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Abstract

Nonparametric Mixed-Effects Density Regression

Chi-Yang Chiu

Conditional density provides the most informative summary of the relation-

ship between independent and dependent variables. It enables us to examine the

overall shapes of densities as well as summary characteristics such as quantiles

and modes. Repeated measures designs are widely used in many areas such as

agriculture, education and pharmaceutical sciences. The data from repeated mea-

sures designs are correlated. We develop a nonparametric method for conditional

density estimation for repeated measures data. Specifically we propose nonpara-

metric mixed-efffects density regression (NMDR) models. The NMDR models

allow us to estimate conditional densities with fewer constraints on the form of

densities when data are correlated. The models may be constructed using Smooth-

ing Spline ANOVA (SS ANOVA) methods. Penalized marginal likelihood is used

to estimate the density function as well as parameters. We use the stochastic

approximation algorithm (SAA) with Newton-Raphson method for optimization,

and Markov chain Monte Carlo (MCMC) for approximating integrals. An example

from speech science is provided to illustrate the utility of our model.
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Chapter 1

Introduction

1.1 Density Estimation

Density estimation is a procedure to estimate (or approximate) the underlying

probability density function based on observed data. This is a fundamental prob-

lem in statistics. The density function f provides a description of the distribution

of a random variable, which is important for prediction, inference, discrimination

and classification.

One approach to density estimation is to assume that observations come from

a known parametric family of distributions, for example the Normal distribution

with mean µ and variance σ2, or the exponential distribution with rate λ. In this

situation, the density function is known except for a finite number of parameters.

The parameters can be estimated by methods such as maximum likelihood, mo-

ments (Casella and Berger, 2002) or spacings (Ghosh and Jammalamadaka, 2001).

This parametric approach is usually simple but sometimes the form of density is

hard to specify.
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In contrast to the parametric approach, the nonparametric method does not re-

quire a specific family for the density function. It lets the data speak for themselves

and therefore is more flexible than the parametric approach. One of the most well

known nonparametric approaches is the histogram, which is useful in data pre-

sentation and exploration. However, it is discontinuous and usually a smooth

estimator is desirable. Many other nonparametric density estimation methods

have been proposed, and we review some of these methods in Sections 1.2 to 1.4.

We focus on spline based methods in the following subsections for different types

of data.

1.2 Density Estimation for Independent and Iden-

tical Distributed Observations

The most basic type of data consists of independent and identically distributed

(i.i.d.) observations. In this case, observations are a random sample, Y1, ..., Yn,

from a certain distribution with density function f(y). Our goal is to estimate

the density function f .

Density estimation is complicated by two intrinsic constraints: nonnegativ-

ity constraint that f ≥ 0 and the unity constraint that
∫
Y f(y)dy = 1 where

Y is the domain. To deal with the nonnegativity constraint, O’Sullivan (1998),

Stone (1990) and Kooperberg and Stone (1991) proposed to estimate the density

function on the logarithm scale. They assumed that log f can be well approxi-
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mated by a finite mixture of B-splines basis functions. This approach requires the

specification of the number and locations of knots. Gu (1993) and Gu and Qiu

(1993) proposed a smoothing spline approach. To deal with both the nonnega-

tivity and the integrate to one constraints, they used the logistic transformation

of the density f = eg/
∫
Y e

g(y)dy and estimated g through the minimization of

penalized (negative) log likelihood. Details of the smoothing spline method will

be discussed in Chapter 2.

In addition to the spline methods discussed above, Parzen (1962) developed

a kernel method and Wahba (1981) used an orthogonal series such as Fourier

series expansion to estimate f . Silverman (1986) provides an excellent intro-

duction to nonparametric density estimation. Leonard (1978) and Lenk (1988,

1991) introduced and studied logistic Gaussian process priors for density estima-

tion. Gehringer and Redner (1992) presented a nonparametric density estimate

based on normalized tensor B-Splines. Efron and Tibshirani (1995) proposed a

semiparametric technique by applying Poisson regression methods to specially de-

signed parametric families through the kernel estimator. Dias (1998) proposed a

hybrid spline approach which approximates the logistic transformed density g by

a linear combination of B-spline basis functions, and estimated g by minimizing

penalized (negative) log likelihood.
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1.3 Conditional Density Estimation

Assessing the relationship between a dependent variable and one or more in-

dependent variables is of interest in many problems. For example, scientists may

want to know how the distribution of blood pressure depends on gender. Regres-

sion analysis focuses on univariate characteristics such as conditional expectation,

or quantiles of the dependent variable given the independent variables. The fam-

ily of conditional distributions is usually assumed to be known, for example, as

Gaussian or Poisson.

In some applications it is difficult, if not impossible, to specify a specific family

of distributions, and the goal is to investigate covariate effects on the whole condi-

tional density function. A conditional density estimate provides the most informa-

tive summary of the relationship between independent and dependent variables.

It allows us to examine the overall shapes as well as summary characteristics such

quantiles and modes.

Let (Yi, Xi), i = 1, ..., n be i.i.d. observations from a probability density f(y, x)

on a product domain Y × X . The interest is to estimate the conditional density

f(y|x) = f(y, x)/
∫
Y f(y, x)dy of Y given X. Using the logistic transformation

f(y|x) = eg(y,x)/
∫
Y e

g(y,x)dy, Gu (1995) modeled the logistic conditional density

g(y, x) using tensor product smoothing splines. Details of this approach will be

discussed in Chapter 2.
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Other approaches include kernel methods proposed by Fan and Yim (2004)

and Hall, Racine and Li (2004), orthogonal series methods proposed by Efro-

movich (2007), nonparametric Bayes methods proposed by Dunson, Pillai and

Park (2007), the nonparametric empirical Bayes approach proposed by Dunson

(2007), and semiparametric methods for comparing density differences in multi-

sample situations studied by Qin and Zhang (2005) and Aubin and Leoni-Aubin

(2008).

1.4 Conditional Density Estimation for Repeated

Measures Data

Repeated measures data refers to data that include multiple measures from

each subject. They arise in many areas such as agriculture, pharmacokinetics,

epidemiology, medicine and social science. They are generated by observing each

of a number of subjects repeatedly under varying conditions where the subjects

are assumed to constitute a random sample from a population of interest.

Observations from the same subject are usually correlated and we are inter-

ested in estimating the density for the population as well as the density for each

subject. In traditional regression analysis, mixed-effects models, including lin-

ear mixed-effects (LMEs), generalized linear mixed-effects (GLME) and nonlinear

mixed-effects (NLME) models, are used for the analysis of repeated measures data.

In such models, random effects are introduced in the conditional means to explain

5



the correlation caused by the subject effects. The application of smoothing spline

methods in mixed-effects models has been studied by Wang (1998), Karcher and

Wang (2001) and Ke and Wang (2001).

Traditional mixed-effects models assumed that data are from some specific

family of distributions which sometimes is a strong assumption. The goal of

nonparametric conditional density methods is to relax the assumption for the dis-

tribution of data. However, directly applying existing nonparametric conditional

density methods developed for independent data to repeated measures data, will

ignore the correlation within each subject. Hence we need nonparametric condi-

tional density mixed effects models for repeated measures data.

One application of conditional density estimation for repeated measures data

with flexible distributional assumptions was studied by Rodriguez, Dunson and

Taylor (2009). In DNA repair studies, the measurements of interest are obtained

from samples of cells from different individuals and the main interest focuses on

understanding heterogeneity in the rates of DNA repair, adjusting for baseline

damage and susceptibility to induced damage. In their study, Rodriguez, Dunson

and Taylor used a finite mixture of Gaussian densities to approximate the unknown

density. Even though this approach is more flexible than traditional mixed-effects

models, the model proposed by Rodriguez, Dunson and Taylor (2009) is still a

parametric model since the number of mixture components is finite and fixed.

Our research is motivated by an ongoing collaborative project with Profes-

sor Roger Ingham from the Department of Speech and Hearing Science at the

6



University of California - Santa Barbara, who is developing effective stuttering

treatments. Dr. Ingham and colleagues had shown that a reduction in short

phonated intervals (PIs) in the range of 30 to 150 ms is associated with decreased

stuttering (Gow and Ingham 1992), and that purposefully reducing the number

of short PIs resulted in the elimination of stuttering (Ingham, Kilgo, Ingham,

Mogila, Belknap and Sanchez 2001).

A PI is the elapsed time of a voiced unit of speech which is obtained by mea-

suring the duration of vibration from the surface of the throat in between breaks

of 10 ms or more. Observations are usually in the form of repeated measurements

from multiple subjects under different conditions (e.g. rhythm, whispering, chorus

and masking). Covariates may include gender and age. The goal is to compare

density functions (especially in the short PI region) between speakers who stutter

and normal subjects (or treatment and control) under different conditions.

The experiment involved 13 individuals who stuttered (11 of whom were males)

and 13 control participants who were matched by age and gender. Subjects in-

cluded both adults and adolsecent. Figure 1.1 displays the histograms of PIs for

each subject. Figure 1.2 shows estimated density functions of PIs during oral read-

ing for the 13 normal subjects and 13 people who stutter. The R package gss (Gu

2009) is used to estimate the density function for each subject separately. Visu-

ally, it appears that there is a large variation between subjects. Our goal is to

compare density functions between people who stutter and normal subjects. The

7



dataset was provided by Professor Ingham. Additional details about the dataset

and experiment can be seen in Godinho, Ingham, Davidow and Cotton (2006).

Several methods have been proposed to deal with correlated data. Hart and

Vieu (1990) and Hall, Lahiri and Truong (1995) developed kernel density esti-

mation methods for dependent data. Johnstone and Silverman (1997) proposed

wavelet threshold estimators for data with correlated noise. Breunig (2001) pro-

posed kernel density estimation methods for clustered data. Rodriguez and Horsty

(2008) used nonparametric Bayesian approach to study dynamic density estima-

tion for time-varying distributions. Rodriguez et al. (2009) used a finite mixture

of Gaussian distributions to approximate the population density, and a hierar-

chical model for mixture weights, to assess heterogeneity across subjects as well

as covariate effects. Griffin, Kolossiatis and Steel (2013) developed simultaneous

Bayesian non-parametric modelling of several distributions. In this thesis, we will

extend the SS ANOVA conditional density estimation method in Gu (1995) to

the repeated measurement setting.

The dissertation is organized as follows. Chapter 2 reviews the smoothing

spline density estimation method for independent data. Chapter 3 introduces

our proposed model which extends smoothing spline density estimation to re-

peated measurement data. Chapter 4 describes the estimation procedures for our

proposed model. In Chapter 5, we conduct extensive simulations to evaluate the

performance of the proposed methods. Finally, Chapter 6 illustrates our proposed

methods through the speech data.
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Figure 1.1: Histograms of PIs. In the ith panel, for i ∈ {1. . . . , 13}, the red and

green bins represent the PI proportion for the ith matched pair of normal and

stuttering subjects, respectively. The y-axis is bin proportion (in %), which is

computed as the bin count divided by the total PI count across all time intervals

for each subject. The x-axis is phonated interval (ms). The mean density shown in

the final panel is computed by taking the average across all 13 subjects separately

for each group.
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Figure 1.2: Estimated density functions of normal subjects (top) and people who

stutter (bottom). Red thick line in each plot represents the mean of the estimated

densities within each panel. Each mean density is calculated by taking the average

across the 13 subject densities in the corresponding subject group.
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Chapter 2

Smoothing Spline Density
Estimation

2.1 Model Setting

Suppose we have observations Yi
iid∼ f(y), y ∈ Y , where Y is an arbitrary set.

In particular, the observation Yi could be a scalar or a vector. Assume f > 0 on

Y . To be free of fundamental constraints, namely positivity and unity, the logistic

density transform f = eg/
∫
Y e

g(y)dy will be employed. The goal here is to model

and estimate the logistic density g. To ensure the logistic density transform is

one-to-one, estimation must enforce a side condition on g such as
∫
Y g(y)dy = 0.

Denote H as the functional space of g with a side condition
∫
Y g(y)dy = 0. In

smoothing spline density estimation, H is assumed to be a Reproducing Kernel

Hilbert Space (RKHS) on Y with a reproducing kernel (RK) R. A RKHS is a

Hilbert space in which every evaluation functional is continuous. The RK is a

bivariate function on Y , that is nonnegative definite and symmetric, R(y1, y2) =

12



R(y2, y1). The RK has the reproducing property, (R(y, ·), g(·)) = g(y) where (·, ·)

is the inner product in H.

Applying a tensor sum decomposition, we decompose H into two subspaces

H = H0 ⊕H1. (2.1)

In (2.1) , H0 is a finite dimensional space with basis functions φ1, ..., φp, and H1

is an RKHS with RK R1. H0, often referred to as the null space, consists of

functions that will not be penalized. For choosing H, several factors including the

domain Y and prior knowledge about the function g must be considered.

2.2 Penalized Likelihood Estimation

We use a penalized likelihood criterion to estimate g in (2.1). For the estima-

tion of g, the likelihood is

L(g|Y1, ..., Yn) =
∏n

i=1
f(Yi)

=
∏n

i=1

eg(Yi)∫
Y e

g(y)dy
,

and its logarithm

logL =
n∑
i=1

{g(Yi)− log

∫
Y
eg(y)dy}.

Note, nature logarithms are used throughout this thesis. Denote P1 as the orthog-

onal projection operator onto H1. We obtain the estimate of g via minimizing the

following negative penalized log likelihood,

PL(g) = − 1

n

n∑
i=1

{g(Yi)− log

∫
Y
eg(y)dy}+

λ

2
||P1g||2, (2.2)

13



in H. The negative log likelihood, − logL, measures the goodness-of-fit of g to

the data.

One should keep in mind that any member in H has to satisfy the predeter-

mined side condition,
∫
Y g(y)dy = 0, so that the negative log likelihood is strictly

convex. If the maximum likelihood estimate exists in the null space H0 which

equips wtih the side condition
∫
Y g(y)dy = 0, the convexity of negative log likeli-

hood establish the existence and uniqueness of the minimizer of (2.2) in H. The

proof for the convexity of negative log likelihood, and existence and uniqueness of

the minimizer of (2.2) in H can be found in Gu (2013, Ch7).

The second term in PL(g) in (2.2) is a penalty term that penalizes the depar-

ture of our estimate of g from the null space H0. The smoothing parameter λ

controls the trade-off between goodness-of-fit and departure from the null space

H0. As λ goes to∞, the limiting estimate falls in H0, which is a parametric model

with a finite number of parameters. With λ = 0, one obtains the nonparamet-

ric maximum likelihood estimate, which is a sum of delta function spikes at the

sample points, often referred to as the empirical distribution.

The solution to (2.2) might not fall in a finite dimensional space. Gu and

Wang (2003) proposed to approximate the minimizer of (2.2) in a data-adaptive

finite dimensional space

Hq = H0 ⊕ span{R1(Yij , ·), j = 1, ..., q}, (2.3)

14



with q ≈ 10n2/9, where the set {Yi1 , ..., Yiq} is a random subset of Y1, ..., Yn. Set

ξj = R1(Yij , ·). By (2.3), any function g in Hq can be expressed as

g =

p∑
ν=1

dνφν +

q∑
j=1

cjξj = φTd + ξTc, (2.4)

where φ = (φ1, ..., φp)
T and ξ = (ξ1, ..., ξq)

T are vectors of functions and, d =

(d1, ..., dp)
T and c = (c1, ..., cq)

T are vectors of coefficients. Then by substitut-

ing approximation (2.4) into (2.2), and noting that ||P1g||2 = ||
∑q

j=1 cjξj||2 =∑q
j=1

∑q
k=1 cjckR1(Yij , Yik), for a fixed λ one can calculates the minimizer gλ of

(2.2) within the finite dimensional space Hq. Specifically, for each fixed λ, esti-

mator gλ of g is found by minimizing

PLλ(d, c) = − 1

n
1T (Sd +Rc) + log

∫
Y

exp(φTd + ξTc)dy +
λ

2
cTQc, (2.5)

with respect to d and c, where S is an n× p matrix with (i, ν)th element φν(Yi),

R is an n× q matrix with (i, j)th element ξj(Yi) = R1( Yij , Yi), and Q is a q × q

matrix with (j, k)th element ξj(Yik) = R1(Yij , Yik).

