
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Tools and Techniques for Building Programming Assistants for Data Analysis

Permalink
https://escholarship.org/uc/item/7376p3tm

Author
Bavishi, Rohan Jayesh

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7376p3tm
https://escholarship.org
http://www.cdlib.org/

Tools and Techniques for Building Programming Assistants for Data Analysis

by

Rohan Jayesh Bavishi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Professor Ion Stoica

Professor Joseph Hellerstein
Dr. Mukul Prasad

Summer 2022

Tools and Techniques for Building Programming Assistants for Data Analysis

Copyright 2022
by

Rohan Jayesh Bavishi

1

Abstract

Tools and Techniques for Building Programming Assistants for Data Analysis

by

Rohan Jayesh Bavishi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

We live in the data age. Today, data analytics drives much of business decision-making,
logistics, advertising, and recommendations. Data wrangling, profiling, and visualization
are some of the key tasks in a data analytics workflow. These tasks also account for a
majority of the time spent in data analysis. Academics and industry leaders have long
attributed the disparity to the inherent domain-specific nature of data, which necessitates
highly custom treatment for every new source of data. Specifying these custom analysis
steps using low-level tools such as Excel can be prohibitively cumbersome. In response,
much research has focused on smarter interactive and graphical tools for data processing
and visualization tasks. Successful commercialization of this research has contributed to a
$3 billion self-service analytics industry.

However, analysts with a programming background have not adopted such tools as widely
as their non-programmer colleagues have. The desire to avoid shuffling between tools and
work in a single environment, as well as a need for the full, unbounded expressivity of
programming-based analysis tools, are a few major reasons. This does not mean that pro-
grammers are immune to the specification burden; the expressivity of programming comes
at the cost of complexity and steep learning curves. Novices have to spend much time learn-
ing these tools from books or fragmented resources online. Even experts report a loss in
productivity from having to look up documentation frequently to get uninteresting details
such as function names and argument values right.

Thus, there is a need for programming assistants that reconcile the need to reduce the specifi-
cation burden for programmer analysts with their desire to work with code in their preferred
development environments. These assistants should help programmer-analysts write code
more efficiently by automatically generating human-readable and readily-integrable code
from high-level specifications.

This dissertation introduces techniques and corresponding prototypical assistants that accept

2

input-output examples, demonstrations, or natural language specifications and automati-
cally generate suitable data processing and visualization code utilizing popular data science
libraries such as pandas, matplotlib, seaborn, and scikit-learn. Automatic code generation
has long faced the tradeoff barrier between expressivity and performance/accuracy: support-
ing a large number of analysis tasks makes the problem of generating the right code quickly
that much more difficult. Accordingly, prior research in program synthesis and semantic
parsing has largely sacrificed full expressivity to support efficient code generation for a small
but useful subset of tasks. The code-as-text approach of modern natural language processing
systems, including the use of large language models, promises unbounded expressivity, but
their sub-optimal accuracy remains a concern.

This dissertation tries to push the boundaries in terms of breaking this tradeoff barrier — can
we build programming systems that are fully expressive while remaining fast and accurate?
Specifically, this dissertation builds upon prior work and introduces novel code generation
techniques that combine insights from synthesis, automated testing, program analysis, and
machine learning. It contributes four core techniques and corresponding assistants, namely
AutoPandas, Gauss, VizSmith, and Datana. AutoPandas and Gauss constitute core
advances in search space and algorithm design for example-based synthesis. VizSmith and
Datana introduce novel mining and auto-summarization techniques to automatically build
aligned code and natural language corpora, which Datana uses to greatly improve the code-
generation capabilities of modern large language models. Compared to prior work, these
assistants improve the expressivity of synthesis-based systems and the accuracy of machine-
learning-based systems.

i

To my parents Mita and Jayesh, my brother Karan, and my partner Shivanee.

ii

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Reducing the Specification Burden via Interaction 3
1.2 The Need for Programming Assistants . 4
1.3 Choice of High-Level Specifications . 5
1.4 Code Generation from High-Level Specifications 6

2 AutoPandas 8
2.1 Overview . 10
2.2 Technique . 14

2.2.1 Generators . 14
2.2.2 Generator-Based Program Synthesis 16

2.2.2.1 Program Candidate Generator 17
2.2.2.2 Building an Exhaustive Depth-First Enumerative Synthesis

Engine . 18
2.2.2.3 Building a Smart Enumerative Synthesis Engine 19

2.2.3 Neural-Backed Generators for Pandas 19
2.2.3.1 Neural-Network Query . 21
2.2.3.2 Query Encoding . 21
2.2.3.3 Operator-Specific Graph Neural Network Models 23

2.2.4 Training Neural-Backed Generators for Pandas 26
2.3 Evaluation . 27

2.3.1 Implementation . 28
2.3.2 Training and Setup . 28
2.3.3 RQ1: Performance on Real-World Benchmarks 28
2.3.4 RQ2: Analysis of Neural Network Models 29

2.3.4.1 Function Sequence Prediction Performance 29

iii

2.3.4.2 Comparison with Deterministic and Randomized Semantics 30
2.4 Discussion . 31

2.4.1 Generator Implementation . 31
2.4.2 Representative Training Data . 31
2.4.3 Ease of Providing I/O Examples . 34

2.5 Summary . 34

3 Gauss 35
3.1 Overview . 37

3.1.1 Extracting Query Graphs . 40
3.1.2 Deciding Skeletons for Exploration 41
3.1.3 Learning from Failures . 42
3.1.4 Smart Enumeration . 43

3.2 Technique . 43
3.2.1 Preliminaries and Notation . 43

3.2.1.1 Table Transformation Programs 43
3.2.1.2 Graphs . 45

3.2.2 Graph Abstractions . 46
3.2.3 Problem Statement . 49
3.2.4 Synthesis Algorithm . 49

3.2.4.1 Graph Decompositions . 50
3.2.4.2 Overall Algorithm . 54
3.2.4.3 Enumeration . 54
3.2.4.4 The Feasible Check . 56
3.2.4.5 Strengthening Decompositions 57
3.2.4.6 The Oracle . 59
3.2.4.7 Soundness and Completeness 60

3.2.5 User Interface Implementation . 61
3.3 Evaluation . 63

3.3.1 Baselines and Benchmarks and Hardware 64
3.3.2 RQ1: Pruning Power . 65
3.3.3 RQ2: Reduction in Size of Specifications 66

3.4 Discussion . 67
3.4.1 Necessity of a User Interface . 67
3.4.2 Ease of Use . 67
3.4.3 Multiple Possible Representations . 68
3.4.4 Noise in Demonstrations . 68
3.4.5 Experience with Real Users . 68

3.5 Summary . 69

4 VizSmith 71
4.1 Overview . 72

iv

4.2 Technique . 74
4.2.1 Architecture of VizSmith . 74
4.2.2 Mining . 74

4.2.2.1 Collecting and Replaying Notebooks 74
4.2.2.2 Instrumentation and Execution 75
4.2.2.3 Visualization Objects and Visualization Slices 75
4.2.2.4 Minimizing Visualization Slices 77

4.2.3 Extracting Visualization Functions 78
4.2.3.1 Participating Columns vs. Column Parameters 81

4.2.4 Analysis of Mined Visualization Functions 82
4.2.4.1 Defining Reusability . 83
4.2.4.2 Metamorphic Testing for Checking Reusability 83

4.2.5 Visualization Code Generation . 85
4.2.5.1 Search . 86
4.2.5.2 Generating Visualizations 86

4.3 Evaluation . 87
4.3.1 RQ1: Diversity of Functionality in Mined Corpus 87
4.3.2 RQ2: Accuracy of Metamorphic Testing 89
4.3.3 RQ3: Code Generation Performance 90

4.4 Discussion . 91
4.4.1 Real-World Usage . 91
4.4.2 Code Licensing and Security . 91
4.4.3 Construct Validity . 92
4.4.4 Integrating Direct Manipulation . 92

4.5 Summary . 92

5 Datana 94
5.1 Motivation . 96

5.1.1 Correcting Algorithmic or Functional Errors 97
5.1.2 Highlighting Important Query Fragments 98
5.1.3 Providing Solutions with Low Adaptation Overhead 98

5.2 Technique . 99
5.2.1 Architecture Overview . 99
5.2.2 Mining Pandas Expressions . 101
5.2.3 Auto Code Summarization using Large Language Models 102
5.2.4 Bidirectional Consistency . 103

5.2.4.1 Better Approximating Semantic Equivalence 105
5.2.5 Generating Imprecise and Incomplete Descriptions 106

5.2.5.1 Automatic Parameterization of Code Snippets 107
5.2.6 Augmenting Codex for Improved Code Generation 108

5.2.6.1 Retrieval . 109
5.2.6.2 Prompt Engineering for Augmenting Codex 109

v

5.3 Evaluation . 110
5.3.1 Benchmarks . 110
5.3.2 Baselines and Other Systems . 111

5.3.2.1 Corpus Baselines . 111
5.3.2.2 Codex Baseline . 112
5.3.2.3 Simple Corpus Baseline . 112
5.3.2.4 Jigsaw Results . 112

5.3.3 Codex Versions . 112
5.3.4 RQ1: End-to-End Performance Improvement Over Codex and Search

Baselines . 112
5.3.5 RQ2: Comparison With Jigsaw . 113
5.3.6 RQ3: Complementarity with Core LLM Improvements 113
5.3.7 RQ4: Ablation Study . 114

5.3.7.1 Effect of Varying Top-k . 114
5.3.7.2 Ablations for Retrieval Architecture and Description Styles . 114

5.4 Discussion . 116
5.4.1 Disambiguation and Ranking . 116
5.4.2 Contextual Discoverability . 116

5.5 Summary . 116

6 Related Work 118
6.1 Code Generation . 118

6.1.1 Intent Specifications . 118
6.1.1.1 Logical Specifications . 118
6.1.1.2 Input-Output Examples . 119
6.1.1.3 Natural Language . 119
6.1.1.4 Demonstrations . 119
6.1.1.5 Combinations of Specifications 119

6.1.2 Algorithms . 120
6.1.2.1 Pruning via Logical Reasoning. 120
6.1.2.2 Pruning via Domain-Specific Inductive Synthesis 120
6.1.2.3 Pruning via Abstractions 121
6.1.2.4 Pruning via Type Information 121
6.1.2.5 Biasing via Machine Learning 121
6.1.2.6 Generation via Machine Learning 122

6.2 Alternate Programming-Based Data Analysis Assistants 122

7 Conclusion 124

Bibliography 128

vi

List of Figures

2.1 A DataFrame input-output example. 10
2.2 A generator of all valid arguments to the pivot function from the pandas API.

Select(D,c,i) returns a single element from the domain D, according to the
semantics in Figure 2.4. 11

2.3 A procedure to find the arguments to the pandas function pivot that turn inp df

into out df. 12
2.4 Operator Semantics for Generators. σ and δ are initialized to empty maps before

the first invocation of the generator. t is set to the integer zero before every
invocation of the generator. OpEnd is a special operator that is implicitly called
at the end of each invocation of the generator. A detailed explanation is provided
in Section 2.2.1 . 18

2.5 Generator-Based Enumerative Synthesis Engine 19
2.6 A Simplified Program Candidate Generator for pandas Programs. 20
2.7 Graph encoding of the query passed to the Select call at Line 4 in Figure 2.2,

on the I/O example from Figure 2.1. 23
2.8 Operator-specific neural network architectures. 25
2.9 Smart Model Accuracies on Function Prediction Task, compared to a Random

Baseline. Per-sequence Top-k accuracies provided. Color gives accuracy; darker
is better. The color point (x, y) gives the top-x accuracy for sequence with ID y.
Sequence IDs are sorted based on top-1 accuracy of the smart model. 32

2.10 Per-operator Top-k accuracies. Color gives accuracy; darker is better. The color
point (x, y) gives the top-x accuracy for operator with ID y. Operator IDs are
sorted based on the top-1 accuracy of the smart model. 33

3.1 Input-output examples alone discards user intent information that was present
while creating the output. In this example, it is not immediately clear that 102.5
is the mean of 50, 70, 100, and 190. 36

3.2 An input (i), partial output (o) example, as well as a graph abstraction of user
intent (Guser). 37

3.3 A user interaction with the UI that builds the graph abstraction of user intent
from Figure 3.2. 38

3.4 The solution program for the synthesis problem in Figure 3.2, its intermediate
and final output, and its graph abstraction. 39

vii

3.5 Walkthrough of Gauss run on the specification in Figure 3.2, with components
gather and group by. 40

3.5 Walkthrough of Gauss run on the specification in Figure 3.2, with components
gather and group by. 41

3.6 Table abstraction for the input in Figure 3.2. 46
3.7 Component abstraction of a call to group by. The constant arguments are em-

bedded inside the call. 46
3.8 Trace Abstraction for Program in Figure 3.4. The nodes and edges in the blue

and orange boxes correspond to graphs G1 and G2 respectively. 47
3.9 Constructing decompositions with respect to skeleton (ν1 = gather(t1, □⃗1); ν2 =

group by(ν1, □⃗2)) . 53
3.10 Walkthrough of how the UI creates a graph spec. capturing intent as the user

constructs the output. 62
3.11 Comparison to Viser, Morpheus and Neo. Red dots in (b) indicate timeouts.

In (b) and (c), dots above the black line indicate that Gauss is better, and dots
above the teal dotted line indicate that Gauss is 10x better. 65

3.12 Maximal reduction in the number of output nodes such that Gauss still synthe-
sizes the correct program. Dots above the green line and grey line indicate that
reduction is more than 10x and 100x, respectively. 67

4.1 VizSmith’s Jupyter notebook frontend. VizSmith is provided with a table as a
Pandas dataframe along with columns to visualize as input. It has a search bar to
input text queries. (A) shows how Alice uses VizSmith to search for normalized
stacked bar charts for her call quality dataset. (B) and (C) show the visualization
selected by Alice and its code respectively. 72

4.2 Overview of VizSmith. 74
4.3 Example of a visualization and a corresponding slice extracted from Kaggle. . . 76
4.4 Minimized version of visualization slice in Figure 4.3. 77
4.5 Dependencies between top-level statements for code in Figure 4.3. Edges labeled

1, 3, 4, 5 and 6 capture dependency between the use and definition of a variable
(df train, df train, ax, sns and pd respectively) while 2 captures the dependency
between attribute reads and writes of an object (the dataframe in df train). . . 79

4.6 Visualization functions extracted from slice in Figure 4.3. 79
4.7 A visualization function taking no arguments. 81
4.8 A visualization function with hard-coded values. 82
4.9 A visualization function using a specialized predicate. 83
4.10 Examples of each category in Table 4.4. 90

5.1 Overview of Datana architecture . 100

viii

5.2 Inference rules, applied till fixed-point, for mining expressions from a computa-
tional notebook. Eall is the set of all Python expressions in the notebook, Epandas
is the set of expressions with types related to pandas, and Emined is the final set
of expressions mined. 101

5.3 Prompt supplied to Codex for generating descriptions of code snippets. The gray,
italicized text at the end corresponds to the Codex-generated description. 103

5.4 Prompt supplied to Codex for generating code from natural language descriptions.
The gray, italicized text at the end corresponds to the Codex-generated code. . . 104

5.5 Examples of helper descriptions for snippets, italicized with a yellow highlight. . 105
5.6 Prompt supplied to Codex for generating code from possibly imprecise or in-

complete descriptions as part of the bidirectional consistency check. Additional
code context is provided to fill the information gap in the description. The gray,
italicized text towards the end corresponds to the Codex-generated code. 106

5.7 Prompt supplied to Codex for generating parameterizations of code snippets and
their bidirectionally consistent descriptions. 108

5.8 Prompt supplied to Codex for code generation in the presence of retrieved ex-
amples. The gray, italicized text towards the end corresponds to the Codex-
generated code. 109

ix

List of Tables

2.1 List of Available Operators. 17
2.2 Performance on Real-World Benchmarks. Dashes (-) indicate timeouts by the

technique. AP represents AutoPandas and BL stands for Baseline 30

4.1 Column Mutation Operators . 85
4.2 Competition Statistics. # notebooks is the number of notebooks eligible for

execution. ✓, ∅, ⊤, × indicate that at least one viz was mined, no visualizations
mined, timeout and error respectively. # viz. funcs is the number of visualization
functions mined with reusable count in brackets. 88

4.3 Top-10 API functions in each category, and the number of reusable viz. functions
that use the API. 88

4.4 Characterization of misclassifications by our metamorphic testing approach. FP
and FN stand for false positive and false negative respectively 89

5.1 Performance (% Accuracy) on Jigsaw benchmarks. Results marked (*) are re-
ported directly from Jigsaw evaluation results [52]. 111

5.2 Performance (% accuracy) of Datana on Jigsaw benchmarks for different top-k. 114
5.3 Ablation Study for Jigsaw benchmarks. Datana is compared against using

vanilla CodeBERT as the search engine (Vanilla CodeBERT) and without using
additional descriptions in the search corpus (No-Add-Desc) 115

x

Acknowledgments

They say, and rightfully so, that a Ph.D. is a formative period in the life of people who
pursue one, and I am not an exception. As I wrote this dissertation, I got a chance to revisit
many things from back when I started graduate school. It was surreal to be able to fully
acknowledge my growth not only as a researcher but also as a person. I have discovered
qualities in myself, both scientific and spiritual, that I am sincerely proud of. Not an iota
of this growth was achieved alone. I feel extremely fortunate to have been in the company
of some wonderful people who have helped shape me in countless ways, and I’m grateful for
this opportunity to convey my deepest thanks to them.

First, I must thank my advisor Koushik Sen for his incredible mentorship over the last
many years. I joined Berkeley as a fledgling student attracted to all things shiny and complex,
and soon I found myself distressed watching all my seemingly brilliant ideas fail equally
spectacularly. Koushik patiently taught me the power of simple yet effective ideas, the art
of failing fast, and how to look beyond the fancy greek letters and at the bigger picture.
He gave me the freedom to pick problems I was excited about, the space to fail, and the
encouragement to learn from my mistakes and have another go. As I leave graduate school,
I feel confident in my technical and communication abilities as an independent researcher,
and I owe this, in large part, to Koushik. I do hope to follow in his footsteps and impart the
same lessons in my future mentorship roles.

My first and foremost advice to any junior student has always been to seek mentors,
stemming from my own fortunate experience of having a highly-supportive group of faculty
and industry mentors to rely on for guidance throughout my Ph.D. I have worked extensively
with Mukul Prasad ever since I interned at Fujitsu in my first summer here, and I cannot
thank him enough for his role in my professional development. I learned a lot from him
about how to critically approach research, which has significantly improved my technical
communication skills. Ion Stoica has always championed my projects and was instrumental
in the success of my first project at Berkeley. Joe Hellerstein’s kind encouragement, critical
feedback, and deep insights around empowering data analysts were pivotal in shaping my
research and putting my work in perspective in this dissertation. While my internship work
at Microsoft did not fully relate to my thesis, the mentorship from Vu Le, Ashish Tiwari,
Sumit Gulwani, and the rest of the PROSE team has been nothing short of transformational.
I am especially grateful to Sumit for his confidence in me and for affording me great exposure
within the company even though I was just an intern. Finally, I must thank my undergradu-
ate research advisor, Subhajit Roy, for introducing me to research in the first place. I would
not be here if it were not for his mentorship, and for that, I am deeply thankful.

I am indebted to my closest collaborator and dear friend, Caroline Lemieux. We de-
veloped the AutoPandas and Gauss projects together, and as the senior student on the
team, she played a major role in guiding the research in the right direction. She also helped
me communicate ideas and results more effectively in our weekly research meetings with
faculty, which greatly helped in reducing stress in my junior years. The Covid-19 pandemic
coincided with the formative years of my Ph.D., and I am grateful for her constant support,

xi

guidance, and friendship through those difficult times. As she embarks on a new journey as
a professor herself, I have no doubt her students will similarly benefit greatly from their own
interactions with her.

Roy Fox overlapped with me at Berkeley while I was developing AutoPandas, and I
am thankful for his insights and profound machine learning knowledge that was crucial in
getting the project going. I would also like to extend my gratitude to Hiroaki Yoshida, who
was my mentor when I interned at Fujitsu. He helped me complete and publish my first
research project as a graduate student at Berkeley (this was even before AutoPandas). The
first paper is always so special, and I am thankful for Hiroaki’s help in getting there.

I have learned a lot from my junior collaborators as well. I had the good fortune of
collaborating with Shadaj Laddad on VizSmith, and I am deeply appreciative of his creative
solutions that were instrumental in making the project a success. I am always left in awe
of his technical prowess, and I, for one, cannot wait to see what he builds next. It was a
privilege and honor to be able to mentor two extremely talented undergraduate students:
Samy Cherfaoui and Arushi Somani. I am constantly amazed by their ingenuity in solving
difficult problems and juggling Berkeley’s difficult coursework with research. They did,
however, make me feel older than I actually am, so that’s the only thing I won’t cherish
across all my interactions with them. Or maybe I will, who knows.

The arduous walk up from North Berkeley to Soda Hall was worth it thanks to a wonderful
group of colleagues: Benjamin Brock, Kevin Lauefer, Aayan Kumar, Rohan Padhye, Ed
Younis, Sahil Bhatia, Justin Lubin, Parker Zielger, Azad Salam, Shishir Patil, and many,
many others. Even though the pandemic took away a lot of our time together, I leave with
fond memories of our lunches and group meetings.

I also feel lucky for the constant support from my friends from the time I was an un-
dergraduate: Saransh Srivastava, Pranav Vaish, Sundararajan Renganathan, Sanchit Mall,
Abhimanyu Goyal, Anand Singh Kunwar, Aadi Yogakar, and Skand Upmanyu. While all of
us chose different career paths, I am thankful that we stayed in touch.

I must say I had what one might call a cheat code through graduate school. It was the
unwavering support, from the opposite side of the world, of my partner Shivanee Ghadge.
While no amount of writing will do justice to the impact she has had on my success in
graduate school, I might as well still try. Besides knowing how to make me laugh at any
point, her powers also include tremendous empathy and maturity that helped me navigate
the last few years. In spirit, at least, we have both earned this degree.

Finally, my family has been my biggest cheerleader throughout my graduate school jour-
ney. My parents have always been there to supply that extra ounce of strength to get me
over a hurdle and celebrate my achievements louder than I ever have or ever will. I also want
to thank my elder brother Karan Bavishi for his sagely advice from time to time and also
for his help in writing VizSmith and proofreading this dissertation!

As we prepare to start talking about programming assistants, I will close with a quote
from Tennyson that I had taped to my desk and that I turned to for motivation throughout:

“To strive, to seek, to find, and not to yield.”

1

Chapter 1

Introduction
Data is the new oil.

— Clive Humby, 2006

This now-famous quote succinctly captures how data has changed the world. But as
Palmer [80] and others noted, this is not the complete picture — just as oil needs refinement
and processing to be harnessed for profit, data needs to be analyzed to extract value.

Most data analyses involve data preparation, exploration, and visualization tasks [55].
Examples include parsing fields from unstructured data, restructuring, and reshaping, iden-
tifying and handling outliers, data imputation, and visual exploration to gather insights. It
is widely accepted that these tasks take up the majority of the time spent in data analysis
pipelines. Around 2012, the fraction of time devoted to such tasks was estimated to be
greater than half [55], and even as high as up to 80% [85, 70]. Heer et al. attribute this
phenomenon to the inherent domain-specific nature of these tasks, which necessitate custom
transformations for every new source of data [47]. Specifying such custom analysis steps
in low-level editing tools such as the widely-used Excel [77] spreadsheet software can often
prove to be prohibitively burdensome. This specification burden has historically forced do-
main experts who do not have sophisticated technical or programming backgrounds to have
to rely on IT teams for performing complex analyses, greatly decreasing efficiency at the
organizational level [48].

Significant research has been devoted to empowering this class of non-programmer ana-
lysts by building smarter interactive and graphical tools to reduce the specification burden.
This includes novel visual interfaces for data processing [142, 79, 93] and visualizations [111],
program synthesis and inference technology to translate ambiguous clicks, examples, and di-
rect data manipulations into data processing steps [56, 42, 47] as well as proactive suggestions
to recommend next steps or visualizations [44, 71]. A number of these techniques have been
successfully commercialized: Trifacta [6] extends the predictive interaction framework [47],
while Tableau [115] emerged from Polaris [111]. Overall, these tools enable self-service [48]:
end-to-end data processing and visualization without the need for programming. The market
size for self-service analytics was estimated to be $3 billion in 2020 and is projected to reach
$13 billion by 2028 [99].

CHAPTER 1. INTRODUCTION 2

Given the successful adoption of interactive and graphical tools by analysts with non-
programming backgrounds, one might reasonably expect their adoption from the programmer
class of analysts as well. However, recent studies [130, 5, 31] indicate that a sizeable propor-
tion of programmer-analysts eschew these tools in favor of working in their preferred coding
environments such as computational notebooks [105, 61]. A primary reason is the desire to
avoid the prohibitive cost of switching between coding and multiple interactive tools [130,
5]. Another reason is the need for even greater flexibility and customization [31].

The specification burden still remains, however. Inefficiency due to specification burden
is not exclusive to non-programmers. The complexity of modern languages and data anal-
ysis libraries [118, 50, 86] imposes a barrier to productivity for programmer analysts when
specifying analyses using code. Analysts cite recall as a major issue [130, 31, 20] as they
report spending significant time in revisiting documentation and searching Stackoverflow to
recollect the syntax and names of functions in these libraries [31].

Thus, any approach towards reducing the specification burden for programmer analysts
must meet them where they work [133]. In other words, there is a need for programming
assistants to help analysts write code more efficiently, and in the environments they prefer.
Several approaches aim to bring the benefits of direct manipulation and interactivity directly
to computational notebooks [133, 31, 65]. The main challenges include maintaining fluid in-
teroperability between code and interaction [58, 133], and translating scattered interaction
steps or intermediate representations into compact, idiomatic code [58, 31]. Consequently,
most tools in this space target a subset of tasks such as visual exploration [65] and inter-
active filtering and selection [133] in order to maximize the benefits of interaction while
still remaining practical to implement. An alternate class of approaches, which includes the
techniques contributed by this dissertation, tries to be more general by focusing on building
programming assistants that automatically generate code from high-level specifications such
as input-output examples and natural language.

Automatic code generation from such high-level specifications is made difficult by the
conflicting goals of expressivity and performance and/or accuracy. Program synthesis tech-
niques for code generation from input-output examples [42, 92, 34, 125] and semantic parsing
approaches for natural language interfaces [103, 68, 138] have largely focused on supporting
a useful but limited set of tasks, sacrificing expressivity to reap performance benefits. In
contrast, recent advances in machine learning, particularly natural language processing, have
shown promise in realizing full expressivity through approaches for free-form code genera-
tion from arbitrary natural language [135, 82, 21, 10]. However, their sub-optimal accuracy
remains a concern. The key question underpinning this dissertation thus emerges naturally:

Can we break the expressivity and performance/accuracy tradeoff barrier to build practical
programming assistants that automatically generate code from high-level specifications?

