∼3x speed

improvement compared to the optimization based methods.
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Chapter 2

Selfie Video Stabilization

2.1 Introduction

In this chapter, we focus on developing a stabilization method for selfie videos which

contain dynamic occlusion, a common limitation of existing video stabilization methods. Selfie

video has become one of the major video types thanks to the recent development of social media.

However, selfie videos taken by amateurs are usually shaky due to the lack of stabilizing equip-

ment. Recent state-of-the-art works have been developed for general video stabilization tasks

and integrated into commercial tools such as Adobe Warp Stabilizer[LGJA09] and the YouTube

video stabilizer[GKE11]. However, selfie videos usually have properties that create difficulties

for existing methods. We show several example frames from typical selfie videos in Fig. 2.1, in

which these properties are demonstrated:

(a) Large non-rigid occlusion from face and body close to the camera;

(b) Selfie videos usually come with strong motion blur/out-of-focus background;

(c) Foreground motion does not coincide with background motion.
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Figure 2.1: Selfie videos have several properties that cause difficulties for traditional video
stabilization methods: (a) face and body significantly occludes the background; (b) bad feature
detection caused by motion blur/out of focus, insets show areas where feature points are hard to
track accurately; (c) foreground and background motion mismatch, the foreground motion(red)
can be different from background motion(blue) due to the dynamics of face and body; Our
method uses (d) a 3D face model to analyze the motion in the foreground and (e) optical flow to
analyze the motion in the background. The video is stabilized with respect to both foreground
and background.

General video stabilization methods fail in selfie videos for several reasons.

First, most of these works depend on tracking 2D feature points. Existing 3D stabilization

approaches require Structure from Motion(SfM) to estimate an initial camera path and build a

sparse 3D scene. 2D methods also need to find frame motion using features. Therefore these

methods are sensitive to inaccurate tracking of feature points. In Fig. 2.1(b), we show the example

frames with blurred background and lack of sharp corners. In these videos, feature point detection

is less reliable and the subsequent feature tracking is error-prone.

Second, it is also difficult to obtain long and error-free feature tracks in selfie videos

with strong shake. The feature tracking becomes brittle due to the significant occlusion imposed

by human face and body. Having noticed feature tracking as a general shortcoming in video

stabilization, some methods tried to avoid using features by analyzing the pixel profiles using

optical flow[LYTS14]. However, optical flow based algorithms still have failure cases when the

occluding object dominates the foreground, which is likely to happen in selfie videos(Fig. 2.1(a)).

Our algorithm takes advantage of optical flow to track the background pixels. Unlike Liu

et.al[LYTS14] which uses optical flow to synthesize new frames, we only warp the frame with 2D
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projective transformations and a grid-based warp field. This guarantees the rigidity over the entire

frame. To avoid tracking points and generating long trajectories, we only use small segments of

these trajectories so that the foreground occlusion has minimal impact on the stabilization. We

further discuss the advantages of the strategy in Sec. 2.7.

Third, general video stabilization only stabilizes with respect to part of the scene. This

is not always desired in selfie videos. Both foreground (face and body) and background are

important regions that need to be stabilized. To our knowledge, ours is the first method that

utilizes the face geometry information in the video stabilization task(Fig. 2.1(d)). Our algorithm

can automatically plan the optimal motion so that both the foreground and background motion

are smoothed(Fig. 2.1(d)(e)). In summary, our contributions include:

Foreground motion from 3D face model: We utilize 3D human face information to gain

knowledge about foreground motion in selfie videos(Sec. 2.4).

Novel background motion tracking: Our method uses optical flow to find dense correspon-

dences on the background, and therefore does not require good feature detection and tracking.

We only use temporal motion information and are robust to occlusions in the scene(Sec. 2.5).

Optimal foreground/background stabilization: By considering foreground motion, our method

can stabilize selfie videos with respect to foreground and background simultaneously(Sec. 2.6).

Labeled selfie video dataset: We provide a selfie video dataset (Fig. 2.7) of 33 videos, la-

beled with properties such as dynamic occlusion and lack of background features (Fig. 2.9)

that significantly affect the video stabilization task. The dataset can be used to compare dif-

ferent methods, and will be a useful resource for the field. We make the dataset, code and

benchmark per Fig. 2.9 publicly available online at http://cseweb.ucsd.edu/˜viscomp/

projects/ECCV18VideoStab.
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2.2 Related Work

General video stabilization can be broadly categorized into 2D methods and 3D methods,

according to their proposed camera motion models.

2D Stabilization General 2D video stabilization techniques compute 2D motion and

generate stabilized video by applying the smoothed motion to original video frames. Some

approaches use simple camera motion models. Grundmann et al.[GKE11] proposed a constrain-

able L1-optimization framework which solves the smoothed camera path composed of constant,

linear and parabolic motion. Gleicher and Liu[GL08] assume the scene is largely planar and use

homography to synthesize new frames. Liu et al.[LYTS13] divide the frame space into a grid

mesh and allow spatially-variant motion. Some methods smooth the motion by imposing non-

trivial constraints. Liu et al.[LGW+11] smooth 2D feature tracks by enforcing low-dimensional

subspace constraints. Wang et al.[WLHL13] smoothes feature tracks while maintaining the

spatial relations among them. Goldstein and Fattal[GF12] uses epipolar constraints when warping

the video frames into synthesized frames. There are also explorations of non feature-point based

approaches: Liu et al.[LYTS14] solves for a smooth per-frame optical flow field and stabilizes

the video by smoothing pixel profiles instead of smoothing feature tracks.

3D Stabilization Some methods sparsely reconstruct the 3D scene. The sparse 3D

information is used to guide the synthesis of new frames. These methods generate better results

than 2D methods by modeling physically accurate 3D camera motions but are less robust under

non-ideal conditions, e.g. large occlusion, motion blur, and rolling shutter. Liu et al.[LGJA09]

first uses structure from motion to find feature points’ 3D positions, reprojects them onto the

smoothed camera path and warps the original frames according to reprojected feature points.

There are also methods that render new frames using 3D information: Buehler et al.[BBM01]

uses image-based rendering to synthesize new views; Smith et al.[SZJA09] utilize the light field

camera to stabilize video; Sun[Sun12] uses depth information. Due to the non-rigid occlusion in
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selfie videos(Fig. 2.1(a)), 3D methods that are based on structure from motion can be error-prone.

3D methods that use depth information are also not directly applicable to selfie videos, since

depth is not available in most cases.

Face Modeling Human face modeling has been intensely studied. We will only summa-

rize works that are closely related to our work. A widely used early work(Blanz and Vetter[BV99])

models face shape across people as a parametric PCA space learned from a database of laser scans.

Cao et al.[CWZ+14] models faces by assembling Kinect face scans as a tensor with identity and

expression dimensions. Many follow-up works apply these models in image manipulation (Cao et

al.[CWZ+14], Fried et al.[FSGF16]), image/video re-animation(Blanz et al.[BBPV03], Thies et

al.[TZS+16]), face tracking(Cao et al.[CHZ14]), facial performance capture(Cao et al.[CBZB15],

Shi and Tomasi[SWTC14]), face reconstruction and rigging(Garrido et al.[GZC+16], Ichim et

al.[IBP15]). However, these works mainly focus on images/videos captured under ideal condi-

tions(still or stable camera). Our work explores the possibility of utilizing 3D face models in the

analysis of selfie videos captured with camera shake. We blend the models in Blanz and Vetter

[BV99] and Cao et al. [CWZ+14], to use as the reference model for the face fitting process,

which will be discussed in Sec. 2.4.

Figure 2.2: Pipeline of our method. A©: By fitting a 3D face model, we find the head trajectory in
the selfie video(Sec. 2.4); B©: Optical flow is used to track background pixels for 3 neighboring
frames; C©: The foreground mask is computed from the head trajectory and is used to find the
background pixels(Sec. 2.5). The 2D projective transformation and a grid-based warp field is
estimated to remove the undesired motion of both foreground and background(Sec. 2.6).
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2.3 Overview

In this section, we provide an overview of our approach for stabilizing selfie videos

(Fig. 2.2). We seek to stabilize the selfie video with respect to both foreground and background.

We analyze the foreground motion by modeling the face using a 3D face model, and analyze

the background motion by optical flow. Fitting the 3D face model to selfie videos provides the

head trajectory. We transform each frame according to the head positions so that the foreground

regions are roughly aligned across the entire video. Since the foreground regions are aligned,

the accumulated motion in this region will be smaller than background regions. Therefore the

foreground and background regions can be separated. Details regarding this process will be

discussed in Sec. 2.4. The background is defined as the white region in the foreground mask

shown in Fig. 2.2. We randomly select pixels in the background that satisfy certain conditions,

and use the optical flow to track their motion. Because of occlusion, our method only tracks

pixels for 3 neighboring frames. We discuss details of pixel selection and tracking in Sec. 2.5.

The goal of video stabilization is to warp the original video frame so that the undesired

frame motions are cancelled. We model the frame motion as a combination of global motion and

local motion. The global motion refers to the 2D projective transformation of a frame. Since the

frame content is the result of multiple factors, e.g., camera projection, camera distortion, rolling

shutter and the 3D structure of the scene, simple 2D projective transformation cannot represent

the camera motion accurately. Therefore, we use local motion to refer to any residual motion.

Motivated by this analysis, we design our stabilization algorithm as a single joint optimization

that simutaneously stabilizes foreground head motion and the background’s global and local

motion. We will describe details of our joint optimization algorithm in Sec. 2.6.
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Figure 2.3: The vertices used as contour 3D landmarks are fixed in the fitting process. The fitted
face is rendered and new contour 2D landmarks are detected. The projected vertices closest to
the detected 2D contour landmarks are selected as 3D contour landmarks for the next iteration.

2.4 Foreground Tracking

Since the head and body are attached, we believe that the head motion can well represent

the entire foreground motion. We don’t explicitly track the body in this work, but implicitly

separate the foreground and background by accumulating the optical flow. Details will be

discussed in Sec. 2.5. Here we seek to find the position of the head in each frame. Since multiple

faces could exist in the selfie video, we only track the dominant face in the video. A regular 2D

face detector can provide the face bounding box for each frame, but is not accurate enough for

tracking the exact head position. A 2D facial landmark detector provides more accurate detection

of the face, but is easily affected by head rotation and facial expression. To find the actual head

position invariant to head rotation and facial expression, we use the 3D position of the head and

reproject it to the image space as the head position. This requires modeling the face and gaining

knowledge about the shape of the face in the selfie video.

3D Face Model We utilize the linear face model proposed by Blanz and Vetter[BV99]

and the bilinear face model proposed by Cao et al.[CWZ+14]. Note that although the bilinear

face model is more widely used in recent researches, their model was built based on a head mesh
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with relatively sparse vertices compared to Blanz and Vetter[BV99]. Our facial landmark based

algorithm, which we will discuss later in this section, needs a dense face mesh in the face fitting

algorithm. Therefore, we extend the linear face model of Blanz and Vetter[BV99] by transferring

the expressions from Cao et al.[CWZ+14]. Our extended linear face model is parameterized as

follows:

FFF = µµµ+UUU sΣΣΣscccs +UUUeΣΣΣeccce (2.1)

where µµµ encodes the vertex position of the mean face, UUU s are the principal components of face

shape, diagonal matrix ΣΣΣs contains standard deviations of principal components and cccs is the

weight vector that combines principal components. In (2.1), the third term UUUe represents the

expression principal components. It is generated as follows: we average the shape dimension of

the bilinear face model[CWZ+14] and use deformation transfer[SP04] to deform the mean linear

face model with the bilinear face model’s expressions. We extract principal components UUUe of

these expression deformed face meshes using regular PCA.

Face Fitting Algorithm Our face model fitting algorithm is a purely landmark based

algorithm. For a video with T frames, we detect facial landmarks Lt in each frame using Bulat

and Tzimiropoulos[BT17]. The unknown parameters include the 3D rotation RRRt ∈ SO(3), the 3D

translation TTT t ∈ R3, per-frame facial expression coefficient ccce,t and the shape parameter cccs. We

also assume a simple perspective camera projection:

PPP =


f 0 w/2

0 f h/2

0 0 1

 (2.2)

where we assume same unknown focal length in horizontal and vertical direction, known fixed

optical center at the center of the frame(w and h represents frame width and height respectively),

and zero skew. Denoting the 3D transformation matrix as KKKt = [RRRt TTT t ] where RRRt ∈ R3×3 and
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TTT t ∈ R3, the 3D face model is fitted by solving:

min
PPP,RRRt ,TTT t ,

cccs,ccce,t

T−1

∑
t=0

(∥∥∥Lt−PPPKKKt F̂FF t

∥∥∥2
+λ1 ‖ccce,t‖2

)
+λ2T ‖cccs‖2 (2.3)

where F̂FF t represents the landmark vertices controlled by cccs and ccce,t as in (2.1), and λ1 and λ2 are

regularization values that prevent the optimization from getting in local minima. The optimization

can be easily solved as an unconstrained non-linear least squares problem. We use all the 199

shape principal components and 46 expression principal components in the fitting process. We

use λ1 = 5 and λ2 = 5 in our experiment. The centroids of fitted face meshes are projected using

the solved projection matrix PPP, resulting in the head trajectory.

Facial landmark update In Bulat and Tzimiropoulos[BT17], the contour 2D landmarks

are defined by the face silhouette. The face silhouette depends on the pose of the head; there-

fore the corresponding contour landmark vertices need to be updated during optimization (2.3).

However, this requires computing and rendering the whole mesh for facial landmark detection.

To avoid this cost, we only update the contour landmark vertices between two iterations of

optimization: we first fix the landmark vertices and use them in the face model fitting, then fix the

estimated parameters and update the contour landmark vertices. The update of landmark vertices

is demonstrated in Fig. 2.3. We first render the current face mesh, and detect 2D landmarks using

the rendered image. We update the landmark vertices’ indices by projecting all the visible vertices

to the image plane and find the closest ones to the detected 2D landmarks. These closest vertices

are used as contour landmark vertices in the next iteration. Note that the 2D-3D correspondence

is established by finding vertices closest to landmarks. Therefore, a denser mesh will result in

more accurate correspondence. This explains why we extend the denser linear face model(Blanz

and Vetter[BV99]) instead of using the sparse bilinear face model(Cao et al.[CWZ+14]) directly.

Disscussion General video stabilization methods have difficulties when occlusion occurs
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Figure 2.4: Comparison of our 3D face fitting result to Shi et al. [SWTC14] and Thies et al.
[TZS+16]. Our method achieves comparable results without using complex structure-from-
motion and shading constraints.

in the video. Some methods either try to exclude the occlusion region by detecting discontinuity

in motions(Liu et al.[LYTS14]) or let users remove features belonging to the foreground(Bai et

al. [BAAR14]). The novelty of our method is that it also considers the motion in the foreground.

Due to the dynamics of faces, feature based analysis is easily affected by head poses and facial

expressions. We use the 3D face model to track the foreground face, so that the foreground

can be analyzed even with large non-rigidity. In Fig. 2.4 we show that by implementing the

contour landmark update scheme, our face fitting algorithm also achieves results comparable to

the methods that use 3D facial landmarks estimated using non-rigid structure-from-motion(Shi et

al. [SWTC14]) or 2D facial landmarks with additional light and shading constraints(Thies et al.

[TZS+16]). Note that our method uses only 2D landmarks and thus is simpler than state-of-the-art

methods.
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Figure 2.5: A©: Accumulated optical flow. A large value indicates the background area. B©:
Example moving standard deviation of optical flow. Large values indicate the edges of objects
in the scene.

2.5 Background Tracking

While we can track the foreground motion using a 3D face model, we also need to analyze

the background motion so that both these regions can be considered in the stabilization process.

We use the optical flow proposed by Kroeger et al. [KTDG16] to track a group of background

pixels in each frame. The optical flow can be inaccurate in specific regions due to motion blur/out-

of-focus and occlusion. However, minor inaccuracies in small regions can be ignored since our

goal is to analyze the global camera motion. In addition, to minimize the impact of occlusion in

the scene, we only track each pixel for 3 neighboring frames. We will discuss how this temporal

motion information is used in our stabilization process in Sec. 2.6.

Not all pixels can be used to track the background motion. Obviously, pixels falling in the

foreground region should not be selected. Face fitting described in Sec. 2.4 provides the head

positions in each frame. We first translate all the frames so that the head positions in each frame

are aligned to the same point, which leads to a head-aligned video. We perform optical flow

between each frame of the head-aligned video. The accumulated optical flow forms a map that

encodes the accumulated motion magnitude of each pixel. Since the video is aligned with respect

to head position, the accumulated magnitude of optical flow will be smaller in the face and body

region, but larger in the background region.
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We show an example of a motion map in Fig. 2.5A. After computing the motion map, we

use K-means to divide the pixels into two clusters. The cluster with smaller values is considered

as foreground. The randomly selected pixels in this cluster will not be used in the stabilization.

Moreover, pixels near the occluding boundary should not be selected. Although our

method does not require long feature tracks, we still need to track pixels using optical flow. The

downside of tracking with optical flow is that tracking loss caused by occlusion is not easily

detectable. To tackle this problem, we want to remove the pixels that are near the occluding

boundary.

The objects in the scene can be distinguished by the direction of their motions. We use

the standard deviation of the optical flow σF in a 21× 21 neighborhood to measure the local

variation in the optical flow. An example of standard deviation of the optical flow is shown in

Fig. 2.5B. The foreground boundary has a larger variation in terms of the optical flow direction.

In the stabilization, we only use the pixels with σF smaller than a threshold value. We use 0.3 as

the threshold in all of our tests.

2.6 Stabilization

The goal of video stabilization is to warp the original video frame so that the undesired

frame motions are cancelled. We model the frame motion as a combination of global motion and

local motion. The global motion refers to the 2D projective transformation of a frame. Since the

frame content is the result of multiple factors, e.g. camera projection, camera distortion, rolling

shutter and the 3D structure of the scene, a simple 2D projective transformation cannot represent

the camera motion accurately. Therefore, we use local motion to refer to any residual motion.

Motivated by this analysis, we design our algorithm to stabilize the global motion using

the whole frame 2D projective transformation and stabilize the local motion using the per-frame

grid warping.
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Figure 2.6: Our method tracks background pixels for 3 neighboring frames.

Smoothness Measure In selfie videos, the human appears as a large occlusion near the

camera, making the trajectory of a pixel fragile. As a consequence, obtaining long feature tracks

is difficult. Instead of tracking a pixel over multiple frames, we only track a pixel for 3 frames

that are necessary for estimating the second derivative at time t. To demonstrate our idea, we

use a single pixel in the scene as an example. Assume a pixel p is tracked over a time period.