The solution gλ to (2.5) can be calculated using Newton iteration. Denote

µg(h) =
∫
Y h(y)eg(y)dy/

∫
Y e

g(y)dy and Vg(h1, h2) = µg(h1h2) − µg(h1)µg(h2). Let

g̃ = φT d̃ + ξT c̃ ∈ Hq. Take derivatives of (2.5) with respect to d and c at g̃, the

Newton updating equation is henceVφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ


d

c

 =

ST1/n− µφ + Vφ,g

RT1/n− µξ + Vξ,g

 , (2.6)

where Vφ,φ is an p × p matrix with (i, j)th element Vg̃(φi, φj), Vφ,ξ is an p × q

matrix with (i, j)th element Vg̃(φi, ξj), Vξ,φ is the transpose of Vφ,ξ, Vξ,ξ is an q×q

15



matrix with (i, j)th element Vg̃(ξi, ξj), µφ is an p dimensional column vector with

ith element µg̃(φi), µξ is an q dimensional column vector with ith element µg̃(ξi),

Vφ,g is an p dimensional column vector with ith element Vg̃(φi, g̃) and Vξ,g is an q

dimensional column vector with ith element Vg̃(ξi, g̃).

One simple example is to consider Y = [0, 1] and the functional space H to be

a Sobolev space Wm
2 defined as follows:

Wm
2 = {g : g(i) are absolutely continuous, i = 1, ...,m− 1,

∫ 1

0

[g(m)(y)]2dy <∞},

where g(j) is the jth derivative of g(y) with respect to y. When m = 2 then

||P1g||2 =
∫ 1

0
[g(2)(y)]2dy and with side condition

∫ 1

0
g(y)dy = 0, (2.3) has H0 =

{y − 0.5} and R1(Yij , ·) = k2(Yij)k2(·) − k4(|Yij − ·|), where k2, k4 are scaled

Bernoulli polynomials. Hence, the estimate of g in (2.4) can be represented as

gλ(y) = dλ × (y − 0.5) +

q∑
j=1

cj,λξj,

where ξj(y) = k2(Yij)k2(y)−k4(|Yij −y|). Note that the first four scaled Bernoulli

polynomials are

k0(x) = 1,

k1(x) = x− 0.5,

k2(x) =
1

2
{k2

1(x)− 1

12
},

k4(x) = {k4
1(x)− 1

2
k2

1(x) +
7

240
}.
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2.3 Smoothing Parameter Selection

To estimate λ, one needs a measure for closeness of the estimated density

fλ = egλ/
∫
Y e

gλ(y)dy to the true density f = eg/
∫
Y e

g(y)dy. One choice is the

Kullback-Leibler (K-L) loss,

KL(g, gλ) = Ef [log(f/fλ)]

= µg(g − gλ)− log

∫
Y
eg(y)dy + log

∫
Y
egλ(y)dy,

where µg(h) =
∫
Y h(y)eg(y)dy/

∫
Y e

g(y)dy is defined in Section 2.2. An optimal λ

can be considered as the one that minimizes KL(g, gλ). Dropping the terms in

KL(g, gλ) that are independent of gλ, one has the relative K-L loss,

RKL(g, gλ) = log

∫
Y
egλ(y)dy − µg(gλ). (2.7)

The second term µg(gλ) in (2.7) depends on the unknown density, which is

needed to be estimated. A naive way to estimate µg(gλ) is to use the sample mean

n−1
∑n

i=1 gλ(Yi), but the resulting estimate of RKL(g, gλ) would simply be the

minus log likelihood which leads to λ = 0. The naive estimate, n−1
∑n

i=1 gλ(Yi),

also leads to a biased estimate of RKL(g, gλ) since the same samples Y ′i s are

used to obtain and assess the estimate gλ. To remedy this problem, Gu and

Wang (2003) use standard cross-validation method to estimate µg(gλ) by µ̃g(gλ) =

n−1
∑n

i=1 g
[i]
λ (Yi) where g

[i]
λ is the minimizer of the delete-one version of (2.2),

− 1

n− 1

n∑
j 6=i

{g(Yj)− log

∫
Y
eg(y)dy}+

λ

2
||P1g||2. (2.8)
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The delete-one estimates g
[i]
λ are expensive to compute. To reduce computation,

one may find the quadratic approximation of (2.2) at g̃ = gλ by applying the

second-order Taylor expansion on log
∫
Y e

g(y)dy, and then compute the minimizer

g
[i]
λ,g̃ of the delete-one-version of that.

Estimating µg(gλ) in (2.7) by n−1
∑n

i=1 g
[i]
λ,g̃(Yi) leads to the delete-one cross-

validation estimate of RKL(g, gλ),

CV (λ) = − 1

n

n∑
i=1

{gλ(Yi)− log

∫
Y
egλ(y)dy}+

tr(P⊥1
^

R
T

H−1
^

RP⊥1 )

n(n− 1)
, (2.9)

where H is the left-hand-side matrix in (2.6),
^

R = (S,R), and P⊥1 = I − 11T/n

is an n× n matrix.

To prevent occasional under-smoothing, Gu (2013, Ch7) suggests the following

modified CV score,

CVα(λ) = − 1

n

n∑
i=1

{gλ(Yi)− log

∫
Y
egλ(y)dy}+ α

tr(P⊥1
^

R
T

H−1
^

RP⊥1 )

n(n− 1)
, (2.10)

which is obtained by simply multiplying the trace term in (2.9) by a constant

α > 1. Details about the optimal α value and smoothing parameter selection for

density estimation can be found in Gu (2013, Ch7).

2.4 Conditional Density Estimation

2.4.1 Introduction

Let (Yi, Xi), i = 1, ...n be i.i.d. observations from a probability density f(y, x)

on a product domain Y × X . We are interesting in estimating the conditional
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density f(y|x) = f(y, x)/
∫
Y f(y, x)dy of Y given X, without assuming any form

of parametric model for f(y, x) or f(y|x). Gu (1995) extended the development

in smoothing spline density estimation to the conditional density estimation on

general domain.

The formulation is similar to the smoothing spline density estimation. The lo-

gistic transform f(y|x) = eg(y,x)/
∫
Y e

g(y,x)dy is employed, enabling one to estimate

g instead of f to naturally impose the positivity and unity constraints. Certain

side conditions are also needed to make the transform one-to-one. The choice

for side conditions will be briefly mentioned later in Section 2.4.2. The bivariate

function g is defined on the product domain Y×X . To model the joint function g,

one may use smoothing spline ANOVA (SS ANOVA) decomposition of the tensor

product RKHS which will be introduced in the following subsection.

2.4.2 Tensor Product RKHS

Denote H as the functional space for the joint function g and consider it to be

a tensor product RKHS on Y × X . By applying a tensor sum decomposition, we

have

H , H(1) ⊗H(2), (2.11)

where marginal spaces H(1) and H(2) are RKHS’s on Y and X respectively.
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Consider averaging operators A(1) and A(2) on H(1)and H(2) respectively, and

denote I as the identity map. The joint function g can be decomposed into

g = {A(1) + (I −A(1))}{A(2) + (I −A(2))}g

= {A(1)A(2) +A(1)(I −A(2)) + (I −A(1))A(2) + (I −A(1))(I −A(2))}g

, µ+ gx(x) + gy(y) + gyx(y, x), (2.12)

where µ is constant, gy(y) and gx(x) are the main effects, and gyx(y, x) is the

interaction. The choice of operators A(1) and A(2) depends on the domain of the

marginal functions of y and x. For example, let Y = [a, b] and X = {1, ...,m}, one

may consider A(1) and A(2) such that A(1)g =
∫ b
a
g(y, x)dy/(b − a) and A(2)g =∑m

x=1 g(y, x)/m.

The decomposition of the bivariate function g in (2.12) is called the two-way

SS ANOVA decomposition. Denote

H(k) = H(k)
(0) ⊕H

(k)
(1) , k = 1, 2,

where H(k)
(0) = {1}. Then in terms of the model space,

H , H(1) ⊗H(2)

= {H(1)
(0) ⊕H

(1)
(1)} ⊗ {H

(2)
(0) ⊕H

(2)
(1)}

= {H(1)
(0) ⊗H

(2)
(0)} ⊕ {H

(1)
(0) ⊗H

(2)
(1)} ⊕ {H

(1)
(1) ⊗H

(2)
(0)} ⊕ {H

(1)
(1) ⊗H

(2)
(1)}

, H0 ⊕Hx ⊕Hy ⊕Hyx, (2.13)

where H0, Hx, Hy and Hyx are the functional spaces of µ, gx, gy and gyx(y, x)

respectively.
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A side condition is needed for the logistic transformation to be one-to-one.

One possible side condition suggested by Gu (1995) is to set µ + gx(x) = 0 in

(2.12). This side condition is equivalent to setting µ and gx both equal to zero.

Therefore an SS ANOVA model for g is

g = gy(y) + gxy(x, y), (2.14)

and the model space H in (2.13) is reduced to

Htrim , Hy ⊕Hyx (2.15)

where Hy = H(1)
(1) ⊗H

(2)
(0) and Hyx = H(1)

(1) ⊗H
(2)
(1).

By applying a tensor sum decomposition, the functional space Htrim can be

represented as

Htrim = Htrim(0) ⊕Htrim(1), (2.16)

where Htrim(0) is a finite dimensional space with basis functions φ1, ..., φp, and

Htrim(1) is an RKHS with RK R1.

Example: Tensor product cubic spline

Assume that Y = X = [0, 1] and their corresponding marginal spaces H(1)

= H(2)= W 2
2 . The functional space of the joint function g is W 2

2 ⊗W 2
2 . After

applying SS ANOVA decomposition on W 2
2 ⊗W 2

2 and considering side conditions,
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we have (2.15). Further decomposing H(k)
(1) = H(k)

(1,0) ⊕H
(k)
(1,1) for k = 1, 2, we have

Htrim(0)

= {H(1)
(1,0) ⊗H

(2)
(0)} ⊕ {H

(1)
(1,0) ⊗H

(2)
(1,0)},

Htrim(1)

= {H(1)
(1,1) ⊗H

(2)
(0)} ⊕ {H

(1)
(1,1) ⊗H

(2)
(1,0)} ⊕ {H

(1)
(1,0) ⊗H

(2)
(1,1)} ⊕ {H

(1)
(1,1) ⊗H

(2)
(1,1)},

where H(1)
(1,0) = {y − 0.5}, H(2)

(1,0) = {x − 0.5}, H(1)
(1,1) = {f ∈ W 2

2 :
∫ 1

0
f (i)(y)dy =

0, i = 0, 1, and
∫ 1

0
f (2)(y)dy < ∞}, and H(2)

(1,1) = {f ∈ W 2
2 :
∫ 1

0
f (i)(x)dx = 0, i =

0, 1, and
∫ 1

0
f (2)(x)dx <∞}.

2.4.3 Penalized Likelihood Estimation

Consider finding the estimate of g in the trimmed space as defined in (2.16).

Denote P1 as the orthogonal projection operator onto Htrim(1). We find the esti-

mate of g via minimizing the penalized likelihood

− 1

n

n∑
i=1

{g(Yi, Xi)− log

∫
Y
eg(y,Xi)dy}+

λ

2
||P1g||2, (2.17)

in Htrim.

The space Htrim might not be finite dimensional, hence the solution to (2.17)

might not be computable. Denote Zi = (Yi, Xi) and set {Zi1 , ...,Ziq} as a random

subset of Z1, ...,Zn. Gu (1995) proposed to find the solution in the following data

adaptive finite dimensional space

Hq = Htrim(0) ⊕ {R1(Zij , ·), j = 1, ..., q}. (2.18)

22



Define µg(h|x) =
∫
Y h(y, x)eg(y,x)dy/

∫
Y e

g(y,x)dy and Vg(h1, h2|x) = µg(h1h2|x)−

µg(h1|x)µg(h2|x). The solution to (2.17) in Hq can be obtained by the Newton

updating equation which is similar to (2.6), with the µg(h) and Vg(h1, h2) modified

as follows,

µg(h) =
1

n

n∑
i=1

µg(h|Xi), Vg(h1, h2) =
1

n

n∑
i=1

Vg(h1, h2|Xi). (2.19)

2.4.4 Smoothing Parameter Selection

Denote f(x) as the marginal density of x. The aggregated relative K-L loss of

fλ(y|x) = egλ/
∫
Y e

gλ(y,x)dy from f(y|x) = eg/
∫
Y e

g(y,x)dy is

RKL(g, gλ) =

∫
X
f(x)

[
log

∫
Y
egλ(y,x)dy

]
dx−

∫
X
f(x)µg(gλ|x)dx. (2.20)

The first term of (2.20) can be estimated by n−1
∑n

i=1 log
∫
Y e

gλ(y,Xi)dy. The

second term of (2.20) can be estimated by the cross-validation sample mean

n−1
∑n

i=1 g
[i]
λ (Yi, Xi), where g

[i]
λ (Yi, Xi) minimizes a delete-one version of the quadratic

approximation of (2.17) at g̃ = gλ,

− 1

n− 1

n∑
j 6=i

g(Yi, Xi)− µg̃(g) +
1

2
Vg̃(g − g̃, g − g̃) +

λ

2
||P1g||2,

for µg(h) and Vg(h1, h2) in (2.19). The quadratic approximation of (2.17) at g̃ = gλ

is obtained by applying the second-order Taylor expansion on log
∫
Y e

g(y,Xi)dy.

The derivation of CV score for choosing the smoothing parameter λ follows

the same procedure for the case of density estimation as mentioned in Section 2.3.

For the detail about CV score for the case of conditional density, one may consult

Gu (2013, Ch7).
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Chapter 3

Nonparametric Mixed-Effects
Density Regression for Repeated
Measures Data

In a repeated measures design, data have a multilevel structure. Let ω rep-

resent a random subject in a population Ω with sampling distribution Pω. The

subject-specific joint probability density f(y, x|ω) is a random function on a prod-

uct domain Y ×X ×Ω. Let f(y|x, ω) = f(y, x|ω)/
∫
Y f(y, x|ω)dy be the subject-

specific conditional density. Note that f(y, x|ω) and f(y|x, ω) are random since

they both rely on a random sample ω. Now, assuming m subjects, ω1, ..., ωm, are

sampled randomly from Ω. Let (Yij, Xij)
iid∼ f(y, x|ωi), j = 1, ..., ni, be a sample

from subject ωi. Write f(y|x, ωi) = f(y, x|ωi)/
∫
Y f(y, x|ωi)dy as the conditional

density for the observed subject ωi. The objective is to estimate f(y|x, ωi) as

well as to model the variation among all random subjects based on observations

(Yij, Xij). To model f(y|x, ω), we apply the logistic transformation,

f(y|x, ω) =
eg(y,x,ω)∫
Y e

g(y,x,ω)dy
. (3.1)
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We will consider model for g(y, x,ω). There are many ways to construct models

for the multivariate random function g(y, x,ω), we will discuss one approach under

the framework of Smoothing Spline ANOVA decompositions in the next section.

3.1 Smoothing Spline ANOVA (SS ANOVA) De-

composition

The SS ANOVA decomposition is an approach for building models for multi-

variate functions (Wahba, 1990; Gu and Wahba, 1991, 1993; Wahba et al., 1995).

It constructs functional spaces with hierarchical structure similar to the main ef-

fect and interactions in the classical ANOVA. Wang (2011) provides a concise

introduction of SS ANOVA decomposition for various functional spaces. In the

following subsection, five examples are provided to illustrate how to construct SS

ANOVA decompositions for subject-specific logistic density g(y, ω) and subject-

specific logistic conditional density g(y, x, ω).

3.1.1 Subject-Specific Density

For simplicity, set Y = [0, 1]. Denote g(y, ω) as the subject-specific logistic

density. Then the subject-specific density for subject ω is

f(y|ω) =
eg(y,ω)∫
Y e

g(y,ω)dy
. (3.2)
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With the sampled subject ωi, the random samples Y ′ijs are assumed i.i.d from

f(y|ωi). We will use linear and cubic splines to construct models for the subject-

specific logistic density g(y, ω).