This dissertation builds upon prior work and introduces novel techniques that combine
insights from synthesis, automated testing, program analysis, and machine learning to make
significant progress toward resolving this question. Specifically, we contribute four core tech-

CHAPTER 1. INTRODUCTION 3

niques and corresponding assistants, namely AutoPandas, Gauss, VizSmith, and Datana,
that generate data processing and visualization code from input-output examples, demon-
strations, or natural language specifications. AutoPandas and Gauss constitute core ad-
vances in search space and algorithm design for example-based synthesis. VizSmith and
Datana introduce novel mining and auto-summarization techniques to automatically build
aligned code and natural language corpora, which Datana uses to greatly improve the code-
generation capabilities of modern large language models such as Codex [21]. Compared
to prior work, these assistants improve the expressivity of synthesis-based systems and the
accuracy of machine-learning-based systems. Chapters 2-5 formalize the techniques behind
these tools. Chapter 6 discusses related work on assistants. Finally, Chapter 7 concludes
with a summary of the key contributions of this dissertation and outlines opportunities for
future work. The remainder of this chapter elaborates on the main arguments presented
thus far, as well as the design of the four tools contributed by this dissertation.

1.1 Reducing the Specification Burden via Interaction

Heer et al. attribute the difficulty faced by analysts in completing an end-to-end data
processing and exploration analysis to the domain-specific nature of data [47]. Different
data sources need different treatment, and the resulting analysis is made up of steps that
are highly custom in nature. No analysis tool can provide core actions or abstractions
catering to each of the steps. This, in turn, imposes a specification burden: the analyst
needs to break down or decompose the task further into lower-level steps that are expressible
in their analysis tool of choice, if at all possible. Performing such decomposition inherently
requires familiarity with computational thinking, rendering such analyses out of reach for
domain experts and analysts who do not possess a programming background. As an example,
consider a data cleaning task: filling missing values in a column with the last valid value in
the same column. This task is common enough to warrant a dedicated function alias ffill in
the pandas [118] data-processing library in Python. However, doing this in the widely-used
graphical spreadsheet software Excel [77] would require the use of a fairly complex sequence
of UI interactions [89]. Heer et al. recognize the importance of reducing this specification
burden to make complex and custom analyses accessible to a larger workforce.

A large body of literature is dedicated to building better interactive and visual tools
to reduce the specification burden. Broadly speaking, these works employ one or more
of four strategies. First, developing novel visual interfaces that map directly to a subset
of a query or transformation language [142, 79, 93] or specially-designed domain-specific
languages [111, 45]. Second, using program synthesis to convert ambiguous interactions or
input-output examples [56, 42, 139, 47] to programs in a transformation DSL using program
synthesis. Third, automatically generating preparation or visualization recommendations
based on interesting properties of data [93, 71, 88]. Fourth, mixed-initiative approaches that
use a unified medium for recommendations and feedback to enable tight user interaction loops
[44, 132, 131]. A number of commercial tools employ these techniques: Trifacta builds upon

CHAPTER 1. INTRODUCTION 4

the predictive interaction framework [47], which among other features, unifies Wrangler’s
[56] reactive system for generating contextual suggestions from user interactions and the
proactive wrangling framework [44] for generating suggestions to help users discover next
steps. Tableau (née Polaris [111]) offers a rich and easy-to-use graphical interface for creating
visualizations, powered by a specially designed visual query language VizQL [45]. Users drag
and drop data attributes or “pills” onto “shelves” that correspond to visual channels such as
the chart axes (columns and rows), mark type, and color, among others. Overall, this class of
tools enables self-service [48]: it empowers domain experts who do not have a programming
background to efficiently perform end-to-end data preparation. The self-service analytics
industry has grown rapidly in recent years. Acumen [99] estimated the market size to be
around $3 billion as of 2020, with the value projected to rise up to $13 billion by 2028.

1.2 The Need for Programming Assistants

Given the success of interactive tools and the efficiency resulting from their deliberate design,
one might expect widespread adoption of these tools by programmer analysts to ease their
workflow as well. However, recent interview studies of professional analysts [130, 5, 31]
suggest that a sizeable proportion of programmer-analysts eschew these tools in favor of
working in their preferred coding environments such as computational notebooks [105, 61]
along with the data analysis frameworks and libraries of their choice such as pandas [75, 118],
matplotlib [50], and scikit-learn [86] among others. A major reason cited in these studies
was the prohibitive cost of switching between multiple interactive tools as their sets of
capabilities are disjoint [130, 5]. In contrast, a coding environment provides the convenience
of being able to perform any desired task in a single place. Limited customization and the
“black-box” feel [31] of interactive tools was also a common line of reasoning. Some analysts
also expressed the need for “homegrown automation” [5]; they often need to build their
own automation scripts for custom yet repetitive and mundane workflows. Interactive tools,
however, only have limited support for such automation via macros or templates. Lastly,
the ability to share, reproduce [94], and collaborate on [87] code-based workflows was also
seen as a compelling reason to stick to programming-based tools.

While analysts with a programming background are not as constrained as those without
the same level of technical ability, they are not immune to inefficiencies that arise due
to the specification burden. After all, programming is an inherently difficult exercise, and
writing data analysis code is no different. Novices face a steep learning curve when it
comes to learning about the abstractions offered by programming-based analysis libraries and
frameworks and how to combine them effectively. Even experts cite recall as a major barrier
to productivity [130, 31, 20]; having to constantly revisit documentation and Stackoverflow
to check the syntax and names of functions in libraries like pandas and matplotlib is time-
consuming [31]. Thus, efficient specification of a task using these powerful and expressive
data analysis libraries remains a challenge for novices and experts alike.

Clearly, there is a need to reduce the specification burden for programmer analysts, but

CHAPTER 1. INTRODUCTION 5

it is equally important to meet them where they work [133]. In other words, there is a
need for programming assistants that ease the process of writing analysis code. Several ap-
proaches to this problem employ the strategy of bringing the benefits of direct manipulation
and interactivity directly to computational notebooks [133, 31, 65]. Analysts, regardless of
programming ability, have also explicitly expressed a desire for such tools that combine code
and interaction [130, 5], acknowledging the strengths of the two mediums. However, it is not
simply a matter of integrating a web-based UI into a computational notebook environment.
It is important to reduce the friction involved in switching between the two modes [58, 133].
Reconciling the reproducible nature of code with the transient nature of interactions [133] in-
troduces a further challenge of translating scattered interaction steps into compact idiomatic
code [58, 31]. The use of domain-specific languages (DSLs) as an intermediate language to
represent a transformation also introduces the problem of translating it to human-readable
code [31]. Consequently, tools in this space tend to target a subset of tasks such as visual
exploration [65] and interactive filtering and selection [133] in order to maximize the bene-
fits of interaction while still remaining practical to implement. Complex and compositional
reshaping, aggregation, or visualization tasks still need to be expressed via code in these sys-
tems. An alternate class of approaches, including the ones contributed by this dissertation,
focuses on building tools that accept high-level specifications such as input-output examples
and natural language commands and automatically generate suitable code.

1.3 Choice of High-Level Specifications

Input-output examples and natural language descriptions are just two of many possible
choices for specifications, which include logical specifications [7], sketches [109], direct ma-
nipulation and interaction [47, 111], demonstrations or traces [18, 19], and other variations.
There is little doubt regarding the viability of the use of input-output examples and natural
language as specifications. After all, their use is prevalent across software engineering as a
means to communicate unknown functionality through formal documentation. Additionally,
much of the programming help solicited on StackOverflow heavily utilizes descriptions and
examples as a means of communicating intent.

A more important question than viability, however, is utility : are input-output examples
and/or natural language sufficiently useful for specifying a wide variety of data preparation
and visualization tasks? That is, do they truly reduce the specification burden for these
tasks? This question is especially important in cognizance of the rich history of innovations
in direct manipulation and interaction technology over the past many decades. At the very
least, this history strongly suggests that input-output examples and natural language are
not the optimal choices for a reasonable subset of core analyses.

User studies in prior work have validated input-output examples as a useful mode of spec-
ification for string processing [42], table transformation and reshaping [34], and visualization
tasks requiring data transformation prior to mapping attributes to visual channels [124].
In general, participants found input-output examples most useful for solving complex tasks ;

CHAPTER 1. INTRODUCTION 6

users found it difficult to manually break down these complex tasks into simpler chunks
that map straightforwardly to functions in a library. The utility and convenience of natu-
ral language as a means of querying databases and making visualizations is also evidenced
by a large body of academic work [103, 41, 67, 68, 138], as well as features in commercial
systems such as PowerBI [39] and Tableau [115]. The latter example is especially notable as
Tableau’s primary product is powered by direct manipulation.

As Alspaugh et al. observed, analysts generally prefer the convenience of direct manip-
ulation for exploratory tasks where they wish to evaluate multiple options quickly and at
scale [5]. Direct manipulation is also more convenient for tasks such as formatting plots or
browsing data. This makes the goal and motivation of this dissertation complementary to
parallel efforts on bridging the code and interaction mediums to bring the benefits of direct
manipulation to computational notebook environments, such as the B2 [133], Lux [65], and
Wrex [31] systems. More concretely, analysts can utilize these direct manipulation tools for
tasks they are best suited for while switching to examples or natural language specifications
for the more complex tasks.

1.4 Code Generation from High-Level Specifications

Once a particular form of specification has been fixed, such as input-output examples or
natural language descriptions, automatic code generation techniques can be studied from the
lens of its two underlying dimensions: the search space and the search algorithm [43]. The
search space represents the space of possible programs that can be generated by an assistant
and thus controls expressivity. On the other hand, the search algorithm, which may be
systematic (enumerative search, deduction) or statistical (machine learning (ML) models),
controls the performance and accuracy of the assistant. These goals of expressivity and
performance and/or accuracy are inherently conflicting; increasing expressivity by enlarging
the search space will, in turn, make systematic search harder to scale or possibly affect
the accuracy of these assistants in the case of ML models. Program synthesis techniques
for code generation from input-output examples [42, 63, 92, 126, 123, 8, 34, 125, 36, 128,
23], as well as semantic parsing approaches for natural language interfaces [68, 138] have
largely focused on supporting a useful but limited set of tasks, thus sacrificing expressivity
to reap performance benefits. In contrast, recent advances in machine learning, particularly
natural language processing (NLP) with the advent of large language models [16], have
shown promise in realizing full, general expressivity through approaches for free-form code
generation from arbitrary natural language [135, 82, 21, 10]. However, their sub-optimal
accuracy remains a concern. In this dissertation, we push the boundaries of this tradeoff
barrier between expressivity and performance/accuracy for assistants that generate code
from examples or natural language. We introduce techniques and corresponding assistants
that combine insights from program synthesis, automated testing, program analysis, and
machine learning to support a richer range of data analyses as compared to prior work while
still being practically fast and accurate.

CHAPTER 1. INTRODUCTION 7

AutoPandas (Chapter 2) contributes neural-backed generators, a novel combination of
QuickCheck-style generators [26] and machine learning, to enable generation of dataframe
transformation code from input-output examples. Generators are helpful in capturing a large
complex space of test inputs (candidate programs in our case) through the use of well-placed
choice points interconnected by program logic in any general-purpose language. Choice
points help capture the inherent parametric nature of pandas, and the complex constraint
validation system of pandas can be captured in a straightforward manner using (Python)
code. But generators are only one piece of the puzzle — they can be invoked multiple
times to produce different candidates, but for code-generation from examples, we need the
generator to return candidates more likely to satisfy the example first. AutoPandas backs
the choice points with graph neural network models, which it trains to iterate over more likely
choices at each choice point first. Compared to prior work, AutoPandas supports a much
more comprehensive subset of pandas functionality thanks to the use of these generators.
Despite this larger search space, AutoPandas shows promising performance on reshaping
benchmarks, solving 50% of benchmarks in under 30 seconds. To tackle the subset of tasks
involving aggregation or computation, where AutoPandas underperforms due to the lack
of precise information in traditional input-output examples, Gauss (Chapter 3) introduces
an element of interaction to input-output examples. Specifically, Gauss captures the precise
relationships between the cells and columns of the input and output dataframe as a graph.
Consequently, this graph contains a lot more information than plain input-output examples.
Exploiting this information enables Gauss to significantly outperforms other state-of-the-art
approaches targeting the same subset of tasks but only using plain input-output examples.

VizSmith (Chapter 4) and Datana (Chapter 5) correspond to a shift in focus to code
generation from natural language specifications — an inherently harder problem as candi-
date programs cannot be automatically evaluated for correctness, making it challenging from
an accuracy perspective as opposed to performance. To balance expressivity and accuracy,
given a natural language query requesting a visualization, VizSmith uses keyword-based
retrieval on a corpus of aligned code and its natural language descriptions to generate rel-
evant visualizations. The novelty lies in the design of this corpus: it is fully automatically
constructed, using program analysis to mine code and associated comments from publicly
available notebooks on the data science platform Kaggle [116]. Datana expands VizSmith’s
scope in two ways. First, it eliminates the reliance on human-written code annotations,
which are often imprecise or even irrelevant in notebook workflows. It uses large language
models such as Codex [21] to automatically generate high-quality descriptions for code and,
consequently, higher-quality aligned code and natural language corpora. Second, it aug-
ments the code-generation approach of Codex with automatically retrieved examples from
such corpora, leading to better performance as well as support for a larger class of queries
than VizSmith. The next four chapters describe each of the tools in detail.

8

Chapter 2

AutoPandas: Tackling Large Search
Spaces via Neural-Backed Generators

This chapter introduces the techniques behind AutoPandas, our first in the series of pro-
gramming assistants developed in this dissertation that automatically generates dataframe
transformation code that uses the pandas library from input-output examples. We focus on
pandas as it is a prominent and widely-used library for data manipulation in Python. As
mentioned in the introduction (Chapter 1), the use of input-output examples is motivated
by the observation that pandas novices often include such examples when asking a question
on StackOverflow. Moreover, prior studies have independently validated their usefulness for
the domain of dataframe or table transformations [34].

The underlying code generation problem in AutoPandas belongs to a class of synthesis
problems called programming-by-example [43], where the goal is to generate a program
that adheres to a given input-output example. This means that the code generated by
AutoPandas is always guaranteed to satisfy the example. That is, if a returned solution is
run on the input, its output will match the target output. Programming-by-example systems
have been integrated as successful features in widely-used commercial systems. Trifacta
[6] solves a programming-by-example problem as part of its automatic text parsing and
splitting functionalities. FlashFill [42] is another success story within the Excel ecosystem,
automating string processing using input-output examples. A common design decision in
these commercial features, as well as a large body of academic work on programming-by-
example systems [8, 92, 123, 127, 128, 34, 36] is the use of a small and specialized domain-
specific language or grammar to capture the space of possible programs. This, in turn, allows
the underlying search algorithms to scale to real-world tasks. Typically, these languages only
contain tens of operators or functions. In contrast, pandas has hundreds of functions just
operating on dataframes, rendering a similar treatment infeasible without compromising
on expressivity. The central goal of this dissertation is to develop techniques that do not
deliberately restrict the expressivity of the corresponding assistants, and we thus deviate
sharply from this class of approaches.

Beyond the sheer number of functions in pandas, finding the correct arguments for a

CHAPTER 2. AUTOPANDAS 9

given function is a challenge. Many API functions in pandas accept multiple types of values
for a single argument and have non-trivial inter-argument constraints that must be satisfied
to constitute a valid invocation. Intuitively, any code generation system not possessing this
knowledge in some form, either implicit or explicit, may face issues forming a correct program
altogether, let alone one that satisfies an input-output example.

Thus, innovation is needed along the remaining dimensions of synthesis: design of the
search space and, consequently, the algorithm. We first focus on the former; based on the
need to precisely represent the complex space of programs allowed by pandas, we propose
a generator-based approach to the programming-by-example problem. Fundamentally, the
generator is a Python function that yields a different well-formed pandas program each time
it is called. This generator encodes expert domain knowledge about the pandas API to
enable the generation of valid, executable pandas code. That is, when producing arguments
to a function, the generator should almost never produce argument combinations that cause
the function to immediately error out. We strongly believe that writing such a candidate
program generator is relatively straightforward for someone with knowledge of the pandas

API. Since the generator is written in Python, it can utilize pandas code itself to express
various constraints. Given such a precise program generator, the simplest way to search for
a solution given an example is to repeatedly call the generator until it produces a program
that satisfies the input-output example.

However, such an approach is, unsurprisingly, inefficient. For such an approach to be
quicker, the generator must return likely or more promising programs first. Since generators
are simply arbitrary functions, one could work with a program synthesis expert to build
heuristics that prioritize more program candidates that are more likely to pass the test.
Building such heuristics is extremely tedious, error-prone, non-scalable, and requires a long
process of trial-and-error to extract performance.

The key insight behind AutoPandas is to leverage the structure of the program candidate
generator. A generator contains multiple choice points connected by arbitrary program logic.
For pandas programs, the domain of options at these choice points would directly correspond
to the heuristics one would wish to develop for synthesis. For example, there would be
exactly one choice point corresponding to the selection of a column argument of the pivot
function. Instead of requiring the developer of the generator to write sophisticated heuristics
to pick this argument, we provide a smart operator which uses a learned probabilistic model
to make the most likely choice over the domain given the input-output example. Thus,
the generator need only capture domain-specific constraints; the fuzzier decisions are left to
smart operators.

Another advantage of using localized smart operators is that the probabilistic models
that back them thus only need to be trained for a specific selection task (i.e., given this
context, which element should be selected from the set). This is in contrast to the use of
probabilistic models in past work such as that of Lee et al. [66] and Devlin et al. [29] where
these models are trained over the full language, an inherently harder task.

AutoPandas supports 119 pandas operations on dataframes out of 136 that were avail-
able at the time of development. We deliberately ignored functions whose participation in

CHAPTER 2. AUTOPANDAS 10

(a) An example input dataframe.

(b) Desired output.

Figure 2.1: A DataFrame input-output example.

a program may render the task unsuitable for specification via input-output examples. An
example of such a function is sample where the presence of randomness makes it infeasi-
ble to provide a fixed target output to adhere to. We hand-wrote a program candidate
generator that supports all these functions. This generator encodes, in native Python, the
pre-conditions for each supported pandas API.

On a collection of 26 real-world benchmarks, we find that AutoPandas can efficiently
solve 13 benchmarks requiring less than 30s per task, and 17 benchmarks if we relax the
time requirement to 20 minutes. While we could not compare with prior work due to less
functionality supported, we note that these performance numbers are below those generally
reported in the aforementioned systems that enjoy a smaller search space to work with.
The complexity of AutoPandas’ space places a significant burden on the model part, which
does struggle with tasks requiring longer composition of operations or aggregation and com-
putation operations. The reason for the latter tasks stems from the design of the models
(Section 2.2.3.2). We also analyze the accuracy of our smart operators, which we find to be
substantially higher (Section 2.3.4) for the task of argument prediction as compared to using
deterministic or randomized semantics.

Before we dive into the technical details behind AutoPandas, we walk through a small
example illustrating the need for example-based assistance for AutoPandas along with a
deeper overview of AutoPandas’s internals.

2.1 Overview

Consider the following scenario. Suppose an analyst needs to use pandas to process some
expense data, loaded up into a pandas dataframe as shown in Figure 2.1a into the form.
Specifically, they need to transform it to the dataframe shown in Figure 2.1b. Being a novice
when it comes to using pandas, they need to pick out the right function or combination of
functions from the large API offered by pandas.

However, the analyst is quite familiar with Excel and knows that they could use the
“pivot table” functionality to perform the transformation in Excel. Luckily enough, pandas
also contains a function with the same name in its API, and the analyst is confident about
being able to leverage it for their task.

CHAPTER 2. AUTOPANDAS 11

1 @generator

2 def gen pivot args(inp df: pandas.DataFrame , out df: pandas.DataFrame):

3 context = (inp df , out df)

4 arg col = Select(inp df.columns, context, id=1)

5 arg idx = Select({None} | inp df.columns − {arg col}, context, id=2)
6 if isinstance(inp df.index, pandas.MultiIndex) and arg idx is None:

7 arg val = None

8 else:

9 arg val = Select(inp df.columns−{arg col , arg idx}, context, id=3)
10

11 return { 'columns ': arg col , 'index ': arg idx , 'values ': arg val}

Figure 2.2: A generator of all valid arguments to the pivot function from the pandas API.
Select(D,c,i) returns a single element from the domain D, according to the semantics in
Figure 2.4.

But, even after knowing which function in pandas to use, the analyst is faced with the
challenge of understanding what all the arguments to pivot table mean. For example, one
can supply the agg keyword argument to add an aggregation, which defaults to taking the
average of values. But there is no such aggregation happening in Figure 2.1. After much
struggle and reading up posts on StackOverflow, they finally realize that pandas also offers
a much simpler function named pivot, which can be used to achieve the same task.

The primary motivation behind an assistant like AutoPandas is to help analysts out in
precisely these situations where the complexity of an API such as AutoPandas can signif-
icantly affect productivity. This is also not limited to novices, one can reasonably imagine
a seasoned pandas user also struggling to recall the semantic differences between pivot and
pivot table or the meanings of the various arguments they accept.

AutoPandas is a programming-by-example system: given a dataframe transformation
represented by an (input, output) example like the one in Figure 2.1, AutoPandas outputs a
program p which performs the transformation. That is, p(input) = output. A central tenet
of our approach in AutoPandas is the desire to be as expressive as possible. In particular,
AutoPandas aims to solve the above problem for a wide variety of pandas tasks. At the
heart of this approach is the use of generators.

A generator is simply a function that enumerates all valid pandas programs for a given
input. Let us revisit the example in Figure 2.1. Assuming for a moment that pandas only has
a single pivot function, the generator then would correspond to the function gen pivot args in
Figure 2.2. In particular, gen pivot args(df) returns a different valid argument combination
every time it is invoked. Thus we can straightforwardly use gen pivot arg(df) to enumerate
all possible argument combinations to pivot and return the correct one to the struggling
analyst. Figure 2.3 shows the pseudo-code for this simple search. The code simply calls

CHAPTER 2. AUTOPANDAS 12

1 def find pivot args(inp df: pandas.DataFrame , out df:pandas.DataFrame):

2 while True:

3 cur kwargs = gen pivot args(inp df , out df)

4 cur out = pandas.DataFrame.pivot(inp df , ∗∗cur kwargs)
5 if cur out == out df:

6 return cur kwargs

Figure 2.3: A procedure to find the arguments to the pandas function pivot that turn
inp df into out df.

gen pivot args(df) (Line 3) iteratively until it returns an argument combination kwargs such
that calling pivot on the input in Figure 2.1a with these arguments would return the output
equivalent to the one in Figure 2.1b.

How does gen pivot args(df) only return valid argument combinations? This stems from
the rich constraints, which are embedded within the body of the function, that correspond
exactly to pandas’ own internal validation requirements:

1. arg col should be selected from the list of column names of df, df.columns.

2. arg idx is either None, or selected from the list of column names of df, except from
the column name used in arg col (df.columns-{arg col}).

3. Finally, the arg val argument should either be (1) selected from the list of column
names except for the ones used in arg col and arg idx, or (2) None, in the case where
arg idx is None and df has a multi-level index.

These constraints are universal for the pivot function, and an expert (us, for the purpose
of developing AutoPandas) can straightforwardly derive them from the documentation.
The actual selection of the arguments is delegated to the Select operators. Every time
the generator is invoked, the operators jointly return a new combination of arguments.
Essentially, these calls to Select allow gen pivot args(df) to cycle through different argument
combinations across different invocations.

However, there is still a problem. If there are many argument combinations, the basic
search in Figure 2.3 may take some time to terminate. If the order in which gen pivot args
returns arguments is arbitrary, the correct argument combination is unlikely to show up early
enough for the code in Figure 2.3 to be practical. Also, we are only considering the pivot
function here; the problem is far worse when considering the full pandas API. The problem
is exacerbated if sequences of multiple functions are required to perform the transformation,
as the total number of possible argument combinations grows exponentially.

To make gen pivot args output the correct argument combination more quickly, the API
expert could replace the calls to Select(D,c,i) with a particular enumeration order through
D. The enumeration order would be based on some additional heuristics, for example:

CHAPTER 2. AUTOPANDAS 13

1. The values in the column from input that is used as arg col end up being column
names in the output. Therefore, the generator should look at the output’s column
names and first try to use as arg col any column from the input that shares values
with the output’s column names.

2. The values in the column from input that are used as the arg val argument end up
in the main data of the table. Hence, the generator should look at the output and first
try to those columns as arg val whose values are the same as the output’s data cells.
However, the values argument also accepts None as a valid argument, in which case all
the remaining column values are used as the main data of the output. Therefore the
generator should take this into account as well.

3. ... (more heuristics omitted)

Designing such heuristics is error-prone. They are not guaranteed to be effective, especially
if the I/O example provided by the user cannot actually be solved with a single call to
pivot. Further, it is much more tedious for the expert to write a generator that uses these
heuristics than it is to write a generator that encodes the basic validity constraints, like that
in Figure 2.2. Overall, using heuristics is an error-prone, tedious, and non-scalable way to
more quickly find the correct argument combination.

We propose a different route. Instead of relying on humans to write more heuristics, we
propose a smart backend for operators like Select(D,c,i). This smart backend for Select first
derives from the context c a probability distribution p over D. Then, it returns elements d ∈ D

in descending order of their probability p(d). The distribution model can be represented by
a neural network and learned from a training set of inputs, programs, and their outputs,
as detailed in Section 2.2.4. Over a validation set of (input, output) pairs where output

= pivot(input, **kwargs) for some arguments kwargs, our smart backend has 99% top-1
accuracy in retrieving the correct kwargs.

Further, instead of using the smart backends only to generate arguments for pivot,
we use them to build a prototype synthesis engine for the pandas library, AutoPandas.
AutoPandas takes in a pair of (inputs, output) representing a dataframe transformation
and outputs a program p in the pandas API such that p(input) == output. We achieve
this by (1) implementing a program candidate generator which outputs straight-line pandas
programs that run without error on input and (2) using smart backends for Select and other
operators so that the program candidate generator outputs p such that p(input) == output

early in the search. AutoPandas currently supports 119 pandas functions and can form
programs with multiple function calls. Given the I/O example in Figure 2.1, AutoPandas

finds the correct program:

out df = inp df.pivot(index='Date', columns='Category', values='Expense')

after checking only one program candidate.

CHAPTER 2. AUTOPANDAS 14

2.2 Technique

In the next section, we formalize (1) generators, and the semantics of Select and other
operators, (2) generator-based synthesis, and (3) the smart backend we use to synthesize
pandas programs.

2.2.1 Generators

We first formally describe generators. In our setting, a generator G is a program that, when
invoked, outputs values from a space of possible values. Figure 2.2 shows an example of such
a generator G for function arguments in the Python pandas library [118] for DataFrame (i.e.
table) manipulation. In particular, the generator in Figure 2.2 takes a pandas DataFrame as
an input, and returns one of the possible argument combinations of the pandas API function
pivot, by selecting various argument values.

