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ABSTRACT OF THE DISSERTATION

Precise and Efficient Dynamic Analysis of Systems Software

by

Dokyung Song

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Michael Franz, Chair

Today’s mainstream operating systems (OSs) have monolithic kernels, in which low-level sys-

tems software such as device drivers, networking systems, and file systems all run within the

kernel with no separation of privilege between them. This means that exploiting a single vul-

nerability present in any kernel subsystem gives adversaries access to the entire OS. It has

been repeatedly demonstrated that OS kernels can be compromised locally or even remotely,

through their wide attack surface—the system call interface as well as the peripheral interface.

There exists a significant body of research aimed at finding vulnerabilities in software.

Fuzzing, among others, is widely regarded as a practical and effective approach to finding

vulnerabilities. Most of the fuzzing research, however, has targeted user-space software. Un-

fortunately, fuzzing systems software running in kernel space can be more challenging than

fuzzing user-space software, as existing kernel fuzzers suffer from unique challenges that arise

in kernel space. More specifically, existing fuzzers for OS kernels are (i) imprecise in that they do

not accurately model the full capabilities of possible attackers, e.g., attackers on the peripheral

hardware side, or (ii) inefficient due to various delays caused by system crashes, asynchronous

input processing, etc. This dissertation presents two dynamic analysis techniques that signifi-

cantly alleviate these problems: (i) a technique that enables fuzzing the peripheral input space

of OS kernels, which precisely models the capabilities of a strong attacker on the peripheral

side, and (ii) a virtual machine checkpointing technique that can accelerate OS kernel fuzzing,

making dynamic analysis more efficient. The dissertation concludes with a summary of these

techniques as well as a recommendation for promising future work directions.

xii



Chapter 1

Introduction

Operating system (OS) kernels form the foundation of multi-user, general-purpose computer

systems. A core responsibility of an OS kernel is to ensure the security of the computer system.

To this end, contemporary OS kernels provide abstractions and mechanisms that can be used

to implement various security policies. For instance, an OS kernel may provide a process ab-

straction, which can be used as a means to establish trust boundaries between trustworthy and

untrustworthy code. As a privileged component of a computer system, an OS kernel itself also

maintains trust boundaries at the interfaces facing unprivileged components (e.g., the system

call interface) to ensure its confidentiality, integrity, and availability at all times.

In other words, an OS kernel is a core part of the trusted computing base of a computer

system [142], which, when compromised, can undermine the security of the entire system. An

OS kernel can be compromised, for example, if it has a vulnerability that can be exploited by

malicious user applications through the system call interface. Unfortunately, exploitable vul-

nerabilities in OS kernels abound. OS kernels are typically written in low-level programming

languages such as C and C++, which are notoriously insecure for their lack of memory and type

safety. Not surprisingly, programmers routinely fail to reason about memory and type safety,

introducing subtle memory and type safety errors in OS kernel code. OS vendors confirmed

such failures many times [162, 112]; the vulnerabilities stemming from the lack of memory
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and type safety occupy a large portion of OS kernel vulnerabilities.

Memory safety errors in OS kernels, when exploited, can compromise the confidentiality,

integrity, and availability of the entire system, i.e., the underlying OS kernel itself as well as

all programs running in user space [167]. A memory overwrite vulnerability in a program,

for example, compromises the integrity of the running program when used by an attacker to

corrupt data in memory, and the availability when the corrupted memory causes the program

to crash. A memory overread vulnerability can be used by an attacker to read sensitive data

in memory, compromising the confidentiality of the program. Even Turing-complete arbitrary

code execution can, unintendedly, with the privilege of the victim, be achieved out of a sin-

gle memory overwrite vulnerability when the attacker abuses that vulnerability to carefully

overwrite critical control (or even non-control) data in memory [6, 119, 32, 74, 152].

Among the constituents of a modern OS kernel, device drivers, in particular, are notoriously

known for vulnerabilities [40, 128, 162]; vulnerabilities in device drivers have frequently been

discovered and exploited in OS kernel attacks [14, 34, 19, 17, 123, 47]. Device driver im-

plementations are typically provided by third-party device hardware manufacturers, who are

often less skilled in kernel programming and thus more prone to introduce programming errors

than the main kernel developers. This problem has been known for decades, and, as a result,

a plethora of techniques have been proposed so far to mitigate the consequences of vulnera-

bilities. A line of prior work attempted to isolate device drivers from the rest of the kernel so

as to contain possible consequences of device driver vulnerabilities [25, 166, 72, 42, 60, 97].

Another line of work, which is more fundamental but intrusive, involves a complete re-design

of the OS around the microkernel architecture [69, 177, 98], which effectively deprivileges

most of the kernel subsystems including device drivers by placing them outside of the kernel.

Unfortunately, however, these techniques have seen little (or limited) adoption in practice;

many contemporary general-purpose OSs such as Linux and Windows still employ monolithic

kernels where there is no privilege separation between kernel subsystems. This means that

device driver vulnerabilities continue to pose a significant threat to the security of OS kernels.

2



A viable solution, therefore, is to find and fix vulnerabilities in OS kernel subsystems in-

cluding device drivers during testing, before they are exploited by adversaries. To this end,

many software analysis techniques have been developed in recent years, which aim to find

vulnerabilities in various software. These analysis efforts are broadly classified into static and

dynamic approaches. While static approaches reason about a program at varying forms and lev-

els of abstraction without requiring any program inputs nor executing the program (e.g., Static

Driver Verifier in Windows [110, 13, 12, 11]), dynamic approaches concretely reason about ac-

tual program executions by running the program with concrete inputs. Fuzzing, among other

techniques, is widely considered a promising approach to automatically generating concrete

inputs that trigger vulnerabilities. However, most of the fuzzing research thus far has primarily

targeted user-mode programs, and research in OS kernel fuzzing, unfortunately, is relatively

sparse.

This dissertation attempts to fill the aforementioned gap by developing new techniques

that can extend the reach of the fuzzing research to kernel-mode systems software such as de-

vice drivers. To this end, the rest of this chapter introduces the reader to OS kernel fuzzing—in

particular, what constitutes OS kernel fuzzing, and what makes OS kernel fuzzing challenging.

Section 1.1 first details the input space (i.e., attack surface) of OS kernels exposed to poten-

tial adversaries, and possible consequences of exploiting OS kernel vulnerabilities that can be

reached by adversaries through the described input space. Section 1.2 then highlights unique

challenges that arise in the domain of OS kernel fuzzing, with a description of why existing

approaches fall short of addressing them. Finally, Section 1.3 provides the blueprint of the

rest of this dissertation, where the core contributions as well as the new techniques presented

throughout the dissertation are summarized.
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1.1 OS Kernel Attack Surface

System Call Interface. The primary attack surface for an OS kernel is the system call interface,

through which the kernel is faced with user-space adversaries. User-space applications talk

to the underlying OS kernel by invoking system calls; system calls are handled or rejected

by the kernel according to the security policy (e.g., access control policies) employed by the

system administrator. Different kernel subsystems make different system calls available to user-

space applications. Kernel-mode device drivers, for example, expose ioctl system calls and

other file-manipulating system calls such as open, read, and write, which abstract device

functionalities as file operations on device files.

Adversaries in user space can compromise the underlying OS kernel by attacking this system

call interface, i.e., triggering and exploiting vulnerabilities present in the kernel’s system call

handling code paths. The consequence of such kernel exploits is the attackers’ escaping the

process sandbox, thereby escalating their privilege from the privilege of the process owner to

the kernel privilege. For a monolithic kernel, this means a compromise of the entire OS.

Peripheral Interface. The peripheral interface is another interface through which OS kernels

are exposed to potential adversaries. Device drivers, in particular, expose this interface to

peripheral devices. Peripheral devices should not be trusted by the OS kernel as dictated by the

principle of separation of privilege [144]. More concrete reasons peripheral devices should be

considered untrustworthy include: (i) peripheral devices may provide a remote attack vector to

potential adversaries through their own physical channels (e.g., network devices may receive

malicious packets over the air), and (ii) peripheral hardware is more resource-constrained and

thus less capable than the main processor; they often lack basic defense mechanisms so it is

easier for adversaries to compromise the peripherals than the main processor [113].

In fact, the untrustworthiness of peripheral devices has repeatedly been evidenced by re-

mote peripheral attacks [55, 176, 7, 16, 18, 31], which remotely compromises peripheral de-
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vices without communicating with the OS running on the main processor at all. More con-

cerningly, several recently published attacks even demonstrated that such remote peripheral

compromise can be turned into a full compromise of the OS kernel running on the main proces-

sor by attacking the peripheral interface exposed by device drivers [19, 17]. The consequence

of exploiting OS kernel vulnerabilities along its peripheral interface is the attackers’ escalat-

ing their privilege from that of a single peripheral device to the kernel privilege of the main

processor.

1.2 Challenges in Fuzzing OS Kernels

Fuzzing refers to an automated process of discovering vulnerabilities, which works by automat-

ically generating test inputs and by repeatedly executing a target program with the generated

inputs. By actually running the program with concrete inputs, fuzzers can detect a vulnerabil-

ity or unexpected behavior in general, as it manifests as an uncontrolled program termination

(caused by, for example, a segmentation fault), or as a controlled program termination (caused

by, for example, an assertion inserted manually by developers or automatically by analysis

tools).

Fuzzing has empirically proven to be a practical and effective technique to find vulnerabil-

ities in software [111, 104], including OS kernel subsystems [146, 68, 44, 127, 80, 181, 66,

3, 4, 133, 129]. In particular, Syzkaller, the state-of-the-art OS kernel fuzzer, has discovered

hundreds of vulnerabilities from a wide range of components of different OS kernels [63].

Prior work used various program analysis techniques to tackle the challenges of OS kernel

fuzzing [80, 44, 181, 3, 68, 146, 127, 66]. For example, a line of work tackled the problem of

inferring the dependencies between system calls for interface-aware fuzzing, by using hand-

written input grammars [66] or different forms of static and dynamic analysis [68, 127, 44].

Despite recent developments in OS kernel fuzzing, however, many challenges still remain to

be addressed. This section describes in detail the two distinct challenges in OS kernel fuzzing
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that this dissertation tackles.

1.2.1 Fuzzing Peripheral Input Space

Fuzzing the peripheral input space of OS kernels can be substantially different from fuzzing the

input space of user-space programs. The input space of user-space programs is standardized

(e.g., stdin, the file descriptor for standard input) across multiple OSs per the Portable Op-

erating Systems Interface (POSIX) standard. Therefore, fuzzing the input space of user-mode

programs, in many cases, is equivalent to repeatedly writing fuzzer-generated test inputs to a

file opened using the standard input file descriptor, stdin.

The peripheral input space of OS kernels, by contrast, is much lower-level—device drivers

interface and communicate with peripheral devices using hardware mechanisms—and, hence,

fuzzing becomes more difficult. Consider the Peripheral Component Interconnect (PCI) in-

terface as an example, which uses memory as the communication medium; that is, the de-

vice drivers running on the main processor use normal memory read and write instructions

to communicate with peripheral devices (see Section 3.2). Memory accesses to I/O memory

mappings are often indistinguishable from other memory accesses at the source code level,

which makes it difficult for static analysis approaches to analyze the PCI interface. There exist

dynamic analysis approaches to analyzing the peripheral input space of OS kernels, but they

only target either a limited set of peripheral devices [145] or the Universal Serial Bus (USB)

interface [147, 133, 1].

1.2.2 High-throughput Fuzzing

Another challenge is high-throughput OS kernel fuzzing. Fuzzing works by repeatedly gener-

ating test inputs and executing the program under test with those inputs. Therefore, achieving

high throughput—defined as the number of test inputs generated by the fuzzer and processed

by the program per unit time—is crucial for the overall efficiency of dynamic analysis. Unfor-

tunately, it is difficult to achieve high throughput when fuzzing OS kernel subsystems. Taking
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device drivers as an example, their execution can easily be prolonged during their loading

and initialization, or input processing in general. Low-priority, time-consuming tasks in ker-

nel space are processed asynchronously and in a deferred manner, increasing the total input

processing time.

To make matters worse, feeding a fuzzer-generated test input to the OS kernel may change

its internal state, which, in turn, can negatively influence processing inputs subsequently gener-

ated by the fuzzer. This negative influence includes the system transitioning into unrecoverable

error state [44, 155] or unstable state in general, when, for example, a memory corruption bug

corrupts random bytes in memory. To achieve clean-state fuzzing where there is no interference

between test inputs, one may write a clean-up routine and call it after feeding each input, and

reboot the system when an input triggers a bug; however, manually-written clean-up routine

may not completely recover the state, and a system reboot results in a significant reduction in

fuzzing throughput.

As another approach to clean-state OS kernel fuzzing, prior work used a system-level snap-

shot created at system startup to always restore a clean state of the system before feeding each

test input, which also allows to skip time-consuming reboots. However, snapshot techniques at

the virtual machine level without optimizations can be too costly (e.g., QEMU’s implementa-

tion of virtual machine snapshot [2]), and user-mode system snapshot techniques either suffer

from similar performance problems [3] or require extensive driver porting efforts when a user-

mode kernel is used [181]. Achieving high-throughput and clean-state OS kernel fuzzing,

unfortunately, remains as a challenge unaddressed so far.

1.3 Contributions and Structure of the Dissertation

This dissertation is concerned with dynamic analysis of systems software—in particular, OS

kernels—with the goal of finding vulnerabilities in them. Systems software such as OS ker-

nels are written in low-level programming languages such as the C programming language.
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Chapter 2 starts with a taxonomy of low-level vulnerabilities that might be present in software

written in C and C++ (see Section 2.1). Next provided is an overview of existing dynamic anal-

ysis techniques for software written in C/C++—namely, (i) how to detect vulnerabilities at run

time as they occur (see Section 2.2) and (ii) how to generate test inputs and drive dynamic

analysis (see Section 2.3). The described dynamic analysis techniques are put into the context

in Section 2.4, which discusses whether and how they can be applied to OS kernels. Chapter 2

is loosely based on the following conference article.

[157] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per

Larsen, and Michael Franz; “SoK: Sanitizing for Security.” In Proceedings of the 40th

IEEE Symposium on Security and Privacy, pp. 1275-1295. IEEE, May 2019.

Chapter 3 then presents a dynamic analysis and fuzzing framework that enables a thor-

ough exploration of the peripheral input space of OS kernels from the perspective of a strong

attacker on the peripheral side. The design of the framework contributes to the literature in

that (i) it provides a new way to fuzz the peripheral interface of OS kernels, which received

little attention compared to the system call interface, and (ii) it accurately models the capa-

bilities of an attacker to uncover not only traditional memory corruption vulnerabilities, but

also more subtle memory bugs such as double-fetch bugs. Chapter 3 is based on the following

conference article.

[155] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn Vol-

ckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael Franz;

“PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS

Boundary.” In Proceedings of the 26th Network and Distributed System Security Sym-

posium. Internet Society, February 2019.

Next, Chapter 4 presents virtual machine checkpointing and checkpoint restoration tech-

niques that can accelerate kernel-mode driver fuzzing. The core contribution here is the newly
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proposed primitive, the checkpointing primitive, which uses a dimension unutilized so far—

similarities between test inputs generated by existing fuzzing algorithms—to accelerate kernel

driver fuzzing. Chapter 4 is based on the following conference article.

[156] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent ByungHoon Kang, Jean-Pierre

Seifert, and Michael Franz; “Agamotto: Accelerating Kernel Driver Fuzzing with

Lightweight Virtual Machine Checkpoints.” In Proceedings of the 29th USENIX Secu-

rity Symposium, pp. 2541-2557. USENIX Association, August 2020.

Chapter 5 concludes the dissertation with a summary of the presented techniques as well

as a discussion of promising future work directions in the area of OS kernel fuzzing or dynamic

analysis in general.
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Chapter 2

Dynamic Analysis for C and C++

This chapter reviews existing dynamic analysis techniques for software written in C and C++,

the programming languages that are most widely used to implement systems software such as

OS kernels. The development of the C and C++ dynamic analysis literature has been centered

around dynamic analysis of user-space C and C++ code. In a deliberate attempt to provide a

more complete picture of the design space of dynamic analysis for C and C++, existing tech-

niques and tools are comprehensively described in Section 2.2 and Section 2.3, including the

tools that were originally developed for user-space code but not for kernel-space code. Note

that the general discussion still applies to systems software running in kernel space. There are,

however, some techniques and tools that need changing in one way or another for them to

apply to kernel-space code; the unique elements of the kernel environment necessitating such

changes are highlighted in Section 2.4.

2.1 Low-level Vulnerabilities in C and C++

Before describing techniques to find vulnerabilities, this section first provides, as a background,

a taxonomy of low-level vulnerabilities that can be present in C and C++ code.
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Listing 2.1 Intra-object overflow vulnerability which can be exploited to overwrite security-
critical non-control data.

1 struct A { char name[7]; bool isAdmin; };
2 struct A a; char buf[8];
3 memcpy(/* dst */ a.name, /* src */ buf, sizeof(buf));

2.1.1 Memory Safety Violations

A program is memory safe if pointers in the program only access their intended referents, while

those intended referents are valid. The intended referent of a pointer is the object from whose

base address the pointer was derived. Depending on the type of the referent, it is either valid

between its allocation and deallocation (for heap-allocated referents), between a function call

and its return (for stack-allocated referents), between the creation and the destruction of its

associated thread (for thread-local referents), or indefinitely (for global referents).

Memory safety violations are among the most severe security vulnerabilities and have been

studied extensively in the literature [167, 171]. Their exploitation can lead to code injec-

tion [6], control-flow hijacking [154, 119, 152], privilege escalation [36], information leak-

age [163], and program crashes.

2.1.1.1 Spatial Safety Violations

Accessing memory that is not (entirely) within the bounds of the intended referent of a pointer

constitutes a spatial safety violation. Buffer overflows are a typical example of a spatial safety

violation. A buffer overflow happens when the program writes beyond the end of a buffer.

If the intended referent of a vulnerable access is a subobject (e.g., a struct field), and if an

attacker writes to another subobject within the same object, then we refer to this as an intra-

object overflow. Listing 2.1 shows an intra-object overflow vulnerability which can be exploited

to perform a privilege escalation attack.
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Listing 2.2 Use-after-free vulnerability which can be exploited to hijack the control-flow of the
program.

1 struct A { void (*func)(void); };
2 struct A *p = (struct A *)malloc(sizeof(struct A));
3 free(p); // Pointer becomes dangling
4 ...
5 p->func(); // Use-after-free

2.1.1.2 Temporal Safety Violations

A temporal safety violation occurs when the program accesses a referent that is no longer

valid. When an object becomes invalid, which usually happens by explicitly deallocating it, all

the pointers pointing to that object become dangling. Accessing an object through a dangling

pointer is called a use-after-free. Accessing a local object outside of its scope or after the func-

tion returns is referred to as use-after-scope and use-after-return, respectively. This type of bug

becomes exploitable when the attacker can reuse and control the freed region, as illustrated in

Listing 2.2.

2.1.2 Use of Uninitialized Variables

Variables have an indeterminate value until they are initialized [77, 78]. C++14 allows this in-

determinate value to propagate to other variables if both the source and destination variables

have an unsigned narrow character type. Any other use of an uninitialized variable results in

undefined behavior. The effects of this undefined behavior depend on many factors, includ-

ing the compiler and compiler flags that were used to compile the program. In most cases,

indeterminate values are in fact the (partial) contents of previously deallocated variables that

occupied the same memory range as the uninitialized variable. As these previously deallocated

variables may sometimes hold security-sensitive values, reads of uninitialized memory may be

part of an information leakage attack, as illustrated in Listing 2.3.
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Listing 2.3 Use of a partially-initialized variable which becomes vulnerable as the uninitialized
value crosses a trust boundary.

