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Abstract

Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

by

Harleigh Christian Marsh

The results contained in this dissertation contribute to a deeper level of under-

standing to the energy required to slew a spacecraft using reaction wheels. This

work addresses the fundamental manner in which spacecrafts are slewed (eige-

naxis maneuvering), and demonstrates that this conventional maneuver can be

dramatically improved upon in regards to reduction of energy, dissipative losses,

as well as peak power.

Energy is a fundamental resource that effects every asset, system, and sub-

system upon a spacecraft, from the attitude control system which orients the

spacecraft, to the communication subsystem to link with ground stations, to the

payloads which collect scientific data. For a reaction wheel spacecraft, the attitude

control system is a particularly heavy load on the power and energy resources on a

spacecraft. The central focus of this dissertation is reducing the burden which the

attitude control system places upon the spacecraft in regards to electrical energy,

which is shown in this dissertation to be a challenging problem to computationally

solve and analyze.

Reducing power and energy demands can have a multitude of benefits, span-

ning from the initial design phase, to in-flight operations, to potentially extending

the mission life of the spacecraft. This goal is approached from a practical stand-

point apropos to an industry-flight setting. Metrics to measure electrical energy

and power are developed which are in-line with the cost associated to operating

reaction wheel based attitude control systems. These metrics are incorporated

xi



into multiple families of practical high-dimensional constrained nonlinear opti-

mal control problems to reduce the electrical energy, as well as the instantaneous

power burdens imposed by the attitude control system upon the spacecraft. Min-

imizing electrical energy is shown to be a problem in L1 optimal control which is

nonsmooth in regards to state variables as well as the control. To overcome the

challenge of nonsmoothness, a method is adopted in this dissertation to transform

the nonsmooth minimum electrical energy problem into an equivalent smooth for-

mulation, which then allows standard techniques in optimal control to solve and

analyze the problem.

Through numerically solving families of optimal control problems, the rela-

tionship between electrical energy and transfer time is identified and explored for

both off-and on-eigenaxis maneuvering, under minimum dissipative losses as well

as under minimum electrical energy. A trade space between on-and off-eigenaxis

maneuvering is identified, from which is shown that agile near time optimal ma-

neuvers exist within the energy budget associated with conventional eigenaxis

maneuvering. Moreover, even for conventional eigenaxis maneuvering, energy

requirements can be dramatically reduced by maneuvering off-eigenaxis. These

results address one of the fundamental assumptions in the field of optimal path

design verses conventional maneuver design.

Two practical flight situations are addressed in this dissertation in regards

to reducing energy and power: The case when the attitude of the spacecraft is

predetermined, and the case where reaction wheels can not be directly controlled.

For the setting where the attitude of spacecraft is on a predefined trajectory,

it is demonstrated that reduced energy maneuvers are only attainable though

the application of null-motions, which requires control of the reaction wheels. A

computationally light formulation is developed minimizing the dissipative losses

xii



through the application of null motions. In the situation where the reaction

wheels can not be directly controlled, it is demonstrated that energy consumption,

dissipative losses, and peak-power loads, of the reaction-wheel array can each

be reduced substantially by controlling the input to the attitude control system

through attitude steering. It is demonstrated that the open loop trajectories

correctly predict the closed loop response when tracked by an attitude control

system which does not allow direct command of the reaction wheels.
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Chapter 1

Introduction
“No problem can withstand the
assault of sustained thinking.”

Voltaire

A significant effort has been made, in attitude control, regarding minimizing

the transfer time to perform a slew using reaction wheels. A culmination of such

research was the first ever flight implementation of a set of time-optimal (reac-

tion wheel) slews, which were performed upon NASA’s Transition Region And

Coronal Explorer (TRACE) spacecraft.1,5, 6 Minimizing the transfer time of a

slew is efficacious under a number of goals (e.g. faster slews, hence more imaging,

therefore more utility of the imaging satellite, thereby reducing the monetary cost

associated to imaging7). Minimum-time slews are synonymous with off-eigenaxis

maneuvers, because a well known fact to the attitude control community is that

eigenaxis maneuvers are not time optimal. It is through the means of off-eigenaxis

maneuvering which allows the angular velocities of all three body axes to be built

simultaneously, which thereby maximizes the agility of a spacecraft. While re-

ducing transfer time through maximizing the agility of the spacecraft is clearly

important, power as well as energy play equally important role. Conventional

wisdom associates minimum time slews with large effort. What if the batteries

1



are depleted upon the spacecraft? What happens to the spacecraft when elec-

trical power decreases and demand exceeds supply? In such a case power loads

(e.g. scientific instruments) must be shut off one-by-one, as seen with Voyager

I.8–10 In comparison to the body of literature associated to agility, comparatively

little has been done with regards to minimum energy slewing. It is partially due

to the fact that the minimum energy problem is a challenging nonsmooth and

nonlinear optimal control problem. This dissertation is aimed at attaining and

understanding minimum energy maneuvers for reaction wheel spacecraft under a

variety of operational scenario apropos to an industry-strength flight setting.

The rest of the introduction is organized as follows: Section 1.1 briefly presents

background information most-relevant to this dissertation. The focus of this dis-

sertation, its aims, and its goals (along with motivation to these goals) are pre-

sented in Section 1.2. In the subsequent section that follows, the organization of

the dissertation is outlined, and a brief synopsis for each chapter is provided which

includes a small note concerning how each chapter meets the aims and goals of

this dissertation. Section 1.4 outlines the results obtained by, and contributions

from, this dissertation.

1.1 Background Information

As the focus of this dissertation is upon the attitude control of a spacecraft,

this section serves to briefly outline various basics of attitude control in relation

to spacecraft. This section begins with a brief and general introduction to atti-

tude control in relation to spacecraft and next defines eigenaxis and off-eigenaxis

slewing-strategies.

2



1.1.1 Introduction to Attitude Control

The attitude of an object, such as a missile, plane, crane, spacecraft or sensor

upon a spacecraft, describes the orientation of the object relative to some refer-

ence frame. Attitude control, referrers to controlling the orientation of a spacecraft

through some from of actuator. The (sub)system upon a spacecraft, whose pri-

mary purpose is to orient (i.e. point) a payload (e.g. sensor) to a desired location,

is the Attitude Control System (ACS). Common reasons to reorient the spacecraft

include primary mission objective of scientific data collection, such as orienting a

sensor to a point of interest, as well as housekeeping duties required to keep the

mission active. Examples of such housekeeping duties the ACS performs include

such objectives as orienting solar panels at the sun to generate electrical power,

aiming its communication antennas to download and upload to and from a ground

station, as well as pointing thermal radiators to the non sun-side to allow heat to

dissipate off of the spacecraft.11 Slew is a very common term in the vernacular

of the attitude control field: “Slewing a spacecraft”, or “To slew a spacecraft”

referrers to altering the attitude of a spacecraft by application of torque (be it

internal or external). A common slew maneuver is one where the spacecraft begins

and ends at rest, and such maneuver is referred to as a rest-to-rest maneuver (or

rest-to-rest slew).

Methods for controlling the attitude of a spacecraft, while numerous, may be

categorized as either passive or active. Passive methods, which are also known

as environmental methods, use external environmental torques such as gravity

gradient, solar radiation, atmospheric or magnetic to modify the orientation of the

spacecraft.12 These methods do not require any fuel nor energy source. Concerns

of passive methods include: i) These passive methods typically can not grantee

three-axis stabilization; ii) Pointing accuracy of passive methods is limited, when

3



compared to non-passive methods; iii) Passive methods, by their very nature,

can only be used where the environmental torque exits. For example, because

magnetorquers are reliant on an external magnetic field, they may only be applied

in Low Earth Orbit (LEO). Similarly, atmospheric torques may only be utilized

while in LEO,12 and the use of atmospheric torques speeds up the decay of the

spacecraft’s orbit.

Active methods can guarantee three axis stabilization, and may be categorized

into external torque propellant consuming thrusters and internal torque momen-

tum exchange devices (MEDs) which consume electrical power (so named as these

actuators exchange the angular momentum between themselves and the space-

craft). Thrusters consume a non-renewable fuel source, whereas MEDs consume

a renewable source of energy due to the advent of solar panels which are capa-

ble of generating electrical energy. Two commonly utilized MEDs are Reaction

Wheels (RWs) and Control Moment Gyros (CMGs). Both RWs and CMGs rely

on the conservation of angular momentum and operate based on the principal

of Newton’s third law to perform attitude control; both are able to achieve very

accurate pointing, and both require momentum dumping in order to avoid sat-

uration. Reaction wheels spin about a fixed axis and exert a torque upon the

spacecraft by changing the angular velocity of the reaction wheel (hence changing

the angular momentum, hence torque). Generally, at least three reaction wheels

are required to be able to orient to any location. If a spacecraft uses four or more

reaction wheels to perform a slew, the spacecraft is said to have a “redundant”

number of reaction wheels. It is quite common that four or more reaction wheels

are mounted in the reaction wheel array. The reason for this redundancy is that

if one wheel fails, arbitrary pointing in three-space is still feasible. CMGs, while

not the a focus of this work, differ from reaction wheels in that a CMG spins at
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a constant speed, and the change in angular momentum (i.e. torques) is achieved

by rotating its spin axis (an operation known as “gimbaling”). This dissertation

focuses on the attitude control of a spacecraft equipped with a redundant number

of reaction wheels. Another system, whose primary purpose is to dump accumu-

lated momentum is known as the Momentum Management System (as external

torques always exist, and these external torques are absorbed by the MEDs, and

hence over time the accumulated momentum in the MEDs need to be purged–this

process is called momentum dumping).

1.1.2 Slewing A Spacecraft: Canonical & State of the Art

Slewing

This section briefly presents two slewing strategies which are studied through-

out this dissertation. One specific manner of slewing a spacecraft has the dis-

tinction of being known as the industry standard and is used onboard current

spacecraft.1 This canonical method of slewing is called an eigenaxis maneuver

(EAM). An eigenaxis maneuver is when all of the rotational motion of the space-

craft is constrained about an axis which is fixed to both the spacecraft and inertial

frame throughout the entire duration of the slew. During an EAM, the boresight

(i.e. the sensor of interest–think of the center of the optical viewfinder to a cam-

era) traces the shortest angular path between the two orientations, resulting with

the shortest circular arc connecting the two orientations. Figure 1.1 shows an

EAM for a 90 degree rotation about the spacecraft z-axis; the boresight is seen

to trace the shortest circular arc between the initial and final orientation.

Shortest-time maneuvers, recently spanning out from theory and into appli-

cation by being implemented in flight,1,5, 6 are time-optimal attitude maneuvers

based on optimal control theory. Characterized by building up the body-rates
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Figure 1.1: 90 degree conventional eigenaxis slew.1

of all three spacecraft body axes simultaneously, STMs maximize the agility of

a spacecraft by taking full-advantage of the inertia ellipsoid, nonlinear rotational

dynamics, and the operational constraints imposed upon the nonlinear rotational

dynamics. Figure 1.2 shows a typical for a 90 degree rotation about the spacecraft

z-axis; off-eigenaxis maneuvers (the z-axis is the eigenaxis for this maneuver) are

seen by the trace of the boresight deviating from the shortest circular arc seen

in Figure 1.1. Contrary to intuition, a shorter transfer time is obtained by trav-

eling a longer path! This result is similar to the counterintuitive solution to the

Brachistochrone problem, where the shortest path (a straight line) is not the time

optimal solution.13
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Figure 1.2: Off-eigenaxis shortest time maneuver of a 90 degree maneuver.1

1.2 Dissertation Aims, Motivation, and Focus

As mentioned in the previous section, eigenaxis maneuvering, which is the

industry standard to slewing a spacecraft,1 is not time optimal.14 Rather, it

was through off-eigenaxis maneuvering that transfer time could be reduced. The

initial motivational idea that started the research process, was to follow these

results between off-and on-eigenaxis maneuvering concerning transfer time, but

in regards to “energy”: Could energy be saved by maneuvering off eigenaxis, just

as time is saved by off-eigenaxis maneuvering? Does constraining a spacecraft to

maneuver only about an eigenaxis severely increase energy consumption? What
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(in regards to energy) of the entire band of transfer times in-between time optimal

shortest-time maneuvering and not time optimal eigenaxis maneuvering? The

preceding questions gave the underlying aim and initial focus of this dissertation,

and the foundation which all content of this body is connected: The minimization

of energy required to slew a reaction wheel spacecraft. The means unto which the

optimized trajectories (w.r.t. minimum energy) are obtained, is through the use

of computational methods from the field of optimal control.

Another aim which arches across this entire body of work is to be as close as

possible to an operational (e.g. flight) scenario. Therefore, operational require-

ments which arise in a practical scenario, are considered in this dissertation. The

first practical concern is obtaining an energy metric that is in line with the oper-

ation of a reaction wheel attitude control system. Since the actuator performing

the attitude adjustments is from the operation of a reaction wheel, understanding

energy consumed by this device is key to obtaining minimum energy maneuvers.

The torque from a reaction wheel comes from the spin motor,15 and this motor

is an electric motor.15,16 Therefore, from a practical setting, the objective is to

minimize the electrical energy of the reaction wheel motors. Additionally, the

following practical constraints must be considered:

• Actuator constraints: each reaction wheel can only spin so fast, and can

only generate so much torque. Therefore actuator limits must be imposed

upon the spacecraft. Otherwise, the optimization may generate trajectories

infeasible to a flight scenario (e.g. apply infinite torque for a minimum time

problem).

• Saturation concerns upon the rate gyros: Rate gyros are used to measure

the attitude of the spacecraft, and saturation of these could result in the

loss of control to the spacecraft.
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• Reaction Wheel Speed Bias: Being able to attain the desired pointing vector

(i.e orientation) of the boresight and being able to place the spacecraft at

rest is not enough from a practical point of view. A constraint demanded in

an industry-strength flight setting is that the spacecraft should perform the

rest-to-rest slew with all reaction wheels beginning, and ending, at a specified

rate. The reason for this, is the reaction wheel array is to normally operate at

a speed well away from zero in order to avoid imprecise torque that occurs at

zero speed.15 By nominally operating reaction wheels away from zero speed

(i.e. 0 revolutions per minute) issues of stiction17 and jitter, which occur

near zero speeds and result with undesirable vibrations occurring throughout

the body.

Keeping along the trend of practicality, this dissertation considers situations which

gain relevancy when interfacing with the attitude and control guidance system of

the spacecraft. These considerations constitute and allows an exploration of min-

imum energy maneuvers under a variety of settings amenable to a flight-setting:

(S1) How, if at all, can energy be reduced when the attitude of the spacecraft

predetermined (and may not be modified); in this situation is it possible to

reduce the energy required to slew?

(S2) How, if at all, can energy be reduced when the reaction wheels can not be

directly controlled?

It is a goal of this dissertation to explore minimum energy maneuvers under the

preceding situations S1, S2, as well as the absence of these situations (which is

the setting of complete freedom to design the attitude profile, and controllability

of the reaction wheels). First though, this introduction provides motivation to

these situations and of when, where and why these situations might occur in an

industry setting.
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Concerning situation S1: There exists scenarios in which the attitude of the

spacecraft may not be freely chosen, but rather, it is fixed (i.e. predefined or

prechosen) by some logic onboard the spacecraft, housed in the attitude control

system. For instance, a flight-scenario may require that the maneuver between

two desired orientations must be performed as an eigenaxis maneuver. In this

setting, an obtained minimum energy solution which does not satisfy the attitude

constraint (e.g. by maneuvers off-eigenaxis) would not be a feasible (and hence

not a flyable) solution.

Situation S2, is the case when the reaction wheels may not be directly con-

trolled. This occurs in a setting where the spacecraft implements its own control

allocation scheme, which is usually least squares.18 In this case, direct control of

the reaction wheels is not possible, as the spacecraft has a predefined algorithm in

which to allocate the reaction wheel torques. Additionally, such a feedback sys-

tem lacks a feedforward term. In this setting, a minimum energy maneuver must

be able to work about the control allocation scheme. Therefore, for the setting

where the spacecraft implements its own allocation scheme (which is usually least

squares18) a work around is required to achieve a minimum energy profile.

To place these two situations (S1 and S2) into better context, the attitude con-

trol and guidance system of a spacecraft may be considered.19 Figure 1.3 shows a

block diagram to an Attitude Control System for a reaction wheel spacecraft, and

consists of a combination of an outer-loop, as well as an inner-loop portion. The

components which comprise the attitude control system in Figure 1.3 is a Slew

Generator block, a Quaternion Error Feedback block, Control Allocation block,

and a block for the spacecraft plant, as well as a high level task. The task is

the driving goal of the entire system, and is often chosen by a human (though

this higher-decision making could also be automated; for a discussion on artificial
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Figure 1.3: A general structure of an Attitude Control System where the outer
loop (Slew Generator) interfaces with an inner loop (Quaternion Error Feedback
Law) block.

intelligence and its relationship as well as application to optimal control, see Ross

in Ref. [20]). The task may be considered colloquially as a simple command to

change the attitude of the spacecraft which would be requested to observe an

area for scientific collection, or perhaps to point an antennae to a ground sta-

tion for communications operations scenario. The Slew Generator comprises the

outer-loop portion of the attitude control system, and from a given task, out-

puts feedforward terms for reaction wheel control torque, τref ∈ RNrw , spacecraft

body velocity ωref, and attitude qref. The slew generator block can be as com-

plex as returning an optimal state control solution to the specified task, or it

could be as simple as outputting an eigenaxis maneuver for the quaternion error

feedback block to execute.21,22 The quaternion error feedback block comprises

the inner-portion of the ACS, and serves to track the attitude profile provided

by the slew generator portion of the attitude control system through an efficient

and (pretty surprisingly simple) means;23 this block outputs a commanded body

torque profile τBsc ∈ R3 to alter the attitude of the spacecraft. The control alloca-

tion block outputs commanded reaction wheel motor torques τcmd ∈ RNrw which is
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able to generate the commanded body torque profile τBsc (e.g. with L2 allocation,

τcmd = A+τBsc, so Aτcmd = τBsc). The most common form of control allocation is L2

allocation, also known as Least Squares allocation, also known as Moore-Penrose

allocation, and also known as Pseudoinverse allocation.24,25 The reason for the

control allocation block is to be produce Nrw ≥ 3 reaction wheel motor torques

that produce the body torque τBsc ∈ R3. The spacecraft plant executes the reaction

wheel motor torques τrw, outputting the produced body velocity and attitude.

To summarize, the focus of this dissertation is the study of minimum energy

maneuvers for reaction wheel spacecraft which considers various limiting scenarios

all of which cast in a practical industry-strength setting. These settings span

from the complete freedom to design a maneuver (i.e. off-eigenaxis maneuvers

allowable, and direct access to the reaction wheels is available) to constrained

settings such as the attitude profile is fixed (e.g. attitude constrained to be an

eigenaxis maneuver), as well as consideration to the case when the reaction wheel

themselves can not be directly controlled. Table 1.1 lists the cases explored in

this body of work relating to minimum electrical energy slewing for reaction wheel

spacecraft, and where they might be found in this dissertation.

Table 1.1: The four cases which explore reduced energy expenditure for attitude
slews of a reaction wheel spacecraft. Metrics for modeling the electrical energy
and power expenditure associated to reaction wheel is detailed in Chapter 2.

Case Attitude Profile Reaction Wheel
Torque Allocation

Electrical Energy
Situation Chapter Focus

I free free Complete Freedom 4, 5
II free fixed Attitude Steering 6
III fixed free Null Motions 4, 5
IV fixed fixed Unable to Effect Energy Profile –

The numerical approach taken in this dissertation, is that optimal control is

applied to generate the minimum energy trajectories, hence generating open loop

commands. Before a candidate state-control pair can be considered a solution
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to the optimal control problem, it must pass a very important verification and

validation (V&V) stage. In this stage, the candidate state-control pair is tested

for feasibility, which consists of propagating the candidate-control through the

dynamics to check sure it does not drive the system to violate any constraints

(e.g. boundary conditions or path constraints). Then, in the second stage of

V&V the candidate state-control solution is checked to see if it meets (to a user-

defined tolerance) the necessary conditions of optimality as given by Pontryagin’s

Minimum Principle. Only a state-control pair which successfully passes the V&V

stage, may be considered for flight. The open loop optimal trajectories serve a

very important and relevant roles in industry. These roles are fulfilled as refer-

ences to track, as well as for planning purposes (e.g. get a lower bound on the

transfer time). To implement these optimized (open-loop) trajectories in practice,

is typically most effective when used as an open-loop feedforward for a feedback

controller to track,15 just as in Figure 1.3. This numerical approach taken in this

dissertation is the same approach that has already been successfully implemented

in space flight applications; see Refs. [1, 5, 6, 26–29].

1.3 Thesis Outline and Organization

Derivations for the spacecraft model and electrical energy metrics, which are

used throughout this body of work, are presented in Chapter 2. Both the space-

craft and the collection of electrical energy metrics are integral portions to this

body of work, for they constitute the dynamics and cost functionals to the optimal

control problems created throughout this dissertation.

In Chapter 3 the relationship between electrical energy and transfer time for

a reaction wheel spacecraft is explored for both eigenaxis and off-eigenaxis ma-

neuvering under minimum dissipative losses. The tradespace between on-and
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off-eigenaxis maneuvering is identified and analyzed in this chapter. Null-motions

are utilized to demonstrate that reduced-electrical energy solutions can exist in

the situation where the attitude is fixed, and are used to show that shortest time

maneuvers are not unique with respect to (electrical) energy, thereby addressing

situation S1.

Chapter 4 focuses on the nonsmooth energy metric. An augmentation method

is applied which generates an equivalent smooth formulation. This method lifts

the formulation through the addition of ancillary controls and path constraints

upon the controls. Using this technique, the relationship between electrical en-

ergy and transfer time is revisited under minimum electrical energy (as apposed

to minimizing dissipative losses only) within this chapter, and the results are

compared to the reduced energy maneuvers minimizing dissipative losses found in

Chapter 3.

Chapter 5 considers minimizing electrical energy maneuvers in the situation

where the reaction wheels can not be directly controlled. The results in this chap-

ter show that the electrical energy may be substantially reduced by altering the

steering the attitude of the spacecraft (which conceptually may be considered as

steering the path of the boresight). Last words and concluding remarks concerning

this body of work are constituted in Chapter 6.

Appendix A contains the simulation parameters used to populate the optimal

control problem formulations developed all throughout this body of work. Max-

imal effort has been made to design the optimal control problems as close to an

operational scenario as possible. This much vested effort has been made in regards

to using realistic parameters within the optimal control problems throughout this

dissertation. Lastly, Appendix B contains a listing of published works, posters,

talks which formed the synthesis of this dissertation.

14



Pseudospectral methods of optimal control implemented in the software pack-

age DIDO are applied to obtain solutions to the optimal control problems devel-

oped throughout the body of this work. An attractive feature of pseudospectral

optimal control theory is the ability to generate adjoint variables from the numeri-

cal solutions via the Covector Mapping Theorem.30–32 This enables the verification

of the optimality of numerical solutions against Pontryagin’s Minimum Principle.

While there are a tremendous amount of numerical methods for optimal control,33

the choice for DIDO was made because the problems considered in this disserta-

tion are high-dimensional, nonlinear, and host a number of state, control, and

mixed state and control path constraints. DIDO, which is a MATLAB optimal

control toolbox, has a long history of successful solutions implemented in many

NASA and DoD missions.1,5, 6, 26–29,34 Such industrial-strength problems include,

achieving successful ground tests [34], to the landmark achievements of both the

Zero & Optimal Propellant Maneuvers flown International Space Station [26–29],

to the first flight-implementation of time optimal slews [1, 5, 6].

1.4 Contributions of the Dissertation

This dissertation focuses upon minimum energy maneuvering. Dynamic op-

timization is performed with respect to the minimization of electrical energy,

whereas literature has focused mainly upon the minimization proxies associated to

only mechanical energy. The main contributions from this body of work, collected

in this dissertation, is presented in this section.

Firstly, the research in this dissertation demonstrates results analogous to the

work that eigenaxis is not time optimal, by showing that eigenaxis maneuver-

ing is not energy optimal for reaction wheel spacecraft. This dissertation showes

that the industry standard eigenaxis slew can be dramatically improved upon,
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with regards to reduced energy, by maneuvering off eigenaxis. It is demonstrated

that agile maneuvers exist within the energy budget of conventional eigenaxis

maneuvering. The nonlinear relationship between electrical energy and transfer

time is revealed for both eigenaxis and off-eigenaxis maneuvering under minimum

dissipative losses and under minimum electrical energy. By studying this non-

linear relationship, two main results are arrived upon which may be significant

to mission planning, operations, and design: i) There exists a band of near time

optimal maneuvers which require substantially less energy as their shortest time

maneuver counterpart and ii) Eventually there exists diminishing returns on en-

ergy savings. The nonlinear relationship between energy and transfer time is first

identified under minimum dissipative losses associated to operating the electrical

motors, thereby reducing the thermal stresses upon the reaction wheels, and hence

potentially increasing the longevity of the reaction wheel actuators. Minimizing

dissipative losses is quite pertinent in regards to small spacecraft (e.g. cubeSat

and smaller), since due to their small size, they have difficulty in rejecting ex-

cess heat incurred from dissipative losses.24,35 From identifying the relationship

between electrical energy and transfer time for both on-and off-eigenaxis maneu-

vering, a tradespace was identified between the two maneuvering types. It is this

tradespace that demonstrates that off-eigenaxis maneuvers completely dominate

conventional eigenaxis maneuvering in regards to energy as well as transfer time.