Our generators G can contain arbitrary Python code, along with a set of stateful operators
that govern the behavior of G across runs. An example of such an operator is Select, which
is also used in the generator in Figure 2.2. Given a collection of values, Select returns a
single value from the collection. For example, the call to Select in Line 4 selects one of
the columns of the input dataframe df. The generator then assigns this value to arg col,
to be used as the pivot column. Similarly, the call to Select in Line 5 picks either None or
one of the columns in df except the one selected as arg col (i.e., df.columns − {arg col}),
to be used as the index. Choosing arg val is more complicated. In particular, if the input
dataframe has a multi-level index, and arg idx is None, arg val must be None for pivot to
not throw an error. Generators are a natural form in which to specify such contracts. The
checks in place in Figure 2.2 ensure that the generator only generates arguments that follow
the contract and thus, can be given to pivot without error.

On different invocations of the generator in Figure 2.2, the calls to Select may yield
different values. There are a few different ways in which Select can do this. First, it can
simply randomly choose values from D. Or, it can assure new values will be different by
maintaining an internal state which records the values it returned in previous runs. Further,
it can use its context argument c to determine the order in which it returns these values.
We elaborate on this below.

Operators Apart from Select, we support three other operators, namely (1) Subset, (2)
OrderedSubset and (3) Sequence. An informal description of their behavior is provided in
Table 2.1, while a formal treatment is presented in Figure 2.4.

Each operator Op is of the form Op(D, χ, id) where D is the domain passed to the
operator; χ is the context passed to the operator to control its behavior, and id is the unique
static ID of the operator. The static ID of Op simply identifies each call to an operator
uniquely based on its static program location. It is provided explicitly in Figure 2.2 for
clarity but may be inserted automatically via a static instrumentation pass of the generator

CHAPTER 2. AUTOPANDAS 15

code. The behavior of the generator across runs can be controlled by changing the semantics
of these operators, some of which are described below.

Randomized. The simplest case is for the generator to be randomized. That is, the
generator will follow a random execution path as governed by the values returned by its
constituent operator calls. This can be achieved by simply randomizing the underlying
operators, the semantics of which are given in Figure 2.4c. These semantics are rather
straightforward — each operator simply returns a random element from the collection of
possible values (defined byW , the definition of which is given in Figure 2.4a). This collection
of possible valuesW is a function of the operator type (one of { Select, Subset, OrderedSubset,
Sequence }) and the domain D passed to the operator call.

Exhaustive (Depth-First). Another option is to have an exhaustive generator which sys-
tematically explores all possible execution paths as governed by the constituent operator
calls. That is, all the operators work in unison by returning a fresh combination of values on
each invocation of the generator. The operators also signal Generator-Exhausted when all
possible values have been explored. Figure 2.4d presents the operator semantics that achieve
this behavior. In particular, the semantics in Figure 2.4d enforce a depth-first exhaustive
behavior across runs, where the generator explores all possible values of operator calls occur-
ring later in the execution trace of the generator before exploring the ones occurring before.
For example, when using the semantics in Figure 2.4d, the generator in Figure 2.2 will first
explore all possible values of the Select call at Line 9 before moving on to the next possible
value for the Select call at Line 5.

The operator semantics in Figure 2.4d uses three internal state variables t, σ and δ. The
variable t keeps track of the number of operator calls made in the current invocation of the
generator. The variable σ is a map from the operator call index to the choice to be made
by the operator call in the current invocation of the generator. Note that the operator call
index is distinct from the static identifier id as it keeps track of the dynamic index of the
operator call in the generator call stack. For example, if an operator at a program location
is called twice as a result of an enclosing loop, it will have two distinct entries in σ. Finally,
δ represents a map from the operator call index to the collection of possible values W as
defined by the operator type and the passed domain D. The variables σ and δ are initialized
to empty maps before the first invocation of the generator but are persisted across the later
ones. However, t is reset to zero before every fresh generator invocation. We also introduce
a special operator called Op End that is implicitly invoked at the end of each invocation in
the generator. We now briefly explain the rationale behind all of these variables, Op End and
the rules themselves.

1. Op-Extend - This rule governs the behavior of the operator when it is invoked for
the first time (as signified by t /∈ dom(σ)). The operator returns the first value from
W and records this choice in σ. It also stores W in δ for future use.

2. Op-Replay - The hypothesis t ∈ dom(σ) signifies that this operator call needs to
replay the choice as dictated by σ(t).

CHAPTER 2. AUTOPANDAS 16

3. Op-End-1 - This rule captures the first behavior of the special operator Op End. It finds
the last (deepest) operator call, indexed by k, that has not exhausted all possibilities
and increments its entry in σ. This is key to enforcing depth-first semantics - a later
call explores all possibilities before previous calls do the same. Note that it also pops-
off the later entries (> k) from σ and δ. This is required as the generator may take an
entirely new path based on the new value returned by this operator and may therefore
make an entirely new set of operator calls. Overall, this maintains the invariant that
σ stores the choice to be made by the operators in the current generator run.

4. Op-End-2 - The final rule covers the case when all operator calls have exhausted all
possible values. This makes the special Op End operator signal Generator-Exhausted
after the last invocation of the generator, indicating that we have explored all possible
executions of the generator.

Smart Semantics. Notice that the semantics presented in Figures 2.4c and 2.4d do not
utilize the context χ or the static id passed to the operator. The significance of this is that
given the same domain, the behavior of the operator is fixed, regardless of the actual input
with which the generator is invoked. This is not suitable for tasks such as the one presented in
Section 2.1, where the goal is to quickly find an argument combination to the pivot function
such that when it is called on inp df, it produces the target output out df. In this case, we
want to change the behavior of the operators based on the input and output dataframe and
bias it towards the values that have a higher probability of guiding the generator execution
in the right direction.

This smart behavior of operators is captured in the semantics presented in Figure 2.4e.
The only difference with the semantics in Figure 2.4d is that the set of possible valuesWM for
each operator is now the result of a function Rank(Op,id) that takes in the original collection
of possible values, the passed domain D as well as the context χ passed to the operator and
reorders the values in the decreasing order of significance w.r.t to the task at hand. Note
that the Rank function is sub-scripted by (Op, id) implying that every operator call can have
a separate ranking function.

As shown in the generator in Figure 2.2, the context passed at every operator call is
the input and output dataframe. Therefore given suitable ranking functions Rank(Select,1),
Rank(Select,2) and Rank(Select,3), the generator can be biased toward producing an argument
combination that, when passed to the pivot function along with the input dataframe inp df,
is likely to result in out df.

2.2.2 Generator-Based Program Synthesis

We now describe how to build an enumerative synthesis engine using generators. The input
to this engine is an input-output (I/O) example. The result is a program in the target
language that produces the output when run on the input given in the I/O example. Our
target language is the python pandas API. Figure 2.5 describes the basic algorithm behind

CHAPTER 2. AUTOPANDAS 17

Table 2.1: List of Available Operators.

Operator Description

Select(domain) Returns a single item from domain
Subset(domain) Returns an unordered subset, without replacement, of items in domain
OrderedSubset(domain) Returns an ordered subset, without replacement, of items in domain
Sequence(len)(domain) Returns an ordered sequence, with replacement, of items in domain

with a maximum length of len

this engine in Python-like pseudo-code. The engine consists of two components — (1) a
program candidate generator and (2) a checker that checks if the candidate program produces
the correct output. The checker is rather straightforward to implement: we simply execute
the program and test the exact match of its output to the target output. The bulk of the
work is done by the program candidate generator.

2.2.2.1 Program Candidate Generator

A program candidate generator P is a generator that, given an input-output example, gen-
erates program candidates. First, assume P is a generator in exhaustive mode (see Sec-
tion 2.2.1). That is, on each invocation, P yields a program candidate that hasn’t been
produced so far. Figure 2.6 shows an excerpt of our program candidate generator for pandas
programs. This generator produces straight-line programs, each of which is a sequence of up
to max len pandas function calls. The program given at the end of Section 2.1 is an example
of such a candidate.

The generator in Figure 2.6 generates candidate programs as follows. First, it picks a
sequence of functions from a list of supported functions (Lines 3-4). Then, for each function
in the sequence, the generator selects the arguments (Lines 8-26), and computes the result
by running the function with the arguments and stores it as an intermediate (e.g. Line
27). Intermediates are the outputs produced by previous functions in the sequence. These
are essential to allow the generator to generate meaningful multi-function programs, where
a function can operate on the output of a previously applied function. As shown in Lines
3-4, argument generation is done on a case-by-case basis depending on the given function.
For example, for the function pivot, the generator follows the argument generation logic of
Figure 2.2, applies the function with the selected arguments to a selected input or interme-
diate df, and stores the output as an intermediate. The program candidate generator can
handle pandas functions that operate on multiple dataframes, e.g. merge on Lines 19-24, by
selecting each dataframe from the set of input and intermediates (Lines 20-21).

CHAPTER 2. AUTOPANDAS 18

P(D)
def
= Power-Set of D

Perms(x)
def
= Set of all permutations of x

W (Op,D)
def
=

D if Op = Select

P(D) if Op = Subset

∪{Perms(x) | x ∈ P(D)} if Op = OrderedSubset

{(a1, · · · , ak) | k ≤ l, ai ∈ D} if Op = Sequence(l)

R(W)
def
= Random Element from W

(a) Common Definitions

W def
= W (Op,D)

σk
def
= ∀t.((t < k) ⇒ (σk(t) = σ(t)))∧

((t ≥ k ∨ t < 0) ⇒ t /∈ dom(σk))

δk
def
= ∀t.((t < k) ⇒ (δk(t) = δ(t)))∧

((t ≥ k ∨ t < 0) ⇒ t /∈ dom(δk))

WM
def
= Rank(Op,id)(W (Op,D),D, χ)

(b) Common Definitions (continued)

Op(D, χ, id) ⇓ R(W)
Op-Random

(c) Operator Semantics - Randomized

t /∈ dom(σ)
δ′ ≡ δ[t :=W] σ′ ≡ σ[t := 0]

⟨Op(D, χ, id), σ, δ, t⟩ ⇓ ⟨W[0], σ′, δ′, t+ 1⟩
Op-Extend

t ∈ dom(σ)

⟨Op(D, χ, id), σ, δ, t⟩ ⇓ ⟨W[σ(t)], σ, δ, t+ 1⟩
Op-Replay

∃k. k is largest such that
(k ∈ dom(σ) ∧ σ(k) < |δ(k)| − 1)

⟨OpEnd, σ, δ, t⟩ ⇓ ⟨σk[k := σ(k) + 1], δk, t+ 1⟩
Op-End-1

∄k. (k ∈ dom(σ) ∧ σ(k) < |δ(k)| − 1)

⟨OpEnd, σ, δ, t⟩ ⇓ Generator-Exhausted
Op-End-2

(d) Semantics - Depth-First Exhaustive

t /∈ dom(σ)
δ′ ≡ δ[t :=WM] σ′ ≡ σ[t := 0]

⟨Op(D, χ, id), σ, δ, t⟩ ⇓ ⟨WM [0], σ′, δ′, t+ 1⟩
Op-Extend

t ∈ dom(σ)

⟨Op(D, χ, id), σ, δ, t⟩ ⇓ ⟨WM [σ(t)], σ, δ, t+ 1⟩
Op-Replay

∃k. k is largest such that
(k ∈ dom(σ) ∧ σ(k) < |δ(k)| − 1)

⟨OpEnd, σ, δ, t⟩ ⇓ ⟨σk[k := σ(k) + 1], δk, t+ 1⟩
Op-End-1

∄k. (k ∈ dom(σ) ∧ σ(k) < |δ(k)| − 1)

⟨OpEnd, σ, δ, t⟩ ⇓ Generator-Exhausted
Op-End-2

(e) Semantics - Smart Depth-First Exhaustive

Figure 2.4: Operator Semantics for Generators. σ and δ are initialized to empty maps before
the first invocation of the generator. t is set to the integer zero before every invocation of the
generator. OpEnd is a special operator that is implicitly called at the end of each invocation
of the generator. A detailed explanation is provided in Section 2.2.1

2.2.2.2 Building an Exhaustive Depth-First Enumerative Synthesis Engine

Using the exhaustive depth-first semantics for operators presented in Figure 2.4d for the
generator in Figure 2.6 gives an exhaustive depth-first synthesis engine. This means that
the engine explores all possible program candidates and in depth-first order i.e. it explores all
possible programs using the same sequence of functions before exploring another sequence.
Also, when enumerating the arguments, it explores all values of a later argument before
moving on to the next value for the previous argument.

CHAPTER 2. AUTOPANDAS 19

1 def synthesize(input, output, max len):

2 generator = generate candidates(input, output, max len)

3 while (not generator.finished()):

4 candidate = next(generator)

5 if candidate(input) == output:

6 return candidate

Figure 2.5: Generator-Based Enumerative Synthesis Engine

2.2.2.3 Building a Smart Enumerative Synthesis Engine

The generator in Figure 2.6 describes a space of programs that is extremely large for such
an enumerative pandas synthesis engine to explore in reasonable time. This generator sup-
ports 119 pandas functions, each taking 3 arguments on average. This causes an enormous
combinatorial explosion in the number of argument combinations and choices made by the
generator operators.

Hence, we need a smart generator that tailors itself to the presented synthesis task.
That is, we need to use the smart semantics for operators presented in Figure 2.4e. For the
generator in Figure 2.6, the context passed to each operator call is explicitly shown. The
function sequence selection, as well as the selection of dataframes on which the functions
operate (Lines 4, 9, 20, 21) all take the input-output example along with any intermediates
as the context. The operator calls used to select values for arguments depends primarily on
the dataframe(s) on which the function will be run, so only that dataframe and the output
is passed as context.

With this formulation in place, we can now define the Rank(Op,id) function that is at the
heart of the semantics in Figure 2.4e. Given the domain D and the context χ passed to
Op, this function reorders the space of possible values W (Op,D) according to a probability
distribution over this space. We exploit the recent advances in the area of deep learning
and define these Rank functions per operator using novel neural network models that we
describe in the following section. We call generators that use operators backed by these
neural network models Neural-Backed Generators.

2.2.3 Neural-Backed Generators for Pandas

In AutoPandas, we use neural networks to define the Rank functions for the operators used
in our generators. In short, we design a neural network model for each kind of operator (see
Table 2.1). The first time an operator Op is called with a particular domain D and context
χ, a query is constructed using D and χ. This query is passed to the neural network model,
which returns a probability distribution over the possible values for the operator (as defined
by W (Op,D) in Figure 2.4a). The Rank function then uses this distribution to reorder the
elements in W (Op,D) in the decreasing order of probabilities (WM in Figure 2.4b). The

CHAPTER 2. AUTOPANDAS 20

1 @generator

2 def generate candidates(input, output, max len):

3 functions = [pivot, drop, merge, ...]

4 function sequence = Sequence(max len)(functions , context=[input, output], id=1)

5 intermediates = []

6 for function in function sequence:

7 c = [input, ∗intermediates , output]
8 if function == pivot:

9 df = Select(input + intermediates , context=c, id=2)

10 arg col = Select(df.columns, context=[df, output], id=3)

11 arg idx = Select(df.columns− {arg col}, context=[df, output], id=4)
12 if isinstance(df.index, pandas.MultiIndex) and arg idx is None:

13 arg val = None

14 else:

15 arg val = Select(df.columns− {arg col , arg idx},
16 context=[df, output], id=5)

17 args = (df, arg col , arg idx , arg val)

18

19 elif function == merge:

20 df1 = Select(input + intermediates , context=c, id=6)

21 df2 = Select(input + intermediates , context=c, id=7)

22 common cols = set(df1.columns) & set(df2.columns)

23 arg on = OrderedSubset(common cols , context=[df1, df2, output], id=8)

24 args = (df1, df2, arg on)

25 # Omitted code: case for each function

26
...

27 intermediates.append(function.run(∗args))
28

29 return function sequence

Figure 2.6: A Simplified Program Candidate Generator for pandas Programs.

CHAPTER 2. AUTOPANDAS 21

operator functions as before, but now returns values in an order conditioned on the context.
We now define the query concretely, its encoding as well as the neural network architectures
for each operator.

2.2.3.1 Neural-Network Query

The query Q to each neural network model, regardless of the operator, is of the form
Q = (D, χ) where D and χ are the domain and context passed to the operator.

2.2.3.2 Query Encoding

Encoding this query into a neural network suitable format poses several challenges. Re-
call that the context and the domain passed to operators in the pandas program candidate
generator (Figure 2.6) contain complex structures such as dataframes. Dataframes are 2-D
structures that can contain arbitrary Python objects as primitive elements. Even restricting
ourselves to strings or numbers, the set of possible primitive elements is infinite. This renders
all common value-to-value map-based encoding techniques popular in machine learning, such
as one-hot encoding, inapplicable. At the same time, the encoding needs to retain enough
information about the context to generalize to unseen queries which may occur when the
synthesis engine is deployed in practice. Therefore, simply abstracting away the exact values
is not viable. In summary, a suitable encoding needs to (1) abstract away only irrelevant
information and (2) be suitably structured for neural processing. To this end, we designed
a graph-based encoding that possesses all these desirable properties.

Graph-Based Encoding. We now describe how to encode the domain D and the context χ as
a graph, consisting of nodes, edges between pairs of nodes, and labels on nodes and edges.
The overall rationale is that it is not as much the concrete values but rather the relation-
ships amongst values that really encode the transformation at hand. That is, relationship
edges should be sufficient information for a neural network to learn the transformation. For
example, the essence of the transformation represented by Figure 2.1 is that the values of
the column ‘Category’ now become the columns of the pivoted dataframe, with the ‘Date’
column as an index, and the ‘Expense’ as values. One could replace the concrete name
using an arbitrary one-to-one mapping and still obtain the same transformation. This is
true only for reshaping operations such as joining, grouping, and pivoting. In contrast, the
transformations are only equivalent up to homomorphisms on the values when statistical or
aggregation operations are involved.

Recall that the domain and context are essentially collections of elements. Therefore,
we first describe how to encode each such element e individually as a graph Ge. Later we
describe the procedure to combine these graphs into a single graph GQ representing the
graph-encoding of the full query Q. Figure 2.7 shows the graph-encoding of the query gener-
ated as a result of the Select call at line 4 in Figure 2.2 and will be used as a running example.

CHAPTER 2. AUTOPANDAS 22

Encoding Primitives. If the element e is a primitive value (strings, ints, float, lambda, NaN
etc.), its graph encoding Ge contains a single node representing e. This node is assigned a
label based on the data type of the element as well as the source of the element. The source
of an element indicates whether it is part of the domain, if it is one of the input or output, if
it is one of the intermediate results obtained after applying the first few functions, or none
of these.

Encoding DataFrames. If the element e is a dataframe, each cell element in the dataframe
is encoded as a node in the graph Ge. The label of the node includes the type of the ele-
ment (string, number, float, lambda, NaN, etc.). The label also includes the source of the
dataframe, i.e., whether the dataframe is part of the domain, input, output, intermediate,
or none of these. We also add nodes to Ge that represent the schema of the dataframe by
creating a node for each row index and column name of the dataframe. Finally, we add a
representor node to Ge that represents the whole of the dataframe. The label of this node
contains the type “dataframe” as well as the source of the parent dataframe. Note that
this additional representor node is not created when encoding primitive elements. The node
representing the primitive element itself acts as its representor node.

The graph encoding of a dataframe also contains three kinds of edges to retain the struc-
ture of the dataframe. The first kind is adjacency edges. These are added between each pair
of cell nodes, column name nodes, or row index nodes that are adjacent to each other in the
dataframe. We only add adjacency edges in the four cardinal directions. The second kind
is indexing edges, which are added between each column name node (resp. row index node)
and all the cell nodes that belong to that column (resp. row). Finally, the third kind of edge
is a representation edge, between the representor node to all the other nodes corresponding
to the contents of the dataframe.

Encoding the Query Q. Finally, to encode Q, we construct Ge for each element in D
and χ as described above, and create GQ such that it contains these Ges as sub-graphs.
Additionally, to capture relationships amongst these elements, we add a fourth kind of
edge - the equality edge, between nodes originating in different Ges such that the elements
they represent are equal. Formally, we add an equality edge between nodes n1 and n2 if
n1 ∈ Gei ∧ n2 ∈ Gej ∧ i ̸= j ∧ Value(n1) = Value(n2) where Value is a function that given
n, retrieves the value encoded as n. For representor nodes, Value returns the whole element
it represents. For example, for a dataframe df, Value(df) would return df itself as the repre-
sentor node.

Equality edges are key to capturing relationships between the inputs and the output in
the I/O example, as well as the domain D and the I/O example. The neural network model
can then learn to extract these relationships and use them to infer the required probability
distribution.

CHAPTER 2. AUTOPANDAS 23

COL COL COL COL COL

IDX

IDX

IDX

IDX

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

STR

NUM

NUM

NUM

NUM

NUM

NUM

NUM

NUM

COL COL

NUM

NUM

NUM

NUM

IDX

IDX

REP

REP

Input

Output

C1 C2 C3 C4 C5

Domain

Edge Type

Equality

Indexing

Adjacency

Representor

Figure 2.7: Graph encoding of the query passed to the Select call at Line 4 in Figure 2.2,
on the I/O example from Figure 2.1.

2.2.3.3 Operator-Specific Graph Neural Network Models

Given the graph-based encoding GQ of a queryQ, we feed it to a graph neural network model.
Each operator has a different model. These models are based on the gated graph neural
network, introduced by [69]. We base our model on the implementation by Microsoft [76,
4] as it was the most efficient available at the time of development. We first describe the
common component of all the neural network models. Then, we provide an individual
description for the neural network model for each of the operators listed in Table 2.1.

The input to all our network models is an undirected graph G = (V , E) where V are
the nodes and E are the edges. Every edge e ∈ E is a 3-tuple ⟨vs, vt, te⟩ where vs and
vt are the source and target nodes respectively. The type te of the edge is one of Γe ≡
{adjacency, indexing, representor, equality} and is one-hot encoded.

Each node v is assigned a state vector hv ∈ Rd where d is a hyper-parameter. We
initialize the vector to the node embedding h

(0)
v = M(v) where M : V → Rd maps each node

to a one-hot encoding of its label of size d. The network then propagates information via r
rounds of message passing. During round k (0 ≤ k < r), messages are sent across edges. In

particular, for each edge (vs, vt, te), vs sends the message mvs→vt = fk(h
(k)
vs , te) to vt. Our

CHAPTER 2. AUTOPANDAS 24

fk : Rd+|Γe| → Rd is a single linear layer. These are parameterized by a weight matrix and a
bias vector, which are learnable parameters. Each node v aggregates its incoming messages
into mv = g({mvs→v | (vs, v, te) ∈ E}) using the aggregator g. In our case, we take g to be

the element-wise mean of the incoming messages. The new node state vector h
(k+1)
v for the

next round is then computed as h
(k+1)
v = GRU(mv, h

(k)
v) where GRU is the gated recurrent

unit [24] with start state as h
(k)
v and input mv. We use r = 3 rounds of message passing,

as we noticed experimentally that further increasing the number of message passing rounds
did not increase validation accuracy.

After message passing is completed, we are left with updated state vectors h
(r)
v for each

node v. Now depending on the operator, these node vectors are further processed in different
ways as described below to obtain the corresponding probability distributions over the space
of values defined by the operator (see Figure 2.4a). A graphical visualization is also provided
in Figure 2.8.

For each of the operators below, we deliberate choose the simplest architecture that allows
the computation of the correct probability distribution. This helps keep the focus on the
quality of the message passing step, forcing the models to learn good representations for the
nodes and edges rather than compensating at the outer layers.
Select : We perform element-wise sum-pooling of the node state vectors h

(r)
v into a graph

state vector hG. We now concatenate hG with the node state vectors h
(r)
di

of the representor

nodes di for each element in the domain D in the queryQ, to obtain vectors hi = hG◦h(r)
di
. We

pass the his through a multi-layer perceptron with one hidden layer and a one-dimensional
output layer and apply softmax over the output values for all the elements to produce a
probability distribution over the domain elements (p1, · · · , pn). During inference, the entire
inferred distribution is returned as the result, while during training we compute cross-entropy
loss w.r.t this distribution and the correct distribution where pi = 1 for the correct choice i
and ∀j ̸= i, pj = 0. Figure 2.8a shows an illustration of the model.

Subset : As in Select, we perform element-wise sum-pooling of the node state vectors and
concatenate it with the state vectors of representor nodes to obtain the vectors hk = hG◦h(r)

dk
for each element dk ∈ D. However, we now pass the hks through a multi-layer perceptron
with one hidden layer and apply softmax activation on the output layer to obtain a distribu-
tion (pik , pek) over two label classes “include” and “exclude” for each of the domain element
dk ∈ D individually. Recall that the space of possible outputs for the Subset operator is the
power-set of the domain D. The probability of these labels corresponds to the probability
with which an element is included and excluded from the output set respectively. To com-
pute the probability distribution, the probability of each possible output set is computed as
simply the product of the “include” probabilities for the elements included in the set and
the “exclude” probabilities for the elements excluded from the set. Again, this distribution
is returned as the result during inference, while during training, loss is computed w.r.t this
distribution and the correct individual distribution of the elements where pik = 1 ∧ pek = 0
if element dk is present in the correct output, else pik = 0 ∧ pek = 1. Figure 2.8b shows an

CHAPTER 2. AUTOPANDAS 25

……

…

… … …

… …

Softmax

…

…

…

ℎ" ℎ#$
(&) ℎ#(

(&) ℎ#)
(&)

ℎ* ℎ+ ℎ,

𝑝,𝑝+𝑝*

(a) Illustration of the Select model.

……

…

… … …

… …

Softmax

…

…
Softmax Softmax

…

ℎ" ℎ#$
(&) ℎ#(

(&) ℎ#)
(&)

ℎ* ℎ+ ℎ,

𝑝.,+ 𝑝0,+𝑝. ,* 𝑝0,* 𝑝. ,, 𝑝0,,

(b) Illustration of the Subset model.

…

LSTM

…

…

…

…… …

Select Select

LSTM

…

ℎ" ℎ#$
(&) ℎ#(

(&)

𝑜* 𝑜+

𝑝** 𝑝-* 𝑝* …𝑝*+ 𝑝-+term 𝑝+term

(c) Illustration of the OrderedSubset/Sequence
model. The box label “Select” expands to (a).

Figure 2.8: Operator-specific neural network architectures.

CHAPTER 2. AUTOPANDAS 26

illustration of the model.

OrderedSubset and Sequence : We perform element-wise sum-pooling of the node state
vectors h

(r)
v into a graph state vector hG. We then pass hG to an LSTM that is unrolled for

T + 1 time-steps, where T = |D| for OrderedSubset and T = l for Sequence(l) where l the
max-length parameter passed to Sequence. The extra time-step is to accommodate a terminal
token which we describe later. For each time-step t, the output ot is concatenated with the
node state vectors h

(r)
di

of the representor nodes dis for each element in the domain passed to

the operator to obtain vectors ht
i = ot ◦ h(r)

di
. At time-step t, in a similar fashion as Select,

a probability distribution is then computed over the domain elements plus an arbitrary ter-
minal token term. The terminal token is used to indicate the end of a sequence/set. Now,
to compute the probability distribution, the probability of each set or sequence (a0, · · · , ak)
where (k ≤ T) is simply the product of probabilities of ai at time-step i and the probability
of the terminal token term at time-step k+1. As before, this distribution is directly returned
during inference, while during training, the loss is aggregated over individual time steps; the
loss for a time-step is computed as described in Select. Figure 2.8c illustrates the model.