The trajectory it forms is denoted by p(t). To evaluate the smoothness of this trajectory, we use

the integral of squared second derivative or acceleration over the time period. This metric is

commonly used in cubic spline fitting algorithms for optimal smoothness. By using this metric,

we allow the frames to move to some extent but not try to completely eliminate the low frequency

shake. This also helps in generating a larger output frame size when the camera motion is large,

which is very common in selfie videos. Details of this effect will be discussed in Sec. 2.7. For

a set of selected background pixels (which pixels we choose for this purpose is discussed in

Sec. 2.5), the smoothness of the background motion can be written as:

Es(t) =
Nt

∑
i=1
‖p̂t,i(t +1)−2p̂t,i(t)+ p̂t,i(t−1)‖2 (2.4)

where pt,i is the ith pixel tracked from t − 1 to t + 1, and p̂ is the new trajectory formed by

transforming the original trajectory p. To guarantee the robustness, we track Nt pixels that are

randomly selected in the frame at time t−1. We illustrate the tracking of background pixels in

Fig. 2.6.

Frame Transformation We seek to find a per-frame 2D projective transformation along
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with a per-frame grid warp field to transform pt,i to p̂t,i so that the objective (2.4) is minimized.

For the grid warping, we use the same bilinear interpolation representation as Liu et

al.[LGJA09]. Each point is represented by a combination of four vertices of its enclosing grid

cell:

pt,i = wT
t,iVt (2.5)

where Vt is a vector of the four vertices of the original grid cell that p(t) is in; and wt is the weight

which sums to 1. Denote the output grid as V̂ and the 2D projective transformation as H. The

warped scene point p̂ can be calculated using the same weights:

p̂t,i = wT
t,iHtV̂t (2.6)

Regularization In selfie videos, the foreground that contains face and body should also

be stabilized. The motion of the foreground is not always consistent with the motion of the

background. To account for the foreground motion, we also consider the head trajectory:

Eh(t) = Nt

∥∥∥ĥ(t +1)− ĥ(t)
∥∥∥2

(2.7)

where h(t) is the head trajectory and ĥ(t) is the transformed head trajectory at time t. The head

trajectory was obtained via fitting a 3D face model to the video as described in Sec. 2.4.

Moreover, to avoid undesired deformation caused by grid warping, we use the Laplacian

of the grid to measure the rigidity of the warping:

EV (t) = ∆(V̂t) (2.8)

Optimization Our final objective function is a combination of the smoothness measure
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Figure 2.7: Example video stills from our dataset. The labels represent the example indices in
Fig. 2.9.

and the regularization term:

min
Ht ,V̂t

T−2

∑
t=1

Es(t)+λaEh(t)+λbEV (t) (2.9)

Due to the high degree of freedom of the unknowns, the objective function has a complex

landscape. Therefore, we first fix the grid V̂t and solve for 2D perspective transformation Ht , then

use the result as an initialization and refine by running the full optimization (2.9).

We use Matlab’s nonlinear least-squares solver to solve this optimization problem. For

each frame at time t, the error terms Es, Eh and EV are only affected by 3 frames at t−1, t and

t +1. This leads to a sparse jacobian matrix. Therefore this problem can be efficiently solved.

2.7 Results

In this section, we show example frames of selfie video stabilization, along with the visual

comparison of the input video, our result, Liu et al.[LGJA09] and Grundmann et al.[GKE11]. We

also show that our method achieves better quantitative results than the comparison methods in

both selfie video cases and general video cases. Finally we discuss the advantages of our method

over general video stabilization methods. Our results are generated with fixed parameters λa = 1

and λb = 5. On average, our Matlab code takes 15 min in all: 3 min for head fitting, 1 min for

optical flow, 8 min for optimization and 3 min for warping and rendering the video on a desktop

18



Figure 2.8: Visual comparison of input video, our result, Grundmann et al.[GKE11] result and
Liu et al.[LGJA09] result. The frames are scaled by the same factor. Our method generates
results with larger frame size and does not introduce distortion. We recommend readers to watch
the accompanying video for more visual comparison. Labels represent example id in Fig. 2.9.

computer with an Intel i7-5930K CPU@ 3.5GHz. We did not focus on speed in this work and we

believe that our optimization can be implemented on the GPU in future.

Test Set We collected 33 selfie video clips from the Internet, which is the first such dataset

of selfie videos. A subset of our example clips are shown in Fig. 2.7. We label each video with

properties that affect video stabilization: dynamic occlusion, multiple faces, large foreground

motion, lack of background features, dynamic background and motion/defocus blur (Fig. 2.9). Our

test set is available at http://cseweb.ucsd.edu/˜viscomp/projects/ECCV18VideoStab for

comparison of different methods, and we believe it will be a useful resource for the community.

Visual Comparison In Fig. 2.8, the video stills are scaled by the same factor so that their

sizes can be compared. Our results have a larger field of view compared to Liu et al.[LGJA09] and

Grundmann et al.[GKE11], which is often desired in stabilizing selfie videos. This is because the

movement of the camera is large in these examples. The methods proposed by Liu et al.[LGJA09]

and Grundmann et al.[GKE11] over-stabilize the background, resulting in a small overlap region

among frames. To obtain a rectangular video, most of the regions have to be cropped. Our method

considers the foreground and background motion together and allows the frame to move in a

low frequency sense. Therefore we avoid over-stabilization with respect to either foreground or
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Figure 2.9: Smoothness comparison of input video, our result, Liu et al. result[LGJA09] and
Grundmann et al. result[GKE11]. The horizontal axis represents the examples, and the height
of the bar represents the smoothness value. Colored arrows are added where the bars overlap.
The labeled properties are visualized as colored dots below each example.

background. Also note that our result preserves the original shape of the face and body, while

the Liu et al.[LGJA09] result contains large distortions on the face. Since the dynamics are hard

to show with images, we recommend readers to watch the accompanying video for the visual

comparison of the results.

Our method is not sensitive to λb, but by changing the head regularization value λa in

(2.9), we can control the algorithm to mainly stabilize the foreground or the background. We also

included an example stabilized with different λa values in the accompanying video.

Quantitative Comparision To evaluate the level of smoothness of the videos, we com-

pute the average squared magnitude of second derivative of tracks of all pixels in each frame. The

smoothness measure is defined as:

S =
1
|Ω|

T−2

∑
t=1

∑
i
‖ωt,i(t +1)−2ωt,i(t)+ωt,i(t−1)‖2 (2.10)
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Figure 2.10: Comparison using 3 metrics suggested in Liu et al.[LYTS13]. Horizontal lines
represent the average metric values of the corresponding methods. Note that a higher bar
indicates a better result in these metrics.

where we track all the pixels ωωωt = {ωt,1,ωt,2...} in the frame at time t, and Ω is the set

of all the pixels {ωωω1,ωωω2...ωωωT−1}. Since we sum the second derivatives of all the pixel tracks,

a smaller smoothness measure indicates that the frames are changing in a more stabilized way.

In (2.10), we use the optical flow to track the pixels. To eliminate the effect of different video

sizes, we normalize the optical flow with the frame size on horizontal and vertical directions

respectively. We show smoothness comparison for these examples in Fig. 2.9. Note that a lower

bar indicates a better result. For better comparison, we sorted the examples by their original

smoothness value. Our final results achieve better smoothness compared to the results of Liu et

al.[LGJA09] and Grundmann et al.[GKE11] in all of the examples.

For more comprehensive comparison, we also provide quantative comparison with Liu et

al.[LGJA09] and Grundmann et al.[GKE11] using the three metrics in Liu et al.[LYTS13]. The

result is shown in Fig. 2.10. Note that in these metrics, a higher bar indicates a better result. The

colored horizontal lines indicate the average metric values of the corresponding methods over the

entire dataset. These results clearly show that our method still performs better under these metrics

in the sense of the amount of cropping, distortion and stability. This indicates the effectiveness of
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our methods in stabilizing selfie videos.

Advantages Our method has some advantages over other general video stabilization

methods in the selfie video case. Traditional 2D and 3D methods usually rely on feature

tracks[LGJA09, GKE11, LGW+11, SZJA09], making them vulnerable to insufficient feature

counts in selfie videos. Since our method uses optical flow to track the motion, we achieve

significantly better result in videos with few background features (examples 3, 5, 10, 11, 12, 21,

24, 26 and 29 in Fig. 2.9). Note that the feature point based general video stabilization methods

fail in some of the low feature count cases (examples 5, 21 and 29 in Fig. 2.9), resulting in an

even higher smoothness value than the input video. Our method is also robust to videos with

motion blur and defocus blur, which are very common properties in selfie videos.

It is hard to obtain long feature tracks in selfie videos with large foreground motion. Note

that 3D methods like Liu et al.[LGJA09] cannot perform accurate structure from motion when

there is dynamic occlusion. Therefore Liu et al.[LGJA09] in general does not perform well in

large foreground motion cases (examples 2, 4, 6, 8, 9, 11, 13, 14, 15, 16 and 27 in Fig. 2.9). Using

only fragments of pixel trajectories over 3 frames, our method is robust to large occlusions near

the camera. This strategy also helps handle dynamic background (examples 8, 14, 15, 18, 20, 27,

28, 30 and 31 in which multiple non-dominant faces or moving objects exist).

To stabilize the foreground, we need to find the component of head motion that can

represent the entire foreground’s motion. Our method benefits from a 3D head model since we

effectively rule out the head motion purely from rotation and expression. To show this benefit, we

compare smoothness measures of example 1, 2, 3, 4, 6, 11 using the 3D head model, the 2D facial

landmarks/3D facial landmarks from Bulat and Tzimiropoulos[BT17] and the face bounding box

from Viola et al.[VJ01] in Fig. 2.11. In these experiments, we use the centroid of landmarks or

the center of the face bounding box as the head position. Note that examples 1, 2, 3 are chosen as

general representative examples while 4, 6, 11 are videos with relatively large foreground area

or large face rotation/expression. As shown in Fig. 2.11, using 3D head model fitting in general
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Figure 2.11: Smoothness comparison using 3D head model, 2D/3D landmarks[BT17] and face
bounding box from Viola et al.[VJ01] A lower bar indicates a better result.

performs better than using just the 2D/3D landmarks or the bounding boxes. In examples 4, 6 and

11, the benefit becomes larger since the 2D/3D landmarks or the bounding boxes are sensitive to

head rotation and facial expression change.

Finally, our method provides a novel application of 3D face modeling: track the foreground

motion in selfie videos. Current 2D video stabilization methods focus on detecting non-rigid

regions and do not consider the motion in these regions. In selfie videos, the foreground occupies

a large portion of the frames and cannot be ignored. Our method automatically plans the motion

so that both foreground and background motion are smoothed. The foreground motion also

helps regularize the video stabilization process. In all of the examples, our method avoids over

stabilizing the background and produces results with significantly larger field of view.

Generalization Our method also applies to stabilizing general videos. We can simply

ignore the Eh term in (2.9) and perform the optimization for the entire background region. We

also collect 6 general videos along with 10 videos from Liu et al.[LGJA09], Grundmann et

al.[GKE11] and Liu et al.[LYTS13] shown in Fig. 2.12 and compare the smoothness of our result

against the comparison methods. Note that we only use 3 neighbouring frames to track the frame

motion and only local motion information is available. Therefore, our method faces a harder
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Figure 2.12: Example video stills from our test set, and smoothness comparison on general
videos, showing our result, Liu et al.[LGJA09] result and Grundmann et al.[GKE11] result.
Note that a lower bar indicates a better result. Numbers on video stills indicate the example
indices on the bar graph. Horizontal lines represent the average values of the corresponding
methods.

problem in general video stabilization. However, Fig. 2.12 shows that our method achieves much

better results to Grundmann et al.[GKE11] and Liu et al.[LYTS13] in most of general video cases.

Note that we are able to generate more stabilized video than Grundmann et al.[GKE11] and Liu

et al.[LYTS13] in examples 1-10, which are taken from their datasets. Moreover, our method

performs significantly better in the blurred video case(example 13) since we used optical flow as

the pixel tracking method.

Failure Cases Our frame motion model does not apply to videos with complex motions,

e.g. strong rolling shutter effect and fisheye effect. We also include a selfie video taken with a

fisheye camera in the accompanying video, in which our method does not perform well. Our

method does not explicitly correct motion blur. Therefore our results on videos with strong

motion blur (mostly because of low illumination) will have unsatisfactory appearance. Our result

of example 4 in the selfie video dataset belongs to this category. Note that Fig. 2.9 shows that

we still generate better results for example 4 compared to Liu et al.[LGJA09] and Grundmann et

al.[GKE11].
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2.8 Summary

We proposed a novel video stabilization technique for selfie videos. Our method analyzes

the motion of foreground(face and body) using a 3D face model and the motion of background

by temporally tracking the pixels using optical flow. We achieve visually and quantatively better

results than the state-of-the-art general video stabilization methods. Our method also exhibits

robustness under different situations(e.g., large foreground occlusion, blur due to motion or

out-of-focus and foreground/background motion mismatch).

Our method requires optical flow to track pixels in the video, and therefore suffers from

the overhead of computing optical flow for neighboring frames. Another limitation of our method

is that we require that facial landmarks can be detected in most of the frames. In our experiments,

we linearly interpolate the head position for frames in which no face was detected. If the faces

are undetectable in many consecutive frames, simply interpolating head positions will yield

inaccurate estimation of the foreground motion. These limitations can be resolved by applying

a more efficient optical flow technique and a more robust facial landmark detector. Our frame

motion model does not apply to videos with complex motion. Our method also does not correct

motion blur. Therefore for night-time videos or videos taken under dark lighting conditions, our

method does not produce satisfactory results.

Since our method utilizes the 3D face model in selfie videos, one future work would be

using 3D information to estimate 3D camera motion, so that the 3D video stabilization can be

applied to selfie videos with large dynamic occlusions. The 3D face model also enables other

future works, including manipulating the shape and expression of the face in selfie videos or high

quality 3D reconstruction of face and body from selfie videos.

Our work in this chapter made significant impact in industry. Our idea that using 3D face

model to track the foreground motion has inspired subsequent work Steadiface[STWL19] by

Google, which has made significant impact to the video stabilization in Google Pixel Phone and
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Android. To make their method run on mobile SOC, they made certain trade-off between result

quality and computational complexity, e.g. using gyroscope instead of image domain features

and using global homography for image warping. In Chapter 3, we will further improve the

computational performance of our work in this chapter. Our work in Chapter 3 achieves real-time

performance as Steadiface[STWL19], while generating better results than Steadiface [STWL19]

and comparable results with the optimization based selfie video stabilization in this chapter.

This chapter is a reformatted version of the material as it appears in “Selfie Video

Stabilization,” Jiyang Yu and Ravi Ramamoorthi, in IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2019 [YR19b]. The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

Real-time Selfie Video Stabilization

3.1 Introduction

In Chapter 2, we proposed an optimization based selfie video stabilization pipeline that

stabilizes the foreground human face and background. However, the optimization based method

requires the entire video sequence to be known at the stabilization time, and the processing

speed is often slow compared to playback speed of the video. On the other hand, consumer

applications like selfie video stabilization require a significantly fast or even real-time online algo-

rithm to be practical. This rules out most video stabilization algorithms requiring high overhead

pre-processing like SFM [LGJA09], optical flow [LYTS14, YR19a, CK20] and future motion

information [GKE11, LGW+11]. Another selfie video stabilization work Steadiface [STWL19]

was based on our work discussed in Chapter 2. Although their work achieves real-time perfor-

mance, it only estimates global homography for stabilization and cannot handle non-linear local

motions, e.g. rolling shutter. Additionally, their work also requires gyroscope information.

In this chapter, we propose a novel learning based real-time selfie video stabilization

method. Our method is fully automatic and requires no preprocessing and user assistance. The

method is designed to tackle the challenges discussed above. An overview of our method is
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Figure 3.1: Our method stabilizes selfie videos using A© background feature points and fore-
ground face vertices in each frame. B© The two-branch stabilization network infers C© the
moving least squares (MLS) warping for each frame. D© We show the face and background
motion of the input vs. our stabilized result. For visualization only, the background tracks are
computed from the translation component of the homography between consecutive frames. The
face tracks are computed from the centroid of the fitted face vertices in each frame.

shown in Fig. 3.1. To achieve real-time performance, our method is purely 2D video stabilization,

meaning that our method only depends on the motion of sparse 2D points detected from input

video (Fig. 3.1 A©). This makes our method significantly faster than the offline selfie video

stabilization in Chapter 2. In the first step, we avoid the occlusion problem by training a

segmentation network to infer the foreground regions and remove the feature points in the

foreground. To take foreground motion into consideration, we use the 3DDFA [ZLLL19] to fit a

3D mesh to video frames. To warp the original frames into stabilized frames, we use the rigid

moving least squares (MLS) [SMW06] (Fig. 3.1 C©). One useful property of MLS warping is that

it preserves the original shape of regions that lack warp nodes. In our method, we directly use the

background feature points as the warp nodes so that the face shape remains undistorted.

The core of our method is the stabilization network (Fig. 3.1 B©). The network generates

the displacement of the warp nodes from the input face vertices and feature points, so that motions

of both the foreground (represented by face vertices) and the background (represented by feature

points) are minimized. We also design the network structure so that the user can optionally

control the degree of stabilization of the foreground and background on the fly. Unlike traditional

neural networks that use activation layers to introduce non-linearity, our network only contains
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linear convolutional layers to maintain the linearity relation between the input feature point scale

and output warp node displacement scale. Although our network ultimately represents a linear

relationship between input feature points and the displacement of output warp nodes, direct

optimization for this linear relationship is prohibitive in terms of computational efficiency and

accuracy (Table 3.3)1. Training a linear network instead makes the problem tractable, which is

similar to how optimizing over non-linear network weights has regularized optimization problems

in video stabilization [YR19a] and other domains [UVL18] in previous works. In Sec. 3.6.4, we

will justify this unconventional design by quantitatively comparing the results with the network

trained with activation layers.

The contribution includes: 1) A novel selfie video stabilization network that enables

real-time selfie video stabilization. Our network directly infers the rigid moving least squares

warp from the 2D feature points, stabilizing both the foreground face motion and background

feature motion (Sec. 3.3.1 and Sec. 3.3.2). In Sec. 3.4.3 we will show that the structure of our

network allows an optional online control of stabilization focus. In Sec. 3.6.4 we will show that

our network structure with only linear layers leads to a better result compared to a traditional

network structure with activation layers, implying that deep linear neural networks can outperform

traditional neural networks in certain scenarios.