1 struct A { int data[2]; };
2 struct A *p = (struct A *)malloc(sizeof(struct A));
3 p->data[0] = 0; // Partial initialization
4 send_to_untrusted_client(p, sizeof(struct A));

Listing 2.4 Bad-casting vulnerability leading to a type- and memory-unsafe memory access.

1 class Base { virtual void func(); };
2 class Derived : public Base { public: int extra; };
3 Base b[2];
4 Derived *d = static_cast<Derived *>(&b[0]); // Bad-casting
5 d->extra = ...; // Type-unsafe, out-of-bounds access, which
6 // overwrites the vtable pointer of b[1]

2.1.3 Pointer Type Errors

C and C++ support several casting operators and language constructs that can lead memory

accesses to misinterpret the data stored in their referents, thereby violating type safety. Pointer

type errors typically result from unsafe casts. C allows all casts between pointer types, as well as

casts between integer and pointer types. The C++ reinterpret_cast type conversion operator

is similarly not subject to any restrictions. The static_cast and dynamic_cast operators do

have restrictions. static_cast forbids pointer to integer casts, and casting between pointers

to objects that are unrelated by inheritance. However, it does allow casting of a pointer from a

base class to a derived class (also called downcasting), as well as all casts from and to the void*

type. Bad-casting (often referred to as type confusion) happens when a downcast pointer has

neither the run-time type of its referent, nor one of the referent’s ancestor types. Listing 2.4

shows a bad-casting vulnerability.

To downcast safely, programmers must use the dynamic_cast operator, which performs

run-time type checks and returns a null pointer if the check fails. Using dynamic_cast is

entirely optional, however, and introduces additional run-time overhead.

13



Listing 2.5 Simplified version of CVE-2012-0809; user-provided input was mistakenly used as
part of a larger format string passed to a printf-like function.

1 char *fmt2; // User-controlled format string
2 sprintf(fmt2, user_input, ...);
3 // prints attacker-chosen stack contents if fmt2 contains
4 // too many format specifiers
5 // or overwrites memory if fmt2 contains %n
6 printf(fmt2, ...);

Type errors can also occur when casting between function pointer types. Again, C++’s

reinterpret_cast and C impose no restrictions on casts between incompatible function pointer

types. If a function is called indirectly through a function pointer of the wrong type, the target

function might misinterpret its arguments, which leads to even more type errors. Finally, C

also allows type punning through union types. If the program reads from a union through a

different member object than the one that was used to store the data, the underlying mem-

ory may be misinterpreted. Furthermore, if the member object used for reading is larger than

the member object used to store the data, then the upper bytes read from the union will take

unspecified values.

2.1.4 Variadic Function Misuse

C/C++ support variadic functions, which accept a variable number of variadic function argu-

ments in addition to a fixed number of regular function arguments. The variadic function’s

source code does not specify the number or types of these variadic arguments. Instead, the

fixed arguments and the function semantics encode the expected number and types of variadic

arguments. Variadic arguments can be accessed and simultaneously typecast using va_arg. It

is, in general, impossible to statically verify that va_arg accesses a valid argument, or that it

casts the argument to a valid type. This lack of static verification can lead to type errors, spatial

memory safety violations, and uses of uninitialized values.
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Listing 2.6 Simplified version of CVE-2017-5029; a signed integer overflow vulnerability that
can lead to spatial memory safety violation.

1 // newsize can overflow depending on len
2 int newsize = oldsize + len + 100;
3 newsize *= 2;
4 // The new buffer may be smaller than len
5 buf = xmlRealloc(buf, newsize);
6 memcpy(buf + oldsize, string, len); // Out-of-bounds access

2.1.5 Other Vulnerabilities

There are other operations that may pose security risks in the absence of type and memory

safety. Notable examples include overflow errors which may be exploitable when such values

are used in memory allocation or pointer arithmetic operations. If an attacker-controlled inte-

ger value is used to calculate a buffer size or an array index, the attacker could overflow that

value to allocate a smaller buffer than expected (as illustrated in Listing 2.6), or to bypass ex-

isting array index checks, thereby triggering an out-of-bounds access. C/C++ do not define the

result of a signed integer overflow, but stipulate that unsigned integers wrap around when they

overflow. However, this wrap-around behavior is often unintended and potentially dangerous.

Undefined behaviors such as signed integer overflows pose additional security risks when

compiler optimizations are enabled. In the presence of potential undefined behavior, compilers

are allowed to assume that the program will never reach the conditions under which this un-

defined behavior is triggered. Moreover, the compiler can perform further optimization based

on this assumption [94]. Consequently, the compiler does not have to statically verify that the

program is free of potential undefined behavior, and the compiler is not obligated to generate

code that is capable of recognizing or mitigating undefined behavior. The problem with this

rationale is that optimizations based on the assumption that the program is free from unde-

fined behavior can sometimes lead the compiler to omit security checks. In CVE-2009-1897,

for example, GCC infamously omitted a null pointer check from one of the Linux kernel drivers,

which led to a privilege escalation vulnerability [117]. Compiler developers regularly add such
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Listing 2.7 Simplified version of CVE-2009-1897; dereferencing a pointer lets the compiler
safely assume that the pointer is non-null.

1 struct sock *sk = tun->sk; // Compiler assumes tun is not
2 // a null pointer
3 if (!tun) // Check is optimized out
4 return POLLERR;

aggressive optimizations to their compilers. Some people therefore refer to undefined behavior

as time bombs [51].

2.2 Vulnerability Detection

This section reviews dynamic analysis techniques that can detect the low-level vulnerabilities

described in Section 2.1 as they occur and manifest at run time.

2.2.1 Memory Safety Violations

There are two types of techniques for detecting memory safety violations—dereferences of

pointers that either do not target their intended referent (i.e., spatial safety violations), or that

target a referent that is no longer valid (i.e., temporal safety violations). Their high-level goals

and properties are summarized, followed by an in-depth discussion of the techniques existing

tools employ to detect memory safety bugs.

Location-based Access Checkers. Location-based access checkers detect memory accesses

to invalid memory regions. These checkers have a metadata store that maintains state for

each byte of (a portion) of the addressable address space, and consult this metadata store

whenever the program attempts to access memory to determine whether the memory access is

valid or not. Location-based access checkers can use red-zone insertion [71, 151, 26, 70, 149]

or guard pages [135, 108] to detect spatial safety violations. Either of these techniques can

be combined with reuse delay to additionally detect temporal safety violations [71, 83, 151,

16



26, 149, 135, 108, 50, 46]. Location-based access checkers incur low run-time performance

overheads, and are highly compatible with uninstrumented code. The downside is that these

tools are imprecise, as they can only detect if an instruction accesses valid memory, but not

if the accessed memory is part of the intended referent of the instruction. These tools generally

incur high memory overhead.

Identity-based Access Checkers. Identity-based access checkers detect memory accesses

that do not target their intended referent. These tools maintain metadata (e.g., bounds or

allocation status) for each allocated memory object, and have a mechanism in place to de-

termine the intended referent for every pointer in the program. Metadata lookups can hap-

pen when the program calculates a new pointer using arithmetic operations to determine if

the calculation yields a valid pointer and/or upon pointer dereferences to determine if the

dereference accesses the intended referent of the pointer. Identity-based access checkers can

use per-object bounds tracking [83, 143, 49, 5, 56, 184, 53, 52] or per-pointer bounds track-

ing [87, 158, 10, 131, 114, 76, 118, 81, 179, 120, 88, 27] to detect spatial safety violations, and

can be extended with reuse delay [27], lock-and-key checking [10, 131, 115], or with dangling

pointer tagging [28, 92, 183, 170] to detect temporal safety violations. Identity-based check-

ers are more precise than location-based access checkers, as they cannot just detect accesses

to invalid memory, but also accesses to valid memory outside of the intended referent. These

tools do, however, incur higher run-time performance overhead than location-based checkers.

Identity-based checkers are generally not compatible with uninstrumented code. They also

have higher false positive detection rates than location-based checkers.

2.2.1.1 Spatial Memory Safety Violations

Red-zone Insertion. Location-based access checkers can insert so-called red-zones between

memory objects [71, 151, 26, 70, 149]. These red-zones represent out-of-bounds memory

and are marked as invalid memory in the metadata store. Any access to a red-zone or to an
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unallocated memory region triggers a warning. Purify was the first tool to employ this tech-

nique [71]. Purify inserts the red-zones at the beginning and the end of each allocation. Purify

tracks the state of the program’s allocated address space using a large shadow memory bitmap

that stores two bits of state per byte of memory. Valgrind’s Memcheck uses the same technique

but reserves two bits of state for every bit of memory [151]. Consequently, Memcheck can

detect access errors with bit-level precision, rather than byte-level precision.

Light-weight Bounds Checking (LBC) similarly inserts red-zones, but adds a fast path to the

location-based access checks to reduce the overhead of the metadata lookups [70]. LBC does

this by filling the red-zones with a random pattern and compares the data read/overwritten by

every memory access with the fill pattern. If the data does not match the fill pattern, the access

is considered safe because it could not have targeted a red-zone. If the data does happen to

match the fill pattern, LBC performs a secondary slow path check that looks up the state of the

accessed data in the metadata store, and triggers a warning if the accessed data is a red-zone.

Location-based access checkers that use red-zone insertion generally incur low run-time

performance overhead, but have limited precision as they can only detect illegal accesses that

target a red-zone. Illegal accesses that target a valid object, which may or may not be part

of the same allocation as the intended referent, cannot be detected. Red-zone insertion-based

tools also fail to detect intra-object overflow bugs because they do not insert red-zones between

subobjects. While technically feasible, inserting red-zones between subobjects would lead to

excessive memory overhead and it would change the layout of the parent object. Any code that

accesses the parent object or one of its subobjects would therefore have to be modified, which

would also break compatibility with external code that is not aware of the altered data layout.

Guard Pages. Location-based access checkers can insert inaccessible guard pages before

and/or after every allocated memory object [135, 108]. Out-of-bound reads and writes that

access a guard page trigger a page fault, which in turn triggers an exception in the applica-

tion. This use of the paging hardware to detect illegal accesses allows location-based access
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checkers to run without instrumenting individual load and store instructions. Using guard

pages does, however, incur high memory overhead, making the technique impractical for ap-

plications with large working sets. Microsoft recognized this problem and added an option to

surround memory objects with guard blocks instead of full guard pages in PageHeap [108].

PageHeap fills these guard blocks with a fill pattern, and verifies that the pattern is still present

when a memory object is freed. This technique is strictly inferior to red-zone insertion, as it

only detects out-of-bounds writes (and not reads), and it does not detect the illegal writes until

the overwritten object is freed.

Per-pointer Bounds Tracking. Identity-based access checkers can store bounds metadata for

every pointer [87, 158, 10, 131, 114, 76, 118, 81, 179, 120, 88, 27]. Whenever the program

creates a pointer by calling malloc or by taking the address of an object, the tracker stores

the base and size of the referent as metadata for the new pointer. The tracker propagates this

metadata when the program calculates new pointers through arithmetic and assignment oper-

ations. Spatial memory safety violations are detected by instrumenting all pointer dereferences

and checking if a pointer is outside of its associated bounds when it is dereferenced.

Identity-based access checkers that use per-pointer bounds tracking can provide complete

spatial memory violation detection, including detection of intra-object overflows. SoftBound [114]

and Intel Pointer Checker [76] detect intra-object overflows by narrowing the pointer bounds

to the bounds of the subobject whenever the program derives a pointer from the address of

a subobject (i.e., a struct field). The primary disadvantage of per-pointer bounds tracking is

poor compatibility, as the program generally cannot pass pointers to uninstrumented libraries

because such libraries do not propagate or update bounds information correctly. Another dis-

advantage is that per-pointer metadata propagation adds high run-time overheads. CCured

reduces this overhead by identifying safe pointers, which can be excluded from bounds check-

ing and metadata propagation [118]. However, even with such optimizations, per-pointer

bounds checking remains expensive without hardware support [48].
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Per-object Bounds Tracking. Identity-based access checkers can also store bounds metadata

for every memory object, rather than for every pointer [83, 143, 49, 5, 56, 184, 53, 52].

This approach—pioneered by Jones and Kelly—solves some of the compatibility issues asso-

ciated with per-pointer bounds tracking [83]. Per-object bounds trackers can maintain bounds

metadata without instrumenting pointer creation and assignment operations. The tracker only

needs to intercept calls to memory allocation (i.e., malloc) and deallocation (i.e., free) func-

tions, which is possible even in programs that are not fully instrumented. Since bounds meta-

data is maintained only for objects and not for pointers, it is difficult to link pointers to their

intended referent. While the intended referent of an in-bounds pointer can be found using a

range-based lookup in the metadata store, such a lookup would not return the correct metadata

for an out-of-bounds (OOB) pointer. Jones and Kelly therefore proposed to instrument pointer

arithmetic operations, and to invalidate pointers as they go OOB. Any subsequent dereference

triggers a fault, which can then be caught to output a warning.

Jones and Kelly’s approach, however, breaks many existing programs that perform com-

putations using OOB pointers. In light of this, CRED supports the creation and manipulation

of OOB pointers by tracking their referent information [143]. CRED links OOB pointers to

so-called OOB objects which store the address of the original referent for each OOB pointer.

Baggy Bounds Checking (BBC) eliminates the need to allocate dedicated OOB objects by

storing the distance between the OOB pointer and its referent into the pointer’s most significant

bits [5]. Tagging the most significant bits also turns OOB pointers into invalid user-space

pointers, such that dereferencing them causes a fault. BBC compresses the size of the per-

object metadata by rounding up all allocation sizes to the nearest power of two, such that one

byte of metadata suffices to store the bounds.

Low-fat pointer (LFP) bounds checkers improve BBC by making allocation sizes config-

urable, which results in lower performance and memory overheads [53, 52]. The idea is to

partition the heap into equally-sized subheaps that each supports only one allocation size.

Thus, the allocation size for any given pointer can be obtained by looking up the allocation
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size supported by that heap. The base address of the pointer’s referent can be calculated by

rounding it down to the allocation size. LFP also differs from BBC in handling of OOB pointers.

For better compatibility with uninstrumented libraries, LFP does not manipulate the pointer

representation to encode the referent of an OOB pointer. Instead, LFP recomputes the referent

of each pointer whenever the pointer is given to a function as input either explicitly (e.g., a

pointer given as an argument) or implicitly (e.g., a pointer loaded from memory). However,

this requires LFP to enforce an invariant that pointers are within bounds whenever they are

given as input to other functions, which is likely too strict for real-world programs.

Per-object bounds trackers can support near-complete spatial safety vulnerability detec-

tion. However, techniques such as BBC and LFP do sacrifice precision for better run-time per-

formance, as they round up allocation sizes and check allocation bounds rather than object

bounds.

Per-object bounds tracking has other downsides too. First, per-object bounds trackers do

not detect intra-object overflows. Second, marking pointers as OOB by pointing them to an

OOB object, or by writing tags into their upper bits might impact compatibility with external

code that is unaware of the bounds checking scheme used in the program. Specifically, external

code is unable to restore OOB pointers into in-bounds pointers even when that is the intent.

2.2.1.2 Temporal Memory Safety Violations

Reuse Delay. Location-based access checkers can mark recently deallocated objects as invalid

in the metadata store by replacing them with red-zones [71, 83, 151, 26, 149] or with guard

pages [135, 108, 50, 46]. Identity-based checkers can similarly invalidate the identity of deal-

located objects [27]. The existing access checking mechanism can then detect dangling pointer

dereferences as long as the deallocated memory or identity is not reused. If the program does

reuse the memory or identity for new allocations, this approach will erroneously allow dan-

gling pointer dereferences to proceed. Some reuse delay-based tools reduce the chance of

such detection failures by delaying the reuse of memory regions or identities until they have
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aged [71, 83, 151, 26, 149, 27]. This leads to a trade-off between precision and memory over-

head as longer reuse delays lead to higher memory overhead, but also to a higher chance of

detecting dangling pointer dereferences.

Dhurjati and Adve proposed to use static analysis to determine exactly when deallocated

memory is safe to reuse [50]. They allocate every memory object on its own virtual memory

page, but allow objects to share physical memory pages by aliasing virtual memory pages

to the same physical page. When the program frees a memory object, Dhurjati and Adve

convert virtual page into a guard page. They also partition the heap into pools, leveraging a

static analysis called Automatic Pool Allocation [91]. This analysis can infer when a pool is

no longer accessible (even through potentially dangling pointers), at which point all virtual

pages in the pool can be reclaimed. Dang et al. proposed a similar system that does not use

pool allocation, and can therefore be applied to source-less programs [46]. Similar to Dhurjati

and Adve’s approach, Dang et al. allocate all memory objects on their own virtual pages. Upon

deallocation of an object, Dang et al. unmap that object’s virtual page. This effectively achieves

the same goal as guard pages, but allows the kernel to free its internal metadata for the virtual

page, which reduces the physical memory overhead. To prevent reuse of unmapped virtual

pages, Dang et al. propose to map new pages at the high water mark (i.e., the highest virtual

address that has been used in the program). While this does not rule out reuse of unmapped

virtual pages completely, the idea is that reuse is unlikely to happen given a 64-bit address

space.

Lock-and-key. Identity-based checkers can detect temporal safety violations by assigning

unique allocation identifiers—often called keys—to every allocated memory object and by stor-

ing this key in a lock location [10, 131, 115]. They also store the lock location and the expected

key as metadata for every pointer. The checker revokes the key from the lock location when

its associated object is deallocated. Lock-and-key checking detects temporal memory safety

violations when the program dereferences a pointer whose key does not match the key stored
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in the lock location for that pointer. Assuming unique keys, this approach provides complete

coverage of temporal safety violations [115]. Since this technique stores per-pointer meta-

data, it naturally complements identity-based checkers that also detect spatial violations using

per-pointer bounds tracking. The drawbacks of lock-and-key checking are largely the same as

those for per-pointer bounds tracking: compatibility with uninstrumented code is poor because

uninstrumented code will not propagate the metadata correctly, and the run-time overhead is

significant because maintaining metadata for every pointer is expensive.

Dangling Pointer Tagging. The most straightforward way to tag dangling pointers is to nul-

lify either the value or the bounds associated with pointers that are passed to the free func-

tion [76]. A spatial memory safety violation detection mechanism would then trigger a warning

if such pointers are dereferenced at a later point in time. The disadvantage of this approach is

that it does not tag copies of the dangling pointer, which may also be used later.

Several tools tag not only the pointer passed to free, but also copies of that pointer by

maintaining auxiliary data structures that link all memory objects to any pointers that refer

to them [28, 92, 183, 170]. Undangle uses taint tracking [121, 164, 41] to track pointer

creations, and to maintain an object-to-pointer map [28]. Whenever the program deallocates

a memory object, Undangle can query this pointer map to quickly find all dangling pointers to

the now deallocated object. Undangle aims to report not only the use but also the existence

of dangling pointers. It has a configurable time window where it considers dangling pointers

latent but not unsafe, e.g., a transient dangling pointer that appears during the deallocation

of nested objects. Undangle reports a dangling pointer when this window expires, or earlier if

the program attempts to dereference the pointer.