Another contribution from this dissertation is from focusing directly upon the

case when the attitude of the spacecraft can not be altered. In such situation,

null motions are crucial to ameliorate the energy expenditure whilst slewing. A

computational efficient method of performing null motions has been developed in

this dissertation. This method results in a fast and reliable way of generating

reduced energy solutions that can be incorporated into a feedback solution in the
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setting where the attitude of the spacecraft can not be altered. This method has

also presented specialized necessary condition for optimality associated to min-

imum energy maneuvers, which is computationally light enough to be done in

real time onboard the spacecraft (hence providing an additional verification and

validation of a maneuver before–and during–flight).

In this dissertation, the minimum electrical energy problem is shown to be a

constrained high-dimensional L1 optimal control which is nonsmooth with both

state and control. To overcome the challenge of nonsmoothness, a method is

adopted that allows the minimization of electrical energy, or applications which

require the positive-only (or negative-only) portion of a continuous function to be

minimized (thereby opening the door for many applications). The relationship

between electrical energy and transfer time for both off-eigenaxis maneuvering

and eigenaxis maneuvering, which was identified in this dissertation under mini-

mum dissipative losses, is shown to hold for minimum electrical maneuvers; the

tradespace between off-eigenaxis maneuvering and eigenaxis maneuvering holds as

well. These results demonstrate that agile maneuvering can indeed be performed

within the budget of minimum energy eigenaxis maneuvering.

Many of the approaches to reduce electrical energy of the attitude control sys-

tem to perform a slew in literature require direct access to the reaction wheels.

Null-motions, a very popular means to reduce energy, requires direct access to

the reaction wheels. A major contribution to this dissertation is identifying sit-

uations when direct access to the reaction wheels is not possible, and showing

that even in such situations the electrical energy required to slew a spacecraft

can be reduced. This dissertation demonstrates the amount of electrical energy

and power consumed to perform a slew may be reduced by performing minimum

energy attitude steering when the reaction wheels can not be directly controlled.
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This method also is shown to reduce the peak power, reduce average power, and

drive the peak to average power ratio closer to unity (as compared to conventional

eigenaxis maneuvering). From these results, accurate energy budgeting is attain-

able for systems, such as heritage attitude control systems, which might not have

the capability to allow direct control over the reaction wheels.

Synthesizing the entire dissertation, into one single response, is that the results

contribute a deeper level of understanding to minimum energy slewing for reaction

wheel spacecraft.
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Chapter 2

Dynamic Modeling
“This most beautiful system of the
sun, planets and comets, could
only proceed from the counsel and
dominion of an intelligent and
powerful Being.”

Isaac Newton

In this section, the rotational dynamics of the spacecraft, and the metrics for

electrical energy and power are derived. In the following chapters, these derived

models are subsequently incorporated in optimal control problem formulations,

for the purpose of minimizing the electrical energy of a spacecraft performing a

slew.

2.1 Spacecraft Model

The spacecraft model is composed of two portions: (i) The rotational dynamics

(about the center of mass) of the spacecraft, and (ii) The rotational kinematics

of the spacecraft. The spacecraft is modeled as a ridged body, and therefore the

equations of motion which describe the evolution of the continuous motion of the

spacecraft are derived by application of ridged body mechanics. This field is often

reference as Eulerian Mechanics, as the field is governed by Euler’s equation of
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motion2 which, in colloquial terms, states that the rate of change of the angular

momentum of a ridged body (about its center of mass or the inertial coordinate

frame origin) is equal to the external torque acting on the body (about it’s center

of mass) (i.e. Ḣ = T, where H ∈ R3 is the vector of angular momentum of the

ridged body and T is the external torque acting on the body). The rotational

kinematics (sometimes referred to as rigid body kinematics) serves to describe the

orientation of a ridged body (e.g. a spacecraft) relative to some reference frame.

2.1.1 Rotational Dynamics

The rotational dynamics of a spacecraft for attitude control, may be derived

from first principals, by considering the conservation of angular momentum in the

inertial frame N :

HNtot(t) =
∫ t

0
τNext(s) ds+ HNtot(0),

where HN tot(t) ∈ R3 is the total angular momentum, at time t, of the spacecraft

expressed in the inertial frame N , and τNext(t) is the vector representing the total

external torque (e.g.: solar, atmospheric, magnetic) acting upon the spacecraft.

The rate of change of the spacecraft with respect to the body frame is given by

an application of the transport theorem [2]

τNext(t) = d
dtH

N
tot(t) = d

dtH
B
tot(t) + ω(t)× HBtot(t), (2.1)

where HBtot(t), ω(t) ∈ R3 are time varying vectors of the angular momentum and

angular velocity of the spacecraft represented in the body frame B respectfully,

and the cross product term is resultant to the relative motion between the two

frames. The total angular momentum of the spacecraft in the body frame may be

decomposed into the individual contributions from the spacecraft body and from
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the reaction wheels:

HBtot(t) = HBsc(t) + HBrw(t), (2.2)

where HBsc(t) ∈ R3 is the total angular momentum of the spacecraft, HBrw(t) ∈ R3

is the total angular momentum of the reaction wheels in the body frame. The

total angular momentum of the spacecraft may be expanded as

HBsc(t) = Jscω(t), (2.3)

where Jsc ∈ R3×3 is the spacecraft inertia tensor. The total angular momentum

of the reaction wheels may be expressed as:

HBrw(t) = Ahrw(t), (2.4)

where A = [a1| · · · |aNrw ] ∈ R3×Nrw is the matrix which projects from the reaction

wheel actuator frame A onto the spacecraft body frame. Each ai gives the ori-

entation of the i-th reaction-wheel spin axes in relation to the spacecraft body

frame. The quantity hrw(t) ∈ RNrw is the angular momentum of each reaction

wheel relative to its spin axis (notation “hArw(t)” to represent the actuator frame is

avoided due to clarity; the actuator frame is assumed to be rigidly attached to the

spacecraft, so the relative angular velocity between the spacecraft body and the

reaction wheel housing is null). Therefore, using Eqs. (2.3) and (2.4), the total

angular momentum of the spacecraft in the body frame may be expand as

HBtot(t) = Jscω(t) + Ahrw(t). (2.5)
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The rate of change of the spacecraft with respect to the body frame is given as

d
dtH

B
tot(t) = d

dt(Jscω(t) + Ah(t))= Jscω̇(t) + Aḣ(t),

under the assumption that Jsc and A are time invariant, and noting that the

relative motion between the reaction wheel actuator frame and the spacecraft

body is null. Therefore Eq. (2.1) may be expanded as

τenv(t) + τmms(t) = Jscω̇(t) + Aḣrw(t) + ω(t)×(Jscω(t) + Ahrw(t)), (2.6)

where the external torque acting upon the spacecraft, τNext(t), has been decomposed

into environmental torques, as well as torque from the spacecraft momentum man-

agement system (MMS). A reasonable assumption upon the rotational dynamics

model, is that total external torques in Eq. (2.6) may be taken as null during the

course of a slewing maneuver. This assumption is quantified as reasonable because

the MMS is only used for momentum dumping and is generally not active during

a slew. Moreover, the magnitude of the environmental torques acting upon the

spacecraft are typically quite small during the course of a slewing maneuver.

Turning attention to the reaction wheel dynamics, the angular momentum of

each reaction wheel is modeled by the following equation:

hrw(t) = JrwΩrw(t)− JrwAᵀω(t), (2.7)

where Jrw is a diagonal matrix with Nrw entries along the main-diagonal, whose

i-th entry is the inertia of the i-th reaction wheel, which is assumed to be time

invariant with respect to the spacecraft body frame. The vector Ωrw(t) ∈ RNrw is

comprised of the angular rates of the reaction wheels about their respective spin
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axes. The angular momentum increment resulting from the spacecraft relative

to the wheels is described by JrwAᵀω(t). Because reaction wheels are normally

operated at a bias rate, Ωrw,i(t) � aᵀiω(t). Because of this, Eq. (2.7) may be

reasonably approximated as

hrw(t) = JrwΩrw(t). (2.8)

Noting that the reaction wheel control torque is given as

τrw(t) = ḣrw(t) = JrwΩ̇rw(t), (2.9)

the equations as derived in this section, along with the reasonable assumptions

made in this section, may be coalesced:

0 = τNext(t)

= d
dtH

N
tot(t)

= d
dtH

B
tot(t) + ω(t)× HBtot(t)

= Jscω̇(t) + Aḣrw(t) + ω(t)×(Jscω(t) + Ahrw(t))

= Jscω̇(t) + Aτrw(t) + ω(t)×(Jscω(t) + AJrwΩrw(t))

Synthesizing derivations made in this section, the equations of rotational motion

of a spacecraft with Nrw reaction wheels can be written in the following matrix

form:

 ω̇(t)

Ω̇rw(t)

 =

J−1
sc (−Aτrw(t)− ω(t)×(Jscω(t) + AJrwΩrw(t)))

J−1
rw τrw(t)

 . (2.10)
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2.1.2 Kinematics

To complete the spacecraft model, the attitude of the spacecraft is represented

using a quaternion parameterization. The choice of quaternions is by virtue of

being free of singularities or discontinuities inherit to three-parameter representa-

tions.36 The quaternion parameterization is taken as

q =
[
e1 sin

(
Φ
2

)
, e2 sin

(
Φ
2

)
, e3 sin

(
Φ
2

)
, cos

(
Φ
2

)]T

∈ R4, (2.11)

where e = [e1, e2, e3]T is the eigenaxis and Φ is the rotation angle about the eige-

naxis. With regards to the representation of rotations, quaternions are quite intu-

itive: e ∈ R3 may be composed of the direction cosines that orient the eigenvector,

and Φ gives the amount of rotation about the eigenaxis. The four-dimensional

parameterization of attitude given in Eq. (2.11) has further intuitive geometric

meanings that arises from the Euler’s rotational theorem37 which states that a

rigid body can be brought from an arbitrary initial orientation to an arbitrary

final orientation by a single rigid rotation, through a principal angle Φ about the

principal axis e which is fixed in both the initial and final orientation; Figure 2.1

is a visual depiction of Euler’s rotational theorem.

The quaternion parameterization given in Eq. (2.11) is a left-handed repre-

sentation; for a discussion on quaternion conventions, the reader is directed to

reference [38]. The quaternion kinematic differential equations are described by

the following system [25]:

q̇ = 1
2Q(ω)q, (2.12)
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Figure 2.1: Geometric description of the representation of attitude using a
quaternion parameterization: N may be rotated to B by rotating about the eige-
naxis e, by the amount of Ψ; image adapted from Ref. [2], pp. 96.

where Q(ω) is a skew-symmetric matrix given as

Q(ω) ,



0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


.

Quaternions are a redundant attitude parameterization, and so increase the di-

mension of the system’s state by one when compared to non-redundant three-

parameter attitude representations. Because quaternions are, however, free of

singularities or discontinuities inherit to three-parameter representations,36 and

so are well-suited for arbitrary large-angle slews. Moreover, since no trigonomet-

ric relations appear in the kinematic differential equations described in Eq. (2.12),

rather only products, quaternions are befitting for on-board real-time computa-
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tion,25 and have been implemented in spacecrafts such as Galileo,21 HEAO (High

Energy Astronomy Observatory),39 the space shuttle,21 as well as in TRACE.1

While quaternions are free of singularities, quaternions (i.e. unit quaternions

used for rotation) in Eq. (2.11), do have a quadratic norm constraint which must

be satisfied for valid rotations:25

1 = q2
1 + q2

2 + q2
3 + q2

4 (2.13)

2.2 Electrical Energy Modeling and Electrical

Metrics

An optimal-control problem formulation, which is composed of a cost func-

tional, the dynamics and boundary conditions of the underlying application, and

for practical problems consideration must be made concerning constraints upon

the state and control variables (e.g., saturation limits on the rate gyros and motor

torques), which take the form of path constraints. One of the keystones developing

the problem formulation is the choice of the performance index (i.e. cost func-

tional) in which to minimize over the entire maneuver trajectory. The motivation

of why to consider electrical energy models, is the minimization of the electrical

energy of a spacecraft performing a rest-to-rest slew. The manner in which the

spacecraft’s attitude is altered, is through the use of reaction wheels. Therefore,

the cost functional should be tied, as close as possible, to the underlying physics

and industry-knowledge of the application at-hand. Practical industry knowledge

gives that reaction wheels are inherently electric motors, driven by brushless direct

current (DC) motors.3,16,40,41
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2.2.1 Derivation of an Electric Model

From the standpoint of minimizing the energy consumption of the reaction

wheels to perform a slew, the electric motors which drive the reaction wheels

are modeled as direct current (DC) motors in steady state [3]. By this model

choice, inductive losses are assumed to be small compared to the DC power loss

in the windings. An electric motor is a device which converts electrical energy into

mechanical energy. A schematic depicting the equivalent electronic circuit of a DC

motor is shown in Figure 2.2. The armature circuit is given by a resistance (R) in

series with an inductance (I) as well as an induced voltage (Vemf ) that apposes the

voltage source V . The induced voltage Vemf is called the back electro-motor force

(EMF), and occurs due to the armature conductors turning through a magnetic

field (and therefore inducing an EMF).

Figure 2.2: Equivalent armature circuit of a DC motor, along with the mechani-
cal load of a reaction wheel (inertia J) under a drag torque, modeled linearly with
a viscous friction term β.

The dynamics of a DC motor consists of an electrical component (derived by

an application of Kirchoff’s law) as well as a mechanical component (derived by

Newton’s second law for rotational systems). Kirchhoff’s Voltage Law (KVL) gives
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that the sum of all voltages around the electrical loop must equal zero. Applying

KVL to the circuit in Figure 2.2 gives

0 = VR + VL + Vemf − V, (2.14)

where VR = IR is the voltage across the resistor, found by an application of Ohms

Law. Next,

VL = L
dI
dt ,

is the voltage across the inductor, and is proportional to the change in armature

current through the coil with respect to time. The back EMF, according to

Faraday’s Law of Inductance, is proportional to the speed of the motor (which is

taken as the speed of the reaction wheel Ω):

Vemf = KV Ω,

where KV ∈ R is a velocity constant is a given parameter, determined by i) the

flux density of the permanent magnets, ii) reluctance of iron core loss of armature,

iii) the number of turns of armature windings. Therefore Eq. (2.14) gives

V = IR + L
dI
dt +KV Ω (2.15)

Defining J as the inertia of the reaction wheel, and β as a viscous friction coeffi-

cient, the mechanical equation of the DC motor is arrived-upon via an application

of Newton’s second law:

JΩ̇ = τε − βΩ− τ`. (2.16)

where τε is the electromagnetic torque exerted by the motor, which is proportional
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to armature current:

τε = KτI

The scalar Kτ is based on the same three conditions as KV ; in SI units KV = Kτ

(Nm/A for Kτ , V/(rad/s) for KV ). The term βΩ is a drag torque which has been

modeled linearly as a viscous friction term, which acts opposite to the direction of

the torque exerted by the motor, and the term τ` is the torque of the mechanical

load. In the subsection to follow, this derived model is expanded to generate

very useful metrics which serve to measure instantaneous power consumption,

and energy consumption over a finite time horizon.

2.2.2 Electrical Power and Energy Metrics

From the derivations given in Eqs.(2.15) and (2.16), the electric motor of a

reaction wheel is modeled as a direct-current (DC) motor in steady state. The

average current I flowing through the armature in steady state must is taken as

the commanded torque (τrw = JΩ̇) and a viscous friction term (βΩ):

I(t) = 1
Kτ

(τrw(t) + βΩ(t)). (2.17)

where it is clear from Eq. (2.17) that the drag torque is modeled linearly with a

viscous friction term βΩ. The equation which describes the supply voltage to the

DC motor in steady state is given as

Vs(t) = I(t)R +KVΩ(t) (2.18)

As in the derivations of the electrical and mechanical equations of a DC motor,

in the above equations, V is armature voltage, I is the armature current, R is the
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armature resistance, KV is the back electromotive force (EMF) constant, Kτ is

the torque constant, β is the viscous friction coefficient. For SI units we note that

Kτ = KV . When determining the electrical power at any instant in time, which

is done by expanding the electrical power input equation P(t) = I(t)Vs(t) three

terms appear: an armature copper-loss term which represents power lost as heat

in the windings, a mechanical power term, and a term representing the amount

of power loss due to friction:

P(t) = Vs(t)I(t) = I2(t)R +KV Ω(t)I(t), (2.19)

= R

K2
τ

(τrw(t) + βΩ(t))2

︸ ︷︷ ︸
Copper Loss

+
Mechanical Power︷ ︸︸ ︷
τrw(t)Ω(t) + βΩ2(t)︸ ︷︷ ︸

Friction Loss

. (2.20)

The copper-loss term represents power lost as heat in the windings, and is propor-

tional to the amount of torque effort requested. The friction-loss term represents

the loss incurred to overcome wheel drag, and is proportional to the magnitude

of the angular velocity of the reaction wheel. Both the copper loss and the fric-

tion loss term in the electric power-input equation in Eq. (2.19) are known as

dissipative losses.

During the course of a maneuver, each motor which drives a reaction wheel may

alternate between acting as a load (Pi(t) > 0) or acting as a source (Pi(t) < 0).

In a system which implements a regenerative scheme, energy can be restored to

the system when the motor is acting as a source.24,42,43 In practice, regenerative

methods are typically not implemented for a spacecraft, so when a motor acts

as a source, the power it generates is shunted to ground via a ballast resistor.3

Because bus power is only being utilized by the reaction wheels when P > 0,the
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total electric power-input to an array of Nrw reaction wheels is given as:

Parray(t) =
Nrw∑
i=1
{Vi(t)Ii(t)}+ =

Nrw∑
i=1
{Pi(t)}+, (2.21)

where {·}+ is defined as

{f(t)}+ =


f(t) if f(t) > 0

0 if f(t) ≤ 0
. (2.22)

Integrating Eq. (2.21) represents the total electrical-energy required by the reac-

tion wheel array to perform a slew over the transfer time [0, T ]:

E =
∫ T

0
Parray(t) dt. (2.23)

Although E represents the electrical energy consumed when performing a ma-

neuver, taking E as the cost functional in an optimal control problem poses both

significant numerical as well as theoretical challenges, in that P is a non-smooth

function with respect to both the reaction wheel motor torque and wheel-speed.

Indeed, a substantial contribution from this collection of research is working with

Eq. (2.23) (through a metric which will define electrical dissipative losses) and

developing a method to minimize Eq. (2.23) in an optimal control problem for-

mulation.

The following section expands upon why Eq. (2.23) poses such a challenge. The

positive-only portion of the reaction wheel power-input equation of Eq. (2.23) is

fundamentally tied to an L1 norm, demonstrated by the following relation:

{Pi(t)}+ = 1
2(Pi(t) + |Pi(t)|) for each i = 1, . . . , Nrw. (2.24)
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Therefore the total electrical energy consumed on the time interval [0, T ], may be

expanded as

E =
∫ T

0
Parray(t) dt,

=
∫ T

0

Nrw∑
i=1
{Pi(t)}+ dt,

=
∫ T

0

Nrw∑
i=1
{Vi(t)Ii(t)}+ dt,

= 1
2

∫ T

0

{
Nrw∑
i=1
Pi(t) +

Nrw∑
i=1
|Pi(t)|

}
dt. (2.25)

Along with Eq. (2.21), which describes the total amount of energy consumed by

the reaction wheel array, another useful energy metric is the cumulative amount of

dissipated energy by the reaction wheel array. Being able to measure dissipative

losses is valuable metric, for dissipative losses are rejected as heat. By being

able to reduce dissipative losses, would reduce induced thermal stresses in wheel

drive electronics and wheel bearing/lubrication systems.44 Additionally, small

spacecrafts are limited in how much heat they may reject,24 so being able to

measure (and hence potentially minimize) dissipative losses offers potential benefit

to attitude control. The metric measuring the total dissipation loss incurred

throughout the course of the slewing maneuver is defined as the total amount of

copper and frictional losses incurred by the motors over the course of a slewing

maneuver:

E losstotal ,
Nrw∑
i=1
Closs,i +

Nrw∑
i=1
Floss,i, (2.26)
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where, for each i = 1, . . . , Nrw,

Closs,i ,
∫ T

0
I2
i (t)Rdt (2.27)

Floss,i ,
∫ T

0
βvΩ2

rw,i(t) dt. (2.28)

Equations (2.27) and (2.28) represent the cumulative electric-energy lost in the

motor windings, Closs, and cumulative electric-energy lost due to friction incurred

by the reaction wheel motors, Floss, over the course of a slew.

E , a new metric is instead considered which measures the electrical power under

the assumption of a 100 percent regenerative scheme. This regenerative-scheme

metric is simply given as the summation of the individual electrical powers:

Prgntotal(t) =
Nrw∑
i=1

Vi(t)Ii(t). (2.29)

The motivation for Eq. (2.29) comes from reference [24], in which the following

cost functional was considered that considers power metric based off of a 100

percent regenerative mechanical power scheme:

Prgnmech(t) =
Nrw∑
i=1

τrw,i(t)Ωrw,i(t). (2.30)

From the relationship of the torque generated about each reaction wheel about its

spin axis, τrw = JrwΩ̇rw, the following relation is arrived upon by an application

of integration by parts:

∫ T

0

Nrw∑
i=1

τrw,i(t)Ωrw,i(t) dt =
Nrw∑
i=1

Jrw,i
2

(
Ω2
rw,i(T )− Ω2

rw,i(0)
)
, (2.31)

where Jrw,i is the inertia of the i-th reaction wheel. When the starting and ending

wheel speeds are fixed for each maneuver, Eq. (2.31) is a fixed constant. Due to
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jitter associated to stiction, resultant when operating a reaction wheel near a zero-

angular velocity,reaction wheels are typically held at a constant nominally away

from zero between slews and in practice, zero-crossings are typically minimized

in order to prolong the life expectancy of reaction wheels.44 Therefore from a

practical flight setting, the spacecraft is flown with a fixed starting and ending

wheel bias. Integrating Eq. (2.29) in the situation where a slew begins and ends

with the same wheel bias (i.e. all reaction wheels start and end at the same speed)

yields the following simplified energy metric:

Ergn =
∫ T

0
Prgn(t) dt (2.32)

=
∫ T

0

Nrw∑
i=1

Vi(t)Ii(t) dt

=
∫ T

0

Nrw∑
i=1

(
R

K2
τ

(τrw,i(t) + βvΩrw,i(t))2 + βvΩ2
rw,i(t)

)
dt

=
∫ T

0

Nrw∑
i=1

R

K2
τ

(τrw,i(t) dt+ βvΩrw,i(t))2 +
∫ T

0

Nrw∑
i=1

βvΩ2
rw,i(t) dt

=
∫ T

0

Nrw∑
i=1

I2
i (t)Rdt+

∫ T

0

Nrw∑
i=1

βvΩ2
rw,i(t) dt.

=
Nrw∑
i=1
Closs,i +

Nrw∑
i=1
Floss,i

= E losstotal (2.33)

Equation (2.32) is the energy required to perform a slew under a 100 percent

electric-regenerative scheme under the assumption of a matching starting and end-

ing bias for each wheel. But, Ergn serves as a secondary metric as well, measuring

the cumulative amount of energy lost as heat occurring in the windings and energy

lost as heat due to overcoming friction. This is seen from Eq. (2.32), as Ergn is the

summation of the copper-loss and friction-loss term for each reaction wheel mo-

tor. Therefore, while an ideal motor which can achieve 100% regenerative motor
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is idealistic and can not exist in practicality, this metric can answer a very impor-

tant question on whether regenerative methods should be implemented. Earlier

in this chapter it was mentioned that regenerative methods upon spacecraft are

rarely implemented in practice, if at all. The regenerative metric in Eq. (2.29)

could be used to determine an upper bound on the maximum amount of possible

energy regeneration, if a regenerative system was implemented on a spacecraft.

Additionally, due to this research avenue discussed in the preceding paragraphs,

the following observation can be made concerning the minimization of energy for

reaction wheel slews and that, if not careful in the selection of the components of

an optimal control formulation, an ill-posed problem may result.

In a practical setting, where the reaction wheels start and end at a fixed wheel-

bias, integrating Eq. (2.30) results with a value of zero, as seen in Eq. (2.31). Hence

there is noting to optimize if the running cost is taken as Eq. (2.30). Therefore, at-

tempting to use Eq. (2.30) for the application where the reaction wheels are set to

begin and end at a bias results with an ill-posed problem in dynamic optimization.

In the setting where the starting and ending reaction wheels speeds are not

fixed, then Eq. (2.31) depicts that the only way to minimize energy when the

running cost is Eq. (2.30), is to modify either the starting or ending speeds of the

reaction wheels.
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Chapter 3

The Relationship between

Electrical Energy and Transfer

Time Under Minimum

Dissipative Losses
“The longest way round is the
shortest way home.”

James Joyce
Ulysses

The dichotomy between minimum time and minimum effort is well known.

Minimum time solutions are synonymous with large effort, whereas minimum ef-

fort solutions imply large time horizons. Shortest-time attitude maneuvers are

minimum time slews for agile reorientation of space vehicles. Intuition and ex-

perience would suggest that such maneuvers are expensive in terms of effort. In

this chapter, we show that this is not the case: agile maneuvers exist within the

energy budget associated with conventional attitude control systems. Moreover,

even for conventional slew strategies (such as eigenaxis) energy requirements can

36



be reduced. The energy savings are realized via a re-allocation of the control

effort by exploiting null motions within the control space, while shaping the ve-

locity profile of the spacecraft over the maneuver trajectory. We develop a cost

functional for minimum energy slews that is in-line with true energy cost asso-

ciated to reaction wheel-based attitude control systems. This energy metric is

incorporated into a family of constrained nonlinear optimal control formulations

whose solutions present a relationship between transfer time and energy. Both

agile (off-eigenaxis) slews and conventional (eigenaxis) slews are studied. A trade

space between transfer time and energy is identified, which can be exploited for

mission operations, planning and design.