2) Grid approximated moving least squares warping that works at a real-time rate. For our

method, the MLS algorithm with hundreds of warp nodes requires a significant amount of time to

warp a frame. We use a sparse grid to approximate the MLS warping (Sec. 3.5) that improves the

warping speed by two orders of magnitude. Our entire pipeline is able to stabilize the video at

26fps.

3) A novel large selfie video dataset with per-frame labeled foreground masks. We will

discuss the details of our dataset in Sec. 3.4.1. The dataset enables the training of the foreground

detection network and the stabilization network in this chapter. We will make our dataset publicly

1Note that the objective function we use is non-linear, so a non-linear optimizer needs to be used in any case,
rather than simple linear least squares solvers.
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available for face and video related researches.

3.2 Previous Work

While video stabilization has been extensively studied, most of the works belong to the

offline video stabilization category. The major reason is that most video stabilization methods rely

on temporally global motion information to compute the warping for the current frame. Recent

works using global motion information include the L1 optimal camera paths [GKE11], bundled

camera paths [LYTS13], subspace video stabilization [LGW+11], video stabilization using

epipolar geometry [GF12], content-preserving warps [LGJA09] and spatially and temporally

optimized video stabilization [WLHL13]. These works all involve the detection of feature tracks

and smoothing under certain constraints. Some works use optical flow [LYTS14, YR19a] or

video coding [LLZZ17] instead of feature tracking as the motion detection method. However,

they still inherently require future motion information for the global motion optimization.

One may argue that these global optimization based video stabilization methods can

be easily modified to online methods by applying a sliding window scheme. However, note

that methods like bundled camera paths [LYTS13] only smooth tracks formed by feature points.

Falsely detected features can easily affect the optimization, especially when the window size is

small. Moreover, [LYTS13] requires global motion information to achieve the reported result.

One can expect performance to decrease if a short sliding window is applied. In Sec. 3.6 we will

show that [LYTS13] already generates inferior results than ours using the entire video (Fig. 3.11

and Fig. 3.12). As we will discuss in Sec. 3.4, our pipeline considers all feature points in a

window as a whole; the feature points are not only temporally related but also spatially related.

Note that this makes the objective function non-linear, thus we cannot simply use the least squares

optimization of [LYTS13]. Moreover, our network contains several downsample layers, which

effectively blend feature points. This makes our network robust to individual erroneous features,
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and it generates satisfactory results with a short 5-frame sliding window.

Deep learning has also been applied to video stabilization in some works. These attempts

include using adversarial networks to generate stabilized video directly from unstabilized input

frames [XHW+18] and estimate a warp grid from input frames [WYL+19]. These methods are

difficult to generalize to videos in the wild. Other learning based works (e.g., [CK20]) iteratively

interpolate frames at intermediate positions. These works still require optical flow and are prone

to artifacts at moving object boundaries.

Some works are more related to the selfie video stabilization context. Our optimiza-

tion based selfie video stabilization method in Chapter 2 uses the face centroid to represent

the foreground motions while stabilizing the background motions. However, our method in

Chapter 2 uses the optical flow to detect the background motion and the foreground mask, which

is computationally expensive for real-time applications. The method in Chapter 2 also requires

motion information of the entire video, which makes it impractical for online video stabilization.

The learning based method introduced in this chapter does not require the dense optical flow

computation and does not require future motion information, therefore is more efficient than the

method in Chapter 2.

Steadiface [STWL19] is an online real-time selfie video stabilization method. They used

facial key points as the reference and the gyroscope information as auxiliary to stabilize human

faces. However, their approach uses simple full-frame transformation to warp the frame, which

cannot compensate for non-linear distortion like rolling shutter. Our method uses grid-based MLS

warping which provide flexibility to handle non-linear distortions. Our method also models the

face motion more accurately using a face mesh instead of face landmarks in [STWL19]. Due to

these limitations, Steadiface [STWL19] will not produce results comparable with ours by simply

adding a hyperparameter to control foreground and background stabilization like our method.

We will show that the quality of our results is significantly better than Steadiface [STWL19] in

Fig 3.13(b) and the supplementary video.
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Table 3.1: Notations in this Chapter

Symbols Explanation

t Frame index
Mt Foreground mask
Pt Background feature points
Qt Correspondence of Pt−1 in frame t
Ft Face vertices
Q̂t Target coordinate of Qt
v Coordinate of a pixel
W (v;Qt ,Q̂t) Rigid MLS warping function
v̂ Warped coordinate of pixel v
qi ith column of Qt
wi MLS weight of qi,t to pixel v
α MLS parameter
c Weighted centroid of Qt

ĉ Weighted centroid of Q̂t
q∗i Vector from c to qi,t
q̂∗i Vector from ĉ to q̂i
Ai Transformation matrix of q̂∗i
g j jth grid vertex
G Grid vertices enclosing v
D Bilinear weights of v with respect to G

MeshFlow [LTY+16] is an online real-time general video stabilization method. They

use a sparse grid and feature points to estimate the dense optical flow. However, as a general

video stabilization method, they do not consider the foreground/background motion and the large

occlusion imposed by the face and body. This reduces the robustness in the context of selfie

videos.

In Sec. 3.6, we will compare our result with selfie video stabilization [YR19b](our method

in Chapter 2), Steadiface [STWL19], MeshFlow [LTY+16] and the state-of-the-art learning

based approaches [WYL+19, CK20]. We also compare with the bundled camera path video

stabilization [LYTS13] representing a typical offline general video stabilization method as the

reference.
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Figure 3.2: The pipeline of our method. A©We first detect the foreground regions of the input
video frame. B© The motion of the background is tracked using feature points. C© The foreground
motion is tracked using 3D face vertices. D© We train a stabilization network to infer the
displacement of the MLS warp nodes. Finally, we use a grid to approximate the MLS warping
and generate the stabilized frame.

3.3 Overview of algorithm pipeline

Our pipeline is shown in Fig. 3.2. The pipeline consists of three parts: motion detection,

stabilization and warping. In this section, we will introduce these parts separately and provide

an overview of the selfie video stabilization process. We summarize the notations used in this

chapter in Table. 3.1. The training of the neural networks mentioned below will be discussed in

Sec. 3.4.

3.3.1 Motion Detection

As discussed in Sec. 3.1, for selfie videos, we seek to stabilize the foreground and

background at the same time. Therefore, both the motion of the face and the background need

to be detected. To distinguish the foreground and the background, we first use a pre-trained

foreground detection network to infer a foreground mask Mt where Mt = 1 represents the
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Figure 3.3: The warping strategy of our method. In the shown frames, the background feature
points marked with the same color are in correspondence. The feature points marked with grid
patterns are the warp nodes. The arrows represent the MLS warping operation. During the
stabilization, both the feature points Pt and the face vertices Ft are warped by the warp nodes
Qt .

foreground region of frame t. We show a sample foreground mask in Fig. 3.2 A©. The details

regarding the foreground detection network will be discussed in Sec. 3.4.2. For the background

region where Mt = 0, we use the Shi-Tomasi corner detector[ST94] to detect feature points in a

frame and the KLT tracker to find their correspondences in the next frame, as shown in Fig. 3.2 B©.

We uniformly sample 512 feature points for each frame, since fewer feature points cannot provide

enough coverage of frame regions and more feature points will make the pipeline less efficient

without significant improvement in warping quality. We will visually compare the different

number of feature point selections in Sec. 3.6. We denote the selected feature points in frame t as

Pt ∈ R2×512. Their correspondences in frame t +1 are denoted as Qt+1 ∈ R2×512.

To detect the motion of the foreground, we fit a 3D face mesh to each frame using 3DDFA

proposed in [ZLLL19]. An example of a fitted 3D face mesh is shown in Fig. 3.2 C©. As in the

background, we uniformly sample 512 face vertices to represent the face position in a frame.

Furthermore, we only consider the 2D projection of the face mesh in our method. In this chapter,

we denote the selected face vertices as Ft ∈ R2×512, where t represents the frame index.
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ALGORITHM 1: The rigid MLS warping algorithm W (v;Q,Q̂)

Input :Source coordinates of a pixel v, source node coordinates Q and target node
coordinates Q̂

Output :Target coordinates of a pixel v̂
for i← 1 to 512 do

wi = 1/ |v−qi|2α

end
c =

(
∑

512
i=1 wiqi

)
/
(
∑

512
i=1 wi

)
ĉ =

(
∑

512
i=1 wiq̂i

)
/
(
∑

512
i=1 wi

)
for i← 1 to 512 do

q∗i = (qi− c)T q̂∗i = (q̂i− ĉ)T

Ai = wi
( q∗i
−q∗i

⊥
)(

v− c − (v− c)⊥
)
,

where ⊥ is an operator on 2D vector (x,y)⊥ = (−y,x)
end
v̂ = |v− c|

(
∑

512
i=1 Aiq̂∗i

)
/
∣∣∑512

i=1 Aiq̂∗i
∣∣+ ĉ

3.3.2 Stabilization

To stabilize the video, we use the rigid moving least square(MLS) warping[SMW06] to

warp the frames. In Fig. 3.3, we depict the warping strategy of a video sequence. The moving

least square warping requires a set of warp nodes for each frame t. We use the correspondences

of detected feature points, i.e., Qt , as the warp nodes for frame t (marked by green grid dots in

Fig. 3.3). Besides all the pixels in frame t, the feature points Pt (blue dots) and the face vertices

Ft (orange dots) are also warped by Qt during the stabilization to reflect the change of their

positions.

Denote the target location of the warp nodes as Q̂t , then the rigid MLS warping opera-

tion (shown as the arrows in Fig. 3.3) can be written as a function W (v;Qt ,Q̂t), where v is a

pixel/feature point/face vertex to be warped. Denoting each column of a matrix Qt as qi,t ∈ R2×1

where i ∈ [1,512], the rigid MLS warping procedure is defined by a series of computations in

Algorithm 1. Since the MLS warping is not related to the time dimension, we omit the time

subscript t for simplicity. In Algorithm 1, we use relatively small α = 0.3 to maintain a smooth

warp field and avoid artifacts.
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In this chapter, we propose a convolutional neural network (Fig. 3.2 D©) to infer the dis-

placements of warp nodes Q̂t−Qt . In Sec. 3.4.3, we will discuss the training of this stabilization

network.

3.3.3 Warping

Although the MLS warping can achieve real-time warping with a relatively small number

of warp nodes, in our application, warping with hundreds of warp nodes is both time and memory

inefficient. With our implementation of GPU accelerated MLS warping, with 512 warp nodes, a

frame of size 448×832 must be divided into 16 blocks in order to be fit in a NVIDIA 2080Ti

GPU’s memory and the warp speed is approximately 1s/frame. This makes it prohibitive for

real-time applications. To address this issue, we use a grid to approximate the MLS warp field.

This approximation enables real-time performance of our method and yields high-quality visual

results. In Sec. 3.5, we will demonstrate the details of the grid warping approximation.

3.4 Network

In this section, we discuss the details regarding the stabilization network and foreground

detection network. We first present our novel selfie video dataset (Sec. 3.4.1), then discuss details

of the foreground detection network (Sec. 3.4.2) and stabilization network (Sec. 3.4.3). Finally,

we introduce a sliding window scheme to apply our stabilization network to arbitrarily long

videos (Sec. 3.4.4).

3.4.1 Dataset

Although large scale video datasets like Youtube-8M [AEHKL+16] have been widely

used, public videos with continuous presence of faces are difficult to collect. We propose a

novel selfie video dataset containing 1005 selfie video clips, which is significantly larger than
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Figure 3.4: Our selfie video dataset. From left to right: color frame, ground truth foreground
mask, background feature points, face mesh.

existing selfie video datasets proposed in [YR19b](33 videos) and [LCSP19](80 videos). We

first manually collect long vlog videos captured with mobile devices from the Internet. In these

videos, we aim to locate the clips that have stable face presence. We use the face detector from

Dlib [Kin09] to detect faces in each frame, and maintain a global counter to count the number of

consecutive frames that contain faces. If the face can be detected in more than 50 consecutive

frames, we cut the raw video into a new clip. In addition to the regular color videos, our dataset

also includes a ground truth foreground mask for each frame. We manually label the foreground

region of the first frame of each video clip, then use Siammask E [CT19] to track the foreground

object and generate the foreground mask for the video clip. In addition, we also provide the

detected feature points in each frame and their correspondences in the next frame. Finally, for

each frame, we provide the dense 3D face mesh fitted using [ZLLL19]. In Fig. 3.4, we show

some video stills, the corresponding foreground masks, the background feature points and the 3D

face mesh from our dataset. Our dataset will be made publicly available upon publication.

3.4.2 Foreground Detection Network

Since we have the ground truth mask for our selfie video dataset, training a binary

segmentation network is straightforward. We train an FCN8s network proposed in [LSD15] for

this segmentation task. Although there are more advanced structure for segmentation [NSR18,

CKR+19], we find that FCN8s achieves satisfactory results for our application. The input of the

network is the raw RGB frame, and the output is the binary segmentation mask M mentioned
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Figure 3.5: Examples of the foreground mask detected with our trained foreground detection
network.

in Sec. 3.3.2. The training uses Adam optimizer with a 10−3 learning rate and a binary cross

entropy loss. Figure 3.5 provides examples of the inferred masks on video frames outside our

dataset. Note that the inferred mask does not perfectly indicate the foreground region, but it is

accurate enough to distinguish the foreground and the background.

3.4.3 Stabilization Network

For a video with T frames, we are able to detect T −1 groups of feature points Pt and

their correspondences in the next frame Qt+1 using the KLT tracking mentioned in Sec. 3.3.1. For

each frame, we seek to infer the displacement of warp nodes Q̂t−Qt so that the overall motion

of the video is minimized. Formally, the loss function for the background can be written as

Lb =
T−1

∑
t=1

∥∥∥W (Pt ;Qt ,Q̂t)− Q̂t+1

∥∥∥
2

(3.1)

where W (Pt ;Qt ,Q̂t) is the MLS warping function as mentioned in Sec. 3.3.2. Note that here we

apply the MLS warping function to a group of feature points, i.e., each column of Pt are treated

as the coordinates of a pixel and warped by all the warp nodes according to Algorithm 1. Since

the Pt’s correspondence Qt+1 are the warp nodes for the next frame, so here we should directly

use their new position Q̂t+1.

38



Similarly, we can also define the foreground loss function using the face vertices:

L f =
T−1

∑
t=1

∥∥∥W (Ft ;Qt ,Q̂t)−W (Ft+1;Qt+1,Q̂t+1)
∥∥∥

2
(3.2)

In this equation, the difference with Eq. 3.1 is that the face vertices in the next frame t +1 are

warped by the warp nodes Qt+1.

We also introduce a value λ to control the weighting of foreground stabilization and

background stabilization. The complete loss function is defined as:

L = (1−λ)Lb +λL f (3.3)

In Eq. (3.3), the value λ ∈ (0,1) controls the stabilization focus on foreground versus background.

A larger λ means that we tend to stabilize the face more, and a smaller λ means we tend to stabilize

the background more. Our method uses λ = 0.3 by default and stabilizes the video automatically.

The user can also change the value online during the stabilization. In the supplementary video, we

will show an example of our network seamlessly handling the changing λ during the stabilization.

Network Structure Our network structure is inspired by the 2D autoencoder network

structure. However, there are two major problems to solve before the 2D autoencoder can be used

in the context of selfie videos. First, the input dimension does not match the network structure:

we only have sparse feature points instead of a dense optical flow image. Second, the vanilla

autoencoder does not provide control over the foreground and background stabilization. To

solve these problems, we design our network as a 1D autoencoder with two input branches. We

demonstrate our network structure in Fig. 3.6. For simplicity, we will omit the batch dimension

in the discussion. For each frame, the feature points Pt ∈ R2×512 and Qt ∈ R2×512 mentioned in

Sec. 3.3.1 are concatenated in the row dimension, resulting in a frame feature tensor Xt ∈ R4×512

as shown in Fig. 3.6 A©. We concatenate the frame feature tensor of T −1 frames, forming the

feature branch input tensor X ∈ R4(T−1)×512 shown in Fig. 3.6 B©. Similarly, we concatenate the
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Figure 3.6: Our stabilization network structure. On the left we show a sequence of input frames.
A© The feature points and their correspondences in the next frame are concatenated as a 4×512
tensor. B© The tensors in the same window are concatenated to a large 4(T −1)×512 tensor.
The same operation is done for face vertices. The output of C© the feature branch and D© the
face branch of our network are weighted by λ and concatenated. E© The decoder outputs the
displacements of the warp nodes. The layer parameters are listed on the right hand side.

face vertices into the face branch input tensor Y ∈ R4(T−1)×512. Tensor X and Y are encoded

separately with 1D convolutional layers (Figs. 3.6 C© and D©), which only convolve with the last

dimension of the tensors. The number of filters in each layer is multiple of a base number C. The

resulting output tensor sizes are noted in the table on the right in Fig. 3.6. The encoded tensor

from different downsample levels are weighted by λ and concatenated for skip connection to

decoders (Fig 3.6 E©), so that the stabilization of foreground and background can be controlled by

the user input λ. Note that the order of feature points does not affect the network, since we train

the network with randomly sampled feature points and face vertices and the encoder downsamples

the input and essentially blends the feature points regardless their original order. The decoder

generates the displacements of the warp nodes. Note that for a length T video, we do not warp

the first frame and last frame. The reason is that the goal of video stabilization is to smooth the

original motion, not to eliminate the motion. Our network is effectively inferring the warp field

for the intermediate T −2 frames and stabilizes the video instead of aligning all the frames.

Linear Network Our network does not contain activation layers, which is different from

conventional neural networks. Conventional neural networks contain activation layers to introduce
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non-linearity. However, in Eq. (3.1) and Eq. (3.2), we define the loss function directly on feature

points detected in the image. This physically based definition requires the linear relationship

between the input and the output of the stabilization network. Intuitively, N times larger feature

point coordinates indicates N times longer motion vector, therefore the output displacement that

compensates the motion should also be N times larger. We conducted experiments on the network

with activation layers added. In Table 3.2, we will show that our linear network produces better

results than the network with activation layers.