All the models are trained with the ADAM optimizer [60] using cross-entropy loss.

2.2.4 Training Neural-Backed Generators for Pandas

A Neural-Backed Generator consists of operators backed by Rank functions that influence
their behavior. We implement these Rank functions using neural networks. as described
in Section 2.2.3.3. Training each of these networks for each call to an operator with static
ID id requires training data consisting of tuples of the form Tid = (χ,D, c) where c is the
correct choice to be made by the operator call with static id id. Put another way, the neural
network behind the operator call at location id is trained to predict the choice c with the
highest probability given the context χ and domain D.

Unfortunately, such training data is not available externally as it is highly specific to our
generators. Therefore, we aim to synthesize our training data automatically, i.e., synthesize
a random tuple containing a context χ, domain D, and the target choice c. This is a highly
non-trivial problem, as there are two strong constraints that need to be imposed on χ, D,
and c for this tuple to be a useful training data-point. First, the random context, domain,
and choice should be valid. That is, there should exist an execution of the generator for
some input such that the operator call in question receives the random context and domain
as input and makes the same choice. Second, this tuple of context, domain, and choice
should be meaningful, i.e., the choice should lead to progress on the task contained in the
context. In our synthesis setting, this translates to the property that the generator makes
a step towards producing a program that actually produces the output from the input as
passed in the context. We rely on two key insights to solve these problems for our pandas
program candidate generator.

CHAPTER 2. AUTOPANDAS 27

Suppose we have tuples of the form ⟨t⃗in, to, P,K⟩ where P is a pandas program such that
P (t⃗in) = to i.e. it produces to when executed on inputs t⃗in. Also, K is the sequence of choices
made by the operators in the generator such that the generator produces the program P
when it is fed t⃗in and to as inputs. Then, it is straightforward to extract training data tuples
(χ,D, c) for each operator call by simply running the generator on t⃗in and to and recording
the concrete context χ and domain D passed to the operator and forcing the operator to make
the choice c. These tuples are also meaningful by construction, as the operators make choices
that lead to the generation of the program P , which solves the synthesis task described by
t⃗in and to.

The second insight is that we can obtain these ⟨t⃗in, to, P,K⟩ tuples by using the generator
itself. We generate random inputs t⃗in (DataFrames), run the generator on t⃗in using the
randomized semantics presented in Figure 2.4c while simultaneously recording the choices
made as K. The program P returned by the generator is then run on t⃗in to yield to.

The sheer size of APIs such as pandas presents another problem in this data generation
process. The large number of functions yields a huge number of possible sequences of these
functions (Lines 3-4 in Figure 2.6). Even when considering sequences of length ≤ 3, the
total number of sequences possible from the 119 pandas functions we support is ∼500,000.
Generating enough examples for all function sequences to cover a satisfactory portion of all
the possible argument combinations is prohibitively expensive and would result in a dataset
of enormous size that cannot be processed and learned from in a reasonable amount of time.

However, not all sequences actually occur in practice. Practitioners of the library come
up with sequences that are useful in solving real-world examples. So, we mine Github
and StackOverflow to collect the function sequences used in the real world. We were able
to extract ∼4300 sequences from both these sources. Then, while generating the tuples
(t⃗in, to, P,K) using randomized semantics, we tweak the semantics of just the call to Sequence
at Line 4 in Figure 2.6 to randomly return sequences from only this mined set of sequences.

2.3 Evaluation

We first evaluate the feasibility and effectiveness of our technique by answering two main
research questions:

RQ1: Can AutoPandas solve real-world input-output example benchmarks? We
evaluate the end-to-end ability of AutoPandas to synthesize solutions for real-world bench-
marks within a practical time bound. We also compare with a baseline using models in a
limited fashion.

RQ2: Do smart operators, which are backed by models, make better choices
than their deterministic and randomized counterparts? In other words, we evaluate
the efficacy of every model backing an individual operator in the main generator used in

CHAPTER 2. AUTOPANDAS 28

AutoPandas, in terms of the quality of choices made as opposed to using deterministic or
randomized semantics.

2.3.1 Implementation

We implement the overall technique described in Section 2.2 in a tool called AutoPan-

das. AutoPandas consists of 25k lines of Python code and uses Tensorflow [73] to imple-
ment the neural network models. The code is available at https://github.com/rbavishi/
autopandas.

2.3.2 Training and Setup

We generated 6 million (input, output, program, generator choices) training tuples (as de-
scribed in Section 2.2.4) containing 2 million tuples each for programs consisting of one, two,
and three function calls. Similarly, we generate 300K validation tuples with 100K tuples
each for the three function sequence lengths. From these tuples, we extract training and
validation data for the 320 operator calls in our program candidate generator for pandas,
and train their respective models for 10 epochs on four Nvidia Titan V GPUs. We finished
training all the models in 48 hours. All our synthesis experiments are run on a single 8-core
machine containing Intel i7-7700K 4.20GHz CPUs running Ubuntu 16.04.

2.3.3 RQ1: Performance on Real-World Benchmarks

We evaluated AutoPandas on 26 benchmarks taken from StackOverflow questions contain-
ing the dataframe tag. We ran AutoPandas with a time-out of 20 minutes and used smart
depth-first enumeration semantics for the program candidate generator. We also impose
an upper bound on the number of Replays an operator is allowed to make (see the Op-
Replay semantics in Figure 2.4d). This prevents any operator from limiting the scope of
exploration when it can return a very large number of values given a single domain. In our
experiments, we set a bound of 1000. For comparison, we also implement a baseline version
of AutoPandas called Baseline that follows depth-first exhaustive enumeration semantics
(Figure 2.4d) for all operator calls except the Sequence invocation. The rationale is that given
the size of the search space, it is more meaningful to compare the performance of the models
backing the exploration of function arguments given the same function sequences. Table 2.2
contains the results.

The column Depth contains the length of the function sequence used in the official solution
for the benchmark. Cand. Explored denotes the number of candidates both approaches had
to check for correctness before arriving at one which produces the target output. Seq.
Explored contains the number of function sequences explored (by the Sequence call at Line
4 in Figure 2.6), while the Time column contains the time taken (in seconds) to produce a
solution, if any.

https://github.com/rbavishi/autopandas
https://github.com/rbavishi/autopandas

CHAPTER 2. AUTOPANDAS 29

AutoPandas can solve 13 out of the 26 benchmarks in under 30 seconds and 17 out of 26
in under 20 minutes. The Baseline approach also solves 13 out of 26 benchmarks in under
30 seconds, but 14 out of 26 in under 20 minutes. While the gap between the two approaches
in the number of benchmarks solved as well as the time taken is small, AutoPandas explores
5× fewer programs than Baseline on average. This does not translate to performance gains
due to two reasons: (1) the absolute difference in the number of programs is not enough
to cause differences in the time taken to verify candidates, and (2) the overhead of neural
models is not low enough. We expect the latter issue to go away with the use of more modern
implementations.

Both approaches tend to miss the 20-minute mark more often on benchmarks with higher
depths or those involving computation. Poor performance on computational benchmarks is
expected as the graph encodings in AutoPandas only contain equality edges and, as such,
cannot capture computational relationships.

2.3.4 RQ2: Analysis of Neural Network Models

In this section, we perform a deeper evaluation of the performance of the individual models
used in AutoPandas.

2.3.4.1 Function Sequence Prediction Performance

We single out the call to Sequence in our program candidate generator as it is the component
most critical to the performance of the generator and dissect the performance of the neural
network model backing it; on our synthetic validation dataset in Figure 2.9. In particular,
we measure top-1 to top-10 accuracies on a per-sequence basis. Recall that these are the
sequences mined from GitHub and StackOverflow. Figures 2.9a-2.9c show the performance
of the model when predicting sequences of lengths 1, 2 and 3 respectively. As expected,
the performance for shorter sequences is better as the logical distance between the input
and output is lower, and therefore the encoding can capture sufficient information. Another
reason for poorer accuracies at higher lengths is the fact that large APIs like pandas functions
often have overlapping semantics. Therefore multiple sequences may produce viable solutions
for a given output example. This is reinforced by the results on real-world benchmarks in
Table 2.2. In particular, the numbers in the “Sequences Explored” column for AutoPandas

suggest that the model indeed predicts useful sequences, even if they don’t match the ground-
truth sequence.

Figures 2.9d-2.9f present the expected accuracies of a purely random model on the same
dataset. As expected, the accuracies are almost zero (there is a slight gradient in Figure 2.9d).
The sheer number of possible sequences makes it improbable for a random model to succeed
on this task; even our baseline benefited from the neural model’s predictions.

CHAPTER 2. AUTOPANDAS 30

Table 2.2: Performance on Real-World Benchmarks. Dashes (-) indicate timeouts by the
technique. AP represents AutoPandas and BL stands for Baseline

Benchmark Depth Candidates Explored Sequences Explored Solved Time(s)
AP BL AP BL AP BL AP BL

SO 11881165 1 15 64 1 1 Y Y 0.54 1.46
SO 11941492 1 783 441 8 8 Y Y 12.55 2.38
SO 13647222 1 5 15696 1 1 Y Y 3.32 53.07
SO 18172851 1 - - - - N N - -
SO 49583055 1 - - - - N N - -
SO 49592930 1 2 4 1 1 Y Y 1.1 1.43
SO 49572546 1 3 4 1 1 Y Y 1.1 1.44
SO 13261175 1 39537 - 18 - Y N 300.20 -
SO 13793321 1 92 1456 1 1 Y Y 4.16 5.76
SO 14085517 1 10 208 1 1 Y Y 2.24 2.01
SO 11418192 2 158 80 1 1 Y Y 0.71 1.46
SO 49567723 2 1684022 - 2 - Y N 753.10 -
SO 13261691 2 65 612 1 1 Y Y 2.96 3.22
SO 13659881 2 2 15 1 1 Y Y 1.38 1.41
SO 13807758 2 711 263 2 2 Y Y 7.21 1.81
SO 34365578 2 - - - - N N - -
SO 10982266 3 - - - - N N - -
SO 11811392 3 - - - - N N - -
SO 49581206 3 - - - - N N - -
SO 12065885 3 924 2072 1 1 Y Y 0.9 4.67
SO 13576164 3 22966 - 5 - Y N 339.25 -
SO 14023037 3 - - - - N N - -
SO 53762029 3 27 115 1 1 Y Y 1.90 1.50
SO 21982987 3 8385 8278 10 10 Y Y 30.80 13.91
SO 39656670 3 - - - - N N - -
SO 23321300 3 - - - - N N - -

Total 17/26 14/26

2.3.4.2 Comparison with Deterministic and Randomized Semantics

We demonstrate the efficacy of the smart semantics for operators by comparing the top-
k accuracy of the underlying neural network models with corresponding deterministic and
randomized baselines. In the deterministic baseline, the order in which operators return
values is fixed for a given input domain (see Figure 2.4d). In the randomized baseline, the
operator returns values in a random order (see Figure 2.4c). We expect the neural network
approach (see Figure 2.4e) to perform better than both these baselines as it utilizes the
context. Figure 2.10 shows the results.

We see that while a randomized approach smooths results compared to the deterministic
approach (ref. Figure 2.10c vs. Figure 2.10b), both still have significant difficulty on certain
operator calls (top-left corners of all graphs). The neural network model performs quite

CHAPTER 2. AUTOPANDAS 31

well in comparison. There are operator calls where all three approaches perform poorly or
all perform well. The former can be attributed to insufficient information in the context.
For example, if a pandas function supports two modes of operation which can both lead
to a solution, the model may be penalized in terms of accuracies but may not affect its
performance in the actual task. The latter case, where all approaches perform well, can
be mostly attributed to small domains. For example, many pandas functions take an axis

argument that can only take the value 0 or 1, which can be modeled as Select({0,1}) in the
generator. Hence the top-2 accuracy of all the approaches will be 100%.

Overall, we see that the neural-backed operators arrive at the correct ‘guess’ much more
quickly than their randomized or deterministic counterparts, thus helping the generator as
a whole to arrive at the solution more efficiently. In fact, the accuracies in Figure 2.10 are
quite high for the neural-backed operators overall. We think this is a very encouraging result,
as we are able to learn useful operator-level heuristics.

The contrast between the overall high accuracies in Figure 2.10a and the accuracies in
Figure 2.9 suggests that the biggest bottleneck is predicting the correct function sequence.
This and the previous observation are reinforced by the columns containing the number of
candidates and function sequences explored in Table 2.2.

2.4 Discussion

We elaborate on the main talking points behind the design of AutoPandas, the limitations,
and opportunities for improvement.

2.4.1 Generator Implementation

Our program candidate generator has been hand-written by consulting the Pandas source
code and, therefore, may not be completely faithful to the full internal usage specification
of all functions. Due to the complexity of the API pre-conditions for pandas, writing this
generator required substantial manual labor. While the writer of such a generator needs
only knowledge of the API and not of the synthesis engine, this still poses a practical barrier
to implementing the technique for other APIs. Our technique requires that all programs be
expressible in terms of the generator, so the generator restricts the space of programs we can
synthesize. The current generator behind AutoPandas only expresses programs consisting
of a sequence of API calls of a maximum length of three.

2.4.2 Representative Training Data

Another limitation is that our synthetic data may not be representative of the usage of
pandas in the real world. For example, our dataset may contain many transformations that
do not “look useful” to a human, and thus our models may be biased away from useful ones.
This may be a factor in why we are unable to synthesize 9 of our real-world benchmarks

CHAPTER 2. AUTOPANDAS 32

(a) Smart, Length-1 (b) Smart, Length-2

(c) Smart, Length-3 (d) Random, Length-1

(e) Random, Length-2 (f) Random, Length-3

Figure 2.9: Smart Model Accuracies on Function Prediction Task, compared to a Random
Baseline. Per-sequence Top-k accuracies provided. Color gives accuracy; darker is better.
The color point (x, y) gives the top-x accuracy for sequence with ID y. Sequence IDs are
sorted based on top-1 accuracy of the smart model.

CHAPTER 2. AUTOPANDAS 33

(a) Smart Model (b) Baseline-Deterministic

(c) Baseline-Randomized

Figure 2.10: Per-operator Top-k accuracies. Color gives accuracy; darker is better. The
color point (x, y) gives the top-x accuracy for operator with ID y. Operator IDs are sorted
based on the top-1 accuracy of the smart model.

CHAPTER 2. AUTOPANDAS 34

within the timeout. Further, our training dataset may not contain enough data points for
effective training for each operator call in our candidate generator.

2.4.3 Ease of Providing I/O Examples

Finally, while input-output examples are arguably a usable specification, from discussions
with potential users, we find that they do suffer from two main issues. Firstly, input-output
examples can be tedious to provide if the output involves computation that is hard to do
by hand or if it needs to be specially crafted from scratch because the original data is
too complex. Secondly, input-output examples lose information — consider an input-output
example representing any form of computation or aggregation. The output, and consequently
our graph encoding, do not capture the computational relationship between the input and
output. Interestingly, the assistant introduced in the next chapter, Gauss, tackles exactly
these issues.

2.5 Summary

In this chapter, we introduced the concept of neural-backed generators, a novel combina-
tion of generators and machine learning, specifically graph neural networks, to help capture
large and complex candidate program spaces as well as efficiently search for a solution.
Neural-backed generators help retain a high degree of expressivity while retaining decent
performance. Our implementation of AutoPandas supports 119 functions out of the 136
available at the time of development. We hand-wrote a candidate program generator for the
subset of the Python pandas API dealing with dataframe transformations. The candidate
program generator includes argument generators for each of these 119 functions, each of
which captures the key argument constraints for the given function. Experiments suggest
that AutoPandas excels at solving shallow tasks where only one or two functions are re-
quired to perform the desired transformation. Thus, AutoPandas is effective at reducing
the recall burden — remembering the right function names or the arguments.

However, AutoPandas does suffer from a number of limitations. It does not perform
well for benchmarks involving computations as the output, as the graph encoding does not
capture the relevant information, effectively reducing the search to trial-and-error. In the
next chapter, we address this issue by introducing an element of interaction in traditional
input-output examples.

35

Chapter 3

Gauss: Improving Code Generation
via User Intent Graphs

Chapter 2 described AutoPandas, an assistant solving the programming-by-example prob-
lem of generating pandas code for data processing tasks given an input-output dataframe.
The design of AutoPandas was influenced by the need to retain expressivity; AutoPandas

supported 119 out of 136 pandas functions available for dataframes. To jointly combat the
challenge of representing the space of programs and efficiently searching it to find the correct
program, we introduced the concept of neural-backed generators. Neural-backed generators
replace or back the traditional randomized choice-points in QuickCheck-style [26] genera-
tors with machine learning models. Specifically, these models are graph neural networks,
with their design based on the insight that dataframe transformations can be represented as
graphs where the nodes correspond to the cells, columns, and rows of the dataframes, and
edges correspond to the relationships between the input and output nodes.

We found AutoPandas performance to be poor on benchmarks involving aggregation or
computation. This was not surprising due to the design of the encoding process that converts
concrete input-output examples into graphs to feed to the models. Specifically, the encoding
into graphs only preserved equality and structural edges; it could not automatically infer
more complex relationships. This meant that the models had little information about the
underlying operation through the supplied graph, and hence the enumerative search simply
devolved into trial and error.

A natural research direction in pursuit of improving performance on this class of bench-
marks is to innovate on the graph-encoding component, presumably with the goal of inferring
more complex relationships. Instead, in this chapter, we look at how we can innovate at the
level of the specification itself by identifying deeper, practical issues in the use of input-output
examples itself as specifications for this class of tasks.

Consider the example in Figure 3.1. Even as a human, The source of the number 102.5
in the first cell of the output is not immediately clear from the input-output example alone.
However, the user who created this example knows exactly how they derived this number.
It is simply the mean of all the numerical cells in rows labeled “Pants”: 50, 70, 100, and

CHAPTER 3. GAUSS 36

Type Low High

0 Pants 50 70

1 Pants 100 190

2 Shirts 80 110

input
Type Avg

0 Pants 102.5

1 Shirts 95
output

Figure 3.1: Input-output examples alone discards user intent information that was present
while creating the output. In this example, it is not immediately clear that 102.5 is the mean
of 50, 70, 100, and 190.

190. The user could have viably provided this information given a suitable user interface
(UI). Moreover, this information could not only potentially help speed up synthesis but also
prevent overfitting by filtering programs whose semantics do not exactly match the intent.
The availability of such additional information can also help with removing redundancy
elsewhere in the example. Consider the example in Figure 3.1 again. If the output cell
containing 102.5 is provided along with precise information about its computation, the rest
of the cells in the output are not as important anymore from the perspective of specification.
Put differently, if one were to simply explain how the single 102.5 entry was computed to a
fellow programmer, chances are that they would come up with the correct solution as the
simplest program that produces an output containing 102.5 indeed produces the rest of the
output entries in Figure 3.1. Thus, there is a possibility of ultimately reducing the overall
burden on the user — users only need to provide precise relationships between a part of
the output and input. We call this reduced input-output example a partial input-output
example, in line with the terminology used in Viser [125].

In this chapter, we present Gauss, a synthesis algorithm for dataframe transformations
that utilizes a user interface to capture partial input-output examples with additional rela-
tionship information to aid synthesis. Gauss records the additional relationships provided
by the user as a graph, whose design is similar to the graphs used in AutoPandas. We call
this graph the user intent graph. As a proof-of-concept, we also create a Jupyter notebook
extension offering such a UI that creates a graph under the hood.

Gauss is an enumerative synthesis algorithm. It employs a novel reasoning procedure over
graphs that helps it quickly prune away large classes of infeasible programs. At a high-level,
Gauss adopts a divide-and-conquer approach: it breaks down the user intent graph into
smaller subgraph specifications and uses these as a measure of progress while enumerating
the search space. Whenever it finds that a class of similar programs does not satisfy these
specifications, it detects a core subgraph explaining the root cause of failure. The algorithm
then learns from this failure by performing inductive reasoning against a knowledge base of
example program invocations to rule out other programs in the search space.

Since Gauss aims to improve over AutoPandas in a specific set of tasks, the core imple-
mentation of Gauss adopts the subset of transformation used in Morpheus as it is expressive
enough to represent those tasks. Since Morpheus targets the R language, we translate the

CHAPTER 3. GAUSS 37

Type Low High

0 Pants 50 70

1 Pants 100 190

2 Shirts 80 110
102.5

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

COL

CELLIDXI

MEAN
MEAN

MEAN
MEAN

𝑖 𝑜

𝐺!"#$
=

Figure 3.2: An input (i), partial output (o) example, as well as a graph abstraction of user
intent (Guser).

operators into their pandas equivalents. We evaluate Gauss on two main fronts. First, do
richer graph specifications enable significant pruning compared to synthesis techniques that
only leverage input-output examples? And second, can graph specifications allow the user
to provide partial information, such as a partial output, as opposed to needing to construct
a full input-output example? Again, since Gauss extends AutoPandas on a specific set
of tasks, instead of comparing it with AutoPandas, we compare against three state-of-the-
art systems for synthesizing data transformation code from vanilla input-output examples,
namely Morpheus [34], Viser [125], and Neo[36], on their respective language subsets.
We find that Gauss explores 56×, 73×, and 664x fewer candidates than the state-of-the-art
systems on their respective benchmarks because of the additional graph specification. Ad-
ditionally, we find that output size can be reduced by 33× on average while still obtaining
the correct answer without any noticeable loss in performance.

As before, prior to diving into the technical details behind Gauss, we walk through an
example to illustrate the core ideas behind Gauss. Note that we use R function names and
syntax throughout the discussion as well as the rest of the paper. This includes the use
of gather instead of melt, and group by instead of groupby followed by .agg where agg is a
particular aggregation. We do this for a couple of reasons: (1) it eases the discussion with
respect to the state-of-the-art baselines in our evaluation, and (2) they are generally more
concise than their pandas equivalents and thus help with the presentation.

3.1 Overview

We begin with a high-level overview of Gauss’s algorithm for synthesizing table transfor-
mations. Figure 3.1 shows input and output tables describing a table transformation that
involves a two-dimensional aggregation — the average of all Low and High values having the
same Type category.

Figure 3.2 shows a synthesis specification that a user might supply to Gauss to synthesize
code for this transformation. The specification consists of an input i, a partial output o and
a graph abstraction of user intent Guser. The partial output in Figure 3.2 only contains the
cell value 102.5, rather than the full output in Figure 3.1. Guser captures the core semantics
of the transformation: the value 102.5 in the output is the mean of all the numbers in the Low

CHAPTER 3. GAUSS 38

(a) First, the user loads the
input table into the UI.

(b) The user selects the group of
cells labeled “pants”, right clicks,
and selects the aggregation opera-
tion “MEAN”.

(c) After the aggregated value
is copied to the clipboard, the
user pastes it into the partial
output.

Figure 3.3: A user interaction with the UI that builds the graph abstraction of user intent
from Figure 3.2.

and High columns with Pants in the Type column. Note that Guser is not provided directly by
the user. We provide a user interface (UI) that observes user interaction and automatically
creates the graph Guser.

Figure 3.3 shows a series of interactions that create the user intent graph on the right
hand side of Figure 3.2. First, in Figure 3.3a, the user loads the input dataframe into the
UI. Then in Figure 3.3b, the user selects the quadrant of cells with values 50, 70, 100, and
190, and right clicks the selection. This brings up a menu of options, and the user selects
the aggregation operation “MEAN”: after clicking this operation, the mean of the selected
values is copied to the clipboard. Finally, in Figure 3.3c, the user pastes the value to a cell in
the output section of the UI. At this point, note that the input-output example is identical
to the partial input-output example given on the left-hand side of Figure 3.2. Behind the
scenes, the UI has constructed the graph Guser: first constructing the input table part of the
graph on load (Figure 3.3a), then adding the intermediate computation and output nodes
on paste (Figure 3.3c), thanks to the information provided by the user in their selection in
Figure 3.3b.

The goal of Gauss is to find a program that, when executed on the input table i, produces
an output table that contains the partial output o provided by the user. Figure 3.4a shows
the program synthesized by Gauss. It first uses a reshaping operation gather, that “flat-
tens” the Low and High columns into a single column (indicated by the arguments ‘‘Low’’,
‘‘High’’), while keeping the Type column as its own column (indicated by the -‘‘Type’’

argument). This call to gather results in the intermediate output t1 in Figure 3.4a. Then,

CHAPTER 3. GAUSS 39

𝑡1 = gather(𝑖, “Low”, “High”, -“Type”)
𝑜
	
= group_by(𝑡1, by=“Type”, Avg=mean(“Low”))

Type Avg

0 Pants 102.5

1 Shirts 95

Type Var Value

0 Pants Low 50

1 Pants High 70

2 Pants Low 100

3 Pants High 190

4 Shirts Low 80

5 Shirts High 110

𝑜

𝑡!

(a) First, gather melts the input table into a
“long” format, where High and Low are row
values rather columns, producing t1. Then,
group by can then average all values for each
item type, producing o.

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

COL COL

CELL CELL

CELL CELL

IDX

IDX

I

I

MEAN
MEAN

MEAN
MEAN

MEAN

MEAN

=

=

=

=

=

(b) The final graph abstraction of the solution
program. Note that nodes corresponding to in-
termediate table cells do not appear; instead, the
abstraction captures the direct relationship be-
tween input and output.

Figure 3.4: The solution program for the synthesis problem in Figure 3.2, its intermediate
and final output, and its graph abstraction.

the program performs a group by operation, grouping on the Type column to compute the
required averages. This results in the final output o in Figure 3.4a.

Additionally, Guser must be a subgraph of the graph abstraction of the program synthe-
sized by Gauss when run on the input i. The graph abstraction of a program captures the
relationship between its concrete inputs and output as a graph. For instance, Figure 3.4b
shows the graph abstraction for the program at the top of Figure 3.4a (when using i from
Figure 3.2 as input). This graph abstraction is obtained dynamically by applying a special
function to the program and its inputs; the process is described in Section 3.2.2. For the
purpose of this section, whenever we say a graph abstraction of a program, we assume the
inputs to the program are the same as the input tables i of the user-provided specification.

Enforcing that Guser is a subgraph of a solution’s graph abstraction ensures that the
program matches the user’s intent. Given the spec in Figure 3.2, Gauss returns the program
shown in Figure 3.4.

We will now walk through Figure 3.5, which shows the steps followed by Gauss to arrive
at the solution in Figure 3.4. To synthesize this program, Gauss employs enumerative
search: it enumerates programs one-by-one, runs them, and checks their output against the
specification. The key to Gauss’s performance is its ability to prune large parts of the search
space of programs without enumerating them.

For simplicity in our walkthrough, we assume that we have only two table transformation
components, gather and group by, and that Gauss only explores programs containing a
maximum of two component calls. Note that every program synthesized by Gauss is a linear
sequence of component calls.

CHAPTER 3. GAUSS 40

Queries =	 CELL CELLIMEAN = CELL CELLIMEAN =CELL CELLIMEAN = CELL CELLIMEAN =
50 10070 190102.5 102.5102.5 102.5																																																															, , ,

1 2 3 4

(a) Unit query graphs, or simply queries, of Guser in Figure 3.2.