3.1 Introduction

Minimum time attitude maneuvers have been widely studied in the literature.

The survey paper by Scrivener and Thompson45 describes the state of the art up

to 1994. The early work, which focused largely on kinematic motion planning

(under the assumption of a spherical inertia tensor), showed that the slew time

improvement was typically small (less than 1% for a 30 deg maneuver).14 Later,

Shen and Tsiotras,46 and Proulx and Ross47 studied minimum-time maneuvering

for the cases of axisymmetric and non-symmetric rigid bodies, respectively. In

their work, higher performance was obtained by considering the full dynamics of

the spacecraft. Fleming48 and Fleming et al. in Refs. [49–52] further advanced the

analysis to the more realistic cases of spacecraft equipped with various actuators,

from magnetic torquers to reaction wheels and control moment gyros (CMGs). In

2010, flight tests on the TRACE spacecraft showed that shortest-time maneuvers

– slews designed to exploit the spacecraft dynamics – can indeed enhance the

performance of practical space systems.1,6
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In the body of work described in the preceding paragraph, the primary focus

was on enhancing spacecraft agility by reducing maneuver time. Experience and

intuition would suggest that the price to be paid for a reduction in slew time is a

significant increase in the energy that must be expended in order to execute the

slew. Energy is a fundamentally-limited resource of a spacecraft: directly affect-

ing its utility and mission life. With this in mind, operational implementation

of intuitively “inefficient” agile maneuvers may seem contrary to the stringent re-

quirements on the size, weight and power of a satellite attitude control system.

The goal of this chapter is to explore the relationship between maneuver time and

energy for reaction wheel attitude control in order to determine the boundaries

of the energy budget for agile attitude control. In order to accomplish this task,

it is necessary to identify suitable energy metrics for measuring the consumption

of agile maneuvering schemes. Existing research on minimum energy attitude

maneuvers for reaction wheel spacecraft has been approached from a variety of

perspectives concerning the way in which reaction wheel power is modeled, and

whether energy consumption is minimized instantaneously – a local approach –

or over an entire trajectory – a global approach.

The local approach minimizes the instantaneous reaction wheel power by static

optimization. In the literature, various proxies for instantaneous reaction wheel

power have been employed. In Refs. [24, 35], solutions were developed that min-

imize the reaction wheel mechanical power for a spacecraft with a redundant

actuator array. This was done by allocating the body frame control torques de-

termined by a given attitude control law to the individual reaction wheels. In

Ref. [35] the L2 norm of reaction wheel mechanical power, τΩ, was minimized,

whereas in Ref. [24] mechanical power was minimized under the assumption that

mechanical energy may be extracted when braking a wheel. The instantaneous

38



L1 norm of mechanical power was considered in Ref. [53] as a part of a dissipative

power reduction allocation scheme.

The global approach minimizes the energy over the entire maneuver trajec-

tory, i.e. the integral of the instantaneous power, by constructing and solving

an optimal control problem.54–56 For example in Ref. [54], the cost functional

was constructed to minimize the integrated reaction wheel copper-loss, I2R, the

current-squared times winding resistance. Reaction wheel friction losses were

not considered so minimizing the copper loss was analogous to minimizing the L2

norm of the reaction wheel motor torque, τ . Global optimization using a quadratic

performance index based on reaction wheel mechanical power was considered in

Ref. [55] for a single wheel slew and in Ref. [56] for a three wheel array. In real-

ity, a model for reaction wheel power consumption is more complicated than the

simplified models based on mechanical power or copper-loss would suggest. Three

terms should be considered simultaneously: the copper-loss, friction loss, and the

mechanical power. A complication, however, is that such a model additionally re-

quires that only the positive part of the reaction wheel power be considered since

energy is only consumed when a wheel motors act as a load. Energy generated

when the wheel motors act as sources, the negative part of the power equation,

is typically shunted to ground. The resulting non-smooth optimal control prob-

lem can be challenging to solve, thus motivating the use of proxies for power as

described above.

In this chapter, the relationship between maneuver time and energy for a

practical reaction wheel attitude control system is studied for both on-and off-

eigenaxis maneuvering under minimum dissipative losses. The total amount of

energy consumed to complete a slew is computed by identifying, at each instant

of time, whether a motor is acting as a consumer or a generator and integrat-
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ing only the positive part of the reaction wheel power equations. It is observed

that for a zero-net bias momentum control system where the reaction wheels are

operated about a nominally fixed bias rate, the reaction wheel electrical power

input equation can be reduced to a quadratic form comprising only dissipative

terms. Thus, a smooth cost functional can be written based on the cumulative

dissipative losses. This energy metric is incorporated into a constrained nonlinear

optimal control problem formulation that is solved using Pseudospectral optimal

control theory.20 The constructed optimal control problem formulation directly

considers the nonlinear dynamics of the rotating spacecraft, along with state and

control constraints pertinent to an operational environment, for example reaction

wheel speed bias, limits on achievable-torque and momentum, as well as satu-

ration of the rate-gyros. The relationship between transfer time and energy is

determined by solving a series of fixed-time problems for both agile (off-eigenaxis)

slews and conventional (eigenaxis) slews. The results indicate a a counterintu-

itive result, that agile maneuvers can, in fact, be performed within the energy

budget associated with a conventional attitude control system. Moreover, energy

requirements for conventional slew strategies (such as eigenaxis) can be reduced.

The dichotomy between minimum time and minimum effort is addressed via the

additional degrees-of-freedom associated with the redundant reaction wheel ar-

ray. In particular, the results show that the energy savings are realized via a

re-allocation of the control effort by exploiting null motions within the control

space while simultaneously shaping the spacecraft angular velocity profile. Thus,

a trade space between transfer time and energy exists which can be exploited for

mission operations, planning and design.

The remainder of this chapter is organized as follows. In section 3.2.2, a set of

optimal control problems are formulated to minimize the energy required to per-
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form a rest-to-rest maneuver under various constraints in line with an operational

setting. Section 3.3 analyzes the minimum energy maneuvers, and elaborates

on the mechanism for energy reduction by an analysis of the reaction wheel null

space. Section 3.4 presents the results on the nonlinear relationship between trans-

fer time and energy required to perform a maneuver for both agile (off-eigenaxis)

and conventional (eigenaxis) slews. The trade space between energy and trans-

fer time between for various maneuver types is identified and explored. Lastly,

conclusions are given in section 3.5.

3.2 The Development of Minimum Dissipative

Losses Problem Formulations

This section presents the development of a family of constrained high dimen-

sional nonlinear (time fixed) optimal control formulations for the minimization

of (electrical) dissipative losses. This family consists of a formulation for off-

eigenaxis maneuvering, and a formulation which enforces on-eigenaxis (or rather,

just “eigenaxis”) maneuvering. This section will go over the details of the develop-

ment of an optimal control problem. The development of a problem formulation

is iterative; it is also a very creative process. What follows is a brief discussion

on what constitutes an optimal control problem formulation. A problem formu-

lation first begins, always, with a word problem; some problem whose solution is

desired. The entirety of this dissertation tackles the problem of minimizing the

energy associated with performing a slew for a reaction wheel spacecraft. Based

upon the direction given by the word problem, the dynamics is the next step. For

this dissertation, “Reaction wheel spacecraft” is the portion of the word problem

which dictates the direction for the dynamics, (which were derived in Chapter 2).
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Concerning the dynamics, there is a very important choice to the level of fidelity

of the dynamical model as well as the coordinate system. Often engineering appli-

cations will have a truth model, as well as an optimization model (for example, a

six degrees of freedom model for the truth model, and a three degrees of freedom

for the optimization model). The truth model is usually of the highest fidelity

possible. This fidelity does not often (if ever) lend itself well being model upon

which optimization is performed (i.e. the optimization model). For example, in

this work, an approximation was made in Eq. 2.8 because the small addition of

angular momentum resulting from the spacecraft relative to the wheels is so small

that its presence does not effect the solutions to the optimal control problem.

Along with the dynamics of the system, the word problem also states the prac-

tical constraints pertinent to the environment. These constraints take the form

of path constraints in the problem formulation, as well as the boundary condi-

tions: Because the application is a rest-to-rest slew, under a specified starting

and ending wheel bias, there shall be a starting and ending attitude (in the form

of a quaternion parameterization), starting and ending angular velocity of the

spacecraft body of zero, and a starting and ending reaction wheel speeds. Now,

with the dynamics, boundary conditions and path constraints the cost functional

is the last portion to obtain an optimal control problem formulation. Once again

it is the word problem which dictates the direction for the choice to the cost func-

tional. For the application and aims of this dissertation, the cost functional is to

minimize the energy of the spacecraft.

This chapter is organized as follows: In the first section, problem formula-

tions are constructed for both off-eigenaxis and on-eigenaxis maneuvering (in Sec-

tion 3.2.2). In the section that follows, the necessary conditions for optimality are

derived for the off-eigenaxis formulation by application of Pontryagin’s Minimum
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Principle. A minimal dissipative losses maneuver which has the same transfer

time as the shortest-time maneuver is demonstrated to satisfy the necessary con-

ditions of optimality. This maneuver will be compared to the solved shortest time

maneuver in Section 3.3.1 to demonstrate that shortest time maneuvers are not

unique in regards to energy.

3.2.1 Selection of Cost Functional

This section defines the selection of a cost functional which minimizes the

dissipative losses incurred by the reaction wheel motors.Chapter 2 developed the

base energy metrics for the electrical power input equation, electrical energy, and

the dissipative loss metric. While E represents the energy consumed to perform

a maneuver, taking E as the cost functional in an optimal control problem poses

a numerical challenge since P+ is a non-smooth function, as discussed in chap-

ter 2, which involves the L1 norm of both state and control. It will be shown

in Chapter 4, that a new method in the field of optimal control theory had to

be invented to solve the minimum the minimum electrical energy formulation.

Alternatively to directly minimizing E , for each reaction wheel, we may write

P+ = 1
2(P + |P|) ≤ 1

2(τrwΩ + |τrwΩ| + 2Dloss) where Dloss is the instantaneous

dissipative loss in Eq. (2.19). Integrating this equation term by term (to evaluate

energy consumption over a slew) gives

E(T ) ≤ Jrw
4
(
Ω2
rw(T )− Ω2

rw(0)
)

+
∫ T

0

(
|τrw(t)Ωrw(t)|

2

)
dt+

∫ T

0

(
R

K2
T

(τrw(t) + βΩrw(t))2 + βΩ2
rw(t)

)
dt.

(3.1)
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If it is assumed that each slew begins and ends with the same wheel bias, the first

term in Eq. (3.1) is null leaving

E(T ) ≤
∫ T

0

(
|τrw(t)Ωrw(t)|

2

)
dt+

∫ T

0

(
R

K2
T

(τrw(t) + βΩrw(t))2 + βΩ2
rw(t)

)
dt,

(3.2)

which may be further decomposed into the following relationship

E(T ) ≤
∫ T

0

(
|τrw(t)Ωrw(t)|

2

)
dt+ Closs + Floss, (3.3)

where Closs and Floss are given in Eqs. (2.27) and (2.28).

From Eq. (3.3), it is evident that a cost functional that minimizes the dissi-

pative losses would also tend to reduce the integral involving the absolute value

because the quadratic terms penalize large values of τrw and Ωrw. Therefore,

minimizing the cumulative dissipative losses serves as a useful proxy for energy

consumption over a slew. Thus, an appropriate smooth cost functional for optimal

control is to minimize is the total dissipative loss metric of Eq. (2.26) while still

being a metric in line with the operation of a reaction wheel:

E losstotal =
Nrw∑
i=1
Closs,i +

Nrw∑
i=1
Floss,i. (3.4)

We note three remarks by taking E losstotal as the cost functional to a minimal electri-

cal energy maneuver: (i) Trajectories which minimize E losstotal minimize dissipative

losses, and therefore the amount of heat the spacecraft has to reject is minimized.

(ii) While Eq. (3.4) ultimately provides an estimate for energy consumption, it is

always possible determine the true energy consumption E for an optimized slew a

posteriori for comparison with conventional maneuvers. (iii) The metric E losstotal

serves to measure the electrical power under the assumption of a 100 percent
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regenerative scheme,57 which is derived in chapter 2.

3.2.2 Minimum Dissipative Losses Problem Formulation

for Off-Eigenaxis and On-Eigenaxis Maneuvers

In this section, the energy cost functional developed in the previous section is

used towards formulating an optimal control problem for minimizing the electrical

energy required for slew. Rest-to-rest maneuvers (i.e. ω0 = ωf = 0 ∈ R3) from

an initial orientation q0 ,
[
e0 sin

(
Φ0
2

)
, cos

(
Φ0
2

)]ᵀ
∈ R4 to a final orientation given

by qf ,
[
ef sin

(Φf

2

)
, cos

(Φf

2

)]ᵀ
∈ R4 are considered. By a simple change of the

boundary conditions, other operational slew scenarios could also be evaluated.

The optimal control problem formulation incorporates practical constraints on

both the state and the control variables that are in-line with typical operations:

(i) The reaction wheels start and end at the same bias speeds, Ωbias. (ii) Per axis

limits, ωmax, are imposed upon the spacecraft angular rate to avoid saturation of

the rate-gyros. (iii) Hardware constraints are considered for the reaction wheels

with respect to momentum storage, Ωmax, and maximum torque, τmax, authority

for each reaction wheel.

The optimal control problem formulation, presented as follows, is hereafter
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referred to as the Minimum-Energy (ME) formulation:

(ME)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw , Control: u = τrw ∈ RNrw ,

Minimize: J [x(·), u(·)] =
∫ T

0

Nrw∑
i=1

(
R

K2
T

(τrw,i(t) + βΩrw,i(t))2 + βΩ2
rw,i(t)

)
dt

Subject To: 
q̇

ω̇

Ω̇rw

 =


1
2Q(ω)q

J−1
sc (−Aτrw − ω ×(Jscω + AJrwΩrw))

J−1
rw τrw



x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw ,

x(T ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw

|τrw,i| ≤ τmax, ∀ i = 1, . . . , Nrw

(3.5)

The state space of the system consists of the attitude of the spacecraft, angular

velocity of the spacecraft body, and angular velocities of the reaction wheels (about

their individual spin-axis). The control vector is taken as the vector of individual

reaction wheel torques. The upper bound on the transfer time is given by T . For

problem ME to be feasible, the value of T must be, at minimum, the transfer-time

of the shortest-time maneuver (denoted tSTM) for the same boundary conditions.

For a minimum energy problem, it is typical for the maneuver time horizon to be

longer than shortest time, i.e. T > tSTM . From this point of view, a minimum

energy shortest-time maneuver can be determined by setting T = tSTM . We note

that tSTM can be determined by a simple modification to the cost functional by

rewriting J [x(·), τrw(·), tf ] = tf and allowing 0 ≤ t ≤ ∞.
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As problem ME does not impose a motion constraint to force an eigenaxis

slew, off-eigenaxis motions are allowed if they are advantageous with respect to

meeting a given constraint on the slew time. The analysis to follow is, however,

also concerned with evaluating the energy requirements of eigenaxis slew profiles

against the conventional eigenaxis control logic.25 To achieve an eigenaxis ma-

neuver under a slew-rate constraint, the ME formulation presented in Eq. (3.5)

requires two modifications. To constrain the motion of the spacecraft, the angu-

lar velocity vector of the spacecraft must always be collinear with the eigenaxis.23

Including the following path-constraint as part of problem ME achieves this goal:

ω(t)× e = 0 ∈ R3, ∀ t ∈ [0, T ]. (3.6)

It is also necessary to enforce a spherical slew rate constraint. This can be done

by including an additional path constraint of the form ‖w‖ ≤ ωmax. By inserting

these two path constraints, both a shortest time eigenaxis-constrained maneuver,

as well as a minimum energy eigenaxis maneuver (ME-EAM) may be determined.

In the next section, we briefly describe some key necessary optimality conditions.

3.2.3 Derivation of the Necessary Conditions For Optimal-

ity

For the sake of brevity, only the necessary conditions pertaining to problem

ME, given in Eq. (3.5), are considered in this section. The necessary conditions

for the variants of problem ME (such as maneuvering along an eigenaxis) may be

derived analogously.

At the heart of the Pontryagin’s Minimum Principle is the Hamiltonian Mini-

mization Condition (HMC). The HMC requires for an extremal control u∗ = τrw
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to be optimal, that u∗ must minimize the control Hamiltonian at each instant of

time. Let λq ∈ R4, λω ∈ R3, λΩ ∈ RNrw be the costate variables for the respective

states. The HMC for problem ME can be summarized as:

(HMC)



Min: H(λ, x, u) = P losstotal(x, u) + [λqᵀ, λωᵀ, λΩ
ᵀ]


1
2Q(ω)q

J−1
sc (−Au− ω ×(Jscω + AJrwΩrw))

J−1
rw u


Subject to: −ωmax ≤ ωi ≤ ωmax, ∀ i = 1, 2, 3

−Ωmax ≤ Ωi ≤ Ωmax, ∀ i = 1, . . . , Nrw

−τmax ≤ ui ≤ τmax, ∀ i = 1, . . . , Nrw

,

where P losstotal(x, u) = ∑Nrw
i=1

R
K2

T
(τrw,i + βΩrw,i)2 + βΩ2

rw,i. An application of the

Karush-Kuhn-Tucker (KKT) conditions on HMC results in the following comple-

mentarity conditions that require each component of ω,Ω, u and the associated

KKT multipliers µ , [µω, µΩ, µu]ᵀ ∈ R3+2Nrw to satisfy

µωi



≤ 0 ωi = −ωmax

= 0 −ωmax < ωi < ωmax

≥ 0 ωi = ωmax

, µΩi



≤ 0 Ωrw,i = −Ωmax

= 0 −Ωmax < Ωrw,i < Ωmax

≥ 0 Ωrw,i = Ωmax

, µui



≤ 0 ui = −τmax

= 0 −τmax < ui < τmax

≥ 0 ui = τmax

.

(3.7)

Furthermore, the Hamiltonian Evolution Condition requires that the lower Hamil-

tonian H(λ(t), x(t), u∗(t)), be constant for all time, i.e.

∂H
∂t

= 0 ∀t

To illustrate the application of the complementarity condition and Hamilto-

nian Evolution Condition as tests for optimality, problem ME was solved for a

180-degree z-axis slew. The associated spacecraft parameters are given in the

Appendix. The maneuver time was taken to be T = 279.9 seconds (the minimum
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transfer time for this particular maneuver), thereby considering a minimum energy

shortest time maneuver. The solution gave a value for E as 143.9 J. The associated

attitude, angular rate, and reaction wheel speed profiles are shown in Figure 3.1.

The analysis of the minimum-energy shortest-time maneuvers compared to stan-

dard shortest-time maneuvers, in the subsequent section of this chapter.

(a) Attitude quaternions profile (b) Spacecraft body-rates

(c) Reaction wheel speeds (d) Reaction wheel motor Torques

Figure 3.1: State and control profiles of a Minimal Energy Shortest Time Ma-
neuver for a 180-deg rest-to-rest slew about the spacecraft z-axis: (a) attitude;
(b) body rates; (c) reaction wheel rates; (d) body torques (control).

Figure 3.2 shows the satisfaction of the necessary conditions for the maneuver

of Figure 3.1. The time history of the lower Hamiltonian is shown in Figure 3.2a.

For a minimum time problem, Pontryagin’s Minimum Principle states that the
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value of the lower Hamiltonian should be −1 over the entire time horizon [0, T ].

While the lower Hamiltonian in Figure 3.2a is observed to be nominally constant

as required by the Hamiltonian Evolution Condition, the value is not −1 as pre-

dicted by the minimum principle. This discrepancy is a result of the fact that

problem ME was solved as a fixed time problem instead of a minimum time prob-

lem. For the case of a fixed time problem„ the transversality conditions admit

other constant values for the Hamiltonian. Hence, the value H(t) = −36.1 J/s

in Figure 3.2a satisfied the necessary condition. Figure 3.2b shows the comple-

mentarity condition on the spacecraft angular rate, ω2. As can be seen, the KKT

multiplier varies in accordance with Eq. (3.7) which specifies that µωi
= 0 unless

the constraint on ωi is active. Profiles for the other spacecraft body axes are simi-

lar, and so the results are omitted for brevity. The specifics on the other necessary

conditions such as the details on transversality, the Hamiltonian value conditions,

etc. while verified, have been omitted for brevity.

(a) (b)

Figure 3.2: Verification of necessary conditions to the Minimum Energy Short-
est Time Maneuver, 180-deg rest-to-rest slew about the spacecraft z-axis: (a)
Consistency of the Lower Hamiltonian by Hamiltonian Evolution Equation; (b)
Complementarity condition for ω2. depicted in Figure 3.1.

In addition to verifying the satisfaction of the necessary conditions for each

candidate optimal control solution it is also necessary to demonstrate the feasibil-
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ity of candidate optimal control, u∗, in order to fully vet the numerical solutions

(see the discussion on verification and validation in Ross58). Feasibility analysis

is carried out by propagating u∗ through the dynamics given in Eq. (3.5) using a

standard Runge-Kutta (RK) integrator. The candidate optimal control is deemed

feasible if and only if the solution returned by the RK integrator coincides with

the solution returned by the numerical solver to within a predefined tolerance e.g.

ε < 10−6 where ε is the relative error. All of the numerical solutions to problem

ME presented in this chapter have been verified against the necessary conditions

and have been deemed feasible per the propagation test.

3.3 Identifying the Mechanism for Energy Re-

duction

This section analyzes the minimum energy solutions to problem ME problem

given in Eq. (3.5) for the case of minimum time (off-eigenaxis) slews. The results,

however, are also applicable to conventional eigenaxis maneuvering schemes.

3.3.1 Comparison with the Shortest-Time Maneuver

The shortest-time maneuver (STM)1,5, 6 is a time-optimal attitude maneuver

determined as the solution to an optimal control problem. The STM maximizes

the agility of a spacecraft, building the angular velocity about all three body

axes simultaneously, by taking full-advantage of the inertia ellipsoid,20 nonlinear

rotational dynamics, and all operational constraints imposed system. In order

to solve the STM, a problem formulation analogous to problem ME is employed

with J [x(·), u(·)(·), tf ] = tf . For the same 180-deg z-axis slew example as in

the previous section, we obtain the solution given in Figure 3.3. Comparing the
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STM of Figure 3.3 with the ME slew of Figure 3.1, we note the following: (i) the

spacecraft attitude and angular rate profiles have not changed; (ii) the reaction

wheel speed profiles have changed. The results illustrate what is obvious in retro-

spect. In order to effect the necessary momentum exchange with the spacecraft,

the solution to the minimum-time maneuvering problem (Figure 3.3) must admit

a feasible reaction wheel speed profile. However, due to the additional degree(s)-

of-freedom inherent to the redundant reaction wheel array, feasible reaction wheel

speed profiles may not be unique. In particular, if the null space of reaction wheel

projection matrix A is nontrivial, there exists an infinite number of feasible re-

action wheel speed profiles for a given slew. Hence, for a given maneuver time,

it is possible to reduce the energy consumed by searching the reaction wheel null

space in order to eliminate losses associated with the original minimum time so-

lution by re-allocating the control. This suggests that, the relationship between

the two different cost functionals that define the trade space of a redundant atti-

tude control system is atypical. For example, conventional wisdom would suggest

that reducing energy consumption would increase transfer time. However, in the

case of a redundant attitude control system, it is in fact possible to reduce energy

consumption without increasing the transfer time. Although an agile off-eigenaxis

maneuver is considered here, it will be shown later that the same mechanism can

be exploited for reducing the energy required to perform eigenaxis maneuvers.

The break-down of the energy requirements for the maneuvers of Figures 3.1

and 3.3 are summarized in Table 3.1. In Table 3.1, the cumulative electrical energy,

E is given along with the energy dissipated as heat, E losstotal, and its two components

of copper loss and friction loss. Although each maneuver has a transfer time of

279.9 seconds, the slews have significantly different energy requirements as seen

by the difference in the values of E . By solving problem ME, it is possible to
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(a) Attitude quaternions profile (b) Spacecraft body-rates

(c) Reaction wheel speeds (d) Reaction wheel motor Torques

Figure 3.3: State and control profiles of a Minimal Energy Shortest Time Ma-
neuver for a 180-deg rest-to-rest slew about the spacecraft z-axis: (a) attitude;
(b) body rates; (c) reaction wheel rates; (d) body torques (control).

reduce the energy required by approximately 11%. The metrics in Table 3.1 show

that solving the ME problem reduces the overall energy that is dissipated as heat,

as seen by the copper loss and friction loss metrics, by approximately 11%. By

marginally penalizing copper loss by 2%, the losses in overcoming wheel friction

drag are substantially reduced, by 30%. Therefore, there exist less demanding

shortest-time trajectories with respect to energy requirements as well as amount

of generated dissipative losses. Therefore, shortest time maneuvering is not unique

with respect to energy, and should a setting in which the most agile maneuvering is
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required, there exists less demanding maneuvers. Due to the substantial decrease

in friction loss, the minimal energy shortest time maneuver potentially will not

be as demanding upon the reaction wheel motors as the traditional shortest time

maneuver, and therefore potentially increase the longevity of the reaction wheels.