Note that the linear relationship between input and output can be posed as a matrix-

vector product, i.e., n = Am where A ∈ R1024(T−1)×4096(T−1) is a large matrix that transforms

concatenated and reshaped input feature points and face vertices m ∈ R4096(T−1)×1 to reshaped

warp node displacements n ∈ R1024(T−1)×1. The optimization problem equivalent to our network

training can be defined as:

min
A

L(m,n), (3.4)

where L is the loss function defined in Eq. 3.3. Solving this problem directly is difficult and

prohibitive in the video stabilization for the following reasons. First, the matrix A is dense and

the problem is highly under-determined. Second, the loss function we defined involves non-linear

moving least squares warping; the problem cannot be solved using a simple linear system solver

as in [LYTS13]. Finally, the problem has to be solved for each sliding window in the online

video stabilization, making it impossible to achieve real-time performance. On the other hand,

the linear neural network has two advantages compared to posing the problem as an optimization.

First, the convolutional layers contain only small kernels; the concatenation of layers is equivalent

to decomposing the dense matrix into a series of sparse matrices which is easier to solve through

backpropagation and gradient descent. Second, the network implicitly provides regularization

by training on a large dataset; using a pretrained network avoids the overfitting problem in the

optimization and also enables computational real-time performance.

Another way to pose the stabilization process as an optimization problem is to directly

41



Figure 3.7: The sliding window scheme of our method. The inputs of our network for each
window are marked with the same color. For each window, the second frame is stabilized. The
background feature points and the foreground face vertices are updated accordingly and become
the next window’s input.

solve for the warp node displacement Q̂t−Qt to minimize the non-linear loss function L. Although

this formulation is tractable, it suffers from the overfitting problem since our feature points are

sparse. Using this formulation in real-time video stabilization is also prohibitive due to its speed,

since we need to conduct non-linear optimization for each sliding window. We will discuss its

results in detail in Table 3.3.

Training To train the stabilization network, we randomly draw a length T segment of

selfie video from our dataset. The feature points and face vertices in each frame are perturbed by

random affine transformation with rotation between [−10◦,10◦] and translation between [−50,50]

except the first frame and the last frame. We also generate a random λ value between (0,1). The

training uses Adam optimizer with a 10−4 learning rate. The loss function is defined in (3.3).

3.4.4 Sliding Window

Since the stabilization network only takes fixed length video segments, to apply to arbitrary

length selfie videos, we apply a sliding window scheme. We demonstrate our sliding window

scheme in Fig. 3.7. Each window is marked by the same color, which is the input to our network
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for the window. Consider window 1 as an example. The outputs of our stabilization network are

the displacements of the warp nodes Q̂2, Q̂3 and Q̂4 as we discussed in the network structure. To

stabilize frame 2, we use the MLS warp function W (v;Q2,Q̂2) to warp frame 2. We then warp

the feature points and face vertices using W (P1;Q1,Q̂1) and W (F1;Q1,Q̂1), since warping the

frame leads to updated positions of the original feature points and face vertices. The updated

feature points and face vertices become a part of window 2, which is the next window starting at

frame 2. In our experiment, we use a sliding window with length T = 5.

3.5 Warping Acceleration

As discussed in Sec. 3.3, using the MLS warping with 512 warp nodes in our case is

impractical for real-time application. To accelerate the warping speed, for the final rendering of

the frame, we use a grid to approximate the warp field generated by MLS warping. Denote a grid

vertex in frame t by g j ∈ R2×1, where j is the index of grid vertices. Each pixel v can be defined

by the bilinear interpolation of the enclosing four grid vertices, denoted by G ∈ R2×4:

v = GD (3.5)

where D ∈ R4×1 is the vector of bilinear weights.

In the first step of rendering, we warp the grid vertices with warp nodes Qt and their target

coordinates Q̂t :

ĝ j =W (g j;Qt ,Q̂t) (3.6)

Since the grid vertices are sparse, warping with MLS is computationally efficient. We then

densely warp the pixels v using the MLS warped grid coordinates:

v̂ = ĜD (3.7)
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Figure 3.8: The 25 selfie video examples used for testing, referred to in Sec. 3.6. These videos
are selected to cover a variety of challenging scenarios in real applications.

where Ĝ consists of the transformed enclosing four grid vertices ĝ j. This step contains only one

matrix operation, which can be computed at a real-time rate. In our experiment, we find the

difference between the results generated with the dense MLS warping and our grid approximation

is negligible. Our method is also not sensitive to the selection of the grid size. In our experiment,

we use a grid with size 20×20. We implemented the grid warping on GPU by parallel sampling

the grid with a pixel-wise dense grid, generating a dense warp field. We then use the dense warp

field to sample the video frame, generating the warped frame. Our implementation of this process

takes approximately 4ms/frame, compared to the 1s/frame ground truth dense MLS warping.
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Figure 3.9: The visual comparison and stabilization speed comparison of different number of
warp nodes in our method. The artifacts are marked by the red box.

3.6 Results

In this section, we present the results of our method. Note that our dataset is cut from

a small number of long vlog videos, therefore the faces are from a limited number of people.

Some videos in our dataset also do not actually need to be stabilized (e.g., still camera video).

To show the effectiveness and the ability of generalization of our method, we collect 25 new

selfie videos for testing that contain a variety of challenging scenarios in real applications, and

are completely separate from our training dataset. These testing examples are shown in Fig. 3.8.

The background scenes vary from indoor (example 16, 18, 19), inside of cars (example 7, 12),

city (example 1, 2, 8, 9, 10, 13, 15, 21, 22, 23), crowd (example 2, 3, 9, 10, 16, 23, 24) and wild

(example 4, 5, 6, 11, 14, 17, 20, 24, 25). Some of these videos are selected since their content

is technically challenging. These challenges include lack of background features (example 6, 7,

12, 15), dynamic background (example 2, 3, 9, 10, 16, 23, 24), sunglasses (example 4, 7, 14, 15,

21), large foreground occlusion (example 13, 16, 20, 22), face cannot be detected or incomplete

face (example 8, 9, 13, 16, 18, 20, 22), multiple faces (example 6, 14) and intense motions

(example 1, 23). Since the dynamics cannot be shown through video stills, we recommend readers

to watch our supplementary video. In the supplementary video, we show the example video

clips and our stabilized result side by side. As mentioned in Sec. 3.2, we also provide visual
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Figure 3.10: The visual comparison of different values of λ in our method and the state-of-the-
art real-time face stabilizaiton method Steadiface [STWL19] using the example videos provided
in their work. The images shown are the average of 15 consecutive frames. The face regions and
the background regions of the input, the corresponding regions of Steadiface [STWL19] and our
method are shown in the insets on the right.

and quantitative comparison with the offline selfie video stabilization [YR19b](Chapter 2), the

real-time selfie video stabilization Steadiface [STWL19], the real-time general video stabilizaion

MeshFlow [LTY+16], the offline general video stabilization bundled camera paths [LYTS13]

and the state-of-the-art learning-based methods [CK20] and [WYL+19]. Since our examples do

not contain gyroscope data, we compare with Steadiface [STWL19] using only the examples

provided in their paper.

3.6.1 Pipeline Parameters

The number of warp nodes (feature points) The computational performance of our

method greatly depends on the number of warp nodes. Note that we use the feature points as the

warp nodes, therefore the number of warp nodes is equivalent to the number of feature points. In

the motion detection stage of our pipeline, tracking more feature points requires more processing

time, leading to slower stabilization speed. However, if the warp nodes are too sparse in the frame,

the possibility of local distortion increases. We provide the average per-frame stabilization time

using 128, 512 and 1024 warp nodes and the corresponding warped frames in Fig. 3.9. In Fig. 3.9,

using 128 warp nodes results in distortion near the foreground/background bundaries. This is
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Figure 3.11: The visual comparison of bundled camera paths [LYTS13], selfie video stabi-
lization [YR19b](Chapter 2), MeshFlow [LTY+16], deep online video stabilization [WYL+19],
deep iterative frame interpolation [CK20] and our method. The details of the face regions are
shown in the insets on the right. We recommend readers to zoom in and observe the details in
the images.

because in the MLS warping, the warp nodes are implicitly constrained by each other. Fewer

constraints reduce the robustness of the warping. An isolated warp node, if tracked mistakenly,

introduces local distortion. In our experiment, we select 512 warp nodes since it is a good balance

between computational speed and warp quality.

Value of λ In Fig. 3.10 we show the effect of different values of λ. We stabilize the same

video clip with λ set to 0.3 and 0.9 respectively. To show the steadiness of the result, we average

15 consecutive frames of the stabilized video. The less blurry the averaged region is, the more

stable the region in the stabilized result. For λ = 0.9, the face regions are less blurry as shown in

the green inset, indicating that our network automatically focuses on stabilizing the face. If we

set λ = 0.3, the background regions are less blurry as shown in the cyan inset meaning that the

background is more stable. In our experiment, we use a default value of λ = 0.3, meaning that

we stabilize both foreground and background while mainly focusing on the background.

3.6.2 Visual Comparison

We show sample frames from our examples and the stabilized results in Fig. 3.11. Our

method stabilizes the frames without introducing visual distortions. The real-time general video

stabilization method [LTY+16] and offline general video stabilization method [LYTS13] usually

47



produce artifacts on the face, since they do not distinguish the foreground and the background.

Selfie videos are also challenging for the optical flow estimation in MeshFlow [LTY+16], since

the motion within a mesh cell can be significantly different due to the foreground occlusion. The

learning based method [WYL+19] generally does not produce local distortions, but tends to gen-

erate unstable output video. Due to the accuracy issue in optical flow and frame interpolation, the

other learning based method [CK20] generates artifacts, especially near the occlusion boundaries

like face boundaries. These artifacts are more obvious when observed dynamically in videos. We

recommend the readers to watch the supplementary video for better visual comparison. We also

achieve the same quality visual results as the previous optimization based selfie video stabilization

proposed in Chapter 2. However, our method is learning-based and runs at the real-time speed,

which is orders of magnitude faster compared to their method as we will discuss in Sec. 3.6.7.

We also test our method on the examples in Steadiface [STWL19], which is the state-of-

the-art real-time face stabilization method. The images shown on the left of Fig. 3.10 are the

average consecutive 15 frames of their results. If we set λ = 0.9 in our method (mainly stabilize

the face), we are able to achieve better face alignment without using the gyroscope information. In

addition, we can alternatively set λ = 0.3 in the stabilization network. The background becomes

significantly more stable than the Steadiface [STWL19] results and our λ = 0.9 results in the

averaged frames, indicating that our method is capable of stabilizing the background. Figure 3.10

also indicates that stabilizing the background (λ = 0.3) leads to a slight sacrifice of face stability,

since the motion of the foreground and background is different. In our supplementary video, we

will show that this loss of face stability is visually unnoticeable.

3.6.3 Quantitative comparison

We use the three quantitative metrics proposed in [LYTS13] to evaluate the frame size

preservation (Cropping), visual distortion (Distortion) and steadiness (Stability) of the stabilization

result. Note that since Steadiface [STWL19] require gyroscope information to stabilize the video,
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Figure 3.12: Quantitative comparison of bundled camera paths [LYTS13], selfie video stabi-
lization [YR19b](Chapter 2), MeshFlow [LTY+16], deep online video stabilization [WYL+19],
deep iterative frame interpolation [CK20] and our method. In these metrics, a larger value
indicates a better result. The x-axis represents the indexes of the example videos listed in Fig. 3.8.
The average values over all the example videos are listed on the right.

the quantitative comparison with their method is conducted using their videos and will be

discussed in Fig. 3.13 B©.

In the top row of Fig. 3.12, we show the cropping metric comparison. A larger value

represents a larger frame size of the stabilized result. Although [YR19b] uses second order

derivative objective, their final frame size is limited by the motion of the entire video. Our

sliding window scheme only warps the frames with respect to the temporally local motion, so we

are still able to achieve similar cropping value while directly using the explicit motion loss in

Eq. (3.3). The frame size of our result is also significantly greater than [LTY+16], [WYL+19] and

[LYTS13], since the artifacts in their results often cause over-cropping in the final video. Since

[CK20] is based on frame interpolation, their cropping score is by default equal to 1. However,

[CK20] is essentially an offline method requiring multiple iterations over the entire video. In the

following discussions, we will show that their distortion and stability score is much worse than
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Figure 3.13: Quantitative comparison with A© selfie video stabilization [YR19b] and B© Steadi-
face [STWL19] using their datasets respectively. The average values over the entire datasets
are plotted. In all the three metrics, a larger value indicates a better result.

ours.

In the second row of Fig. 3.12, we show the distortion metric. This metric measures the

anisotropic scaling of the stabilized frame. A larger value indicates that the visual appearance of

the result is more similar to the input video. Since we warp the frame with grid approximated

moving least squares, minimal anisotropic scale was introduced to the result. The MeshFlow

method [LTY+16] and bundled camera paths [LYTS13] introduces unexpected local distortion

to the frame, which leads to the negative impact on the distortion value. The learning based

methods [WYL+19] and [CK20] cannot generalize to selfie videos. They also produce visual

artifacts that lead to even worse distortion values comparing to optimization based methods

[LTY+16, LYTS13].

The bottom row of Fig. 3.12 shows the stability metric comparison. A larger stability

metric indicates a more stable result. This is the most important metric for video stabilization.

Comparing with the input (the yellow bar on the left of each example), our method significantly

increases the stability in the result. Our method achieves a comparable result with the optimization

based method [YR19b] with orders of magnitude improvement in stabilization speed. We also

achieve better stability than [LTY+16, LYTS13, WYL+19, CK20], which is expected since their

visual result is not satisfactory as shown in Fig. 3.11.

To further verify the performance of our method, we also test our method on the selfie
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Table 3.2: Quantitative results from different network designs. In this table, C is the number of
filters in the first layer of our network depicted in Fig. 3.6

C=32 Cropping Distortion Stability
No activation 0.85 0.95 0.56
Leaky ReLU 0.90 0.97 0.48

Tanh 0.87 0.97 0.50

C=64 Cropping Distortion Stability
No activation 0.86 0.96 0.57
Leaky ReLU 0.92 0.98 0.52

Tanh 0.85 0.96 0.52

C=128 Cropping Distortion Stability
No activation 0.88 0.97 0.60
Leaky ReLU 0.91 0.97 0.57

Tanh 0.89 0.96 0.52

videos provided in [YR19b] and [STWL19]. Figure 3.13 shows the average values of the three

metrics above on the selfie video dataset proposed by A© [YR19b] and B© [STWL19]. Again, our

result has a quantitative performance comparable with [YR19b]. Our method also performs better

than [STWL19] without using the gyroscope information.

3.6.4 Network Design

Non-linear layers As discussed in Sec. 3.4.3, unlike conventional neural networks, our

stabilization network does not contain non-linear activation layers. To justify this design, we

added different types of activation layers after each convolutional layer in our network and

compare the result with our original network design. To allow negative values in the network

feature vectors, we select leaky ReLU and Tanh in our experiments. Table 3.2 shows the averaged

quantitative result over the examples in Fig. 3.8 using the networks with leaky ReLU (with

negative slope 0.2), tanh and no activation layers (our original design). For the stability metric
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that is the most important, it can be observed that non-linear activation layers undermine the

performance comparing to our original network design with the same base number of filters

C. The reason for this performance degradation is that the non-linear layers break the linear

input/output relationship requirement discussed in Sec. 3.4.3.

Since our network is linear, an obvious question is whether we need a convolutional

network at all. In Sec. 3.4.3, we first note that the objective function L is non-linear, so a

simple least squares linear solver such as in [LYTS13] cannot be used. We also discuss possible

ways to formulate the system as a non-linear optimization problem. We conduct an experiment

in which we optimize our loss function Eq. 3.3 directly over the feature points (warp nodes)

instead of network weights. We optimize 1000 iterations using Adam optimizer [KB15] with

lr = 10−1, β1 = 0.9 and β2 = 0.99 for each 5-frame sliding window. Note that the runtime of

this optimization is prohibitive for pratical use, since it requires an average of 20 seconds to

stabilize each frame. We show the quantitative comparison of this optimization result with the

result generated by our linear network in Table 3.3. Although our network is linear, it performs

significantly better than direct optimization. This is expected; since the input feature points

are sparsely distributed and the distribution varies frame from frame, blindly overfitting to the

feature points in each sliding window will result in temporal inconsistency. Our linear network

provides implicit regularization for this process since it is trained over a variety of feature point

distributions. Therefore, this comparison proves that using the linear network is necessary and

can produce significantly better results than optimization.

Number of filters To show the effect of the number of filters used in each layer of the

network, in Table 3.2 we include the quantitative results with different numbers of filters in the

input layer, i.e., C = 32,64,128. In general, the larger number of filters in the network, the better

the results. This conclusion also applies to the networks with non-linear activation layers, but the

effect is more significant for the leaky ReLU activated network. For the even more non-linear

network with tanh layers, the performance saturates quickly with a greater number of filters C. In
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Table 3.3: Linear Network vs. Direct Optimization

Methods Cropping Distortion Stability
Direct Optimization 0.91 0.93 0.40
Our Linear Network 0.88 0.97 0.60

Table 3.4: Ablation Study

Ablation Cropping Distortion Stability
No Foreground Detection 0.89 0.95 0.52

Full Pipeline 0.88 0.97 0.60

this chapter, we use C = 128 in all the experiments.

3.6.5 Ablation Study

We performed an ablation study by removing foreground mask detection stage in our

pipeline. This experiment means that we are essentially using all the feature points from both

foreground and background, even if the foreground feature tracking is not reliable. The stability

score is significantly smaller than our full pipeline that separates the foreground and background.

However, note that even without foreground mask detection, we still outperform comparison

optimization based methods [LYTS13, LTY+16]. This also indicates that using the network is

necessary for the video stabilization task.

3.6.6 Video Frame Size

The previously discussed results are tested with videos with frame size 832×448. Since

our network only takes feature point/head vertices as the input, it is scalable with different

Table 3.5: Input Video Frame Size Comparison

Frame Sizes Cropping Distortion Stability
HD (1280×720) 0.87 0.95 0.59

FHD (1920×1080) 0.87 0.96 0.58
832×448 0.88 0.97 0.60
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Table 3.6: Runtime Comparison

Methods Average stabilization time(per frame)

Ours 38ms
Selfie Video Stabilization[YR19b](Chapter 2) 4720ms
Bundled Camera Paths[LYTS13] 392ms
Steadiface[STWL19] 8ms
MeshFlow[LTY+16] 20ms
Deep Online Video Stabilization[WYL+19] 28ms
Deep Iterative Frame Interpolation[CK20] 67ms

frame sizes. We tested our network with standard video resolutions (i.e., HD 1280× 720 and

Full HD 1920×1080) and compare the quantitative results with the 832×448 input, shown in

Table 3.5. In these experiments, we resize the frame to 832×448 for faster feature detection and

foreground/face detection. In the warping stage, we rescale the feature points and the output of

our network. Our network is able to handle higher resolution videos, and the result quality is

similar to previously discussed results with frame size 832×448.