DangNull [92], FreeSentry [183], and DangSan [170] steer clear of taint tracking and

instrument pointer creations at compile time instead. These tools maintain pointer maps by

calling a runtime registration function whenever the program assigns a pointer. Whenever the

program deallocates a memory object, the tools look up all pointers that point to the object
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being deallocated, and invalidate them. Subsequent dereferences of an invalidated dangling

pointer result in a hardware trap.

Dangling pointer tagging tools that are not based on taint tracking have some fundamental

limitations. First, they require the availability of source as it relies on precise type information

to determine which operations store new pointers. Second, they fail to maintain accurate

metadata if the program copies pointers in a type-unsafe manner (e.g., by casting them to

integers). Third, and most importantly, they can only link objects to pointers stored in memory,

and is therefore unaware of dangling pointers stored in registers. Taint tracking-based tools

such as Undangle, have none of these disadvantages, but incur significant performance and

memory overheads.

2.2.2 Use of Uninitialized Variables

Uninitialized Memory Read Detection. Location-based access checkers can be extended to

detect reads of uninitialized memory values by marking all memory regions occupied by newly

allocated objects as uninitialized in the metadata store [71]. These tools instrument read

instructions to trigger a warning if they read from uninitialized memory regions, and they

instrument writes to clear the uninitialized flag for the overwritten region. Note that marking

memory regions as uninitialized is not equivalent to marking them as a red-zone, since both

read and write accesses to red-zones should trigger a warning, whereas accesses to uninitialized

memory should only be disallowed for reads.

Uninitialized Value Use Detection. Detecting reads of uninitialized memory yields many

false positive detections, as the C++14 standard explicitly allows uninitialized values to propa-

gate through the program as long as they are not used. This happens, for example, when copy-

ing a partially uninitialized struct from one location to the other. Memcheck attempts to detect

only the uses of uninitialized values by limiting error reporting to (i) dereferences of point-

ers that are (partially) undefined, (ii) branching on a (partially) undefined value, (iii) passing
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undefined values to system calls, and (iv) copying uninitialized values into floating point regis-

ters [151]. To support this policy, Memcheck adds one byte of shadow state for every partially

initialized byte in the program memory. This allows Memcheck to track the definedness of all

of the program’s memory with bit-level precision. Memcheck approximates the C++14 seman-

tics but produces false negatives (failing to report illegitimate uses of uninitialized memory)

and false positives (reporting legitimate uses of uninitialized memory), which are unavoidable

given that Memcheck operates at the binary level, rather than the source code level. Memo-

rySanitizer (MSan) implements fundamentally the same policy as Memcheck, but instruments

programs at the compiler Intermediate Representation (IR) level [159]. The IR code carries

more information than binary code, which makes MSan more precise than Memcheck. MSan

produces no false positives (provided that the entire program is instrumented) and few false

negatives. Its performance overhead is also an order of magnitude lower than Memcheck.

2.2.3 Pointer Type Errors

Pointer Casting Monitor. Pointer casting monitors detect illegal downcasts through the C++

static_cast operator. Illegal downcasts occur when the target type of the cast is not equal

to the run-time type (or one of its ancestor types) of the source object. UndefinedBehav-

iorSanitizer [101] (UBSan) and Clang CFI [99] include checkers that verify the correctness

of static_cast operations by comparing the target type to the run-time type information

(RTTI) associated with the source object. This effectively turns static_cast operations into

dynamic_cast. The downside is that RTTI-based tools cannot verify casts between non-polymorphic

types that lack RTTI.

CaVer [93] and TypeSan [67] do not rely on RTTI to track type information, but instead

maintain metadata for all types and all objects used in the program. This way, they can extend

the type-checking coverage to non-polymorphic types. At compile time, these tools build per-

class type metadata tables which contain all the valid type casts for a given pointer type. The

type tables encode the class inheritance and composition relationships. Both tools also track
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the effective run-time types for each live object by monitoring memory allocations and storing

the allocated types in a metadata store. To perform downcast checking, the tools retrieve the

run-time type of the source object from the metadata store, and then query the type table for

the corresponding class to check if the type conversion is in the table (and is therefore permis-

sible). HexType similarly tracks type information in disjoint metadata structures, but provides

a more accurate run-time type tracing [79]. HexType also replaces the default implementa-

tion of dynamic_cast with its own optimized implementation, while preserving its run-time

semantics, i.e., returning NULL for failing casts.

Pointer Use Monitor. C/C++ support several constructs to convert pointer types in poten-

tially dangerous ways; C-style casts, reinterpret_cast, and unions can all be used to bypass

compile-time and run-time type checking. Extending pointer casting monitoring to these con-

structs can result in false positives, however. This is because programmers can legitimately use

such constructs as the language standard allows it. For this reason, one might opt for pointer

dereference/use monitoring over pointer casting monitoring.

Loginov et al. proposed a pointer use monitor for C programs [102]. The tool maintains and

verifies run-time type tags for each memory location by monitoring load and store operations.

A tag contains the scalar type that was last used to write to its corresponding memory location.

Aggregate types are supported by breaking them down into their scalar components. The tool

stores the tags in shadow memory. Whenever a value is read from memory, the tool checks if

the type used to load the value matches the type tag.

LLVM Type Sanitizer (TySan) also maintains a type tag store in shadow memory and veri-

fies the correctness of load instructions [57]. Contrary to Loginov et al.’s tool, however, TySan

does not require that the types used to store and load from a memory location match exactly.

Instead, TySan only requires type compatibility, as defined by the aliasing rule in the C/C++

standard. TySan leverages metadata generated by the compiler frontend (Clang) which con-

tains the aliasing relationship between types. This metadata is used at run time to allow, for
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example, all loads through a character pointer type, even if the target location was stored using

a pointer to a larger type. Loginov et al.’s tool would detect this as an error, but this behavior

is explicitly permitted by the language standard.

EffectiveSan is another pointer use monitor that performs type checks as well as bounds

checks at pointer uses [54]. EffectiveSan instruments each allocation site to tag each allocated

object with its statically-determined type. It uses declared variable types for stack and global

variables, as well as objects allocated using the C++ new operator. For objects allocated using

malloc, it uses the type of the first lvalue usage of the object. EffectiveSan also generates type

layout metadata at compile time, which contains the layout information of all nested subobjects

for each type. At every pointer dereference, both type compatibility and object bounds are

checked, using the object type tag in conjunction with the type layout metadata. EffectiveSan’s

bounds checking supports detection of intra-object overflows by using type layout information

to derive subobject bounds at run time.

Several tools also detect pointer type errors in indirect function calls, that is, calling func-

tions through a pointer of a type incompatible with the type of the callee [101, 130, 99].

Function-signature-based forward-edge control flow integrity mechanisms such as Clang CFI [99]

can be viewed as bug finding techniques that detect such function pointer misuses. Since all

the function signatures are known at compile time, these tools can detect mismatches between

the pointer type and the function type without maintaining run-time tags.

2.2.4 Variadic Function Misuse

Dangerous Format String Detection. The most prominent class of variadic function misuse

bugs are format string vulnerabilities. Most efforts therefore focus solely on detection of dan-

gerous calls to printf. Among these efforts are tools that restrict the usage of the %n qualifier

in the format string [169, 141]. This qualifier may be used to have printf write to a caller-

specified location in memory. However, this dangerous operation [32] is specific to the printf

function, so the aforementioned tools’ applicability is limited.
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Argument Mismatch Detection. FormatGuard prevents printf from reading more argu-

ments than were passed by the caller [45]. FormatGuard does this by redirecting the calls to

a protected printf implementation that increments a counter whenever it retrieves a variadic

argument through va_arg. If the counter surpasses the number of arguments specified at the

call site, FormatGuard raises an alert. HexVASAN generalizes argument counting to all variadic

functions, and also adds type checking [20]. HexVASAN instruments the call sites of variadic

functions to capture the number and types of arguments passed to the callee and saves this

information in a metadata store. The tool then instruments va_start and va_copy operations

to retrieve information from the metadata store, and it instruments va_arg operations to check

if the argument being accessed is within the given number of arguments and of the given type.

2.2.5 Other Vulnerabilities

Stateless Monitoring. UndefinedBehaviorSanitizer (UBSan) is a dynamic tool that detects

undefined behavior that was not covered so far [101]. The undefined behaviors UBSan detects

include signed integer overflows, floating point or integer division by zero, invalid bitwise shift

operations, floating point overflows caused by casting (e.g., casting a large double-precision

floating point number to a single-precision float), uses of misaligned pointers, performing an

arithmetic operation that overflows a pointer, dereferencing a null pointer, and reaching the

end of a value-returning function without returning a value. Most of UBSan’s detection features

are stateless, so they can be turned on collectively without interfering with each other. UBSan

can also detect several kinds of well-defined but likely unintended behavior. For example, the

language standard dictates that unsigned integers wrap around when they overflow. This well-

defined behavior is often unexpected and a frequent source of bugs, however, so UBSan can

optionally detect these unsigned integer wrap-arounds.
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2.3 Test Input Generation

Dynamic analysis tools, often called sanitizers, only detect bugs on code paths that execute

while executing test inputs. Increasing code coverage therefore increases vulnerability finding

opportunities. Program execution can be driven by unit or integration test suites, automated

test case generators, alpha and beta testers, or any combination thereof.

Unit testing and integration testing are already best practices in software engineering. Writ-

ing these tests has traditionally been a manual process. While indispensable in general, using

hand-written tests does have some drawbacks when used to find bugs in a program. First,

manually written tests often focus on positive testing using valid inputs to check expected be-

havior. Security bugs are typically exploited by feeding the program invalid inputs, however.

Second, manually written tests hardly ever cover all code paths.

Developers can use automated test case generators to alleviate these problems. One option

is to use symbolic execution, which systematically explores all possible execution paths to gen-

erate concrete program inputs [148, 61, 30, 29]. These inputs can then be fed into dynamic

analysis tools to find bugs in a program. However, this approach in general does not scale due

to the path explosion problem and the cost of constraint solving. A more scalable option is to

run a fuzzer on the program under dynamic analysis [104]. Fuzzers are testing tools that run

programs on automatically generated inputs, typically using light-weight dynamic program

analysis such as coverage feedback. Fuzzers perform negative testing, because they tend to

provide invalid inputs to the program, and can find security bugs relatively quickly, especially

if the bugs are triggered on code paths that are easily accessible.

Finally, developers can ship sanitization-enabled programs to beta testers and to collect

and transmit any sanitizer output back to the developer. The main advantage here is that

beta testers can distribute the testing load, therefore allowing developers to locate bugs more

quickly. One disadvantage is that beta testers will inadvertently focus on testing the program’s

main usage scenarios. Another disadvantage is that sanitizers can slow down the program
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to the point where it becomes unusable, thus reducing the chance that beta testers will thor-

oughly test the programs. Lettner et al. [96] demonstrated that partitioned sanitization, where

sanitization is turned on and off at run time based on criteria such as coverage and execution

speed, can alleviate this concern to the extent that sanitizers compose.

2.4 Finding OS Kernel Vulnerabilities

Many contemporary OSs have their kernels written in C, and, therefore, the low-level vulnera-

bilities discussed in Section 2.1 may be present in their kernel code. This also means that both

the vulnerability detection and input generation techniques discussed in Section 2.2 and Sec-

tion 2.3, respectively, can also be used to find OS kernel vulnerabilities. There are, however,

some constraints or practices that arise in the kernel environment, and do not exist in a typical

user-space environment. These differences may require the techniques presented earlier in this

chapter be adapted for them to apply in kernel space. This section provides a general discus-

sion of why and how finding vulnerabilities in OS kernels differs from doing so for user-space

programs.

2.4.1 Vulnerability Detection

Kernel API. The C and C++ programming language standard defines a set of library functions

that developers can use when writing user-space programs. Kernel APIs, however, do not nec-

essarily provide the same set of library functions defined in the language standard. A kernel

API may not provide some of the C/C++ library functions that are not frequently used in kernel

code; some of the library functions may be provided under a different name; for some func-

tionalities frequently used in the kernel environment, such as concurrency control or memory

allocation primitives, a kernel API may provide functions tailored for different purposes, even

though they do not correspond to any of the C/C++ library functions.

In general, it is straightforward to take into account these API differences when applying
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analysis techniques developed for user space to kernel code. For example, KernelAddressSani-

tizer (KASAN) [64] and KernelMemorySanitizer (KMSAN) [65], the kernel-space equivalent of

AddressSanitizer (ASan) and MemorySanitizer (MSan), respectively, use the same core tech-

niques and high-level bug detection policies as their user-space equivalent; like ASan, to detect

spatial memory safety errors in the Linux kernel, KASAN creates red-zones between objects

when they are allocated, and guards every memory access with a check that ensures the access

goes to valid memory and not to the red-zones. Although different OS kernels define their own

set of memory allocators [43, 109] that are different from the C/C++ library functions, this only

requires a different set of allocators be instrumented. That is, as long as the memory allocators

in kernel space can be identified and instrumented, the same technique can detect OS kernel

vulnerabilities.

Kernel-specific Language Semantics. For some dynamic analysis techniques developed for

user space to apply in kernel space, however, a significant change in their high-level bug detec-

tion algorithms or policies may be required. The C and C++ language standard is sometimes

not followed by the kernel, due to performance or hardware constraints that arise in the kernel

programming environment. For example, the Linux memory model that describes the ordering

requirements between memory accesses [107] slightly deviates from what is specified by the

language standard. A possible implication of this is that different bug detection policies may

need to be designed specifically for kernel code, because a code snippet that constitutes a bug

in a user-space program may not constitute a bug in kernel code. To apply user-space bug

detection techniques to kernel code, if the techniques make assumptions about the memory

model, one needs to take into account the kernel’s memory model. For example, for data race

bug detection, the difference between existing Linux kernel code following the Linux kernel

memory model and the language standard may require a change either in the kernel code or

bug detection techniques [174].
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2.4.2 Test Input Generation

Different methods of generating test inputs described in Section 2.3 can be applied to both user

and kernel space. For instance, developers can still manually write test inputs for OS kernels,

and testers (or users) can help generate test inputs by actually using the system deploying the

OS kernel under test. There are, however, aspects of the OS kernels that need to be considered

for high-quality test input generation, which are introduced and summarized in this section.

Multi-Dimensional Input Space. The input space of OS kernels can broadly be classified into

two: the system call interface and the peripheral interface, as described in Section 1.1. The

existence of multiple input spaces may complicate test input generation. When it comes to an

adversarial analysis of OS kernels, in particular, one may need to consider and evaluate threat

models that involve multiple input spaces, since an attacker may have access to multiple input

spaces. Depending on the threat model which defines the set of input spaces that potential

adversaries have access to, multi-dimensional test inputs—test inputs that can exercise the

code paths of multiple input spaces—may have to be generated for an adversarial analysis of

OS kernels.

Event-driven, Stateful Execution. OS kernels can be viewed as an event-driven, reactive

system; the execution of an OS kernel is driven by events such as system calls (or, more gen-

erally, events received from the system call interface) and interrupts (or events received from

the peripheral input space). In reaction to the events received, the internal state of the kernel

transitions from one to another. The kernel’s reaction to a given event is determined by the

event as well as its current state. This means that, depending on the current state, the kernel

may react differently to the same given event.

This statefulness of OS kernels makes several key differences when it comes to high-quality

input generation. To exercise deeper code paths of a stateful OS kernel, test inputs need to

contain sequences of events, taking into account the dependencies between the events. For
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instance, a system call write may only exercise the actual file writing code paths, when its

first argument is a valid file descriptor opened (and not closed afterwards) by the process

using a system call open that precedes the write system call. Several automated test input

generation algorithms that are oriented towards generating random sequences of bytes may

not be effective at triggering deeper code paths in OS kernels.
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Chapter 3

Dynamic Analysis of Peripheral Input

Space

This chapter presents a technique that facilitates the exploration of the peripheral input space

exposed by device drivers running in an OS kernel. Among different hardware-OS interaction

mechanisms that is used to implement the peripheral input space, the framework presented in

this chapter focuses on the Peripheral Component Interconnect (PCI), and, more specifically,

the peripheral input space exposed by the following two mechanisms: memory-mapped I/O

(MMIO) and direct memory access (DMA).

The key idea is to monitor MMIO or DMA mappings set up by the driver, and then dy-

namically trap the driver’s accesses to such memory regions. Section 3.3 presents a generic

analysis framework designed based on this idea, which enables various kinds of analysis of the

peripheral input space. More specifically, the framework is designed to allow its users to reg-

ister their own hooks that are called upon each trapped access. This effectively enables them

to conduct a fine-grained, thus precise analysis of the peripheral input space. For example,

one can implement hooks that record and/or mutate hardware-OS interactions in support of

reverse engineering, record-and-replay, fuzzing, etc.

To showcase versatility of this analysis framework, a kernel driver fuzzing framework is
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designed on top of the analysis framework, which is presented in Section 3.4. This fuzzing

framework can be used to find vulnerabilities that can be exploited in OS kernel attacks orig-

inating in untrustworthy peripherals. The evaluation presented in Section 3.6 shows that us-

ing this fuzzing framework, different classes of vulnerabilities, e.g., memory safety violations,

double-fetch bugs, and kernel pointer disclosure, can be found in real-world device drivers.

3.1 Motivation

Peripheral Attacks. The trust boundary that separates peripheral subsystems from kernel

drivers has drawn a great deal of interest from security researchers in recent years. This is

because peripheral devices may provide a remote attack vector (e.g., network devices may re-

ceive malicious packets over the air), and they typically lack basic defense mechanisms. Con-

sequently, peripheral devices have frequently fallen victim to remote exploitation [55, 176, 7,

16, 18, 31]. Moreover, several recently published attacks demonstrated that peripheral com-

promise can be turned into full system compromise (i.e., remote kernel code execution) by

coaxing a compromised device into generating specific outputs, which in turn trigger a vulner-

ability when processed as an input in a device driver [19, 17].

Double-fetch Bugs. Vulnerabilities occurring along the peripheral attack surface can be sub-

tle. With a compromised device, any value read from an I/O mapping should be considered to

be under an attacker’s control. If values read from an I/O mapping are not properly sanitized,

it can lead to various low-level vulnerabilities including memory safety violations. In addition

to these traditional vulnerabilities, a more subtle class of bugs may exist; the attacker can freely

modify the content of an I/O mapping at any time, even in between the driver’s reads. If the

driver reads the same memory location multiple times (i.e., overlapping fetches [178]) while

the data can still be modified by the device, double-fetch bugs may be present [150, 84].
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Figure 3.1: Hardware-OS interaction mechanisms.

3.2 Background

3.2.1 Hardware-OS Interaction Mechanisms

Figure 3.1 illustrates the various ways in which devices can interact with the OS and the device

driver. Although the following description assumes that the device driver runs on a Linux

system with an ARMv8-A/AArch64 CPU, the following discussion generally applies to other

platforms as well.

Interrupts. A device can send a signal to the CPU by raising an interrupt request on one of

the CPU’s interrupt lines. Upon receiving an interrupt request, ARMv8-A CPUs first mask the

interrupt line so that another interrupt request cannot be raised on the same line while the first

request is being handled. Then, the CPU transfers control to the interrupt handler registered

by the OS for that interrupt line. Interrupt handlers can be configured at any time, though the

OS typically configures them at boot time.
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Processing Interrupts. To maximize the responsiveness and concurrency of the system, the

OS attempts to defer interrupt processing so that the interrupt handler can return control to the

CPU as soon as possible. Typically, interrupt handlers only process interrupts in full if they were

caused by time-sensitive events or by events that require immediate attention. All other events

are processed at a later time, outside of the interrupt context. This mechanism is referred to

as top-half and bottom-half interrupt processing in Linux lingo.