Linear Spline Density Model with Random Effects

Initially assume that the marginal function of y belongs to the Sobolev space

W 1
2 for a linear spline. Define averaging operators A1 and A2 such that

A1g =

∫
Ω

g(y, ω)dPω,

A2g =

∫ 1

0

g(y, ω)dy.

The SS ANOVA decomposition

g = [A1 + (I − A1)][A2 + (I − A2)]g

= A1A2g + A1(I − A2)g + (I − A1)A2g + (I − A1)(I − A2)g

, µ+ γ1(y) + φ(ω) + γ2(y, ω) . (3.3)

The first two terms in (3.3) are fixed effects and orthogonal components in the

RKHS W 1
2 . The last two terms in (3.3) are random effects. The last term is an

interaction between the subject ω and y.

Setting µ+ φ(ω) = 0 in (3.3) to ensure one-to-one logistic transform, we have

an SS ANOVA model for g

g(y, ω) = γ1(y) + γ2(y, ω), (3.4)
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where the model space of γ1(y) is W 1
2 	{1} with RK R(s, t) = k1(s)k1(t)+k2(|s−

t|), γ2(y, ω) is a Gaussian process on Y×Ω with mean zero and covariance function

σ2R(s, t).

In (3.4), the functional fixed effect γ1(y) represents the overall mean logistic

density and the functional random effect γ2(y, ω) represents the subject-specific

deviation.

Cubic Spline Density Model with Random Effects

Now assume the marginal function of y belongs to the Sobolev space W 2
2 for

a cubic spline. Define averaging operators A1 and A2 and A3 such that

A1g =

∫
Ω

g(y, ω)dPω,

A2g =

∫ 1

0

g(y, ω)dy,

A3g = [

∫ 1

0

g′(y, ω)dy](y − 0.5).

The SS ANOVA decomposition

g = [A1 + (I − A1)][A2 + A3 + (I − A2 − A3)]g

= A1A2g + A1A3g + A1(I − A2 − A3)g

+(I − A1)A2g + (I − A1)A3g + (I − A1)(I − A2 − A3)g

, µ+ α× (y − 0.5) + γ1(y) + φ(ω) + φ(ω)× (y − 0.5) + γ2(y, ω) . (3.5)

The first three terms in (3.5) are fixed effects and orthogonal components in the

RKHS W 2
2 . The last three terms in (3.5) are random effects. The last two terms

are interactions between the subject ω and y.
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Setting µ+ φ(ω) = 0 in (3.5) to ensure one-to-one logistic transform, we have

an SS ANOVA model for g

g(y, ω) = α× (y − 0.5) + γ1(y) + φ(ω)× (y − 0.5) + γ2(y, ω). (3.6)

In (3.6), the model space of γ1(y) isW 2
2	{1, y−0.5} with RKR(s, t) = k2(s)k2(t)−

k4(|s− t|), φ(ω) is drawn from N(0, σ2
1), γ2(y, ω) is a Gaussian process on Y × Ω

with mean zero and covariance function σ2
2R(s, t). We assume that φ(ω) and

γ2(y, ω) are independent of each other.

Define

g1(y) = α× (y − 0.5) + γ1(y),

and

g2(y, ω) = φ(ω)× (y − 0.5) + γ2(y, ω).

Rewrite (3.6) as

g(y, ω) = g1(y) + g2(y, ω). (3.7)

In (3.7), the functional fixed effect g1(y) represents the overall mean logistic den-

sity and the functional random effect g2(y, ω) represents the subject-specific de-

viation.

3.1.2 Subject-Specific Conditional Density When Subjects

Are Sampled From Multiple Populations

We use one example with linear and cubic spline models to illustrate model

construction for the case when subjects are from different populations.
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For simplicity, assume y is a continuous variable on Y = [0, 1] and x is a

discrete variable with domain X = {1, ..., G}. Assume that ω is nested within

level x. For every level x, denote Ωx as the population from which subjects at

level x are sampled with sampling distribution Pω|x. Under this scenario, the joint

function g(y, x, ω) has domain Y× ∪
x∈X
{{x} ×Ωx}.We use linear and cubic spline

to construct g(y, x, ω).

Linear Spline Conditional Density Model with Random Effects

Initially assume that the marginal function of y belongs to the Sobolev space

W 1
2 for a linear spline. Also, let the model space for x be RG where RG is the

Euclidean G-space. Define averaging operators A1, A2 and A3 as follows:

A1g =

∫ 1

0

g(y, x, ω)dy,

A3g =

∫
Ωx

g(y, x, ω)dPω|x,

A2g =
1

G

∑G

x=1
A3g(y, x, ω).

An SS ANOVA decomposition can be defined as

g = [A1 + (I − A1)][A2 + (A3 − A2) + (I − A3)]g

= A1A2g + A1(A3 − A2)g + A1(I − A3)g

+(I − A1)A2g + (I − A1)(A3 − A2)g + (I − A1)(I − A3)g

, µ+ β(x) + φ(x, ω) + γ1(y) + γ2(y, x) + γ3(y, x, ω). (3.8)
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To make the logistic transform one-to-one, we remove terms in (3.8) that do

not dependent on y. Therefor, an SS ANOVA model for g is

g(y, x, ω) = γ1(y) + γ2(y, x) + γ3(y, x, ω). (3.9)

Denote two RKHS’s

H(1)
y = W 1

2 	 {1},

H(1)
x = RG 	 {1},

and their corresponding reproducing kernels (RKs)

R1(s1, t1) = k1(s1)k1(t1) + k2(|s1 − t1|),

R̃2(s2, t2) = δs2,t2 − 1/G,

where H 	 {1} represents a RKHS H with constant functions been removed, ⊗

represents tensor product of RKHS’s and δu,v is the Kronecker delta. Then the

model space for γ1 is H(1).
y with RK R1. The model space for γ2 is H(1)

y ⊗ H(1)
x

with RK R2((s1, s2), (t1, t2)) = R1(s1, t1)R̃2(s2, t2). Given a fixed level x, the

random function γ3(y, x, ω) is assumed to be a Gaussian process on Y× {{x},Ωx}

with mean 0 and covariance function σ2
xR2((s, x), (t, x)) where the parameter σ2

x

depends on level x.

In (3.9), γ1(y) represents the average logistic density for all levels, γ2(y, x) rep-

resents departure of level x from the average logistic density γ1(y), and γ3(y, x, ω)

represents departure of subject ω from the level x logistic density γ1(y) +γ2(y, x).
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Cubic Spline Conditional Density Model with Random Effects

Let the marginal function of y belong to the Sobolev space W 2
2 for a cubic

spline. In addition, let the model space for x be RG where RG is the Euclidean

G-space. Define averaging operators A1, A2, A3 and A4 as follows:

A1g =

∫ 1

0

g(y, x, ω)dy,

A2g = {
∫ 1

0

g′(y, x, ω)dy}(y − 0.5)

A4g =

∫
Ωx

g(y, x, ω)dPω|x,

A3g =
1

G

∑G

x=1
A3g(y, x, ω).

An SS ANOVA decomposition can be defined as

g = [A1 + A2 + (I − A1 − A2)][A3 + (A4 − A3) + (I − A4)]g

= A1A3g + A1(A4 − A3)g + A1(I − A4)g

+A2A3g + A2(A4 − A3)g + A2(I − A4)g

+(I − A1 − A2)A3g + (I − A1 − A2)(A4 − A3)g + (I − A1 − A2)(I − A4)g

, {µ+ β(x) + φ(x, ω)}+ (y − 0.5)× {µ+ β(x) + φ(x, ω)}

+γ1(y) + γ2(y, x) + γ3(y, x, ω) (3.10)

To make the logistic transform one-to-one, we remove terms in (3.10) that do

not dependent ony. Therefor, an SS ANOVA model for g is

g(y, x, ω) = (y−0.5)×{µ+β(x)+φ(x, ω)}+γ1(y)+γ2(y, x)+γ3(y, x, ω). (3.11)
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Denote two RKHS’s

H(1)
y = W 2

2 	 {1, y − 0.5},

H(1)
x = RG 	 {1},

and their corresponding reproducing kernels (RKs)

R1(s1, t1) = k2(s1)k2(t1)− k4(|s1 − t1|),

R̃2(s2, t2) = δs2,t2 − 1/G.

Then the model space for γ1(y) is H(1)
y . The model space for γ2(y, x) is H(1)

y ⊗H(1)
x

with RK R2((s1, s2), (t1, t2)) = R1(s1, t1)R̃2(s2, t2). Given a fixed level x, the

random function γ3(y, x, ω) is assumed to be a Gaussian process on Y× {{x},Ωx}

with mean 0 and covariance function σ2
xR2((s, x), (t, x)), where σ2

x depends on

level x. In addition, the function β(x) belongs to the functional space H(1)
x . For

a fixed level x, we assume φ(x, ω) is sampled from N(0, τ 2
x). Also, we assume

γ3(y, x, ω) and φ(x, ω) are independent of each other.

Write

g1(y) = µ× (y − 0.5) + γ1(y),

g2(y, x) = β(x)× (y − 0.5) + γ2(y, x),

and

g3(y, x, ω) = φ(x, ω)× (y − 0.5) + γ3(y, x, ω).

Rewrite (3.11) as

g(y, x, ω) = g1(y) + g2(y, x) + g3(y, x, ω). (3.12)
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Then g1(y) represents the average logistic density for all levels, g2(y, x) repre-

sents departure of level x from the average logistic density g1(y), and g3(y, x, ω)

represents departure of subject ω from the level x logistic density g1(y) + g2(y, x).

3.1.3 Subject-Specific Conditional Density When Subjects

Are Sampled From The Same Population

We only describe the case with linear spline model space for both y and x. A

similar procedure can be performed for the cubic spline model space for both y

and x.

Assume that y and x are both continuous variables with domains Y = [0, 1]

and X = [0, 1]. Denote Ω as the population from which the subjects (ω′is) are

sampled with sampling distribution Pω. In this case, the joint function g(y, x, ω)

has domain Y ×X × Ω . Suppose the marginal functions of y and x both belong

to the Sobolev space W 1
2 for a linear spline. Define averaging operators A1, A2

and A3 as follows:

A1g =

∫ 1

0

g(y, x, ω)dy,

A2g =

∫
Ω

g(y, x, ω)dPω,

A3g =

∫ 1

0

g(y, x, ω)dx.
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An SS ANOVA decomposition can be defined as

g = [A1 + (I − A1)][A2 + (I − A2)][A3 + (I − A3)]g

= A1A2A3g + A1A2(I − A3)g + A1(I − A2)A3g

+A1(I − A2)(I − A3)g + (I − A1)A2A3g + (I − A1)A2(I − A3)g

+(I − A1)(I − A2)A3g + (I − A1)(I − A2)(I − A3)g

, µ+ β(x) + φ1(ω) + φ2(x, ω) + γ1(y) + γ2(y, x) + γ3(y, ω) + γ4(y, x, ω).

We can make logistic transformation one-to-one by removing components that do

not depend on y. Hence an SS ANOVA model for g is

g(y, x, ω) = γ1(y) + γ2(y, x) + γ3(y, ω) + γ4(y, x, ω). (3.13)

In (3.13), the model space for γ1(y) is W 1
2 	 {1} and for γ2(y) is (W 1

2 	 {1}) ⊗

(W 1
2 	{1}) where W 1

2 	{1} and (W 1
2 	{1})⊗ (W 1

2 	{1}) are RKHS’s with RKs

R1(s, t) = k1(s)k1(t)+k2(|s−t|) and R2((s1, s2), (t1, t2)) = R1(s1, t1)R1(s2, t2). We

assume that γ3(y, ω) is a Gaussian process on Y ×Ω with mean 0 and covariance

function σ2
1R1(s, t). Similarly, with a fixed level x, we assume that γ4(y, x, ω) is a

Gaussian process on Y×Ω with mean 0 and covariance function σ2
2R2((s, x), (t, x)).

In (3.13), γ1(y) represents the overall average logistic density, γ2(y, x) repre-

sents the interaction between y and x, γ3(y, ω) + γ4(y, x, ω) represents departure

of subject ω from γ1(y) + γ2(y, x).
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3.2 Nonparametric Mixed-Effects Density Re-

gression

In the previous section we provided four examples to illustrate the application

of SS ANOVA decomposition when building a model for the subject logistic con-

ditional density g(y, x, ω). Other SS ANOVA models for general model space for

y and general domain of x may be constructed similarly. Now we consider a more

general model.

Assume that we have m subjects, ω1, ..., ωm, and that each subject ωi generates

a random sample of size ni, {(Yij, Xij)}nij=1. Note that the selected subjects are

allowed to be from different populations. Suppose the domains Y and X are

arbitrary sets for generality. For subject ωi, given a covariate Xij = xij and

random effect bij = {bi(y, xij)|y ∈ Y}, Yij has the following density

f(y, xij, bij) =
exp{η(y, xij, bi(y, xij))}∫
Y exp{η(y, xij, bi(y, xij))}dy

.

Note that, rather than the joint density of y, xij and bij, f(y, xij, bij) represents

density of Yij conditional on Xij = xij and bij. To model effects of covariates and

variation among subjects, we propose the following nonparametric mixed-effects

density regression (NMDR) model,

η(y, xij, bi(y, xij)) = η1(y) + η2(y, xij) + bi(y, xij), (3.14)

where η1 and η2 are fixed effects. We assume that η1 and η2 belong to RKHS’s

H1 with RK R1 and H2 with RK R2 respectively. In general, the random effects
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b′ijs are assumed to be realizations of independent Gaussian processes with mean

0 and covariance function σ(s, t|xij).

The illustrated SS ANOVA models in the previous section are all special

cases of (3.14). For example, in the case of the linear spline density model

(3.4), we have η1(y) = γ1(y), η2(y, xij) = 0 and bi(y) = γ2(y, ωi). In this

case, the random effects merely depends on y and ωi. Also, {bi(y)|y ∈ Y},

i = 1, ...,m are realizations of independent Gaussian processes with mean 0

and covariance function σ(s, t) = σ2R(s, t). In the case of the cubic spline sub-

ject conditional density (3.12) where subjects are sampled from different pop-

ulations, given Xij = xij, we have η1(y) = g1(y), η2(y, xij) = g2(y, xij) and

bi(y, xij) = g3(y, xij, ωi). Furthermore, given a fixed level xij, {bi(y, xij)|y ∈

Y} is a realization of a Gaussian process with mean 0 and covariance function

σ(s, t|xij) = τ 2
xij
× (s − 0.5) × (t − 0.5) + σ2

xij
R2((s, xij), (t, xij)). In the case

of the cubic spline subject conditional density (3.13) where subjects are sam-

pled from the same population, given that Xij = xij, we have η1(y) = γ1(y),

η2(y, xij) = γ2(y, xij) and bi(y, xij) = γ3(y, ωi) + γ4(y, xij, ωi) where the collec-

tion {bi(y, xij)|y ∈ Y} is a realization of a Gaussian process with mean 0 and

covariance function σ(s, t|xij) = σ2
1R1(s, t) + σ2

2R2((s, xij), (t, xij)).

In summary, for subject ωi, conditional on Xij = xij and bij, Yij has the

following mixed effects conditional density,

f(y, xij, bij) =
exp{η1(y) + η2(y, xij) + bi(y, xij)}∫
Y exp{η1(y) + η2(y, xij) + bi(y, xij)}dy

. (3.15)
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The function (3.15) should be interpreted as the density of Yij conditional on the

covariate xij and the random effects bij. The random effects introduce correlations

within each subject. Given that Xij = xij, the realization of a stochastic process

bij = {bi(y, xij)|y ∈ Y} represents the interaction effect of covariate X and subject

ωi. To estimate nonparametric functions η1 and η2 and variance components

associated with random effects, we utilize a penalized likelihood approach which

will be introduced in the next chapter.

37



Chapter 4

Estimation and Computation for
NMDR

4.1 Penalized Likelihood

Note, in a NMDR model (3.14), η1(y) ∈ H1 with domain Y and η2(y, x) ∈ H2

with domain Y×X whereH1 andH2 are RKHS’s. For k = 1, 2, we can decompose

Hk = H0
k ⊕H1

k, (4.1)

where the subspace H0
k = span{φkj, j = 1, ...,mk} is a finite dimensional space

containing functions which are not penalized. The subspace H1
k is the orthogonal

complement of H0
k in Hk. Denote the reproducing kernel (RK) of H1

k as Rk,1.