3.6.7 Stabilization Speed

We show the average stabilization speed of the comparison methods and our method

in Table 3.6. On average, our method uses 38ms to stabilize a frame. Our code is written in

Python and runs on a desktop computer with an NVIDIA 2080Ti graphics card. The break

down of runtime is 3ms for foreground mask detection, 7ms for the feature detector, 3ms for

KLT tracking, 16ms for face mesh detection, 5ms for stabilization network inference, less than

1ms for MLS grid approximation and 4ms for frame warping. For different video resolutions,

since we rescale the feature points, the only operation for which the speed is impacted is the

grid warping. However, since the grid warping is implemented on the GPU, the difference is

subtle: 4ms for HD and 6ms for FHD. The overall speed is around 40ms/frame for HD and

42ms/frame for FHD. Our method is nearly two orders of magnitude faster than our previous

selfie video stabilization [YR19b](Chapter 2), and nearly an order of magnitude faster than the
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traditional optimization based general video stabilization [LYTS13]. Our method is also nearly

two times faster than the deep frame interpolation method [CK20], since their network involves

2D convolutions. Also note that [CK20] is an offline method requiring future frames and multiple

iterations through the entire video.

Although our method is slightly slower than MeshFlow [LTY+16] and deep multi-grid

warping [WYL+19], we have shown in Sec. 3.6.2, Sec. 3.6.3 and supplementary video that

our method produces significantly better results than theirs. Our method is also slower than

Steadiface [STWL19]. However, our method is a purely software video stabilization and requires

no gyroscope information, which is not available on some devices, e.g., action cameras. Our

method is also able to stabilize the background in addition to the face. This makes our approach

usually yield visually more stable results as we will show in our supplementary video. As we

discussed earlier in Sec. 3.2, our method essentially more accurately models the frame motion

than Steadiface [STWL19]. Therefore their method does not generate comparable quality as our

method. Also note that our method also runs at a real-time speed without any attempt to optimize

the implementation. We believe that the speed of our pipeline can be further improved by using

the GPU memory sharing between feature detection/tracking and neural network operations to

avoid repetitive data transferring between CPU and GPU.

3.6.8 Limitation

Our method fails if very few feature points are detected in the background, since our

method requires a reasonable number of warp nodes to warp the frame. These cases include

very dark environments, pure white walls and blue sky. This is a common limitation for feature

tracking based methods [GKE11, LYTS13, LGW+11, GF12, LGJA09]. In our method, this can

be solved by replacing the feature tracking with the optical flow algorithm with appropriate

accuracy and real-time performance.
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3.7 Summary

In this chapter, we proposed a real-time learning based selfie video stabilization method

that stabilizes the foreground and background at the same time. Our method uses the face mesh

vertices to represent the motion of the foreground and the 2D feature points as the means of

background motion detection and the warp nodes of the MLS warping. We designed a two branch

1D linear convolutional neural network that directly infers the warp nodes displacement from the

feature points and face vertices. We also propose a grid approximation to the dense moving least

squares that enables our method to run at a real-time rate. Our method generates both visually

and quantitatively better results than previous real-time general video stabilization methods and

comparable results to the previous selfie video stabilization method with a speed improvement of

orders of magnitude.

Our work opens up the door to high-quality real-time stabilization of selfie videos on

mobile devices. Moreover, we believe that our selfie video dataset will inspire and provide

a platform for a variety of graphics and vision research related to face modeling and video

processing. In the future, we would explore the possibility of learning based selfie video frame

completion using our proposed selfie video dataset.

This chapter is a reformatted version of the material as it appears in “Real-Time Selfie

Video Stabilization,” Jiyang Yu, Ravi Ramamoorthi, Keli Cheng, Michel Sarkis and Ning

Bi [YRC+20]. The material has been submitted to the IEEE Conference on Computer Vi-

sion and Pattern Recognition(CVPR), 2021. The dissertation author was the primary investigator

and author of this paper.
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Chapter 4

General Video Stabilization

4.1 Introduction

In Chapter 2 and Chapter 3, we discussed both optimization based and learning based

selfie video stabilization. In this chapter, we broaden our focus to general videos. As discussed in

Chapter 1, most traditional video stabilization methods rely on feature tracking and physically

based constraints in the stabilization process. Examples of these methods include modeling frame

motion as a full-frame 2D image transformation like Matsushita et al.[MOG+06] or a grid of

local homographies like Liu et al.[LYTS13]. 3D methods seek to explore the 3D location of

Figure 4.1: The pipeline of our method. (a) We first pre-stabilize the video using basic 2D affine
transformation. (b) Using the optical flow between consecutive frames of the pre-stabilized video,
we formulate the video stabilization as the minimization of the distance between corresponding
pixels. (c) We use a convolutional neural network as the optimizer to solve for a 2D affine
transformation and a warp field for each frame. (d) The video frames are warped and cropped
to a rectangle to produce the stabilized result.
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feature points in the scene while calculating the camera pose in 3D space. Works following

this direction include Liu et al.[LGJA09], Bhat et al.[BZS+07] and Sun[Sun12]. However, all

previous methods involve various heuristics. In real scenarios, complex effects (e.g. motion blur,

occlusion, parallax) may unexpectedly break the assumptions in these methods and therefore

produce artifacts in the results.

It would be ideal if we could make no assumptions about the physics and directly optimize

the appearance change of the frames in the results so that the video is stabilized. To model the

appearance change, dense optical flow fields between consecutive frames are needed. We seek

to apply pixel-wise offsets to these optical flow fields, and smooth the motion of each pixel.

However, modeling the frames with optical flow brings three major challenges. First, modern

videos are usually high-definition. This means that the number of pixels in each frame is large.

As the length of video grows, optimization quickly becomes intractable since too many pixel

motions need to be solved. (For example, for a 100-frame standard 480P video(854×480), the

number of motion vectors to be solved is 854∗480∗100 = 4.1×107). Second, as the problem

size becomes large, the energy landscape of the non-convex optimization becomes complex.

General gradient-based optimization algorithms may easily get stuck in local minima and yield

unsatisfactory results. Third, the performance of the video stabilization is affected by the quality

of optical flow. Local errors in the optical flow map will also be blindly treated as actual pixel

motions, causing artifacts in the final results. Therefore, the regularization needs to be carefully

designed to enforce spatial consistency and maintain robustness to the errors in the optical flow

field.

Instead of trying to directly solve for the pixel-wise warp field, we propose a novel

method that optimizes in the space of neural network parameters. Note that unlike standard

CNN approaches, we don’t use large datasets or learning of parameters a-priori. We train the

CNN from scratch on a single input video. In fact, there is no traditional training in our method;

the CNN is simply used as a robust way to do global optimization with a physically-based
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objective function. The other important difference from traditional CNN training is that we seek

to overfit the data as much as possible since our sole goal is to produce the best results for the

single input video. By optimizing the parameters of the CNN rather than directly for pixels in a

single test video, we make the dense warp field optimization tractable. A similar idea has been

employed in image generation and restoration by Ulyanov et al.[UVL18], but is applied by us

for the first time in video stabilization. This idea may be applicable in many other image and

video processing applications where the physically-based problem is intractable for traditional

optimization algorithms.

The pipeline of our method is shown in Fig. 4.1. We first pre-stabilize the video to reduce

the frame motion (Sec. 4.3.1). We use optical flow between consecutive frames to generate

dense correspondence of all pixels between the two frames. The stabilization is achieved by

minimizing the distances between corresponding pixels. We seek to solve a full frame 2D image

transformation and a dense warp field for each frame, so that the original frames can be warped

and stabilized. We will discuss our formulation of the video stabilization problem in Sec. 4.3.

In summary, our contributions include:

Optical flow based formulation: We use the optical flow to track the actual motion of all the

pixels in the video instead of pixel profiles in Liu et al.[LYTS14], which enables high robustness,

universal stabilization over any part of the scene (regardless of foreground or background), and

flexible non-parametric frame warping (Sec. 4.3). Our novel formulation of video stabilization

leads to a large scale non-convex problem, which is addressed as discussed below with a CNN-

based optimization.

Neural network based regression: We propose a new idea to transfer the video stabilization

problem into a neural network based regression (Sec. 4.4). We also discuss the implementation

details of the neural network regression in Sec. 4.5. We analyze the effect of different network

structures on the final results, and propose a network structure that is best for video stabilization.

Our network structure significantly simplifies the optimization process and generates compelling
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results (Sec. 4.6).

4.2 Related Works

In this section, we summarize related works in video stabilization and neural network

based regression.

4.2.1 Video Stabilization

2D Methods The 2D methods in general have low computational complexity and can be

solved efficiently. However, 2D methods suffer from potential problems. First, the tracked 2D

features can be unreliable due to motion blur and illumination change. Obtaining long feature

tracks is also difficult in videos with significant occlusions. Liu et al.[LYTS13] tracks the 2D

feature points and solves for a grid that smoothes its enclosing feature tracks. Grundmann et

al.[GKE11] requires a camera path calculated from feature tracks as an initialization of the

algorithm. Buehler et al.[BBM01] also requires long feature tracks and simple motion scenarios.

Some methods seek to explore the relative position of feature points. Liu et al.[LGW+11] perform

stabilization on the extracted eigen-trajectories. Goldstein and Fattal[GF12] utilize the epipolar

geometry to maintain the relative position of feature points. Wang et al.[WLHL13] also seek to

keep the relative position of feature points. These works’ performances are still subject to the

quality of tracked features.

Second, using a parametric motion model is usually insufficient to stabilize videos with

parallax effects, since the motions of pixels in the same frame are not subject to the same

homography constraint. Matsushita et al.[MOG+06] and Gleicher and Liu[GL08] treat the scene

as a plane and use a full-frame homography to stabilize the video. Liu et al.[LYTS13] and our

work in Chapter 2 and Chapter 3 divide the frames into grids and apply a local homography, but

essentially cannot handle complex depth variation in the scene. Liu et al.[LYTS14] uses optical
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flow to warp the original frames. However, the pixel profile proposed in Liu et al.[LYTS14]

is very sensitive to motion discontinuities. Therefore, they still need heuristics to identify the

foreground/background and carefully inpaint the regions where the motion is different from the

background.

Our method is more robust than general 2D methods in terms of feature tracking, since

our method tracks all the pixels and is robust to local errors in the optical flow. We also enable

a non-parametric frame warping, which handles parallax effects without reconstructing the 3D

structure of the scene. Although we used optical flow to synthesize stabilized frames like Liu et

al.[LYTS14], our method is fundamentally different from their work. In our work, we track the

actual motion of each pixel instead of the pixel profile which only collects the motion vectors at

each pixel position. This makes our method robust to parallax and does not require the filling in

of the motion discontinuity regions. However, our formulation results in a large scale non-convex

problem which cannot be written as a simple quadratic form as in Liu et al.[LYTS14] To solve this

non-trivial problem, we discuss our novel neural network based optimization routine in Sec. 4.4.

3D Methods Unlike 2D methods, 3D methods seek to explore the 3D location of feature

points in the scene while calculating the camera pose in 3D space. These works in general handle

parallax better than 2D methods, since the motion is physically analyzed in actual 3D space.

In these works, the camera path is smoothed and the 3D feature points are reprojected to new

camera positions in order to guide the warping[LGJA09, Sun12] or the methods use image-based

rendering[BZS+07] to synthesize a frame from the original frames. However, the 3D methods

suffer from robustness and complexity issues in Structure from Motion.

There are also video stabilization methods that require specific hardware information or

focus on video captured with a specific camera. Sun[Sun12] requires a depth camera for video

stabilization. Smith et al.[SZJA09] requires a light field camera. Karpenko et al.[KJBL11] uses

gyroscope information to help in stabilizing the video. Kopf[Kop16] focuses on videos captured

with a 360◦ camera. Some of these works show strong results, but have limited application since
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most videos do not include the extra information required in these algorithms.

Deep Learning Based Methods Some recent works seek to use a pre-trained network in

video stabilization tasks. Wang et.al.[WYL+19] train a two-branch Siamese network and try to

directly predict the homography transformation from the current frame and previous stabilized

frames. Xu et.al.[XHW+18] also try to use spatial transformer networks (STN) to predict the

affine transformation. Moreover, they use an adversarial network to directly generate previous

stabilized frames instead of the real frames in Wang et.al.[WYL+19]. Although these works

utilize pre-trained CNNs, they still use a simple full-frame transformation as the motion model,

which cannot handle parallax effects. Lin et.al.[LJL+17] proposed a mesh deformation algorithm

by enforcing the photo consistency between images. Their semi-dense photometric alignment

provides better robustness compared to methods using feature points. However, the photometric

based metric can be unreliable in homogeneous regions, object boundary and occluded regions.

These regions are also challenging for optical flow algorithms, but as we will discuss in Sec. 4.3,

our regularization can help avoid visual artifacts in these regions.

4.2.2 Neural Network Regression

Deep convolutional neural networks have been used in various image/video processing

tasks. Such applications include image super-resolution[DLHT14, LHAY17, LTH+17, TYL17],

image denoising[Lef16], HDR reconstruction[EKD+17], panorama video loop generation[HLSH18]

and video interpolation[JSJ+18]. Some of these methods are designed for processing a single

image/video, but their networks are essentially trained on a large dataset of images/videos. Unlike

traditional deep learning, our method treats the network purely as an optimizer over one single

input video. We train the network from scratch for each specific video, and try to overfit and

obtain the best result for the input.

Ulyanov et al.[UVL18] recently proposed that a randomly-initialized neural network can

be used in learning image priors on a single image. The idea is that the variables of a typical
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optimization task can be replaced by the output of a neural network. The neural network is

randomly initialized and trained on a single image to minimize the loss function designed for a

specific task, e.g. denoising, superresolution, and inpainting. This enables the optimization in the

neural network parameter space instead of image space, while dramatically improving the result.

In this work, we expand this idea into video processing, which is more difficult than the single

image processing scenario in terms of the problem formulation and complexity. By transferring

the video stabilization problem into neural network parameter space, we can easily solve the large

scale problem, which is difficult to solve using traditional optimization methods. Moreover, we

further analyze the effects of different types of architectures on the final optimization result. We

will discuss this idea in detail in Sec. 4.4.

4.3 Optical Flow Based Objective Function

It is well-known that videos usually have multiple factors that cause difficulties for

video stabilization algorithms, e.g. lens distortion, motion blur, dynamic objects, parallax, low-

illumination etc. These effects can be individually modeled using hand-crafted physically based

models. However, in real-world videos, effects usually couple with each other, making algorithms

specifically designed for one single effect fail in other cases. Instead of trying to physically

model these complex effects, we treat the video stabilization task as a pure 2D image processing

problem. In this chapter, we seek to minimize the appearance change among video frames.

4.3.1 Pre-Stabilization

Although we have considered the inaccuracy of the original optical flow, a pre-stabilization

is still necessary to reduce the motion and improve the quality of the original optical flow.

Moreover, for large motion videos, a large number of the boundary pixels have no correspondence

in the next frame. This results in artifacts in the boundary region of the output warp field, since
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Figure 4.2: The objective function of our method. The computed bidirectional original optical
flow provides correspondence among all pixels in two consecutive frames. In this figure, pi,t is
associated with p j,t+1 by Ft and pk,t+1 is associated with pl,t by Ft . Our goal is to solve a 2D
affine transformation H and a warp field W to minimize the distance between the associated
pixels.

these pixels can be warped freely without any constraint from neighboring frames. Therefore, our

method pre-stabilizes the video before stabilizing the video with the process discribed in the rest

of this section.

In the pre-stabilization phase, we first use KLT[ST94] to track minimum eigenvalue[ST94]

feature points over all the frames. Denote a feature point at time t as fi,t and its correspondence in

t +1 as fi,t+1 respectively. We solve for a per-frame 2D affine transformation matrix Kt such that

the integral of squared second derivative is minimized:

E(K) = ∑
i,t
‖Kt fi,t−Kt+1 fi,t+1‖ (4.1)

The solved Kt are used to transform the frames of the input video, and the result is cropped to a

rectangle as the output of the pre-stabilization phase. The output of this pre-stabilization is used

as the input for the rest of this section.
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Table 4.1: Notations used throughout this chapter.

Notation Meaning Size
w Frame width 1
h Frame height 1
t Frame index(time) 1
T Total number of frames 1
It Input RGB frame at t w×h×3

x,y Pixel coordinate 1
i, j,k, l Pixel ID 1

pi,t Spatial location of pixel i at t 2×1
ph

i,t Homogeneous version of pi,t 3×1
p̂i,t Warped pi,t 2×1
Pt Coordinates of all pixel in frame It wh×2
St The coordinates of four corner pixels 4×2
D Weight of all pixels in the 2D interpolation representation w.r.t. S wh×4
Ft Optical flow from frame It to It+1 w×h×2
Ft Optical flow from frame It+1 to It w×h×2
Ht 2D affine transformation 2×3
Wt 2D warp field w×h×2
θ Neural network parameters

G(θ) Neural network as a function of θ

4.3.2 Optical Flow Objective Function

In Sec. 4.3.1, we first perform a pre-stabilization step, where we track sparse feature

points and preliminarily stabilize the video. To model the appearance change, the next step of our

approach is to calculate original optical flow between consecutive video frames and find frame

transformations to minimize the motion of pixels. To make the following discussion clear, we

define the notations in Table 4.1.