σ1 : 𝑜	 = group_by(𝑖, □)

σ2 : 𝑜	 = gather(𝑖, □)

σ5 : 𝑡1 = gather(𝑖, □); 𝑜	 = group_by(𝑡1, □)

σ4 : 𝑡1 = group_by(𝑖, □); 𝑜	 = gather(𝑡1, □)

Skeletons Decompositions
of query:

CELL CELLI
MEAN =

σ6 : 𝑡1 = group_by(𝑖, □); 𝑜	 = group_by(𝑡1, □)

σ3 : 𝑡1 = gather(𝑖, □); 𝑜	 = gather(𝑡1, □)

σ1 :

σ2 :
σ3 :

σ4 :
σ5 :

σ6 :

CELL CELL=
group_by

IMEAN

CELL CELL= CELL=
group_bygather
IMEAN

CELL CELLIMEAN = CELL=
gathergroup_by

∅

∅

Oracle

(b) For each skeleton, Gauss uses the oracle to compute decompositions for each query. Because
gather does not perform aggregation, there are no decompositions for σ2 and σ3. So Gauss prunes
skeletons σ2, σ3.

σ1 : 𝑜	 = group_by(𝑖, □) P1 : 𝑜 = group_by(𝑖, by=“Type”, agg=mean(“Low”))

P2 : 𝑜 = group_by(𝑖, by=“Type”, agg=mean(“High”))

P3 : 𝑜 = group_by(𝑖, by=“Low”, agg=mean(“High”))

P4 : 𝑜 = group_by(𝑖, by=“High”, agg=mean(“Low”))
...

Decomposition

for all queries Unsatisfied Queries

2 3

1 4

1 2 3 4

1 2 3 4

Enumerate
Conflict
Analysis

1 2⋃

CELL

CELLI

MEAN =
CELL

MEA
N

50

70

102.5

CELL CELL=
group_by

I
MEAN

Conflict Graph

(c) While enumerating arguments for σ1, Gauss finds that no program realizes a decomposition
for all queries. The smallest set of queries whose decompositions are not simultaneously realized is
the conflict set.

Figure 3.5: Walkthrough of Gauss run on the specification in Figure 3.2, with components
gather and group by.

3.1.1 Extracting Query Graphs

To conduct this pruning, Gauss uses query graphs, or simply queries, from Guser. A query is
a subgraph of Guser containing at least one input and one output node. Gauss first extracts
unit queries that have exactly one input and one output node. Figure 3.5a shows the four
unit queries extracted from Guser, one for each edge between the “input” and “output” parts
of Guser. The numbers next to nodes indicate the corresponding table cell.

Observe that if Guser is a subgraph of the final graph abstraction GP of a program, the
query graphs from Figure 3.5a must be subgraphs of GP as well. This means Gauss can
reason about the simpler query graphs, rather than the potentially complex Guser, to prune
programs.

CHAPTER 3. GAUSS 41

σ4 : 𝑡1 = group_by(𝑖, □); 𝑜	 = gather(𝑡1, □)

Conflict Graph

Oracle

Decomposition

CELL= CELL=
gathergroup_by

CELL

I

MEAN

CELL MEA
N

Oracle

Strengthening

CELL

CELL

COL

CELL

CELL

COL

IDX

IDX =
I

MEAN

MEA
N

CELL

COL

CELL

COL

IDX

==

CELL

COL

IDX

=

gather
group_by

50

70

70

50

Highlighted nodes in
conflict with 𝐺!"#$

“Cells 50 and 70 must be in the same column”

CELL

CELLI

MEAN =
CELL

MEA
N

50

70

102.5

(d) Gauss proves that no program with skeleton σ4 is the solution: for a program with skeleton σ4
to realize the decomposition of the conflict graph, the input cells 50 and 70 must be in the same
column.

COL COL COL

CELL

CELL

CELL CELL CELL

IDX

IDX

IDX

COL COL

CELL

CELL CELL

IDX

IDXI
MEAN

==

=

=
=

CELL CELL=I
MEAN

P2 : 𝑜 = group_by(𝑖, by=“Type”, agg=mean(“High”))

𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 							, 𝜎! :1

CELL CELL

CELL CELL
CELLI

MEAN

MEAN

=

CELL CELL=I
MEAN𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 							, 𝜎! :2

CELL CELL=I
MEAN𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 							, 𝜎! :3

CELL CELL=IMEAN𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 							, 𝜎! :4

σ1 : 𝑜	 = group_by(𝑖, □)

(e) Program P2 from Fig. 3.5c does not
realize the decompositions of, i.e. follow
plans for, queries 1 and 4 .

σ5 : 𝑡1 = gather(𝑖, □); 𝑜	 = group_by(𝑡1, □)

P1 : 𝑡1 = gather(𝑖, “Low”, -“Type”); 𝑜	 = group_by(𝑡1, □)

P2 : 𝑡1 = gather(𝑖, “Low”, “High”); 𝑜	 = group_by(𝑡1, □)

P2,1 : 𝑡1 = gather(𝑖, “Low”, “High”); 𝑜	 = group_by(𝑡1, by=“Var”, agg=mean(“Value”))

Solution

COL COL COL

CELL

CELL

CELL CELL CELL

IDX

IDX

IDX

= COL COL COL

CELL CELL

CELL CELL

CELL CELL CELL

IDX

IDX

IDX

=

=

= =

=

Query decompositions realized so far?

1

CELL CELL

CELL CELL

CELL

CELL
=

=

CELL CELL= CELL
group_bygather

I
MEAN =

2 CELL CELL= CELL
group_bygather

I
MEAN =

3 CELL CELL= CELL
group_bygather

IMEAN =

4 CELL CELL= CELL
group_bygather

I
MEAN =

Query decompositions realized so far?

P2,2 : 𝑡1 = gather(𝑖, “Low”, “High”); 𝑜	 = group_by(𝑡1, by=“Type”, agg=mean(“Value”))

(f) Gauss prunes the partial program P1 because it cannot
realize the decompositions of queries 2 and 3 .

Figure 3.5: Walkthrough of Gauss run on the specification in Figure 3.2, with components
gather and group by.

3.1.2 Deciding Skeletons for Exploration

First, Gauss prunes out skeletons which can be safely discarded. A skeleton is simply a
program with constant arguments unfilled. Thus, it captures only the components (function
calls) of the program. Again, for simplicity of exposition, Gauss is only considering the two
components gather and group by, so it only has six possible skeletons to explore. These
six skeletons are enumerated in Figure 3.5b as σ1, . . . , σ6. The symbol □⃗ represents unfilled
constant arguments.

First, for every skeleton, Gauss determines all possible decompositions of each query
graph. At a high level, a decomposition of a query graph Gq corresponds to a plan that a
program P can follow to make sure that Gq is a subgraph of its final graph abstraction.

The right-hand-side of Figure 3.5b shows the decompositions of our query graphs for

CHAPTER 3. GAUSS 42

each skeleton σ1, . . . , σ6. Since all the query graphs in Figure 3.5a are isomorphic, these
decompositions are the same for all of them. Consider, for example, the decomposition of
query graphs for skeleton σ5. It lays out a plan that specifies that (1) the output table of
the call to gather must contain a cell with the value of the input cell (captured by the edge
with the label “=”), and (2) the call to group by should perform aggregation with this cell,
captured via the MEAN edge to I .

The queries have two possible decompositions with respect to the skeleton σ6: either of the
group by calls perform the aggregation. The skeletons σ2 and σ3 do not have any associated
decompositions. This is because they only call gather, which is a reshaping operation. It
cannot aggregate values and thus cannot have a MEAN edge in its abstraction.

So, Gauss discards skeletons σ2 and σ3, meaning it will not enumerate any programs with
those underlying skeletons. Gauss then goes through the remaining skeletons one by one:
for each skeleton, it enumerates programs by populating the skeleton’s constant arguments.

3.1.3 Learning from Failures

Figure 3.5c shows Gauss exploring all programs with underlying skeleton σ1. Unfortunately,
none of these programs satisfy the specification. This is because they do not follow the
“plan”, i.e. realize the decomposition for all the query graphs. Figure 3.5e shows this in
detail for the program P2 = group by(i,by=‘‘Type’’,agg=mean(‘‘High’’)). Because the
graph abstraction for group by has the decomposition graphs for 2 and 3 as subgraphs, we
say P2 realizes those decompositions. However, the graph does not have the decomposition
graphs for queries 1 and 4 as subgraphs. So, we say that P2 satisfies the queries 2 and
3 , while 1 and 4 are unsatisfied.

Similarly, for all the other programs enumerated in Figure 3.5c, some queries remain
unsatisfied. To zero in on what went wrong, Gauss creates the conflict set. This conflict set
is the smallest possible set of queries such that no program satisfied all the queries in the
set. As evident in Figure 3.5c, no program satisfies both query 1 and 2 . So, in our running
example, the conflict set contains the queries 1 and 2 1. The graph union of the queries in
the conflict set is shown on the far right of Figure 3.5c. This union, called the conflict graph,
is the subgraph of Guser where the cells containing 50 and 70 are involved in aggregation.

Before exploring another skeleton, Gauss makes sure that the same failure will not occur
again. Suppose the skeleton σ4 is the next to be explored. As shown in Figure 3.5d, Gauss

first uses the oracle to get the decomposition of the conflict graph with respect to σ4.
Then, Gauss asks the oracle to strengthen this decomposition with respect to the skeleton

σ4. During strengthening, the oracle uncovers additional nodes and edges that must be
present in any program with skeleton σ4 realizing this decomposition. The right-hand-side
of Figure 3.5d shows the strengthened decomposition of the query graph with respect to σ4.

1The set of queries 3 and 4 is another viable alternative for the conflict set and would result in the
same pruning ability.

CHAPTER 3. GAUSS 43

The additional nodes and edges impose the condition that the cells with values 50 and 70

must be in the same column.
However, this condition is not satisfied in the user example: the cells with value 50 and

70 are not in the same column in the input i (Figure 3.2). Hence, Gauss can safely discard
the skeleton σ4.

3.1.4 Smart Enumeration

After ruling out the skeleton σ4 (Figure 3.5d), Gauss moves on to the skeleton σ5. This
process is illustrated in Figure 3.5f. First, Gauss fills in the arguments for gather, resulting
in partial program P1 : (t1 = gather(i, ‘‘Low’’,−‘‘Type’’); o = group by(t1, □⃗2)). Before
exploring further arguments to fill into □⃗2, Gauss checks whether the program so far is on
track to realize the query decompositions.

In particular, Gauss evaluates the call to gather, and computes its graph abstraction.
This graph abstraction is on the left-hand side of Figure 3.5f. With this set of arguments,
gather discards cells corresponding to the High column.

However, the decompositions for queries 2 and 3 , shown on the right of Figure 3.5f,
require the nodes highlighted in red to be connected to cells in the intermediate output.
This is not the case in the graph abstraction on the left because the corresponding cells were
discarded by the call to gather!

Thus, the decomposition for queries 2 and 3 cannot be realized, regardless of the
arguments for group by. That is, any completion of P1 will not satisfy the queries 2 and
3 , and thus can be safely pruned by Gauss even before exploring any arguments for group by.

All these pruning strategies allow Gauss to quickly explore more promising arguments
to σ5, before arriving at the solution in the bottom right of Figure 3.5f.

3.2 Technique

In this section, we describe and formalize the technique behind Gauss.

3.2.1 Preliminaries and Notation

This section establishes common notation used throughout the formal description of the
Gauss algorithm, and may be worth referring back to while reading Sections 3.2.2, 3.2.3,
and 3.2.4.

3.2.1.1 Table Transformation Programs

Gauss synthesizes a linear table transformation program, say P . This program takes in
a list of input table variables ν⃗in and a program P of length k of the form:

(ν1 = C1(p⃗1, c⃗1); . . . ; νk = Ck(p⃗k, c⃗k)),

CHAPTER 3. GAUSS 44

where:

• each Ci is a table transformation component (e.g. an API function) with a list of table
arguments p⃗i and a list of constant arguments c⃗i,

• each νi is a variable representing the table output of Ci(p⃗i, c⃗i),

• each pji ∈ p⃗i is either an input table variable in ν⃗in or a table variable from the set
{ν1, . . . , νi−1}.

Let D be the domain of all such programs. The set of available components, denoted by
Components(D), consists of the standard projection, selection and cross-product relational
algebra operators along with other operations such as gather, group by, mutate, spread that
allow a mix of common reshaping and summarization operations. The domain of constants,
Constants(D), consists of the (countably infinite) set of column names, cell values, row
indices, etc. Gauss borrows this set of components from prior work [34], which the reader
can refer to for a more detailed discussion.

The execution trace of a program P on input tables t⃗in is:

⟨(C1, t⃗1, c⃗1, o1), . . . , (Ck, t⃗k, c⃗k, ok)⟩

where for each component Cj:

• t⃗j is the vector of tables passed to Cj, and

• oj = Cj(t⃗j, c⃗j) is the table produced by the execution of Cj(t⃗j, c⃗j).

We denote such a trace as τ(P, t⃗in). The output of P is the output of the last component:
P (t⃗in) = ok.

A program skeleton, or just skeleton, is obtained by replacing all constant arguments
of the program’s components with holes. Precisely, a skeleton σ of length k is of the form:

σ = (ν1 = C1(p⃗1, □⃗1); . . . ; νk = Ck(p⃗k, □⃗k)).

Programs(σ) is the set of all programs sharing the skeleton σ and Skeleton(P) is the skeleton
of the program P . We use the shorthand Ci(σ) to refer to the ith component of σ.

A partial program is a partially filled skeleton. That is, a partial program Ppart with
respect to some skeleton σ maps the first d holes of σ to appropriate constant argument
vectors, i.e. σ[□⃗1 7→ c⃗1, . . . , □⃗d 7→ c⃗d].

The partial execution trace of Ppart on input tables t⃗in, denoted τ(Ppart, t⃗in), is:

⟨(C1, t⃗1, c⃗1, o1), . . . , (Cd, t⃗d, c⃗d, od)⟩.

CHAPTER 3. GAUSS 45

3.2.1.2 Graphs

A graph G consists of a set of nodes N(G) and edges E(G). Each node n ∈ N(G) has a
label lbl(n) and an entity entity(n). Entities define groups of nodes, where all n ∈ N(G)
with the same e = entity(n) belong to the same group. We use Entities(G) to denote the set
of all entities in G, {entity(n) | n ∈ N(G)}. We use N(G, x) to refer to the set of nodes in
G with entity x.

Our edges are directed; we use src(e) and dst(e) to refer to the source and destination
of the edge e, respectively. The label of an edge e is denoted lbl(e). We say (n1, n2, ℓ) is an
edge in G if there exists e ∈ E(G) such that src(e) = n1 ∧ dst(e) = n2 ∧ lbl(e) = ℓ. As an
example, consider the graph in Figure 3.4. Node labels are COL, CELL and IDX while edge
labels are = and MEAN. The nodes with the blue color scheme have the same entity i, while
those in green have entity o.

We say G1 is a subgraph of G2, denoted by G1 ⊆ G2 if N(G1) ⊆ N(G2) ∧ E(G1) ⊆
E(G2).

The subgraph induced in G by a set of nodes SN contains only the nodes of G present
in SN and edges with end-points amongst this set of nodes.

The union of two graphs is the graph G = G1 ∪ G2 such that (N(G) = N(G1) ∪
N(G2)) ∧ (E(G) = E(G1) ∪ E(G2)).

A graph G is a unit graph if there is exactly one node in G with entity ent for every
entity ent ∈ Entities(G).

A graph G1 is isomorphic to G2, denoted by G1 ≃ G2, if there exists a bijection
M : N(G1)→ N(G2) such that:

• ∀n ∈ N(G1). lbl(n) = lbl (M(n)),

• ∀(n1, n2) ∈ N(G1). (entity(n1) = entity(n2)) ⇐⇒ (entity (M(n1)) = entity (M(n2)))
, and

• (n1, n2, ℓ) is an edge in G1 ⇐⇒ (M(n1),M(n2), ℓ) is an edge in G2

That is, there is a mapping between the nodes of G1 and G2 that preserves the edge struc-
ture along with the edge labels. The mapping also preserves the node labels and groupings.
We use G1 ≃M G2 to explicitly specify a mapping M .

A graph Gs is subgraph isomorphic to G, denoted by Gs ⊂∼ G, if there exists an
injective mapping M : N(Gs) 7→ N(G) and a subgraph G′

s of G (G′
s ⊆ G) such that Gs ≃M

G′
s.
Throughout the chapter, for ease of notation, whenever we use G1 ≃ G2 or G1 ⊂∼ G2, we

enforce that the isomorphism mapping M has ∀n ∈ N(G1) ∩ N(G2). M(n) = n. That is, M
is the identity mapping for the nodes common to G1 and G2.

The * next to nodes in a sequence of graphs ⟨ CELL CELL
*=

, CELL I CELL
* MEAN = ⟩,

indicate that the node is shared amongst the graphs. We use *1, *2, etc. to disambiguate

CHAPTER 3. GAUSS 46

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

Figure 3.6: Table abstraction
for the input in Figure 3.2.

Type Low High

0 Pants 50 70

1 Pants 100 190

2 Shirts 80 110

Type Avg-High

0 Pants 130

1 Shirts 110

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

COL COL

CELL CELL

CELL CELL

IDX

IDX

I

I

MEAN

MEAN

MEAN

=

==

=

=
=𝑖

𝑜

group_by(𝑖, by=“Type”, agg=mean(“High”))

CompAbstraction
group_col agg_col

Figure 3.7: Component abstraction of a call to
group by. The constant arguments are embedded in-
side the call.

multiple shared nodes. In figures, we use the notation
CELL CELL= CELLI

MEAN

to concisely
denote sequences (e.g. Fig. 3.5b.).

3.2.2 Graph Abstractions

We now define the concept of the graph abstraction of a program, which was alluded to in
Section 3.1 but not formally defined. This concept is core to the entire Gauss algorithm.

Suppose a program P produces an output table to when executed on input tables t⃗in.
The graph abstraction of a program P represents, as a graph, the relationship between (a)
the input tables t⃗in, (b) the constant arguments c⃗ embedded in P , and (c) the final output
to. We denote the graph abstraction as GraphAbstraction(P, t⃗in, to).

There are two main ingredients required to define GraphAbstraction: (1) a table abstrac-
tion function TableAbstraction(t) that represents table t as a graph and (2) a component
abstraction function CompAbstraction(C, i⃗, c⃗, o) that captures the relationship between in-
put tables i⃗ and constants c⃗ and the output o of a single component C when executed with
the inputs as a graph.

Our definition of the table abstraction function TableAbstraction(t) returns a graph
Gt with a node with label CELL for every table cell, a node with label COL for every column
header and a node with label IDX for every row index. There is an edge with label COLUMN
between the nodes corresponding to a column and every cell in that column. Similarly, there
is an edge with label ROW between a row node and a cell node for every cell in that row.
Thus Gt captures the structure of the table while disregarding the concrete values, just like
AutoPandas. Additionally, every node in Gt has the table t as the associated entity i.e.
∀n ∈ N(Gt). entity(n) = t. This captures the fact that nodes belong to the group of nodes
associated with t. Figure 3.6 illustrates the table abstraction for the input table in Figure
3.2. The vertical and horizontal lines with color () depict both the COLUMN and ROW edges.

CHAPTER 3. GAUSS 47

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

COL COL COL

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

IDX

IDX

IDX

COL COL

CELL CELL

CELL CELL

IDX

IDX

I

I

MEAN
MEAN

MEA
N

ME
AN

MEAN

MEAN

=

=

=

=
=

=
=

=

=

=

𝐺!𝐺"

=
=

= =

Figure 3.8: Trace Abstraction for Program in Figure 3.4. The nodes and edges in the blue
and orange boxes correspond to graphs G1 and G2 respectively.

Our definition of the component abstraction function CompAbstraction(C, i⃗, c⃗, o) re-
turns a graph G which contains the table abstractions of the inputs and output, i.e.,

(TableAbstraction(o) ⊆ G ∧ ∀i ∈ i⃗. TableAbstraction(i) ⊆ G),

along with nodes and edges that capture the relationship between the inputs and output, i.e.,
the semantics of the component. Figure 3.7 shows the graph for a call to group by applied
on the input table from Figure 3.2. Apart from the nodes and edges corresponding to the
table abstractions, the equality edges (labeled “=”) capture the grouping semantics. This
corresponds exactly thus far to the graphs in AutoPandas. However, this graph contains
additional edges such as the MEAN edges, which along with the computation nodes I , capture
the aggregation. Additional self edges on the column nodes of the input table capture the
interpretation of the constant arguments. As we shall see later in the section, these edges do
not play a role in the final graph abstraction but significantly speed up program enumeration
during synthesis (Section 3.2.4.3).

We implemented the TableAbstraction and CompAbstraction procedures for each of our
API components—as imperative Python programs, each 50 LoC long on average. Next, we
use these procedures to define the abstraction of an execution trace.

Given a trace τ(P, t⃗in) = ⟨(C1, t⃗1, c⃗1, o1), . . . , (Ck, t⃗k, c⃗k, ok)⟩, the trace abstraction is
simply the sequence of component abstractions of its constituents:

TraceAbstraction(τ(P, t⃗in)) = ⟨G1, . . . , Gk⟩ where ∀i. Gi = CompAbstraction(Ci, t⃗i, c⃗i, oi)

. Figure 3.8 shows the trace abstraction ⟨G1, G2⟩ of the motivating example’s solution on
the input in Figure 3.2. The graphs G1 and G2 are the component abstractions of the calls
to gather and group by, respectively. Note how G1 and G2 share certain nodes and edges:
this is because they both contain the table abstraction of gather’s output.

The trace abstraction captures the relationships between the inputs and output for each
of the constituent component invocations of the program. However, the graph of user intent

CHAPTER 3. GAUSS 48

Guser captures only relationships between the input and output of the entire program. This
means that to properly evaluate containment of Guser, the final graph abstraction for P must
capture relationships between the original input table(s) and final output table directly.

Thus, in the final graph abstraction for a program P , we need to combine the input-
output relationships of the individual components into an overall relationship between the
input tables of the program and the final output. Consider the union G12 = G1 ∪ G2

of graphs G1 and G2 in Figure 3.8. The path CELL CELL CELL
= =

appears in G12. It

essentially captures the fact that an input cell’s value is equal to the value of a particular
cell of the intermediate output table of gather, which in turn is equal to a cell of the final
output table. We can use the transitivity of equality to conclude that the input cell’s value

is equal to the value of the final output cell. That is, we can add an edge as in CELL CELL
=

. Similarly, we can simplify the path CELL CELL I CELL
= MEAN =

in G12 to establish that

the input cell is directly involved in an averaging operation: CELL I CELL
MEAN =

.

We formalize this idea of propagation of relationships as follows:

Definition 3.2.1 (PropagatedGraph(⟨G1, . . . , Gk⟩, SN)). Let Gu = G1 ∪ . . .∪Gk. The prop-
agation graph of ⟨G1, . . . , Gk⟩ with respect to a set of nodes SN is a graph G such that

• N(G) = N(Gu)− SN and

• there is an edge e ∈ E(G) with lbl(e) = ℓ if and only if (a) its end-points are not in SN

and (b) there is a path between src(e) and dst(e) through nodes in SN with at most
one edge labeled with ℓ ̸= “=” (only one non-equality edge).

Thus, PropagatedGraph(⟨ CELL I CELL
*DIV =

, CELL I CELL
* MEAN =

⟩, {CELL}) is the

graph CELL I I CELL
DIV MEAN =

where the path I CELL I
= MEAN

leads to the edge

I I
MEAN

.
Now, the graph abstraction of a program is simply the propagated graph of the trace

abstraction, augmented with the full table abstractions of the inputs and output.

Definition 3.2.2 (GraphAbstraction). Let ⟨(C1, t⃗1, c⃗1, o1), . . . , (Ck, t⃗k, c⃗k, to)⟩ be the trace of
a program P when run on inputs t⃗in and output to and a corresponding trace abstraction

CHAPTER 3. GAUSS 49

⟨G1, . . . , Gk⟩. Then,

GraphAbstraction(P, t⃗in, to) = Gpropagated ∪Gtable

where SN =
k−1⋃
i=1

N(TableAbstraction(ti))

Gpropagated = PropagatedGraph(⟨G1, . . . , Gk⟩, SN)

Gtable =
⋃

t∈t⃗in∨t=to

TableAbstraction(t)

That is, the graph abstraction contains the abstraction of the inputs and output, as well
as the relationships between inputs and output from the propagation graph. The graph
abstraction must not contain any intermediate outputs, though it can contain intermediate
computation nodes I . Hence SN is the set of nodes belonging to the table abstractions of
the intermediate output tables. Figure 3.4 shows the final graph abstraction of the solution
program for the motivating example. Note how the user graph in Figure 3.2 is subgraph
isomorphic to the graph in Figure 3.4. This observation is at the heart of the problem
statement of Gauss.

3.2.3 Problem Statement

We first formalize the synthesis problem using graph abstractions.

Definition 3.2.3 (Synthesis Problem). Assume a user specification consisting of input tables
t⃗in, partial output table topart , and a graph abstraction of the user intent Guser (captured

automatically via UI). The table abstractions of t⃗in and topart are included in Guser i.e. ∀t ∈
t⃗in. TableAbstraction(t) ⊆ Guser and TableAbstraction(topart) ⊆ Guser. The synthesis problem
is to find a program P such that:

(topart is contained in to) ∧ (Guser ⊂∼ GraphAbstraction(P, t⃗in, to)) where (to = P (t⃗in))

The first clause is in line with a standard problem formulation in example-based synthesis:
the output table to of program P when executed on t⃗in, contains the user-provided partial
output table topart . The second clause enforces a match with the user’s intent ; the graph
abstraction of P must be consistent with the user-provided graph i.e. Guser is subgraph
isomorphic to G.

3.2.4 Synthesis Algorithm

Gauss’s synthesis algorithm is enumerative in nature. That is, it enumerates and checks
programs against the specification one by one and stops when it finds a solution or has
exhausted all programs. Simply enumerating all programs will be prohibitively expensive
as the space of possible programs is very large. The key to Gauss’s performance is how it

CHAPTER 3. GAUSS 50

exploits the user-provided intent graph to prune large parts of this space without explicit
enumeration. Next, we provide the intuition for, and formalize the key idea behind, Gauss’s
pruning: graph decompositions.

3.2.4.1 Graph Decompositions

Consider the sequence of graphs s = ⟨ CELL CELL
*=

, CELL I CELL
* MEAN =

⟩. Its propa-

gated graph as per Definition 3.2.1), with respect to the singleton set {CELL}, is the graph

G = CELL I CELL
MEAN =

. We can think of the sequence s as a decomposition of the result-

ing graph G. Intuitively, s divides the task of aggregation into two parts: first, preserve the
value of the cell in another cell and then perform the aggregation on it. We formalize this
notion of decomposition below.

Definition 3.2.4 (Graph Decompositions). A sequence of graphs ⟨G1, . . . , Gk⟩ is a decom-
position of a graph G if there exists a set of nodes SN ⊆ N(G1 ∪ . . . ∪Gk) such that:

G = PropagatedGraph(⟨G1, . . . , Gk⟩, SN) ∪
⋃

x∈Entities(G)

G[N(G, x)]

The second term is a subgraph of G without any inter-entity edges: in particular, the union
of the subgraphs induced by nodes with the same entity. A decomposition is minimal if
no edges or nodes can be removed from the constituent graphs without violating the above
property.