Table 3.1: Electrical energy metrics for a baseline shortest-time maneuver and a
minimum-energy maneuver which is equivalent in transfer time (values in paren-
thesis represent percentage change from baseline).

Maneuver Type E (J) E losstotal (J) Closs (J) Floss (J)
Shortest-time maneuver 162.0 136.3 79.7 56.6

ME shortest-time maneuver 143.9 (-11.2%) 121.0 (-11.2%) 81.3 (+1.9%) 39.7 (-29.8%)

3.3.2 Exploiting the Nullspace to Reduce Energy Require-

ments

In this section the utility of the reaction wheel nullspace (i.e.: the nullspace

of the matrix A which projects from the reaction wheel actuator frame to the

spacecraft body frame) is further explored, and a simplified problem that facili-

tates real-time implementation of (sub)-optimal null space solutions for reducing

energy requirements is developed. As discussed in section 3.3.1 of this chapter, be-

cause the attitude profiles match in Figures 3.3 and 3.1the difference in electrical

energy between the two time-optimal maneuvers given in Table 3.4 and Figures 3.3

and 3.1 is due to null motions. Null motions allow the energy profile to be altered

while not effecting the attitude profile. Therefore, in a situation where an attitude

profile must be tracked, null motions may be employed to ameliorate the energy

requirements. To further develop and examine null motions, let

{qref (t), ωref (t),Ωref (t), τref (t)} , t ∈ [0, tf ] (3.8)
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be an arbitrary feasible reference state-control profile that satisfies the dynamics,

boundary conditions and constraints given in Eq. (3.5). By exploring null mo-

tion explicitly, we will show in the following that the energy consumption of any

given feasible solution can be improved without changing the reference quaternion,

qref (t), or the body rate, ωref (t), profile.

For the tetrahedron wheel configuration with projection matrix A given in

Table A.1, it is straightforward to show that

null(A) = span {[1, 1, 1, 1]ᵀ} ⊂ R4.

Consider a modification on the reference control, τref , in the null space of matrix

A:

τ(t) = τref (t) + δτ(t) · [1, 1, 1, 1]ᵀ , (3.9)

where δτ(t) : [0, tf ] −→ R is an augmentation factor to the reference control

through null motions. From the dynamics, it is easy to show that the modified

control τ(t) produces the same quaternion, qref (t), and the body rate, ωref (t), as

the reference feasible trajectory. Similarly, the effect of the modified control on

the wheel speed is given by

Ω(t)− Ωref (t) =
∫ t

0
δτ(s)ds · J−1

rw [1, 1, 1, 1]ᵀ . (3.10)

For simplicity in exposition, we assume all reaction wheels are identical, therefore

J−1
rw = cI ∈ RNrw×Nrw , where c ∈ R>0 is the multiplicative inverse of the inertia

of a reaction wheel. (If wheels are not identical, so that Jrw is not a multiple

of identity matrix, the following analysis can be easily adapted.) It follows that
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Ω(t) = Ωref (t)+δΩ(t) · [1, 1, 1, 1]ᵀ, where δΩ is one dimensional function satisfying

˙δΩ = c · δτ. (3.11)

Because each wheel is assumed to begin and end with the same angular velocity, a

practical operational constraint is given by the boundary conditions in Eq. (3.5),

δΩ must have

δΩ(0) = δΩ(tf ) = 0. (3.12)

Now it is clear that any function pair (δΩ(t), δτ(t)) that simultaneously satisfies

the one dimensional linear dynamics in Eq. (3.11), boundary condition Eq. (3.12)

and constraints

|Ωref,i + δΩ| ≤ Ωmax, |τref,i + δτ | ≤ τmax, i = 1, 2, · · · , Nrw (3.13)

produces a trajectory {qref (t), ωref (t),Ω(t), τ(t)} that satisfies all the constraints

of the Minimum Energy optimal control problem given in Eq. (3.5). After some

straightforward derivations, the energy consumption along such feasible solutions,

generated through null motions, is given by

J = R

K2
T

Nrw∑
i=1

∫ tf

0
[δτ(t) + τref,i(t)]2 + k [δΩ(t) + Ωref,i(t)]2 dt. (3.14)

where k = β2 + βK2
T/R.

Based on this observation, it is possible to start from any given feasible solution

of Eq. (3.5), e.g., shortest time maneuvers, and seek a function pair (δΩ(t), δτ(t))

to minimize the energy Eq. (3.14), without changing the spacecraft attitude and

body rate trajectories. The function pair (δΩ(t), δτ(t)) can be determined by the

following optimal control formulation, hereafter referred to as the Null Motion
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(NM) problem.

(NM)



State: δΩ ∈ R, Control: δτ ∈ R

Minimize: J [δΩ(·), δτ(·)] = R
K2

T

Nrw∑
i=1

∫ tf

0
[δτ(t) + τref,i(t)]2 + k [δΩ(t) + Ωref,i(t)]2 dt.

Subject To: ˙δΩ = cδτ, δΩ(0) = δΩ(tf ) = 0

|Ωref,i(t) + δΩ(t)| ≤ Ωmax,

|τref,i(t) + δτ(t)| ≤ τmax, i = 1, 2, · · · , Nrw

(3.15)

The solution to problem NM generates a motion in the null space of the projection

matrix A so that the feasibility of the system state trajectories are maintained,

while the overall energy consumption is reduced.

It is important to point out that Problem NM can be solved with extreme

efficiency due to the quadratic cost function and one dimensional linear dynam-

ics. Indeed, when the wheel speed and torque constraints, (3.13), are not active,

Problem NM admits an analytic solution given as

δΩ(t) =
(

Ωbias

ec
√
ktf
− e−c

√
ktf

)(
ec
√
kt(1− e−c

√
ktf ) + e−c

√
kt(ec

√
ktf − 1)

)

− 1
Nrw

Nrw∑
i=1

Ωref,i(t), (3.16)

δτ(t) = −
(√

kΩbias

ec
√
ktf
− e−c

√
ktf

)
(ec
√
kt(e−c

√
ktf − 1) + e−c

√
kt(ec

√
ktf − 1))

− 1
Nrw

Nrw∑
i=1

τref,i(t). (3.17)

where Ωbias ∈ R>0 is the bias for a single wheel speed (e.g. for the simulations in

this dissertation, the speed bias for each wheel is set to 20.0 rads/sec).

We note that for a simulation study of the spacecraft parameters given in

the appendix, in which several hundreds of simulations with various boundary
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conditions and transfer times were performed, wheel speed saturations were not

observed, and that motor torque saturation only occurred when the slew time was

within 0.5% of tSTM . The former is very reasonable for many practical systems in

which a portion of the reaction wheel momentum envelope is reserved to accom-

modate momentum accumulation. Hence, Eqs.(3.16)-(3.17) provide essentially a

closed-form solution to Problem NM. In the rare instances where the wheel speed

and/or torque constraints are active, an analytic solution to Problem NM can be

complicated to derive, however a numerical solution to this one dimensional linear

quadratic problem is easy to generate in real time onboard the spacecraft.

Solving Problem NM under

As noted in the last paragraph in the preceding section, the constraints in the

Null Motion formulation of Eq. 3.15 are only active in a small window about the

off-eigenaxis shortest time maneuver. This section derives the analytic solution to

problem NM, given in Eqs. (3.16) and (3.17), when the constraints are not active.

To solve for the state-control pair solutions for problem NM in Eq.(3.15),

Pontryagin’s Minimum Principal is applied which generates a linear time-varying

boundary value problem, NMλ which is then analytically solved, resulting with

optimal open-loop state and control profiles for problem NM. The open-loop state-

control solution is then compared against solutions attained from the ME formu-

lation, which serves to depict that the ME problem formulation minimizes Ergnelec by

selecting Ω and τ through exploitation of the non trivial null space of the reaction

wheel projection matrix.

The first step in determining the solution NM formulation, is building the

control Hamiltonian for Eq. (3.5). To this end, the control Hamiltonian to problem
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NM is given by

H(λ, δΩ, δτ, t) = 1
2

Nrw∑
i=1

(δτ + τref,i(t))2 + k(δΩ + Ωref,i(t))2 + λcδτ. (3.18)

The HMC requires solving the finite dimensional optimization problem

min
δτ∈R

H(λ, δΩ, δτ, t),

which is unconstrained, at each instant of time t. Because the control is un-

constrained, δτ which minimizes the control Hamiltonian must necessarily satisfy

∂δτH = 0. Therefore the solution to the HMC is given by

δτ(t) = − 1
Nrw

(
Nrw∑
i=1

τref,i(t) + cλ

)
. (3.19)

Since ∂2Hδτ2 = Nrw > 0, Eq. (3.19) does indeed minimize H for all time-instants

t. Substituting the solution of the HMC, Eq. (3.19), into the dynamics of problem

NM, given in Eq. (3.11), and along with the adjoint equation λ̇ = −∂δΩH ∈ R,

generates a two dimensional linear time-varying boundary value problem:

(NMλ)



˙δΩ = − c2

Nrw

λ− c

Nrw

Nrw∑
i=1

τref,i(t)

λ̇ = −NrwkδΩ− k
Nrw∑
i=1

Ωref,i(t)

δΩ(0) = δΩ(tf ) = 0

(3.20)

Identifying that λ̈ = kc2λ, which is due to the reaction wheel torque τrw = JrwΩ̇rw,

a closed-form for the costate λ may be identified:

λ = c1e
δt + c2e

−δt, (3.21)

59



where δ = c
√
k and c1 and c2 are integration constants in R.

Details:

λ̈ = −Nrwk ˙δΩ− k
Nrw∑
i=1

Ω̇ref,i

= −Nrwk

(
− c2

Nrw

λ− c

Nrw

Nrw∑
i=1

τref,i

)
− kc

Nrw∑
i=1

τref,i

= kc2λ

By solving λ̈ = kc2λ, which is just a second order linear ODE with constant

coefficients (noting that kc2 > 0), Eq. (3.21) is attained.

With Eq. (3.21), along with the costate dynamics in Eq.(3.20), a closed form

for δΩ is achieved from the costate dynamics in Eq. (3.20), given as

δΩ = −c1γe
δt + c2γe

−δt − 1
Nrw

Nrw∑
i=1

Ωref,i (3.22)

where γ = c

Nrw

√
k
and δ = c

√
k.

Details:

δΩ = − 1
Nrwk

(
λ̇+ k

Nrw∑
i=1

Ωref,i

)

= − 1
Nrwk

(
c1c
√
kec
√
kt − c2c

√
ke−c

√
kt + k

Nrw∑
i=1

Ωref,i

)

= −c1
c

Nrw

√
k
ec
√
kt + c2

c

Nrw

√
k
e−c
√
kt − 1

Nrw

Nrw∑
i=1

Ωref,i

Note that, since each of the Nrw wheels begins and ends at the same wheel

speed Ωbias ∈ R (so ∑Nrw
i=1 Ωref,i(0) = ∑Nrw

i=1 Ωref,i(tf ) = NrwΩbias), an analytical
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solution to the open-loop time-varying state-control to problem NM may be at-

tained: Since δΩ(0) = δΩ(tf ) = 0, c1 and c2 may be determined using the closed

form expression for δΩ.

 −γ γ

−γe−δtf γeδtf


c1

c2

 =

Ωbias

Ωbias

 (3.23)

Solving the system in (3.23) results with

c1 =
(

Ωbias

γ(eδtf − e−δtf )

)(
e−δtf − 1

)
(3.24)

c2 =
(

Ωbias

γ(eδtf − e−δtf )

)(
eδtf − 1

)
(3.25)

Therefore an analytic solution of the open-loop time-varying state-control to prob-

lem NM is given as

Details of state δΩ:

δΩ = −c1γe
δt + c2γe

−δt − 1
Nrw

Nrw∑
i=1

Ωref,i

=
(

−Ωbias

γ(eδtf − e−δtf )

)(
e−δtf − 1

)
γeδt +

(
Ωbias

γ(eδtf − e−δtf )

)(
eδtf − 1

)
γe−δt

− 1
Nrw

Nrw∑
i=1

Ωref,i

=
(

Ωbiasγ

γ(eδtf − e−δtf )

)(
−eδt(e−δtf − 1) + e−δt(eδtf − 1)

)
− 1
Nrw

Nrw∑
i=1

Ωref,i

=
(

Ωbias

(eδtf − e−δtf )

)(
eδt(1− e−δtf ) + e−δt(eδtf − 1)

)
− 1
Nrw

Nrw∑
i=1

Ωref,i

=
(

Ωbias

(ec
√
ktf − e−c

√
ktf )

)(
ec
√
kt(1− e−c

√
ktf ) + e−c

√
kt(ec

√
ktf − 1)

)

− 1
Nrw

Nrw∑
i=1

Ωref,i
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Details of control δτ .

δτ = − 1
Nrw

(
Nrw∑
i=1

τref,i + cλ

)

= − 1
Nrw

(
Nrw∑
i=1

τref,i + c(c1e
δt + c2e

−δt)
)

= − 1
Nrw

(
Nrw∑
i=1

τref,i + cΩbias

γ(eδtf − e−δtf )(eδt(e−δtf − 1) + e−δt(eδtf − 1))
)

=
(

−
√
kΩbias

(ec
√
ktf − e−c

√
ktf )

)
(ec
√
kt(e−c

√
ktf − 1) + e−c

√
kt(ec

√
ktf − 1))

− 1
Nrw

Nrw∑
i=1

τref,i

Applications of Problem NM

As a demonstrative example to the efficacy of the NM formulation of Eq. 3.15,

consider the same 180-deg rotation about the spacecraft z-body axis with the

transfer time is set to be T = 281.8 seconds – slightly longer than the minimum-

time solution (tSTM = 279.9). Three feasible maneuvers are generated and com-

pared: (i) A feasible fixed-time maneuver; (ii) A minimum energy maneuver

obtained by solving problem ME per Eq. (3.5); (iii) A null-motion solution based

on Eqs.(3.16)-(3.17) where the feasible reference trajectory (Ωref , τref ) is the same

as given in (i).

Table 3.2 compares the energy metrics for these three maneuvers. It can be

seen that both the ME (Minimum Energy) and NM (Null Motion) maneuvers

perform nearly equivalently in term of energy consumption. While the ME for-

mulation reduces energy requirements by coordinating the reaction wheel null
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motions while shaping the angular velocity body profile of the spacecraft, the so-

lution to problem NM also develops a highly efficient solution. This result is in

spite of the fact that the minimization in problem NM is agnostic to the satellite

attitude and rate profile and is performed only over the space of null motions.

Table 3.2: Equivalency between the Minimum Energy formulation and the Null
Motion formulation for a 180-deg z-axis slew a transfer time of 281.8 seconds.

Maneuver Type E (J) E losstotal (J) Closs (J) Floss (J)
Feasible Maneuver to problem ME 133.9 105.8 50.2 55.6

Problem ME solution 114.5 90.8 52.2 38.6
Problem NM solution 114.6 90.9 52.3 38.6

The null motion analysis presented in this section enables a few interesting

applications, two of which are summarized as follows:

• The Null Motion formulation (3.15) and its analytic solution (3.16)-(3.17)

provide a fast and computationally inexpensive way to refine any given fea-

sible trajectory for energy reduction; thus generating sub-optimal minimum

energy maneuvers. Sub-optimal, as the energy reductions are obtained by

considering only a subset of the state space. Such substantial efficiency in

solving Problem NM is a very attractive feature for real-time implementa-

tion.

• Problem NM provides a new means of Verification and Validation which is

both computationally inexpensive and easily identifiable. Consider a candi-

date solution, {q∗, ω∗,Ω∗, τ ∗}, to the Minimum Energy Problem (ME). We

can take this candidate solution as the reference in the Null Motion Problem

(NM). If {q∗, ω∗,Ω∗, τ ∗} is the true minimum energy maneuver, the solution

to Problem (NM) should not admit additional energy reduction, i.e., the

cost of Problem (NM) should be the same as the cost of the ME formu-

lation. Independent to Pontryagin’s Minimum Principle, the null motion
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formulation (3.15) provides an alternative way for verifying the optimality

of the minimum energy solution.

To illustrate the second point, consider a ME slew with T = 307 seconds,

which will be seen in the next section to be the transfer time that balances both

transfer time and energy. Figure 3.4.a shows that the solution to the NM problem

gives δτ(t) ≡ 0, which implies that there are no modifications to the nullspace can

be made that would reduce the electrical energy further through null motions (i.e.:

all possible energy savings through null motions have been exhausted). The NM

solution therefore indicates that energy cannot be further reduced from the ME

solution by performing null motions, a condition that a minimum energy maneu-

ver must satisfy. Furthermore, the reaction wheel angular velocities are identical

for both problem formulations (see Figure 3.4.b). Figure 3.5 shows the satisfaction

of the necessary conditions to the lower Hamiltonian as well as the complemen-

tarity condition (for the spacecraft angular velocity vector ω2). To generate the

necessary conditions in Figure 3.5 requires access to the adjoints associated to

the states of problem ME, and access to the adjoints requires an application of

the Covector Mapping Principle20,59 which is significantly more computationally

expensive and extensive as compared to the requirements to generate the results

shown in Figure 3.4. Therefore, the null motion formulation of Eq. (3.15) presents

a computationally simple means to validate a candidate solution to whether the

candidate solution has extracted all possible energy reducing null motions.
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(a) (b)

Figure 3.4: Solution to Problem NM for a ME reference maneuver with a transfer
time of 307 seconds, demonstrating that problem NM can serve as a computation-
ally simple means to validate a minimal energy solution.

3.4 The Relationship Between Electric Energy

and Transfer Time under Minimum Dissi-

pative Losses

The purpose of this section is to study the relationship between transfer time

and energy required to perform a slew for both eigenaxis and off-eigenaxis maneu-

vering. By identifying the energy/time relationships, the shortest-time maneuver

satisfying a given energy budget may be identified, and a comparison may be made

between on-and off-eigenaxis maneuvering concerning energy and transfer time.

In determining the relationship, a 180 degree slew about the spacecraft’s z-body

axis is first considered, whose initial and final quaternions are q0 = [0, 0, 1, 0]ᵀ and

qf = [0, 0, 0, 1]ᵀ. Extensive simulations (over several hundreds) in which initial

and final attitude were varied, confirmed that the relationship identified between

energy and time presented for this 180 degree slew are indicative of the results

for other slew sizes.The run time to generate simulation results, for each set of
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(a) (b)

Figure 3.5: Validation of necessary conditions for the minimal electrical energy
slew with a transfer time of 307 seconds obtained by application of the covector
mapping principle implemented in DIDO: (a) consistency of the lower Hamilto-
nian; (b) demonstration of complementary condition on ω2 given in Eq. (3.7)

boundary conditions ranged from ten seconds up to about two minutes, with the

average run time of approximately 55 seconds. We note that since maneuvers are

often planed a priori, the solution times are amenable to practical generation.

Following the single-slew analysis, the energy and transfer-time relationship

is analyzed in a typical setting for an imaging satellite: a multipoint maneuver

consisting of a sequence of five slews. The multislew analysis demonstrates that

the energy/time relationship identified for the 180 degree canonical maneuver

holds under varying slew size, as well as path.

3.4.1 Off-Eigenaxis Slew Analysis

The shortest-time maneuver from section 3.2.2 provides the lower time-bound,

tSTM , for which the rest-to-rest slew may be performed. By solving a series of

ME formulation (off-eigenaxis) of fixed times T ≥ tSTM , a Pareto front may

be generated to show the minimum energy required to perform the slew for a

given transfer time. This Pareto front for off-eigenaxis maneuvering is given in

66



Figure 3.6, with the minimized cost, E losstotal, shown as the lower curve with square

markers that indicate the particular slew times solved. Recall the cost functional,

E losstotal, in problem ME measures the cumulative dissipative losses incurred over a

slew. From a solution to problem ME, the actual energy consumption, E , may be

calculated a posteriori, and is given by the top-most curve with asterix markers

in Figure 3.6. We note that the optimal cost, E losstotal, is always slightly smaller

than the actual consumed energy, E , and forms a lower bounding curve. That

the proxy E losstotal forms a lower bounding curve is consistent to the fact that the

control applied is optimal with respect to minimizing dissipative losses (E losstotal),

but in general is non-optimal with respect to E .

Figure 3.6: Pareto fronts to the 180-degree z-body-axis for minimum-energy
off-eigenaxis maneuvering.

With the aid of the visualization provided by the Pareto front in Figure 3.6, the

nonlinear relationship between the transfer time and the minimum energy required
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to perform the slew is observed to consist of three phases when considering time

as increasing from the shortest-time. Firstly, as transfer time is increased from

the shortest-time, there exists a time window in which the energy required to

perform the maneuver drastically decreases at a fast rate. Denoting this portion

of the Pareto front as the head, this window of asymptotic decay beyond the

shortest-time may be identified with the time interval [tSTM , 307]. Secondly, the

relationship in Figure 3.6 showcases that there exists a point in time where further

increasing transfer time results in insignificant reductions in energy. Defining this

portion of the Pareto front as the tail, this time window may be defined as the

interval [395,∞). Lastly, a third portion of the Pareto front may be identified

simply as the region in between the head and tail of the Pareto front [307, 395],

and depicts that energy decays roughly proportionally to increasing transfer times.

The behavior of energy with respect to time within the head portion of the

Pareto front validates the intuition that shortest-time maneuvers can indeed be

costly maneuvers with respect to energy. More notably though, the head of the

Pareto front signifies that small increases in transfer time from the shortest-time

net significant savings in energy. In other words, there exists near time-optimal

maneuvers which cost much less than their minimum-energy shortest-time ma-

neuver counterpart. Thus, it is possible to balance energy and transfer time

requirements when missions demand an agile setting, despite intuitive notions to

the contrary.

The tail-portion of the Pareto front in Figure 3.6 is inversely analogous to the

head region. Whereas small increases in transfer time near tSTM net substantial

savings in energy in the head region, increases in transfer time within the tail

portion of the Pareto front net only minor savings in energy. While the Pareto

front of Figure 3.6 stops with a transfer time of 427 seconds, the energy and
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time relationship in the tail section continues in like-manner for all time, slowly

decaying over large intervals of time. Therefore, in a setting where transfer time

is of no concern, the tail-portion of the energy-time relationship depicts that there

is not much benefit from significantly increasing the transfer time of a maneuver

with respect to energy consumption.

3.4.2 Minimum Energy Eigenaxis Slew Analysis

With the ME-EAM formulation along with the shortest-time EAM, a Pareto

front describing the minimum energy transfer time relationship with respect to

eigenaxis maneuvering may be built analogously to the Pareto front constructed

in section 3.4.A. The result of this construction is given in Figure 3.7, and has

been superimposed upon the off-eigenaxis Pareto front of Figure 3.6 to facilitate

comparison. For each of the curves in Figure 3.7 the minimum-energy is reported

as the E metric.

The Minimum Energy EAM Pareto front shown in Figure 3.7 (denoted with tri-

angle markers that indicate the particular slew times solved) depicts an analogous

relationship with respect to energy and transfer time compared to the off-eigenaxis

Pareto front. Namely, near the shortest-time (for an eigenaxis maneuver), energy

costs significantly increase, showing that there exist eigenaxis maneuvers with a

near time optimal transfer time that require significantly less energy to execute.

More interestingly, Figure 3.7 clearly shows that the minimum energy EAM curve

lies completely encompassed within the region defined by the off-eigenaxis curve

for all transfer times. Both maneuver types are analogous with respect to energy

for slew times T ≥ 395 seconds. This coincide point depicts that there exists a

point in transfer time in which on-and off-eigenaxis maneuver types are equiva-

lent with respect to energy consumption. In other words, when the transfer time
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Figure 3.7: Pareto fronts for minimum electric energy off-eigenaxis and minimum
electric energy eigenaxis maneuvering for a 180 degree z-body-axis slew; energy
reported as E .
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Figure 3.8: Trade space depicting the benefit of off-eigenaxis maneuvers, com-
pared to eigenaxis, with respect to energy.

is sufficiently large, expanding the solution space from eigenaxis to non-eigenaxis

slews provides no benefit in energy saving. For sufficiently-large transfer times,

the minimum energy slew is an eigenaxis maneuver.

From the time optimal transfer time tSTM , of 279.9 seconds, to the coincide

point of 395 seconds, the two Pareto fronts in Figure 3.7 imply the existence of

a trade space between transfer time as well as energy between eigenaxis and off-

eigenaxis maneuvering. A geometric argument may be made in discerning a trade

off between the two maneuver types: A given energy budget may be visualized

with a horizontal line in Figure 3.8, and in like manner, a time budget visualized

as a vertical line as illustrated in Figure 3.9.