To simplify the notation, we unroll the pixel coordinate x,y to a single pixel ID i. Denote

the original optical flow from t to t +1 as Ft , a two-channel image that encodes the shift of all the

pixels in frame It to frame It+1. For example, denote the position of pixel i in frame It as pi,t . Its

corresponding pixel in frame It+1 can be represented as

p j,t+1 = pi,t +Ft(pi,t) (4.2)
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Similarly, a backward optical flow can be computed and maps the pixels in frame It+1 to frame It

pl,t = pk,t+1 +Ft(pk,t+1) (4.3)

We illustrate our approach in Fig. 4.2. Our goal is to warp each original frame so that the

output frames are stabilized. The warping operation consists of two components: a 2D affine

transformation Ht and a per-pixel warp field Wt . Therefore, the warped pixel i and l in frame It

can be represented as

p̂i,t = Htph
i,t +Wt(pi,t)

p̂l,t = Htph
l,t +Wt(pl,t)

(4.4)

where ph
i,t and ph

l,t stands for the homogeneous representation of pi,t and pl,t . Similiarly, its

warped correspondence in frame It+1 is

p̂ j,t+1 = Ht+1ph
j,t+1 +Wt+1(p j,t+1)

p̂k,t+1 = Ht+1ph
k,t+1 +Wt+1(pk,t+1)

(4.5)

The objective is to minimize the Euclidean distance between the warped pixel positions:

Eo(W,H) =
1

wh(T −1)

T−1

∑
t=1

(
wh

∑
i=1

∥∥p̂i,t − p̂ j,t+1
∥∥2

+
wh

∑
k=1

∥∥p̂l,t − p̂k,t+1
∥∥2
)

(4.6)

where wh is the total number of pixels in a frame and T is the total number of frames. Note that

the mapping from pi/l,t to p j/k,t+1 is 1-to-1, so we only need to average over i and k.

4.3.3 Regularization

Due to the complexity of scenes, the original optical flow could be inaccurate in some

regions. Moreover, objects in the scene might be moving regardless of the motion of the camera.

Blindly optimizing the objective function (4.6) could introduce artifacts. An example of these
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Figure 4.3: Video stabilization results using regularization vs. no regularization. (Left) Due to
the moving object in the scene and the inaccurate original optical flow, unexpected artifacts are
introduced if the video is stabilized purely according to optical flow. (Right) Applying proper
regularization helps reduce the visual artifacts.

artifacts is shown in Fig. 4.3. Therefore, we seek to enforce the local continuity of the output

warp field Wt .

The four corner pixels define a rectangular region, in which each pixel position pi,t can

be represented by a linear interpolation of the coordinates of the four corner pixels: Pt = DSt ,

where each row of Pt is the coordinate of pixels, each row of D is the 2D interpolation weight,

and each row of St is the 2D coordinates of the four corners. Note that moving the corner position

correspondingly changes all the pixel locations:

∆Pt = D∆St

A warp field obeying this linear warping rule should satisfy:

‖Wt−D∆St‖2 = 0 (4.7)

However, our output warp field Wt will not exactly be a linear warping. Our goal is to keep the

term in (4.7) as small as possible. The least squares representation of ∆St is:

∆St = (DT D)−1DT Wt
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This estimation of ∆St leads to the error of:

Er(W) = Wt−D(DT D)−1DT Wt (4.8)

We use this error as a constraint to enforce the output warp field close to a linear warp field. Note

that this formulation allows us to control the linear warping constraint at a pixel-level, simply by

changing D. For example, in our experiment, we cover each frame with a 20x20 grid and fill D

with the weight of each pixel in its enclosing grid cell.

Moreover, the original optical flow Ft is less reliable for regions with large motions. To

take this into consideration, we tend to increase the regularization value (4.8) for large motion

regions to obtain Wt with fewer discontinuities; on the other hand, for small motion regions, we

tend to trust the optical flow and decrease the regularization value. The measurement of motion

scale can be estimated using the pixel motion obtained from the original optical flow:

Ep = F2
t +F2

t (4.9)

4.3.4 Final Objective Function

Combining (4.6), (4.8) and (4.9), our optimization problem can be written as:

min
W,H

Eo(W,H)+λ
∥∥Ep ·Er(W)

∥∥
1 (4.10)

where λ is a hyperparameter controlling the amount of regularization in general. Since the

magnitude of original optical flow Ep has the same size as the regularization Er, we use it

as a pixel-wise weight to Er. Note that to encourage sparsity in the warp field and avoid

over compensation to erroneous regions in the original optical flow, we use L1 norm for this

regularization.
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Discussion Our formulation directly models the motion of every pixel in a video using

dense optical flow. Unlike previous works that use various heuristics, our method is based on the

first principles that we should stabilize what we finally perceive. The most similiar idea is the

SteadyFlow proposed by Liu et al.[LYTS14]. However, they only collect the motion vector on

fixed pixels. The motion vectors on a single pixel correspond to the motion of different locations

in the scene. The accumulation of these vectors does not match the true motion of the camera.

Our formulation is novel since we physically model the motion of every visible point in the scene.

This leads to a more difficult optimization problem, as we will discuss in Sec. 4.4.

4.4 Convolutional Neural Network Regression

Note that the unknowns in (4.10) are a per-frame optical flow field Wt and a per-frame

2D affine transformation Ht . For a 300-frame video clip with a standard 480p resolution, the total

number of unknown motion vectors is approximately 123 million. Directly optimizing a problem

of this size is typically prohibitive due to the computation cost and limited memory. Moreover,

the optimization will be difficult due to the complex high-dimensional energy landscape with a

large number of local minima.

Our main idea to solve this problem is to search for the answer in the neural network

parameter space instead of in the problem space. In fact, we are using the neural network as an

optimizer. Our method is different from traditional learning on large datasets. There is no training

set, and the network weights are directly optimized on the input video with the objective function

in (4.10). Using a network makes this non-convex high-dimensional optimization problem

practical, enabling us to directly use a robust optical-flow based stabilization formulation.

To our knowledge, our method is the first work that uses this idea in video stabilization

tasks. Another insight is that although the optical flow field is represented pixel-wise, it is

spatially smooth for real-world scenes. Therefore, our warp field {W,H} can be described well
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Figure 4.4: Our network structure. The overall structure is shown on the left. The details of
each type of module are shown on the right. The numbers shown on the upper-left/lower-right
corner of each module represent the number of input/output channels. The numbers in red/green
represent two different channel configurations of the network. The orange box represents
optional skip-connections between downsample modules and upsample modules. Combining
the channel configurations and skip-connection options, a total of 4 different configurations are
used in our experiment (listed on the lower-right of the figure).

by a parameterized function. However, given the complexity of this process, a complex and

differentiable parameterized function needs to be designed. Instead of hand-crafting this function,

we select the convolutional neural network as an ideal out-of-the-box solution for this task.

Denote the neural network as a function G(θ) where θ represents the parameters of the

network. We seek a set of network weights so that the output of the network is the desired warp

field {W,H}= G(θ). Therefore, the optimization problem (4.10) can be reformulated as:

min
θ

Eo(G(θ))+λ
∥∥Ep ·Er(G(θ))

∥∥
1 (4.11)

The goal becomes searching for the parameters θ by training the network on a single video clip.

Note that since our objective function consists of simple linear and quadratic functions of {W,H},

(4.11) is differentiable with respect to network parameters θ.

Our network structure is shown in Fig. 4.4. The input of the network is a set of T − 1

original optical flow fields F computed from input video frames. The frames of optical flow

fields are sent in as different channels. The input is encoded by 5 layers of downsample modules.

Each downsample module downsamples the frame size by 2 but doubles the number of channels,
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except the last one that only doubles the number of channels. The decoder consists of 4 layers of

upsample modules followed by an output convolutional layer with kernel size 1×1. The output

of the decoder is the desired warp field W. In addition, we fed the encoded information into a 2D

transformation module consisting of two convolutional layers and two linear layers. This module

produces the desired 2D affine transformation matrix H. The number of output {W,H} pairs is

T −2. We will explain why we have T −1 input channels and T −2 output channels, and discuss

the selection of T in Sec. 4.5. Since we only input the optical flow of a single video and try to

optimize the network parameters, we seek to overfit the single input video as much as possible.

Therefore we avoid inserting dropout layers and any regularization on network weights.

As noted in Fig. 4.4, we have two different channel configurations. The channel con-

figuration 1 requires more network parameters, while the channel configuration 2 leads to a

simpler network. In addition, the network can optionally include skip connections. Combining

these choices, we have four different network configurations in this chapter. We will compare

the performance of these configurations in Sec. 4.6. Specifically, we will show the relation

between the network configuration and the regression error (4.10) in Fig. 4.12 and discuss how the

network configuration will affect the optimization performance. We will also show the network

configuration’s effect on the final stabilization result in Fig. 4.12.

4.5 Implementation Details

Sliding Window We now explain the details about why we have T −1 optical flow fields

as the network input and T − 2 warp fields as the network output. Since the input video may

have different lengths, we stabilize a video using a sliding window approach. The process is

demonstrated in Fig. 4.5, where an example with T = 6 is shown. In this case, the window covers

T = 6 video frames and T −1 = 5 original optical flow frames. Note that since the input of our

network is the original optical flow, the number of input channels is T −1. The desired number of
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Figure 4.5: The sliding window example with window size T = 6. For each window, the warp
field of the first frame is fixed as computed from the previous window. The last frame is fixed
so that it is not warped. We optimize the objective function discussed in Sec. 4.3 for the entire
length T window and solve for T −2 warp fields.

estimated {W,H} pairs should be 6, which can warp each frame and generate stabilized frames.

However, to enforce temporal consistency, we make the windows overlap by two frames and

fix the warp field of the first frame. We also fix the last frame to retain the global motion of the

original video. The warp field of the first frame is copied from the estimation of the previous

window. The warp field of the last frame is fixed to W = 0,H = I for the current window, but

will be re-optimized as the second frame of the next window. The last frame of the last window

remains unwarped. Therefore, for each window, we have T −2 = 4 pairs of warp fields {W,H}

as the network output.

Selection of Window Size It is clear that the selection of T will affect the complexity

of the optimization problem. The more frames we want to stabilize at the same time, the more

complex the energy landscape will be. In Fig. 4.6, we show the error descent of optimization

using T from 10 to 80 frames with a step size of 10. The y axis represents the percentage of the

error of current iteration with respect to the initial error. Each curve is the averaged result for all

segments of our examples in Sec. 4.6. It shows that in smaller T cases, the optimization converges

faster but yields higher error after convergence. This is because in a shorter video segment, we

have fewer degrees of freedom in the warp field. Although a larger window size leads to better

error performance, more memory and iterations are required to stabilize a video segment. Taking

all these into consideration, we select T = 60 in our experiments.

Miscellaneous We use the Liu[Liu09] to compute the original bidirectional optical flow.
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Figure 4.6: Comparison of results stabilized with window size T = 10 to T = 80. The inset
shows a zoom-in of the region circled by the dotted box. Smaller window cases converge faster
but result in higher error. Larger window cases yield lower error but converge slower.

Before computing the original optical flow, we pre-stabilize the video to eliminate large motions.

The reason for the pre-stabilization stage includes two aspects: the quality of optical flow is

undermined by large motions; the pixels in the boundary regions do not have correspondence

in their neighboring frame, and this effect is significant in large motion cases. The details about

pre-stabilization are discussed in Sec. 4.3.1. The regularization value λ in (4.10) is set to be 0.5

for all the examples shown in the supplementary video. The optimizer we used is Adam[KB15]

with β1 = 0.5, β2 = 0.59 and a learning rate of 10−4. We optimize for 150 iterations for each

T = 60 window.

Figure 4.7: Example stills of our examples. The example numbers are labeled above the frames.
In the right table, we also summarize their properties that have significant effects on video
stabilization algorithms.
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Figure 4.8: Quantitative comparison using our metric. In this figure, a lower bar indicates
a better result. The result is normalized with the score of the input video. In the left figure,
results that have a normalized score greater than one are clamped in this figure. The right figure
shows the averaged results over the entire 25 examples. On the rightmost part of the figure, we
only compare to Liu et al.[LYTS14] using their data (examples 1-8) since we don’t have their
implementation. We compare to our selfie video stabilization method in Chapter 2 only on selfie
videos (examples 21-25). We mark our results with the red stars. The exact scores are marked
on top of each bar.

4.6 Results

In Fig. 4.7, we show example frames of the video clips used in this chapter. In order to

collect a large enough set of examples for comparison, we combined datasets from many previous

papers. In our dataset, numbers 1-8 are taken from Steadyflow[LYTS14], numbers 9-15 are taken

from Liu et al.[LYTS13], numbers 16-20 are taken from Liu et al.[LGJA09], and numbers 21-25

are taken from Yu and Ramamoorthi[YR19b](Chapter 2). We also summarize their properties

that have significant effects on video stabilization algorithms in the right table in Fig. 4.7.

We use five metrics to evaluate the quality of the results. Our result is generated with

Config 1 mentioned in Fig. 4.4. We will further discuss the effect of network configuration later

in this section.

Quantitative Results Using our Objective Function: In Fig. 4.8, we show quantitative

comparison of the result quality of the input video, our result and Steadyflow[LYTS14], Grund-

mann et al.[GKE11], Liu et al.[LGJA09], Liu et al.[LYTS13] and Yu and Ramamoorthi[YR19b](Chapter 2).

Metric A is our metric, which is defined as the accumulated optical flow over the entire video:

1
wh(T −1)

T−1

∑
t=1

h

∑
x=1

w

∑
y=1

(‖Ft(x,y)‖2 +
∥∥Ft(x,y)

∥∥
2)
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Figure 4.9: Metric A evaluation over the results for the NUS dataset. We randomly select
5 videos from each category and average the results. Note that our network optimization
significantly improves the pre-stabilization results. Our method is also better than comparison
methods in challenging categories like Crowd, Parallax and Running.

which evaluates the appearance change between consecutive frames in the results. The essence

of this metric is similar to our objective function (4.6). However, the metric is different from

(4.6): the optical flow it uses is computed from the resulting video. Note that to compare videos

with different frame sizes, we normalize the optical flow by its frame size. A smaller score

indicates a better result in metric A. To show the amount of stability improvement, all the scores

are normalized by the score of the input video.

In our work, we directly tried to minimize the overall appearance change. Therefore,

our method achieves the best result on average and performs better than comparison methods

under this metric. Note the benefit gained by using our CNN based optimization framework,

comparing to the pre-stabilized result. We also perform significantly better in example 8, which

contains large foreground occlusion and is claimed as a limitation case in SteadyFlow[LYTS14].

For selfie videos (example 21-25) in which large occlusion exists, we are also able to achieve

smoother appearance change. Our method obtains a larger score comparing to Liu et al.[LYTS13]

in example 12, but their result contains large visual distortion as we will discuss later in this

section. For some examples (6, 7, 9, 11, 17, 20), our result has a slightly higher score than the

comparison methods, but there are no visible quality differences with the other methods.
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In Fig. 4.9, we also compare our method with the other video stabilization methods over

the commonly used NUS dataset[LYTS13]. We randomly select 5 videos from each category

and average the Metric A of the results. Our method performs better on this more general video

stabilization dataset.

Figure 4.10: Quantitative comparison using metrics proposed by Liu et al.[LYTS13] and Yu
and Ramamoorthi[YR19b](Chapter 2). Metric B measures the cropping ratio compared to the
input video, metric C measures the global distortion, metric D measures the frequency domain
stability and metric E measures the motion smoothness. We mark our results with the red stars.
The exact values are marked at the bottom of each bar. Metric D is considered as the most
important metric.

Quantitative Results Using Other Metrics: The metrics B, C and D were proposed by

Liu et al.[LYTS13], which evaluates the results’ cropping ratio, global distortion and frequency

domain stability. In metrics B, C and D, a higher value indicates a better result. Metric E was

proposed in Chapter 2, which evaluates the smoothness of the frame motion in the result. In

metric E, a smaller value indicates a better result. In Fig. 4.10, we show comparison of averaged

score over the entire 25 examples. The full comparison on each individual video is provided in

the supplementary material.

In metrics B and C, since we warp the pre-stabilized video using the warp field and crop

to a rectangle, we expect the final result to be slightly worse than the pre-stabilized result in

terms of cropping and distortion. However, we are still achieving better results than comparison

methods in metric B (cropping) and comparable result in metric C (distortion). In terms of

metric D (stability), which is the most important aspect of video stabilization, we outperform the
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Figure 4.11: Complete quantitative comparison using our metric (Metric A), Liu et al.[LYTS13]
metric (Metric B, C and D), Yu and Ramamoorthi[YR19b](Chapter 2) metric (Metric E). In
metric A and E, a lower bar indicates a better result. In metric B, C and D, a higher bar
indicates a better result. The result is normalized with the score of the input video for Metric A
and E. Results that have a normalized score greater than one are clamped in this figure. Our
method is marked with the dotted lines. The average values for these metrics are shown in Fig.
8 and 9.

comparison methods on average. For metric E (motion smoothness), our method also performs

significantly better. Note that comparing to the method specifically designed for selfie video in

Chapter 2, we are also able to achieve both better metric D (frequency stability) and metric E

(motion smoothness) without explicitly modeling the human face. The complete quantitative

comparison using all metrics on each individual example is shown in Fig. 4.11.

Visual Comparisons in Video: Besides the quantitative metrics, we also show visual

comparison in the supplementary video. For videos with large occlusion (example 2, 4, 8, 14,
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21-25), feature track based 2D methods[GKE11, LYTS13] fail due to the difficulty in obtaining

long feature tracks. They also produce artifacts in videos coupled with other effects: extreme

motion (example 15), motion blur (example 5), rolling shutter (example 3 and 5) and parallax

(example 12). 3D methods[LGJA09] also cannot produce satisfactory results since structure from

motion is not suitable for dynamic scenes in general. The optical flow based method[LYTS14]

failed in challenging cases like example 8, since its heuristic on motion completion cannot handle

large foreground occlusions. Our method is more robust in these cases. We do not explicitly

handle the motion discontinuity, but resort to the continuity regularization (4.8) and (4.9) and

make it part of the optimization. We are able to handle this complex optimization problem thanks

to optimizing the neural network parameters instead of the warp field itself.

Figure 4.12: Effect of network structures. The figure on the left shows the regression error using
different network configurations shown in Fig. 4.4. The right figure shows the effect on the final
result using our metric.

Evaluation of Network Configurations: Now we discuss the effect of neural network

configuration on the video stabilization result. As noted in Fig. 4.4, we have 4 different network

configurations in our experiment. In the left part of Fig. 4.12, we compare the regression

errors defined in (4.10) over 150 optimization iterations using these configurations. Each curve

represents the average regression error on a single video segment with length T = 60. Networks

with more channels (Config 1 and 3) can achieve lower error than networks with the same structure

but fewer channels (Config 2 and 4). Fig. 4.12 also shows that networks with more complex

structure (Config 1 and 2) can descend to lower error than networks with the same channels

but with simpler structure (Config 3 and 4). We also compare the quantitative evaluation of the
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result videos using different network configurations in the right part of Fig. 4.12. The values are

averaged over the 25 example videos in this chapter. The simple networks (Config 2, 3 and 4)

cannot achieve equal quality results as the most complex network (Config 1), and the difference

in quality among these simple networks are less significant. This proves that the precise network

architecture is important in the our case, and we find the Config 1 network is the best for video

stabilization.