In Linux, after performing minimal amount of work in the hardware interrupt context

(hardirq), the device driver schedules the work to be run in either software interrupt con-

text (softirq), kernel worker threads, or the device driver’s own kernel threads, based on

its priority. For higher priority work, a device driver can register its own tasklet, a deferred

action to be executed under the software interrupt context, which also ensures serialized exe-

cution. Lower priority work can further be deferred either to kernel worker threads (using the

workqueue API) or to the device driver’s own kernel threads.

Memory-Mapped I/O. Analogous to peripherals using interrupts to signal the OS and the

device driver, the CPU uses memory-mapped I/O (MMIO) to signal peripherals. MMIO maps

a range of kernel-space virtual addresses to the hardware registers of peripheral devices. This

allows the CPU to use normal memory access instructions (as opposed to special I/O instruc-

tions) to communicate with the peripheral device. The CPU observes such memory accesses

and redirects them to the corresponding hardware. In Linux, device drivers call ioremap to

establish an MMIO mapping, and iounmap to remove it.

Direct Memory Access. Direct memory access (DMA) allows peripheral devices to access

physical memory directly. Typically, the device transfers data using DMA, and then signals the

CPU using an interrupt. There are two kinds of DMA buffers: coherent and streaming.

Coherent DMA buffers (also known as consistent DMA buffers) are usually allocated and

mapped only once at the time of driver initialization. Writes to coherent DMA buffers are

usually uncached, so that values written by either the peripheral processor or the CPU are
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immediately visible to the other side.

Streaming DMA buffers are backed by the CPU’s cache, and have an explicit owner. They

can either be owned by the CPU itself, or by one of the peripheral processors. Certain kernel-

space memory buffers can be mapped as streaming DMA buffers. However, once a streaming

DMA buffer is mapped, the peripheral devices automatically acquires ownership over it, and

the kernel can no longer write to the buffer. Unmapping a streaming DMA buffer revokes

its ownership from the peripheral device, and allows the CPU to access the buffer’s contents.

Streaming DMA buffers are typically short-lived, and are often used for a single data transfer

operation.

3.2.2 Input/Output Memory Management Unit

Since DMA allows peripherals to access physical memory directly, its use can be detrimental to

the overall stability of the system if a peripheral device misbehaves. Modern systems therefore

deploy an input output memory management unit (IOMMU) (also known as system memory

management unit, or SMMU, on the ARMv8-A/AArch64 architecture) to limit which regions

of the physical memory each device can access. Similar to the CPU’s memory management

unit (MMU), the IOMMU translates device-visible virtual addresses (i.e., I/O addresses) to

physical addresses. The IOMMU uses translation tables, which are configured by the OS prior

to initiating a DMA transfer. Device-initiated accesses that fall outside of the translation table

range will trigger faults that are visible to the OS.

3.3 I/O Monitoring Framework

This section presents the design of PeriScope, a dynamic analysis framework that can be used

to examine bi-directional communication between devices and their drivers over MMIO and

DMA. Contrary to earlier work on analyzing device-driver communication on the device side,

PeriScope analyzes this communication on the driver side, by intercepting the driver’s accesses

38



to communication channels. PeriScope does this by hooking into the kernel’s page fault han-

dling mechanism. This design choice makes PeriScope driver-agnostic; PeriScope can analyze

drivers with relative ease, regardless of whether the underlying device is virtual or real, and

regardless of the type of the peripheral device.

At a high level, PeriScope works as follows. First, PeriScope automatically detects when the

target device driver creates a MMIO or DMA memory mapping, and registers it. Then, the user

of the framework selects the registered mappings that he/she wishes to monitor. PeriScope

marks the pages backing these selected monitored mappings as not present in the kernel page

tables. Any CPU access to those marked pages therefore triggers a page fault, even though the

data on these pages is present in physical memory.

When a kernel page fault occurs, PeriScope first marks the faulting page as present in the

page table ( 1 in Figure 3.2). Then, it determines if the faulting address is part of any of the

monitored regions ( 2 ). If it is not, PeriScope re-executes the faulting instruction ( 5 ), which

will execute without triggering a page fault this time. Afterwards, PeriScope marks the page

as not present again ( 7 ), and resumes the normal execution of the faulting code.

If the faulting address does belong to a monitored region, PeriScope invokes a pre-instruction

hook function registered by the user of the framework, passing information about the faulting

instruction ( 4 ). Then, PeriScope re-executes the faulting instruction ( 5 ). Finally, PeriScope

invokes the post-instruction hook registered by the driver ( 6 ), marks the faulting page as not

present again ( 7 ), and resumes the execution of the faulting code.

Tracking Allocations. PeriScope hooks the kernel APIs used to allocate and deallocate DMA

and MMIO regions1. PeriScope uses these hooks to maintain a list of all DMA/MMIO allocation

contexts and their active mappings. PeriScope assigns an identifier to every context in which

a mapping is allocated, and presents the list of all allocation contexts as well as their active

mappings to privileged user-space programs through the debugfs file system.

1Establishing DMA and MMIO mappings is a highly platform-dependent process, so device drivers are obliged
to use the official kernel APIs to do so.
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Enabling Monitoring. PeriScope exposes a privileged user-space API that enables monitoring

of DMA/MMIO regions on a per-allocation-context basis. Once monitoring is enabled for a

specific allocation context, PeriScope will ensure that accesses to all current and future regions

allocated in that context trigger page faults.

Clearing Page Presence. PeriScope marks all pages containing monitored regions as not

present in the kernel’s page tables to force accesses to such pages to trigger page faults. One

complication that can arise here is that modern architectures, including x86-64 and AArch64,

can support multiple page sizes within the same page table. On AArch64 platforms, a sin-

gle page table entry can serve physical memory regions of 4KB, 16KB, or 64KB, for exam-

ple. If a single (large) page table entry serves both a monitored and a non-monitored region,

then we split that entry prior to marking the region as not present. This is done to avoid un-

necessary page faults for non-monitored regions. Note that, even after splitting page table

entries, PeriScope cannot rule out spurious page faults completely, as some devices support

DMA/MMIO regions that are smaller than the smallest page size supported by the CPU.

Trapping Page Faults. PeriScope hooks the kernel’s default kernel page fault handler to mon-

itor page faults. Inside the hook function, we first check if the fault originated from a page that

contains one of the monitored regions. If the fault originated from some other page, we im-

mediately return from the hook function with an error code and defer the fault handling to

the default page fault handler. If the fault did originate from a page containing a registered

buffer, PeriScope marks that page as present ( 1 ), and then checks if the faulting address falls

within a monitored region ( 2 ). If the faulting address is outside a monitored region, we sim-

ply single-step the faulting instruction ( 5 ), mark the faulting page as not present again ( 7 ),

and resume normal execution of the faulting code. If the faulting address does fall within a

monitored region, however, we proceed to the instruction decoding step ( 3 ).
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Figure 3.2: PeriScope fault handling.

Instruction Decoding. In order to accurately monitor and (potentially) manipulate the com-

munication between the hardware/firmware and the device driver, we need to extract the

source register, the destination register and the access width of the faulting instruction ( 3 in

Figure 3.2). We implemented a simple AArch64 instruction decoder, which provides this infor-

mation for all load and store instructions. PeriScope carries this information along the rest of

its fault handling pipeline.

Pre-instruction Hook. After decoding the instruction, PeriScope calls the pre-instruction

hook that the user of the framework can register ( 4 ). We pass the address of the faulting

instruction, the memory region type (MMIO or DMA coherent/streaming), the instruction type

(load or store), the destination/source register, and the access register width to this hook func-

tion. The pre-instruction hook function can return two values: a default value and a skip-

single-step value. If the function returns the latter, PeriScope proceeds immediately to step 6 .

Otherwise, PeriScope proceeds to step 5 .
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PeriScope provides a default pre-instruction hook which logs all memory stores before the

value in the source register is stored to memory. We maintain this log in a kernel-space circular

buffer that can later be read from the file system using tracefs.

Single-stepping. When execution returns from the pre-instruction hook, and the hook func-

tion did not return the skip-single-step value, we re-execute the faulting instruction, which can

now access the page without faulting. We use the processor’s single-stepping support to ensure

that only the faulting instruction executes, but none of its successors do ( 5 ).

Post-instruction Hook. When PeriScope regains control after single-stepping, it first clears

the page present flag for the faulting page again so that future accesses to the faulting page

once again trigger a page fault. Then, it calls the post-instruction handler, which, similarly to

the pre-instruction handler, has a default implementation that can be overridden through an

API ( 6 ). The default handler logs all memory loads by examining and logging the value that

is now stored in the destination register.

3.4 I/O Fuzzing Framework

This section describes PeriFuzz, an I/O fuzzing framework that is designed as a client module of

PeriScope. PeriFuzz enables an adversarial analysis of device drivers, as it provides a means to

feed inputs to device drivers through their peripheral input space. The design goal of PeriFuzz

is to uncover vulnerabilities that could potentially be exploited by a compromised peripheral

device. More specifically, PeriFuzz’s design assumes the following threat model.

3.4.1 Threat Model

Peripheral Compromise. PeriFuzz operates under the assumption that an attacker can com-

promise a peripheral device, which, in turn, can send arbitrary data to its device driver. Com-

promising a peripheral device is feasible because such devices rarely deploy hardware pro-
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tection mechanisms or software mitigations. As a result, silent memory corruptions occur

frequently [113], which significantly lowers the bar to mount an attack. That peripherals can

turn malicious after being attacked was demonstrated by successful remote compromises of

several network devices such as Ethernet adapters [55], GSM baseband processors [176, 31],

and Wi-Fi processors [7, 16, 18].

IOMMU/SMMU Protection. For many years, a strict hardware-OS security boundary existed

in theory, but it was not enforced in practice. Most device drivers trusted that the peripheral

was benign, and gave the device access to the entire physical memory (provided that the device

was DMA-capable), thus opening the door to DMA-based attacks and rootkits [9, 161]. This

situation has changed for the better with the now widespread deployment of IOMMU units

(or SMMU for AArch64). IOMMUs can prevent the device from accessing physical memory

regions that were not explicitly mapped by the IOMMU, and they prevent peripherals from

accessing streaming DMA buffers while these are mapped for CPU access. The latter restriction

can be imposed by invalidating IOMMU mappings, or by copying the contents of a streaming

DMA buffer to a temporary buffer (which the peripheral cannot access) before the CPU uses

them [105, 106]. PeriFuzz’s threat model assumes that such an IOMMU is in place, and that

is being used correctly.

Summary. In this threat model, the attacker can (i) compromise a peripheral device such as

a Wi-Fi chipset over the air by abusing an existing bug in the peripheral’s firmware, (ii) exer-

cise control over the compromised peripheral to send arbitrary data to the device driver, and,

(iii) not access the main physical memory, except for memory regions used for communicating

with the device driver.

3.4.2 Framework Overview

PeriFuzz is composed of three key components, as depicted in Figure 3.3. The design of Peri-

Fuzz is fully modular, so each component can be swapped out for an alternative implementation

43



PC: LDR

PC+4: ...

...

PeriScope 
Framework

Pre-instruction
Hook

Injector

Device Driver

#PF

Skip 
single-step

Fuzzer

Executor

User space

Kernel space

regs[dest]=0xDEAD

0xDEAD

PC+=4

Post-instruction
Hook

Figure 3.3: PeriFuzz overview.

that exposes the same interface.

Fuzzer. This component runs in user space of the main processor and is responsible for

generating inputs for the device driver and processing execution feedback. Thanks to the

modular design of PeriFuzz, any fuzzer capable of fuzzing user-space programs can be used.

The prototype implementation of PeriFuzz, which is described in detail in Section 3.5, cur-

rently uses AFL [187], as several previous works that focus on fuzzing kernel subsystems

did [146, 73, 124].

Executor. The executor is a user-space-resident bridge between the fuzzer (or any input

provider) and the injector component described below. The executor takes an input file as

an argument, and sends the file content to the injector via a shared memory region mapped

into both the executor’s and the injector’s address spaces. The executor then notifies the injec-

tor that the input is ready for injection, and periodically checks if the provided input has been

consumed. PeriFuzz launches an instance of the executor for every input the fuzzer generates.
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The executor is also used to reproduce a crash by providing the last input observed before the

crash.

Injector. The injector is a kernel-space module that interfaces with the PeriScope framework.

The injector registers a pre-instruction hook with PeriScope, which allows the injector to mon-

itor and manipulate all data the device driver receives from the device. At every page fault, the

injector first checks if fuzzing is currently enabled, and if there is a fuzzer/executor-provided

input that has not been consumed yet. If both conditions are met, the injector overwrites the

destination register with the input generated by the fuzzer.

Note that PeriFuzz manipulates only the values device drivers read from MMIO and DMA

mappings, but not the values they write. PeriFuzz, in other words, models compromised de-

vices, but not compromised drivers.

3.4.3 Fuzzer Input Consumption

Each fuzzer-generated input is treated as a serialized sequence of memory accesses. In other

words, the injector always consumes and injects the first non-consumed inputs found in the

input buffer shared between the executor and injector. This fuzzer input consumption model

allows for overlapping fetch fuzzing as it automatically provides different values for multiple

accesses to the same offsets within a target mapping (i.e., overlapping fetches [178]). Pro-

viding different values for overlapping fetches enables finding double-fetch bugs [150, 84], if

triggering such bugs leads to visible side-effects such as a driver crash. PeriFuzz also keeps

track of the values returned for overlapping fetches, and can output this information when a

driver crashes, which helps narrow down the cause of the crash. In fact, the double-fetch bugs

that were identified using PeriFuzz would not have been found without this information (see

Section 3.6).

Since it is assumed in the threat model of PeriFuzz that the attacker cannot access streaming

DMA buffers while they are mapped for CPU access (see Section 3.4.1), overlapping fetch
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Algorithm 1 Fuzzer input consumption at each driver read.
1: global variables . Initialized when switching fuzzer input
2: Input ← [...]
3: InputO f f set ← 0
4: PrevReads ← {}
5: OverlappingFetches ← {}
6: end global variables
7: function FUZZDRIVERREAD(Address, Wid th, T ype)
8: Value ← Input[range(InputO f f set, Wid th)]
9: for all Prev in PrevReads do

10: Overlap ← Prev.range ∩ range(Address, Wid th)
11: if Overlap is not empty then
12: if T ype is DMA Streaming then
13: Value[Overlap]← Prev.value(Overlap)
14: else
15: OverlappingFetches ← OverlappingFetches ∪ {(Overlap, Value)}
16: end if
17: end if
18: end for
19: InputO f f set ← InputO f f set +Wid th
20: PrevReads ← PrevReads ∪ {(Address, Wid th, Value)}
21: return Value
22: end function

fuzzing for streaming DMA buffers must be disabled. To this end, a history of the driver’s read

accesses to each I/O mapping is maintained, which is consulted, when there is a new access,

in order to determine if the access overlaps with any previous access. If they overlap, the same

value that was returned for the previous access is returned, and no bytes from the fuzzer input

is consumed. Algorithm 1 more precisely describes what value is injected at each driver read

from an MMIO or DMA mapping.

An additional benefit of the presented fuzzer input consumption model is that it helps to

keep the input size small, because the fuzzer has to generate only the bytes for the driver’s

read accesses that actually happen and not for the entire I/O mapping being fuzzed, which

may contain bytes that are never read by the driver.
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3.4.4 Register Value Injection

PeriScope provides the destination register and the access width when it calls into PeriFuzz’s

pre-instruction hook handler. The fuzzer input is consumed for that exact access width, and

then injected into the destination register. The pre-instruction hook function returns the skip-

single-step value to PeriScope, as the faulting load instruction was effectively emulated by

writing a fuzzed value into its destination register. The post-instruction hook function incre-

ments the program counter, so the execution of the driver resumes from the instruction that

follows the fuzzed instruction.

3.4.5 Fuzzing Loop

Each iteration of the fuzzing loop, which consumes a single fuzzer-generated input, is aligned

to the software interrupt handler, i.e., do_softirq. The two hooks inserted before and after the

software interrupt handler2 demarcate a single iteration of the fuzzing loop, in which PeriFuzz

consecutively consumes bytes in a single fuzzer input. The design decision of adding hooks

to the generic interrupt handler allows PeriFuzz to remain device-agnostic, but device driver

developers could provide an alternative device-specific definition of an iteration by inserting

those two hooks in their drivers. Several low priority tasks are often deferred to the device

driver’s own kernel threads, and the fuzzing loop can be aligned to the task processing loop

inside those threads.

3.4.6 Interfacing with AFL

The prototype implementation of PeriFuzz uses AFL [187], a well-known coverage-guided

fuzzer, as the fuzzing front-end. This is in line with previous work on fuzzing various ker-

nel subsystems [146, 73, 124]. To fully leverage AFL’s coverage-guidance, kernel coverage

and seed generation support were added in PeriFuzz, as described below.

2The hardware interrupt handler is not hooked, since work is barely done in the hardware interrupt context.
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Coverage-guidance. A modified version of KCOV was used to provide coverage feedback

while executing inputs [172]. Existing implementations of KCOV were developed for fuzzing

system calls and only collect coverage information for code paths reachable from system calls.

To enable device driver fuzzing along the peripheral interface, KCOV was extended with sup-

port for collecting coverage information for code paths reachable from interrupt handlers. Also

applied was a patch to force KCOV to collect edge coverage information rather than basic block

coverage information [33]. To collect coverage along the execution of the device driver, it is

first compiled with coverage instrumentation. This instrumentation informs KCOV of hit basic

blocks, which KCOV records in terms of edge coverage. The executor component retrieves the

coverage feedback from kernel, once the input has been consumed. Then the executor copies

this coverage information to a memory region shared with the parent AFL fuzzer process, after

which KCOV is signaled so that it clears the coverage buffer preparing for the next fuzzing

iteration.

Automated Seed Generation. Starting with valid test cases rather than fully random inputs

improves the fuzzing efficiency, as this lowers the number of input mutations required to dis-

cover new paths. To collect an initial seed of valid test cases, the PeriScope framework was

used to log all accesses to a user-selected set of buffers. A parser for the access log was im-

plemented, which automatically turns a sequence of accesses into a seed file according to the

fuzzing input consumption model (see Section 3.4.3). That said, this step is optional; one

could start from any arbitrary seed, or craft test cases on their own.

3.5 Implementation

3.5.1 PeriScope

The prototype implementation of PeriScope was based on Linux kernel 4.4 for AArch64. The

prototype is, for the most part, implemented as standalone kernel components that can be
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ported to other versions of the Linux kernel and even to vendor-modified custom kernels with

relative ease.

Tracking Allocations PeriScope hooks the generic kernel APIs used to allocate/deallocate

MMIO and DMA regions to maintain a list of allocation contexts. These hooks are inserted into

the dma_alloc_coherent and dma_free_coherent functions to track coherent DMA mappings,

into the dma_unmap_page function3 and dma_map_page to track streaming DMA mappings, and

into ioremap and iounmap to track MMIO mappings.

PeriScope assigns a context identifier to every MMIO and DMA allocation context. This

context identifier is the XOR-sum of all call site addresses that are on the call stack at allo-

cation time. The upper bits of all call site addresses are masked out to ensure that context

identifiers remain the same across reboots on devices that enable kernel address space layout

randomization (KASLR).

Monitoring Interface PeriScope provides a user-space interface by exposing debugfs and

tracefs file system entries. Through this interface, a user can list all allocation contexts

and their active mappings, enable or disable monitoring, and read the circular buffer where

PeriScope logs all accesses to the monitored mappings.