Combining the problem statement (Definition 3.2.3) and the graph abstraction formula-
tion (Definition 3.2.2) leads us to the following observation, which is core to Gauss’s pruning
strategies.

Observation 3.2.1. If P solves the synthesis problem (t⃗in, topart , Guser), then for all subgraphs
Gq ⊆ Guser, including Guser itself, there exists a decomposition ⟨G1, . . . , Gk⟩ of Gq such that:

(∀j ∈ [1, k]. Gj ⊂∼ G′
j) and ⟨G1, . . . , Gk⟩ is minimal.

where ⟨G′
1, . . . , G

′
k⟩ = TraceAbstraction(τ(P, t⃗in))

Intuitively, ⟨G1, . . . , Gk⟩ can be thought of as a “plan” followed by P to ensure that Gq

is present in its overall graph abstraction. This is because each Gi is a subgraph of the
corresponding component abstraction G′

i. We say that this decomposition is realized by a
program P if ∀j ∈ [1, k]. Gj ⊆ G′

j.

Definition 3.2.5 (Realized Decompositions). We say the decomposition ⟨G1, . . . , Gk⟩ is
realized by a program P for a given input t⃗in, denoted by Realizes(⟨G1, . . . , Gk⟩, P, t⃗in), if
∀j ∈ [1, k]. Gj ⊆ G′

j where ⟨G′
1, . . . , G

′
k⟩ = TraceAbstraction(τ(P, t⃗in)).

CHAPTER 3. GAUSS 51

Recall the decomposition s at the beginning of this section for G = CELL I CELL
MEAN =

which is a subgraph of Guser in Figure 3.2. s is realized by the solution program of the moti-
vating example. The decomposition succinctly captures the plan executed by the program—
the gather invocation is in charge of preserving the value in its reshaping operation so that
the group by invocation can then use it in an averaging operation.

How does Observation 3.2.1 enable pruning? Suppose we want to enumerate and check
programs in Programs(σ) against the user specification (t⃗in, topart , Guser), where σ is a skeleton
of length k. Given a graph Gq ⊆ Guser, suppose we have access to a set Sσ of decompositions
of Gq satisfying the following property: if there exists a program Pσ ∈ Programs(σ) that
solves the synthesis problem for the given user spec, then there exists a decomposition in
Sσ realized by Pσ. This immediately allows us to implement two straightforward pruning
strategies:

1. If Sσ is empty, there does not exist any solution in Programs(σ). Thus we can prune the
entire family of programs with skeleton σ at one go.

2. If Sσ is non-empty and there is a partial program Ppartial with the first d constant argument
holes of σ filled and the trace abstraction ⟨G1, . . . , Gd⟩, if there is no ⟨G′

1, . . . , G
′
k⟩ in Sσ

such that Gi = G′
i for all i ∈ [1, d], we can prune all programs in Programs(Ppartial).

One can think of Sσ as a pre-determined set of “plans”, one of which any solution program
in Programs(σ) must implement. The pruning strategies simply discard programs that clearly
diverge from these “plans”. Strategy (1) was motivated in Section 3.1.2, and Strategy (2) in
Section 3.1.4.

Before formally developing these pruning strategies, we must first answer two main ques-
tions:

1. Which subgraphs Gq ⊆ Guser should we use for pruning?

2. Given Gq and a skeleton σ, how do we construct the set of decompositions Sσ?

How to pick subgraphs Gq ⊆ Guser?

The Gq that will help us prune the search space of programs are ones whose decompositions
give us meaningful information. Consider the user graph Guser in Figure 3.2. A subgraph

G consisting solely of nodes from an input table, like G = CELL , is not useful because its

decomposition is the trivial one: ⟨G,K0, . . . , K0⟩, where K0 is the empty graph.

However, subgraphs of Guser which relate the input and output, like CELL I CELL
MEAN =

, will meaningfully decompose and allow us to conduct the pruning steps described above.
We formalize this intuition by introducing the concept of query graphs :

CHAPTER 3. GAUSS 52

Definition 3.2.6 (Query). Given a user specification (t⃗in, topart , Guser), a query graph Gq is
a subgraph of Guser with at least one node corresponding to every input and the (partial)
output, i.e.

∀(t ∈ t⃗in ∨ t = topart). N(Gq) ∩N(TableAbstraction(t)) ̸= ∅

Additionally, a query must contain at least one path from an input node to an output node.
This ensures that queries represent a meaningful fragment of the relationship between input
and output.

A unit query, like CELL I CELL
MEAN =

has exactly one node corresponding to every input

and exactly one node corresponding to output. A compound query is simply a non-unit query.

How to determine possible decompositions of Gq given a skeleton σ?

In constructing Sσ, the set of decompositions of Gq for a skeleton σ, there is a clear tradeoff
between the effort spent building Sσ and the pruning power it gives Gauss. We could, for
instance, simply let Sσ be the set of all decompositions for Gq, regardless of the skeleton σ
or the user-provided input/partial output. While this is easy to pre-compute, it would not
allow Gauss to do any pruning.

For optimal pruning power, Sσ should only contain decompositions that are realized by
a concrete P ∈ Programs(σ) for the current input and output. However computing those
decompositions precisely requires enumerating all programs in Programs(σ). That is, of
course, equivalent to solving the synthesis problem itself and thus does not help in pruning.
Instead of either of these extremes, we would like to hit the sweet spot: the decompositions
in Sσ are not unrealizable and can be computed independently of the synthesis problem.

Consider the decomposition ⟨ CELL CELL
*MEAN

, CELL I CELL
* = =

⟩ for the graph

CELL I CELL
MEAN =

. It is a meaningless decomposition as no program in our table trans-

formation domain would ever be able to realize it. This is because of the way we define and
implement our component abstractions: in them, a computation edge like MEAN will always
end at a computation node I . So, the first element of the decomposition can never appear
in a component abstraction.

More concretely, a decomposition ⟨G1, . . . , Gk⟩ is unrealizable with respect to a skeleton
σ if any graph Gi cannot ever occur in the component abstraction of Ci(σ) (regardless of the
input tables and constant arguments). For now, assume we have an oracle O that offers a
function Witnessed(G,O, C) that checks this property for us:

Definition 3.2.7 (Witnessed(G,O, C)). Witnessed(G,O, C) returns true iff there exist inputs
i⃗ and constant arguments c⃗ s.t. G ⊂∼ CompAbstraction(C, i⃗, c⃗, o) where o = C (⃗i, c⃗), and false
otherwise.

This allows us to formalize the notion of a unrealizable decomposition:

CHAPTER 3. GAUSS 53

=CELL

COL

CELL

COL

CELL

COL

COL CELL=

=

=

=COL

CELLCELL CELLI
MEAN

CELL CELLISUM

1

2

3

1

2 4

3 CELL CELL= CELL CELLISUM

CELL CELL= CELL CELLI
MEAN

CELL CELLISUM

CELL CELLIMEAN

COL CELL=

COL CELL=

CELL CELL=

COL CELL=

= CELLCELL

= CELLCELL

COL COL= COL=COL

																	,																												

																	,																												

																	,																												

																	,																												

																	,																	

																	,																	

																	,																	

* *

* *

* *

* *

* *

* *

* *

Witnessed Unit Graphs

group_bygather

Figure 3.9: Constructing decompositions with respect to skeleton (ν1 = gather(t1, □⃗1); ν2 =
group by(ν1, □⃗2))

Definition 3.2.8 (Unrealizable Decomposition). We say that a decomposition ⟨G1, . . . , Gk⟩
of graph G is unrealizable with respect to a skeleton σ if there exists j such that:

¬Witnessed(Gj,O, Cj(σ))

We define the oracle O and the details of this Witnessed function in Section 3.2.4.6.
We define the set of possible decompositions of Gq given a skeleton σ as simply the set

of all decompositions that are not unrealizable with respect to σ. We denote this set as
AllDecompositions(Gq, σ) and its construction is described in Algorithm 1.

Algorithm 1 Construction of AllDecompositions(Gq, σ) using oracle O. Assume σ is of
length k.

1: procedure AllDecompositions (Gq, σ)
2: if Gq is a unit query then
3: Construct ⟨S1, . . . , Sk⟩ such that Si = {G | G is a unit graph ∧

Witnessed(G,O, Ci(σ)}
4: D ← {⟨G1, . . . , Gk⟩ | ∀i. Gi ∈ Si ∧ ⟨G1, . . . , Gk⟩ is a decomposition of Gq}
5: else
6: D ← merge AllDecompositions(Gu, σ) for unit queries Gu within Gq

7: return D

Let us step through the algorithm on an example. Say we want to compute all decom-

positions of the query graph Gq = CELL I CELL
MEAN =

with respect to skeleton σ = (ν1 =

gather(t1, □⃗1); ν2 = group by(ν1, □⃗2)). Since Gq is a unit query, we first exhaustively enu-
merate all unit graphs that are witnessed by the components of σ (Line 3). The unit graphs
for gather and group by are shown in Figure 3.9 in the blue and orange boxes respectively.
We then do a combinatorial search for all valid decompositions of Gq (Line 4) by assembling
the unit graphs into a sequence. This results in 7 possible sequences, as shown in Figure
3.9. This assembly essentially makes sure that the output nodes of the unit graphs for
gather align exactly with the input nodes of group by. Only one of these seven is a valid
decomposition for Gq and is highlighted in Figure 3.9.

CHAPTER 3. GAUSS 54

Suppose Gq is a compound query, such as the one below:

CELL

CELLI

MEAN =
CELL

MEA
N

To obtain decompositions for Gq with respect to skeleton σ, we first get the decompositions

for the constituent unit queries within Gq. There is just the unit query CELL I CELL
MEAN =

. We then search over all “merges” of these unit query decompositions (Line 6). A merge
is essentially a component-wise union of the unit query decompositions, but in which dif-
ferent nodes of the constituent unit queries can be merged. This results in two possible
decompositions that are shown below.

CELL
=

CELL=
CELL

CELL =
I

MEAN
CELL

CELLI

MEAN =
CELL

MEA
N

CELL

CELL

=

=
1 2

Armed with this concept of decompositions for query graphs, we are now ready to develop
the overall enumerative synthesis algorithm, using decompositions extensively for pruning.

3.2.4.2 Overall Algorithm

Algorithm 2 outlines the Gauss algorithm. It proceeds as follows. First, Gauss extracts the
set of unit queries from Guser in Q (Line 1). It then prepares a list of skeletons to explore,
where each skeleton σ satisfies the property that AllDecompositions(Gq, σ) ̸= ∅ for all unit-
queries Gq ∈ Q (Line 2). This is a direct instantiation of the first pruning strategy discussed
in Section 3.2.4.1. Then, the outer loop at Line 3 iterates over the possible skeletons while
the inner call to Enumerate (Line 5) searches for a solution program with that skeleton.

Before Gauss enumerates programs with a particular skeleton σ, it calls Feasible (line
4) to perform more checks to determine whether Programs(σ) can possibly contain a solution.
If not, it prunes away the part of the search space corresponding to Programs(σ).

Finally, if the call to Enumerate fails to find a solution with skeleton σ, Gauss attempts
to identify a small subset of queries Qκ ⊆ Q (Line 8) that capture the root cause of this
failure. The graph union of these queries, Gκ, is a subgraph of Guser not contained in the
graph abstraction of any program in Programs(σ). Gauss then keeps track of this subgraph
Gκ to help prune future skeletons earlier (Line 9). A concrete example of this learning was
discussed in Section 3.1.3.

3.2.4.3 Enumeration

Algorithm 3 outlines the Enumerate procedure, used by Gauss to populate program argu-
ments. The loop at Line 2 enumerates partial programs by filling the holes □⃗ = ⟨□⃗1, . . . , □⃗k⟩

CHAPTER 3. GAUSS 55

Algorithm 2 Return a program P satisfying user spec (t⃗in, topart , Guser), or ⊥ if no such P
exists.

Synthesize(⃗i, opart , Guser)
1: Q ← ExtractUnitQueries(Guser)
2: S ← {σ | length of σ ≤ MaxLength and ∀Gq ∈ Q. AllDecompositions(Gq, σ) ̸= ∅}
3: for each σ ∈ S do
4: if Feasible(σ, Q, i⃗, opart , Guser) then

5: P , Gκ ← Enumerate(σ, Q, i⃗, opart , Guser)
6: if P ̸= ⊥ then
7: return P
8: else if Gκ is not empty then
9: Q ← Q ∪ {Gκ}
10: return ⊥

Algorithm 3 For skeleton σ, queries Q, and spec (t⃗in, topart , Guser), return solution P ∈
Programs(σ) if it exists, else the graph union of the smallest set of queries capturing the
conflict.

Enumerate(σ, Q, t⃗in, topart , Guser)
1: k ← length(σ); P ← σ; d ← 1; F ← ∅
2: while d > 0 do
3: P ′ ← FillHoles(P, d)
4: if P ′ = ⊥ then
5: d ← d− 1
6: Backtrack(P, d− 1)
7: continue
8: FP ′ ← {Gq ∈ Q and P does not realize any decomp. in ∈

AllDecompositions(Gq, σ)}
9: if FP ′ ̸= ∅ then ▷ Failure to realize decompositions
10: F ← F ∪ {FP ′}
11: else if d < k then ▷ More holes to fill
12: d ← d + 1; P ← P ′

13: else if P ′ satisfies (t⃗in, topart , Guser) then ▷ Solution found
14: return P ′, ∅
15: else
16: F ← F ∪ {∅}
17: Qκ ← smallest subset of Q such that ∀s ∈ F . s∩Qf ̸= ∅ and ∅ if no such subset exists.

18: return ⊥,
graph⋃

Gq∈Qκ
Gq

CHAPTER 3. GAUSS 56

one-by-one, via the FillHoles function. The variable d captures the depth to which the partial
program P has been filled. In Lines 8 and 9, we prune any partial program which does not
realize any of the available decompositions for a query Gq. This is the second pruning step
motivated in Section 3.2.4.1; we gave a concrete example in Section 3.1.4.

If no solution is found, Enumerate computes the smallest set of queries, Qκ such that
no program or partial program explored was able to realize an available decomposition for
at least one of the queries (Line 17). Enumerate returns the graph union of Qκ (Line 18),
which essentially captures the root cause of failure of enumeration. This is the first step of the
learning strategy described in Section 3.1.3. For the skeleton σ = (ν1 = group by(t1, □⃗1); ν2 =
gather(ν1, □⃗2), this union of conflict queries corresponds to the following subgraph of Guser

from Figure 3.2:

CELL

CELLI

MEAN =
CELL

MEA
N

50

70

102.5

This graph embodies the fact that no programs for this skeleton were able to involve
two cells in the same row (50 and 70) in an aggregation. We use this information in the
Feasible function to filter out other skeletons suffering from the same mistake.

3.2.4.4 The Feasible Check

Algorithm 4 Given a skeleton σ, queries Q, and user-specification (t⃗in, opart , Gpart), return
false if Programs(σ) is guaranteed to not contain a solution else true.

Feasible(σ, Q, t⃗in, topart , Guser)
1: for each Gq ∈ Q do
2: if AllDecompositions(Gq, σ) = ∅ then return false

3: for each d ∈ AllDecompositions(Gq, σ) do
4: if Strengthening(d, σ) is inconsistent with Guser then
5: return false
6: return true

Algorithm 4 outlines Feasible, used by Gauss to prune skeletons before enumerating
arguments. The first check at Line 2 checks if decompositions are available for every query
derived from the user specGuser. Although a similar check is performed in the main algorithm
at Line 2 in Algorithm 2, it is repeated because the set of queries can be updated in the
main loop of the algorithm. The reasoning behind this check is the same as was outlined for
the first pruning step of Section 3.2.4.1.

The second check in Line 4 of Algorithm 4 uses the strengthening of a decomposition
and checks its consistency against the user graph. The next section formalizes the notion

CHAPTER 3. GAUSS 57

of strengthening with respect to a skeleton. We motivated it in Section 3.1.3: the idea of
adding additional nodes and edges to the conflict graph to determine the conditions under
which it must occur in the final graph abstraction. At a high-level, Feasible checks in
Line 4 if the nodes and edges introduced in the strengthening pertaining to the inputs and
final output are consistent with the user-provided graph. If they are not, the skeleton can
be skipped.

For example, the strengthening of the decomposition with respect to the skeleton σ =
(ν1 = group by(t1, □⃗1); ν2 = gather(ν1, □⃗2) of the conflict graph on the left of Figure 3.5d, is
shown on the right of Figure 3.5d. This strengthened decomposition captures the fact that
cells being aggregated by the first component group by must be in the same column for any
program in Programs(σ) to produce the correct aggregation. However, this is inconsistent
with the user intent graph Guser from Figure 3.2 because the two cells corresponding to table
values 50 and 70 are in different columns. Thus, Feasible safely concludes that the skeleton
cannot contain a solution and returns false.

3.2.4.5 Strengthening Decompositions

We first motivate the idea behind strengthening with a simple example. Consider a skeleton
containing a single component group by, i.e. σ = (ν1 = group by(t1, □⃗)). Suppose there
exists a program P ∈ Programs(σ) which when executed on some input realizes the decom-

position ⟨ CELL I CELL
MEAN =

⟩ for the query graph CELL I CELL
MEAN =

. What more can

we say about P? We can prove that P must also realize the following decomposition:

CELL

COL

CELL

COL

IDX

=
I

MEAN
CELL

COL

CELL

COL

IDX

=

=
group_col agg_col

																																		 (⋆)

This is because of the properties of tables and the group by function. Specifically, (a) the
table structure guarantees that every cell node must have a corresponding column and row
node. And (b) every group by operation must have at least one grouping column, and the
cell in that column in the same row as the cell being aggregated must be equal in value to
an output cell in the same row as the cell holding the result of aggregation. Additionally,
the columns being grouped and aggregated are designated by self-edges. More formally, we
define strengthenings of decompositions as follows:

Definition 3.2.9 (Strengthening). A strengthening of a decomposition d = ⟨G1, . . . , Gk⟩
with respect to σ is defined as the decomposition d′ = ⟨G′

1, . . . , G
′
k⟩ such that:

∀P ∈ Programs(σ) and inputs i⃗. Realizes(d, P, i⃗) =⇒ Realizes(d′, P, i⃗)

CHAPTER 3. GAUSS 58

The strengthening operation thus captures additional relationships that must be present
between the nodes of the graphs involved in the decomposition. Gauss exploits strengthened
decompositions to more aggressively prune the search space.

Algorithm 5 Fixed-Point Iteration for Strengthening using oracle O. Assume σ expands
to ν1 = C1(p⃗1, □⃗1); . . . ; νk = Ck(p⃗k, □⃗k))

Strengthening(⟨G1, . . . , Gk⟩, σ)
1: ⟨G′

1, . . . , G
′
k⟩ ← copy of ⟨G1, . . . , Gk⟩

2: while ∃j. G′
j ̸= Strengthen(G′

j,O, Cj) do
3: G′

j ← Strengthen(G′
j,O, Cj)

4: for each (i, ent) such that G′
i shares nodes with entity ent with G′

j do
5: Gent ← subgraph induced in G′

j by nodes in G′
j with entity ent

6: G′
i ← G′

i ∪Gent

7: return ⟨G′
1, . . . , G

′
k⟩

Fixed-point Computation of Strengthening
The computation of Strengthening(⟨G1, . . . , Gk⟩, σ) relies again on the concept of an oracle
O, which we discussed before.

Definition 3.2.10 (Strengthen(G,O, C)). Strengthen(G,O, C) returns the largest graph G′

such that (a) G ⊆ G′ (b) for any component abstraction of C for any arbitrary input, for
all isomorphisms Gs of G in the abstraction, there will be an isomorphism G′

s of G′ in the
abstraction such that Gs ⊆ G′

s.

Roughly, the graph result of Strengthen(G,O, C) captures additional nodes and edges
that must be present for any occurrence of G in a component abstraction of C for any input.
The graph in the strengthened decomposition (⋆) above is, in fact, the result of applying

Strengthen on CELL I CELL
MEAN =

for the component group by.

Algorithm 5 gives the algorithm for computing Strengthening(⟨G1, . . . , Gk⟩, σ) for a de-
composition ⟨G1, . . . , Gk⟩ with respect to skeleton σ. We walk through the algorithm with
the following running example. Suppose, given the query graph below on the left, we want
to strengthen its decomposition, on the right, with respect to the skeleton σ = (ν1 =
group by(t1, □⃗1); ν2 = gather(ν1, □⃗2)):

CELL

CELLI

MEAN =
CELL

MEA
N CELL= CELL=

CELL

I

MEAN

CELL MEA
N

CELL																					,																* *
Query Graph Decomposition

In Lines 2-3, we pick a graph in the decomposition Strengthen. Suppose we pick the first
graph (the one for group by). We Strengthen and update it to the graph on the left below. It

CHAPTER 3. GAUSS 59

captures the property that “Aggregated cells should be in the same column. Their group cells
must be in the same row and must be equal”. In Lines 4-6, we update the rest of the graphs
in the decomposition with the newly added nodes and edges, if they originally shared nodes
with the same entity. We do the update for the graph corresponding to gather because the
input to gather is the output of group by. Hence we add the orange nodes and their edges
to obtain the decomposition below on the right:

CELL

CELL

COL

CELL

CELL

COL

IDX

IDX
I

MEAN

MEA
N

CELL

COL

CELL

COL

IDX

==
=

=

group_col agg_col

CELL

CELL

COL

CELL

CELL

COL

IDX

IDX =
I

MEAN

MEA
N

CELL

COL

CELL

COL

IDX

==

CELL

=

=
group_col agg_col

𝐺!"𝐺#"𝐺#" Decomposition after Iteration 1Update to

In the second iteration, we pick the second graph and apply Strengthen to obtain the
graph on the left below. This one captures the property that all cells have a row and
column. This time, we do not need to update the first graph as no new nodes have been
added for the input to gather. The algorithm finishes, and the final decomposition is shown
on the right below:

CELL

CELL

COL

CELL

CELL

COL

IDX

IDX =
I

MEAN

MEA
N

CELL

COL

CELL

COL

IDX

==

CELL

COL

IDX

=

=
group_col agg_col

𝐺!"𝐺#" Decomposition after Iteration 2

CELL

COL

CELL

COL

IDX CELL

COL

IDX

=

Update to 𝐺!"

Use of Strengthening in Enumerate Although omitted from Algorithm 3 for brevity,
the FillHoles internally utilizes the strengthenings of decompositions to reduce the number of
possibilities for holes. For example, suppose we have the skeleton σ = (ν1 = group by(t1, by =

□1, col = □2(□3)) and the query graph CELL I CELL
MEAN =

is in Q. The strengthening of

the decomposition of the query graph, shown at the top of this section, contains the self-edges
with labels group col and agg col. These self-edges, in turn, help prune the argument space
by quickly filtering down the possibilities for the grouping and aggregating columns. Overall,
this internal use of strengthening greatly reduces the number of possibilities explored.

3.2.4.6 The Oracle

We now formalize the concept of an oracle, used throughout this section to develop Gauss’s
algorithm using the concept of component examples.

CHAPTER 3. GAUSS 60

Component Examples An example for a component C is a tuple (C, i⃗, c⃗, o), where o =
C (⃗i, c⃗). Essentially, an example is a set of arbitrary input tables and constant arguments
and the component output on those inputs. An oracle O is simply a set of examples that
contains at least one example for each component C in our table transformation domain.

If O contains n examples, i.e. |O| = n, we say it is of size n. We use O∞ to denote
the oracle (of infinite size) containing every possible example. Gauss’s algorithm uses two
operations involving the oracle, namely Witnessed and Strengthen. We slightly modify the
original definitions (Definitions 3.2.7 and 3.2.10) to use examples explicitly:

Definition 3.2.11 (Witnessed(G,O, C)). Witnessed(G,O, C) returns true if there exists an
example (C, i⃗, c⃗, o) ∈ O such that G ⊂∼ CompAbstraction(C, i⃗, c⃗, o) and false otherwise.

Definition 3.2.12 (Strengthen(G,O, C)). Strengthen(G,O, C) returns the largest G′ such
that (a) G ⊆ G′, and (b) for all examples (C, i⃗, c⃗, o) ∈ O, and isomorphisms Gs of G ⊆
CompAbstraction(C, i⃗, c⃗, o), there will be an isomorphism G′

s of G
′ in

CompAbstraction(C, i⃗, c⃗, o) such that Gs ⊆ G′
s.

Note that the results of these functions are sensitive to the number of examples used.
This relates directly to the issues of soundness and completeness discussed below.

3.2.4.7 Soundness and Completeness

Gauss’s algorithm is trivially sound as it only returns a program if it satisfies the specifica-
tion. Completeness, on the other hand, depends on the soundness of the pruning strategies.
That is, programs pruned must be guaranteed to not solve the specification. The soundness
of our pruning strategies has already been discussed in the previous sections, but that dis-
cussion assumes that the results of the Witnessed and Strengthen operations are correct, i.e.,
the oracle used is O∞. But in practice, our oracle O is finite, containing |O| = n examples.

Fortunately, we can prove that for a finite set of graphs, there exists a finite oracle such
that it is behaviorally equivalent to O∞ when it comes to the results of the Witnessed and
Strengthen functions. Let us define behavioral equivalence first:

Definition 3.2.13 (Behavioral Equivalence). We say that O1 is behaviorally equivalent
to O2 with respect to a (possibly infinite) set of graphs SG, if Witnessed(G,O1, C) =
Witnessed(G,O2, C) and Strengthen(G,O1, C) = Strengthen(G,O2, C) for all graphs G ∈ SG

and for all components C.

Theorem 3.2.2. If a set of graphs SG is finite, there exists O of finite size n ∈ N such that
O is behaviorally equivalent to O∞ for SG.

Proof. Assuming a finite SG, we can construct such an O as follows. Let us consider the
case for a single component C; we can then repeat this construction procedure for the finite
number of other components. For every graph G in SG, if Witnessed(G,O∞, C) is true, there
is some example in O∞ witnessing it. So, we add this example to O. Since SG is finite,

CHAPTER 3. GAUSS 61

say |SG| = k, this adds at most k examples to O. Definition 3.2.12 implies that adding
examples to O can only cause a (monotonic) reduction in the number of nodes and edges
added by Strengthen(G,O, C) to G. Suppose Strengthen(G,O, C) adds n nodes and m edges
while Strengthen(G,O∞, C) adds n′ nodes and m′ edges to G respectively. We need to add
examples to O to match the behavior; let us pick the examples that cause a reduction of
at least 1 in the number of nodes and edges added by Strengthen. In the worst case, each
example will only remove one node or edge, and we will need to add (n − n′) + (m − m′)
examples to O to get identical behavior on SG. So, to match O∞’s behavior, we have added
at most k + (n− n′) + (m−m′) to O for each component; this proves that O is finite.