4.7 Summary

In this chapter, we proposed a new video stabilization formulation based on first principles.

This formulation leads to a large scale non-convex optimization problem that previous works

tried to avoid by proposing various heuristics. We also proposed a novel CNN based optimization

routine for this problem, which does not require a large dataset and is re-trained on each single

video. Our method can be applied on any video regardless of the complexity of the scene.

The limitation of our method is the computation time. Our method is an offline method

which requires about 30min to stabilize a 300-frame video on a GTX1080Ti graphics card. Since

we do not focus on computation time in this chapter, we believe the algorithm can be further

speeded up, for example, using unidirectional optical flow and/or other network structures and

channel configurations.

Our work is the first that explores the possibility of applying CNN techniques to video

stabilization. An interesting future work would be a universal pre-trained neural network based

on a large video dataset, followed by a fast video-specific fine-training pass. We have made

preliminary efforts in this direction, but the training on a dataset of video segments does not

yet converge. However, we believe that a CNN can be trained with a slight modification of our

algorithm, and significantly speed up the video stabilization process.

This chapter is a reformatted version of the material as it appears in “Robust Video
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Stabilization by Optimization in CNN Weight Space,” Jiyang Yu and Ravi Ramamoorthi in the

IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2019 [YR19a]. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Learning-based General Video

Stabilization

5.1 Introduction

For general videos, we have proposed a method that compensates input video optical

flow using dense warp field in Chapter 4. We also analyzed that it is impractical to solve the

optimization problem directly due to the problem size. Therefore, we used a CNN to generate a

dense warp field and optimize the problem over the CNN weights. An obvious question to ask is

if we can train a neural network for arbitrary general video stabilization instead of optimizing for

each individual video. In this chapter, we propose a fully automatic learning based approach for

general video stabilization. Similar to Chapter 4, we use the optical flow to understand the frame

motions. However, we observe that the global linear warp field constraint (Eqn. 4.8) is weak

and cannot provide enough generality if we seek to train a neural network for arbitrary general

video. The key problem is that the optical flow essentially only provides a pseudo correspondence

between two frames. At occlusion boundaries, pixels can either appear in the next frame or be

occluded in the next frame. The optical flow is also inaccurate in regions lacking texture. Using
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the optical flow as the reference can lead to unexpected artifacts in the output warp fields. On the

other hand, enforcing a global linear warping constraint regularizes the training too much, leading

to the lack of stability in the result. In this chapter, we propose a pipeline that is specifically

designed to handle the inaccuracy in the optical flow. We are the first method that uses the

optical flow principal components[WB15] in video stabilization instead of hand-crafted spatial

smoothness constraints. We will discuss the details of our pipeline in Sec. 5.3.

The core of our algorithm is a deep neural network that takes the optical flow as the input

and directly outputs the warp fields. Our neural network based method overcomes the major draw-

back of optical flow based methods: the computational complexity. Both SteadyFlow[LYTS14]

and our method in Chapter 4 use optimization to minimize an objective function with a significant

amount of unknowns(the motion vectors in the warp fields). The optimization process must be

performed for each different video. Our pre-trained network is generalizable to any videos; thus

we avoid this main overhead compared to traditional optical flow based methods.

We summarize our contribution as follows:

a) An optical flow based video stabilization network: We proposed a novel neural network

that takes the optical flow fields as the input and produces a pixel-wise warp field for each frame.

Our neural network can be pre-trained and generalized to any videos. The details are discussed in

Sec. 5.5.

b) Frequency domain regularized training: We propose a frequency domain loss function that

enables learning with optical flow fields. We will show the necessity of this loss function in

Sec. 5.5.1.

c) Robust video stabilization pipeline: We propose a pipeline that is robust to moving occlusion

and optical flow inaccuracy by applying PCA Flow to video stabilization. The design is demon-

strated in Sec. 5.3. In Sec. 5.7, we will show that our method generates better results compared to

the state-of-the-art optimization based and deep learning based video stabilization methods. Our

method also achieves ∼3x speed improvement compared to optimization based methods.
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5.2 Related Works

In this section, we summarize the traditional physically based video stabilization methods

and the recent deep learning based methods. Most existing video stabilization works are 2D

physically based methods. The methods below all involve 2D feature tracking. The difference

is mainly from the method for feature track smoothing and stable frame generation. Buehler

et al.[BBM01] re-render the frames at smoothed camera positions using the non-metric IBR

algorithm. Matsushita et al.[MOG+06] and Gleicher and Liu[GL08] use simple 2D full-frame

transformations to warp the original frames. Liu et al.[LYTS13] uses a grid to warp the frames

and smoothes the enclosing feature tracks. Grundmann et al.[GKE11] proposed an L1 optimal

camera path for smoothing the feature tracks. Liu et al.[LGW+11] extracts and smoothes eigen-

trajectories. Goldstein and Fattal[GF12] constrain the feature track smoothing with the epipolar

geometry. Wang et al.[WLHL13] also keep the relative position of 2D feature points.

In addition to these 2D physically based methods, Liu et al.[LGJA09] first reconstruct the

3D position of the feature points and camera positions, then smooth the camera trajectory and

reproject the feature points to new camera positions. Sun[Sun12] and Smith et al.[SZJA09] also

use 3D information, but they require depth cameras and light field cameras respectively.

Later works use optical flow and smooth the motion at the pixel level. SteadyFlow[LYTS14]

smoothes the motion vector changes on each pixel using iterative Jacobi-based optimization. Our

method in Chapter 4 track the pixel motion using the optical flow. We optimized the neural net-

work weights that generate the warp field, instead of solving for the warp field directly. However,

this optimization must be repeated for each new video. Our method in this chapter also uses

a neural network to infer the pixel-wise warp field, but the network is pre-trained and can be

generalized to any videos. Moreover, as we discussed in Sec. 5.1, using optical flow in video

stabilization leads to fundamental problems. Our method in this chapter is designed specifically

to overcome these problems.
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Figure 5.1: The 3-stage pipeline of our algorithm. 1©In the first stage(Sec. 5.4) we initially
stabilize the video with translation and rotation. 2©We compute the optical flow between
consecutive frames. 3©We generate a mask for each frame to indicate the valid regions for
stabilization(Sec. 5.4.1). 4©The invalid regions are inpainted using PCA Flow(Sec. 5.4.2). 5©In
the second stage(Sec. 5.5), our stabilization network infers the warp field from the inpainted
optical flow fields. 6©In the third stage(Sec. 5.6), we fit the PCA Flow to the raw warp field and
use the smoothed warp field to warp the input video.

Recent works start to apply deep learning to video stabilization. Xu et al.[XHW+18]

uses the adversarial network to generate a target image to guide the frame warping. Wang et

al.[WYL+19] uses a two branch Siamese network to generate a grid to warp the video frames.

These networks take color frames as input and are trained with the DeepStab dataset, which

contains stable and unstable video pairs. Deep learning methods enable near real-time perfor-

mance in video stabilization. Visually, the results of these works are not as good as traditional

methods. There are two potential reasons for the weak performance of deep learning in video

stabilization. First, the video stabilization is a spatial transformation problem. The color images

contain rich texture information, but the inter-frame spatial relation remains vague. Wang et

al.[WYL+19] uses ResNet50 directly without any consideration of spatial transformation. Xu et

al.[XHW+18] added spatial transformer modules to the adversarial network, but training a single

network to infer spatial transformation of multiple frames only from color frames is difficult.

Second, the dataset used in the training is not large enough. To our knowledge, the DeepStab

dataset[XHW+18] is the only dataset for the learning of video stabilization and only contains

60 videos. For each video, the color frames are highly similar. Training an RGB based network

with this dataset is essentially overfitting. Instead of trying to solve the video stabilization in
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an end-to-end fashion, we separate the task into two parts. We first use FlowNet2[IMS+17] to

compute the spatial correspondence between frames, then train a network to smooth the motion

fields provided by FlowNet2. This makes the training easier and yields better results compared to

networks trained end-to-end.

Figure 5.2: The visual comparison of the results (a)with and without large motion reduction,
(b)with and without masking and optical flow inpainting. The results contain distortion if large
motion is not removed since the optical flow is not accurate. The distortion is also introduced by
the moving object, if we do not use masks and inpaint the moving object regions.

5.3 Pipeline

The pipeline of our algorithm is shown in Fig. 5.1. Stage 1 is the pre-processing. We

remove the large motions in the video in the first step. We compute SURF features[BTVG06]

and their matches between consecutive frames, then compute the affine transformations. The

translation and rotation components of the affine transformations are smoothed by a simple moving

average with a window size 40. The frames are transformed using the affine transformation to

obtain the smoothed positions. The optical flow is computed with the state-of-the-art neural

network FlowNet2[IMS+17] on the smoothed video sequence. The purpose of removing large

motions is to increase the accuracy of the optical flow. In Fig. 5.2(a), we show a visual comparison

of the final result versus only using the raw input. Large motion reduction helps avoid large

displacement in the optical flow and warp fields, which usually introduce distortion in the results.
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In the next step, based on a few criteria which will be discussed in Sec. 5.4.1, we generate

a mask for each frame indicating the region where the optical flow is accurate. We inpaint the

inaccurate regions using the first 5 principal components proposed in PCA Flow[WB15]. The

coefficients are computed by fitting the principal components to the valid regions. In Fig. 5.2(b),

we show an example using the raw optical flow without masking and inpainting. The person

introduces significant distortion in the background due to the motion discontinuity. The analysis

of the cause of this artifact and the details of motion inpainting will be discussed in Sec. 5.4.2.

The second stage is our stabilization network. The input of the network is the inpainted

optical flow field. The network generates a per-pixel warp field for each frame, which compensates

for the frame motion. In Sec. 5.5, we will discuss the loss function(Sec. 5.5.1) and the training

process(Sec. 5.5.2).

The third stage is the post-processing. Since the optical flow in the invalid regions is

inpainted, local discontinuities can be introduced at the valid/invalid boundaries. To ensure the

continuity in the warp field, similar to stage 1, we fit the first 5 principal components to the warp

fields in the valid regions. However, in stage 3, we replace the raw warp fields with the resulting

low-frequency fits. We will discuss the necessity of this step in Sec. 5.6.1. Finally, we use the

low-frequency warp fields to warp the input video. The warped video is cropped to a rectangle as

the output.

5.4 Pre-Processing

In Sec. 5.3, we introduced the 3 stages of our pipeline: preprocessing(stage 1), stabilization

network(stage 2) and warp field smoothing(stage 3). For stage 1, we discussed the large motion

reduction and the optical flow computation in Sec. 5.3. In this section, we demonstrate the mask

generation and the PCA Flow fitting in stage 1.
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Figure 5.3: Four types of scenarios in which optical flow can potentially be inaccurate or cause
problems. Red boxes indicate example regions we refer to.

5.4.1 Mask Generation

As we discussed in Sec. 5.1, using optical flow as the reference in video stabilization

potentially suffers from reliability issues. We summarize these problems into four types which

are shown in Fig. 5.3: 1) Motions of moving objects do not match frame motion. 2) Inaccurate

at moving object boundaries. 3) Inaccurate in uniform color regions due to the lack of motion

information. 4) Large motion of still objects due to parallax.

Our goal is to identify these regions, and generate a mask M so that M = 0 for these

regions and M = 1 otherwise.

Denote the optical flow from frame In to frame In+1 as Fn. To detect type 1 regions,

we use the pre-trained semantic segmentation network[ZZP+18, ZZP+17] to detect 11 kinds of

possible dynamic object regions in In: person, car, boat, bus, truck, airplane, van, ship, motorbike,

animal and bicycle. Note that these objects are not necessarily moving in the scene. Therefore, in

these regions, we set Mn(p) = 1 for any pixel p that satisfies ‖Fn(p)−Fn‖2 < 5, where Fn is the

mean motion of the entire frame.

In type 2 regions, the value of the optical flow changes significantly, causing a large local

standard deviation. We compute the moving standard deviation with a 5×5 window, forming

87



the standard deviation map ∆Fn. We set Mn(p) = 0 if ∆Fn(p) > 3∆Fn where ∆Fn is the mean

standard deviation map value.

To detect type 3 regions, we compute the gradient image of frame In, denoted as ∇In. We

set Mn(p) = 0 if ∇In < 8, since a smaller gradient value indicates less color variation.

For type 4 regions, we simply set Mn(p) = 0 if ‖Fn(p)−Fn‖2 > 50, since the motion can

only be very large in a large motion removed video if the object is very close to the camera.

We show sample masks generated using the metrics above in Fig. 5.4.

Figure 5.4: Sample masks generated using our metrics described in Sec. 5.4.1. The four types
of invalid regions are marked in the mask images.

5.4.2 PCA Flow Fitting

To inpaint the motion vectors in the Mn = 0 regions, we fit the first 5 principal components

proposed by PCAFlow[WB15] to the Mn = 1 regions. Since the first 5 principal components

of PCAFlow are spatially smooth, we can expect the Mn = 0 regions are filled with reasonable

values that obey the overall optical flow field. We reshape and stack the horizontal and vertical

principal components into matrices Qx and Qy ∈ Rwh×5 respectively, where wh is the frame size.

Similarly, we also reshape the optical flow field to Fn,x and Fn,y ∈Rwh×1. For simplicity, we omit

the subscript x and y. The fits below are computed independently for the horizontal and vertical

directions. For each frame with mask Mn, we select the corresponding rows in Q and F where

Mn = 1, forming the frame-specific principal components Q̃n and valid optical flow matrix F̃n.
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Finding the coefficients cn ∈ R5×1 to fit the valid optical flow F̃n forms a traditional least squares

problem:

min
cn

∥∥Q̃ncn− F̃n
∥∥

2 +η‖cn‖2 (5.1)

where η = 0.1 is the regularization term. The solution of this problem is:

cn = (Q̃T
n Q̃n +ηI)−1Q̃T

n F̃n (5.2)

We replace the optical flow values in Mn = 0 regions with the fitted PCA Flow Qncn. The PCA

Flow inpainted optical flow matrices for the horizontal and vertical directions are combined and

reshaped back to the inpainted optical flow field F̂n ∈ Rw×h×2.

Figure 5.5: The effect imposed by moving objects. The circles represent pixels and the arrows
represent motion vectors evolving with time. The pixel can deviate from the actual track due to
the moving object, resulting in a wrong warp field. The image on the right shows an example.
The red arrows point out the distortion introduced by the moving object.

5.4.3 Discussion

We demonstrate the necessity of using the mask in Fig. 5.5, in which we depict a 1D

abstraction of the optical flow sequence. The moving object can cause a deviation in the motion

vector that enters its region from the background, leading to a different pixel track from the actual

motion pattern. Stabilizing the video in this scenario introduces distortion.

Applying the mask and stabilizing the valid regions alone still introduces distortion around

moving objects. Figure 5.6 depicts an example of stabilizing only the valid regions. The mask Mn

breaks the pixel track, making the pixels that connect to the masked pixels now only connect to
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Figure 5.6: Only stabilizing the valid regions will cause distortion in the warp field (red arrows)
since the pixels are only constrained by the valid pixels connecting to it. The image on the right
shows an example of this case.

one correspondence. These pixels can move freely, causing distortion artifacts around the masked

moving objects. Therefore, we need to inpaint the optical flow in the Mn = 0 regions so that the

pixels connecting to these regions are constrained properly.

5.5 Network and Training

In this section, we introduce our video stabilization network. Our network follows the

structure proposed by Zhou et al.[ZTF+18]. The network has a fixed number of input channels

and can only take a segment of the optical flow sequence. Intuitively, the stabilization can handle

low-frequency shake better if more frames are stabilized together since the network can access

more global motion information. On the other hand, processing more frames together leads to a

larger number of network weights and more difficulty in training. Taking all these factors into

consideration, we use 20 frames of optical flow fields as the input of our network(representing

the motion of a 21-frame video segment). Our network infers 19-frame warp fields for the video

frames, excluding the first and the last frame. In the network structure of Zhou et al.[ZTF+18], we

set the number of input channels of layer conv1 1 to 20 and the number of output channels of layer

conv7 3 to 19. In Sec. 5.5.1, we define a loss function that enables the training of this network for

our application. We will also introduce the training process of our network in Sec. 5.5.2. Note

that to make our network be able to stabilize arbitrary long videos, we propose a sliding window

schedule that will be discussed in Sec. 5.6.2.
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Figure 5.7: A 1D abstraction of the motion loss. The loss indicates the average distance between
corresponding pixels in each frame.

5.5.1 Loss Functions

Denote a pixel at frame n as pi, where we unroll the pixel coordinates to index i. As

discussed in Sec. 5.4.2, denote the PCA Flow inpainted optical flow from frame n to frame n+1

as F̂n. By definition, the correspondence of pi,n in frame n+1, q j,n+1, can be represented as:

q j,n+1 = pi,n + F̂n(pi,n) (5.3)

Denote the output warp field for frame n as Wn. The warped position of a pixel pi,n is

defined as:

p̂i,n = pi,n +Wn(pi,n) (5.4)

Similarly, the warped position of its correspondence q j,n+1 an be written as:

q̂ j,n+1 = q j,n+1 +Wn+1(q j,n+1) (5.5)

For a video segment with N frames, the number of optical flow fields between consecutive

frames is N−1. Intuitively, our goal is to apply the warp field to every pixel so that the distance

between correspondences are minimized. In Fig. 5.7, we depict a 1D abstraction of the motion

loss. Note that we must fix the warp field to zero for the first and the last frame, i.e. W1 =WN = 0.