Denote Yi = (Yi1,...,Yini)
T as a vector that contains all Yij’s from subject ωi.

Given that Xij = xij, let Bij = {Bi(y, xij), y ∈ Y} be a stochastic process that

generates the realization bij = {bi(y, xij), y ∈ Y} and Bi as a collection of stochas-

tic processes {Bij, j = 1, ...ni} that generates all random effects associated with

subject ωi. Let pBi
and pYi|Bi

be the probability density functions of Bi and Yi

conditional on Bi respectively. Depending on the domain Y , one may use Radon–
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Nikodym derivative or the finite-dimensional distributions property to construct

the density function of Bi. More detail about densities for stochastic processes

can be found in Striebel (1959) and Barndorff-Nielsen and Sørensen (1994) .

We define the log marginal likelihood as

l(ζ, η) =
m∑
i=1

logEBi
[pYi|Bi

(Yi)], (4.2)

where EBi
is with respect to the probability measure that governs the stochastic

processes Bi, ζ collects all parameters related to the random effects, η = (η1, η2)

collects all unknown nonparametric functions, and

pYi|Bi
(Yi) =

∏ni

j=1

exp{η(Yij, Xij, Bi(Yij, Xij))}∫
Y exp{η(y,Xij, Bi(y,Xij))}dy

. (4.3)

Let the total sample size N ,
∑m

i=1 ni. Write Pk,1 as the projection operator

onto the subspace H1
k in Hk and ||Pk,1ηk||2 as a penalty on the departure from

the null space H0
k. We estimate ζ and η = (η1, η2) as minimizers of the penalized

likelihood (PL)

PL = − 1

N
l(ζ, η) +

λ

2

2∑
k=1

θ−1
k ||Pk,1ηk||

2, (4.4)

where λ and θ = (θ1, θ2) are smoothing parameters.

Writing g as the function representing the fixed effect in (3.14)

g(y, x) = η1(y) + η2(y, x). (4.5)

Let H = H0 ⊕ H1 where H0 = H0
1 ⊕ H0

2 and H1 = H1
1 ⊕ H1

2. For any function

f ∈ H1,

f(y, x) = f1(y) + f2(y, x),
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where fk ∈ H1
k, k = 1, 2. For any two functions f and g ∈ H1, define an inner

product in H1 as

(f, g)∗ =
2∑

k=1

θ−1
k (fk, gk), (4.6)

where fk, gk ∈ H1
k, k = 1, 2. Hence, ||f ||2 = (f, f)∗ =

∑2
k=1 θ

−1
k ||fk||2. Let

Rθ =
2∑

k=1

θkRk,1.

We have Rθ((y, x), (·, ·)) ∈ H1 and for any f ∈ H1,

(Rθ((y, x), (·, ·)), f(·, ·)) = θ−1
1 (θ1R1,1(y, ·), f1(·)) + θ−1

2 (θ2R2,1((y, x), (·, ·)), f2(·, ·))

= f1(y) + f2(y, x)

= f(y, x),

thus Rθ is the RK of H1 with the inner product (4.6). Let P ∗1 =
∑2

k=1 Pk,1 be

the orthogonal projection in H onto H1. Then the penalized likelihood (4.4) is

reduced to

PL = − 1

N
l(ζ, g) +

λ

2
||P ∗1 g||2. (4.7)

Now the goal is to estimate the vector of variance parameters ζ and fixed effect

function g through minimizing (4.7).
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4.2 Estimation for Fixed Effects

4.2.1 An Approximated Solution to the Penalized Likeli-

hood

We now focus on finding the solution of g in (4.5) as the minimizer of the

penalized likelihood in H when ζ is fixed. Usually, the space H is an infinite

dimensional space. Hence the solution to the PL (4.7) in H is generally not

computable.

Denote Zij = (Yij, Xij)
T . We overcome the infinite dimensional problem by

solving the minimization problem of (4.7) in the following data-adaptive space

H(q) = H0 ⊕ span{Rθ(Z(ij)l , ·); l = 1, ..., q}, (4.8)

where {Z(ij)1 , ...,Z(ij)q} is a random subset of observations Zij, j = 1, ..., ni, i =

1, ...,m. Gu and Wang (2003) suggested that a q closed to 10N2/9 is sufficient for

a tensor product cubic spline logisitic density function without random effect in

the sense that the estimate in the data-adaptive finite dimensional subspace H(q)

and H have the same convergence rate. For selecting Z(ij)l , one may use simple

random sampling for computational simplicity or stratified sampling for efficient

estimation of variance components.

Denote φ1, ..., φp as basis functions of H0. The solution of g in H(q) that

minimizes (4.7) can be represented as

ĝ(z) =

p∑
ν=1

dνφν(z) +

q∑
l=1

clRθ(Z(ij)l , z).
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Denote d = (d1, ..., dp)
T and c = (c1, ..., cq)

T . The solution in the vector form is

ĝ = φTd + ξTc, (4.9)

where φ =(φ1, ..., φp)
T , ξ = (ξ1, ...,ξq) and ξl = Rθ(Z(ij)l , ·).

Based on (4.9), the PL (4.7) can be rewritten as

PL(ζ, c,d) = − 1

N
l(ζ, c,d) +

λ

2
cTQθc, (4.10)

where Qθ is a q × q matrix with the (k, l)th entry Rθ(Z(ij)k ,Z(ij)l).

4.2.2 Newton-Raphson Procedure

With ζ being fixed, coefficients c and d that minimize (4.10) are estimated

from data through Newton-Raphson procedure.

Define

Gi ,
∂ log pYi|Bi

(Yi)

∂(cT ,dT )T

and

Hi ,
∂2 log pYi|Bi

(Yi)

∂(cT ,dT )T∂(cT ,dT )
.

Taking the first two derivatives of the marginal likelihood l(ζ, c,d), we have

∂l(ζ, c,d)

∂(cT ,dT )T
=

m∑
i=1

EBi|Yi
(Gi), (4.11)

∂2l(ζ, c,d)

∂(cT ,dT )T∂(cT ,dT )
=

m∑
i=1

{EBi|Yi
(Hi) + EBi|Yi

(G2
i )− [EBi|Yi

(Gi)]
2}.(4.12)

The derivation of these derivatives can be found in Appendix A. The second

order term EBi|Yi
(G2

i ) − [EBi|Yi
(Gi)]

2 in (4.12) can be dropped as suggested by
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Benveniste, Metivier and Priouret (1987) and Jiang, Karcher and Wang (2011).

As a result, one has

∂2l(ζ, c,d)

∂(cT ,dT )T∂(cT ,dT )
≈

m∑
t=1

EBi|Yi
(Hi), (4.13)

which is usually well behaved. For example, it is positive definite for convex target

functions.

The first two derivatives of PL (4.10) are listed as follows,

∂PL(ζ, c,d)

∂(cT ,dT )T
= − 1

N

m∑
i=1

EBi|Yi
(Gi) +

λ

2

∂cTQθc

∂(cT ,dT )T
, (4.14)

and

∂2PL(ζ, c,d)

∂(cT ,dT )T∂(cT ,dT )
= − 1

N

m∑
t=1

EBi|Yi
(Hi) +

λ

2

∂2cTQθc

∂(cT ,dT )T∂(cT ,dT )
. (4.15)

Let

µh1(h2|Xij, Bij) ,
∫
Y
h2(y,Xij)

eh1(y,Xij)+Bi(y,Xij)∫
Y e

h1(y,Xij)+Bi(y,Xij)dy
dy,

Vh1(h2, h3|Xij, Bij) , µh1(h2h3|Xij, Bij)− µh1(h2|Xij, Bij)µh2(h3|Xij, Bij),

Vh1(h2|Xij, Bij) , Vh1(h2, h2|Xij, Bij).

Set

µh1(h2) =
1

N

m∑
i=1

EBi|Yi
{
ni∑
j=1

µh1(h2|Xij, Bij)}, (4.16)

Vh1(h2, h3) =
1

N

m∑
i=1

EBi|Yi
{
ni∑
j=1

Vh1(h2, h3|Xij, Bij)}. (4.17)

Note, (4.16) and (4.17) require the expectation EBi|Yi
{·} for i = 1, ..,m which

will be approximated by the MCMC method.
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Denote U as the matrix that collects all Z′ijs, U= (Z11, ...,Zmnm)T with the kth

row denoted by Uk. Also, let S be a N × p matrix with the (j, k)th entry φk(Uj)

and R be an N × q matrix with the (j, l)th entry ξl(Uj) = Rθ(Uil ,Uj) where Uil

is a random subset of observations {Ui, i = 1, ..., N}. Given the current estimate

g̃ = φT d̃ + ξT c̃, the first and second derivatives (4.14) and (4.15) at g = g̃ are

∂PL

∂d
= − 1

N
ST1 + µg̃(φ) = − 1

N
ST1 + µφ,

∂PL

∂c
= − 1

N
RT1 + µg̃(ξ) + λQθc̃ = − 1

N
RT1 + µξ + λQθc̃,

∂2PL

∂d∂dT
= Vg̃(φ, φ

T ) = Vφ,φ, (4.18)

∂2PL

∂c∂cT
= Vg̃(ξ, ξ

T ) = Vξ,ξ + λQθ,

∂2PL

∂d∂cT
= Vg̃(φ, ξ

T ) = Vφ,ξ.

The Newton equation is thusVφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQθ


d

c

 =

 1
N
ST1− µφ + Vφ,g

1
N
RT1− µξ + Vξ,g

 , (4.19)

where Vφ,g = Vg̃(φ, g̃) and Vξ,g = Vg̃(ξ,g̃).

4.3 Smoothing Parameter Selection

The smoothing parameters λθ−1
1 and λθ−1

2 are fixed in the Newton equation

(4.19) during the updating procedure for estimating c and d. In this section, we

develop a data-driven approach to choose smoothing parameters. We evaluate the

quality of an estimate fλ with the Kullback-Leibler (K-L) loss. Since the K-L loss

depends on unknown density f , we use cross-validation to estimate it.
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4.3.1 Kullback-Leibler Loss

Let λ = (λθ−1
1 , λθ−1

2 ). Write gλ as the estimate of (4.5) obtained through

minimizing penalized likelihood (4.10). For any subject ω, given a fixed covariate

x and unobserved random effects bx = {b(t, x)|t ∈ Y}, we define the true and

estimated subject conditional densities, f(y|x, bx) and fλ(y|x, bx), as follows

f(y|x, bx) =
exp{g(y, x) + b(y, x)}∫
Y exp{g(t, x) + b(t, x)}dt

,

fλ(y|x, bx) =
exp{gλ(y, x) + b(y, x)}∫
Y exp{gλ(t, x) + b(t, x)}dt

.

Taking the expectation with respect to the measure that governs the stochastic

process Bx that generates bx, and weighting by the sampling proportion f(x), the

aggregated K-L loss of fλ(y|x, bx) from f(y|x, bx) is

KL(f, fλ) =

∫
X
f(x)EBx{

∫
Y
f(y|x,Bx)[log(

f(y|x,Bx)

fλ(y|x,Bx)
)dy]}dx. (4.20)

The relative K-L loss is

RKL(f, fλ) =

∫
X
f(x)EBx{

∫
Y
f(y|x,Bx)[log(

1

fλ(y|x,Bx)
)]dy}dx

=

∫
X
f(x)EBx [

∫
Y
f(y|x,Bx){log

∫
Y

exp[gλ(t, x) +B(t, x)]dt}dy]dx

−
∫
X
f(x)EBx [

∫
Y
f(y|x,Bx)gλ(y, x)dy]dx, (4.21)

where Bx is the stochastic process that generate the realization bx.We select the

smoothing parameter vector λ that minimize (4.21).
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We now estimate the criterion (4.21) through data. The first term of (4.21)

can be approximated by

Ê[log

∫
Y
egλ(t,X)+B(t,X)dt] =

1

N

∑m

i=1

∑ni

j=1
EBij [log

∫
Y
egλ(t,Xij)+Bi(t,Xij)dt],

(4.22)

where EBij is with respect to the measure that governs the stochastic process

Bij = {Bi(t,Xij)|t ∈ Y}. The second term of (4.21) can be approximated by

Ê[gλ(y, x)] =
1

N

∑m

i=1

∑ni

j=1
[gλ(Yij, Xij)]. (4.23)

However, using (4.23) usually leads to under-smoothing since we use the same

data both for model fitting and validation. Standard cross-validation suggests

to replace gλ(Yij, Xij) in (4.21) by g
[(i,j)]
λ (Yij, Xij) which chosen to minimize the

delete-one-observation version of (4.10).

In summary, the smoothing parameter selection criteria, (4.21) can be approx-

imated by the following cross-validation estimate,

CV (λ) =
1

N

∑m

i=1

∑ni

j=1
EBij [log

∫
Y
egλ(t,Xij)+Bi(t,Xij)dt]

− 1

N

∑m

i=1
[

ni∑
j=1

g
[(i,j)]
λ (Yij, Xij)]. (4.24)

4.3.2 Cross-Validation

Computation of g
[(i,j)]
λ (Yij, Xij) based on (4.24) for each i = 1, ...,m and

j = 1, ..., ni is costly, and we derive a more computationally efficient way to

approximate it. The derivation follows the same steps as in Gu (2013 Ch7). Con-

sider the following delete-one-observation version of a quadratic approximation to
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(4.10) at g̃,

− 1

N − 1

m∑
i=1

∑
k 6=j

g(Yij, Xij) + Lg̃ +
λ

2
ctQθc, (4.25)

where Lg̃ = µg̃(g)−Vg̃(g̃, g)+ 1
2
Vg̃(g, g) and µg̃(·) and Vg̃(·, ·) are defined in Section

3.3.2. The derivative of quadratic approximation to the log marginal likelihood

can be found in Appendix B. One should note that the terms µg̃(·) and Vg̃(·, ·) in

(4.25) use all data. In theory, we may use delete-one cluster. However, it would

be very hard to derive a computable score if this approach were followed. Instead,

we apply the delete-one observation only, so that a closed-form approximation to

the true CV score can be obtained. Note that all we need is a good approximation

to the true CV score.

Set g̃ = gλ in (4.25). Denote the resulting minimizer as g
[i,j]
λ . Let c̆ =

(dT , cT )T and ξ̆ = (φT , ξT )T . Rewrite (4.19) as H c̆ = R̆T1/N + g, g = Vξ̆,β̃ −

µξ̆, H is the Hessian matrix appearing on the left side of (4.19), and R̆T =

(ξ̆(Y11, X11), ..., ξ̆(Ymnm , Xmnm)) = (S,R)T . The minimizer g
[i,j]
λ of (4.25) has the

coefficient

c̆[i,j] = H−1(
R̆T1− ξ̆(Yij, Xij)

N − 1
+ g)

= c̆ +
1

N(N − 1)
H−1R̆T1−H

−1ξ̆(Yij, Xij)

N − 1
. (4.26)

Therefore

g
[i,j]
λ (Yij, Xij) = ξ̆(Yij, Xij)

T c̆[i,j]

= ξ̆(Yij, Xij)
T c̆− 1

N − 1
ξ̆(Yij, Xij)

TH−1(ξ̆(Yij, Xij)− R̆T1/N).
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Noting that R̆T =
∑m

i=1

∑ni
j=1 ξ̆(Yij, Xij). The cross-validation estimator (4.23)

can be computed by

µ̂g(gλ) =
1

N

m∑
i=1

ni∑
j=1

g
[i,j]
λ (Yij, Xij)

=
1

N

m∑
i=1

ni∑
j=1

gλ(Yij, Xij)−
tr(P⊥1 R̆

TH−1R̆TP⊥1 )

N(N − 1)
, (4.27)

where P⊥1 = I − 11T/N .

Plugging (4.27) into (4.24), we have the following approximate delete-one ob-

servation CV score,

CVα(λ) =
1

N

∑m

i=1

∑ni

j=1
EBij [log

∫
Y
egλ(t,Xij)+Bi(t,Xij)dt]

− 1

N

m∑
i=1

ni∑
j=1

gλ(Yij, Xij)+α
tr(P⊥1 R̆

TH−1R̆TP⊥1 )

N(N − 1)
. (4.28)

The smoothing parameter therefore can be estimated as the minimizer of the CV

score (4.28). The constant α > 1 is added in (4.28) to prevent occasional under-

smoothing. An α value around 1.4 was suggested for various density estimation

problems; see Gu (2013, Ch7).