In our implementation for the domain of table transformations, the set of possible node
and edge labels is finite, and we set an upper limit of 2 on the number of inputs for each
component. Consequently, the number of possible unit queries is fixed. Further, we only
track compound queries at Line 9 in Algorithm 2 if it is obtained by merging at most 2
unit queries. Thus the set of graphs for which Witnessed and Strengthen is invoked is finite,
and by Theorem 3.2.2, there exists a finite oracle containing n examples with which we can
guarantee completeness. The problem of determining it still remains, however. We determine
n empirically by generating random examples till the results of Witnessed and Strengthen
stabilize. We found that 100 random examples for each component were enough for our
domain. One can also use a set of benchmark problems with known solutions to determine
n, which allows the algorithm to return the correct solution.

3.2.5 User Interface Implementation

We also provide a UI frontend to Gauss that helps users transparently create the intent graph
as they interact with the UI to construct a partial output. As shown in Figure 3.3, the user
is presented with interactive widgets for the input tables and an empty, editable space for
constructing the partial output. The user can simply copy-paste values from the input to
the output or use any of the primitive operations exposed by the UI. These operations can
be accessed via right-clicking on any arbitrary selection of cells, as shown in Figure 3.3b.
Upon selection of the operation, the result is copied into the clipboard, using which the user
can paste the value in the partial output. Once the user is satisfied with the partial output
provided, they can click Synthesize to retrieve solutions from Gauss. If there are multiple
solutions, the user can cycle through them in the UI.

Note that directly editing the partial output is not permitted by the UI. This ensures that
values in the partial output are some function of the input cells or columns. If operations need
to be chained together, such as taking the ratio of two sums, the UI provides a scratch space
to store intermediate computations before pasting the result into the partial output. The
publicly available demo at https://github.com/rbavishi/gauss-oopsla-2021 contains a
walkthrough of a problem that can be solved using this scratch space feature.

https://github.com/rbavishi/gauss-oopsla-2021

CHAPTER 3. GAUSS 62

COL COL

CELL CELL

CELL CELL CELL

IDX

IDX

COL

CELL

CELL

…

COL

CELL

(a) Given the input data frame, the UI creates
the input part of the graph with structural edges.
Some rows are omitted from the graph for space.

COL COL

CELL CELL

CELL CELL CELL

IDX

IDX

COL

CELL

CELL

…

COL COL

CELL CELLIDX

= =

COL

CELL

(b) After a user directly copy-pastes values
(“id1” and “A” in the first column; “y” and “9”
in the third column) from the input to the out-
put, the UI adds output nodes linked to the in-
put.

COL COL

CELL CELL

CELL CELL CELL

IDX

IDX

COL

CELL

CELL

…

COL COL

CELL CELLIDX

= =

COL

CELL

(c) The UI provides a menu of functions that can
be computed on a data selection. After the user
clicks “STR JOIN”, the UI copies the resulting
concatenated string to the clipboard.

COL COL

CELL CELL

CELL CELL CELL

IDX

IDX

COL

CELL

CELL

…

COL COL

CELL CELL CELLIDX

= =
I

JOINJOIN

=

COL

COL

CELL

(d) After pasting the result of a computation
to the output, in addition to adding the output
nodes, the UI adds an intermediate node linked
to the output via equality and to the inputs via
relation edges.

Figure 3.10: Walkthrough of how the UI creates a graph spec. capturing intent as the user
constructs the output.

CHAPTER 3. GAUSS 63

Figure 3.10 shows how the UI records the intent graph when trying to solve the problem
posed in the StackOverflow post 622805272. The original dataframe the user provides has
two id columns and two variable columns (see left of Figure 3.10a). One of the variables, x,
depends on both id1 and id2, while the second, y, only depends on on id1. The user wants
to create a wider table, so that all variables are dependent only on id1—by creating new
columns that combine the id2-dependent variable, x, with the different values of id2. In
Figure 3.10a, the user first loads up the synthesis engine with their input dataframe. At this
stage, the UI adds the table abstraction—which captures the structure of the input table,
ref. Section 3.2.2—of the input dataframe to its graph specification.

Then, the user copies over a few values that are identical in the input and the output
(Figure 3.10b). Specifically, the user copies over (1) the column header “id1” and the first
value “A” of the column to the first column of the output, and (2) the column header “y”
and the first value in that column, “9”, to the third column of the output. After each paste,
the UI adds nodes for the new output values and links these to the input nodes via equality
edge. The right-hand side of Figure 3.10b shows the graph specification after pasting both
(“id1”, “A”) and (“y”, “9”) to the output.

Since the user wants new columns that combine x with different values of id2, they
choose “String Operations >> STR JOIN()” to concatenate x with the first value of the
id2 column. The UI copies the result—“x a”—to the clipboard. When the user pastes the
value to the second column header in the output (Figure 3.10d), the UI adds an intermediate
node representing the result of the computation to the graph specification. The UI links this
intermediate node to the input nodes used in the computation via the JOIN relation edges
and to the pasted output node via an equality edge.

At this point, the user could paste more values, but Gauss actually has enough informa-
tion to synthesize the transformation below:

out 1 = gather(input, ‘‘var’’, ‘‘val’’, ‘‘x’’)

out 2 = unite(out 1, ‘‘newvar’’, ‘‘var’’, ‘‘id2’’)

out 3 = spread(out 2, ‘‘newvar’’, ‘‘val’’)

This program is equivalent to the accepted answer for the StackOverflow post, which happens
to use the newly-added (Sep 2019) pivot wider API function.

3.3 Evaluation

In this section, we present a comprehensive evaluation of Gauss’s algorithm by answering
two primary research questions:

RQ1: What is the upper limit on the pruning power of graph-based reasoning?
Given access to a total specification, that is, an input/output example and a user intent
graph capturing all relationships between the input and output, how does Gauss compare

2https://stackoverflow.com/questions/62280527/

https://stackoverflow.com/questions/62280527/

CHAPTER 3. GAUSS 64

against state-of-the-art pruning-based synthesizers for table transformations that accept the
example alone? We evaluate this by measuring the synthesis runtimes and the number of
program candidates explored by each tool. As Gauss can exploit the user intent graph,
we expect it to take significantly less time to synthesize a solution and explore far fewer
candidates than the baselines.

RQ2: Can user intent graphs reduce the size of output specifications? We also
evaluate whether user intent graphs can help reduce the burden of specifying a complete
output. We minimize the number of output elements–and related user intent graph nodes—
in our specifications (Section 3.3.1), until Gauss can no longer find a solution. This allows
us to measure the achievable reduction in specification size that user intent graphs enable.

3.3.1 Baselines and Benchmarks and Hardware

We compare Gauss against three synthesizers: Morpheus [34], Neo [34] and Viser [125].
Our benchmark suite contains the 80 benchmarks used in Morpheus [34], 50 benchmarks
from Neo and 84 benchmarks from Viser [125]. Note that Viser couples the problems of
synthesis of table transformation and plotting programs. So, we extract the table outputs
inferred during the first step of their algorithm as the output spec for our benchmarks.
We also discarded Viser benchmarks that were not solvable by Viser due to the lack of
expressiveness of its supported operations. Morpheus and Neo benchmarks are harder
than Viser benchmarks in that their ground-truth solutions use 3-5 API function calls
while those for Viser benchmarks use 1-2 function calls. As explained at the beginning of
this chapter, we do not directly compare to AutoPandas as Gauss is meant to augment
it for classes of tasks where AutoPandas underperforms and thus covers only a subset of
operations.

Since all three tools support slightly different sets of operations and thus cannot solve
a portion of each other’s benchmarks, we instantiate and compare Gauss against them
individually. All experiments are performed on a 16-core Intel i9-9900K @ 3.6Ghz machine
with 64 GB RAM running Ubuntu 18.04. We use the publicly available implementations for
all three tools.

Obtaining Total Specifications for Gauss A total specification consists of (1) an ex-
ample containing input and full output tables and (2) a user intent graph capturing all
relationships between the input and output. This maps to a scenario where a user uses our
UI to provide a complete output table. For our experiments, we obtain the user intent graph
programmatically by using the graph abstraction of the ground-truth program. Our graph
abstraction does not retain any information about the functions in the program or their
arguments and is thus suitable for modeling this scenario.

CHAPTER 3. GAUSS 65

400 800
Time (s)

0

50

100

%
 B

en
ch

. S
ol

ve
d

Viser
Gauss

0 200 400
Time (s)

0

50

100

%
 B

en
ch

. S
ol

ve
d

Morpheus
Gauss

0 100 200 300 400
Time (s)

0

50

100

%
 B

en
ch

. S
ol

ve
d

Neo
Gauss

(a) Solving Time: All.

0.1 1 10
Gauss Time (s)

0.01

1

100

Vi
se

r T
im

e
(s

)

0.1 1 10 100
Gauss Time (s)

0.1

10

1k

M
or

ph
eu

s T
im

e
(s

)

1 100
Gauss Time (s)

0.1

10

1k

Ne
o

Ti
m

e
(s

)

(b) Solving Time: Individual.

1 10
Gauss Progs Explored

1

100

10k

Vi
se

r P
ro

gs
 E

xp
lo

re
d

1 10 100 1k
Gauss Progs Explored

1

100

10k

M
or

ph
eu

s P
ro

gs
 E

xp
l.

10 1k
Gauss Progs Explored

10

10k

Ne
o

Pr
og

s E
xp

l.

(c) Progs. explored: Individual.

Figure 3.11: Comparison to Viser, Morpheus and Neo. Red dots in (b) indicate timeouts.
In (b) and (c), dots above the black line indicate that Gauss is better, and dots above the
teal dotted line indicate that Gauss is 10x better.

3.3.2 RQ1: Pruning Power

First, we assess the pruning capabilities of graph-based reasoning in Gauss. We measure
this by comparing the synthesis times and the number of programs explored by Gauss

(specification includes user intent graphs) and our baselines (the specification is only input-
output examples). We use a timeout of 10 minutes for Morpheus and Neo benchmarks
and 20 minutes for Viser, both twice the number used in the respective papers. Figure 3.11
shows the results.

Figure 3.11a compares the synthesis times of Gauss to each of the baselines. The x-axis
shows the time budget and the y-axis shows the number of benchmarks that can be solved
within that budget. We see that (a) Gauss is able to solve all 80 Morpheus benchmarks
with a 2-minute budget while Morpheus solves 78 with a 10-minute budget, (b) Gauss

solves 48 out of 50 Neo benchmarks with a budget of 10 minutes, with 47 in under a
minute, while Neo solves 45 with a 10-minute budget and (c) Gauss solves all 84 Viser

CHAPTER 3. GAUSS 66

benchmarks with a budget of 10 seconds while Viser only solves 81 with a 20-min. budget.
Note that we ignore the time Viser spent synthesizing plotting programs.

Figure 3.11b shows a per-benchmark comparison of synthesis time. Dots above the black
solid line on the figure are benchmarks where Gauss is faster than the respective tool,
those above the teal dashed lines are benchmarks that indicate at least 10× speedups for
Gauss, and those under the dotted-dashed gray line indicate 10× slowdowns by Gauss. Red
dots along the horizontal and vertical axes represent timeouts for the baselines and Gauss

respectively. We find that Gauss is faster than Morpheus and Neo on most benchmarks
(69/80 and 37/50, respectively), and at least 10× faster on 35/80 and 20/50 benchmarks,
respectively. This is significant as Morpheus is written in C++, and Neo is written in
Java, and both parallelize their search by program depth, whileGauss is a sequential program
written entirely in Python. Gauss is also faster than Viser on all but 2 benchmarks, and
over 10× faster on 57 benchmarks.

Figure 3.11c shows a per-benchmark comparison of number of candidates explored. This
includes all partial and complete programs encountered during the search. The results reveal
the root cause of Gauss’s performance improvements: the additional graph specifications
enable Gauss to explore significantly fewer candidate programs than all baselines. For many
Viser benchmarks, Gauss only needs to explore one or two candidates before finding a
solution. The effect is more pronounced for Neo as its set of benchmarks is the hardest in
terms of the size of the solution program. On average across all benchmarks, Gauss prunes
76% of partial programs encountered in Enumerate (Section 3.2.4.3) and 15% of skeletons
in Feasible (Section 3.2.4.4).

Overall, the results show that user intent graphs enable orders-of-magnitude reductions
in the search space compared to methods using only input-output examples as spec.

3.3.3 RQ2: Reduction in Size of Specifications

Now, we assess whether user intent graphs allow for a substantial reduction in the size
of I/O examples provided. In particular, we try to find the smallest output tables (and
corresponding user intent graphs) that still allow Gauss to synthesize the correct programs.

For this experiment, we only consider benchmarks from Viser [125] since it was designed
to work on partial input-output examples. For each benchmark, we manually minimized
the output and the user intent graph while ensuring that Gauss still returns the correct
solution. In particular, we kept only the output elements (cells, column names, and row
indices) which were representative of the transformation. We correspondingly reduced the
user intent graph to a graph that includes the full input but only the nodes associated with
these output elements. This process enables us to mimic a user inputting only these key
output elements in our prototype UI.

Figure 3.12 shows the results with each benchmark as a dot: the x-axis is the number of
nodes in the reduced output, and the y-axis is the number of nodes in the full output. Note
the log scale on both axes. The dots above the green line and grey line indicate benchmarks
with 10× and 100× reductions in size. We see that Gauss synthesizes the correct program

CHAPTER 3. GAUSS 67

1 10 100
Reduced Output Size

10

1k

Fu
ll

Ou
tp

ut
 S

ize

Figure 3.12: Maximal reduction in the number of output nodes such that Gauss still synthe-
sizes the correct program. Dots above the green line and grey line indicate that reduction is
more than 10x and 100x, respectively.

even with orders-of-magnitude less information about the output. On 87% of benchmarks,
it finds the correct solution with 10 or fewer output nodes; on 19%, it finds the solution with
only a single output node. The impact on runtime is negligible: Gauss finds the solution
1.2× faster on average with partial outputs.

Overall, we find that the maximal reduction of output size—while retaining Gauss’s
ability to find the solution—is 33× on average. Although the reduction obtained by users
in a real deployment of our UI would likely be less, these results suggest that capturing user
intent can reduce the burden of output specification.

3.4 Discussion

We elaborate on various topics regarding Gauss’ design, its limitations, and opportunities.

3.4.1 Necessity of a User Interface

Gauss returns a solution program if its abstraction contains the user intent graph as a
subgraph. This inherently places the restriction that the user intent graphs need to use
the same collection of node and edge labels and capture computation in the same way as
the graph abstraction. Our use of a UI solves this problem because the UI translates user
interaction to a user intent graph. It also frees the user from needing to understand the
internals of Gauss.

3.4.2 Ease of Use

Although we provide a UI in Gauss, we do not explicitly and formally evaluate its usability.
Thus our empirical results, where we programmatically generate the user intent graph, may
not reflect real-world usage. For example, although our UI supports the construction of
partial outputs in cases where chaining multiple computations is required, such as taking
the ratio of two sums—, it may not be easy to use. We feel intelligent UI design that allows

CHAPTER 3. GAUSS 68

users to input formulas for such cases could help resolve this problem. In a preliminary
run-through of the UI, we had two participants solve ten problems each: one was able to
solve all 10, while the other participant only solved eight. The experience is discussed more
thoroughly in Appendix 3.4.5.

3.4.3 Multiple Possible Representations

There may be multiple possible ways to construct the partial output using our UI. For
example, a user could explicitly compute the average by first taking a sum and then dividing
it by the count. Our current implementation does not handle this case. This could be
handled by either implementing rewrite rules for graphs in the UI or incorporating such
alternatives into the component abstractions.

3.4.4 Noise in Demonstrations

Finally, like many synthesis systems, Gauss is sensitive to noise in the user-provided specifi-
cations: Gauss assumes that the specification is the ground truth and tries to find a program
that matches the specification. However, in contrast to other input-output-based systems,
Gauss assumes the output and user intent specification is constructed by the UI. This may
reduce the likelihood of users adding certain types of noise (e.g., a typo or error in calculating
the mean of some elements). A possible avenue for future work in this space is to identify
potentially noisy specifications—especially when the system fails to find a program—and
re-run the system with repaired versions of these specifications.

3.4.5 Experience with Real Users

In building our prototype Gauss UI, we did an informal study of the UI with two computer
science graduate students. Both were unaffiliated with the Gauss project. The first student
(henceforth referred to as Participant 1) had some experience using pandas to transform
tables, while the second student (henceforth referred to as Participant 2) did not.

We constructed a Jupyter notebook with 10 distinct problems for these participants to
solve. Each problem contained a natural language description of the desired transformation
along with one input-output example to illustrate the transformation. The goal was to find
a program performing this transformation. To enable participants to use Gauss to find the
program, we provided a second input that they could use to build an intent-annotated partial
input-output example. We spent 15 minutes going over the basic features of the Gauss UI.
Then, for the first 5 problems, we asked the participants to use the UI exclusively to solve the
problems: they had to load the second input and construct a partial output that matched
the specified transformation. For the remaining 5 problems, we told the participants they
could either use the UI or consult any other resources, such as the API documentation or a
search engine, to come up with the solution. If a participant took more than 10 minutes to
solve a problem, we marked the problem as unsolved by the participant.

CHAPTER 3. GAUSS 69

Both participants were able to solve the first 5 problems with the UI alone. In fact,
Participant 1 solved all 10 problems with the UI, taking 1-3 minutes for each problem,
including interaction with the UI, as well as validating the solution. On all 10 problems,
they only provided partial outputs before coming to the correct solution. On 4 problems,
they had to add more cells to the output—the first partial output they provided did not
have enough information for Gauss to find the correct solution. Overall, though, Participant
1 only provided 24% of the output in their partial output.

Participant 2 timed out on 2 of the last 5 problems—they were unable to solve these
problems with the UI and were unable to find external resources (i.e., via a search engine)
to solve the problem. On the 8 problems they did solve, they used the UI exclusively, taking
1.5-5.5 minutes for each problem. Unlike Participant 1, Participant 2 provided full outputs
on two of the problems.

There was one problem Participant 2 was unable to solve that could be solved in two
different ways: (a) by adding three columns or (b) by subtracting a single column from
another existing column that contained the total of the remaining columns. Participant 1
took approach (b) and was able to solve the problem. Gauss, surprisingly, was unable to
solve the problem when Participant 2 used approach (a). This led to a number of bug fixes,
and currently, Gauss synthesizes a correct solution for both approaches.

Overall, this experience suggested that the UI approach to constructing user intent graphs
was certainly viable. However, there is also evidence that in practice, users may not always
provide sufficiently expressive user intent graphs. An in-depth study of this problem will be
key to the practicality of a Gauss-like approach in a deployment setting.

3.5 Summary

In this chapter, we introduced Gauss, a synthesis system for generating data transformation
code that accepts partial input-output examples along with a demonstration of the construc-
tion of the output via a specially designed UI. Gauss includes a novel conflict-resolution rea-
soning algorithm over graphs that enables it to learn from mistakes made during the search
and use that knowledge to explore the space of programs even faster. It also ensures the
final program is consistent with the user intent specification, reducing overfitting.

We compare Gauss to three state-of-the-art synthesizers that accept only input-output
examples. We find that it is able to reduce the search space by 56×, 73× and 664× on
average, resulting in 7×, 26× and 7× speedups in synthesis times on average, respectively.

We also conduct an informal user study to gauge the usability of the new UI. Overall,
we see promising results on the viability of the UI — the participants were able to solve
the majority of the problems, but the partial examples provided were not always sufficiently
expressive to get Gauss to return the right result. There is a research opportunity here in
terms of designing an interaction mechanism that can identify the problematic points and
ask targeted questions to the user.

CHAPTER 3. GAUSS 70

Finally, while both AutoPandas (Chapter 2) and Gauss target a useful subset of data
transformations, there are still a number of wrangling and transformation tasks that are
not fully suited to an input-output example or demonstration setting. Consider the task
of computing the top ten correlated columns along with the correlation values. It is un-
reasonable to expect users to provide examples in this setting as computing the values is
extremely laborious. Such tasks, however, are arguably simpler and concise to describe in
natural language. The two systems VizSmith and Datana, discussed in Chapters 4 and 5
respectively, precisely tackle this class of problems.

71

Chapter 4

VizSmith

The last two chapters introduced AutoPandas and Gauss, assistants for generating data
transformation code from input-output examples, and interactively specified partial input-
output examples, respectively. However, not all data processing or visualization tasks are
amenable to such a form of specification. Consider the task of visualizing the top-10 corre-
lated columns with respect to a target column as a heatmap. It is difficult, if not infeasible
to provide an input-output example for such a task. Even techniques such as Viser are
inapplicable here as the correlation operation is not supported. Direct manipulation tools
for visualizations such as Tableau [115] may also prove to be tricky to use since the data
is not structured in a way such that it can be directly mapped to visual channels. In fact,
a data join operation needs to be performed using a separate UI [102] in order to make a
correlation matrix in Tableau.

Natural language, however, is a convenient specification for such visualization tasks that
require the composition of multiple data processing and visualization operations. Being sim-
ply able to write “heatmap of top-10 correlated columns with Sales” is a lot more convenient
than all the other options presented above. However, code generation from natural language
presents an inherently harder problem — unlike the settings of AutoPandas and Gauss,
candidate programs cannot be automatically evaluated for correctness, as the ambiguity of
natural language prevents the design of a mechanized check. Building an expressive assistant
for generating visualizations from natural language requires a complete rethink of the search
space and algorithm. Search becomes more of a ranking problem, and the search space needs
to align code with natural language, either explicitly in the form of grammars as used in
semantic parsing [68, 138], or implicitly as exemplified by machine learning models. How do
we capture and represent a diverse space of aligned code and natural language?

In this chapter, we present an approach to automatically mine a corpus of aligned code
and natural language and utilize it for the generation of visualizations from natural language.
The resulting assistant is called VizSmith. We leverage the fact that machine learning
platforms such as Kaggle [116] host scores of executable data science notebooks that also
include the raw dataset. We use program analysis to automatically process these notebooks
and mine a knowledge base of visualization functions, which are Python functions that take

CHAPTER 4. VIZSMITH 72

def visualization(df, col1, col2):
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
tab = pd.crosstab(df0[col1], df0[col2])
tab.div(tab.sum(1).astype(float), axis=0)\

.plot(kind="bar", stacked=True)
plt.ylabel('Text-1’)
plt.title('Text-2’)

visualization(df=df,
col1='Operator’,
col2='Call Drop Category')

A

B

C

Create new cell with code

Full Screen View

Figure 4.1: VizSmith’s Jupyter notebook frontend. VizSmith is provided with a table as a
Pandas dataframe along with columns to visualize as input. It has a search bar to input text
queries. (A) shows how Alice uses VizSmith to search for normalized stacked bar charts for
her call quality dataset. (B) and (C) show the visualization selected by Alice and its code
respectively.

an input table and the set of columns to visualize as input and produce a visualization as
output. VizSmith provides a frontend where users can provide a dataframe and the columns
to visualize along with a text query. VizSmith finds, ranks, and executes the functions best
matching the query, and displays the synthesized bespoke visualizations.

At the heart of the mining approach inside VizSmith lies a novel analysis for determining
the quality or reusability of a mined visualization function. The analysis allows it to discard
low-quality code upfront, which greatly helps in improving both the quality and speed of code
generation. To the best of our knowledge, VizSmith represents the first system to provide
a precise conceptual definition of reusability in the context of visualization code. We also
develop a novel approach based on metamorphic testing that approximates this definition
for automatically evaluating the reusability of any arbitrary visualization function.

As before, we walk through an example to illustrate the workings of VizSmith.

4.1 Overview

Alice is a researcher working on a project on analyzing the voice call quality dataset released
by the Indian government [121] containing customer ratings. As part of her project, Alice
needs to build a visual dashboard that updates every time new data comes in. She has
heard about rich data transformation and visualization libraries in Python such as pandas

and matplotlib and decides to use them for this purpose.

CHAPTER 4. VIZSMITH 73

In her dashboard, Alice wants to include a visualization of the distribution of customer
ratings for every network operator individually, normalized by the number of records for
every operator. She decides that a normalized stacked bar chart with a bar for every operator
would be appropriate for this purpose.

Alice promptly writes code to load the dataset into a pandas dataframe. Unsure about how
to create a stacked bar chart, she visits the matplotlib gallery entry for this chart [110] only
to find it insufficient for her needs. She is also uncertain about exactly how to transform her
dataframe in order to create the bar chart. She turns to StackOverflow for help and browses
the results for the query “matplotlib pandas normalized stacked bar chart”.

The top result [49] contains a visualization close to what Alice needs, but she has trouble
understanding the code, let alone adapting it for her data. This experience is in line with
the findings of previous work [134].

Figure 4.1 demonstrates how Alice uses VizSmith to find the visualization of her choice
along with code to produce it. First, Alice brings up the frontend of VizSmith, which is
implemented as a Jupyter notebook [61] widget. Alice provides VizSmith with her dataframe
as well as the columns she wants to visualize. VizSmith then presents a search bar where
Alice provides the same query as before.

VizSmith then consults its knowledge base of visualization functions that it has mined
from the machine learning notebooks written by data scientists on Kaggle. VizSmith utilizes
dynamic program analysis and metamorphic testing to construct these functions. These
visualization functions are regular Python functions that take a dataframe as an argument
along with column arguments and produce a visualization after performing any necessary
dataframe transformations. VizSmith indexes these functions using the names of the API
functions and their keyword arguments, along with the natural language comments found in
the Kaggle notebooks. Given Alice’s keywords, VizSmith finds the best matching functions,
runs them and presents the resulting visualizations in a gallery view as shown in Figure 4.1.
VizSmith allows Alice to expand a particular visualization to a full-screen view as well as
study the code for the visualization.

Alice finds her desired visualization in this list right away, shown in (B) in Figure 4.1.
VizSmith also produces many similar visualizations with small styling variations. The code
for the visualization is shown in (C) and illustrates the inherent complexity of the task as it
needs a combination of three pandas functions, namely crosstab, div and sum followed by the
call to plot. Alice copies the code into her workflow, and adjusts the title and y-axis labels.

Thus, VizSmith is automatically able to retrieve visualization code available online and,
more importantly, automatically adapt it to work for the user’s data. This last step is the
crucial distinction between VizSmith and the usage of search engines to find matching code
wherein the developer or analyst is forced to manually adapt it for use in their respective
context. VizSmith’s corpus is not constrained in any way with respect to the functionality
covered, and thus affords VizSmith unbounded expressivity.

CHAPTER 4. VIZSMITH 74

Data + Text
Query

Kaggle
Notebooks

Instrumented
Execution +
Dependency

Graph

Visualization
Slices +

Minimization

Extract
Visualization

Functions

Reusability
Analysis

Mined
Database

Offline Phase

Mined
Database

Online Phase

Ranked
Visualization

Functions

Scoring
Argument

Combinations
+ Execution

Visualizations

Figure 4.2: Overview of VizSmith.

4.2 Technique

In this section, we describe the technique powering VizSmith.