Figure 3.8 explores the trade space with respect to transfer time between

eigenaxis and off-eigenaxis maneuvers. The horizontal lines in Figure 3.8 depict
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that, for every minimum energy eigenaxis slew, there exists an energy equivalent

off-eigenaxis maneuver with a smaller transfer time. Additionally, each of these

off-eigenaxis maneuvers incur less dissipative losses. The extreme case with re-

spect to transfer time is identified in Figure 3.8 by the maneuver which is energy

equivalent to the minimum energy shortest-time eigenaxis maneuver, which is

hereafter referred to as the “baseline EAM”. Comparing to the baseline EAM, by

allowing off-eigenaxis maneuvering, it is possible to decrease the transfer time by

21.7% (from 362.0 seconds to 283.1 seconds) without consuming any more energy

than the baseline eigenaxis maneuver (103.5 J), while simultaneously incurring

12% less dissipative losses. Table 3.3 summarizes the energy metrics and time for

the baseline eigenaxis maneuver and off-eigenaxis the energy-equivalent maneu-

ver. Comparing this agile maneuver to time-optimal (shortest-time) maneuvering:

For same energy budget of the baseline eigenaxis maneuver, the transfer time may

be brought within 1% of tSTM by maneuvering off-eigenaxis while reducing the

standard STM energy by (36.1%), and reducing dissipative losses by (40.6%). Ta-

ble 3.4 summarizes the (percentage-change) difference in energy-metrics between

the standard STM and the maneuver equivalent to the baseline EAM with respect

to energy, depicting the reduction in energy and dissipative losses by opting for a

near time-optimal maneuver.

Table 3.3: Metrics to the Minimum Energy Shortest-Time Eigenaxis Maneuver
(baseline EAM), and energy equivalent off-eigenaxis maneuver (values in paren-
thesis represent percentage change from baseline EAM).

Maneuver Type TT (s) Eelec (J) E losstotal (J) Closs (J) Floss (J)
Baseline EAM 362.0 103.5 91.4 68.5 22.9

Energy Equivalent to baseline EAM 283.1 (-21.7%) 103.5 (0.0%) 80.8 (-11.6%) 42.7 (-37.7%) 38.2 (+66.8%)

Therefore, the transfer time may be substantially reduced through control

re-allocation while simultaneously decreasing the amount of dissipative losses in-

curred to perform an agile maneuver, without exceeding the energy budget of

72



Table 3.4: Depiction of savings in energy and reduction of dissipative losses for
a near time-optimal maneuver.

Maneuver Selection %∆ TT %∆Eelec %∆E losstotal %∆Closs %∆Floss
Shortest-time maneuver −→ Energy Equivalent to baseline EAM +1.1% -36.1% -40.6% -46.4% -29.9.8%

Figure 3.9: Trade Space depicting the benefit of off-eigenaxis maneuvers, com-
pared to eigenaxis, regarding transfer time.

a canonical EAM. Additionally, with respect to shortest-time maneuvering, for

a negligible increase in transfer time, the large effort associated to time-optimal

maneuvering may be substantially decreased by opting for a near time-optimal

maneuver, as depicted in Table 3.4. Synthesizing the analysis of these three ma-

neuvers, along with the energy-time spectrum in Figure 3.7, it is apparent that

there exists desirable agile maneuvering capabilities within (minimum) energy

budgets of industry-standard eigenaxis maneuvering.

Next, we turn our attention to the trade space of energy with respect to transfer
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times of minimum energy eigenaxis maneuvering: Figure 3.9 depicts that, in the

case where EAM transfer times are acceptable to meet mission requirements, the

energy can be substantially reduced from even minimum energy EAMs, by control

re-allocation and maneuvering off-eigenaxis. The extreme case identified in the

trade space of Figure 3.9 is the off-eigenaxis maneuver which completes in the same

transfer time as the baseline eigenaxis maneuver. For the same transfer time as the

baseline eigenaxis maneuver (which completes in 362.0 seconds), by maneuvering

off-eigenaxis, the energy (given by E) required to perform the baseline EAM is

reduced by 57.5% (from 103.5 J to 44.0 J), and the cumulative dissipative losses

incurred by performing the ME-EAM are reduced by 63.2% (from 91.4 J to 33.6

J). Comparing the individual dissipative losses between the two maneuvers, while

the off-eigenaxis maneuver incurs 10% more friction loss (22.9 J to 25.1), it is

able to reduce the copper loss by 87 % (from 68.5 J to 8.6 J). The considerable

reduction in dissipative losses (from 68.5 J to 33.6 J), and therefore less heat to

reject, is due to the substantial reduction in copper loss. Table 3.5 summarizes

the metrics associated to the maneuver which is equivalent in transfer time to the

baseline EAM.

Table 3.5: Metrics to the off-eigenaxis maneuver which is transfer time equivalent
to the Minimum Energy Shortest-Time Eigenaxis Maneuver (values in parenthesis
represent percentage change from the baseline EAM).

Maneuver Type Eelec (J) E losstotal (J) Closs (J) Floss (J)
Transfer Time Equivalent to baseline EAM 44.0 (-57.5%) 33.6 (-63.2%) 8.6 (-87.4%) 25.1 (+9.6%)

The large amount of copper loss incurred by the baseline EAM is due to the

torque demand required to maintain the motion along the eigenaxis. By being

able to maneuver off-eigenaxis, the transfer-time equivalent maneuver is able to

exploit the inertia properties of the spacecraft under both the nonlinear dynamics

and constraints, requiring much less torque authority, and hence considerably
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less copper loss. Therefore, by maneuvering the spacecraft off-eigenaxis energy

and dissipative losses may be substantially reduced when compared to conventional

eigenaxis maneuvering.

Shown in Figure 3.10 are the y-axis boresight traces for on-and off-eigenaxis

maneuvers for the 180 degree z-body-axis slew. As expected, the eigenaxis ma-

neuver traces out the shortest angular path, as represented by the straight-line

path between the two orientations. Similarly, the boresight traces of the two ma-

neuvers equivalent to the baseline eigenaxis maneuver each illustrate off-eigenaxis

motion, as seen by deviating from the circular arc traced by the baseline EAM.

Figure 3.10: Boresight traces for various maneuver-types performing a 180 de-
gree z-body-axis slew.

3.4.3 Operational Scenario: Multipoint Slew

This section expands upon the analysis of the previous sections, by considering

a multipoint slew consisting of five sequential maneuvers. A multislew maneuver

is considered here to demonstrate that each of the properties resultant from the
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analysis of the single slew directly translate to a typical operational scenario for an

imaging spacecraft involving multiple collection points. The five-point multislew

is based off of the STAR pattern developed in Ref. [6], and consists of reorient-

ing the imaging boresight (aligned with the spacecraft y-axis) over both medium

angle (≈30 degrees) and large angle (� 30 degrees) slews. The relevant attitude

parameters for both on-and off-eigenaxis maneuvering for the five-point multislew

are given in Table 3.6.

Table 3.6: Sequence of quaternions for the five-point multislew maneuver.

Orientation q1 q2 q3 q4

1 0.0602 0.1850 0.6165 0.7629
2 0.2860 0.0069 0.5607 0.7770
3 0.1864 0.0045 0.0854 0.9788
4 0.1195 0.1431 0.7921 0.5812
5 0.1314 0.1263 0.2458 0.9520
6 0.1693 0.0781 0.4666 0.8646

Four maneuver types are selected to explore the trade space between energy

and transfer time between on-and off-eigenaxis maneuvering: (i) & (ii) The ME

shortest-time maneuver and ME shortest-time eigenaxis maneuver which repre-

sent the minimum energy required to complete the multislew for time optimal

off-and on-eigenaxis maneuvers; each respectfully referred to, as the “baseline off-

eigenaxis maneuver” and “baseline eigenaxis maneuver”; (iii) The (off-eigenaxis)

maneuvers which are energy equivalent (with respect to E) to each baseline eige-

naxis maneuver; (iv) The (off-eigenaxis) maneuvers which are equivalent with

respect to transfer times of the baseline eigenaxis maneuver. Figure 3.11 depicts

each of the four maneuver types as corner points on the energy-time trade-space

for a conceptualized Pareto front.

For the multislew the ME shortest-time maneuvers, compared to their time

optimal EAM counterparts (the baseline EAMs), are able to decrease transfer
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Figure 3.11: Visualization of the four maneuver types to explore the trade space
between on-and off-eigenaxis maneuvering for the multislew scenario.

time by 19.6% (from 649.4 seconds to 522.0 seconds) but at the substantial cost

of increased energy consumption, up by 124% (from 409.6 J to 918.5 J). It seems

that experience and intuition is true, that min time solutions demand considerable

effort, but because each individual slew has an energy and transfer time relation-

ship analogs to Figure 3.7, there exist agile maneuvers (i.e. maneuvers with a

smaller transfer time than eigenaxis maneuvering) with significantly less stringent

energy requirements. By maneuvering off-eigenaxis, for the same energy budget as

the baseline EAMs, the multislew may be completed within 5.7% of the time op-

timal transfer time (from 522.0 seconds to 551.9 seconds) while consuming 55.6%

less energy than the baseline off-EAMs (from 918.5 J to 408.6 J). Comparing this

agile maneuver, the transfer time of the baseline EAMs may be reduced by 15%

(from 649.4 seconds to 551.9 seconds) for the same energy required to perform
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canonical eigenaxis maneuvering. Considering the situation of minimizing energy,

by allowing off-eigenaxis maneuvering, the maneuver-set transfer-time equivalent

to the baseline EAMs is able to decrease the energy requirements by 53% (from

409.6 J to 191.4 J), the lowest of the four maneuver types. Table 3.8 summa-

rizes the tradeoffs between energy and transfer time for various maneuver types.

Viewing the four representative maneuver types together, the energy-equivalent

and transfer-time equivalent off-eigenaxis maneuvers, compared to the baseline

EAMs, depict that there exists a significant penalty in slew time and energy when

enforcing eigenaxis rotations. Similarly demonstrated by this simulation example,

is that the properties inherent to the single slew analysis translate to a multislew

environment. By allowing the spacecraft to maneuver off-eigenaxis, the optimiza-

tion may take full advantage of the attitude control-capability as represented by

the spacecraft agilitoid ,20 as seen by the energy and transfer time equivalent

maneuvers to the baseline eigenaxis maneuver.

Maneuver Type TT (s) E (J)
ME Shortest-Time Maneuver 522.0 918.5

Energy Equivalent to Baseline Eigenaxis Maneuver 551.9 408.6
Baseline Eigenaxis Maneuver 649.4 409.6

Transfer Time Equivalent Baseline Eigenaxis Maneuver 649.4 191.4

Table 3.7: Transfer times and metric totals for the four maneuver-types to the
five-point multislew.

Table 3.8: The difference in energy and transfer time by opting between various
maneuver-types for the multipoint slew.

Change of Maneuver Type %∆ TT %∆E
Baseline Eigenaxis Maneuver −→ ME Shortest-Time Maneuver -19.6% +124.2%

ME Shortest-Time Maneuver −→ Energy Equivalent Eigenaxis Maneuver +5.7% -55.5%
Baseline Eigenaxis Maneuver−→ Energy Equivalent Eigenaxis Maneuver -15.0% -0.2%

Baseline Eigenaxis Maneuver −→ Transfer Time Equivalent Eigenaxis Maneuver 0% -53.3%

The boresight traces over the course of the five-point multislew are given in
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Figure 3.12 for the baseline off-and on-EAMs, along with the energy-equivalent

and transfer-time equivalent maneuvers in Figure 3.13. The imaging boresight

for the baseline EAMs, as expected, traces out shortest-circular arcs between the

five capture-locations. Similarly expected, from Figure 3.12a, the motion of the

boresight to the baseline off-EAMs deviates from the eigenaxis for each of the five

orientations. For reference, the boresight trace to the standard STMs are identical

to those given in Figure 3.12a. Similarly, the energy-equivalent and transfer-

time equivalent maneuvers show that the entire multipoint slew is performed off-

eigenaxis. That the traced-path between each of the five orientations for the three

off-eigenaxis maneuver-types are each distinct, is due to the combination of the

boundary conditions as well as the inertia properties of the spacecraft. Since the

rotational-maneuvers are not restricted about an eigenaxis, the optimization may

minimize energy by taking full advantage of the spacecraft’s geometry per the

boundary conditions when determining a feasible slew.

(a) (b)

Figure 3.12: Boresight Traces to two of the four maneuver-types from Figure
3.11.
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(a) (b)

Figure 3.13: Boresight traces to two of the four maneuver-types from Figure
3.11.
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3.5 Conclusions

In this chapter, energy metrics that are in-line with the true operational cost of

performing a slew are derived based on modeling the reaction wheels as DC motors

in steady state. A family of nonlinear constrained optimal control problems were

developed to reduce the electrical energy under minimal dissipative losses for both

conventional eigenaxis maneuvering and off-eigenaxis maneuvering. A constraint

was developed to enforce eigenaxis maneuvering, which allowed unconventional

off-eigenaxis maneuvering to be compared to eigenaxis maneuvering, which al-

lowed the study of how stringent upon energy and time eigenaxis maneuvering

can be to a spacecraft.

This chapter has identified and studied the nonlinear relationship which arises

between slew time and energy for reaction wheel attitude control under both

conventional eigenaxis and agile off-eigenaxis maneuver schemes. This was done

by formulating and solving a series of fixed-time optimal control problems where

energy metrics, in-line with the true operational cost of performing a slew are

derived based on modeling the reaction wheels as DC motors in steady state..

The nonlinear time-energy relationship showed two main results which hold both

for eigenaxis and non-eigenaxis maneuvers: (i) There exist a continuum of near

time-optimal maneuvers that require substantially less energy than their shortest-

time counterpart. The saving in energy is realized via a re-allocation of the control

effort by exploiting energy-reducing null motions within the control space while

shaping the velocity of the spacecraft body. (ii) There exists a slew time beyond

which savings in energy become negligible.

This chapter further demonstrates the existence of a trade-space between on-

and off eigenaxis maneuvering. This trade-space shows that a significant penalty

is incurred upon slew time and energy when enforcing eigenaxis maneuvering: (i)

81



By maneuvering off-eigenaxis, slew time may be significantly decreased for the

same energy budget as an eigenaxis maneuver. (ii) By maneuvering off-eigenaxis,

energy may be greatly decreased for the same slew time budget as a conventional

eigenaxis maneuver.

The nonlinear relationship between slew time and energy, and the trade-space

between on-and off eigenaxis maneuvering demonstrated in this chapter can be

exploited for mission operations, planning and design. Lastly, a simplified opti-

mal control formulation that operates over a subspace of the system state space

was derived to approximate minimum-energy maneuvers via null motions. This

development, directed at legacy control systems, was shown to generate, reduced

energy solutions for any feasible attitude trajectory in real time.
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Chapter 4

Minimizing the Nonsmooth

Electrical Energy Metric though

L1 Optimal Control
“The best and most beautiful
things in the world cannot be seen
or even touched - they must be
felt with the heart.”

Helen Keller

4.1 Introduction

In Chapter 2, the derivations of the electrical power-input equation for a re-

action wheel showed that it is nonsmooth with respect to its arguments (which

are angular velocity and torque of the reaction wheel relative to its spin axis).

Indeed, the electrical power-input equation was shown (in Chapter 2) to be an L1

norm of its arguments. Therefore, attempting to minimize the electrical energy

of a reaction wheel spacecraft leads to a complicated nonsmooth optimal control

problem.

83



From either a static (i.e. at each instant of time) or a dynamic (i.e. over

the entire trajectory) perspective of optimization, majority of the existing work

focused upon proxies to measure electrical energy and power which reduce me-

chanical power. Schaub & Lappas in Ref. [35] modeled total power of the reaction

wheels as the L1 norm of mechanical power and devised a feedback strategy to

minimize the instantaneous `2 norm of mechanical power τΩ for each reaction

wheel. Blenden and Schaub in Ref. [24] branched off of Ref. [35] by devising a

feedback strategy minimizing mechanical power, under the assumption that 100%

of the energy (modeled as mechanical only) may be recouped when braking a re-

action wheel. Skaar and Kraige in Refs, [55] and [56] devised open-loop minimum

effort reaction wheel slews for one and three wheels respectively where the cost

functional was taken as the `2 norm of mechanical power of the reaction wheel(s).

The NASA technical report by Williams of Ref. [54], is a very early work focused

upon minimum effort reaction wheel slews. Techniques of dynamic optimization

were invoked to minimize the copper loss of a single reaction wheel motor. Since

no friction was assumed in the reaction wheel motor (i.e. the motor is ideal)

the minimization was equivalent to minimizing the `2 norm of the reaction wheel

motor torque, i.e.
∫ tf
t0 ‖τ‖

2
2 dt. Grassi in Ref. [60] approached minimizing the effort

to reaction wheels by minimizing the copper-loss of each reaction wheel; because

no friction was considered in the model, the minimization was analogous to min-

imizing the `2 norm of reaction wheel motor torque. Chapter 3, which studied

and analyzed the relationship between electrical energy and transfer time,61 ac-

knowledged the difficulty posed of the electric power-input metric, by opting for a

cost functional which minimized dissipative losses; a naturally occurring quadratic

functional.

The prime directive of this chapter is to directly minimize the nonsmooth
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reaction wheel electric power-input equation as the running cost, i.e.,

Minimize: J [x(·), u(·)] =
∫ T

0
Parray(t) dt

= 1
2

∫ T

0

{
Nrw∑
i=1
Pi(t) +

Nrw∑
i=1
|Pi(t)|

}
dt

= 1
2

∫ T

0

{
Nrw∑
i=1
Pi(Ωrw, τrw) +

Nrw∑
i=1
|Pi(Ωrw, τrw)|

}
dt (4.1)

thereby circumventing the use or need of proxies.

In this chapter we adopt an augmentation method which transforms the non-

smooth L1 minimum energy slews problems into an equivalent smooth optimal

control problem. This is achieved through a judicious addition of ancillary de-

cision variables and path constraints. Once the problem is transformed into a

smooth version, standard techniques of optimal control may be invoked to ob-

tain a solution. It will be shown in this chapter, that the transformation from

nonsmooth to an equivalent smooth formulation substantially increases the di-

mensionality of the optimal control problem, adding additional control variables,

as well as additional path constraints, thereby generating a complicated system

of differential algebraic equations.

4.2 An Illustrative Example of Solving L1 Opti-

mal Control Problems

To illustrate the process of solving a nonsmooth L1 optimal control problem by

developing an equivalent smooth formulation, a simple rigid body motion planning

problem is considered. This problem is based on a formulation by Gong et al. from

Ref [62]. The problem seeks to minimize the amount of work required move a block

(of unit mass) along a flat surface, from a fixed starting position and velocity, to
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a fixed end position and velocity, in a fixed amount of time, through application

of a limited amount of force (see Figure 4.1).

Figure 4.1: Schematic of the Gong motion-planning problem: Minimize the work
to move a rigid body from one fixed position and velocity to another in a fixed
amount of time under the influence of a viscous friction term.

The example L1 motion-planing problem, which serves to be the problem for

this section, is given as follows and is hereafter referenced as problem “Gns”:

(Gns)



State: x = [x, v]T ∈ R2, Control: F̂ ∈ R

Minimize: J
[
x(·), F̂ (·)

]
=
∫ tf

t0

∣∣∣v(t)F̂ (t)
∣∣∣ dt

Subject To: ẋ
v̇

 =

 v

−αv + F̂


t0 = 0, tf = 1

x(t0) =
[
0 v0

]T
∈ R2

x(tf ) =
[
xf vf

]T
∈ R2∣∣∣F̂ ∣∣∣ ≤ F̂max

The state vector consists of the position and velocity of the mass. The control is

taken as the force acting perpendicular to the mass, and is bounded by a fixed-

amount F̂max, α ∈ R>0 is a parameter representing viscous friction term. The

cost functional is a metric which describes the amount of work-effort performed,
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and the absolute value (about the running cost) emphasizes that effort is taken

to either speed up or slow down the mass-block (i.e. effort to accelerate or de-

celerate the mass). The presence of the L1 cost functional makes problem Gns

non-differentiable with respect to state as well as control. Through the addi-

tion of auxiliary decision variables and constraints linear in the running cost, the

nonsmooth Gns may be transformed into an equivalent smooth optimal control

problem. The set of auxiliary decision variables and associated path constraints,

which transform the nonsmooth problem Gns into an equivalent smooth formula-

tion is based on the approaches outlined in Refs. [58, 63]. Considered first, is the

quantity which the L1 norm acts upon:

z(t) , v(t)F̂ (t). (4.2)

Next, the positive and negative portions of z are defined as

za(t) ,
{
v(t)F̂ (t)

}+
and zb(t) ,

{
−v(t)F̂ (t)

}+
, (4.3)

where {·}+ is the operator which takes only the positive part, and is defined as

{f(t)}+ =


f(t) if f(t) > 0

0 if f(t) ≤ 0
.

By the manner in which z, za, and zb are defined, the following relationships hold

for all t ∈ [t0, tf ]:

z(t) = za(t)− zb(t) (4.4)

|z(t)| = za(t) + zb(t) (4.5)

za(t), zb(t) ≥ 0 (4.6)
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Next, the minimization of ∫ tf

t0

∣∣∣v(t)F̂ (t)
∣∣∣ dt

may be achieved by minimizing

∫ tf

t0
za(t) + zb(t) dt (4.7)

when the following four path constraints are satisfied for all time t ∈ [t0, tf ]:

za(t) ≥ 0 zb(t) ≥ 0 za(t)− z(t) ≥ 0 zb(t) + z(t) ≥ 0 (4.8)

The motivation to why minimizing the cost functional in Eq. (4.7) under the

constraints in Eq. (4.7) leads to the minimization of Eq. (4.7), is from the fact

the sum of two nonnegative numbers, za(t) + zb(t), is being minimized; if one is

nonzero, then the other must take on the value of zero for minimum to be obtained.

Note that za and zb are both control variables, and hence need not be continuous,

and are free to be chosen. Fix t ∈ [t0, tf ] and suppose that z(t) , v(t)F̂ (t) is

piecewise continuous on [t0, tf ]. If z(t) ≥ 0, then za(t) ≥ z(t) ≥ 0 and zb(t) ≥

0 ≥ −z(t) ≤ 0, so za(t) + zb(t) ≥ z(t). Therefore min {za(t) + zb(t)} = z(t). If

z(t) < 0, then za(t) ≥ 0 and zb(t) ≥ −z(t) > 0, so za(t)+zb(t) ≥ −z(t). Therefore

min {za(t) + zb(t)} = −z(t). Consider an interval [ti, tj] in which z(t) ≥ 0, then

∫ tj

ti
za(t) + zb(t) dt ≥

∫ tj

ti
z(t) dt ≥ 0 (4.9)

Consider an interval [ti, tj] in which z(t) < 0, then

∫ tj

ti
za(t) + zb(t) dt ≥

∫ tj

ti
−z(t) dt > 0 (4.10)
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Therefore, when for all t ∈ [t0, tf ], za(t) ≥ 0, zb(t) ≥ 0, za(t) − z(t) ≥ 0, zb(t) +

z(t) ≥ 0, minimizing
∫ tf

t0
za(t)+zb(t) dt is equivalent to minimizing

∫ tf

t0
|z| dt. Note

that, from the preceding arguments, the following nonlinear relation is obtained:

za(t)zb(t) = 0 for all t ∈ [t0, tf ]. Therefore, the nonsmooth problem formulation

Gns may be transformed into an equivalent smooth formulation, by the addition

of the defined axillary decision variables and approach outlined in Eqs. (4.2)-(4.8).

This formulation is denoted Gs and is given as follows:

(Gs)



State: x = [x, v]T ∈ R2, Control: u =
[
F̂ , za, zb

]
∈ R3

Minimize: J
[
x(·), F̂ (·)

]
=
∫ tf

t0
za(t) + zb(t) dt

Subject To: ẋ
v̇

 =

 v

−αv + F̂



t0 = 0, tf = 1

x(0) =
[
x0 v0

]T
∈ R2

x(tf ) =
[
xf vf

]T
∈ R2

∣∣∣F̂ ∣∣∣ ≤ F̂max

za(t) ≥ 0

zb(t) ≥ 0

za(t)− v(t)F̂ (t) ≥ 0

zb(t) + v(t)F̂ (t) ≥ 0
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The only difference between Gns and Gs is the addition of the ancillary controls

za, zb along with the four path constraints za(t), zb(t) ≥ 0 and za(t)−v(t)F̂ (t) ≥ 0,

and zb(t) + v(t)F̂ (t) ≥ 0, which allow the minimization of the desired cost func-

tional of problem Gns. The “cost” for generating the equivalent smooth formula-

tion of problem Gns is an increase of two controls and four path constraints. While

numerically solving optimal control problems with path constraints is a difficult

problem,20,64 standard numerical techniques in (smooth) optimal control33 may

be applied to obtain candidate solutions to problem Gns.

Since problem Gs is smooth, the necessary conditions of optimality via Pon-

tryagin’s Minimum Principle may be obtained. Access to the necessary conditions

allows the validation of numerical candidate solutions for optimality. What fol-

lows is a derivation of the necessary conditions of optimality to problem Gs, which

will be used to validate the candidate numerical solutions. Define the costate as

λ =
[
λx, λv

]
∈ R2, and the control Hamiltonian as

H(λ, x, u) = za + zb + λxv + λv
(
−αv + F̂

)
. (4.11)

The Hamiltonian Minimization Condition (HMC) is given as given as

(HMC)



Min: H(λ, x, u) = za + zb + λxv + λv
(
−αv + F̂

)
Subject to:

−F̂max ≤ F̂ ≤ F̂max

za(t) ≥ 0

zb(t) ≥ 0

za(t)− v(t)F̂ (t) ≥ 0

zb(t) + v(t)F̂ (t) ≥ 0

(4.12)

Because of the addition of the path and box constraints upon the control vari-
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ables, the Karush-Kuhn-Tucker (KKT) conditions must be applied to determine

the necessary conditions of the HMC. The KKT conditions are applied through

building the Lagrangian of the Hamiltonian. Since there are five path constraints

in the HMC in Eq. (4.12), the path covector of KKT multipliers µ is of dimension

five, and is defined as µ =
[
µF̂ , µa, µb, µpos, µneg

]ᵀ
∈ R5 where subscripts describes

the variable associated to each covector. The Lagrangian of the Hamiltonian is

given as

H(µ, λ, x, u) = H(λ, x, u) + µᵀh(x, u)

= za + zb + λxv + λv
(
−αv + F̂

)
+ µF̂ F̂ + µaza + µbzb + µpos

(
za − vF̂

)
+ µneg

(
zb + vF̂

)
.