As streaming DMA buffer allocations can happen in interrupt contexts, a non-blocking spin-

lock is used to protect access to data structures such as the list of monitored mappings. In

addition, when accessing these data structures from an interruptible code path, interrupts are

disabled to prevent interrupt handlers from deadlocking while trying to access the same struc-

tures.
3dma_unmap_page unmaps a streaming DMA mapping from the peripheral processor. Doing so transfers

ownership of the mapping to the device driver.
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3.5.2 PeriFuzz

Kernel-User Interface The injector registers a device node that exposes device-specific mmap

and ioctl system calls to the user-space executor. The executor can therefore create a shared

memory mapping via mmap to the debugfs file exported by the injector module. Through this

interface, the executor passes the fuzzer input to the injector running in the kernel space. The

ioctl handler of the injector module allows the executor (i) to enable and disable fuzzing,

and (ii) to poll the consumption status of a fuzzer input it provided. Similarly, KCOV provides

the coverage feedback by exporting another debugfs file such that the executor can read the

feedback by mmaping the exported debugfs file.

Persisting Fuzzer Files Many fuzzers including AFL store meta-information about fuzzing

and input corpus in the file system. However, these files might not persist if the kernel crashes

before the data is committed to the disk. To avoid this, all the fuzzer files are made persistent

by modifying AFL such that it calls fsync after every file write. Persisting all files that AFL

writes allows the user of the framework (i) to investigate crashes using the last crashing input

and (ii) to resume fuzzing with the existing corpus stored in the file system.
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Fuzzing Manager The fuzzing procedure is completely automated through Python scripts

that run on a host separate from the target device. The continuous fuzzing loop is driven by

a Python program, as illustrated in Figure 3.4. The manager process runs in a loop in which

it (i) polls the status of the fuzzing process, (ii) starts/restarts fuzzing if required, (iii) detects

system reboots, (iv) downloads the kernel log and the last input generated before the crash

after a reboot, and (v) examines the last kernel log to identify the issue that led to the crash.4

The manager stores the reports and the last crashing inputs for investigation and bug reporting.

3.6 Effectiveness

PeriScope and PeriFuzz were evaluated by monitoring and fuzzing the communication between

two popular Wi-Fi chipsets and their device drivers used in several Android smartphones.

3.6.1 Target Drivers

The choice of Wi-Fi drivers as the evaluation target was primarily motivated by their large

attack surface, as evidenced by a recent series of fully remote exploits [7, 18]. Smartphones

frequently connect to potentially untrustworthy Wi-Fi access points, and Wi-Fi drivers and

peripherals implement vendor-specific, complex internal device-driver interaction protocols

(e.g., for offloading tasks to the device side) that rely heavily on DMA-based communication.

The Wi-Fi peripheral chipset market for smartphones is dominated by two major vendors:

Broadcom and Qualcomm. As shown in Table 3.1, two popular Android-based smartphones

were tested, each of which has a Wi-Fi chipset from one of these vendors. Google Pixel 2

was tested, which runs Android 8.0.0 Oreo5 and Qualcomm’s qcacld-3.0 Wi-Fi driver. Also

tested was Samsung Galaxy S6, which runs LineageOS 14.1 and Broadcom’s bcmdhd4358

Wi-Fi driver. LineageOS 14.1 is a popular custom Android distribution that includes the exact

same Broadcom driver as the official Android version for the Galaxy S6.

4Syzkaller’s report package was used to parse the kernel log.
5android-8.0.0_r0.28
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Table 3.1: Target smartphones.

Google Pixel 2 Samsung Galaxy S6

Model Name walleye SM-G920F

Released October, 2017 April, 2015

SoC Snapdragon 835 Exynos 7420

Kernel Version 4.4 3.10

Wi-Fi Device Driver qcacld-3.0 bcmdhd4358
Wi-Fi IOMMU Protection Yes No

Table 3.2: The number of MMIO and DMA allocation contexts that create attacker-accessible
mappings.

Driver MMIO DMA Coherent DMA Streaming

qcacld-3.0 1 9 5

bcmdhd4358 4 11 29

Note that, although the Samsung Galaxy S6 has an IOMMU, it is not being used to pro-

tect the physical memory from rogue Wi-Fi peripherals. Regardless, all experiments were

conducted under the assumption that IOMMU protection is in place. Newer versions of the

Samsung Galaxy phones do enable IOMMU protection for Wi-Fi peripherals.

3.6.2 Target Attack Surface

The code paths of a driver that are reachable from the peripheral device vary depending on the

internal state of the driver (e.g., is the driver connected, not connected, scanning for networks,

etc). The following evaluation assumes that the driver has reached a steady state where it has

established a stable connection with a network. Only the code paths reachable in this state is

considered as part of the attack surface. This attack surface can be quantified and characterized

by counting (i) the number of allocation contexts that create attacker-accessible MMIO and

DMA mappings and (ii) the number of driver code paths that are executed while the user is

browsing the web.
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Table 3.3: The number of basic blocks executed under web browsing traffic per kernel control
path. A basic block could run in interrupt context (referred to as IRQ), kernel thread or worker
context (Kernel Thread), or others (Others). Some basic blocks can be reached in multiple
contexts.

Driver IRQ
Kernel
Thread

Others Hit / Instrumented

qcacld-3.0 1633
(36.9%)

2902
(65.6%)

672
(15.2%)

4427/81637

bcmdhd4358 743
(68.9%)

284
(26.3%)

301
(27.9%)

1078/23404

Table 3.2 summarizes the MMIO and DMA allocation contexts in both device drivers, which

create mappings that can be accessed by the attacker while the user is browsing the web. MMIO

and DMA coherent mappings were established during the driver initialization, and were still

mapped to both the device and the driver by the time the user browses the web; DMA streaming

mappings were destroyed after their use, but regularly get recreated and mapped to the device

while browsing the web. Thus, an attacker on a compromised Wi-Fi chipset can easily access

these mappings, and write malicious values in them to trigger and exploit vulnerabilities in the

driver.

Next, the code paths that get exercised under web browsing traffic were classified based

on the context in which they are executed: interrupt context, kernel thread context, and other

contexts (e.g., system call context). Table 3.3 shows the results. Of all the basic blocks executed

under web browsing traffic, 36.9% and 68.9% run in interrupt context for the qcacld-3.0

and bcmdhd4358 drivers, respectively. Some of the code that executes in interrupt context

may not be reachable from any system calls through legal control-flow paths, and therefore

may not be fuzzed by system call fuzzers. This means that the dynamic analysis framework

presented in this chapter complements existing efforts along the system call interface.

53



Table 3.4: Allocation contexts selected for fuzzing. DC stands for DMA coherent, DS for DMA
streaming, and MM for memory-mapped I/O.

Driver
Alloc.

Context
Alloc.
Type

Alloc.
Size

Used For

qcacld-3.0

QC1 DC 8200 DMA buffer mgmt.

QC2 DC 4 DMA buffer mgmt.

QC3 DS 2112 FW-Driver message

QC4 DS 2112 FW-Driver message

bcmdhd4358

BC1 DC 8192 FW-Driver RX info

BC2 DC 16384 FW-Driver TX info

BC3 DC 1536 FW-Driver ctrl. info

BC4 MM 4194304 Ring ctrl. info

3.6.3 Target Mappings

After investigating how each of the active mappings were used by their respective drivers, the

DMA and MMIO regions that were (i) accessed frequently and (ii) used for low-level commu-

nication between the driver and the device firmware (e.g., for shared ring buffer management)

were targeted in the fuzzing experiments. PeriScope was used to determine which regions the

driver accesses frequently, and the driver’s code was also manually investigated to determine

the purpose of each region.

For qcacld-3.0, experiments were conducted for two allocation contexts for DMA coher-

ent buffers and two contexts for DMA streaming buffers. For bcmdhd4358, experiments were

conducted for three allocation contexts for DMA coherent buffers and one allocation context for

an MMIO buffer. Table 3.4 summarizes the allocation contexts for which fuzzing experiments

were conducted; all the mappings allocated in those contexts were fuzzed.
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3.6.4 Fuzzer Seed Generation

PeriScope’s default tracing facilities was used to generate initial seed input files. For each se-

lected allocation context, all allocations of, and all read accesses to the memory mappings were

first recorded, while generating web browsing traffic for five minutes. The allocation/access

log was parsed to generate unique seed input files. Finally, AFL’s corpus minimization tool was

used to minimize the input files. This tool replays each input file to collect coverage information

and uses that information to exclude redundant files.

3.6.5 Vulnerabilities Discovered

Table 3.5 summarizes the vulnerabilities discovered by using PeriFuzz. Each entry in the table

is a unique vulnerability at a distinct source code location.
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Disclosure. These vulnerabilities were responsibly disclosed to the respective vendors. Dur-

ing this process, it was communicated by some vendors that some of the bugs had recently

been reported by other external researchers or internal auditors. These bugs are marked as

“Known” in Table 3.5. All the remaining bugs were previously unknown, and have been con-

firmed by the respective vendors. Table 3.5 includes CVE numbers assigned to the bugs that

were reported. Also included are the vendor-specific, internal severity ratings for these bugs if

communicated by the respective vendors during the disclosure process.

Error Type and Impact. Vulnerabilities found by PeriFuzz fall into four categories: buffer

overflows, address leaks, reachable assertions, and null-pointer dereferences. Buffer overflows

and address leaks are marked as potentially exploitable, and reachable assertions and null-

pointer dereferences are marked as vulnerabilities that can cause a denial-of-service (DoS)

attack by triggering kernel panics and device reboots.

Double-fetch Bugs. The fuzzing algorithm (see Algorithm 1) does not attempt to find double-

fetch bugs in streaming DMA buffers, since PeriFuzz operates under the assumption that an

IOMMU preventing such bugs is in place (see Section 3.4.1). That said, several double-fetch

bugs were found in code that accesses coherent DMA buffers. These bugs can potentially be

exploited, even when the system deploys an IOMMU. These bugs are described in detail in

Section 3.6.7.

3.6.6 Case Study I: Design Bug in qcacld-3.0

One of the vulnerabilities found in qcacld-3.0 is in code that dereferences a firmware-

provided pointer. PeriFuzz fuzzed the pointer value as it was read by the device driver. The

driver then dereferenced the fuzzed pointer and crashed the kernel. A closer inspection of this

vulnerability revealed that it is in fact a design issue. The pointer was originally provided by

the driver to the device. Line 11 in Listing 3.8 turns a kernel virtual address, which points to a
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kernel memory region allocated at Line 4, into a 64-bit integer called cookie. The driver sends

this cookie value to the device, thereby effectively leaking a kernel address.

Listing 3.8 Kernel address disclosure in qcacld-3.0.

1 A_STATUS ol_txrx_fw_stats_get(...)
2 {
3 ...
4 non_volatile_req = qdf_mem_malloc(sizeof(*non_volatile_req));
5 if (!non_volatile_req)
6 return A_NO_MEMORY;
7

8 ...
9

10 /* use the non-volatile request object's address as the cookie */
11 cookie = ol_txrx_stats_ptr_to_u64(non_volatile_req);
12

13 ...
14 }

An attacker that controls the peripheral processor can infer the kernel memory layout based

on the cookie values passed by the driver. This address leak can facilitate exploitation of mem-

ory corruption vulnerabilities even if the kernel uses randomization-based mitigations such as

KASLR. This bug can be fixed by passing a randomly generated cookie value rather than a

pointer to the device.

3.6.7 Case Study II: Double-fetch Bugs in bcmdhd4358

The bcmdhd4358 driver contains several double-fetch bugs that allow an adversarial Wi-Fi

chip to bypass an integrity check in the driver. Listing 3.9 shows how the driver accesses a

coherent DMA buffer that holds meta-information about network data. At Line 4 and Line 5,

the driver verifies the integrity of the data in the buffer by calculating and checking an XOR

checksum. The driver then repeatedly accesses this coherent DMA buffer again. The problem

here is that the device, if compromised, could modify the data between the point of the initial
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integrity check, and the subsequent accesses by the driver.

Listing 3.9 Initial fetch and integrity check in bcmdhd4358.

1 static uint8 BCMFASTPATH dhd_prot_d2h_sync_xorcsum(dhd_pub_t *dhd,
msgbuf_ring_t *ring, volatile cmn_msg_hdr_t *msg, int msglen),→

2 {
3 ...
4 prot_checksum = bcm_compute_xor32((volatile uint32 *)msg,

num_words);,→

5 if (prot_checksum == 0U) { /* checksum is OK */
6 if (msg->epoch == ring_seqnum) {
7 ring->seqnum++; /* next expected sequence number */
8 goto dma_completed;
9 }

10 }
11 ...
12 }

PeriFuzz was able to trigger multiple vulnerabilities by modifying the data read from this

buffer after the integrity check was completed. Listing 3.10 shows one buffer overflow vulner-

ability, which was triggered by fuzzing the ifidx value used at Line 4. The overlapping fetch

that occurred before this buffer overflow is a double-fetch bug, because the overlapping fetch

can invalidate a previously passed buffer integrity check. Thus, in addition to safeguarding the

array access with a bounds check, the driver should copy the contents of the coherent DMA

buffers to a location that cannot be accessed by the peripheral device, before checking the

integrity of the data in the buffer. Subsequent uses of device-provided data should also read

from the copy of the data, rather than the DMA buffer itself.

3.6.8 Case Study III: New Bug in qcacld-3.0

Listing 3.11 shows a null-pointer deference bug discovered in the qcacld-3.0 driver. The

pointer to the netbufs_ring array dereferenced at Line 9 is null, unless the driver is config-

ured to explicitly allocate this array. The driver configuration used by the Google Pixel 2 did
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Listing 3.10 Buffer overflow in bcmdhd4358.

1 void dhd_rx_frame(dhd_pub_t *dhdp, int ifidx, void *pktbuf, int
numpkt, uint8 chan),→

2 {
3 ...
4 ifp = dhd->iflist[ifidx];
5 if (ifp == NULL) {
6 DHD_ERROR(("%s: ifp is NULL. drop packet\n",
7 __FUNCTION__));
8 PKTFREE(dhdp->osh, pktbuf, FALSE);
9 continue;

10 }
11 ...
12 }

not contain the entry necessary to allocate the array. Although the driver never executes the

vulnerable code under normal web browsing traffic, the vulnerable line is reachable through

legal control flow paths.

Listing 3.11 Null-pointer dereference in qcacld-3.0.

1 static inline qdf_nbuf_t htt_rx_netbuf_pop(htt_pdev_handle pdev)
2 {
3 int idx;
4 qdf_nbuf_t msdu;
5

6 HTT_ASSERT1(htt_rx_ring_elems(pdev) != 0);
7

8 idx = pdev->rx_ring.sw_rd_idx.msdu_payld;
9 msdu = pdev->rx_ring.buf.netbufs_ring[idx];

10 ...
11 }

It is difficult to detect this bug statically, as it requires a whole-program analysis of the

device driver to determine if the netbufs_ring pointer is initialized whenever the vulnerable

line can execute. PeriFuzz consistently triggered the bug, however. This vulnerability discov-
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Table 3.6: Time consumed by PeriScope’s page fault handler (measured in µ seconds).

Mean Minimum Maximum

Tracing Only 117.6 99.8 194.5

Tracing + Fuzzing 227.8 182.7 379.7

ery therefore bolsters the argument that fuzzing can complement manual auditing and static

analysis.

3.7 Performance

3.7.1 Page Fault

PeriScope incurs run-time overhead as it triggers a page fault for every instruction that accesses

the monitored set of DMA/MMIO regions. This overhead was quantified by measuring the

number of clock cycles spent inside PeriScope’s page fault handler. The AArch64 counter-timer

virtual count register CNTVCT_EL0 was read when entering the handler and when exiting from

the handler, and calculated the difference between the counter values, divided by the counter-

timer frequency counter CNTFRQ_EL0. To minimize interference, hardware interrupts were

disabled while executing PeriFuzz’s page fault handler. Dynamic frequency and voltage scaling

was also disabled.

The page fault handler was tested under two configurations. In one configuration, PeriScope

calls the default pre- and post-instruction hooks that only trace and log memory accesses. In

the other configuration, PeriFuzz’s instruction hooks were registered to enable DMA/MMIO

fuzzing. Table 3.6 shows the mean, minimum, and maximum values over samples of 500 page

fault handler invocations for each configuration.

Note that the design of PeriScope and PeriFuzz deliberately trade performance for deter-

ministic, precise monitoring of device-driver interactions, by trapping every single access to a

set of monitored mappings. In fact, this design allowed us to temporally distinguish accesses to
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the same memory locations, which was essential to finding the double-fetch bugs. The drivers

still function correctly, albeit more slowly, when executed under PeriScope, making it possible

to examine device-driver interactions dynamically and enabling PeriFuzz to fuzz it.

3.7.2 Fuzzing

PeriFuzz builds on PeriScope and has additional components that interact with each other,

which incur additional costs. The primary contributors to this additional cost are: (i) waiting

for the peripheral to signal the driver, (ii) waiting for a software interrupt to be scheduled by

the Linux scheduling subsystem, (iii) interactions with the user-space fuzzer, which involve at

least two user-kernel mode switches (i.e., one for delivering fuzzer inputs and the other for

polling and retrieving feedback), and (iv) other system activities.

Peak Throughput. The overall fuzzing throughput was measured to quantify the overhead

incorporating all interactions between the PeriFuzz components. Only the peak throughput

is reported in Table 3.7, since crashes and device driver lockups heavily impact the average

fuzzing throughput (see Section 3.8). The inverse of the peak fuzzing throughput is a conser-

vative lower bound for the execution time required to process a single fuzzer-generated input.

Although PeriFuzz was not optimized for high throughput, these numbers are still in a range

that makes PeriFuzz practical for dynamic analysis.

Overhead Breakdown. To illustrate how the fuzzing throughput can be optimized, a break-

down of the fuzzing overhead is now presented. Each iteration of the fuzzing loop was divided

into three phases: (i) waiting for fuzzer-generated input to be made available to the kernel

module of PeriFuzz, (ii) waiting for the device to raise an interrupt and for the driver to start

processing it, and (iii) fuzzing the data read from monitored I/O mappings upon page faults.

Once the driver has finished processing the interrupt, the next iteration begins. The execution

time of each phase in each iteration was measured. To evaluate the impact of page faults on
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Table 3.7: Peak fuzzing throughput for each fuzzed allocation context.

Driver
Alloc.

Context
Peak Throughput

(# of test inputs/sec)

qcacld-3.0

QC1 23.67

QC2 15.64

QC3 18.77

QC4 7.63

bcmdhd4358

BC1 9.90

BC2 14.28

BC3 10.49

BC4 15.92

the fuzzing performance, the number of page faults triggered during each iteration was also

counted.

The experiment was conducted for QC1, which has the highest peak throughput (see Ta-

ble 3.7). Figure 3.5a shows the measurements of per-phase execution time in a stacked manner,

over 100 consecutive iterations of the fuzzing loop. 60% of the total execution time is spent

on waiting for the next fuzzer-generated input to become available. This delay is primarily

caused by a large number of missed page faults, as hinted by Figure 3.5b. The current imple-

mentation of PeriFuzz can miss page faults, when they are triggered while PeriFuzz is preparing

for the next input. This delay can be reduced by disabling page faults until the next input is

ready. The delay caused by waiting for relevant interrupts, which accounts for 24.2% of the

total execution time, can be reduced by forcing relevant interrupts to be raised more frequently.