4.4 Estimation of Variance Component

In the NMDR model (3.15), given subjects ω′is and covariate x′ijs, the unob-

served random effects b′ijs are realizations of independent Gaussian processes with

mean 0 and covariance function σ(s, t|xij). The covariance function σ(s, t|xij) can

be modeled parametrically by assuming that it relies on a parsimonious set of pa-

rameters. It can also be modeled nonparametrically as discussed in Jennrich and
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Schlucher (1986) for linear mixed-effect models and Rice and Silverman (1991)

for data which are curves. In our research, we model the covariance structure

parametrically by assuming that it relies on a parsimonious set of parameters ζ.

The vector ζ in (4.10) collects all parameters related the covariance structure

of random effects. We estimate ζ through minimizing the PL (4.10) with c and d

being fixed. Since the penalty term does not rely on ζ, we only need to minimize

the negative profile likelihood, −l(ζ, c,d). The first derivative is

− ∂

∂ζ
l(ζ, c,d) = − ∂

∂ζ

m∑
i=1

logEBi
[pYi|Bi

(Yi)]

= −
m∑
i=1

EBi|Yi
[
∂ log pBi

(Bi; ζ)

∂ζ
]. (4.29)

And the second derivative is

− ∂2

∂ζ∂ζT
l(ζ, c,d) = −

m∑
i=1

{EBi|Yi
[
∂2 log pBi

(Bi; ζ)

∂ζ∂ζT
] +

EBi|Yi
{[∂ log pBi

(Bi; ζ)

∂ζ
]2} − {EBi|Yi

[
∂ log pBi

(Bi; ζ)

∂ζ
]}2},

which can be approximated by

− ∂2

∂ζ∂ζT
l(ζ, c,d) ≈ −

m∑
i=1

EBi|Yi
[
∂2 log pBi

(Bi; ζ)

∂ζ∂ζT
], (4.30)

for the stability of computation as suggested by Benveniste, et al (1987) and Jiang,

et al (2011). Thus, at the kth iteration the updating equation is

ζ(k) = ζ(k−1) − [
∑m

i=1
E

(k−1)
Bi|Yi

(D2,i|ζ=ζ(k−1))]−1[
∑m

i=1
E

(k−1)
Bi|Yi

(D1,i|ζ=ζ(k−1))], (4.31)

where

D1,i =
∂ log pBi

(Bi; ζ)

∂ζ
,

D2,i =
∂2 log pBi

(Bi; ζ)

∂ζ∂ζT
,

(4.32)
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and E
(k−1)
Bi|Yi

is the expectation that use the estimators obtained at the (k − 1)th

iteration.

4.5 Estimation Procedure

The estimation procedure contains the following sequence of steps. For fixed

variance parameters ζ, we estimate fixed effects g in (4.5) by minimizing the PL

in (4.7). The approximated solution in (4.9) can be calculated by the Newton-

Raphson (N-R) procedure. The minimization is executed via two nested loops:

for fixed smoothing parameter, the inner loop minimizes the PL in (4.10) through

the N-R procedure; and the outer loop choose the optimal smoothing parameter

by minimizing an approximation to the K-L loss based on a delete-one-observation

CV score in (4.28). For the estimation of the variance parameter of the random

effects, we find the MLE of ζ through minimizing PL in (4.10) with c and d being

fixed.

The integrals with respect to the random effects involved in the Newton updat-

ing equations usually do not have closed forms. We approximate these integrals by

using Markov Chain Monte Carlo (MCMC) sampling. In addition, the stochastic

nature of MC sampling makes it difficult for the Newton updating procedure to

converge to the optimum. We employ the Stochastic Approximation Algorithm

(SAA) to control the sampling variation along iterations in the Newton updating

procedure.
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In the following, we first describe how to generate MCMC sample and then

introduce SAA.

4.5.1 Markov Chain Monte Carlo

MCMC methods can be applied to generate samples when the target distri-

bution is not easily sampled. We use Metropolis-Hastings (M-H) procedure to

generate MCMC samples from the conditional distribution of Bi|Yi. Additional

information about M-H procedure can be found in Gelman et al. (2003) and

Givens and Hoeting (2005). Our procedure is described as follows, where for

notational convenience, we omit the i subscripts.

Denote p(b|y) as the conditional density of B|Y. We need a sample of size S

from p(b|y). Given an initial value b(0), we draw the sample using the following

algorithm: for l = 1, ..., S,

1. Draw b∗ from the proposal distribution q(b|b(l−1)) and u from U [0, 1];

2. Compute the M-H ratio r,

r =
p(b∗|Y)/q(b∗|b(l−1))

p(b(l−1)|Y)/q(b(l−1)|b∗)
; (4.33)

3. Set b(l) = b∗ if r > u and b(l) = b(l−1) otherwise;

In our proposed model (3.15), the random effects b′ijs are realizations of inde-

pendent Gaussian processes, hence we assume the distribution that generates the
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collection bi = {bij, j = 1, ..., ni} is a multivariate normal distribution with den-

sity p(b) if the stochastic process that associated with the random effect is finite

dimensional. If the stochastic process that associated with the random effect is

infinite dimensional, we can discretized the process and assume the collection of

discretized processes also has a multivariate normal distribution. Assuming p(b)

is a multivariate normal density with mean 0 and covariance matrix Σ. A simple

option for the proposal distribution, q, is to use a multivariate normal centered

at the current sample, b(l−1), with scaled covariance matrix a2Σ. The constant

a is chosen so that the acceptance rate is near 23% as suggested by Gelman et

al. (2003, Ch11) for high dimensional MCMC sampling with Metropolis-Hastings

procedure. Using multivariate normal proposal distribution simplifies the compu-

tation of the ratio r, since q(b(l−1)|b∗) and q(b∗|b(l−1)) cancel in (4.33) and the

ratio r is reduced to

r =
p(b∗|Y)

p(b(l−1)|Y)

=
p(Y|b∗)p(b∗)

p(Y|b(l−1))p(b(l−1))
.

Strongly autocorrelated MCMC samples have a poor mixing property, which

are unrepresentative of the true underlying target distribution. Christensen et

al. (Ch.6 2011) suggest that MCMC samples with correlation for the observation

that are 30 iterations apart as strongly autocorrelated. One may thin the strongly

autocorrelated MCMC samples to have representative samples of the target dis-
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tribution. For the multi-dimensional MCM chain in our case, we will check the

univariate correlations for each dimension separately.

4.5.2 Stochastic Approximation Algorithm

The SAA was first proposed by Robbins and Monro (1951) for optimization

problems where the objective function is given in a form of the expectation. Gu

and Kong (1998, 2000) extended SAA for solving incomplete data estimation

problems. See also Gu and Zhu (2001), Lai (2003) and Jiang, Karcher and Wang

(2011).

Let fe(e) be the density function of a random vector e. Consider solving the

following equation,

h(θ) = 0, (4.34)

where θ is vector of parameters and h(θ) is a vector valued function that can be

written as the expectation of a function H(θ, e), with respect to e:

h(θ) =

∫
H(θ, e)fe(e)de =Ee[H(θ, e)]. (4.35)

In incomplete data estimation, h(θ) usually is the first derivative with respect to

θ of some criteria function such as marginal log-likelihood in generalized linear

mixed-effects model (GLMM). The integrals with respect to e in (4.35) usually do

not have closed analytic forms, hence solving equation (4.34) is very challenging.

Monte Carlo (MC) sampling can be used to approximate the integral. But the

new problem is that MC sampling’s random nature leads to an algorithm that
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may fail to converge to the optimum. One way to overcome this obstacle is using

SAA which controls the sampling variation along iterations.

To apply the SAA, one needs to find a matrix I(θ, e) such that Ee[I(θ, e)] is

close to ∂h/∂θ in the neighborhood of the solution to (4.34). Benveniste, Metivier

and Priouret (1987) proposed to use I(θ, e) = −∂H(θ, e)/∂θ which is positive

definite for convex target functions.

Let {γk, k ≥ 1} be a sequence of real numbers, and {mk, k ≥ 1} be a sequence

of positive integers which fulfill the following conditions:

C1. γk ≥ 1 for all k,

C2.
∑∞

k=1 γk = 0,

C3.
∑∞

k=1 γ
1+ε
k /mk <∞ for some ε ∈ (0, 1),

C4.
∑∞

k=1 |γk/mk − γk−1/mk−1| <∞.

At iteration k, an effective MCMC sample of size mk, {e(1), ..., e(mk)}, with

equilibrium distribution fe(e) is drawn. The SAA updates the parameter vector

θ and matrix Γ as follows:

Γk = (1− γk)Γk−1 + γkIk,

θk = θk−1 + γkΓ
−1
k Hk,

54



where

Hk =
1

mk

mk∑
j=1

H(θk−1, e
(j)
k ),

Ik =
1

mk

mk∑
j=1

I(θk−1, e
(j)
k ).

Γk behaves as an alternate of the Hessian matrix and is updated as a parameter

matrix. γk is the step-size of the parameter updates. Convergence of the algorithm

is guaranteed (Benveniste et al. 1987). In implementing SAA, mk and γk need

to satisfy conditions (C1)-(C4). Jiang, Karcher and Wang (2011) considered the

following three combinations:

G1. γk = 1 and mk = m0 + k2,

G2. γk = 1/k and mk = m0,

G3. γk = 1/
√
k and mk = m0 + k,

where m0 is the starting MCMC sample size.

4.5.3 Implemention

In our study, we apply the updating procedure (4.35) to solve equations (4.19)

for c and d and (4.31) for variance parameter ζ.

In estimating c and d, the goal is to solve

∂PL(ζ, c,d)

∂(cT ,dT )T
= EB|Y{H((c,d),B)} = 0,

where

H((c,d),B) =
−1

N

∂ log pY|B(Y)

∂(cT ,dT )T
+

∂

∂(cT ,dT )T
λ

2
cTQc,
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and the Hessian matrix is approximated by

I((c,d),B) = −∂H((c,d),B)

∂(cT ,dT )T
.

In estimating ζ, we estimate ζ as the minimizers of the negative log marginal

likelihood −l(ζ, c,d) in (4.2). The H matrix here is

H(ζ,B) =
∂ log pB(B; ζ)

∂ζT
,

where pB(B; ζ) is multivariate normal density with mean 0 and variance param-

eters ζ, and the I matrix is

I(ζ,B) =
∂2 log pB(B; ζ)

∂ζT∂ζ
.

4.5.4 The Complete Algorithm

Gathering all pieces together, we have the following complete algorithm:

1. Provide initial values ĉ(0), d̂(0),ζ̂(0);

2. At iteration k

(a) Draw a MCMC sample {b(1)
i , ..., b

(mk)
i } for i = 1, ...,m using the M-H

procedure;

(b) Updating c,d by solving equation (4.19) with EBi|Yi
[µf (g|Bi)] and

EBi|Yi
[Vf (g|Bi)] computed by MCMC sample;

(c) Draw another MCMC sample {b(1)
i , ..., b

(mk)
i } for i = 1, ...,m with

updated c,d and update ζ by equation (4.31) using SAA;

3. Repeat Step 2 until convergence.
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Initial Value and Stopping Criterion

The initial values (ĉ(0), d̂(0)) and ζ̂(0) can be any reasonable user-specified

values. Denote (ĉ∗, d̂∗) as the estimator found based on pooling all data together

and ignoring subject effects in estimation. One may use (ĉ∗, d̂∗) for initial values

(ĉ(0), d̂(0)). For the initial value ζ̂(0), we propose an initial value, ζ̂GM , with its

computation described as follows. Denote ĝi as the individual logistic density

estimator which merely uses data from subject ωi in estimation and g as the true

fixed effects for NMDR model. Let ĝi and ĝ represent the vectors of functions

ĝi and g evaluated at the grid points respectively. According to the settings of

our proposed model (3.14), we assume ĝ′is are multivariate normal distributed

with mean g and covariance matrix Σζ . We can compute the estimater of ζ using

MLE method with Gaussian process realizations ĝ. We call this estimate as GM

estimate and denote it as ζ̂GM , since it is obtained by using the MLE of the mean

function in Gaussian process.

To incorporate SAA in the algorithm, one need to update the proxy of the

Hessian matrix Γ, a simple choice for Γ(0) is the identity matrix.

The convergence of the estimation of (c, d) is usually fast, but it usually

takes longer for ζ to converge. Denote ε as the predetermined accuracy tolerance.

Define the relative difference of estimates of ζ at the kth iteration as,

d
(k)
ζ =

||ζ(k) − ζ(k−1)||
||ζ(k−1)||

,
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where || · || is Euclidean distance. The loop stops at the kth iteration if d
(k)
ζ < ε,

where ε is user-specified. Other stopping rule can be found in Booth and Hobert

(1999).
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Chapter 5

Simulations

In this chapter, we conduct extensive simulations to evaluate the performance

of the proposed methods. We generate data from known models and use our

proposed NMDR model to estimate subject densities and variation among them.

The simulation results indicates our methods perform well for the estimation both

of densities and other variation among them.

We use the model introduced in Chapter 3 to generate data and then use

the estimation methods developed in Chapter 4 to estimate the fixed effects and

variance parameters. We assess the estimate of population density by using K-L

loss, and we evaluate the variance parameter estimation performance via by using

mean squared error (MSE).
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5.1 Simulation Methods

5.1.1 Model for Generating Data

We use model (3.4) to generate data. Denote Yij as the the jth observation

from subject ωi, j = 1, ..., ni, i = 1, ...,m. The sample {Yij}nij=1 from subject ωi is

simulated from the following conditional density (in the form of NMDR model),

f(y, bi) =
exp{η1(y) + bi(y)}∫
Y exp{η1(y) + bi(y)}dy

, (5.1)

where η1(y) = − (y−θ)2
2τ

(for chosen θ and τ values described in the next paragraph)

and where bi = {bi(y)|y ∈ Y} is a realization of a Gaussian process with mean

0 and covariance function σ2R1 where R1(s, t) = k1(s)k1(t) − k2(|s − t|). For

simplicity, the domain Y is assumed to be interval [0, 1].

When generating data, we discretize the domain Y into 200 equal length sub-

divisions, I1, ..., I200. Denote the center point of the kth subdivision as uk, and

Y?={u1, ..., u200}. For subject ωi, we draw random samples from Y? with replace-

ment and the probability of uk being selected as πik=
∫
Ik
f(y, bi)dy. The data

drawn from Y? are viewed as the raw data from the true domain Y .

On the domain Y = [0, 1], the shape of density function can be determined

by the values of θ and τ . Different values of θ are set for skewed and symmetric

population densities. The Gaussian process is infinite dimensional, so we use mul-

tivariate normal to generate realizations of the process, bi, based on the discretized

domain. Figure 5.1 shows 30 subject-specific densities and their population den-

sities for a symmetric case with θ = 1/2 and a skewed case with θ = 1/4, for two
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different values of σ2 = 0.5 and 2. The value of τ is set to be 1/6 throughout this

chapter. The population density is defined as the density without the random

effects,

f(y) =
exp{η1(y)}∫
Y exp{η1(y)}dy

.

As expected the variation among subject densities is larger when σ2 is larger.

In the simulation study, the sample size for each subject ni is set to be 200

for all experiments. One should note that ni and number of subdivisions for

data generating do not need to be equal, although the same number is used in

our simulation (both are 200). For each subject, after 200 observations were

simulated, we then bin the simulated data. Denote q as the number of bins. We

consider a factorial design with the following choices of simulation parameters:

(θ, τ) = (1/4, 1/6) and (1/2, 1/6), m = 13, 30 and 100, σ2 = 0.5 and 2 and q = 5

and 10. In total, there are 24 combinations.

5.1.2 Estimation

Model

We fit the simulated data using NMDR with linear spline to model the sub-

ject densities and the variation among them. We use linear spline representers

evaluated at middle points of bins. Specifically, the main effect is approximated

by η1(y) =
∑q

l=1 clR1(Kl, y), where Kl is the middle point of the lth bin and the
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Figure 5.1: Subject-specific simulated densities: black line represents the popula-

tion density (density without random effects), colored lines represent the subject-

specific densities. The first row displays symmetric cases (θ = 1/2) and the second

row displays the skewed cases (θ = 1/4). The left column corresponds to σ2=0.5

and the right column corresponds to σ2=2.
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variation among subjects are modeled using zero-mean Gaussian processes with

covariance function σ2R1 where R1(s, t) = k1(s)k1(t)− k2(|s− t|).