From the KKT conditions, at each time instant, the Lagrangian of the Hamil-

tonian must be stationary to the control u, that is ∂uH = 0 ∈ R3. Therefore

the stationary condition gives three equations which all optimal solutions must

necessarily satisfy:

0 =


λv + µF̂ − v(µpos − µneg)

1 + µa + µpos

1 + µb + µneg

 (4.13)

The KKT conditions additionally require the control u and path covector µ to

satisfy the complementarity conditions. For brevity only the condition on F̂ and
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µF̂ is presented, as all other complementarity conditions are analogously defined:

µF̂



≤ 0 F̂ = −F̂max

= 0 −F̂max < F̂ < F̂max

≥ 0 F̂ = F̂max

(4.14)

Along with the necessary conditions given by the stationary and complementarity

conditions, another invaluable necessary condition is arrived upon by considering

the lower Hamiltonian. The lower Hamiltonian, H, is acquired by evaluating the

control Hamiltonian along an extremal solution, u∗, of the HMC. That is

H(λ, x) , H(λ, x, u∗).

Since the control Hamiltonian is time invariant, the Hamiltonian Evolution Con-

dition states that candidate optimal solutions are such that the lower Hamiltonian

is constant for all time; that is

d

dt
H(λ, x) = 0 for all t ∈ [t0, tf ].

The adjoint equations are

λ̇x = 0 (4.15)

λ̇v = −λx + αλv + F̂ (µpos − µneg)

Problem Gs was solved by DIDO with the data given in Table 4.1. The nu-

merical results obtained is shown in Figure 4.2. The states x and v are shown in

Figure 4.2a and are seen to satisfy the boundary conditions of problem Gs. Due

to L1 optimization, and the intuition of the controls obtained in Refs. [65–67],
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Table 4.1: Simulation parameters for Problem Gs

parameter value
x0 0
v0 1
xf 1
vf 0.5
Fmax 3
α 1

the optimal control is expected to have a bang-off-bang structure for problem Gs,

which is the case as Figure 4.2b. Figure 4.4a demonstrates the validity of the

Hamiltonian Evolution Condition with the lower Hamiltonian being H(t) ≈ −2.5

for all t ∈ [t0, tf ]. Figure 4.4b depicts that the control, F̂ and associated KKT

multiplier µF̂ , satisfy the complimentary condition given in Eq. (4.14). The nu-

merical solution obtained by DIDO satisfies the three stationary conditions, given

in Eq. (4.13): Figure 4.3a shows the consistency of one of the three stationary

conditions (the other two, while satisfied, are omitted for brevity). Lastly, when

deriving the adjoint equations the costate associated with the state variable x

must necessarily be constant for all time (see Eq. (4.15)), which is the case as

seen in Figure 4.3b. Other necessary conditions such as the Hamiltonian value

condition or transversality conditions, have each been verified but are omitted due

to brevity. Therefore, the candidate solution to problem Gs passes the necessary

conditions of optimality.

The feasibility of u∗, the extremal control, is verified by propagating u∗ through

the dynamics using a standard Runge-Kutta (RK) integrator. As seen in Fig-

ure 4.5, the solution returned by the RK integrator coincides with the solution

obtained by the numerical optimal control solver.
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(a) (b)

Figure 4.2: State and control profiles to problemGs: (a) position (x) and velocity
(v) of the rigid body; (b) force applied to the mass.

4.3 Development of the Minimum Electrical En-

ergy Slew Problem Formulation

The goal of this section is to revisit the energy-time relationship studied in

Chapter 3 for minimum dissipative losses (and hence reduced electrical energy),

but now study the relationship under the true cost of the electric power-input

equation of Eq. (2.19), hence truly study the minimum electrical energy and

transfer time relationship for reaction wheel spacecraft. The cost functional to

minimize the electrical energy of a reaction wheel array generates a L1 optimal

control problem of mixed control and state. In this section, the method to solve

L1 of mixed control and state illurstrated in Section 4.2, is applied to solve for

minimum electrical energy spacecraft slews. Practical constraints pertinent to an

operational environment are considered, just as those considered in Chapter 3

which studied the energy-time relationship minimizing dissipative losses. Namely,

these constraints consist of (i) constraints upon the maximum generatable torque

by the reaction wheels; (ii) constraints upon the rate gyros upon the spacecraft
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(a) (b)

Figure 4.3: (a) Verification of a stationary condition, in Eq. (4.13), to prob-
lem Gs; (b) Costates to problem Gs, λx is constant which is consistent with the
necessary conditions of optimality.

(a) (b)

Figure 4.4: (a) Consistency of the Lower Hamiltonian in
Eq. (4.15); (b) Consistency of the complementarity condition in Eq. (4.14).
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Figure 4.5: Successful feasibility of the solution to problem Gs.

body; (iii) constraints upon maximum reaction wheel speed; (iv) constraining the

attitude so that the slew is an eigenaxis maneuver; (v) enforcing specific starting

and ending speeds of the reaction wheels.15 An optimal control problem which

minimizes the electric power-input equation may be formulated as follows, and is
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denoted as problem Pns:

(Pns)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw

Control: u = τrw ∈ RNrw ,

Minimize: J [x(·), u(·)] = 1
2

∫ T

0

{
Nrw∑
i=1
Pi(Ωrw, τrw) +

Nrw∑
i=1
|Pi(Ωrw, τrw)|

}
dt

Subject To: 
q̇

ω̇

Ω̇rw

 =


1
2Q(ω)q

J−1
sc (−Aτrw − ω ×(Jscω + AJrwΩrw))

J−1
rw τrw



x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw

x(T ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw

|τrw| ≤ τmax, ∀ i = 1, . . . , Nrw

(4.16)

where Pi(Ωrw, τrw) is the electrical power equation and is given by Eq. (2.19). The

state consists of the quaternion attitude parameterization, angular velocity of the

spacecraft body (relative to the spacecraft body), and angular speed of the reac-

tion wheels (relative to their spin axes). The control for problem Pns is taken as the

reaction wheel motor toques. The boundary conditions and the nonlinear dynam-

ics of problem Pns describe a slew with specified starting and ending orientation

and velocity of the spacecraft body and the wheels. The amount Ωbias ∈ RNrw

in the boundary conditions is given to satisfy the operational constraint that the

wheels must begin and end with the same velocity, which is enforced to avoid
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stickage issues that occur when operating the reaction wheels near zero speeds.15

A total of 2Nrw + 3 path constraints enforce the limits upon rate-gyro, reaction

wheel angular velocity, and reaction wheel generatable motor torque. The cost

functional of Pns minimizes the electrical power-input equation for each reaction

wheel, which was derived in Chapter 2. Therefore Pns is a formulation for min-

imum electrical energy slews. Considering Eq. (4.16), it is clear that due to the

cost functional, formulation Pns is a complex and challenging high-dimensional

problem.

From the techniques developed in Section 4.2, the nonsmooth problem Pns

may be solved without resorting to proxies, mollification or homotopic approaches.

Therefore, minimum electrical energy slews may be obtained. This is attained by

generating an equivalent smooth formulation of problem Pns. The smooth formu-

lation is obtained through a process, analogous to the one developed for the L1

motion planning problem of Section 4.2. Each nonsmooth term |Pi(Ωrw, τrw)| of

the electric power-input equation must be cast into an equivalent smooth represen-

tation. Therefore each |Pi(Ωrw, τrw)| requires two auxiliary decision variables za,i

and zb,i, along with four path constraints za,i ≥ 0, zb,i ≥ 0, za,i−Pi(Ωrw, τrw) ≥ 0,

and zb,i + Pi(Ωrw, τrw) ≥ 0; by doing so, za,i and zb,i represent the positive and

negative portions of the electric power P respectively. From this judicious choice

of ancillary controls and path constraints, Pns may be transformed into an equiva-

lent smooth formulation. This formulation is presented as follows, and is denoted

as Ps (for electric power-input smooth version):
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(Ps)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw

Control: u =
[
τrw, za,1, zb,1, . . . , za,Nrw , zb,Nrw

]ᵀ
∈ R3Nrw

Minimize: J [x(·), u(·)] = 1
2

∫ T

0

{
Nrw∑
i=1
Pi(Ωrw, τrw) +

Nrw∑
i=1

(za,i + zb,i)
}
dt

Subject To: 
q̇

ω̇

Ω̇rw

 =


1
2Q(ω)q

J−1
sc (−Aτrw − ω ×(Jscω + AJrwΩrw))

J−1
rw τrw



x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw

x(T ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

za,i ≥ 0, ∀ i = 1, . . . , Nrw

zb,i ≥ 0, ∀ i = 1, . . . , Nrw

za,i − Pi(Ωrw, τrw) ≥ 0, ∀ i = 1, . . . , Nrw

zb,i + Pi(Ωrw, τrw) ≥ 0, ∀ i = 1, . . . , Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw

|τrw,i| ≤ τmax, ∀ i = 1, . . . , Nrw

(4.17)

The “cost” to generate the equivalent smooth Ps from Pns is an increase of

2Nrw controls, and 4Nrw path constraints. For a spacecraft which utilizes a re-

dundant set of four reaction wheels, problem Ps consists of 11 state variables, 12

controls, and 27 path constraints. Therefore, while there is a substantial increase

in dimensionality incurred to generate Ps, this formulation is smooth, whereas
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Pns is nonsmooth. Because Ps is smooth, it is straightforward obtain the neces-

sary conditions for optimality by application of Pontryagin’s Minimum Principle.

Added to this, since Ps is smooth, well established methods in numerical optimal

control may be utilized to solve the formulation.

4.4 The Minimum Energy Shortest Time Ma-

neuver

To demonstrate the benefit of directly minimizing the electric power-input

equation, problem Ps is solved for a time-optimal 180-degree slew about the space-

crafts z-axis with spacecraft parameters from Table A.1 of Appendix A. This sim-

ulation (with parameters) is the same considered in Chapter 3 which studied the

energy-time relationship under the minimization of cumulative dissipative losses

of coper and fiction (represented by E losstotal in Eq. (2.26)). Therefore, from Sec-

tion 3.3.1 of Chapter 3, the time optimal transfer time to this simulation is 279.9

seconds. The numerical approach used to obtain a candidate state-control pair

for problem Ps, including associated dual variables for optimality analysis, is the

same used to solve the time optimal formulation which minimized the electrical

dissipative losses given by problem ME in Eq. (3.5) in Section 3.2.3. By choosing

the same simulation parameters and numerical approach, the sate and control

trajectories from all three problem formulations may be compared: (i) Minimiz-

ing transfer time, (ii) Minimizing Dissipative losses, whose formulation is given in

Eq. (3.5). (iii) Minimizing the electrical power-input equation, whose formulation

is given in Eq. (4.17).

Problem Ps, as given in Eq. (4.17) was solved for the optimal transfer time,

which is known to be 279.9 seconds from the results in Chapter 3, using the pseu-
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dospectral methods implemented in the software package DIDO. The numerical

results (i.e. candidate state-control pair) obtained by DIDO is shown in Figure 4.6.

A comparison of the electrical energy metrics among the three formulations (mini-

mum time, minimum dissipative losses, minimum electrical power-input) is shown

in Table 4.2. By being able to directly minimize the electrical power-input equa-

tion, the agile (indeed, most agile–in fact, time optimal) maneuver is able to be

completed with the least amount of electrical energy of 136.5 J, compared to 162

J when just minimizing transfer time, and 143.9 J when dissipative losses are

minimized (resulting with a reduced energy maneuver). The fact that the energy

spent due to dissipative losses E losstotal when minimizing the power-input equation is

greater than the maneuver which specifically minimizes E losstotal (128.5 J verses 121.0

J) makes intuitive sense, since minimizing the electrical power-input equation does

not necessarily mean that dissipative losses are minimized; it is expected that a

maneuver which minimizes E would produce a suboptimal value for the metric

E losstotal (simply from the fact of which functional is being minimized); the same

vice-versa: That the least electrical energy is obtained by minimizing E (which is

the integral of the electrical power input equation over the maneuver time). This

fact emphasizes that care should be taken when choosing a cost functional. Each

of these metrics are important, it just depends upon the desired result: One min-

imizes electrical energy via minimizing the power-input equation, and the other

minimizes dissipative losses (and hence reduces thermal stresses induced by the

reaction wheel array) via E losstotal. The derivation of the necessary conditions to prob-

lem Ps are omitted due to brevity, since the derivations are very similar to those

presented in the subsequent chapter on attitude steering (Chapter 5), as well as

to the derivations to problem Gs. For the sake of validating the candidate state-

control solution shown in Figure 4.6, a few necessary conditions to problem Ps are
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stated, and the candidate solution is shown to satisfy these necessary conditions.

Since Ps is time invariant, optimal solutions to problem Ps must necessarily have

a lower Hamiltonian which is constant over the entire horizon [t0, tf ]. Figure 4.7a

demonstrates the consistency of the lower Hamiltonian, with H(t) ≈ −38.8 for

all t ∈ [t0, tf ]. Because limits upon the angular velocity of the spacecraft body

axes are imposed in problem Ps, in concern for saturation of the rate gyros which

are used to determine the spacecraft attitude, in the form −ωmax ≤ ωi ≤ ωmax

for each axis i = 1, 2, 3, each ωi and associated KKT multiplier µω,i must sat-

isfy the complementarity condition. That is µω,i ≥ 0 if ωi = ωmax, µω,i = 0 if

−ωmax ≤ ωi ≤ ωmax, or µω,i ≤ 0 if ωi = −ωmax. Satisfaction of the complimentary

condition for ω2 is shown in Figure 4.7b. While not depicted, the solution to

problem Ps shown in Figure 4.6 passed feasibility to a specified tolerance within

10−4. While this section omits other necessary conditions (e.g. stationary con-

ditions, terminal transversality condition, other complementarity conditions), the

candidate solution in Figure 4.6 has been successfully verified against each of

them.

Table 4.2: Electrical Energy Metrics of for a 180 degree rotation about the
spacecraft z-axis: Minimizing transfer time; minimizing dissipative losses Etotal;
minimizing electrical energy Eq. (4.17). Each maneuver has a transfer time of
279.9 seconds.

Cost Functional E (J) E losstotal (J) Closs (J) Floss (J)
Min transfer time (tf ) 162.0 136.3 79.7 56.6

Min Dissipative Losses (E losstotal) 143.9 (-11.2%) 121.0 (-11.2%) 81.3 (+1.9%) 39.7 (-29.9%)
Min Electrical Power-Input (E) 136.5 (-15.7%) 128.5 (-5.7%) 87.3 (+9.5%) 41.2 (-27.2%)
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(a) (b)

(c) (d)

Figure 4.6: State and control profiles of a minimum electrical energy 180-deg
rest-to-rest slew about the spacecraft z-axis, minimizing the electrical power-input
equation: (a) attitude; (b) body rates; (c) reaction wheel rates; (d) reaction wheel
motor torques.

4.5 Revisiting the Transfer Time and Minimum

Energy Relationship

In this section, the relationship between energy and transfer time for both eige-

naxis maneuvering and off-eigenaxis maneuvering, which was studied in Chapter 3

of this dissertation and in Refs. [57, 61], is revisited under the electrical power-

input equation of Eq. (2.25) using Ps. Before exploring this new avenue, a synopsis

of the original transfer time and energy relationship, performed in Refs. [57, 61],
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(a) (b)

Figure 4.7: Verification of necessary conditions to the minimum electrical energy
180-deg rest-to-rest slew about the spacecraft z-axis: (a) Consistency of the Lower
Hamiltonian; (b) Complementarity condition for ω2.

is first presented. In both Refs. [57, 61], and in Chapter 3 of this dissertation,

the relationships between electrical energy and transfer time for these two maneu-

ver types (off-eigenaxis and on-eigenaxis) were studied under minimum dissipative

losses of Eq. (2.26) for a 180 degree slew about the spacecraft’s z-axis. At the time

of that study, minimizing the electrical power-input equation posed too great a

challenge. Instead, Refs. [57,61] reduced the electrical energy by instead minimiz-

ing dissipative losses. These relationships between electrical energy and transfer

time were identified by generating a set of a Pareto fronts (one for off-eigenaxis

maneuvering, and another for conventional eigenaxis maneuvering) that described

the amount of electrical energy required per transfer time for each type of ma-

neuver (be it off, or on eigenaxis maneuvering) when minimizing the cumulative

copper loss and friction loss, given by the metric E losstotal given in Eq. (2.26). The

manner by which these two Pareto fronts were generated, was through solving

a sequence of fixed-time optimal control problems with final-time being varied,

beginning with the time-optimal transfer time to each maneuver type (e.g. time
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optimal off-eigenaxis, and time optimal eigenaxis). The optimal control formula-

tions used for off-eigenaxis (and with a slight modification, for eigenaxis–details

are provided in Section 3.2.2) maneuvering, was problem ME given in Eq. (3.5).

Through these simulations and subsequent analysis, a host of results were ob-

tained, and that all of these results from the relationship between energy and

transfer time for the chosen slew (180 degree maneuver about the z-axis of the

spacecraft) are indicative for other slews. A key reason to revisit this study, is

that the cost functional to problem ME minimized the electrical dissipative losses.

That is,

Minimize: J [x(·), u(·)] =
∫ T

0

Nrw∑
i=1

(
R

K2
T

(τrw,i(t) + βΩrw,i(t))2 + βΩ2
rw,i(t)

)
dt

This thought is now laid to rest, for in this chapter a method has been developed to

minimize the power-input equation. The success of the method was demonstrated

for a time optimal minimum electrical energy slew in the preceding Section 4.4,

where it was shown that even-further electrical energy savings upon the minimum

dissipative losses maneuvers may be obtained by directly minimizing the electrical

power-input equation; see Table 4.2. Therefore, equipped with the new method

developed in this chapter, the relationship between electrical energy and transfer

time is revisited once again, although now under the electric power-input equa-

tion. The same slew (180 degrees about the spacecraft’s z-axis whose initial and

final quaternions are q0 = [0, 0, 1, 0]ᵀ and qf = [0, 0, 0, 1]ᵀ) and spacecraft param-

eters (those from Table A.1 of Appendix A) which were exactly those used in

Refs. [57,61] and in Chapter 3 to study energy and transfer time relationship, are

used for this “revisited”-study of the time/energy relationship between the two

maneuver types (off-and on-eigenaxis). By this choice of simulation parameters

(spacecraft and slew), a comparison may be made, upon the efficacy of directly
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minimizing electrical energy against minimizing dissipative losses in regards to the

least amount of energy usage per transfer time. Along with using the same simu-

lation parameters as in Refs. [57,61] and Chapter 3, the same approach is taken to

generate the two Pareto fronts (one for off-eigenaxis, and another for eigenaxis).

For off-eigenaxis maneuvering, problem Ps is solved for a sequence of transfer

times, beginning at the time optimal transfer time for the simulation parameters,

which was identified as 279.9 seconds. The approach for eigenaxis maneuvering

is identical, that is a sequence of fixed time maneuvers are solved which begin

at the time-optimal transfer time for an eigenaxis maneuver (determined to be

362.0 seconds), except that problem Ps must be modified to constrain all motion

to be along an eigenaxis. This modified formulation is presented as follows, and
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is hereafter referred to as problem P-EAMs:

(P-EAMs)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw

Control: u =
[
τrw, za,1, zb,1, . . . , za,Nrw , zb,Nrw

]ᵀ
∈ R3Nrw

Minimize: J [x(·), u(·)] = 1
2

∫ T

0

{
Nrw∑
i=1
Pi(Ωrw, τrw) +

Nrw∑
i=1

(za,i + zb,i)
}
dt

Subject To: 
q̇

ω̇

Ω̇rw

 =


1
2Q(ω)q

J−1
sc (−Aτrw − ω ×(Jscω + AJrwΩrw))

J−1
rw τrw



x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw

x(T ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

za,i ≥ 0, ∀ i = 1, . . . , Nrw

zb,i ≥ 0, ∀ i = 1, . . . , Nrw

za,i − Pi(Ωrw, τrw) ≥ 0, ∀ i = 1, . . . , Nrw

zb,i + Pi(Ωrw, τrw) ≥ 0, ∀ i = 1, . . . , Nrw

ω × e(q0, qf ) = 0 ∈ R3

‖ω‖2
2 ≤ ωmax

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw

|τrw,i| ≤ τmax, ∀ i = 1, . . . , Nrw

(4.18)

The path constraint ω × e(q0, qf ) = 0 ∈ R3 constrains all (rotational) motion to

be along an eigenaxis, and the individual limits upon each axis of the spacecraft

in problem Ps has been replaced with a spherical slew-rate constraint in the form

‖ω‖2
2 ≤ ωmax. The Pareto fronts to both eigenaxis and off-eigenaxis maneuvering
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generated when minimizing the electrical power-input equation is shown in Fig-

ure 4.8, and were generated by the process mentioned in the section preceding

problem formulation P-EAMs. By minimizing the electric power-input equation,

Figure 4.8 shows the relationship between minimum electrical energy and trans-

fer time. Figure 4.8, every one of the relationships identified between electrical

energy and transfer time for both off-eigenaxis and eigenaxis maneuvering, under

minimum dissipative losses, made in Refs. [57,61] (and Chapter 3), hold true when

minimizing electrical energy directly through the power-input equation. Namely,

each Pareto front may be separated into distinct phases, each providing telling

information on the relationship between electrical energy and transfer time, which

is especially useful for planing purposes.

(i) Head: This region is near the shortest time maneuver and depicts that there

exits a host of near time-optimal maneuvers with a substantially less energy

budget than the shortest time counterpart; for off-eigenaxis maneuvering,

this phase may be considered as the time-interval [tstm, 299] in Figure 4.8.

From this observation the STM may no longer be considered a desirable

maneuver, for by decreasing transfer time by a negligible amount reduces

energy by substantial amounts. This result could be useful for being able to

attain very agile maneuvers within a restrictive energy budget.

(ii) Body: In this portion of the energy/time relationship, electrical energy re-

quirements decay linearly with respect to increasing transfer time. Addition-

ally, the body-phase is much more pronounced for off-eigenaxis maneuvering,

which is due to the extra degrees of freedom provided by off-eigenaxis ma-

neuvering. For the Pareto front associated to off-eigenaxis maneuvering, the

body portion of the Pareto front may be considered in the time interval [299,

387] in Figure 4.8.
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(ii) Coincide Point: There exists a point in transfer time where eigenaxis ma-

neuvering and off-eigenaxis maneuvering perform equivalently with respect

to energy; this point in transfer time is at T = 387seconds in Figure 4.8.

This point demonstrates that there exists a point in transfer time that no

reduction energy is attained by maneuvering off eigenaxis.

(iii) Tail: This portion of the energy/time relationship depicts that there exists

a point where there are extremely diminishing returns upon energy when

increasing transfer time. Additionally, the tail portion begins at the Coincide

point for off-and on-eigenaxis maneuvering and lasts for all time past the

Coincide point, [387,∞) in Figure 4.8. Therefore, the concept of reducing

energy requirements by increasing the slew time only works up to a certain

point in transfer time.

Additionally, and perhaps most importantly, the trade space between off-and

on-eigenaxis maneuvering identified when studying the energy/time relationship

when minimizing the dissipative loss metric, exists when directly minimizing elec-

trical energy via the electric power input equation. From this tradespace shown

in Figure 4.8, is demonstrated that there exists a host of agile maneuvers which

exist within the energy budget of conventional eigenaxis maneuvering.

The Pareto fronts obtained from the two minimization approaches (reducing

energy through minimizing dissipative from Chapter 3 and directly minimizing

electrical energy in this chapter) are superimposed upon one another in Figure 4.9,

so a comparison may be made between the effect of minimizing electrical energy

directly (through the power-input equation) and the effect of reducing energy by

minimizing dissipative losses. The dashed Pareto set in Figure 4.9 was obtained

when minimizing dissipative losses only, and the solid line is the Pareto set ob-

tained when directly minimizing electrical energy. Clearly, Figure 4.9 shows that
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Pareto front obtained by directly minimizing electrical energy (obtained by mini-

mizing the electrical power-input equation) dominates the Pareto front obtained

by only minimizing dissipative losses. From figure 4.9, it can be seen that while

the geometric structure of the energy/time relationships hold between each mini-

mization scheme, both the off-eigenaxis and eigenaxis are more pronounced when

minimizing the true cost given by the power-input equation; most notably the

coincide point, which was identified to be at 395 second transfer time when mini-

mizing dissipative losses, is now at 387 seconds when directly minimizing electrical

energy.

Figure 4.8: Relationship between minimum electrical energy and transfer time to
the 180-degree z-body-axis minimizing the electrical power-input equation whose
problem formulation is given by Ps of Eq. (4.17). The vertical axis is electrical
energy as measured by E .
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Figure 4.9: Comparison between the relationship between energy and transfer
time under minimum dissipative losses against under minimum electrical energy.

4.6 Conclusion

The minimization of electrical energy to perform a slew using reaction wheels

was shown to be a problem in L1 optimal control. To overcome the challenge

of nonsmoothness with respect to both control and state variables, an augmen-

tation method was adopted which generated an equivalent smooth formulation.