The actual fuzzing at each page fault still takes 15.8% of the total execution time. One way

to reduce this overhead is to trigger page faults only at first access to a monitored mapping

within each iteration. At first access, the underlying page can be overwritten with the fuzzer

input and then made present, so that subsequent accesses to the page within the same iteration

do not trigger extra page faults. This would come, however, at the cost of precision, because

it loses precise access tracing capability, effectively disabling overlapping fetch fuzzing as well
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Figure 3.5: PeriFuzz overhead breakdown.

as detection of potential double-fetch bugs.

3.8 Limitations

This section describes problems that limit both the effectiveness and efficiency of PeriFuzz.

These are well-known problems that also affect other kernel fuzzers, such as system call fuzzers.

System Crashes. The OS typically terminates user-space programs when they crash, and they

can be restarted without much delay. Crashing a user-space program therefore has little impact

on the throughput of fuzzing user-space programs. Crashes in kernel space, by contrast, cause

a system reboot, which significantly lowers the throughput of any kernel fuzzer. This is particu-

larly problematic if the fuzzer repeatedly hits shallow bugs, thereby choking the system without

making meaningful progress. This problem was circumvented by disabling certain code paths

that contain previously discovered shallow bugs. This does, however, somewhat reduce the

effectiveness of PeriFuzz as it cannot traverse the subpaths rooted at these blacklisted bugs.
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Note that this problem also affects other kernel fuzzers, e.g., DIFUZE and Syzkaller [44, 66].

Driver Internal States. Due to the significant latency involved in system restarts, whole-

system fuzzers typically fuzz the system without restarting it between fuzzing iterations. This

can limit the effectiveness of such fuzzers, because the internal states of the target system

persist across iterations. Changing internal states can also lead to instability in the coverage-

guidance, as the same input can exercise different code paths depending on the system state.

This means that coverage-guidance may not be fully effective. Worse, when changes to the

persisting states accumulate, the device driver may eventually lock itself up. For example,

a problem was observed during the evaluation where, after feeding a certain number of in-

valid inputs to a driver, the driver decided to disconnect from the network, reaching an error

state from which the driver could not recover without a system reboot. Existing device driver

checkpointing and recovery mechanisms could be adapted to alleviate the problem [165, 85],

because they provide mechanisms to roll drivers back to an earlier state. Such a roll back takes

significantly less time than a full system reboot.

3.9 Related Work

Vulnerabilities in device drivers can lead to a compromise of the entire system, since many

of these drivers run in kernel space. To detect these vulnerabilities, device driver developers

can resort to dynamic analysis tools that monitor the driver’s behavior and report potentially

harmful actions. Doing this ideally requires insight into the communication between the driver

and the device, as this communication can provide the context necessary to find the underlying

cause of a vulnerability. Analyzing device-driver communication requires (i) an instance of

the device, whether physical or virtual, and (ii) a monitoring mechanism to observe and/or

influence device-driver communication. Existing approaches can therefore be classified based

on where and how they observe (and possibly influence) device-driver interactions.
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Device Adaptation. To exercise direct control over the data sent from the hardware to the

driver, an analyst can adapt the firmware of real devices to include such capabilities. This can

be done by reverse engineering the firmware and reflashing a modified one [145], or by using

custom hardware that supports reprogramming of devices [1]. However, these frameworks

are typically tailored to specific devices, and, given the heterogeneity of peripheral devices,

their applicability is limited. For example, Nexmon only works for some Broadcom Wi-Fi de-

vices [145], and Facedancer21, a custom Universal Serial Bus (USB) device, can only analyze

USB device drivers [1].

Virtual Machine Monitor. A driver can be tested in conjunction with virtual devices running

in a virtual environment such as QEMU [15]. The virtual machine monitor observes the behav-

ior of its guest machines and can easily support instrumentation of the hardware-OS interface.

Previous work uses existing implementations of virtual devices for testing the corresponding

drivers [82, 147]. For many devices, however, an implementation of a virtual device does not

exist. In this case, developers must manually implement a virtual version of their devices to in-

teract with the device driver they wish to analyze [86]. Several frameworks alleviate the need

for virtual devices by relaying I/O to real devices [186, 168], but these frameworks generally

require a non-trivial porting effort for each driver and device, and/or do not support DMA.

Symbolic Execution. S2E augments QEMU with selective symbolic execution [38]. Several

tools leverage S2E to analyze the interactions between OS kernel and hardware by selectively

converting hardware-provided values into symbolic values [89, 37, 140, 132]. However, sym-

bolic execution in general is prohibitively slow due to the cost associated with the path explo-

sion and constraint solving problem. Moreover, without constraint solving, symbolic execution

itself does not reveal vulnerabilities, but rather generates a set of constraints that must be

analyzed by separate model checkers. Writing such a model checker is not trivial, especially

when the bug requires modeling memory states. Most of the checkers supported by SymDrive,

for example, target stateless bugs such as kernel API misuses, but ignore memory corruption
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bugs [140].

3.10 Conclusions

The interactions between peripherals and drivers can be complex, and hence writing correct

device driver software is hard. Unfortunately, as has been recently demonstrated, vulnera-

bilities in wireless communication peripherals and corresponding drivers can be exploited to

achieve remote kernel code execution without invoking a single system call. Nonetheless, no

versatile framework has existed until now that analyzes the interactions between peripherals

and drivers.

PeriScope, presented in this chapter, is a generic I/O monitoring framework that addresses

the specific analysis needs of the two peripheral interface mechanisms MMIO and DMA. The

fuzzing framework PeriFuzz builds upon this monitoring framework and can help the end user

find bugs in device drivers reachable from a compromised device; uniquely, PeriFuzz can expose

double-fetch bugs by fuzzing overlapping fetches, and by warning about overlapping fetches

that occurred before a driver crash. Using these tools, 15 unique vulnerabilities in the Wi-Fi

drivers of two flagship Android smartphones were found, including 9 previously unknown

ones.
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Chapter 4

Accelerating Dynamic Analysis of OS

Kernels

Despite these recent developments in OS kernel fuzzing, high-speed OS kernel fuzzing still re-

mains challenging. One reason is that an OS kernel’s execution can easily be prolonged; low-

priority, time-consuming tasks (e.g., waiting for I/O requests to complete) in kernel space are

are typically processed asynchronously and in a deferred manner. This means that the time it

takes for the kernel to process an input in full tends to increase, which in turn decreases the

overall efficiency of fuzzing, or dynamic analysis in general.

Another reason relates to the seemingly conflicting goals of high-speed and clean-state

fuzzing. Processing each input generated by a fuzzer may change the OS kernel’s internal state,

which, in turn, can negatively influence the kernel’s subsequent test input processing. When it

comes to fuzzing kernel-mode device drivers, this influence can result in the driver locking itself

up [44, 155], or unstable system state in general, when, for example, a memory corruption

bug corrupts a wider system state. Unloading and reloading the driver after processing each

test input generated by a fuzzer, and rebooting the OS after hitting a bug, can prevent the

interference between test inputs, but doing so results in a significant reduction in fuzzing speed.

As an alternative, prior work used a system snapshot created at system startup to always
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restore a clean state of the system for each test input, skipping time-consuming reboots. How-

ever, snapshot techniques at the virtual machine level without optimizations can be too costly

(e.g., QEMU’s VM snapshot [2]), and user-mode system snapshot techniques either suffer from

similar performance problems [3] or require extensive driver porting efforts when a user-mode

kernel is used [181].

This chapter presents a new primitive—dynamic virtual machine checkpointing—to address

the aforementioned challenges and enable high-speed, clean-state kernel driver fuzzing. The

core idea is to continuously create checkpoints during a fuzzing run in order to skip previously

observed, and checkpointed operations that a kernel driver fuzzer performs. Test cases generated

by fuzzers often have a substantial amount of similarities between them, leading to a repeated

traversal of identical target driver states. Virtual machine checkpoints, strategically created by

the checkpoint management policies, can be used to directly restore the virtual machine state

established by time-consuming operations without repeatedly executing them.

This dynamic virtual checkpointing primitive reduces the average test case execution time

and, by design, ensures that no residual states remain after executing a test case; even if the

test case causes a kernel panic, a known virtual machine state can be quickly restored from an

existing checkpoint. The evaluation presented in Section 4.8 shows that this primitive can im-

prove the performance of kernel fuzzers without modifying their underlying input generation

algorithm.

4.1 Motivation

4.1.1 Why Use Snapshots?

Prior work used different snapshot techniques for fuzzing OS kernel subsystems [3] and user-

space programs [187, 180]. The basic idea is to snapshot the target program before it starts

processing input and run the program from that snapshot for each test input. This means that

every test input executes on the same, clean state of the target program. No residual state
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remains, by construction, after each iteration of the fuzzing loop. Test inputs do not interfere

with each other, increasing the reproducibility of bugs [181]. Even when a test input corrupts

the program state by hitting bugs, a fresh target program state can always be restored from

an existing snapshot, which effectively provides crash resilience. Test inputs after a crash can

execute without re-executing time-consuming initial bootstrap operations (e.g., system reboot

in kernel fuzzing). Fuzzers for user-space programs typically achieve this using fork(). A new,

fresh child process is forked from a single parent process for each test input, the performance of

which is optimized via the copy-on-write mechanism. Several kernel fuzzers also use different

forms of snapshots for a reboot-free and reproducible fuzzing [3, 181].

4.1.2 Why Not Use Snapshots?

Although snapshot techniques ensure clean-state fuzzing, the snapshot operations themselves

may pose a non-negligible overhead. In particular, system-wide snapshot techniques, e.g., us-

ing an emulated, user-mode virtual machine with a fork-based snapshot technique [3], or

using a hardware-accelerated virtual machine with a full memory snapshot technique, can be

expensive. Several fuzzing tools do not use snapshot techniques at all [100, 66, 146], due

in part to the overhead. For example, LibFuzzer [100], an in-process user-space fuzzer, and

Syzkaller [66], a state-of-the-art kernel fuzzer, execute each test case on the same running in-

stance of the program, and cleaning the program state is left to the user. The user must write

cleanup routines to clean up global states that may persist across fuzzing loop iterations. To

reduce the overhead associated with virtual machine snapshots, a library OS approach was pro-

posed [181]. This approach, however, lacks compatibility with kernel-mode drivers; it requires

manual efforts (or a sophisticated tool [25]) to port device drivers into user-mode ones.
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Table 4.1: Comparison between kernel fuzzing approaches.

Clean State Compatibility* High Speed

No Snapshot [66, 155, 44] 3 3

User-mode
Snapshot

(LibOS) [181] 3 3

(Emulation) [3] 3 3

VM Snapshot 3 3

VM Snapshot with Agamotto 4 4 4

* Compatible with kernel-mode drivers.

4.2 Dynamic Checkpointing

The key idea presented in this chapter is to dynamically create checkpoints during a fuzzing

run, and use these checkpoints to skip time-consuming parts in the execution of test cases.

Recurring sequences of operations that test cases perform need not be executed many times;

instead, the state of a virtual machine established by such operations, once checkpointed, can

be directly restored from a checkpoint. This idea underpins the design of Agamotto.

Agamotto addresses the shortcomings of prior work, as described in Table 4.1. It uses vir-

tual machine snapshots (or checkpoints) and thus inherits all of its advantages—clean-state,

reboot-free fuzzing. In contrast to prior snapshot-based approaches, which used a single snap-

shot created at a fixed point in time (usually at program startup), however, Agamotto creates

multiple checkpoints automatically at strategic points during a fuzzing run. These checkpoints

allow Agamotto to skip initial parts of many test cases, improving the overall fuzzing perfor-

mance. In addition, we heavily optimized individual virtual machine checkpointing primitives

for an efficient multi-path exploration, which limits the performance impact of the primitives

themselves.
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Figure 4.1: Agamotto overview.

4.2.1 Overview

Figure 4.1 shows a high-level overview of Agamotto. The architecture of Agamotto takes the

form of a typical virtual machine introspection infrastructure. A full operating system including

the kernel-mode device driver—the fuzzing target—runs within a guest virtual machine.

Unlike prior work [3], Agamotto does not impose any constraint on the mode of execution;

the guest virtual machine can execute natively, using hardware support (e.g., Intel’s Virtual

Machine Extensions [75]) when available.

The fuzzer, whose primary task is to generate test cases and process their execution feed-

back, is placed outside this virtual machine, running alongside the virtual machine monitor.

Some kernel fuzzers such as Syzkaller place the fuzzer inside the guest virtual machine. This ar-

chitecture is not suitable when using virtual machine checkpointing, because, as the virtual ma-

chine is being restored from a checkpoint, the fuzzer’s internal states about the fuzzing progress

would also get restored and thus lost. By placing the fuzzer outside the virtual machine, the

fuzzer survives virtual machine restorations. Moreover, the fuzzer is shielded against guest

kernel crashes and subsequent virtual machine reboots, limiting their impact on the fuzzing

progress.

The fuzzer interface is a fuzzer abstraction layer that hides details about individual fuzzers
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from other components. A new fuzzer can be added by implementing various callbacks defined

in this interface. These callbacks are invoked by the fuzzing driver, the core component of Ag-

amotto placed inside the virtual machine monitor, which (i) drives the fuzzing loop interacting

with both the fuzzer as well as the guest virtual machine, and (ii) creates and manages virtual

machine checkpoints. The guest agent, running inside the guest virtual machine, provides the

fuzzing driver with finer-grained virtual machine introspection capabilities. For example, as

the guest agent starts at boot, it notifies the fuzzing driver of the boot event, so that it can start

the fuzzing loop.

4.2.2 Fuzzing Loop

The fuzzing driver component of Agamotto drives the main fuzzing loop. In each iteration of

the fuzzing loop, a fuzzer generates a single test case, executes it, and processes the result of

its execution as feedback. In fuzzing event-driven systems such as OS kernels, each test case

generated by the fuzzer can be defined as the sequence of actions it performs on the target

system. Formally, let S = {S0, S1, ..., SN} be the set of states of the fuzzing target, and T be a

fuzzer-generated test case, which comprises a sequence of N actions, denoted by an ordered

set {a1, a2, ..., aN}. An execution of T, denoted by a function exec(T), is a sequential execution

of actions in T on the fuzzing target. Each action ai ∈ T (for i ∈ {1, ..., N}) moves the state of

the fuzzing target from Si−1 to Si.
1 The target state observed by the fuzzer (e.g., coverage) is

denoted by R= {R1, R2, ..., RN}, where each element Ri ⊂ Si is the fuzzer-observed state of the

fuzzing target after executing ai. This notation is used throughout this chapter.

Figure 4.2 depicts Agamotto’s fuzzing loop in comparison with Syzkaller’s fuzzing loop

using the above notation. The differences are (i) the added flows into checkpoint and restore

and (ii) the removed flows into cleanup and reboot. Virtual machine restoration is initiated

after generating, but before executing, a given test case. A checkpoint request is issued and

evaluated after each action of a test case. Agamotto skips both cleanup and reboot, since a
1This chapter uses a transition-relation style of specifying concurrent, reactive programs (e.g, an OS kernel)

to incorporate non-determinism [90, 137]. In other words, ai is a relation between Si−1 and Si , not a function.
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Figure 4.2: Fuzzing loop comparison.

consistent virtual machine state is always restored from a checkpoint without requiring manual

cleanup, even after a crash.

After the guest virtual machine boots, but before it starts executing any test case ( 1 in

Figure 4.2), the first checkpoint, or the root checkpoint, is created ( 1a ). Then, the fuzzer gen-

erates a test case ( 2 ) and starts executing it ( 3 ). Based on (i) the test case just generated and

(ii) available checkpoints, the fuzzer decides what checkpoint the test case can start executing

from and restores the virtual machine from the chosen checkpoint ( 3a ). Initial parts of the test

case, the result of which is already contained in the checkpoint, are skipped.

During the execution of a test case, secondary checkpoints are requested and created ac-

cording to a configurable checkpoint policy. After executing each action, the test case exe-

cuting inside the guest virtual machine sends a checkpoint request to the fuzzer ( 3b ). Then

Agamotto’s checkpoint policy decides whether to checkpoint the virtual machine or not.
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Figure 4.3: An example checkpoint tree.

Once a test case has been executed, either successfully, with a failure (e.g., timeout), or

with a system failure (e.g., kernel crash), the execution result (e.g., coverage) is sent to and

subsequently processed by the fuzzer ( 4 ). If a test case did not execute in full, but only until

kth action, ak, due to timeouts or system failures, the result for only the executed parts of the

test case, {R1, R2, ...,Rk}, will be sent to the fuzzer.

Since restoring the virtual machine entails a full system cleanup, Agamotto skips an ex-

plicit cleanup process, if any ( 5 ). To avoid influence between iterations, existing kernel driver

fuzzers either perform an explicit cleanup [66] or simply ignore the issue [44, 155]. Agamotto

uses virtual machine restoration, which does not allow any internal system state, even cor-

rupted or inconsistent ones created by kernel bugs or panics, to transfer between iterations,

without requiring manually-written cleanup routines.

A bug may occur during the cleanup process that is skipped. However, potential bugs

that arise in the cleanup process can be found by actively fuzzing the cleanup routines. This

way, a cleanup routine can be tested more thoroughly, fully leveraging whatever smart fuzzing

capabilities that the fuzzer provides. For example, a fuzzer may generate a corner test case

that calls, the cleanup routine multiple times in between other actions, which may trigger

more interesting and potentially more dangerous behavior of the driver under test.

4.3 Checkpoint Store and Search

While the fuzzing loop is running, multiple checkpoints are created, which are stored in Ag-

amotto’s checkpoint storage. To reduce the overhead induced by processing QEMU’s snap-
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shot format we manually manage the (re)storing of guest and device memory pages and use

memory-backed volatile storage to capture the remaining virtual machine state.

The volatile state of a virtual machine comprises its CPU and memory state, and any book-

keeping information about the virtual machine such as device states kept by the virtual machine

monitor. A virtual machine checkpoint must contain all the volatile information to be able to

fully restore the state of a virtual machine at a later point in time.

The state of a virtual machine upon each checkpoint request can be attributed to the

executed part of the test case. Therefore, each newly created checkpoint is labeled as the

prefix of a test case that represents only the executed part of a test case. That is, given a

test case, T = {a1, a2, ..., aN}, the checkpoint created after executing kth action is labeled as

T1..k = {a1, a2, ..., ak}.

Since the root checkpoint is requested when no part of any test case has executed, it is

labeled as an empty test case. Checkpoints subsequently created are marked as a non-empty

test case. Checkpoints are stored in a prefix tree, called a checkpoint tree. Each node in this

tree represents a checkpoint and is labeled as a prefix of the test case that was executing when

this checkpoint was created. An example checkpoint tree is depicted in Figure 4.3.

The checkpoint tree forms an efficient search tree of checkpoints. After generating a new

test case, Agamotto searches for a checkpoint from which to restore the virtual machine. To

find the checkpoint that saves the largest amount of time in executing the test case, Agamotto

traverses the checkpoint tree searching for a node that has a label that matches the longest

prefix of the given test case. In Figure 4.3, given a test case, T′ = {a1, a2, a7, a8}, for exam-

ple, Agamotto finds the node A , which has the label that matches the longest prefix, {a1, a2}.

Since the checkpoint tree is a prefix tree, this longest prefix match can be performed efficiently

without scanning all the checkpoints stored in the tree.

The checkpoint tree also constitutes an incremental checkpoint dependency graph when

checkpoint storage is further optimized with incremental checkpoints (see Section 4.5.1).
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Figure 4.4: Checkpoint creation policy enforcement example.