Updating Equation

We use Newton equation (4.19) to update η̂1. The expectation EBi|Yi
(·) in

(4.19) is approximated using MCMC samples generated from Metropolis-Hastings

algorithm. We use the updating equation (4.31) for updating σ̂2. Given the same

stopping rule, the updating procedure of σ2 usually needs much more iterations

and hence more time than the updating procedure of η1 to get convergence. One

way to get fast convergence of the updating process for σ2 is to use MCMC effective

samples with large sample size to approximate integrals in updating equation at

each iteration. The effective MCMC samples represents the samples that are

obtained by discarded part of original MCMC samples for the goal of good mixing.

The qualities that are described by the mixing properties of the MCMC sample

can be found in Givens and Hoeting (2005).

Denote h(Bi) as any function of random effects Bi. To make the updat-

ing procedure more efficient for σ̂2, we transform the conditional expectation

EBi|Yi
[h(Bi)] to the expectation EBi

(wih(Bi)) where the weight,

wi = p(Yi|Bi)/

∫
p(Yi|bi)p(bi;σ2)dbi.
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Hence the updating equation (4.31) is modified as

σ̂2(k)=σ̂2(k−1) − [
m∑
i=1

E
(k−1)
Bi

(wiD 2,i|σ2=σ̂2(k−1))]−1

m∑
i=1

E
(k−1)
Bi

(wiD 1,i|σ2=σ̂2(k−1)),

(5.2)

where D 1,i and D 2,i are the first two derivatives of log likelihood function of

variance component for the ith subject in (4.32) with ζ being replaced by σ2.

The expectations E
(k−1)
Bi

in (5.2) are approximated by Monte Carlo (MC) samples

drawn directly from the distribution of random effects p(bi; σ̂
2(k−1)). Given the

fact that p(bi; σ̂
2(k−1)) is a multivariate normal density, the MC samples can be

generated easily.

Implementation in R

For the subject-specific density model introduced in Section 3.1.1, one may

leverage the R function ssden in the library gss developed by Gu (2009) to es-

timate c and d. The R function ssden is developed for density estimation using

SS ANOVA models. It includes an argument ”bias” for input for sampling bias.

Sampling bias is a bias in which the observations were collected in a biased way.

One can save the exponential of MCMC samples, ebi(y), to the parameter ”bias”

in function ssden to obtain a NMDR estimator for fixed-effect function in each

iteration during the updating procedure. Applying ssden on the subject-specific

density model only results in NMDR estimates with scheme G1 in (4.36). For

other schemes one may need to modify ssden.
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We now describe briefly the reason that one can leverage ssden for biased sam-

pling to estimate NMDR model. The main point is that the Newton equation for

estimating c and d for biased sampling and the one for NMDR model are the same.

Consider the density for biased sampling as f(y) = w(t, y)eg(y)[
∫
Y w(t, y)eg(y)dy]−1

where the weight function w(t, y) ≥ 0 depends on t, the index of source that the

observation y come from. Additional information about the index t can be seen in

Gu (2013, Ch7). In leveraging the ssden for our case, we can treat the exponential

of random effects, ebi(y), as the weight function w(t, y). The Newton equation for

biased sampling is similar to the one for typical density estimation (2.6) but with

modified µg(h) and Vg(h1, h2) as

µg(h) =
1

n

∑n

i=1
µg(h|ti),

Vg(h, h
′) =

1

n

∑n

i=1
vg(h1, h2|ti),

where

µg(h|t) =

∫
Y
h(y)w(t, y) exp{g(y)}dy/

∫
Y
w(t, y) exp{g(y)}dy,

vg(h1, h2|t) = µg(h1h2|t)− µg(h1|t)µg(h2|t).

With modified µg(h) and Vg(h1, h2), the Newton equation for biased sampling

now is in the same form as (4.19) with Xi being removed from the equation.

One should note that the biased sampling density estimation uses penalized like-

lihood for model estimation criteria, while NMDR model use penalized marginal

likelihood. This fact does not affect the same form of the Newton equations

for each of the biased sampling density estimation and NMDR model. But this
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fact does affect the computation of CV score. For the subject-specific density

model, the second term in the delete-one observation CV score (4.28) is sim-

plified to N−1
∑m

=1 niEBi
[log

∫
Y e

gλ(t)+Bi(t)dt]. However, if we leverage ssden to

estimate the fixed effect, the expectation EBi
[log

∫
Y e

gλ(t)+Bi(t)dt] in CV score is

actually computed by EBi|Yi
[log

∫
Y e

gλ(t)+Bi(t)dt]. Note that EBi|Yi
is the expec-

tation of the random effects (a Gaussian process) conditional on the observations

Yi = (Y i1, ..., Yini).

Computation setting

The maximum number of iterations for the whole updating procedure is set

to be 75. The SAA algorithm with G1 setting which allows the effective MCMC

and MC sample size increases quadratically along iterations is employed within the

updating procedure. We start SAA algorithm from the 38th iteration for updating

η̂1 and at the beginning for updating σ̂2. Set S1 and S2 as initial effective MCMC

sample size mad MC sample size for updating η̂1 and σ̂2 respectively. In other

words, at the kth iteration the effective MCMC sample size for estimating η1 is

S1 + [(k − 37)I{k>37}]
2 where I is an indicator function here, and the MC sample

size for estimating σ2 is S2 + k2. With σ2 being fixed, the estimation of the main

effect η1 can be executed by using R function ssden.
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Initial Value and Stopping Rule

Denote η̂1pooled as the pooled estimates of η1 which is an estimate that based on

all observations and ignores subject effects. For the main effect, we set the initial

values η̂
(0)
1 = η̂1pooled. For the variation among subjects, we set σ̂2(0) = 1.5σ2 .

To measure the convergence of η̂1, we use the relative difference of estimates

evaluated at the middle point of each bin K1, ..., Kq. Define the relative difference

of estimates of η1 and σ2 as follows,

dη1 =

√∑q
l=1[η̂

(i)
1 (Kl)− η̂(i−1)

1 (Kl)]2√∑q
l=1[η̂

(i−1)
1 (Kl)]2

,

dσ2 =
|σ̂2(i) − σ̂2(i−1)|
|σ̂2(i−1)|

.

In each simulation, we let the updating procedure run at least 25 iterations. After

the 25th iteration, we set η̂
(i)
1 = η̂

(i−1)
1 if dη1 < 10−5 and stop the procedure when

dσ2 < 5× 10−4.

Output

We run S = 100 simulations for each experiment. We present the mean of

σ̂2, the mean of K-L loss KL(f, f̂) and MSE of σ̂2 to summarize our results.

The mean of σ̂2 is computed by
∑S

i=1 σ̂
2
i /S where σ̂2

i is the estimate from the

result of the ith simulation.The K-L loss between true population density f(y) =

e−
1
2

( y−θ
τ

)2/
∫ 1

0
e−

1
2

( y−θ
τ

)2dy and its estimate f̂(y) = eη̂1(y)/
∫ 1

0
eη̂1(y)dy is defined as
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follows

KL(f, f̂) =

∫ 1

0

log
f(y)

f̂(y)
f(y)dy,

which will be approximated by
∑q

l=1 log[f(Kl)/f̂(Kl)]f(Kl)/q. We will use the

mean of K-L loss across 100 simulations to measure the accuracy of fitting popu-

lation density. Finally, the MSE of σ̂2 is computed by

MSE(σ̂2) =

∑S
i=1(σ̂2

i − σ2
i )

2

S
.

5.1.3 MCMC sample

Proposal Distribution in Metropolis-Hastings algorithm

In generating MCMC samples for updating η̂1, at the ith Newton updating

iteration and the tth MCMC iteration, the proposal distribution is multivariate

normal with mean b(i,t−1) and covariance matrix a2Σ̂(i) where b(i,t−1) is generated

at the (t− 1)th MCMC iteration and Σ̂(i) = σ̂2(i)R1.

A good value of a provides high quality MCMC samples which lead to more

accurate approximation. The value a depends on the shape of the target distri-

bution which is influenced by θ, τ and σ2 and the number of subintervals q . We

fix τ = 1/6 and search for optimal a for each of our different combinations of θ,

σ2 and q. For each combination of θ, σ2 and q with different a we repeat 1000

experiments. We choose a value of a that has median acceptance rate over 1000

experiments around 23%. In each experiment, we draw MCMC samples with sam-

ple size 10, 000 based on simulated observations and record the acceptance rate
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at the end of each experiment. The MCMC samples here refers to the samples

that before discarding part of samples for the goal of good mixing. Table 5.1 and

5.2 are example searching results which provide a values that will be used in the

following simulations. In our simulation setting, the impact of σ2 on a search

results was found to be small, we thus select our a value only based on θ, τ and

q throughout our simulations.

q θ a Minimum 1st Quartile Median 3rd Quartile Maximum
10 0.25 0.52 20.06% 22.46% 23.22% 23.98% 26.62%
10 0.5 0.50 19.40% 22.45% 23.28% 24.12% 29.09%
5 0.25 0.38 18.11% 21.92% 22.89% 24.01% 28.79%
5 0.5 0.36 18.31% 21.52% 22.45% 23.46% 29.13%

Table 5.1: Searching result for a when τ = 1/6 and σ2 = 2.

q θ a Minimum 1st Quartile Median 3rd Quartile Maximum
10 0.25 0.52 21.07% 22.53% 23.06% 23.60% 25.52%
10 0.5 0.50 20.53% 22.61% 23.17% 23.71% 26.06%
5 0.25 0.38 19.69% 22.10% 22.75% 23.44% 26.65%
5 0.5 0.36 18.97% 21.63% 22.29% 23.97% 25.32%

Table 5.2: Searching result for a when τ = 1/6 and σ2 = 0.5.

MCMC setting for Newton updating equation

For updating η̂1, the effective MCMC samples are obtained by storing every

10th MCMC sample after an initial burn-in of 200 sweeps. We provide some re-

sults based on 1, 000 effective MCMC samples to show the way we choose effective

MCMC samples and the Metropolis-Hastings proposal distribution we proposed

in the previous section do produce effective MCMC samples with good mixing
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(based on trace plots) and low autocorrelation (based on ACF plots). Figures

5.2-5.4 display the diagnostic plots for σ2 = 2, 3 and 1 for the case that the Gaus-

sian process is discretized as a 5 dimensional multivariate normal random vector

(B1, ..., B5) for the skewed density case θ = 1/4. Figure 5.2 displays univariate

trace and ACF plots for σ2 = 2 which is one of the true values in our simulation

settings. Figure 5.3 displays univariate trace and ACF plots for σ2 = 3 which is

used as the initial value when the true value σ2 = 2. Since our simulation re-

sult usually indicates the convergence value is 0.5 times the true one, we provide

Figure 5.4 for σ2 = 1 which is the rough convergence value for the true value

σ2 = 2. The low accuracy of the estimate of σ2 here is because we discretized

the Gaussian process by 5 dimensional multivariate normal. When using higher

dimensional multivariate normal to approximate Gaussian process, the accuracy

of the estimate of σ2 is getting better.

5.2 Simulation Results

Tables 5.3 and 5.4 provide the mean of K-L loss, MSE(σ̂2) and the mean of

σ̂2 across 100 simulated samples under symmetric and skewed cases respectively.

The mean of K-L loss and MSE(σ̂2) decrease when number of subjects increase.

The mean of σ̂2 suggests that σ̂2 underestimate σ2. In addition, the mean of σ̂2

is getting closer to the true σ2 when the number of subjects is getting larger.

Also, the mean of K-L loss and MSE(σ̂2) are getting smaller if the number of bins
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Figure 5.2: Sample MCMC results for σ2 = 3: Trace (left column) and ACF (right

column) plots based on 1000 effective samples with θ = 0.25, q = 5, a = 0.38.
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Figure 5.3: Sample MCMC results for σ2 = 2: Trace (left column) and ACF (right

column) plots based on 1000 effective samples with θ = 0.25, q = 5, a = 0.38.
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Figure 5.4: Sample MCMC results for σ2 = 1: Trace (left column) and ACF (right

column) plots based on 1000 effective samples with θ = 0.25, q = 5, a = 0.38.
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θ = 0.5 m = 13 m = 30 m = 100

σ2 = 0.5 q = 5
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0053
0.0605
0.2826

0.0042
0.0467
0.2952

0.0034
0.0379
0.3095

σ2 = 0.5 q = 10
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0037
0.0403
0.3325

0.0017
0.0230
0.3750

0.0007
0.0160
0.3839

σ2 = 2 q = 5
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0089
0.9667
1.0694

0.0061
0.7746
1.1509

0.0039
0.6743
1.1871

σ2 = 2 q = 10
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0087
0.6356
1.2575

0.0044
0.4987
1.3279

0.0017
0.3987
1.3774

Table 5.3: Performance under the symmetric case (θ = 1/2).

is bigger which means that the estimator geeting closer to the true model and

paramter if the raw data are binned with larger number of bins. This is expected,

since more bins means more information from raw data are kept and being used

to estimate the mode.

Figures 5.5 and 5.6 indicate that for fixed number of subjects, the mean of

K-L loss is higher when the value of true variance parameter σ2 is bigger. Figure

5.7 and 5.8 show how the number of subjects influence mean of KL loss and

MES(σ̂2). Figures 5.9 and 5.10 show the population densities plot for true (f.true),

NMDR estimate (f.est), pooled estimate (f.pool) and mean (f.mean) densities for

particular simulated data in symmetric and skew case. The mean density estimate

is calculated by averaging the smoothing spline density estimates for each single

subject. Figures 5.11 and 5.12 are example result plots of true subject densities

with their predictions for symmetric and skew population densities respectively.
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θ = 0.25 m = 13 m = 30 m = 100

σ2 = 0.5 q = 5
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0034
0.0642
0.2768

0.0027
0.0496
0.2903

0.0018
0.0398
0.3058

σ2 = 0.5 q = 10
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0030
0.0360
0.3516

0.0014
0.0286
0.3609

0.0005
0.0146
0.3867

σ2 = 2 q = 5
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0069
1.0793
1.0082

0.0034
0.8487
1.1062

0.0022
0.6763
1.1891

σ2 = 2 q = 10
mean of KL(f, f̂)
MSE(σ̂2)
mean of σ̂2

0.0071
0.6092
1.2799

0.0032
0.5184
1.3120

0.0011
0.4054
1.3750

Table 5.4: Performance under the skewed case (θ = 1/4).

They are both produced with 13 subjects and σ2 = 2. The estimate of the subject-

specific density, the subject conditional density in the form of the NMDR model,

is defined as follows,

f̂(y, b̂i) =
eη̂1+b̂i(y)∫ 1

0
eη̂1(y)+b̂i(y)dy

,

where the realization b̂i= {b̂i(y)|y ∈ [0, 1]} = Ẽ(B|Yi) and Ẽ(B|Yi) is approxi-

mated by MCMC samples.

5.2.1 The ivestigation of GM estimate of σ2

Denote σ̂2
GM as GM estimate of σ2. When estimating σ2, one can consider

taking σ̂2
GM as the initial value for the updating procedure in (4.31) with ζ being

replaced by σ2. In this section, we conduct some simulations to study the accu-

racy of σ̂2
GM . The true parameter σ2 is set to be 2. Denote m* as the number of

subjects, q* as the number of bins and n* as the number of observations generated
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Figure 5.5: Mean of K-L loss for symmetric case (θ = 1/2): black: σ2 = 0.5, red:

σ2 = 2; solid: q = 5, dotted: q = 10.
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Figure 5.6: Mean of K-L loss for skewed case (θ = 1/4): black: σ2 = 0.5, red:

σ2 = 2; solid: q = 5, dotted: q = 10.
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Figure 5.9: Plots of the true density and its estimates for the symmetric case

(θ = 1/2) based on a particular simulated sample.
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1/4) based on a particular simulated sample.
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Figure 5.11: Plots of true subject-specific densities (black solid lines) and their

estimate (red dotted lines) for symmetric case (θ = 1/2) based on a particular

simulated sample.
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Figure 5.12: Plots of true subject-specific densities (black solid lines) and their es-

timate (red dotted lines) for skewed case (θ = 1/4) based on a particular simulated

sample.
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from each subject. We run 100 experiments for each of two different shapes of

population density (symmetric and skewed), m* (30 and 100), q* (10 and 20) and

n* (200 and 1000). Figures 5.13 and 5.14 display the boxplots of log(σ̂2
GM/σ

2).