This method lifted the formulation through the addition of ancillary controls and

path constraints upon the controls. Standard techniques in computational op-

timal control were applied to solve for minimum electrical energy slews under

a host of operational constraints in line with a flight scenario. As an applica-

tion, the identification of the relationship between electrical energy and transfer

time under minimum electrical energy was identified for both on-and off-eigenaxis
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maneuvering. The tradespace between on-and off-eigenaxis maneuvering under

minimum dissipative losses was shown to hold under minimum electrical energy,

thereby demonstrating that agile off-eigenaxis maneuvering exists within the en-

ergy budgets of typical eigenaxis maneuvering. The minimum electrical energy

slews demonstrated that transfer time, energy, and dissipative losses may be sub-

stantially reduced by maneuvering off-eigenaxis.
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Chapter 5

Attitude Steered Maneuvering
“Discovery consists in seeing what
everyone else has seen and
thinking what no one else has
thought”

Albert Szent-Gyorgi

This chapter examines the effectiveness of reducing the energy consumption

of a reaction-wheel array over the course of a slewing maneuver by steering the

attitude of the spacecraft, in situations where it is not possible to command the

reaction wheel torque directly. To explore this avenue, a set of constrained non-

linear nonsmooth L1 optimal-control problems are formulated and solved. It is

demonstrated that energy consumption, dissipative losses, and peak-power load

of the reaction-wheel array can each be reduced substantially, by controlling the

input to the attitude control system through attitude steering, thereby avoiding

software modifications to flight software.

5.1 Introduction

Power is the driving resource upon a spacecraft and impacts every facet and

phase of its existence, whether from the initial design phase, where resources are
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allocated for energy storage that effect the payload of the spacecraft, or whether

till late mission life when power systems begin to degrade. Power directly effects

the efficacy of scientific data collection, from running the instruments, to operat-

ing the attitude control system (ACS) which slews the spacecraft to orientations

of interest. Minimizing power and energy demands has the potential of prolonging

the operational lifespan of the spacecraft, thereby enhancing the scientific utility

of the spacecraft, and lowering the overall monetary-cost of a mission. Prolong-

ing life expectancy is especially pertinent given the recent failures of the reaction

wheel actuators on the NASA’s Kepler, Mars Odyssey, and Dawn spacecrafts [68],

and the anomalies detected on NASA’s Cassini spacecraft [69] during it’s more

than nineteen year exploration. Power not only has an effect on the efficacy of

science, but has a fundamentally direct and meaningful impact from an econo-

metric standpoint, as well as from a social-media standpoint when considering the

public’s response to scientific failures.

Synthesizing the above exposition, it is apparent that minimizing the power

or energy required to perform a slew is a highly desirable goal. Situations in

which the power management becomes highly beneficial, is late in mission life

when power systems begin to degrade. Due to the high cost and invested effort

involved with a spacecraft, it behooves the science community to attempt to keep

scientific data collections active as long as possible, extending the operation of the

spacecraft well-past the original mission requirements. An example exemplifying

longevity past original mission requirements, was NASA’s Far Ultraviolet Spec-

troscopic Explorer (FUSE) spacecraft, whose three year mission was extended to

over eight years of scientific observations and collections [70]. Deep-space opera-

tions are another facet exemplifying the necessity to preserve power: Solar cells

are a renewable source of energy, but are only effective up to the orbit of Mars;
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beyond that distance the solar radiant flux is not adequate to power spacecraft,

and therefore alternate methods to generate power, such as thermoelectric heat

engines are required to generate energy for deep-space missions [71]. Because the

power output of radioisotope thermoelectric generators which drive deep-space

spacecraft fade over time, NASA has a vested interest in both extracting more

power, along with increasing the amount of time before the power-output profiles

degrade [72]. Regardless of the power and energy source, as a spacecraft ages

onboard power generation and energy storage systems capabilities begin to de-

grade. Consider Voyager 1, which has had to have its scientific instruments shut

off one by one, as a result not of malfunction, but rather as a result of dwindling

power-output profiles [8]. One approach to possibly ameliorate the requirement

for more power, especially when power systems begin to degrade, is to reduce the

power requirements of the attitude control system. Reaction wheels can be a con-

siderable load upon a spacecraft [73]. The execution of slew maneuvers, notably

large-angle slews, may cause short-in-duration though large-in-magnitude power

demands, which in turn may cause electrical transients [44]. These transients

can degrade power quality across the entire electrical bus, which often services

sensitive scientific instruments as well as the attitude control system. They can

also potentially create a violation of power constraints placed upon the spacecraft.

Similarly, in a system with degraded power margins, peak power loads (which can

occur during the execution of a large angle slew) can generate electrical surges [44].

Reducing power demands can potentially bring greater utility out of a spacecraft,

especially late in operational life well past its original mission.

While minimizing the electrical energy consumed by the reaction wheel array

is highly favorable, attempting to solve this problem poses significant challenges

from both a computational as well theoretical standpoint. These challenges arise
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due to the fact that the electric power-input equation is nonsmooth [57], and it

is this challenge which has lead many researchers to instead minimize proxies to

the reaction wheel power equation, such as mechanical power. It was shown in

Ref. [44], that minimizing the electric power-input equation may be formulated as

a L1 optimal control problem. An approach to minimize the power-input equation

was devised in [44] by generating an equivalent smooth formulation, by virtue of

lifting the dimensionality of the original nonsmooth problem via the addition of

ancillary decision variables, and appropriate constraints upon these variables. In a

setting where the reaction wheel motor torques may not be directly controlled and

that modifications to the flight software to allow-so are unfeasible, e.g. due to cost,

minimum energy solutions must be able to work with a heritage attitude control

system, methods based upon controlling reaction wheel motor torque are not

applicable. One approach to reduce the energy requirements of such systems, is

by steering the attitude of the spacecraft based on the knowledge of the underlying

control allocation scheme (e.g. least-squares), spacecraft parameters (e.g. inertia

tensor), and relevant constraints (e.g. saturation limits). This allows the behavior

of the attitude control system to be modified without the need to otherwise alter

the flight control logic.

A family of electrical power and energy metrics were derived in [57], to study

the relationship between electrical energy and transfer time between on-and off-

eigenaxis maneuvering. This study was from the perspective of a global approach

within the framework of optimal control, with a performance index which min-

imized dissipative losses of the reaction wheels, and under the assumption that

the reaction wheels can be directly controlled. An early work in optimal energy

slews was seen in [54], where the copper loss of a single reaction wheel motor

was minimized. References of [54–56] also approached energy minimization of
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reaction wheel spacecraft through an optimal control framework. Although each

approach to minimize energy varied in either performance index or number of

reaction wheels, they matched in control input, with each assuming that the re-

action wheel motor torques may be directly controlled. A feedback solution to

the minimization of the instantaneous L2 norm of mechanical power to a redun-

dant actuator array was devised in [35]. This was accomplished by augmenting

the instantaneous reaction wheel torque profiles from a least-squares control al-

location through the addition of null motions. The efficacy of null motions to

reduce the energy associated to a least-squares control allocation scheme was fur-

ther investigated in [24], although under a performance index that assumed power

may be regenerated when a reaction wheel decelerates. A feedback control law

for simultaneous attitude and power tracking was developed in [74], where null

motions were utilized to track a power profile. The problem of distributing the

control torque unto the reaction wheels, to minimize the instantaneous L1 norm

of mechanical power, was posed as a constrained convex optimization problem in

Refs. [53, 75], and solved through an application of lexicographic optimization.

A point of commonality among the literature which seek slewing strategies

for the reduction of energy, is the assumption that reaction wheel inputs may be

directly accessed and modified. Schemes which seek to reduce energy consumption

either take control to be the motor torques generated by the reaction wheels,

or directly augment the torque allocation scheme e.g. through the application

of null motions. This assumption is tantamount to assuming that the attitude

control system is equipped with an accessible feed-forward component, which may

not be the case. Indeed, in a conventional ACS it is typical that attitude is

taken as input.25 Therefore in the quest for energy-reducing schemes, there exist

situations in which the control allocation performed by the spacecraft needs to be
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incorporated when designing a minimum (electrical) energy solution. That there

exists a situation in which the reaction wheel motor torques can not be directly

modified nor accessed raises, then the question of how minimum energy slews

can be implemented when the spacecraft is in control of the torque allocation.

The objective of this chapter is to seek minimum energy slews for the case when

the reaction wheels can not be directly controlled. The approach taken by this

chapter is to steer the attitude of the spacecraft, which may be thought of as

determining a path for the boresight, with the goal of obtaining a minimum electric

energy maneuver. Therefore, the goal of this work is to develop minimum energy

maneuvers, by steering the attitude of the spacecraft, under the knowledge of

the control allocation scheme implemented by the spacecraft, which is assumed

to be L2 allocation, i.e: least-squares allocation. In order to obtain minimum

energy attitude steering, a fixed-endpoint, fixed-time optimal control problem

is formulated in this chapter. This formulation directly considers the nonlinear

rotational dynamics, which are required for the analysis of large angle slews. Also

considered in the formulation are practical constraints upon both the state and

the control variables, which arise in an operational setting. For example hardware

constraints involving the saturation limits of the rate gyros, and the maximum

speed and torque authority of the reaction wheels. Lastly, the formulation directly

considers the nonsmooth reaction wheel power-input equation in order to minimize

electrical energy.

The remainder of this chapter is organized as follows: First the rotational dy-

namics of a spacecraft employing a L2 allocation scheme is derived. Following the

dynamics, the reaction wheel power model and energy metrics are presented. The

next section presents a set of high dimensional nonlinear optimal control prob-

lem formulations for the minimization of electrical energy by steering the attitude
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of the spacecraft, along with the necessary conditions derived from Pontryagin’s

Minimum Principle. The last section demonstrates the efficacy of steering the

attitude of the spacecraft by comparing the feedback implementation of the de-

signed minimum electric energy attitude steering maneuver against a conventional

eigenaxis maneuver.

5.2 Modeling Least Squares Control Allocation

The present chapter assumes that the spacecraft attitude control system im-

plements a least squares control allocation scheme. This assumption requires that

the spacecraft model in Chapter 2, must be modified in order to reflect that equa-

tions of motion are now driven by torques allocated under this specific control

allocation scheme. The only modification to the spacecraft equations of motion,

in order to account for a least squares control allocation scheme, is to the reaction

wheels dynamics. The angular momentum of each reaction wheel about its spin

axis is modeled by the following equation:

h(t) = JrwΩrw(t)− JrwAᵀω(t), (5.1)

where Jrw is a diagonal matrix with Nrw entries along the main-diagonal, whose

i-th entry is the inertia of the i-th reaction wheel, which is assumed to be time

invariant with respect to the spacecraft body frame. The vector Ωrw(t) ∈ RNrw is

comprised of the angular rates of the reaction wheels about their respective spin

axes. The angular momentum increment resulting from the spacecraft relative to

the wheels is described by JrwAᵀω(t). Because reaction wheels are normally oper-

ated at a bias rate, Ωrw,i(t)� aᵀiω(t) so Eq. (5.1) may be reasonably approximated
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as

h(t) = JrwΩrw(t). (5.2)

Noting that in Eq. (5.2) the reaction wheel control torque is given as τrw(t) = ḣ(t),

the torque upon the spacecraft in the body frame is expressed by

τBsc(t) = ḢBrw(t) = A(−ḣ(t)) = −Aτrw(t).

Therefore, under a least-squares control allocation scheme, the standard selection

of reaction wheel motor torques to produce a commanded body torque, is taken

as

τrw(t) = −A+τBsc(t),

where A+ is the standard Moore-Penrose inverse of the matrix A, that gives the

least-squares solution in terms of commanded torques [25]. Synthesizing the above

derivations, the equations of rotational motion of a spacecraft which implements

a standard Moore Penrose control allocation scheme with Nrw reaction wheels is

given as

 ω̇(t)

Ω̇rw(t)

 =

J−1
sc (AA+τBsc(t)− ω(t)× (Jscω(t) + AJrwΩrw(t)))

−J−1
rw A

+τBsc(t)



5.3 Minimum Energy Attitude Steering

In this section, the dynamical model for a spacecraft implementing a least-

squares control allocation scheme and the electrical energy model for reaction

wheel actuators, are incorporated into an optimal control formulation for the

minimizing the electrical energy required to perform a slew. The slewing ma-

neuvers of interest to this work, are rest-to-rest maneuvers from an initial orien-
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tation given by q0 ,
[
e0 sin

(
Φ0
2

)
, cos

(
Φ0
2

)]ᵀ
∈ R4 to a final orientation given by

qf ,
[
ef sin

(Φf

2

)
, cos

(Φf

2

)]ᵀ
∈ R4, with ω0 = ωf = 0 ∈ R3. Other scenarios can be

evaluated by appropriately altering the boundary conditions.

The optimal control formulation presented in this section incorporates practi-

cal constraints upon both state and control, each in-line with a typical operational

scenario: (i) Reaction wheel speed-bias, Ωbias ∈ R, is enforced per wheel to avoid

operating the wheels near zero-speed. (ii) Per axis limits, ωmax ∈ R, are imposed

upon the spacecraft angular rate to avoid rate gyro saturation. (iii) Per wheel

momentum storage, Ωmax ∈ R, and torque authority, τmax ∈ R, constraints are

also considered. The optimal control problem formulation is presented as follows,

and is denoted hereafter as problem “Ans”:

(Ans)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw , Control: u = τBsc ∈ R3,

Minimize: J [x(·), u(·)] =
∫ T

0

Nrw∑
i=1
{Pi}+ dt

Subject To: 
q̇

ω̇

Ω̇rw

 =


1
2Q(ω)q

J−1
sc (AA+τBsc − ω × (Jscω + AJrwΩrw))

−J−1
rw A

+τBsc


x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw

x(tf ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw∣∣∣(A+τBsc(t))i
∣∣∣ ≤ τmax, ∀ i = 1, . . . , Nrw

(5.3)

The state of the system consists of the attitude of the spacecraft in quaternion

parameterization, the angular velocity of the spacecraft body (with respect to the
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body frame), and the reaction wheel angular velocities (about their individual

spin axes). Because the spacecraft is assumed to be allocating control authority

to the reaction wheels (through a least-squares allocation scheme) the control

vector is taken as the three-vector of torques acting on the spacecraft body. The

cost functional is taken with the reaction wheel power-input of the reaction wheel

array as the running cost; therefore problem Ans minimizes the energy required

to perform a slew. The upper bound on the transfer time for the slew is given

by T . For a minimum-energy problem, it is typical for the final time to extend

to the right of the allowed horizon, i.e. tf > T . Therefore, for the problem to be

feasible, the value of T must be, at minimum, the transfer-time of the shortest-

time maneuver, tSTM, for the same parameters and boundary conditions. From

this point of view, a minimum energy shortest-time maneuver can be determined

by setting T = tSTM. The transfer time of the a shortest time maneuver, tSTM,

can be determined by a simple modification to the cost functional by rewriting

J [x(·), τrw(·), tf ] = tf and allowing 0 ≤ t ≤ ∞. The boundary conditions and the

dynamics comprise the rest-to-rest attitude maneuvers and dictate the evolution

of the system. Last in the formulation are the constraints associated to rate-

gyro saturation, maximum reaction wheel speed, and torque generatable by the

reaction wheels. Given that the control is taken as the spacecraft body torques

and not the reaction wheel motor torques themselves, which have a hard-limit

on maximum generatable torque, τmax, an additional path constraint is required.

To accommodate the hardware limits of maximum torque generatable by the

reaction wheels, τmax, requires the incorporation of Nrw paths constraints into the

formulation, given by
∣∣∣(A+τBsc(t))i

∣∣∣ ≤ τmax, ∀ i = 1, . . . , Nrw.

Problem Ans does not enforce any constraints to constrain the attitude ma-

neuver to be an eigenaxis slew. Therefore, off-eigenaxis slewing maneuvers are
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feasible to problem Ans, and hence are potential solutions to problem Ans should

they be more advantageous with respect to the energy metric when meeting a

given constraint on the slew time. Given the extra degrees of freedom that off-

eigenaxis maneuvering permits, coupled with the non-symmetric inertia tensors

of real-world spacecraft, it seems plausible that off-eigenaxis maneuvers would

be more advantageous with respect to energy when compared to their eigenaxis

counterparts. Indeed this is the case as seen in [57]. The analysis to follow in

this chapter is concerned with evaluating the energy requirements under attitude

steering, for off-eigenaxis slew profiles against the conventional eigenaxis control

logic [25]. To achieve an eigenaxis maneuver under a slew-rate constraint, the Ans

formulation presented in Eq. (5.3) requires two alterations: (i) To constrain the

motion of the spacecraft, the angular velocity vector of the spacecraft must al-

ways be collinear with the eigenaxis [23]. Including the following path-constraint

as part of problem As achieves this goal:

ω(t)× e(q0, qf ) = 0 ∈ R3, ∀t, (5.4)

It is noted in Eq. (5.4), that the eigenaxis e is a function of the initial and final

attitude quaternion. For an eigenaxis slew it is also necessary to enforce a spherical

slew rate constraint in concerns of saturating the rate gyros. This can be done by

including an additional path constraint of the form ‖w‖2 ≤ ωmax, which replaces

the three path constraints |ωi| ≤ ωmax, ∀ i = 1, 2, 3.
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5.3.1 Managing the Nonsmooth Energy Formulation

Using the method from Chapter 4, minimization of electrical energy may be

cast as an L1 problem:

Minimize: J [x(·), u(·)] = 1
2

∫ T

0

{
Nrw∑
i=1
Pi(t) +

Nrw∑
i=1
|Pi(t)|

}
dt

Based on this reformulation of the cost functional in problem Ans, its is clear that

the only terms involving the absolute value operator must transformed to obtain

an equivalent smooth formulation. An appropriate choice of ancillary decision

variables is based off of [58, 63], for each i = 1, . . . , Nrw: zi(t) , Pi(t). Next, the

positive and negative portions of z are defined as

za,i(t) , {Pi(t)}+ and zb,i(t) , {−Pi(t)}+ , (5.5)

where {·}+ is defined in Eq. (2.22). By the manner in which z, za, and zb are

defined, the following relationships hold for all t ∈ [t0, tf ] [44]:

zi(t) = za,i(t)− zb,i(t), |z(t)| = za(t) + zb(t), za(t), zb(t) ≥ 0. (5.6)

Because the cost functional is minimizing the absolute value of z, each ancillary

control variable as defined in Eq. (5.5) are obtained through the path constraints

of Eq. (5.6) along with the path constraints:

za,i − Pi ≥ 0, ∀ i = 1, . . . , Nrw and zb,i + Pi ≥ 0, ∀ i = 1, . . . , Nrw, (5.7)

Amalgamating Eqs. (5.6) and (5.7), an equivalent smooth formulation to problem

Ans may be arrived upon, and is given in the following formulation(which, hereafter
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is referred to as problem As):

(As)



State: x = [q, ω,Ωrw]T ∈ R7+Nrw

Control: u =
[
τBsc, za,1, zb,1, . . . , za,Nrw , zb,Nrw

]ᵀ
∈ R3+2Nrw

Minimize: J [x(·), u(·)] = 1
2

∫ T

0

{
Nrw∑
i=1
Pi +

Nrw∑
i=1

(za,i + zb,i)
}
dt

Subject To:

q̇

ω̇

Ω̇rw

 =



1
2Q(ω)q

J−1
sc (AA+τBsc − ω × (Jscω + AJrwΩrw))

−J−1
rw A

+τBsc


x(0) = [q0, ω0, Ωbias]T ∈ R7+Nrw

x(tf ) =
[
qf , ωf , Ωbias

]T
∈ R7+Nrw

za,i ≥ 0, ∀ i = 1, . . . , Nrw

zb,i ≥ 0, ∀ i = 1, . . . , Nrw

za,i − Pi ≥ 0, ∀ i = 1, . . . , Nrw

zb,i + Pi ≥ 0, ∀ i = 1, . . . , Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw∣∣∣(A+τBsc)i
∣∣∣ ≤ τmax, ∀ i = 1, . . . , Nrw

The increase in dimensionality needed to obtain the equivalent smooth formulation

to problem Ans is to add 2Nrw (ancillary) control variables, along with 4Nrw con-

straints (thereby bringing the total path constraints in problem Ans to 6Nrw + 3).

While there is a computational-cost for increasing the dimensionality to the op-

timal control problem Ans, it allows the original problem to directly be solved

without having to resort to information loss, either through resorting to proxies
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to the cost functional, linearizing the dynamics, or through homotopic approaches

in which a sequence of problems are solved which converge to a solution to the

original problem. Problem As may be readily solved numerically using any of the

standard computational optimal control algorithms. Additionally, Pontryagin’s

Minimum Principle may be directly applied to problem As to obtain necessary

conditions for optimality. For a spacecraft simultaneously utilizing four reaction

wheels to perform attitude control, problem As has a 22-dimensional state-control

pair (11 for state and 11 for control). Additionally to the high dimension of the

state model, are nonlinear and coupled dynamics, as well a considerable num-

ber linear and nonlinear constraints, totaling to 27 path constraints. Therefore,

determining an optimal solution to problem As is particularly challenging, both

numerically and most-certainly analytically.

5.3.2 Necessary Conditions for Optimality

In this section, the necessary conditions for optimality for problem As are

obtained through the application of Pontryagin’s Minimum Principle. Necessary

conditions serve an important role in the validation of a numerical solution, serving

as a fail-test for potential solutions to problem As. At the heart of Pontryagin’s

Minimum Principle is the Hamiltonian Minimization Condition (HMC). The HMC

states that, for an extremal control u∗ to be optimal, it necessarily must minimize

the control Hamiltonian at each instant of time. Due to the presence of state and

control path constraints in problem As the necessary conditions from the HMC

are obtained by applying the Karush-Kuhn-Tucker (KKT) conditions through the

consideration of the Lagrangian of the control Hamiltonian:

H(µ, λ, x, u) = H(λ, x, u) + µᵀh(x, u) (5.8)
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where H(λ, x, u) ∈ R is the control Hamiltonian, µ ∈ R3+6Nrw the path covector

consisting of the KKT multipliers associated to the HMC, and h ∈ R3+6Nrw the

vector of path constraints. By the KKT conditions, at each instant of time, the

Lagrangian of the Hamiltonian must necessarily be stationary with respect to the

control u:
∂H

∂u
= ∂H

∂u
+
(
∂h

∂u

)T
µ = 0 ∈ R3+2Nrw (5.9)

Along with the stationary condition, the KKT conditions require the path cov-

ectors and path constraints satisfy the complementarity conditions: For each

i = 1, . . . , 3 + 6Nrw

µi



≥ 0 if hi(x, u) = hUi

= 0 if hLi < hi(x, u) < hUi

≤ 0 if hi(x, u) = hLi

(5.10)

To simplify the presentation of the necessary conditions of problem As, the mini-

mization of E is rewritten as it is equivalent to the minimization of the following

cost functional:

Jequiv [x(·), u(·)] =
∫ T

0

Nrw∑
i=1

(
R

K2
τ

)
τ 2
rw,i +

(
Rβv
K2
τ

+ 1
)
βvΩ2

rw,i +(za,i + zb,i) dt. (5.11)

The equivalency of the cost functional in Eq. (5.11) to that in Problem As is

by the invariance of minimization under scalar multiplication and under vertical

translations, along with the following relationship57

∫ T

0

Nrw∑
i=1

τrw,i(t)Ωrw,i(t) dt =
Nrw∑
i=1

Jrw,i
2

(
Ω2
rw,i(T )− Ω2

rw,i(0)
)
, (5.12)
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which is arrived through Eq. (2.8). The control Hamiltonian for problem As is

therefore given by

H(λ, x, u) =
Nrw∑
i=1

((
R

K2
τ

)
τ 2
rw,i +

(
Rβv
K2
τ

+ 1
)
βvΩ2

rw,i +(za,i + zb,i)
)

+ λᵀq

(1
2Q(ω)q

)

+ λᵀω
(
J−1
sc (AA+τBsc − ω × (Jscω + AJrwΩrw))

)
+ λᵀΩ

(
−J−1

rw A
+τBsc

)
, (5.13)

where each λq ∈ R4, λω ∈ R3, λΩ ∈ RNrw , is a vector of costates with subscript

corresponding to the associated state variable vector. The Lagrangian of the

(control) Hamiltonian, is given by

H(µ, λ, x, u) = H(λ, x, u)+µᵀ
aza+µᵀ

bzb+
Nrw∑
i=1

µpos,i(za,i − Pi)+
Nrw∑
i=1

µneg,i(zb,i + Pi)

+ µᵀ
ωω + µᵀ

ΩΩ + µᵀ
τ

(
A+τBsc

)
(5.14)

where each µa, µb, µpos, µneg, µΩ, µτ ∈ RNrw , µω ∈ R3, is a vector of KKT covec-

tors with subscript corresponding to the associated vector of path constraints.