4.4 Checkpoint Management Policies

4.4.1 Checkpoint Creation Policy

Checkpointing is requested after executing each action in a test case. A checkpoint creation

policy decides, upon each checkpoint request, whether to create a checkpoint or not. A check-

point creation policy should create checkpoints frequently enough, to increase the chances of

finding a checkpoint in restoring the virtual machine later, thus saving time. Checkpointing

should not be too frequent, however, because (i) the checkpointing operation itself adds a run-

time overhead and (ii) each newly created checkpoint adds memory pressure to the checkpoint

storage. Excessive creation of checkpoints, whose expected gain is less than its cost, must be

avoided. This section presents two general checkpoint creation policies, which take these two

requirements into account.

Checkpointing at Increasing Intervals. This policy creates checkpoints at configurable in-

tervals in the timeline of the guest virtual machine. Upon each checkpoint request, the policy

measures the time elapsed since the last checkpoint, and, if it exceeds the configured interval,

a checkpoint is created. The intervals can be configured to be constant, or dynamically deter-

mined. This policy uses an adaptive interval that increases as the level of the last checkpoint

node in the checkpoint tree increases. In particular, it uses an exponentially increasing interval

using two as the base; this means that the policy requires a guest execution time twice as long

as the one that was required for the last checkpoint (see 1 and 2 in Figure 4.4). The idea is
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to reduce the number of checkpoints created later in time during a test case execution, thus

alleviating the overhead of checkpoint creation.

Disabling Checkpointing at First Mutation. This policy targets feedback-guided mutational

fuzzers, which generate new test cases by mutating parts of older test cases in the corpus. It is

well-known that the great majority of mutations do not produce a new feedback signal (e.g.,

coverage signal [116]), which means that a new test case is more likely to be discarded than to

be used for further mutation. Therefore, the expected gain of checkpointing the execution of a

test case after the point of a new mutation is low. To reduce the overhead of checkpointing, this

policy restricts the creation of checkpoints when executing a mutated test case. Specifically,

checkpointing is disabled starting from the location of the first mutation in each test case (see

3 in Figure 4.4). allowed, however, at any point before the new mutation, because the initial

part of the test case still corresponds to a prefix of some older test case in the corpus and is

likely to occur again as a base for new mutations.

4.4.2 Checkpoint Eviction Policy

Since the size of the checkpoint storage is limited, we cannot store as many checkpoints as

created by the checkpoint creation policy. A checkpoint eviction policy evicts an existing check-

point to free space for a newly created checkpoint when the memory limit allocated for check-

point storage is reached. Given a configurable checkpoint pool size, checkpoints created by

the checkpoint creation policy are unconditionally stored until there is no remaining space.

If there is no available space upon creation of a checkpoint, checkpoint eviction policies are

consulted to find a node to evict.

The goal of a checkpoint eviction policy is to keep a high usage rate of the checkpoints in

restoring a virtual machine. A checkpoint eviction policy needs to predict what checkpoints

are likely to be used in the near future, to keep those candidates in the checkpoint tree, and

evict others.
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We use multiple checkpoint eviction policies, which are consulted sequentially. Each policy

takes a set of nodes in the checkpoint tree as input and produces one or more candidate nodes

as output. If a policy produces more than one candidate node, the next policy is consulted

using the output nodes of the previous policy as its input. We continue consulting each policy

in the pipeline until it finds a single checkpoint node to evict.

Policy-1: Non-Active. This policy is placed first in the pipeline, which prevents any active

checkpoint nodes from being evicted. Active checkpoint nodes in the checkpoint tree include

the node that the virtual machine is currently based on, and, recursively, the parent node of

an active node. This policy selects all but the active nodes in the checkpoint tree as eviction

candidates, preventing any active node from being evicted. The checkpoints that are currently

active can be considered to be spatially close because they were created in executing a single

test case—the unit of fuzzing. This policy promotes preserving the spatial locality between the

active checkpoint nodes by evicting others.

Policy-2: Last-Level. This policy selects the nodes in the last level of the checkpoint tree as

eviction candidates. As the depth of the checkpoint tree increases, its nodes are labeled with

longer, more specialized test cases. The intuition behind selecting last-level nodes as eviction

candidates is that the shorter the test case that a checkpoint node is labeled with, the more likely

the label matches test cases that the fuzzer would generate in the future. By evicting last-level

nodes, this policy effectively balances the checkpoint tree, letting the tree grow horizontally,

rather than vertically.

Policy-3: Least-Recently-Used. The last policy in the pipeline is the Least-Recently-Used

(LRU) policy, a policy widely known to be effective at managing different types of caches such

as CPU data and address translation caches. The policy tracks the time each checkpoint was

last used; a checkpoint is said to be used, (i) when it was created, or (ii) when the virtual

machine was restored from it. The policy evicts the checkpoint used earliest in time. As widely
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known, an LRU policy promotes the temporal locality present in the checkpoint usage pattern.

The more recently a checkpoint was used, the more likely it will be used again. Unlike previous

policies, this LRU policy always determines one and only one eviction candidate, because each

checkpoint is used at a unique point in time.

4.5 Lightweight Checkpoint and Restore

4.5.1 Incremental Checkpointing

QEMU’s default virtual machine snapshot mechanism stores all volatile states of a virtual ma-

chine in a snapshot image. Each snapshot can introduce prohibitive space overhead, however,

the memory size of the virtual machine being the dominating factor. Thus, this full snapshot

mechanism is not suitable for the fuzzing use case, where a large number of virtual machines

are created, and their snapshots can quickly consume all the available memory. Creating a full

snapshot can also introduce a prohibitively high run-time overhead for a virtual machine with

high memory requirements.

To reduce both space and run-time overheads of checkpointing, Agamotto performs incre-

mental checkpointing, where only the modified (or dirty) memory pages are stored into each

checkpoint image. The first checkpoint created by Agamotto after the first boot—the root

checkpoint—would be identical to what a full snapshot mechanism would create, which con-

tains all pages in memory. Whenever Agamotto creates a new checkpoint based on an existing

one, however, only the memory pages that have been modified with respect to the base check-

point are stored into the checkpoint image. This incremental approach greatly reduces the size

of a non-root checkpoint, as well as the time it takes to create one.

The dependencies between incremental checkpoints are already expressed in the check-

point tree data structure; that is, the virtual machine state of a given node in the checkpoint

tree can be fully restored by following the path from the root to that node and incrementally

applying checkpoints.
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Algorithm 2 Delta checkpoint restore.
1: function DELTARESTORE(Src, Dst)
2: . Collect pages that need to be restored
3: L ← LOWESTCOMMONANCESTOR(Src, Dst)
4: Dir t ySrc..L ← Dir t ySrc
5: Temp ← PARENT(Src)
6: while Temp is not L do
7: Dir t ySrc..L ← Dir t ySrc..L ∨ Dir t yTemp
8: Temp ← PARENT(Temp)
9: end while

10: Dir t yDst..L ← Dir t yDst
11: Temp ← PARENT(Dst)
12: while Temp is not L do
13: Dir t yDst..L ← Dir t yDst..L ∨ Dir t yTemp
14: Temp ← PARENT(Temp)
15: end while
16:
17: . Restore pages starting from the target node
18: Dir t yDel ta ← Dir t ySrc..L ∨ Dir t yDst..L
19: Temp ← Dst
20: while Dir t yDel ta is not empty do
21: RESTOREPAGES(Dir t yDel ta ∧ Dir t yTemp)
22: Dir t yDel ta ← Dir t yDel ta ∧¬Dir t yTemp
23: Temp ← PARENT(Temp)
24: end while
25: end function

4.5.2 Delta Restore

A strawman approach to restoring a virtual machine using incremental checkpoints is to se-

quentially apply incremental checkpoint images starting from the root to the target node in

an incremental checkpoint tree. The number of memory pages that this strawman approach

should restore, however, is greater than the one that a non-incremental snapshot approach

would restore; the root checkpoint in an incremental checkpoint tree already contains the full

virtual machine state, and additional restorations of incremental checkpoints will add further

overhead.

In the fuzzing context, high-performance restore is a requirement, because the virtual

machine is restored at the beginning of every iteration of the fuzzing loop. However, since

Syzkaller’s default Linux kernel configuration for USB fuzzing requires at least 512MB of work-
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ing memory, and Windows requires a minimum of 4GB, it would take up to several seconds for

the strawman approach to restore the full virtual machine memory. We, therefore, introduce

the delta restore algorithm, which minimizes the number of memory pages that are copied dur-

ing a virtual machine restoration. The full algorithm is described in Algorithm 2. The key idea

is to restore (i) only the pages that have been modified in either the current or target virtual

machine state after their execution has diverged, and (ii) each modified page only once via

bottom-up tree traversal. This means that the number of memory pages that are copied during

a virtual machine restoration is bounded by the number of pages modified within the current

or the target virtual machine state. Observe that, in the strawman approach, the number of

copied memory pages is greater than or equal to the number of all pages in memory.

Figure 4.5 contrasts (a) the top-down, strawman approach with (b) our bottom-up, delta

restore approach in restoring a virtual machine state. In the given checkpoint tree, the node Dst
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refers to the checkpoint that the system is being restored to, and the node Src is a temporary

node representing the current system state from which the restoration starts. The node B

refers to the last checkpoint that the current system state is based on, and the node R refers

to the root checkpoint.

The delta restore algorithm first locates the lowest common ancestor node (node L ) of

the node Src and Dst , and computes a bitmap of modified memory pages (or a dirty bitmap)

of each node with respect to the node L , denoted by Dir t ySrc..L and Dir t yDst..L, respectively.

We take the union of these two dirty bitmaps, which we call a delta dirty bitmap, denoted by

Dir t yDel ta. Dir t yDel ta contains a complete list of memory pages that need restoring. Then,

starting from the node Dst , we traverse the checkpoint tree backwards to the root node. At each

node during the traversal, we restore only the memory pages that are in Dir t yDel ta and clear

their corresponding bits in Dir t yDel ta to ensure that each dirty page is restored only once. The

traversal stops when Dir t yDel ta is fully cleared. The strawman approach, by contrast, restores

all pages stored in incremental checkpoints starting from the node R .

4.6 I/O Interception

Fuzzing driver code paths that can be reached through a given peripheral interface requires

interception and redirection of the driver’s I/O requests. We find two common models for

driver I/O interception and redirection:

• User-Space Device Emulation. I/O requests coming from a kernel driver are redirected

to a user-mode program through the system call interface. This approach typically re-

quires kernel source code modifications for intercepting and redirecting driver I/O re-

quests.

• Device Virtualization. Device virtualization techniques allow the virtual machine mon-

itor to intercept I/O requests coming from the corresponding kernel driver.
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Syzkaller’s USB fuzzing mode takes the user-space device emulation approach. It adds a

kernel module that intercepts and redirects USB driver I/O requests to a program running in

user space via the system call interface. Since Syzkaller already contains many smart fuzzing

features such as structure-awareness of USB packets, we modified Syzkaller such that Agamotto

can be applied. Our key modification was moving Syzkaller’s fuzzer outside of the virtual

machine so that the fuzzer survives virtual machine restorations as well as kernel crashes.

We also modified the communication channels between Syzkaller’s components. The fuzzing

algorithm and other aspects of Syzkaller were left unmodified.

For fuzzing the PCI interface, we developed our own fuzzer, which uses a device virtualiza-

tion approach to intercept the driver’s I/O requests at the virtual machine monitor level. A key

benefit of this approach is that it does not require kernel modifications; a virtual device can be

implemented within the virtual machine monitor without modifying the guest OS kernel. We

created a fake virtual PCI device in QEMU, and plugged it into QEMU’s virtual PCI bus. Our

fake PCI device attached to the PCI bus gets recognized by the PCI bus driver as the guest OS

kernel boots, and, once the target PCI driver gets loaded, it intercepts all memory-mapped I/O

(MMIO) requests coming from the target driver. We fuzzed these MMIO requests by sending

fuzzer-generated data to the driver as a response to each driver I/O request.

4.7 Implementation

Agamotto was implemented on top of QEMU 4.0.0 running in an x86 Linux environment [15].

The prototype implementation used the Linux Kernel Virtual Machine (KVM) for hardware

accelerated virtualization [125]. Syzkaller2 was used for USB fuzzing [66], and American

Fuzzy Lop (AFL) version 2.52b was used for PCI fuzzing [187].

Dirty Page Logging. KVM’s dirty page logging functionality was used to identify modified

memory pages of the guest virtual machine, as required for the incremental checkpointing and

2Specifically, the commit number: ddc3e85997efdad885e208db6a98bca86e5dd52f
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delta restoration techniques presented earlier in this chapter. KVM’s dirty page bitmap was

looked up upon a checkpoint creation request and a virtual machine restoration request. KVM’s

dirty page bitmap was cleared after each checkpoint creation and virtual machine restoration.

Note that KVM’s dirty page logging can transparently be accelerated as hardware support—

e.g., Page Modification Logging in Intel x86 CPUs—becomes available. Using this dirty page

logging, optimized versions of virtual machine checkpointing and restoration mechanisms were

newly implemented in QEMU, since existing snapshot implementation in QEMU was found to

be slower than expected.

Inter-Component Communication. A variety of commodity virtual machine introspection

(VMI) mechanisms were used to implement inter-component communication channels. Con-

trol channels were implemented via hypercalls and VIRTIO pipes established between QEMU

and the guest virtual machine [126]. Data channels for bulk data transfer were implemented

via direct reads and writes to the guest memory or by using a separate shared memory device.

Syzkaller and AFL Support. Agamotto was designed to support multiple fuzzers, and the

current prototype supports two different fuzzers. When running Agamotto with Syzkaller for

fuzzing the USB interface, Syzkaller’s fuzzer was used (syz-fuzzer) as Agamotto’s fuzzer

component and Syzkaller’s executor (syz-executor) as Agamotto’s guest agent. They were

both modified such that they use VMI-based communication channels. When running Ag-

amotto with AFL for fuzzing the PCI interface, an AFL fuzzer running as a thread was used

as Agamotto’s fuzzer component, and a shell script was used as the guest agent, which simply

loads the target PCI driver.

4.8 Evaluation

All of the experiments described in this section were conducted on a machine equipped with

AMD EPYC 7601 CPU and 500GB of memory. Device drivers in Linux v5.5-rc3 were targeted in
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Figure 4.6: Overheads of incremental checkpointing.

evaluating Agamotto. KernelAddressSanitizer was enabled to expose more bugs [64]. This sec-

tion presents an evaluation of Agamotto’s individual primitives first, and then the performance

evaluation of kernel driver fuzzers augmented with Agamotto in both USB and PCI fuzzing

scenarios.

4.8.1 Incremental Checkpointing

Here the run-time and memory overheads of the prototype incremental checkpointing imple-

mentation are compared with the overheads of QEMU’s non-incremental snapshot approach [2].

To measure the overheads conservatively, QEMU’s zero page optimization—a checkpoint size

reduction technique that handles a page filled with zeros by storing a fixed-size entry in the

checkpoint image, instead of storing 4KiB of zeros—was disabled.

Run-Time Overhead. The run-time overhead of checkpointing primarily depends on the

number of pages copied into the checkpoint image. Figure 4.6a shows the overhead of the in-

cremental checkpointing mechanism, and that of the baseline, when checkpointing a 512MiB

memory guest virtual machine. As the number of dirty pages increases, the run-time overhead

of incremental checkpointing increases linearly. In contrast, the overhead of the baseline, a

non-incremental approach, remains constant regardless of the number of dirty pages. In ad-

dition, QEMU’s non-incremental checkpoint approach adds an additional overhead due to its
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implementation and the full inclusion of the device memory, of which only a few pages are

dirtied during fuzzing. A full restore can, therefore, take more than 200ms per checkpoint

for copying all 131,072 pages, whereas incremental checkpointing, for a typical range of the

number of dirty pages (see Section 4.8.3), takes less than 20ms on average as it only copies

the dirty pages.

Memory Overhead. Figure 4.6b shows how the size of each checkpoint correlates to the

number of dirty pages when checkpointing a 512MiB memory virtual machine. As expected,

the size of an incremental checkpoint increases in proportion to the number of pages that have

been modified since the last checkpoint. Given the distribution of the number of modified

pages, which typically ranges from 0 to 8,000 (see Section 4.8.3), each checkpoint should take

no more than 64MiB. With the zero page optimization enabled, the size of each checkpoint

observed in actual fuzzing runs, on average, is less than 32MiB. This is a reduction of 90% or

more in size from the baseline.

4.8.2 Delta Restore

Run-Time Overhead. Figure 4.7 shows the run-time overhead of the prototype implementa-

tion of the delta restore algorithm depending on the number of pages that are restored when

restoring a 512MiB memory virtual machine. QEMU’s default restoration mechanism was used

as the baseline, which restores a virtual machine state from a non-incremental, full snapshot
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Table 4.2: USB and PCI fuzzing targets.

Target
USB

(§4.8.3)
PCI

(§4.8.4)
Path (/drivers/...)

RSI 3 net/wireless/rsi
MWIFIEX 3 net/wireless/marvell/mwifiex
AR5523 3 net/wireless/ath/ar5523
BTUSB 3 bluetooth/btusb.c
PN533 3 nfc/pn533
GO7007 3 media/usb/go7007
SI470X 3 media/radio/si470x
USX2Y 3 sound/usb/usx2y
ATLANTIC 3 net/ethernet/aquantia
RTL8139 3 net/ethernet/realtek
STMMAC 3 net/ethernet/stmicro
SNIC 3 scsi/snic

image. The smaller the number of restored pages as computed by the delta restore algorithm,

the less time it takes to restore a virtual machine state. The number of restored pages, as ob-

served in actual fuzzing runs, is significantly lower than the total number of pages in memory

(see Section 4.8.3). With an average number of under 8,000 restored guest and device memory

pages, the prototype delta restore implementation can restore the virtual machine in 12.5ms

on average, 8.9 times faster than the baseline, QEMU’s implementation of the full snapshot

restore approach, which takes 112ms on average.

4.8.3 Syzkaller-USB Fuzzing

Experimental Setup. USB drivers were fuzzed individually, one in each experiment. As

shown in Table 4.2, 8 USB drivers were chosen in total, which include drivers (i) of 5 different

classes, (ii) of different numbers of source lines of code, and (iii) from different vendors. A

total of 32 fuzzing instances were used in fuzzing each driver for three hours. Each instance

fuzzed the driver running in a 512MiB memory virtual machine.

All USB related functions in Syzkaller were enabled3 so they appear in the generated test

3syz_usb_connect, syz_usb_control_io, syz_usb_ep_read, syz_usb_ep_write, and
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inputs, and the parameters of syz_usb_connect—i.e., device and interface descriptors—

were constrained to fuzz the drivers individually in each experiment. To minimize the effects

of non-determinism in the experiments, coverage instrumentation was limited to the driver

code as well as generic kernel code that drivers call into.4

The fuzzing algorithm of Syzkaller was not modified. Syzkaller’s default five-second time-

out was increased to ten seconds to encourage deeper exploration.5 Fuzzing was started with-

out any seed input to eliminate its impact on the results. To minimize the randomness inher-

ent in fuzzing algorithms, different but fixed sets of PRNG seed values were used for different

instances, using the equation, {idinst + #crashesinst ∗ 128} where inst = {0, 1, ..., 31}. This

equation ensures that seed values (i) are always unique across instances, and (ii) change after

each kernel crash. With these adjustments, the randomness of Syzkaller’s fuzzing algorithm

was controlled; note, however, that the randomness originating in the target system, e.g., cov-

erage signal, was not controlled. To account for this randomness, each experiment was run

three times.