In other words, the network only produces the warp field for the intermediate frames. Therefore,
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Figure 5.8: The inverted Gaussian map a© and an example spectrum of a warp field estimated
with c© and without b© the frequency domain loss. The magnitude of the spectrum is shown in the
log10 domain. The network can learn to produce a significantly smoother warp field with L f c©.

we seek to find the shortest path to move the pixels in the first frame to their destination in the

last frame instead of aligning all the frames. We define the motion loss as:

Lm =
N−1

∑
n=1

∑
i

∥∥p̂i,n− q̂ j,n+1
∥∥

2 (5.6)

In addition, we also seek to enforce the spatial smoothness of the warp fields. There are

various kinds of constraints for enforcing spatial smoothness, e.g. total variation and the linear

warp field constraint proposed in Chapter 4. However, the total variation constraint is strong in

constraining local noise but weak in constraining distortions. The linear warping constraint is

difficult to control since a strong constraint limits the warping flexibility to handle large scale

non-linear motions, while a weak constraint will not constrain local distortions properly. In our

method, we seek to unify the need for suppressing warp field noise and avoiding local distortion

without affecting the flexibility of compensating global motions. Therefore, we propose to

constrain the warp field in the frequency domain. Intuitively, the noise usually increases the high-

frequency energy, while the local distortion increases the mid-frequency energy. The goal is to

increase the low-frequency energy in the warp field, encouraging global warping and suppressing

local warping and noise. This can be achieved by weighting the Fourier transform of the warp

field in the training process. Computationally, we compute the 2D Fourier transform of each

output warp field, then weight the spectrum by an inverted Gaussian map shown in Fig. 5.8. In

our experiment, we generate the Gaussian map G with µ = 0 and σ = 3, inverted by its maximum

92



value, and normalized by the maximum value:

Ĝ = (max(G)−G)/max(G)

The frequency domain loss is defined as:

L f =
N−1

∑
n=2

∥∥∥Ĝ ·F Wn

∥∥∥
2
. (5.7)

In this equation, the Fourier spectrum of the output warp field F Wn is also normalized by its

maximum value. Also note that the DC term of the inverted Gaussian map Ĝ is not used since we

only encourage a low-frequency warp field but not a uniform warp field.

In the following section, we will discuss the usage of these loss functions in the training

process.

5.5.2 Training

Dataset For the training of our network, we need a dataset with a large number of

unstable videos. Existing video stabilization datasets, DeepStab[WYL+19](60 videos) and

NUS[LYTS13](174 videos), do not contain enough motion pattern and color variation. In our

training phase, we select the RealEstate10K[ZTF+18] dataset which contains stable videos with

a large number of color variations. For each training sample, we randomly select 20 frames

from a random video. To produce an unstable video, we simply perturb every frame other than

the first frame and last frame using random 2D affine transformation. The parameters of this

random 2D affine transformation are: scaling U [0.9,1.1], translation (percentage w.r.t the frame

size) U [−5%,5%], rotation U [−5◦,5◦] and shear U [−5◦,5◦]. The perturbed video forms the

input of our network.

Training Phases We summarize our training process into two phases. In the first phase,
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Figure 5.9: The comparison of the motion loss Lm in different training schedules. The x-axis is
the number of iterations and the y-axis is the Lm value. The figure below is a zoom-in version of
the black box region of the upper figure. The red curve represents the training with Lm only. The
green curve represents the training with Lm +10∗L f . The blue curve represents our training
schedule. The frequency domain loss helps the first training phase so that the fine-tuning phase
can achieve a lower motion loss.

Figure 5.10: The visual comparison of (a)the warped frames using the raw outputs of the
networks trained with and (b)without L f . The red and green boxes indicate the noisy regions.
The frequency domain loss helps to improve the quality of the warp field.
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we set the loss function as:

L1 = Lm +10∗L f (5.8)

After training for 10000 iterations, we enter the second training phase, in which we switch the

loss function to:

L2 = Lm (5.9)

and fine-tune the network for another 5000 iterations. We use the Adam optimizer[KB15] with

β1 = 0.9 and β2 = 0.99. The learning rate is set to 10−4 for the first 2500 iterations and fixed to

10−5 for the rest of the training process.

To justify this training schedule, in Fig. 5.9, we plot the value of residual motion Lm which

mainly indicates the training progress. The Case-I (red curve) represents the training with Lm only.

The Case-II (green curve) represents the training with loss set to Lm +10∗L f . It can be observed

that using L f helps in making Lm descend to a lower value and expedite the training process. In

Case-I, we observe that although the optical flow is spatially smooth, the output warp field usually

contains high-frequency noise. The noise makes the network difficult to train in Case-I, especially

in the early stages(spikes appear in the red curve). By introducing L f to Case-I, we intend to

suppress the high-frequency noise and reduce the local minima. After Case-II converges(iteration

10000), we switch back to Case-I to fine-tune the network. The blue curve in Fig. 5.9 shows

that our schedule achieves the lowest loss level. Figure 5.10 shows an output frame comparison

between training with Lm only and our training schedule. Using L f makes the raw warp field

smoother.

5.6 Testing and Implementation Details

In this section, we will discuss the details in the third stage and testing.
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Figure 5.11: The visual comparison of (a)the frames warped with the raw warp field and (b)the
PCA Flow smoothed warp field. Due to the inpainting of the optical flow, the raw warp field
may contain artifacts at the valid/invalid region boundaries.

5.6.1 Warp Field Smoothing

Since the optical flow in the invalid regions is inpainted, our warp fields are only valid for

the valid regions. The continuity of the warp field at valid/invalid boundaries is not guaranteed.

Using the raw warp field introduces artifacts in the output, as shown in Fig. 5.11(a). Similar to

the PCA Flow hole filling discussed in Sec. 5.4.2, we fit PCA Flow to the valid regions. In stage

3, we directly use the fitted PCA Flow as the warp field instead of the raw warp field. Figure

5.11(b) shows the result warped by the PCA Flow smoothed warp field.

5.6.2 Sliding Window

As discussed in Sec. 5.5, our network only takes 20 frames as the input. To handle a

regular video, we use a sliding window approach for the testing phase.

The sliding window of our method works as shown in Fig. 5.12. In this figure, we use

the notation Wn,k to represent the warp fields from different windows. The first index n is the

frame number within a window, and the second index k is the window index. For each 20-frame

window, the warp field for the first frame is already known from the previous window. We update

the original optical flow as F̂k−W1,k−1 since the starting point of the motion vector is moved by

W1,k−1 in the previous window. The updated optical flow is concatenated with the other optical

flow fields as the input of the network, as shown on the left of window 2 and 3 in Fig. 5.12. We

only use the first warp field produced by the network output to fit the principal component and
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Figure 5.12: The sliding window schedule for processing arbitrary long videos. For each
window, we only accept the warp field for the second frame, e.g. W1,1 in window 1. In the next
window(window 2), the inpainted optical flow from the first frame to the second frame(F̂2) is
modified using the accepted warp field from the previous frame(F̂2−W1,1).

warp the second video frame. Then the window slides to the next frame and the process above

repeats.

The disadvantage with the sliding window is that we are using 20 frames ahead of the

current frame. However, the optical flow for these frames will be updated in the future windows,

which should influence the current frame as well. For offline video stabilization, we can process

the video with the sliding window for multiple passes. Between two passes, we re-compute the

optical flow using the warped frames.

5.7 Results

In this section, we compare the results of our method with the state-of-the-art video

stabilization methods. These methods are selected since they represent different approaches to

the video stabilization problem. Grundmann et.al.[GKE11] uses the full-frame homography as

the motion and warping model. Liu et.al.[LYTS13] uses a grid to analyze the local frame motion

and warp the frames. Our method in Chapter 4 uses the dense optical flow as the motion model,

and optimize CNN parameters that produce the pixel-wise warp field for each segment of a video.

These methods belong to traditional optimization methods since they use traditional optimization

and have to be re-run for a new video. We also compare with the most recent deep learning based

97



Figure 5.13: The visual comparison of Grundmann et.al.[GKE11], Liu et.al.[LYTS13], Yu and
Ramamoorthi[YR19a](Chapter 4), Wang et.al.[WYL+19] and our method. The artifacts are
noted below the video stills and pointed out by arrows. To avoid introducing extra distortion, all
the video stills are scaled while keeping the original aspect ratio.
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method, Wang et.al.[WYL+19], which uses a pre-trained network to directly infer a warp grid

from colored input frames. We compare the results both visually and quantitatively.

Visual Comparison We provide visual comparisons in the supplementary video since

most of the artifacts are only visible in the video. For the visual comparison of video stills,

we selected a few difficult scenarios for the video stabilization task. Figure 5.13 shows the

comparison of video stills from the comparison methods. Example 1 contains parallax effects

with moving occlusions. Since Liu et.al.[LYTS13] uses a grid to warp the video, the region

enclosed by a single cell is warped by the same homography. Therefore it generates a shear at the

motion boundaries. It also introduces distortion in the uniform color regions(the body of the train),

since estimating homography in these regions is difficult. Example 2 involves complex occlusions.

Grid warping based methods, Liu et.al.[LYTS13] and Wang et.al.[WYL+19], produce local

distortion due to motion mismatch. Our method in Chapter 4 introduces shear since the linear

warping constraint enforces strong rigidity on the warp field, which tries to compensate for the

motion. Our PCA Flow smoothed warp field provides more flexibility in warping compared to the

grid used by Liu et.al.[LYTS13] and Wang et.al.[WYL+19], and the linear warping constrained

warp field proposed in Chapter 4. Example 3 provides another example where Liu et.al.[LYTS13]

produces shear at motion boundaries. Example 4 contains complex structures and Example 5

contains quick object motion. Both are challenging for optical flow based video stabilization

methods. Our previous method in Chapter 4 produces significant distortion in these cases, since

the linear warping constraint fails to constrain the local region in the warp field. Our PCA Flow

based warp field avoids drastic compensation to optical flows and does not introduce artifacts in

local regions.

The 2D full-frame homography method of Grundmann et.al.[GKE11] performs well

on keeping original frame appearance, but in the supplementary video we will show that their

temporal stability is inferior to that of comparison methods in the examples shown in Fig. 5.13.

The pre-trained model proposed by Wang et.al.[WYL+19] failed to generate good results in most
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of the videos, due to the difficulty in generalization.

Figure 5.14: The cropping metric comparison of Grundmann et.al.[GKE11], Liu et.al.[LYTS13],
Yu and Ramamoorthi[YR19a](Chapter 4), Wang et.al.[WYL+19] and our method. Each value
is the result averaged by the category in the NUS dataset[LYTS13]. The last bar group is the
average over all videos. The quantative values of the bars are shown in the table on the right. A
larger value indicates a better result. The actual best result of each category before rounding is
marked in bold font.

Quantative Comparison For quantative comparison, we use the metrics proposed in Liu

et.al.[LYTS13] to evaluate the quality of the results over the entire NUS dataset[LYTS13]. The

values are averaged over each category. The cropping metric measures the frame size loss of

the output video due to the warping and cropping. A larger value indicates a better frame size

preservation. Figure 5.14 shows the cropping comparison. Our method maintains a large frame

size similar to Liu et.al.[LYTS13] and Yu and Ramamoorthi[YR19a](Chapter 4), since the PCA

Flow smoothed warp field does not introduce sharp warps that affect the cropping size. Our

method is slightly worse than Liu et.al.[LYTS13] in the Running category since we have the

large motion reduction step. The full-frame affine transformation removes large motions in the

Running videos, but also leads to a smaller overlapping area and the final frame size. This can be

easily avoided by using a smaller window size in the large motion reduction step.

The distortion metric measures the anisotropic scaling that leads to distortion in the result

frames. A larger value indicates better preservation of the original shape of the objects in the video.

Figure 5.15 shows the comparison of the distortion metric. Our per-pixel warp field introduces

less distortion than the grid warping used in Liu et.al.[LYTS13] and Wang et.al.[WYL+19], and
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Figure 5.15: The distortion metric comparison of Grundmann et.al.[GKE11], Liu
et.al.[LYTS13], Yu and Ramamoorthi[YR19a](Chapter 4), Wang et.al.[WYL+19] and our
method. Each value is the result averaged by the category in the NUS dataset[LYTS13]. The
last bar group is the average over all videos. The quantative values of the bars are shown in
the table on the right. A larger value indicates a better result. The actual best result of each
category before rounding is marked in bold font.

the full-frame homography used in Grundmann et.al.[GKE11] in all the categories. Our method

has less anisotropic scaling compared to the method in Chapter 4, since our warp field is more

flexible than their linear warping constrained warp field. Therefore, our method performs better

in preserving the original shape of the objects in the video. It can be also seen in the visual

comparison that our PCA Flow smoothed warp field introduces less local distortion. Note that

the comparison deep learning based method Wang et.al.[WYL+19] performs the worst in all the

categories, implying the difficulty in generalization.

The stability metric measures the stability of the output video. A larger value indicates

a more visually stable result. Our method achieves a better stability value compared to op-

timization based methods Grundmann et.al.[GKE11], Liu et.al.[LYTS13] and our method in

Chapter 4. Our results are also significantly more robust than the deep learning based method

Wang et.al.[WYL+19], since their results are even more unstable than the input video from the

NUS dataset[LYTS13]. We will also show in the supplementary video that we achieve better

stability values with less artifacts compared to these methods.

To evaluate the robustness of our method, we also conduct experiments with inaccurate
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Figure 5.16: The stability metric comparison of Grundmann et.al.[GKE11], Liu et.al.[LYTS13],
Yu and Ramamoorthi[YR19a](Chapter 4), Wang et.al.[WYL+19] and our method. Each value
is the result averaged by the category in the NUS dataset[LYTS13]. The last bar group is the
average over all videos. The quantative values of the bars are shown in the table on the right. A
larger value indicates a better result. The actual best result of each category before rounding is
marked in bold font.

Table 5.1: Per-frame run time comparison

Grundmann et.al.[GKE11] 480ms
Liu et.al.[LYTS13] 1360ms
Yu and Ramamoorthi[YR19a](Chapter 4) 1610ms
Wang et.al.[WYL+19] 460ms
Ours 570ms

optical flow. We added Gaussian random noise with standard deviation σ = 3 and σ = 10 on

the input optical flow to the network. In Fig. 5.14, Fig. 5.15 and Fig. 5.16, we observe that

the inaccuracy in the optical flow leads to less cropping and distortion but worse stability. This

indicates that the more inaccuracy in the optical flow, the more regions are identified as invalid

regions in the stage 1 of our method. The network tends to warp the frame less since it receives

less motion information. As shown in Fig. 5.16, our method is robust to inaccurate optical flow.

Our method still maintains comparable level of stability even with optical flow perturbed by

Gaussian noise with σ = 10.

Also note that since our method is a deep learning based method, the speed of our method

is faster than the optimization based methods. Our network and pipeline are implemented with

PyTorch and Python. Table. 5.1 is a summary of per-frame runtime for comparison methods.

All the timing is performed on a desktop with an RTX2080Ti GPU and an i7-8700K CPU. On
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average, our unoptimized method takes 270ms in stage 1 and 300ms in stage 2 and 3. Our

method achieves better visual results and somewhat better quantitative results compared to

optimization based methods Liu et.al[LYTS13] and our method in Chapter 4 but gives ∼3x speed

up. Our method has only a slight computation time loss compared to the simple 2D method

of Grundmann et.al.[GKE11] and deep learning based method of Wang et.al.[WYL+19], but

generates significantly better visual and quantative results.

5.8 Summary

In this chapter, we proposed a novel deep learning based video stabilization method

that infers the pixel-wise warp field for stabilizing video frames from the optical flow between

consecutive frames. We also proposed a pipeline that detects invalid regions in the optical flow

field, inpaints the invalid regions and smoothes the output warp field. The results show that our

method is more robust than existing deep learning based methods and achieves visually and

quantitatively better results compared to the state-of-the-art optimization based methods with a

∼3x speed improvement. Future works would be an end-to-end network that directly converts

input videos to stabilized videos, and a dataset that enables the training of such a network.

This chapter is a reformatted version of the material as it appears in “Learning Video

Stabilization Using Optical Flow,” Jiyang Yu and Ravi Ramamoorthi in the IEEE Conference on

Computer Vision and Pattern Recognition(CVPR), 2020 [YR20].The dissertation author was the

primary investigator and author of this paper.
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Chapter 6

Conclusion and Future Work

In this dissertation, we focus on working towards robust video stabilization methods that

are practical for real-life uses. In Chapter 2, we proposed an optimization based selfie video

method. We demonstrate that a 3D face model can be used to track the foreground motion of a

selfie video, while optical flow can be used to track the background motion. By optimizing the

foreground and background motion jointly, we generate stable selfie video while minimizing the

cropping of output video. We also demonstrate how the ideas in the selfie video stabilization

are posed as a learning based pipeline in Chapter 3. We designed a two branch 1D linear

convolutional neural network that directly infers MLS warping from input background feature

points and foreground 3D face model vertices. To train our network, we also proposed a selfie

video dataset that contains 1005 videos, which is the first large scale selfie video dataset for deep

learning. We also propose a grid approximation to the MLS warping and sliding window scheme

that enables our method to run in an online fashion at a real-time rate.

In Chapter 4 and Chapter 5, we focus on general video stabilization. For general videos,

there is no prior information of occluding objects as selfie videos. Our works follow two different

ideas to overcome the occlusion and other complex effects in the video. First, we can directly

impose a constraint on the output warp field without trying to remove these effects in the input. In
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Chapter 4, we optimize a convolutional neural network for each individual input video to generate

a per-pixel dense warp field that stabilizes the input. In the objective function, we constrain

the output warp field to be similar to a linear warp field. Second, we can pre-process the input

video to exclude occlusion and other effects before stabilization. In Chapter 5, we exploit a

recent deep learning method to segment possible occluding objects and detect regions where

the optical flow is inaccurate. We use PCAFlow to fit to valid optical flow regions and inpaint

the invalid optical flow regions. After this pre-processing, our pre-trained stabilization network

can blindly compensate the motion. Both these works produce superior results compared to the

state-of-the-art optimization based and learning based video stabilization algorithms.

Our works in this dissertation provide an in-depth discussion of the challenges and possible

solutions of robust video stabilization. We also demonstrate the possibility of using deep learning

in video stabilization, which leads to the following future works. The first line of future work is a

complete end-to-end deep neural network that directly generates stabilized frames from input

frames, which is a way to break the qualitative limitation imposed by inaccurate feature detection

and optical flow calculation. The second line of future work is to integrate sensor information

in mobile platforms, e.g. inertial sensor, depth sensor, and gyroscope into the learning of video

stabilization. These sensors enable more accurate and physics-based supervision compared to

the hand-crafted loss in the image domain. The third line of future work is to extend the video

stabilization into 2.5D space. As we discussed in this dissertation, 3D video stabilization methods

require structure from motion or a depth camera, which are either prone to error in real-life

cases or require specific hardware. On the other hand, recent works in 2.5D representations like

multi-plane images, demonstrate promising results in new view synthesis. This also provides a

new oppotunity for 3D video stabilization, where the motion can be interpreted as 3D camera

motion and the stabilized frame rendering can utilize the more robust 2.5D multi-plane image

representation.
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