The setting, (m*,q*,n*), for each experiment is listed as follows, experiment 1:

(30,10,200), experiment 2: (30,10,1000), experiment 3: (30,20,200), experiment

4: (30,20,1000), experiment 5: (100,10,200), experiment 6: (100,10,1000), exper-

iment 7: (100,20,200) and experiment 8: (100,20,1000). We can see that with

more bins and bigger number of subjects and number of observations in each sub-

ject, the GM estimate is closer to the true parameter which means that the GM

estimate might be a good initial value under these conditions.

5.3 Smoothness comparison

In this section we compare the smoothness of linear and cubic spline estimates.

The cubic spline NMDR model approximates the main effect by η1(y) = d× (y−

0.5) +
∑q

l=1 clR2(Kl, y) and models the covariance of random effects as σ2
1 × (s−

0.5)(t− 0.5) + σ2
2R2(s, t) where R2(s, t) = k2(s)k2(t)− k4(|s− t|).

We generate data from the model f(y, bi) = eη1(y)+bi(y)/
∫ 1

0
eη1(y)+bi(y)dy where

η1(y) = −3(y − 1/2)2 and bi = {bi(y)|y ∈ [0, 1]} is a realization of a Gaussian

process with mean 0 and covariance function 50R2(s, t). Again, the domain [0, 1]

is discretized by dividing it into 200 subregions for generating raw data. The
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Figure 5.13: Log ratio boxplots for symmetric case (θ = 1/2). The vertical axis

represents the log ratio log(σ̂2
GM/σ

2).
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Figure 5.14: Log ratio boxplots for skewed case (θ = 1/4). The vertical axis

represents the log ratio log(σ̂2
GM/σ

2).
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simulated data are then grouped into 20 equal length bins for each subjects. The

number of subjects is set to be 30 and each subject has 200 observations.

Figures 5.15-5.16 display the comparison of the true population density with

its linear and cubic estimates. Figures 5.17-5.20 display the comparison of true

subject density and its linear and cubic predictions. We only run one experiment

for each shape of density to illustrate the smoothness of linear and cubic estimates.

The cubic spline estimates and predictions are smoother than linear spline. One

may also notice that the true subject densities in figures 5.15 and 5.16 are smoother

than those in 5.11 and 5.12, this is because the model we use to generate data

in this section used a cubic kernel as covariance function while in the previous

section about large scale simulation is with linear kernel. And models with cubic

covariance function are smoother than linear.
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Figure 5.15: Population density estimates comparison for symmetric case based

on a particular sample.
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Figure 5.16: Population density estimates comparison for skewed case based on a

particular sample.

85



0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 1

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 2

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 3

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 4

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 5

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 6

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 7

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 8

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 9

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 10

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 11

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 12

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 13

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 14

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 15

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 16

y

d
e

n
si

ty

Figure 5.17: Subject-specific density and its estimates: symmetric case, subject

1-16. Black: true subject-specific densities; Red: linear spline estimates; Green:

cubic spline estimates.

86



0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 17

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 18

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 19

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 20

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 21

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 22

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 23

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 24

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 25

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 26

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 27

y

d
e

n
si

ty

0.0 0.4 0.8
0

.0
1

.0
2

.0
3

.0

subject 28

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 29

y

d
e

n
si

ty

0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

subject 30

y

d
e

n
si

ty

Figure 5.18: Subject-specific density and its estimates: symmetric case, subject

17-30. Black: true subject-specific densities; Red: linear spline estimates; Green:

cubic spline estimates.
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Figure 5.19: Subject density and its estimates: skewed case, subject 1-16. Black:

true subject-specific densities; Red: linear spline estimates; Green: cubic spline

estimates.
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Figure 5.20: Subject density and its estimates: skewed case, subject 17-30. Black:

true subject-specific densities; Red: linear spline estimates; Green: cubic spline

estimates.
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Chapter 6

Application to Speech Data

6.1 Scientific Questions and Data

The objective in this chapter is to compare the phonation interval (PI) distri-

butions (especially in the short PI region: 30–150-ms) between normal speakers

and people who stutter during oral reading. We also compare the difference during

the stutter-free speech (i.e., when recorded intervals of speech containing stutter-

ing were removed ; Godinho et al., 2006).

According to the website of National Stuttering Association (NSA), stuttering

is a communication disorder involving disruptions, or “disfluencies,” in a person’s

speech. Gow and Ingham (1992) found that a reduction in short phonated intervals

(PIs) in the range of 30-150-ms is associated with decreased stuttering. Ingham

et al. (2001) showed that purposefully reducing the number of short PIs resulted

in the elimination of stuttering.

The PI intervals can be viewed as an estimate of the duration of vocal fold

movement. For instance, a 50-ms PI refers to a 50-ms period during which the
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vocal folds were vibrating (Ingham et al., 2001). Speakers produce a number of

PIs of varying duration in a specified amount of speaking time (Davidow, Bothe,

Andreatta a nd Ye 2009). Additional information for the PI measurement can be

found in Davidow et al., 2009.

In our dataset the experiment involved 13 adult and adolescent individuals

who stuttered and 13 control participants who were matched for age and gender.

The domain, 30–1000-ms range, was subdivided into 50-ms ranges (except for the

30–50-ms range, which was left as a 20-ms subdivision) and the total number of

PIs from each subject that occurred within each of these 20 subdivisions provided

the raw data (Godinho et al., 2006). Figure 6.1 shows the nonparametric density

estimator of PI distribution for each of two datasets: the data set contains all time-

periods (top row) and the dataset after all stuttering periods removed (bottom

row). The R package gss (Gu 2009) is used to estimate density function for each

participant. Visually, there is a large variation between subjects.

Our dataset is from Godinho et al. (2006). They apply t-test to detect the

difference in the proportion of PIs of each subdivision between two groups. Their

finding suggests no difference in the distribution of PIs between normal subjects

group and people who stutter group. However, using a t-test for the problem

of interest may lose information contained in smooth density functions since a

t-test is a test based on using the means as summaries instead of a test based

on the entire density for each individual and group. Our NMDR model takes the

smoothness of the density function into account during the density estimation, and
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hence keep more information from data when detecting the difference between the

two groups. The result based on our proposed method supports their finding.
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Figure 6.1: Density estimations for two different groups (normal speaker/stutter)

under two different datasets (complete: top row; stutter-free speech: bottom row

). Different colors represent different subjects.
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6.2 Initial Analysis

To compare the PI distributions in the region 30–150-ms, we prepare two plots

to display the distribution of PI odd. We compute the odd of short PI by

odd =
proportion of P-I from 30–150-ms

proportion of P-I from 150–1000-ms
.

The odd tells us the ratio of proportions between short PIs (30–150-ms) and

long PIs (150–1000-ms). Small odd indicates the subject speaks with more long

PIs. Figure 6.2 contains boxplots of PI odd for complete and stutter-free dataset.

They suggest the odd of the group of normal subjects and the group of people

who stutter are similar.

Since the data are paired we also check the ratio of odds of normal subject to

stutter subject. The odds ratio for the ith pair of subjects is computed by

ORi =
odd of normal subject i

odd of stutter subject i
.

Figure 6.3 displays the distribution of odds ratio. In Figure 6.3, we see that for

complete dataset most odds ratio are below one which indicates normal people

tend to use less short intervals than people who stutter. For stutter-free dataset,

the median is closed to one.

We use logistic regression to test the difference in odd between normal speakers

and people who stutter separately for each of the two datasets. In this case, we

do not consider data as paired. Here we define the odds ratio as the odds of

normal people divided by the odds of people who stutter. The estimates for the
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log odds ratio of the short region are −0.0359 (p − value = 0.157) and −0.0206

(p − value = 0.559) for complete dataset and stutter-free dataset respectively.

Neither is significant at 5% significance level which implies the differences are

not significant in both datasets at 5% significance level. In addition, we use

mixed-effects logistic regression to test the difference in odds between two groups

when data are considered as paired for two datasets. The estimates for the log

odds ratio of the short intervals are −0.0626 (p − value = 0.015) and 0.0358

(p− value = 0.334) for the complete dataset and stutter-free dataset respectively.

Hence, at 5% significance level, the difference in odds between is significant in

complete dataset when data are considered as paired.

6.3 Fitting NMDR Models

In this section we use NMDR model developed in Chapter 3 to estimate the

population densities and subject-specific densities. We fit model for each group

separately. In each dataset, each group is estimated by linear (3.4) and cubic (3.4)

spline NMDR models. We write the NMDR model for subject-specific density as,

f(y, bi) =
eη1(y)+bi(y)∫
Y e

η1(y)+bi(y)dt
.

where bi = {bi(y)|y ∈ Y} and Y = [30, 1000].

For the linear spline case (3.4), b′is are realizations of independent Gaussian

processes with mean 0 and covariance function σ2R1(s, t), where R1 is linear spline

kernel. For the cubic spline case (3.6), the functional random effect has two
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Figure 6.2: Boxplots of odds for normal and stutter subjects from both datasets.

Dark red: Normal speakers from complete dataset (NC). Dark green: Stutterer

from complete dataset (SC). Pink: Normal speakers from stutter-free dataset

(NSF). Light green: Stutterer from stutter-free dataset (SSF).
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Figure 6.3: Boxplots of odd ratios for complete (pink) and stutter-free (blue).

components, bi(y) = bi,1 × (y − 0.5) + bi,2(y) where b′i,1s are realizations of i.i.d

random variables from N(0, σ2
1) and {bi,2(y)|y ∈ Y}, i = 1, ..., n, are realizations of

independent Gaussian processes with mean 0 and covariance function σ2
2R2(s, t)

where R2 is cubic spline kernel. Hence in the cubic spline case, the functional

random effect bi is a realization of Gaussian process with mean 0 and covariance

function σ2
1 × (s− 0.5)(t− 0.5) + σ2

2R2(s, t).

The interval Y = [30, 1000] is divided into 20 subdivisions where the first bin

has length 20ms and all others are 50ms long. We use the middle point of each

subdivision to be a knot. Hence the number of knots L = 20. The parameter

alpha in the cross-validation score in (4.28) for smoothing parameter selection is

set to be 1 for the linear spline case and 1.4 for the cubic spline case.

96



We write tj, j = 1, ..., 20 as the middle points of each bin. Let R1 and R2 be

the linear and cubic spline kernels respectively. Denote Σ
(k)
l as a 20 by 20 matrix

with (i, j)th element σ2(k)R1(ti, tj). Let Σ
(k)
c be a 21 by 21 matrix with (i, j)th

element σ
2(k)
2 R2(ti, tj) if 1 ≤ i, j ≤ 20 and σ

2(k)
1 if i = j = 21, off-diagonal ele-

ments in the 21th row and column are set equal to zero. In linear spline case, the

Metropolis-Hastings proposal distribution at the kth iteration is 20 dimensional

MVN(0, a2Σ
(k)
l ). In cubic spline case, the functional random effect has two mutu-

ally independent components bi,1 and bi,2(t). Write bi = (bi,2(t1), ..., bi,2(t20), bi,1)T .

At the kth iteration, we simulate bi from 21 dimensional MVN(0, a2Σ
(k)
c ).

The value of a is a tuning parameter chosen to keep the acceptance rates around

23%. Based on several simulation studies that follows the procedure described

in section 5.1.3, we decide to use a = 0.36 and 0.34 for linear and cubic case

respectively.

We store every 10th MCMC sample after an initial burn-in of 200 sweeps.

The maximum number of iterations is 150for the whole updating procedure. The

updating procedure stops when ||ζ(k)−ζ(k−1)||
||ζ(k−1)|| < 5 × 10−4. We use SAA with the

step and MCMC size at the kth step to be γk = 1 and mk = m0 + k2. m0 is

set to be 200 and 2500 for updating (c, d) and ζ respectively. Note ζ =σ2 and

ζ =(σ2
1, σ

2
2) for linear and cubic case.

The initial value of (c,d) is set to be pooled estimate, (c(0),d(0)) = (ĉpooled, d̂pooled).

For the variance parameters, we use large value for initial value, ζ(0)= σ2(0) = 2

and ζ(0)= (σ
2(0)
1 , σ

2(0)
2 ) = (1, 50) for the linear and cubic spline model, respectively.
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6.4 Results

We estimate the subject-specific density f(y, bi) by

f̂(y, bi) =
eη̂1(y)+b̂i(y)∫ 1000

30
eη̂1(y)+b̂i(y)dy

,

where η̂1 can be obtained by ssden in R library gss and b̂i(y) = Ẽ(Bi|Y = y) is

computed by MCMC sampling.

Figures 6.4 (linear spline estimate) and 6.5 (cubic spline estimate) indicate

that population and subject density estimates for each group are skewed to the

right. Figures 6.6 and 6.7 compare the NMDR estimates with pooled estimates.

The pooled estimates, directly combining data across subjects, has higher peak

than linear spline NMDR estimates, however it is almost identical to the cubic

spline NMDR estimates.

Figures 6.8 to 6.9 are population density comparisons (using NMDR estimates)

between normal people and people who stutter. The black vertical dotted line

represents the boundary between short and long PI. The plots do not suggest

significant difference in the short PI region between normal people and people

who stutter. Figures 6.10 to 6.12 are NMDR estimate for each subject densities.

Again, the black vertical dotted line represents the boundary between short and

long PI.
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Figure 6.4: Linear spline estimates of population and subject-specific density

functions: The first row are plots for the complete dataset. The second row

are plots for the stutter-free dataset.
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Figure 6.5: Cubic spline estimates of population and subject-specific density func-

tions: The first row are plots for the complete dataset. The second row are plots

for the stutter-free dataset.
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Figure 6.6: Linear spline population densities estimates: The first row are plots

for the complete dataset. The second row are plots for the stutter-free dataset.
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Figure 6.7: Cubic spline population densities estimates: The first row are plots

for the complete dataset. The second row are plots for the stuter-free dataset.
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Figure 6.8: Linear spline population density estimates plots: Complete dataset

(left), Stutter-Free dataset (right).
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Figure 6.9: Cubic spline population density estimates plots: Complete dataset

(left), Stutter-Free dataset (right).
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Figure 6.10: Linear spline subject-specific density estimates for the complete

dataset. Red: Normal Subject. Green: Stutter Subject.
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Figure 6.11: Linear spline subject-specific density estimates for the stutter-free

dataset. Blue: Normal Subject. Cyan: Stutter Subject.
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Figure 6.12: Cubic spline subject-specific density estimates for the complete

dataset. Red: Normal Subject. Green: Stutter Subject.
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Figure 6.13: Cubic spline subject-specific density estimates for the stutter-free

dataset. Blue: Normal Subject. Cyan: Stutter Subject.
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Dataset Group ÂS ÂL ÂC
Complete Normal 0.3048 0.2760[0.2582, 0.2991] 0.3106[0.2968, 0.3309]
Complete Stutter 0.3212 0.2901[0.2822, 0.3184] 0.3234[0.3143, 0.3448]

Stutter-Free Normal 0.3123 0.2761[0.2406, 0.3057] 0.3066[0.2938, 0.3514]
Stutter-Free Stutter 0.3063 0.2910[0.2789, 0.3309] 0.3067[0.2879, 0.3300]

Table 6.1: The area estimates of short PI region.

6.4.1 Comparison in the Area of Short PI Region

The goal of this analysis is to compare the area of short PI regions between

normal speakers and people who stutter. In this section, we provide the com-

parison among different estimates when the paired effect are not taken into the

consideration. Denote A =
∫ 150

30
f(y)dy as the the area of short PI regions under

the population density curve f . Let ÂL and ÂC represent estimates of A based on

linear and cubic NMDR population density estimates respectively. Also, denote

ÂS as the estimate computed as the average of sample proportions of short region

across 13 subjects,
∑13

i=1

∑3
j=1 πij/13 where πij represents the observed proportion

of counts in the jth subinterval for the ith subject. Table 6.1 shows each estimate

of the area of the short PI region. The 95% bootstrap confidence intervals based

on 50 simulations are also provided for linear and cubic NMDR estimates. The

bootstrap approach will be described later in this section.