While Eq. (5.14) is somewhat lengthy, expressions for the stationary conditions

in Eq. (5.9) may be attained through a straightforward application of matrix

calculus:

0 = ∂H

∂τBsc
=
(
λᵀωJ

−1
sc AA

+
)T
−
(
λᵀΩJ

−1
rw A

+
)T

+ (µτA+)ᵀ (5.15)

0 = ∂H

∂za,i
= 1 + µa,i + µpos,i ∀i = 1, . . . , Nrw (5.16)

0 = ∂H

∂zb,i
= 1 + µb,i + µneg,i ∀i = 1, . . . , Nrw (5.17)

While the KKT conditions require that each of the seven collections of KKT

covectors making up µ have associated to them complementarity conditions, for
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the sake of brevity, only µa and µω are presented as the the rest follow in like

manner:

µω,i



≥ 0 if ωi = ωmax

= 0 if −ωmax < ωi < ωmax

≤ 0 if ωi = −ωmax

, µa,j


= 0 if 0 < za,j <∞

≤ 0 if za,j = 0
(5.18)

Along with the complementarity conditions and stationary conditions, another

extremely important necessary condition for the validation of numerically com-

puted solution is arrived upon by considering the lower Hamiltonian and how it

evolves over time. The lower Hamiltonian, H, is acquired by evaluating the (con-

trol) Hamiltonian along an extremal solution, u∗, of the HMC, i.e. H(λ, x) ,

H(λ, x, u∗), and evolves over time according to Ḣ(λ, x) = ∂tH (known as the

Hamiltonian Evolution Equation [58]). Therefore, because problem As is time

invariant, the Hamiltonian Evolution Equation states that optimal solutions to

problem As must necessarily have lower Hamiltonian which is constant for all

time, i.e.
d

dt
H(λ, x) = 0 ∀ t ∈ [0, T ]. (5.19)

The use of the adjoint equations to problem As, which evolve according to −λ̇ =

∂xH, for the purpose of validating numerical solutions of problem As is not helpful

because the equations are complicated. For example, the adjoint associated to the
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quaternions evolve according to

λ̇q1 = 1
2 (λq2ω3 − λq2ω2 + λq4ω1)

λ̇q2 = 1
2 (−λq1ω3 + λq3ω1 + λq4ω2)

λ̇q3 = 1
2 (λq1ω2 − λq2ω1 + λq4ω3)

λ̇q4 = 1
2 (−λq1ω1 − λq2ω2 − λq3ω3)

Therefore, the necessary conditions used in this chapter to demonstrate the va-

lidity of a numerical solution for optimality include the stationary conditions,

complimentary conditions, and the consistency of the lower Hamiltonian.

Along with verifying the satisfaction of the necessary conditions for the candi-

date optimal control solution it is also necessary to demonstrate the feasibility of

the candidate optimal control, u∗. This feasibility analysis is carried out by prop-

agating u∗ through the dynamics using a standard Runge-Kutta (RK) integrator.

The candidate optimal control is deemed feasible if and only if the solution re-

turned by the RK integrator coincides with the solution obtained by the numerical

solver, to within a predefined tolerance, i.e. ε < 10−6 where ε is the error. For an

in depth discussion on the verification and validation of optimal control solutions,

see Ross [58]. All results present in this chapter successfully passed feasibility

within the predefined tolerance specified in this section.

5.4 Minimum Energy Attitude Steering

This section demonstrates the existence and efficacy of minimum energy rest-

to-rest slews by steering the attitude of a spacecraft which implements its own

control allocation scheme (thereby precluding the direct control of the motor to-

ques generated by the reaction wheels). The spacecraft is assumed to distribute
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the control torque through a least-squares allocation scheme (i.e. Moore-Penrose).

To demonstrate the minimum energy attitude steering maneuver, a 180-degree

rest-to-rest slew about the spacecraft’s z-axis is considered, whose initial and final

quaternions are q0 = [0, 0, 1, 0]ᵀ and qf = [0, 0, 0, 1]ᵀ and parameters are given in

the Appendix.

The maneuver type which serves as the baseline is a conventional shortest

time eigenaxis maneuver (ST-EAM) under least-squares control allocation. In

order to obtain the ST-EAM under L2 allocation, a problem formulation is con-

structed and solved which is analogous to Ans: (i) Replace the cost functional with

transfer time, i.e. J [x(·), u(·), tf ] = tf , (ii) Add the path constraint in Eq. (5.4)

which enforces eigenaxis maneuvering, and (iii) Incorporate the spherical slew

rate constraint ‖w‖2 ≤ ωmax and remove the path constraint |ωi| < ωmax for each

i = 1, 2, 3.

The shortest-time eigenaxis maneuver to the 180-degree slew completes in

362.0 seconds, and requires 108 J of energy. The state and control profiles asso-

ciated to the ST-EAM are shown in Figure 5.1. Pontryagin’s Minimum Principle

states that the lower Hamiltonian should be -1 over the entire time horizon for

minimum-time problems, and Figure 5.4a depicts the consistency of the lower

Hamiltonian associated to the solution. The monotonicity of the quaternions in

Figure 5.1a depict that the obtained solution is in fact an eigenaxis maneuver.

Figure 5.1b shows the build up of the angular velocity of the spacecraft is about

the z-axis (the eigenaxis for this particular maneuver). The control profile seen

in Figure 5.1c is bang-bang, which is consistent for shortest time maneuvers. The

reaction wheel speeds seen in Figure 5.1d are observed to begin and end the ma-

neuver at their specified biases of 20 rad/sec.

By solving problem As, with the upper bound on transfer time to be the slew

131



(a) (b)

(c) (d)

Figure 5.1: State and control profiles of a Shortest Time Eigenaxis Maneuver
for a 180-deg rest-to-rest slew about the spacecraft z-axis: (a) attitude; (b) body
rates; (c) body torques (control); (d) reaction wheel rates.

time for the baseline eigenaxis maneuver, i.e. T = 362.0 seconds, a minimum

energy maneuver is obtained by steering the attitude of the spacecraft and hence

working about the ACS which allocates the control toque through a least-squares

scheme. The solution obtained solving As completes the slew with the same trans-

fer time as the baseline eigenaxis maneuver, yet requires 36.4% less energy (69.1

J as compared to 108.1 J). The state and control profiles to this minimum energy

solution is given in Figure 5.2, and differ dramatically from the state and control

profiles obtained by solving for the baseline eigenaxis maneuver. Problem As does
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(a) (b)

(c) (d)

Figure 5.2: State and control profiles of a Minimum Energy Attitude Steered
Maneuver, for a 180-deg rest-to-rest slew about the spacecraft z-axis: (a) attitude;
(b) body rates; (c) body torques; (d) reaction wheel rates.

not restrict motion to be along the eigenaxis, and so off-eigenaxis maneuvering is

feasible to problem As. The non-monotonicity of the quaternion attitude profiles

in Figure 5.2a demonstrates that the minimum energy attitude steering maneuver

utilizes off-eigenaxis maneuvering to complete the slew. Off-eigenaxis maneuver-

ing allows the spacecraft to build the body-velocities simultaneously about each its

axes, with saturation about the spacecraft z-axis from 85 seconds to 310 seconds,

as seen in Figure 5.2b Figures 5.2c and 5.2d depict the control (spacecraft body

torque) and the reaction wheel speeds. Comparing the torques of the minimum
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Table 5.1: Metrics to the baseline eigenaxis maneuver in Figure 5.1, and the
minimum energy attitude steering maneuver in Figure 5.2 (values in parenthesis
represent percentage change from the baseline).

Maneuver Type TT (s) E (J) E losstotal (J) Closs (J) Floss (J)
Shortest Time Eigenaxis Maneuver 362.0 108.7 106.3 61.1 45.2
Minimum Energy Attitude Steering 362.0 (0.0%) 69.1 (-36.4%) 56.4 (-46.9%) 8.2 (-86.6%) 48.3 (+6.9%)

energy maneuver to those from the conventional baseline eigenaxis maneuver,

the bang-bang profiles are now replaced with markedly less-demanding control

profiles. This difference in torque authority translates into an 87% reduction in

copper loss from the baseline eigenaxis maneuver (from 61.1 J to 8.2 J). The

speed profile to each reaction wheel for the minimum energy maneuver is given

in Figure 5.2d. On account of the effort towards maneuvering off-eigenaxis, the

friction loss incurred by the minimum energy attitude steered maneuver increases

by 7% from the conventional EAM (45.2 J to 48.3 J). Even with the small increase

in frictional losses, the minimum energy steered solution reduces the dissipative

losses by 47% (56.4 J as compared to 106.3), and therefore has less heat to reject

than the canonical EAM. Table 5.1 summarizes the slew-time and energy metrics

between the conventional EAM and the minimum energy solution.

To demonstrate the efficacy by which minimum energy attitude steered so-

lutions reduce power requirements, the time histories of power and cumulative

energy consumed by the reaction wheel array for the solution to problem As is

compared against the baseline eigenaxis maneuver, and are given in Figure 5.3.

In the comparison of RWA power usage, Figure 5.3a shows that the minimum-

energy solution reduces the peak power demand by nearly 96% (from 28.3 W

to 1.2 W), average power by 85% (from 2.0 W to 0.3 W), thereby reducing the

peak-to-average power ratio by 76% (from 14.5 to 3.5). Table 5.2 summarizes

the comparison of peak and average power between the two maneuver schemes.

In Figure 5.3b, the total energy consumption of the RWA for the two maneuver
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(a) (b)

Figure 5.3: Comparison between the baseline eigenaxis maneuver and mini-
mum energy attitude steering: (a) Electrical power consumed by the RWA; (b)
Cumulative electrical energy consumed by the RWA.

schemes is shown. It is clear that by steering the attitude of the spacecraft, the

energy required to perform the slew is substantially reduced and that enforcing

eigenaxis maneuvering limits the spacecraft with respect to energy.

Table 5.2: Reaction wheel array power usage of the baseline eigenaxis maneuver
compared to the minimum energy attitude steered maneuver (values in parenthesis
represent percentage change from the baseline).

Maneuver Type Peak Power (W) Average Power (W) Peak-to-Average Power Ratio
Shortest Time Eigenaxis Maneuver 28.3 2.0 14.5
Minimum Energy Attitude Steering 1.2 (-95.8%) 0.3 (-85.0%) 3.9 (-73.1%)

Lastly, the minimum-energy solution obtained from solving problem As is to be

vetted against the necessary conditions of optimality. Figures 5.4b and 5.5 show

the the numerical solution obtained from solving problem As satisfies the neces-

sary conditions given by Pontryagin’s Minimum principle. The (lower) Hamil-

tonian associated to the numerical solution obtained by solving the minimum

energy maneuver is shown in Figure 5.4b, and is consistent with the Hamiltonian

Evolution Equation of Pontryagin’s Minimum Principle, which requires that the

Hamiltonian be a fixed constant for all time over the finite horizon [0, T ]. While

135



(a) (b)

Figure 5.4: Consistency of the lower Hamiltonian for the: (a) ST-EAM ; (b)
minimum energy attitude steering.

the Hamiltonian associated to the minimum energy solution is demonstrated to

be constant, it is not -1; this discrepancy is due to the fact that problem As is

solved as a fixed-time problem, not a minimum-time problem. Figure 5.5a shows

the complementarity condition on the spacecraft angular rate, ω3: The KKT

multiplier associated to ω3 is observed to vary in accordance to Eq. (5.18) which

specifies that µω,3 = 0 unless the constraint upon ω3 is active. The specifics on the

other necessary conditions such as the details on transversality, the Hamiltonian

value conditions, etc. while verified, have been omitted for brevity. Therefore, by

passing both feasibility and the necessary conditions posed by Pontryagin’s Mini-

mum Principle, the solution obtained by solving to problem As may be considered

an optimal solution.

5.5 Feedback Implementation

In a practical flight setting,1,5, 6, 26–29 the open loop trajectories obtained from

solving optimal control problems are typically most effectively implemented when

tracked by a feedback controller.15 In this section, the attitude and body rate
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(a) (b)

Figure 5.5: Verification of necessary conditions to the Minimum Energy Attitude
Steered 180-deg rest-to-rest slew about the spacecraft z-axis: (a) Complementarity
condition for ω3; (b) Stationary condition for za,1.

trajectories associated to the baseline eigenaxis maneuver and the minimum en-

ergy attitude steering used as inputs to a standard quaternion-error control-law.

A block diagram of the control loop used in this section is shown in Figure 5.6:

To track a commanded attitude (qc ∈ R4) and spacecraft body velocity (ωc ∈ R3),

the feedback law produces a body torque τBsc ∈ R3. For the Nrw reaction wheels

to produce this body torque, reaction wheel toques are allocated through a least

squares allocation, where A+ ∈ RNrw×3 is the pseudoinverse of A. Figure 5.7 shows

Figure 5.6: Quaternion error feedback control law for implementing minimum
energy maneuvers

that the feedback controller correctly tracks the attitude and body rate of the two

maneuvers. Tables 5.3 and 5.4 summarize the energy and power performance due

to tracking the baseline eigenaxis maneuver, as well as the minimum energy ma-

neuver, obtained by solving to Problem As. The small discrepancy in the energy
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and power metrics between the open-loop and closed-loop performances for both

maneuver schemes, is in part because the influence from the dynamics of the ACS

were not considered in the problem formulations for either maneuver type. Even

with this small discrepancy, by opting for the minimum energy maneuver over the

baseline shortest time eigenaxis maneuver, the slew may be completed with 36%

less energy (from 113.1 J to 72.2 J) with dissipative losses reduced by 46% (from

109.0J to 59.4 J). The minimum energy off-eigenaxis maneuver is able to drive the

peak-to-average power ratio down from 81.4 to 6.5 (a reduction of 92%), complet-

ing the baseline maneuver with 95% less peak power (1.2 W as compared to 23.0

W). Figures 5.8 and 5.9 depicts the dramatically stark difference in energy and

power consumption between the two maneuver schemes and demonstrate that the

open-loop solutions accurately predict the closed-loop response of the feedback

controller in Figure 5.6. By maneuvering off-eigenaxis, energy, dissipative losses,

and peak power are dramatically reduced. Therefore, late in the mission life of a

spacecraft, when diminished power profiles are more likely to occur, more slews

may be feasible by opting for minimum energy maneuvering in situations where

the reaction wheels can not be directly controlled.

Table 5.3: Metrics to the close-loop implementation of the baseline eigenaxis ma-
neuver and minimum energy attitude steering in Figure 5.7 (values in parenthesis
represent percentage change from tracking the baseline).

Maneuver Type TT (s) E (J) E losstotal (J) Closs (J) Floss (J)
Baseline Eigenaxis Maneuver 400.0 113.1 109.0 61.1 47.9

Minimum Energy Attitude Steering 400.0 (0.0%) 72.2 (36.2%) 59.4 (-45.5%) 8.0 (-86.9%) 51.4 (+7.3%)

Table 5.4: RWA power usage to the closed-loop the baseline eigenaxis maneuver
and minimum steering (values in parenthesis represent percentage change from
the closed-loop baseline).

Maneuver Type Peak Power (W) Average Power (W) Peak-to-Average Power Ratio
Baseline Eigenaxis Maneuver 23.0 0.3 81.4

Minimum Energy Attitude Steering 1.2 (-94.8%) 0.2 (-33.3%) 6.5 (-92.0%)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Closed-loop state profiles for the baseline eigenaxis maneuver and
minimum energy attitude steering: baseline attitude and body rates in (a) and
(c) ; attitude and body rates for minimum energy attitude steering in (b) and (d);
(e) and (f) are the reaction wheel rates over the course of the maneuver.
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(a) (b)

Figure 5.8: Power consumed by the reaction wheel array over the maneuver
for the open-loop (dashed) and closed-loop (solid) implementation: (a) baseline
eigenaxis maneuver; (b) minimum energy attitude steering.

(a) (b)

Figure 5.9: Energy for open-loop (dashed) and closed-loop (solid) implementa-
tion: (a) baseline eigenaxis maneuver; (b) minimum energy attitude steering.
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5.6 Conclusions

This chapter demonstrates the existence of solutions to minimum electrical

energy maneuvering in the situations when the reaction wheels can not be directly

controlled, such as with a heritage attitude control system.The approach taken

was the formulation of a family of nonlinear nonsmooth L1, operationally rel-

evant, optimal control problems to minimize the electrical energy the reaction

wheel array to perform a slew, solely through steering the attitude of the space-

craft. Steering the attitude can produce maneuvers which substantially reduced

electrical energy requirements as well as reduce peak power, compared to conven-

tional eigenaxis maneuvering . Results present in this chapter demonstrate that

a significant penalty to both energy and power is incurred by enforcing eigenaxis

maneuvering. By maneuvering off-eigenaxis, energy, dissipative losses, and peak

power are dramatically reduced. Therefore, late in the mission life of a spacecraft,

when diminished power profiles are more likely to occur, agile slews may be fea-

sible by opting for minimum energy maneuvering in situations where the directly

controlling the reaction wheels is not possible.

Additionally it was shown that the open-loop solutions for minimum energy

attitude steering can be implemented using closed-loop control. Moreover the

open-loop solutions accurately predict the closed loop response. Therefore in

situations where the ACS does not permit direct access to the reaction wheels,

attitude steering may be utilized as a valuable tool for managing power and energy

requirements. Additionally it is noted that no modification to the flight software

is required to fly the new minimum energy maneuvers. Because of this, there is

a great potential to effect and implement these reduced energy maneuvers on a

broad class of spacecraft.
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Chapter 6

Conclusions and Future Work
“Without continual growth and
progress, such words as
improvement, achievement, and
success have no meaning.”

Albert Einstein

Power is as necessary to the operation of a spacecraft, as breathing is to a

human. Energy is a fundamentally limited resource of a spacecraft which directly

effects its utility and mission life. Power profiles of the spacecraft attitude control

system degrade as a spacecraft ages, which reduces the capabilities of the attitude

control system and onboard sensors. Proper management of the energy and power

systems of a reaction wheel attitude control system can increase the longevity

of scientific collection, as well as to potentially increase the lifespan of reaction

wheels. But, to properly manage the energy and power profiles, they must be

understood in the context of an industry-strength flight setting.

This body of work has addressed fundamental questions in regards to min-

imizing the energy and reducing the power required to slew a spacecraft which

uses reaction wheel momentum exchange devices for attitude control. Situations

which can potentially arise in a practical flight setting were identified, motivated,

addressed, and have been answered from a practical standpoint of a flight set-
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ting, which consists of incorporating constraints apropos to an operational set-

ting. These constraints were actuator constraints (associated to rate-gyros and

reaction wheels) nonlinear rotational dynamics, as well the introduction of a con-

straint which enforced eigenaxis maneuvering. The main situations addressed

and answered in this work were: (i) What is an appropriate metric for measuring

energy of a reaction wheel spacecraft (ii) How can energy be reduced when the

attitude of the spacecraft is predetermined (iii) How can energy be reduced when

the reaction wheels can not be directly controlled and (iv) What is the relationship

between energy and transfer time for on-and off-eigenaxis maneuvering.

An aspect of this thesis key to the results, is that electrical energy is min-

imized. This choice has allowed the development of a cost-functional which is

more in line with the actual operational cost of a reaction wheel actuator, and

has separated this work from the rest of literature associated to energy-optimal

attitude control regarding reaction wheel spacecraft. Works up to this disserta-

tion have minimized proxies associated to electrical energy that are either based

upon mechanical energy or some measurement of control effort rather than di-

rectly minimizing electrical energy. Additionally, this dissertation developed a

cost functional to minimize copper and friction dissipative losses which resulted

with a naturally occurring quadratic functional.

Minimizing electrical energy slews has been shown to a problem in L1 optimal

control. To overcome the challenges posed by nonsmoothness, an augmentation

method was adopted which transformed formulation to an equivalent smooth for-

mulation by lifting the dimensionality of the problem through the addition of an-

cillary control variables and path constraints upon those variables. This method

has allowed the problem formulation for minimum electrical energy slews to be

solved without any approximation.
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The relationship between transfer time and electrical energy for both conven-

tional eigenaxis maneuvering, and unconventional off-eigenaxis maneuvering, has

been identified in this dissertation under minimum dissipative losses (thereby re-

ducing the amount of heat to reject), as well as under minimum electrical energy

(thereby reducing battery draw). The nonlinear relationship between electrical

energy and transfer time demonstrated that there exits a slew time interval about

the shortest-time maneuver with the property that a small increase in transfer

time from the time optimal slew time results with a large decrease in electrical

energy. The relationship further shown that there exists a slew time, such that

savings upon energy are negligible for any transfer time past this point. Ad-

ditionally, the nonlinear relationship between the two maneuver types showed

that there exists a tradespace between off-and on-eigenaxis maneuvering. This

tradespace demonstrated that there exists agile maneuvering within energy bud-

get of conventional eigenaxis maneuvering, thereby refuting age-old intuition that

a more agile maneuver necessarily requires more control effort. The tradespace

also shown that by maneuvering off-eigenaxis, energy may be greatly decreased

for the same slew time budget as a conventional eigenaxis maneuver. These re-

sults upon the tradespace have shown that constraining the rotational motion of

a spacecraft about an eigenaxis grossly hinders transfer time and electrical energy

and peak-power, and that substantial savings upon transfer time and energy can

be obtained by opting for off-eigenaxis maneuvering.

The situation where the attitude can not be changed has been motivated as a

real concern in a flight setting and a reduced energy solution for this situation has

been presented: It has been shown that null motions may be utilized to reduce

the energy cost performing the slew. To demonstrate this a one dimensional linear

optimal control problem was subsequently developed which provided (computa-
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tionally) fast reduced-energy solutions, which could be implemented in real-time

and also served to serves as a simple necessary condition specific for slews with

minimum dissipative losses.

This dissertation demonstrated that situations exits when the reaction wheels

may not be directly controlled and that, in this situation, reduced electrical energy

solutions are obtainable by steering the attitude of the spacecraft through control-

ling the body torque of the spacecraft. These solutions also shown that the peak

power and average power can dramatically be reduced by steering the spacecraft.

Open loop trajectories obtained in this body of work by solving optimal control

formulations were demonstrated to accurately predict closed loop behavior when

tracked by feedback controllers.

Therefore, the collection of results to this body of work may be a valuable

tool to mission operations for planning and budgeting purposes in an operational

scenario for reduced energy slews for reaction wheel spacecraft. Results in this dis-

sertation demonstrate that eigenaxis maneuvering significantly limits a spacecraft

in terms of agility, energy, and power: Substantial reductions upon transfer time,

energy, dissipative losses, and power may be realized by maneuvering off-eigenaxis.

A substantial and obvious extension to this body of research is to have an

empirical study which validates the findings throughout this dissertation. This

experiment, or set of experiments, could be as simple as validating minimum

electrical energy shortest time maneuvers, or perhaps demonstrating the closed

loop responses in the Attitude Steering material in Chapter 5. A physical example

which demonstrates energy savings by applying the results in this work would be

quite beneficial.
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Appendix A

Simulation Parameters
“We’ll meet again, we’ll part once
more.”

James Joyce
Finnegans Wake

The parameters for the example spacecraft used throughout this work are
summarized in Table A.1.

Parameter Description Symbol Value & Units
Number of reaction wheels Nrw 4

Armature resistance R 1.8 Ohms
Motor torque constant KT 0.0696 Nm/A
Back EMF constant KV 0.0696 V ·(rads/s)−1

Wheel viscous friction coefficient βv 4.3 × 10−5 Nm ·(rads/s)−1

Maximum reaction wheel speed Ωmax 450.0 rads/s
Maximum motor torque τmax 0.14 Nm/s

Wheel rotor inertia Jrw 0.012 kg ·m2

(Per) Wheel speed bias Ωbias 20.0 rads/s
Rate gyro limit ωmax 0.5 degs/s – per axis

Reaction wheel projection matrix A 1√
3

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


Spacecraft inertia tensor Jsc

59.22 −1.14 −0.80
−1.14 40.56 0.10
−0.80 0.10 57.60

 kg ·m2

Table A.1: Spacecraft parameters [1, 3, 4] used in this work.
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Appendix B

Published Works
“The way to do research is to
attack the facts at the point of
greatest astonishment.”

Celia Green

This chapter presents the body of publications associated to and with the
author, which have served as the foundation to this dissertation.

B.1 Journals
• Harleigh C. Marsh, Mark Karpenko, and Qi Gong. “Relationships Between

Maneuver Time and Energy for Reaction Wheel Attitude Control,” Journal
of Guidance, Control, and Dynamics, Vol. 41, No. 2 (2018), pp. 335-348.

B.2 Conferences & Presentations
• Harleigh C. Marsh, Mark Karpenko, and Qi Gong. “Energy Constrained

Shortest Time Maneuvers for Reaction Wheel Satellites,”AIAA/AAS Astro-
dynamics Specialist Conference, September 2016, Long Beach, CA. Paper
number: AIAA 2016-5579.

• Mark Karpenko, Cornelius J. Dennehy, Harleigh C. Marsh, and Qi Gong.
“Minimum power slews and the James Webb Space Telescope,” The 27th
AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, February 5
to February 9 2017, Paper number: AAS 17-285.
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• Harleigh C. Marsh, Mark Karpenko, and Qi Gong. “Electrical-Power Con-
strained Attitude Steering,” AAS/AIAA Astrodynamics Specialist Confer-
ence, Stevenson, WA, August 20 to August 24 2017, Paper number: AAS-
17-774.

B.3 Posters
• Graduate Research Symposium 2017: “Energy Constrained Shortest-Time

Maneuvers For Reaction Wheel Satellites,” University of California, Santa
Cruz.

• Speed Geek 2016: “Energy Constrained Shortest-Time Maneuvers for Re-
action Wheel Satellites,” AIAA/AAS Astrodynamics Specialist Conference,
September 2016, Long Beach, CA. Out of 500 technical presenters, Harleigh
was one of ten selected to present at Speed Geek 2016. This poster was a
brief on the accepted conference paper at Space 2016.

• Advanced Studies Laboratories and University Affiliated Research Center
Poster Symposium: “Mission Control Technologies (MCT): Presenting a
Viable Open-Source Mission-Operations Software Project to the Public,”
NASA Ames Research Center, August 8, 2013.
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