Two different versions of Agamotto were run: (i) a full-fledged Agamotto and (ii) Agamotto

with only the root checkpoint enabled (referred to as Agamotto-R). By comparing Agamotto

with Agamotto-R, the effectiveness of checkpoints dynamically created by Agamotto can be

quantified. Syzkaller was used as a baseline, only with the aforementioned changes made for

controlling timeout and randomness. Agamotto was configured with the following additional

parameters: The checkpoint pool size was configured to be 12GiB per instance, and 500ms

was used as the initial checkpoint creation interval.

Execution Time of Individual Test Cases. Figure 4.8 shows how much time Agamotto skips

in executing each test case. By using fine-grained checkpoints created by Agamotto, the initial

parts of many test cases were skipped. Each test case’s execution time was measured in all

syz_usb_disconnect were enabled.
4We instrumented the source code under the following directories: drivers, sound/{usb, core}, and

net/{bluetooth, nfc, wireless}.
5Syzkaller’s default timeout model was followed, where each test case can execute for at most three seconds,

but, as long as the last action has returned within last one second, it can execute up to ten seconds.
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Figure 4.8: Distribution of the execution time per test case in Syzkaller-USB fuzzing.
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Figure 4.9: Syzkaller-USB fuzzing throughput (execs/second) measured every 10 minutes for
3 hours.

experiments (Figure 4.8a) and computed each test case’s normal execution time, the time each

test case execution could have taken if fine-grained checkpoints were not used (Figure 4.8b).

Agamotto successfully reduced the execution time of many test cases—a large portion of test

cases took less than a second with Agamotto, as shown in Figure 4.8a.

Overall Fuzzing Throughput. Figure 4.9 illustrates how much Agamotto improves Syzkaller’s

USB fuzzing throughput. This overall fuzzing throughput includes the overhead of Agamotto

itself. One common trend observed in all experiments is that Agamotto’s fuzzing through-

put peaks in the first 10 minutes. This is because, as fuzzing instances are started, lots of
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Table 4.3: Checkpoint hit and guest execution time statistics. Median values from 3 indepen-
dent runs.

# Checkpoints # Executions Guest Exec. Time

Created Evicted Total Hit (Rate) Total Skipped (Rate*)

RSI 87k 63k 201k 120k (59%) 90.3h 42.1h (31%)
MWIFIEX 19k 9.8k 236k 60k (25%) 28.0h 18.3h (39%)
AR5523 91k 71k 201k 116k (57%) 95.0h 38.6h (28%)
BTUSB 74k 59k 254k 145k (57%) 94.7h 47.1h (33%)
PN533 89k 65k 199k 116k (58%) 95.2h 39.7h (29%)
GO7007 105k 83k 201k 126k (62%) 95.1h 44.5h (31%)
SI470X 88k 67k 223k 130k (58%) 94.9h 43.6h (31%)
USX2Y 92k 76k 195k 90k (46%) 95.0h 29.4h (23%)

Geo. Mean 51.5% 30.9%

ATLANTIC 8.4k 0.6k 191k 43k (22%) 95.2h 18.5h (22%)
RTL8139 17.9k 6.5k 272k 128k (47%) 91.5h 78.9h (46%)
STMMAC 4.8k 0.3k 160k 23k (14%) 95.2h 15.9h (14%)
SNIC 4.0k 0.2k 153k 8.3k (5.4%) 95.3h 5.35h (5.3%)

Geo. Mean 17.0% 16.7%
* Skipped/(Skipped+Total)

test cases producing new coverage were discovered and minimized. Each minimized test case

was then mutated 100 times and executed in a row. During this period of time in which new

inputs were frequently discovered, a large number of similar test cases were executed in a

row, the throughput of which was greatly improved by Agamotto. As the fuzzing continued,

coverage-increasing test cases were seldom discovered, stabilizing the throughput. Still, Ag-

amotto’s throughput was consistently higher than the baseline. Of the eight analyzed drivers

only two experienced kernel crashes (MWIFIEX and RSI). The performance improvement of

the remaining targets is therefore solely due to the reduced average execution time by using

the checkpoints created by Agamotto.

Checkpoint Utilization and Effectiveness. Selecting a non-root checkpoint in executing a

test case is referred to as a checkpoint hit, and selecting the root checkpoint as a checkpoint miss.

The hit rate refers to the portion of executions that had a checkpoint hit among all executions.

91



RSI MWIFIEX AR5523 BTUSB PN533 GO7007 SI470X USX2Y

100 101 102 103 104 105

1

2

3

# of Checkpoints

D
ep

th

(a) Created checkpoints

100 101 102 103 104 105

1

2

3

# of Checkpoints

(b) Evicted checkpoints

0 50 100 150 200 250 300 350 400 450 500

RSI

MWIFIEX

AR5523

BTUSB

PN533

GO7007

SI470X
USX2Y

(c) Branching factor

Figure 4.10: Distribution of the depths of all the (a) created and (b) evicted checkpoints in
the checkpoint trees, as well as (c) the resulting branching factors of the trees, measured in
Syzkaller-USB fuzzing.

At each checkpoint hit, a different amount of time is skipped depending on the checkpoint

used. Table 4.3 summarizes the hit rates, as well as the amounts of the guest execution time

skipped in each fuzzing experiment. The hit rates and time skip rates vary depending on the

driver targeted in each experiment; on average, a hit rate of 51.5% was achieved, saving 30.9%

in guest execution time.

To quantify the effectiveness of multiple checkpoints created by Agamotto, the through-

put of Agamotto was compared against Agamotto-R; the throughput was improved by 38% on

average. The shape of the checkpoint tree used to achieve this improvement is characterized

in Figure 4.10. The depths of the checkpoint nodes—i.e., the number of edges from the root
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Figure 4.11: Distribution of the length of the restoration path in Syzkaller-USB fuzzing.

node—created and evicted by Agamotto ranged from 1 to 3, and the resulting checkpoint trees

had an average branching factor of 175. This large branching factor reflects (i) how Syzkaller

explores the input space, and (ii) that the checkpoint management policies favor checkpoint

nodes of lower depths in the checkpoint tree (see Section 4.4.2). In these checkpoint trees,

the length of the restoration path—i.e., the path from the node representing the dirty system

state after each test case execution to the node being restored—ranged from 1 to 6, as shown

in Figure 4.11. The widely ranging lengths of the restoration paths mean that different check-

points created at various depths were actively used for virtual machine restoration, which also

supports the utility of multiple checkpoints created by Agamotto.

Resilience to Kernel Panics. Agamotto found several known bugs in RSI and MWIFIEX that

were already found and reported in earlier kernel versions by Syzbot [173], but left unfixed.

Agamotto found one unknown bug in MWIFIEX. This bug was not found in the baseline (nor

Syzbot), as it was obscured by a known, shallow bug in MWIFIEX, which repeatedly caused

immediate kernel panics in the baseline. In contrast, since Agamotto puts the fuzzer outside

the virtual machine, Agamotto continuously generated and ran test cases despite kernel panics,

eventually getting past the known bug to discover this unknown bug. Moreover, Agamotto

maintains the fuzzing throughput, even when it frequently hits these bugs. In fuzzing MWIFIEX
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Figure 4.12: Distribution of the number of pages (a) restored and (b) dirtied per iteration, and
(c) the size of checkpoints in Syzkaller-USB fuzzing.

as well as RSI, where Agamotto encountered bugs more than 6,000 and 200 times in every 10

minutes, their baseline throughput is significantly lower than the ones observed in fuzzing other

drivers. Agamotto, in contrast, maintained a similar level of throughput across all experiments.

Dirty Page Statistics. To show that the incremental checkpointing and delta restore tech-

niques are effective in practice, the number of pages that are restored and dirtied in each

iteration of the fuzzing loop were counted in each experiment. The results are shown in Fig-

ure 4.12. Figure 4.12b shows that the number of pages dirtied after executing a test case has an

upperbound near 8,000 pages. The number of restored pages is similarly bounded as shown in

Figure 4.12a, but often exceeds this limit when the memory pages contained in the checkpoint

being restored do not completely overlap with the set of dirty pages of the virtual machine at

the time of restoration. This means that, as discussed in Section 4.8.1 and 4.8.2, the run-time

overhead of virtual machine checkpointing and restoration was greatly reduced. Also, with the

zero page optimization enabled, most of the checkpoints were found to be smaller than 32MiB,

as depicted in Figure 4.12c.

4.8.4 AFL-PCI Fuzzing

Experimental Setup. To evaluate a device-virtualization-based PCI fuzzer augmented with

Agamotto, four PCI drivers in Linux shown in Table 4.2 were fuzzed. AFL was used as the

fuzzing engine this time, with its fuzzing algorithm unmodified again; note that AFL imple-
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Figure 4.13: AFL-PCI fuzzing throughput (execs/second) measured every 10 minutes for 3
hours.

ments a different input generation and scheduling algorithm than Syzkaller. The evaluation

was performed against a more conservative baseline, where Agamotto was applied, but the

creation of non-root checkpoints was disabled. In other words, these PCI experiments were

designed to demonstrate the effectiveness of fine-grained checkpoints created by Agamotto in

improving the performance of kernel driver fuzzing.

To avoid inadvertently biasing the results through the seed input, fuzzing was started with a

single input as the seed, which contains an eight-byte string—“Agamotto” in the ASCII format—

and without any dictionary entries. Randomness in the fuzzing algorithm was controlled the

same way as in the USB experiments. Each driver was fuzzed using 32 instances for three

hours. Since the driver’s interactions with a PCI device were faster than what was observed

in USB fuzzing, the starting checkpoint interval was reduced to 50ms. The timeout value was

set to 100ms; each iteration of the fuzzing loop was terminated 100ms after the driver’s last

access to the I/O mappings.

Fuzzing Throughput. Although AFL uses a fuzzing algorithm different from Syzkaller’s, Ag-

amotto again improved the throughput by 21.6% on average, as shown in Figure 4.13. Note

that neither AFL’s nor Syzkaller’s fuzzing algorithm produces a sequence of test cases that are

optimal for Agamotto to accelerate. In particular, AFL’s fuzzing algorithm is not tailored to

fuzzing event-driven systems (e.g., it always mutates each test case in the corpus from the first

byte). Still, Agamotto consistently improved the fuzzing throughput in all experiments, and
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Table 4.4: Number of executions and discovered paths in AFL-PCI fuzzing. Median values from
3 independent runs.

# Executions # Paths Discovered

Agamotto-R Agamotto (Increase) Agamotto-R Agamotto (Increase)

ATLANTIC 147k 191k (30.1%) 112 142 (18.7%)
RTL8139 152k 259k (70.5%) 71 153 (115.4%)
STMMAC 137k 160k (16.6%) 87 121 (50.5%)
SNIC 144k 153k (6.2%) 8 8 (0%)

has potential to improve it further when the checkpoint management policies are optimized

together with other aspects of the fuzzing algorithm of the underlying fuzzing engine.

Path Coverage. Table 4.4 shows, in fuzzing each driver, the maximum number of code paths

discovered among all fuzzing instances. Agamotto’s effectiveness is far more pronounced when

the underlying fuzzing engine keeps discovering new, deeper code paths; the more check-

points created by Agamotto in deep code paths, the more time it saves. In fuzzing ATLANTIC,

RTL8139, and STMMAC, Agamotto covered substantially more paths than the baseline did in

the same amount of time; by executing 32.8% more test cases on average, Agamotto covered

47.8% more paths. In fuzzing SNIC, however, AFL, the underlying fuzzing engine, only dis-

covered only a limited number of paths. Still, Agamotto did execute 6.2% more test cases than

the baseline did.

4.9 Limitations

Syzkaller supports a multi-proc mode, which runs multiple instances of a fuzzer within a single

guest OS, increasing the fuzzing throughput. Agamotto does not support this mode currently,

but this mode can be supported with a finer-grained checkpointing mechanism, e.g., via finer-

grained virtual machine introspection or in-kernel checkpoints with kernel modifications [85].

This direction can be explored as future work. Note, however, that other aspects of Agamotto,
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e.g., checkpoint management and optimization techniques, would still apply even with such

finer-grained checkpointing mechanism. The design choice of checkpointing at the virtual

machine level allows Agamotto to support other virtual-machine-based kernel driver fuzzers

(e.g., USBFuzz [133]) as was already demonstrated with the PCI-AFL experiments.

4.10 Conclusions

This chapter presented Agamotto, a system which transparently improves the performance of

kernel driver fuzzers using a highly-optimized dynamic virtual machine checkpointing primi-

tive. During a fuzzing run, Agamotto automatically checkpoints the virtual machine at fine-

grained intervals and restores the virtual machine from these checkpoints allowing it to skip

reboots on kernel panics and to fast forward through the time-consuming parts of test cases

that are repeatedly executed. The evaluation of Agamotto in various USB and PCI fuzzing

scenarios with two different fuzzers demonstrated the performance benefit that Agamotto can

provide, as well as its adaptability.
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Chapter 5

Conclusions and Future Work

This dissertation presented techniques that can be used to improve the precision and efficiency

of dynamic analysis of OS kernels. To summarize, Chapter 2 first provided the current land-

scape of C and C++ dynamic analysis techniques, and described how they can be applied, in

particular, to systems software running in kernel space. Next, Chapter 3 presented the design

and implementation of a dynamic analysis and fuzzing framework for the peripheral input

space of OS kernels, which uses a page table manipulation technique to hook and fuzz interac-

tions between device drivers and peripherals at the level of individual memory accesses. This

framework enables a precise analysis of the peripheral input space of OS kernels. Chapter 4

presented a virtual machine checkpointing technique that can accelerate OS kernel fuzzing,

which builds on an insight that checkpointing and checkpoint restoration primitives can be

used to fast-forward the execution of the guest virtual machine through system crashes as well

as repeatedly executed code paths of the target program. This chapter now concludes the

dissertation with a summary of the presented techniques and their key results, as well as a

discussion of promising lines of future work.
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5.1 Dynamic Analysis of Peripheral Input Space

Unlike other kernel subsystems, kernel-mode device drivers directly interface with peripheral

devices, and can thus receive malicious input from peripheral devices when compromised.

Due to the low-level nature of the interactions between device drivers and their corresponding

peripheral devices, this interface requires tailored techniques to enable dynamic analysis.

Chapter 3 described the design and implementation of a dynamic analysis framework for

this interface, which can either passively monitor or actively influence the interactions between

device drivers and their corresponding peripherals. The key enabling technique was the page

table manipulation technique that allows the user of the framework to examine the main pro-

cessor’s every individual access to PCI I/O mappings, thereby enabling an accurate adversarial

analysis of the peripheral input space of device drivers. Notably, hooking and fuzzing individ-

ual accesses to I/O mappings enables detection of double-fetch bugs in addition to traditional

memory corruption vulnerabilities. Previously unknown vulnerabilities including double-fetch

bugs in two Wi-Fi drivers used in two flagship smartphones were found using the prototype im-

plementation of the fuzzing framework, which demonstrates the effectiveness of the proposed

approach.

5.2 Accelerating Dynamic Analysis of OS Kernels

OS kernels can be viewed as an event-driven, stateful system; the kernel’s internal state transi-

tions from one to another based on events, e.g., system call exceptions, timer exceptions, device

interrupts, etc. This statefulness of OS kernels often requires trade-offs be made between high-

speed and clean-state fuzzing.

Chapter 4 described how virtual machine checkpointing and restoration techniques can be

optimized and used to achieve high-speed and clean-state OS kernel fuzzing. The key insight is

that OS kernel fuzzers frequently execute similar test cases in a row, and that their performance
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can be improved by dynamically creating multiple checkpoints while executing test cases and

skipping parts of test cases using the created checkpoints. The proposed checkpointing and

restoration techniques were realized in a framework called Agamotto, which can transparently

accelerate existing kernel fuzzers. The evaluation showed that Agamotto boosts the perfor-

mance of the state-of-the-art kernel fuzzer, Syzkaller, by 66.6% on average in fuzzing 8 USB

drivers, and an AFL-based PCI fuzzer by 21.6% in fuzzing 4 PCI drivers, without modifying

their underlying input generation algorithm.

5.3 Future Work

5.3.1 Peripheral Attacks using Interrupts

Attackers who aim to compromise OS kernels through the PCI interface are not confined to the

data plane—MMIO and DMA—of the PCI interface. Peripherals can also signal an interrupt

to the OS kernel. Interrupts effectively increases the number of kernel code paths that can be

reached by an attacker on the peripheral side. This is because any kernel code running with in-

terrupts enabled can be interrupted by attacker-signaled interrupts; when they are interrupted

the control is transferred to the corresponding interrupt handler. This interrupt concurrency, as

well as the data contention caused by the concurrency, has been a major source of kernel fail-

ures and vulnerabilities. This adversarial capability needs a thorough investigation to further

secure OS kernels.

5.3.2 Fuzzing Deeper Code Paths

Fuzzing deeper code paths remains an open problem not just in the area of OS kernel fuzzing,

but in a more general area of fuzzing. A tremendous amount of efforts have gone into making

fuzzers smarter; structure-aware or grammar-based fuzzing approaches have been explored to

reduce the search space for fuzzers [44, 136, 66, 182, 8, 175]; different feedback signals—
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e.g., fine-grained control-flow or additional data-flow information—have been used to more

effectively guide feedback-guided fuzzing [59, 58, 146]; input mutation scheduling policies

that use different heuristics or machine-learning-based algorithms have been explored to better

direct fuzzing towards vulnerabilities or predefined source code locations [23, 22, 35, 189]; a

line of work designed smarter mutators (or mutator selection policies) to improve mutational

fuzzing [103, 138, 139]; another line of work explored combining symbolic execution with

fuzzing to more explore code paths protected by narrow branch conditions [160, 185, 39, 134,

188].

A promising future research direction could be derived from the general idea that fuzzing

deeper code paths requires modeling and exploring the target program’s code paths that han-

dle valid (sequences of) inputs. The code paths that handle valid inputs, once discovered, will

lead the fuzzer to find many neighborhood code paths that handle different errors. Many ana-

lytical reasoning approaches that are based on traditional dynamic and static program analysis

techniques (including symbolic execution approaches) have already been heavily explored thus

far. Their results are impressive but still less than ideal; they are still stuck at the exponential

cost of vulnerability discovery [21]. Data-centric approaches that are based on machine learn-

ing [24, 153, 138, 189, 62, 95, 122] could be an interesting direction to investigate further.

5.3.3 Checkpoint-Aware Fuzzing

The checkpointing primitive presented in Chapter 4 introduces a new dimension in the opti-

mization space of fuzzing OS kernels or other event-driven, reactive systems in general. The

prototype implementation was conservatively evaluated without modifying the fuzzing algo-

rithm of underlying fuzzers; that is, only spatial and temporal localities that are already present

in the fuzzing algorithm of state-of-the-art fuzzers were leveraged. Thus, various aspects of the

fuzzing algorithm such as input selection and mutation strategies can be revisited; checkpoint-

aware or -oblivious fuzzing algorithms can be a promising line of future work.
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5.3.4 Kernel Dynamic Analysis

Chapter 2 provided an overview of available dynamic analysis techniques and tools for the

C programming language family. Since OS kernel subsystems are typically written in low-

level programming languages such as C, one may hypothesize that the techniques would work

equally well when applied to kernel space. However, more research is required to prove or

disprove this hypothesis. The peculiarities of the low-level programming in kernel space often

make the kernel code deviate from the language standard, which in turn may complicate the

analysis policy (see Section 2.4). Although there are several tools already available which

perform dynamic analysis of kernel components, other user-space tools and techniques having

different precision and performance characteristics, when ported to kernel space, may improve,

or complement existing but limited kernel analysis tools.
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