Table 6.2 shows the various estimates of difference in the area of short PI

region. The second column represents the estimate of the difference in the area of

short PI region based on sample proportions π′ijs between normal speaker ÂSN and

people who stutter ÂSS. The third column represents the linear NMDR estimates

108



Dataset ÂSN − ÂSS ÂLN − ÂLS ÂCN − ÂCS
Complete -0.0164

-0.0141 -0.0128
B.I=[−0.0387, 0.0094] B.I=[−0.2828, 0.0015]

Stutter-Free 0.0060
-0.0149 -0.0005

B.I=[−0.0523, 0.0165] B.I=[−0.0157, 0.0468]

Table 6.2: The estimates of difference in the area of short PI region between the

two groups. ÂSN , ÂLN and ÂCN are estimates based on sample proportions, linear

and cubic NMDR models respectively for normal speakers. ÂSS, ÂLS and ÂCS

are estimates for people who stutter.

of the difference in the area of short PI region between normal speaker ÂLN and

people who stutter ÂLS. The last column represents the cubic NMDR estimates

of the difference in the area of short PI region between normal speaker ÂCN and

people who stutter ÂCS. In addition, the 95% bootstrap confidence intervals based

on 50 simulations are provided for linear and cubic NMDR estimates. The 95%

intervals all suggest no significance between the two groups.

Table 6.3 shows the various estimates of log odds ratio for the area of short

PI region between normal speakers and people who stutter. The second col-

umn shows the log odds ratio, log(OR) = log(odd(N)/odd(S)) where odd(N) =

ÂSN/(1 − ÂSN) and odd(S) = ÂSS/(1 − ÂSS). The third and fourth column

display quantities LORL and LORC which are log odds ratios based on linear

and cubic NMDR population density estimates respectively. The 95% bootstrap

confidence intervals based on 50 simulations are also provided for linear and cubic

109



Dataset log(OR) LORL LORC

Complete -0.0763
-0.0694 -0.0591

B.I=[−0.1893, 0.0512] B.I=[−0.1304, 0.0089]

Stutter-Free 0.0281
-0.0733 -0.0002

B.I=[−0.2537, 0.0854] B.I=[−0.0748, 0.2297]

Table 6.3: The estimates of log odds ratio for the area of short PI region between

the two groups.

NMDR estimates. The 95% intervals all suggest no significance between the two

groups.

The approach we use to construct the confidence intervals is called basic boot-

strap confidence limit. Details for this approach can be found in Davision and

Hinkley (1997). We will only describe the algorithm briefly. Assume that we have

m subjects in each group. Let xi and yi be the vectors that collects all observa-

tions from the ith subject in normal speaker group and people who stutter group

respectively. Also, denote the NMDR population density estimates as ĝ for normal

speakers and ĥ for people who stutter. Set Â =
∫ 150

30
ĝ(y)dy and B̂ =

∫ 150

30
ĥ(y)dy

as the estimates for the area of short PI region for each group. Also, denote the

log odds ratio LOR = log{[Â/(1− Â)]/[B̂/(1− B̂)]}. The algorithm is described

as follows,

1. For r = 1, ..., R,

(a) Randomly samplem numbers {I1, ...., Im} with replacement from {1, ...,m};
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(b) Compute ĝ∗r and ĥ∗r based on observations {xI1 , ...,xIm} and {yI1 , ...,yIm}

respectively;

(c) Compute Â∗r and B̂∗r ;

(d) Compute d̂∗r = Â∗r− B̂∗r and LOR∗r = log{[Â∗r/(1− Â∗r)]/[B̂∗r/(1− B̂∗r )]};

2. Sort each set of bootstrap estimates: {Â∗(1), ..., Â
∗
(R)}, {B̂∗(1), ..., B̂

∗
(R)}, {d̂∗(1), ..., d̂

∗
(R)}

and {LOR∗(1), ..., LOR
∗
(R)};

3. Compute the (1− α) bootstrap confidence intervals:

[2Â− Â∗((R+1)(1−α)), 2Â− Â∗((R+1)α)],

[2B̂ − B̂∗((R+1)(1−α)), 2B̂ − B̂∗((R+1)α)],

[2d̂− d̂∗((R+1)(1−α)), 2d̂− d̂∗((R+1)α)],

[2LOR− LOR∗((R+1)(1−α)), 2LOR− LOR∗((R+1)α)].

For approximating integrals in computing areas Â and B̂, we first divide the

domain Y = [30, 1000] into 97 equal length bins [30, 40], [40, 50], ... and [990, 1000],

each with bin width 10ms. The first 12 bins represents the region of the short

PI. Let Ki be the middle point of the ith subinterval, we approximate Â ≈
∑12

i=1

ĝ(Ki)/10 and B̂ ≈
∑12

i=1 ĥ(Ki)/10.

111



Appendix A

Derivative of PL

We compute the derivatives of PL in (4.14) and (4.15). When taking derivatives

of (4.4) the penalty term is easy to deal with, so we shall only show the work of

computing the derivative of the marginal likelihood l(ζ, c,d). Denote B as the

range of bi. First we need to compute the derivative of
∫
pYi|Bi

(Yi)pBi
(bi)dbi,

∂

∂(cT ,dT )T

∫
B
pYi|Bi

(Yi)pBi
(bi)dbi

=

∫
B
[

∂

∂(cT ,dT )T
pYi|Bi

(Yi)pBi
(bi)]dbi

=

∫
B
{ ∂

∂(cT ,dT )T
log[pYi|Bi

(Yi)]}pYi|Bi
(Yi)pBi

(bi)dbi

= {EBi|Yi
{
∂ log[pYi|Bi

(Yi)]

∂(cT ,dT )T
}}pYi

(Yi).

Thus the first derivative of marginal likelihood l(ζ, c,d) is
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∂

∂(cT ,dT )T
l(ζ, c,d)

=
∂

∂(cT ,dT )T
{
m∑
i=1

log

∫
B
pYi|Bi

(Yi)pBi
(bi)dbi}

=
m∑
i=1

{ ∂

∂(cT ,dT )T
log

∫
B
pYi|Bi

(Yi)pBi
(bi)dbi}

=
m∑
i=1

∂
∂(cT ,dT )T

∫
B pYi|Bi

(Yi)pBi
(bi)dbi∫

B pYi|Bi
(Yi)pBi

(bi)dbi

=
m∑
i=1

{EBi|Yi
{∂ log[pYi|Bi (Yi)]

∂(cT ,dT )T
}}pYi

(Yi)

pYi
(Yi)

=
m∑
i=1

EBi|Yi
{
∂ log[pYi|Bi

(Yi)]

∂(cT ,dT )T
}.
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The second derivative of marginal likelihood is

∂2l(ζ, c,d)

∂(cT ,dT )T∂(cT ,dT )

=
m∑
i=1

EBi|Yi
(Gi)

=
∂

∂(cT ,dT )T

m∑
i=1

∫
B

∂ log[pYi|Bi
(Yi)]

∂(cT ,dT )T
pYi|Bi

(Yi)pBi
(bi)

pYi
(Yi)

dbi

=
m∑
i=1

{
∫
B

∂2 log[pYi|Bi
(Yi)]

∂(cT ,dT )T∂(cT ,dT )

pYi|Bi
(Yi)pBi

(bi)

pYi
(Yi)

dbi +∫
B

∂ log[pYi|Bi
(Yi)]

∂(cT ,dT )T
∂

∂(cT ,dT )T
pYi|Bi

(Yi)pBi
(bi)

pYi
(Yi)

dbi}

=
m∑
i=1

∫
B

∂2 log[pYi|Bi
(Yi)]

∂(cT ,dT )T∂(cT ,dT )

pYi|Bi
(Yi)pBi

(bi)

pYi
(Yi)

dbi

+
m∑
i=1

∫
B
{
∂ log[pYi|Bi

(Yi)]

∂(cT ,dT )T
}2pYi|Bi

(Yi)pBi
(bi)

pYi
(Yi)

dbi

−
m∑
i=1

{
∫
B

∂ log[pYi|Bi
(Yi)]

∂(cT ,dT )T
pYi|Bi

(Yi)pBi
(bi)

pyi(Yi)
db}2

=
m∑
i=1

{EBi|Yi
(
∂2 log[pYi|Bi

(Yi)]

∂(cT ,dT )T∂(cT ,dT )
) + EBi|yi(

∂ log[pYi|Bi
(Yi)]

∂(cT ,dT )T
)2

−[EBi|Yi
(
∂ log[pYi|Bi

(Yi)]

∂(cT ,dT )T
)]2}.
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Appendix B

Quadratic Approximation

In this section, we use the quadratic approximation to approximate the log

marginal likelihood (4.2) at g̃. We will simply use p(b) for the probability density

of B. The log marginal likelihood for the subject ωi is

li = log

∫
B

exp{
∑ni

j=1[g(Yij, Xij) + bi(Yij, Xij)]}∏ni
j=1[
∫
Y exp{g(y,Xij) + bi(y,Xij)}dy]

p(bi)dbi.

We start from approximating li. Set

Lf,g(α)

= log

∫
B

e
∑

(f+αg+b)∏
[
∫
Y e

f+αg+bdy]
p(b)db

= log

∫
B
eA−J+hdb,

where

A(α) =
∑

(f + αg + b),

J(α) =
∑

log

∫
Y
ef+αg+bdy,

h = log p(b).
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Then,

log

∫
B

e
∑

(g+b)∏
(
∫
Y e

g+bdy)
p(b)db

= Lg̃,g−g̃(1) (B.1)

≈ Lg̃,g−g̃(0) + L′g̃,g−g̃(0) +
1

2
L′′g̃,g−g̃(0), (B.2)

where L
(m)
g̃,g−g̃(0) = dm

dαm
Lg̃,g−g̃(α)|α=0. We need L′f,g(0), L′′f,g(0) for the approxima-

tion.

The first derivatives are

L′f,g(α) =

∫
B e

A−J+h(A′ − J ′)db∫
B e

A−J+hdb
,

A′(α)

=
d

dα
[
∑

(f + αg) +
∑

b]

=
∑

g,

A′(0) =
∑

g,

J ′(α)

=
d

dα
[
∑

log

∫
ef+αg+bdy]

=
∑∫

Y ge
f+αg+bdy∫

Y e
f+αg+bdy

,

J ′(0)

=
∑∫

Y ge
f+bdy∫

Y e
f+bdy

,
∑

µf (g|b),
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L′f,g(0) = Ef
B|Y[

∑
g −

∑
µf (g|B)].

The second derivatives are

L′′f,g(α)

=
[
∫
B e

A−J+h(A′ − J ′)db]′
∫
B e

A−J+hdb− [
∫
B e

A−J+hdb]′
∫
B e

A−J+h(A′ − J ′)db
(
∫
B e

A−J+hdb)2

=
[
∫
B e

A−J+h(A′ − J ′)db]′
∫
B e

A−J+hdb− [
∫
B e

A−J+h(A′ − J ′)db]2

(
∫
B e

A−J+hdb)2

=
[
∫
B e

A−J+h(A′ − J ′)db]′∫
B e

A−J+hdb
− {

∫
B e

A−J+h(A′ − J ′)db∫
B e

A−J+hdb
}2,

where

[

∫
B
eA−J+h(A′ − J ′)db]′ =

∫
B
eA−J+h(A′ − J ′)2 − (A′′ − J ′′)eA−J+hdb

and

[

∫
B
eA−J+hdb]′ =

∫
B
eA−J+h(A′ − J ′)db.

since A′′(α) = 0, we have A′′(0) = 0. In addition,

J ′′(α)

=
d

dα
(
∑∫

Y ge
f+αg+bdy∫

Y e
f+αg+bdy

)

=
∑ (

∫
Y ge

f+αg+bdy)′
∫
Y e

f+αg+bdy − (
∫
Y e

f+αg+bdy)′
∫
Y ge

f+αg+bdy

(
∫
Y e

f+αg+bdy)2

=
∑

[

∫
Y g

2ef+αg+bdy∫
Y e

f+αg+bdy
− (

∫
Y ge

f+αg+bdy∫
Y e

f+αg+bdy
)2],

J ′′(0)

=
∑

[

∫
Y g

2ef+bdy∫
Y e

f+bdy
− (

∫
Y ge

f+bdy∫
Y e

f+bdy
)2]

,
∑

V (g|b).
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Hence,

L′′f,g(α)

=
[
∫
B e

A−J+h(A′ − J ′)db]′∫
B e

A−J+hdb
− {

∫
B e

A−J+h(A′ − J ′)db∫
B e

A−J+hdb
}2

=

∫
B e

A−J+h(A′ − J ′)2 − (A′′ − J ′′)eA−J+hdb∫
B e

A−J+hdb
− {

∫
B e

A−J+h(A′ − J ′)db∫
B e

A−J+hdb
}2

=

∫
B e

A−J+h(A′ − J ′)2db∫
B e

A−J+hdb
−
∫
B(A′′ − J ′′)eA−J+hdb∫

B e
A−J+hdb

− {
∫
B e

A−J+h(A′ − J ′)db∫
B e

A−J+hdb
}2,

L′′f,g(0)

= Ef
B|Y[

∑
g − µf (g|B)]2 − Ef

B|Y[−nV (g|B)]− {Ef
B|Y[

∑
g − µf (g|B)]}2

= Ef
B|Y[nV (g|B)] + V f

B|Y[
∑

g − µf (g|B)]

= Ef
B|Y[nV (g|B)] + V f

B|Y[µf (g|B)].

We now put pieces together. Since

Lg̃,g−g̃(α) ≈ Lg̃,g−g̃(0) + L′g̃,g−g̃(0)α +
1

2
L′′g̃,g−g̃(0)α2.

And we have

Lg̃,g−g̃(0) = log

∫
B

e
∑

(g̃+b)∏
(
∫
Y e

g̃+bdy)
p(b)db, (B.3)

L′g̃,g−g̃(0) = E g̃
B|Y[

∑
(g − g̃)−

∑
µg̃(g − g̃|B)], (B.4)

L′′g̃,g−g̃(0) = {E g̃
B|Y[

∑
Vg̃(g − g̃|B)] + V g̃

B|Y[µg̃(g − g̃|B)]}. (B.5)

Plug (B.2), (B.3) and (B.4) in (B.1) , we have

log

∫
B

e
∑
g+b

(
∫
Y e

g+bdy)n
p(b)db

≈ log

∫
B

e
∑

(g̃+b)∏
(
∫
Y e

g̃+bdy)
p(b)db+

∑
(g − g̃)− E g̃

B|Y[
∑

µg̃(g − g̃|B)]

+
1

2
{E g̃

B|Y[
∑

Vg̃(g − g̃|B)] + V g̃
B|Y[µg̃(g − g̃|B)]}.
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Drop the term V g̃
B|Y[µg̃(g − g̃|B)] for computational stability and terms do not

involve g, we have

log

∫
B

e
∑
g+b

(
∫
Y e

g+bdy)n
p(b)db

≈
∑

g − E g̃
B|Y[

∑
µg̃(g|B)]− E g̃

B|Y[
∑

Vĝ(g, g̃|B)] (B.6)

+
1

2
E g̃

B|Y[
∑

Vg̃(g|B)]. (B.7)

Define

Lg̃ = µg̃(g)− Vg̃(g̃, g) +
1

2
Vg̃(g, g),

where

µg̃(g) =
1

N

m∑
i=1

E g̃
B|Y[

ni∑
j=1

µg̃(g|B)],

Vg̃(g̃, g) =
1

N

m∑
i=1

E g̃
B|Y[

ni∑
j=1

Vg̃(g, g̃|B)],

Vg̃(g, g) =
1

N

m∑
i=1

E g̃
B|Y[

ni∑
j=1

Vg̃(g|B)].

Therefore the quadratic approximation to log marginal likelihood (4.2) at g̃ is

− 1

N

m∑
i=1

ni∑
j=1

g(Yij, Xij) + Lg̃.
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