4.2.1 Architecture of VizSmith

Figure 4.2 presents a high-level overview of VizSmith’s architecture. In the offline phase,
VizSmith collects and mines visualization functions from Python notebooks hosted on the
machine learning platform Kaggle [116] (Section 4.2.2). VizSmith also analyzes the functions
using a novel metamorphic testing scheme (Section 4.2.4) to discard functions ill-suited for
code generation. In the online phase, VizSmith receives from the user, a dataframe as well as
the set of columns in the dataframe that participate in the desired visualization along with
a search query. VizSmith first uses the query to collect a ranked list of functions to explore
(Section 4.2.5.1). Then it finds appropriate arguments to the parameters of each function,
and executes them all. Finally, VizSmith collects and displays the generated visualizations
in a Jupyter notebook user interface.

4.2.2 Mining

We first describe the component of our system responsible for collecting notebooks from
Kaggle, replaying them and harvesting visualization code from the notebook runs.

4.2.2.1 Collecting and Replaying Notebooks

We sort the list of competitions on Kaggle by the number of teams participating in the com-
petition. From the top-50 such competitions, we pick those where the dataset corresponds

CHAPTER 4. VIZSMITH 75

to a single csv/tsv file. We additionally include the titanic and house-prices competitions
as they are the most well-known classification and regression tasks on Kaggle respectively,
resulting in a total of 10 competitions (Table 4.2).

Within these competitions, we only select kernels that have an associated Docker image
ID which can be downloaded from Kaggle’s GCR repository1. To conserve resources, we
ignore GPU-based kernels and impose a timeout of 10 minutes on each kernel run. For
competitions with large datasets (>50k rows), we take a sample of the dataset in order to
reduce the execution time.

4.2.2.2 Instrumentation and Execution

We perform source-level instrumentation of the scripts collected before execution to facilitate
the construction of the dependency graph. We define the dependency graph of a program P
as a graph G such that the nodes correspond to the simple statements in P . A dependency
edge exists between nodes n1 and n2 if the statement corresponding to n2 is data-dependent
or control-dependent on the statement at n1. Data-dependence implies that n2 uses some
variables or data defined or modified at n1. Control-dependence means that if n1 determines
whether n2 executes or not, which is the case when n1 is an if-statement or a looping
statement.

Our source-level instrumentation adds wrapper functions to record essential runtime in-
formation such as variable reads and writes, as well as types and memory locations of objects.
This information helps us construct the dependency graph. Note that we do not instrument
code corresponding to built-in or third-party libraries. Therefore, to capture library depen-
dencies correctly, we construct a separate database of function specs with one entry for each
built-in and API function. For every function, we determine if it has side-effects, based on
the arguments to the function. We write such specs for methods of inbuilt types such as lists,
sets and dictionaries as well as API functions from popular data science libraries, namely
pandas, matplotlib, seaborn, numpy and scikit-learn. These specs are quite coarse — given
the function call df.drop(columns=["Low"], inplace=True), our spec for drop only records that
the dataframe df is modified, instead of the precise column “Low” that was updated. This
keeps our implementation simple at the cost of spurious dependency edges.

4.2.2.3 Visualization Objects and Visualization Slices

Over the course of execution of a program P , we collect the Python objects corresponding
to individual visualizations. In our implementation, we focus on the matplotlib library
as well as its wrapper library seaborn, so we track all unique Python objects of the type
matplotlib.pyplot.Figure. We call such an object a visualization object, or simply visualiza-
tion. We say that visualizations ν1 and ν2 are the same if the corresponding images obtained
after serialization/rendering are a pixel-by-pixel match. For matplotlib, this corresponds to
the output of the matplotlib.pyplot.Figure.savefig API function.

1https://gcr.io/kaggle-images/python

https://gcr.io/kaggle-images/python

CHAPTER 4. VIZSMITH 76

1 import pandas as pd

2 import seaborn as sns

3 sns.set_style('white')

4 df_train = pd.read_csv("../input/train.csv")

5 df_train.fillna(df_train.mean(), inplace=True)

6 df = df_train[['Age']]

7 ax = sns.distplot(df['Age'], kde=False)

8 ax.set(xlabel='Age', ylabel='Frequency')

Figure 4.3: Example of a visualization and a corresponding slice extracted from Kaggle.

For every visualization ν seen over the execution of program P , we construct a visualiza-
tion slice defined as follows:

Definition 4.2.1 (Visualization Slice). We define the visualization slice of a program P
with respect to a visualization object ν, denoted as VizSlice(P, ν), as a program P ′ that
can be obtained by removing statements from P such that, when executed, P ′ produces the
same visualization ν and only ν.

Thus, a visualization slice contains all the statements in a program necessary for recreat-
ing a particular visualization. Figure 4.3 contains a slice of the linked Kaggle notebook for
the shown visualization. Furthermore, the slice should only produce a single visualization.

We use standard dynamic program slicing [3] to obtain a visualization slice. Specifically,
we remove all statements in P that are not reachable via a backward-traversal of the depen-
dency graph of P starting from any of the statements in in the set VizStmts(P, ν) defined
below:

Definition 4.2.2 (VizStmts(P, ν)). VizStmts(P, ν) is the set of all statements in the program
P that directly create/modify the visualization object ν.

In Figure 4.3, the statements in lines 5-6 correspond to the set returned by VizStmts for
the program corresponding to the parent notebook and the visualization object being the

CHAPTER 4. VIZSMITH 77

1 import pandas as pd

2 import seaborn as sns

3 df_train = pd.read_csv("../input/train.csv")

4 df_train.fillna(df_train.mean(), inplace=True)

5 ax = sns.distplot(df_train['Age'], kde=False)

6 ax.set(xlabel='Age', ylabel='Frequency')

Figure 4.4: Minimized version of visualization slice in Figure 4.3.

actual plot at the top of Figure 4.3. The first creates the distribution plot, while the second
sets the labels of the axes. The remaining statements in Figure 4.3 modify the style, load
the dataframe and modify it before visualization and are hence included in the slice.

4.2.2.4 Minimizing Visualization Slices

Recall that our dependency graph construction is not precise as we use coarse specifi-
cations for third-party libraries. As a result, the visualization slice obtained via dynamic
program slicing may still contain irrelevant statements whose removal will not affect the
visualization. Consider the slice in Figure 4.3. The call to set style in line 3 is unnecessary
as the style is "white" by default. It is included in the slice because it writes to an internal
styling dictionary which is then read in the call to distplot thereby establishing a depen-
dency. Taking the subset of columns in line 6 is also unnecessary as distplot only receives the
target column anyway. We can remove both these operations to yield a simpler, minimized
visualization slice, as shown in Figure 4.4.

How do we obtain the minimized visualization slice in Figure 4.4 from the slice in Figure
4.3? Note that it is not enough to simply remove or delete code as one might do if they were
using delta-debugging [140]; removing lines 3 and 6 in Figure 4.3 would lead to an undefined
variable error for df. Essentially, we need transformations that go beyond code removal.

We instantiate the generalized syntax-guided program reduction framework developed
in Perses[113] to enable this minimization. In particular, we use standard statement-level
delta-debugging to remove top-level statements whose removal does not change the generated
visualization. Additionally, we use a transformation where we replace a usage of a variable
holding a dataframe with the usage of a previously defined variable, also holding a dataframe.
We keep alternating between these two transformations until the slice cannot be minimized
further without altering the visualization. Alternation helps here because one transformation
may introduce minimization opportunities for another. Algorithm 6 describes this procedure.

We walk through how the algorithm minimizes the slice in Figure 4.3. In the first it-
eration, delta-debugging (line 5) would remove the call to set style in line 3, Figure 4.3.
Then we iterate over variants returned by DfVarReplace. DfVarReplace replaces a use
of a variable holding a dataframe by a use of another previously defined variable holding a

CHAPTER 4. VIZSMITH 78

Algorithm 6 Minimization Algorithm Pseudocode

1: function Minimize(Pν)
2: current ← Pν ; change ← true
3: while change is true do
4: change ← false
5: variant ← DeltaDebug(current)
6: if variant ̸= current then
7: current ← variant; change ← true

8: for variant in DfVarReplace(current) do
9: if variant produces same visualization then
10: current ← variant; change ← true
11: break
12: Pmin

ν ← current
13: return Pmin

ν

different dataframe. If there are many possibilities, DfVarReplace explores variants in the
descending order of the gap between the original and replacing definitions of the variables,
measured in the number of statements. The variant where df is replaced with df train is
retained. Then line 6 in Figure 4.3 gets removed in the second iteration, and the algorithm
exits after the third iteration as no further minimization occurred, successfully returning the
desired slice in Figure 4.4.

The reasons behind selecting these two transformations are two-fold. First, data-science
code has minimal control flow. Hence, focusing on top-level statements is sufficient. Sec-
ondly, data-transformation logic almost always involves applying API functions on variables
holding the data (dataframes). Since visualization slices can be slow to execute as they
use heavyweight libraries, our restricted set of transformations strike a balance between
scalability and quality of minimization.

4.2.3 Extracting Visualization Functions

In this section, we describe how VizSmith creates visualization functions from a visualization
slice. Visualization functions form the basic unit of VizSmith’s mined database which it uses
for code generation. Throughout this section, whenever we refer to a visualization slice, we
assume it is minimized.

A visualization function is formally defined as follows:

Definition 4.2.3 (Visualization Functions). A visualization function f is a Python function
with a single dataframe parameter df and m column parameters col1, . . . , colm that produces
a visualization.

Note that while the above definition restricts a visualization function to a single dataframe
parameter, our technique has no such inherent restriction. We adopt this definition to

CHAPTER 4. VIZSMITH 79

1 import pandas as pd
2 import seaborn as sns
3 df_train = pd.read_csv("../input/train.csv")
4 df_train.fillna(df_train.mean(), inplace=True)
5 ax = sns.distplot(df_train['Age'], kde=False)
6 ax.set(xlabel='Age', ylabel='Frequency')

1

2
3

4

5

6

Figure 4.5: Dependencies between top-level statements for code in Figure 4.3. Edges labeled
1, 3, 4, 5 and 6 capture dependency between the use and definition of a variable (df train,
df train, ax, sns and pd respectively) while 2 captures the dependency between attribute
reads and writes of an object (the dataframe in df train).

1 def visualization(df, col1):

2 import seaborn as sns

3 df.fillna(df.mean(), inplace=True)

4 ax = sns.distplot(df[col1], kde=False)

5 ax.set(xlabel=col1, ylabel='Frequency')

(a) Visualization function using b=3 and variable as df train.

1 def visualization(df, col1):

2 import seaborn as sns

3 ax = sns.distplot(df[col1], kde=False)

4 ax.set(xlabel=col1, ylabel='Frequency')

(b) Visualization function using b=4 and variable as df train.

Figure 4.6: Visualization functions extracted from slice in Figure 4.3.

simplify the discussion and the notation used throughout the chapter.
At a high level, visualization functions can be extracted from a visualization slice by con-

verting variables holding references to dataframes into parameters and abstracting concrete
references to columns into column parameters. The body of the function contains only the
statements from the slice required to reproduce its visualization given the new dataframe
argument. Figure 4.6 shows two visualization functions from the visualization slice in Figure
4.3. Each of them has a single column parameter col1. Both produce a visualization contain-
ing the distribution plot of the supplied column, with the function in Figure 4.6a performing
an extra imputation step to replace missing values by the mean of their respective columns.
We call the slice Pν from which a visualization function f is obtained as the parent slice of
f .

Algorithm 7 formalizes the idea. Given a visualization slice Pν producing visualization

CHAPTER 4. VIZSMITH 80

ν and its dependency graph G, for every program point b between the top-level statements
of the slice (line 4) , and every variable var holding a reference to a dataframe object valdf
that is in scope at b (line 6), we extract a visualization function as follows. We set the body
of the function to be a subset of the statements in Pν , with the variable var renamed to df
(the dataframe parameter). This subset is the smallest such that if the function is executed
with the initial value of df as valdf in the exact same state it was at program point b in the
slice, the resulting visualization is the same as ν. This subset is obtained using backward
slicing (lines 7-10), but on a subgraph Gr of G. Gr has the same set of nodes as G, but does
not contain any dependency edges in G that originate before the boundary and that arise
because of the use of the variable var or the dataframe valdf. This helps us pick only the
statements necessary to reproduce visualization ν if var is already assigned to valdf to begin
with.

Algorithm 7 Extracting Visualization Functions

GetVarDFs(Pν , b) returns the set of dataframe variables in scope at program point b in
Pν along with their values. IsDataFrameEdge(e, var, dfvar) returns true if the edge e is
a data-dependency edge resulting from the use of variable var or dataframe valdf. Reach-

able(si, Gr, root) checks if si is reachable from root via a backwards traversal of Gr.
1: function ExtractVizFunctions(Pν , ν, G)
2: ⟨s1, . . . , sk⟩ ← top-level statements in Pν

3: funcs ← ∅
4: for each program point b ∈ [1, k] do
5: Sb ← {s1, . . . , sb}
6: for each (var, dfvar) ∈ GetVarDFs(Pν , b) do
7: Er ← {e|e ∈ Edges(G) ∧ src(e) ∈ Sb

∧ IsDataFrameEdge(e, var, dfvar)}
8: Gr ← induced subgraph of G by removing edges in Er

9: root ← VizStmts(Pν , ν)
10: body ← {si | si ∈ {s1, . . . , sk}

∧ Reachable(si, Gr, root)}
11: Sforbid ← {s|s ∈ Sb ∧ var is used in s}
12: if Sforbid ∩ body = ∅ then
13: f .df param ← df
14: f .body ← RenameVar(body, var, df)
15: f .col params, f .body ← InferColParams(f, dfvar)
16: if Verify(f) then
17: funcs ← funcs ∪ {f}
18: return funcs

For example, suppose b=3 and var=df train and the slice under consideration is the
one in Figure 4.3. The graph Gr would not contain the edges 1 and 3 in Figure 4.5 as
they originate right after the statement at line 3 (before b), and arise due to the use of the
dataframe variable df train. The edge 2 is included as it originates after b.

CHAPTER 4. VIZSMITH 81

1 def visualization(df):

2 import seaborn as sns

3 sns.heatmap(df.corr())

Figure 4.7: A visualization function taking no arguments.

Lines 11-12 confirm that the selected statements which appear before the selected pro-
gram point b do not involve the use of variable var. This prevents any dependency on a
possibly stale version of valdf. Then, we infer column parameters by simply replacing all
string constants that correspond to a column name in valdf with parameter variables (line
15). In Figure 4.3, this corresponds to the string "Age" in lines 5 and 6. We also rewrite
attribute based column-accesses of dataframes, such as df.Column as df["Column"] prior to ap-
plying this procedure. We denote the mapping from these column parameters to the string
constants as OrigCols(f). We refer to the selection of valdf as OrigDF(f).

Finally, in line 16, we verify if running the visualization function with valdf, that is,
OrigDFs(f) and OrigCols(f) reproduces the visualization from the parent visualization
slice. Figure 4.6 contains the two visualization functions extracted from the visualization
slice in Figure 4.3. Observe that no choices for a dataframe variable would be available if
we pick the program point b as either 1 or 2.

In this way we are able to obtain 9740 visualization functions across 1188 Kaggle note-
books. Additionally, for each visualization function, we also have access to the original
dataframe and column arguments needed to reproduce the visualization as seen in the par-
ent notebook via OrigDF and OrigCols. We utilize this information heavily when analyzing
these functions and using them for synthesizing visualizations in the next two sections.

4.2.3.1 Participating Columns vs. Column Parameters

Visualization functions have dataframe and column parameters. It is important to note
that column parameters do not necessarily correspond to the exact subset of columns that
actually participate in the visualization. For example, the function in Figure 4.7 accepts no
column arguments, but produces a correlation heatmap of all the numeric columns in the
passed dataframe. We call such columns implicitly participating columns. Consequently, we
call a column as explicitly participating if it is passed as a column argument.

We can decide if a column is implicitly participating using a simple mutation-based
strategy—for every column c in OrigDF(f) that is not mapped in OrigDFs(f), we drop c
from OrigDF(f) and check if the visualization is the same after executing the function. If
it is not, the column c is implicitly participating.

We denote the set of columns visualized (explicit or implicit) by f for the dataframe
OrigDF(f) as OrigParticipatingCols(f). This notion of participation is at the heart of
the reusability analysis as well as visualization code generation, as we shall see next.

CHAPTER 4. VIZSMITH 82

1 def visualization(df, col1):
2 import matplotlib.pyplot as plt
3 counts = df[col1].value_counts()
4 porct =counts/1460*100
5 label = []
6 for i in range(len(counts)):
7 label.append(counts.index[i] + " "+ '{0:.2f}
8 sizes = [1141, 286, 13, 11, 7, 2]
9 colors = ['steelblue', 'skyblue', 'navy',
10 'blue', 'red', 'green']
11 fig, ax = plt.subplots()
12 ax.pie(sizes, colors=colors, shadow=False,
13 startangle=0)
14 ax.axis('equal')
15 ax.legend(label, shadow=True)

Figure 4.8: A visualization function with hard-coded values.

4.2.4 Analysis of Mined Visualization Functions

Before we use the generated visualization functions to service user queries, we need to as-
sess their quality. What makes a mined visualization function “good” (or “bad”) in the
context of programming assistance? Since code generation, by its very nature, involves the
construction of visualizations for an unseen dataframe, a visualization function should be
considered “good” or reusable if, given appropriate assignments to column parameters, it pro-
duces meaningful visualizations for a broad class of dataframes, and “bad” or non-reusable
otherwise. We illustrate our notions of meaningful and broad using examples.

Consider the visualization function in Figure 4.8. Note that the data values passed to
ax.pie in line 12 are hard-coded in the function. That is, regardless of the dataframe and
categorical column passed to the function, the produced visualization will be exactly the
same. The produced visualization is thus not meaningful. If this function is used in a
visualization code generation setting, its resulting visualization would most likely make no
sense to the user and could undermine trust in the system. Thus we deem this function
to be non-reusable. This also illustrates why a successful execution of a function does not
necessarily entail a meaningful visualization.

In contrast, we consider the function in Figure 4.7 as “good” or reusable. It will correctly
produce a correlation heatmap for the class of dataframes that have at least one numeric
column. This class clearly includes a wide variety of dataframes and hence we consider this
function reusable.

Figure 4.9 presents a much more subtle scenario. The function plots a histogram of the
values in col2, but only considers the rows where the value corresponding to col1 is 1. This
filtering criteria is quite arbitrary and only meaningful for dataframes that contain a 1. We
thus deem this function non-reusable..

CHAPTER 4. VIZSMITH 83

1 def visualization(df, col1, col2):

2 import seaborn as sns

3 sns.set(font_scale=2.5)

4 df[df[col1] == 1][col2].hist()

Figure 4.9: A visualization function using a specialized predicate.

4.2.4.1 Defining Reusability

We consolidate the ideas developed in the above discussion in the following definition of
reusability :

Definition 4.2.4 (Reusable Visualization Function). We consider a visualization function
f reusable if there exists a set Sdf of dataframes such that:

1. f produces a meaningful visualization for every dataframe df in Sdf, given an appropriate
assignment of df’s columns to f ’s parameters. A meaningful visualization is non-empty
and represents all the information in df or a filtered view of df where the filtering criterion
is independent of the concrete data values in df. By the representation of information,
we mean that some attribute of a visual element (a line, a dot, an axis, etc.) is directly
or indirectly influenced by every data point.

2. Sdf can be characterized using high-level properties of a dataframe and its columns, in-
cluding types of columns and types of data values, but excluding properties relying on
arbitrary constants or values in the data.

Note that a meaningful visualization need not follow best visualization design practices
that would make it “meaningful” for an end-user. With reusability, we are only concerned
about its relationship to the data and the visualization function code.

Ideally, we would like to be able to automatically classify our mined visualization functions
as reusable and non-reusable and discard the non-reusable functions. However, it is hard to
automatically check if a visualization function is reusable according to Definition 4.2.4 as we
do not have access to Sdf. Essentially, we are faced with the problem of a missing test-oracle
[129]. We present a novel approach of using metamorphic-testing [22] to alleviate this issue.

4.2.4.2 Metamorphic Testing for Checking Reusability

Metamorphic testing relies on ametamorphic relation (MR): a property that must be satisfied
by the outputs of a function for different inputs. Our choice of this property for a visualization
function f is defined as follows:

Definition 4.2.5 (MR for Approximating Reusability). Visualizations produced by f on
mutated copies of its original dataframe i.e. OrigDF(f) must all be different from each
other as well as the original visualization of f .

CHAPTER 4. VIZSMITH 84

These mutated dataframes are produced using column-level type-aware mutation oper-
ators. Definition 4.2.5 along with these mutation operators approximates the concept of
reusability in Definition 4.2.4 in two ways. First, these operators only modify one column
and take the column type (categorical, quantitative, etc.) into account. This helps increase
the likelihood of staying within the class of dataframes f is appropriate for. It also ensures
that this class is characterizable using simple properties like column types. Second, the mu-
tations applied are large enough to warrant a change in the visualization if f truly produces
a visualization that represents all the information in the dataframe or a meaningful subset
of it. This helps catch cases like Figure 4.8 and Figure 4.9

Algorithm 8 Checking Reusability using Metamorphic Testing

1: function IsReusable(f)
2: dforig ← OrigDF(f); νorig ← OrigViz(f)
3: for each c ∈ OrigParticipatingCols(f) do
4: success ← false
5: for each mutation operator m for ColType(c, dforig) do
6: s ← initialize m
7: if Guard(m, dforig, c, s) then
8: df1, . . . , dfk ← m(dforig, c, s)
9: ν1, . . . , νk ← viz produced by f on df1, . . . , dfk
10: if (∀i. νi ̸= νorig) ∧ (∀i ̸= j. νi ̸= νj) then
11: success ← true
12: break
13: if success is false then
14: return false
15: return true

Algorithm 8 formalizes our metamorphic testing strategy. For every visualized column
c ∈ OrigParticipatingCols(f), we check if there exists a mutation operator for which the
metamorphic relation is satisfied for the mutated dataframes it generates. Every mutation
operator has a guard that must be true for it to be applicable (line 7).

Our mutation operators for columns take the type of the column into account and are
listed in Table 4.1. We recognize four distinct types of columns, namely categorical, quan-
titative, ID and nominal. At a high level, for each type of column, we design a mutation
operator for each of the different ways in which a column of that type may participate in a
visualization. We walk through the operators for the two most common types of columns:
categorical and quantitative.

Categorical Columns The visualization may be a function of either (1) the individual
category labels in the column, or (2) the count distribution of categories, or (3) whether a
value is a NaN (missing value). Note that the visualization may represent a function of these
properties, which may not necessarily be the identity function. The first operator in Table 4.1

CHAPTER 4. VIZSMITH 85

Table 4.1: Column Mutation Operators

Column
Type

Mutation Operator Guard

Categorical Replacing a fixed subset of values with new
categories

-

Quantitative Shifting and Scaling Values + Gaussian
Noise

-

Categorical /
Quantitative

Replacing a fixed subset of values with miss-
ing values

Replacing the same subset with arbitrary values
does not change visualization

ID Random Permutation -
Nominal Replace a subset of values with a sample

from the remaining values
-

Nominal Replacing a fixed subset of values with miss-
ing values

Replacing the same subset with values sampled
from the column does not change visualization

selects a fixed subset of values and replaces them with one or more unseen categories. Thus,
if a function relies on hard-coded values or too arbitrary a filtering process, the resulting
visualizations should be the same and thus fail the check. The second operator enables the
check of whether the visualization is sensitive to whether values are NaNs or not, rather
than their concrete values themselves. It also has a guard which checks whether substituting
the same missing values with different categories yields the same result as the original. This
ensures that cases like Figure 4.9 do not pass the check.

Quantitative Columns The visualization may be a function of either (1) the values, (2)
a statistical function of those values, or (3) whether a value is a NaN. The first operator
shifts and scales the data by different amounts and adds some Gaussian noise, thus testing
(1) and (2). We add noise because some statistical functions, such as Pearson correlation,
are robust to uniform scaling and shifting. The magnitude of the shift is at least as large as
the range of values to ensure zero overlap with the original range of values. Null values are
handled similarly as in categorical columns.

The mutation operators for ID and nominal columns are designed using similar principles.
VizSmith is able to discard 26% of mined functions by classifying them as non-reusable via
this approach. We evaluate how well the metamorphic testing approach approximates the
main definition of reusability in Section 4.3.2.

4.2.5 Visualization Code Generation

VizSmith accepts a user specification comprising dataframes, a list of columns in each
dataframe that need to participate in the visualization, and a search query. VizSmith uses
the search query to get a ranked list of visualization functions from the database obtained
using the mining and analysis components from Sections 4.2.2 and 4.2.4. Then for each
function, VizSmith determines the best possible assignments to the dataframe and column
arguments, runs the function, collects the visualizations generated, and presents them to the
user after deduplication.

CHAPTER 4. VIZSMITH 86

4.2.5.1 Search

Algorithm 9 Instantiating Visualization Functions

1: function Instantiate(f, df, vcols)
2: V ← ∅; params ← ColParams(f)
3: M ← set of all injective maps from params to vcols

▷ Score is non-zero and every col in vcol is mapped to a param or potentially implicit
4: Mvalid ← {m|m ∈ M ∧ Score(f, df,m) > 0 ∧ ∀c ∈ vcols. (IsImplicitCand(f, df, c) ∨ ∃p ∈

params. m[p] = c)}
5: for each m in Rank(Mvalid, Score) do
6: ν ← f(df,m)
7: if ν is valid then
8: V ← V ∪ {ν}
9: return V

10: function Score(f, df,m)
11: dforig ← OrigDf(f); morig ← OrigCols(f); score ← 0
12: for each p ∈ ColParams(f) do
13: cm ← m[p]; corig ← morig[p]

▷ Column-types must match for the mapping to be valid
14: if ColType(dforig, corig) ̸= ColType(df, cm) then
15: return 0
16: dorig ← DTypes(dforig, corig); dm ← DTypes(df, cm)
17: score ← score + (|dorig ∩ dm| / |dorig ∪ dm|)
18: if HasNulls(dforig, corig) = HasNulls(df, cm) then
19: score ← score + 1

20: return score

VizSmith associates each mined visualization function with a text document that con-
tains (a) the natural language comments around the visualization statements in the parent
notebook, (b) the text in the title and axis labels of the visualization in the parent note-
book, (c) the names of the API functions used and (d) the API documentation of the API
functions used in the visualization function. We collect comments from the notebook under
the assumption that authors often attach meaningful comments describing the logic in and
before/after cells, although this may not always be true.

Given a search query, we rank documents according to their similarity with the search
query using BM25 [9]. To obtain a ranked list of visualization functions, we simply map the
documents back to their respective visualization functions.

4.2.5.2 Generating Visualizations

VizSmith adapts the ranked visualization functions to the user-provided dataframe using
the Instantiate function in Algorithm 9. It takes as input the mined visualization function

CHAPTER 4. VIZSMITH 87

f , the user-supplied dataframe df and the columns that must participate in the visualization
vcols.

In the first phase (lines 3-4), the set of mappings from the column parameters of f to a
subset of vcols is computed. A mapping is valid if (a) it has a non-zero score, and (b) the
columns in vcols that have not been assigned to a parameter as per the mapping are eligible
to be visualized implicitly.

The Score function computes the score of a mapping m for a visualization function f by
comparing m to OrigCols(f). Recall that OrigCols(f) is the mapping column parameters
to the string values in the parent visualization slice of f . Essentially Score checks the
compatibility between the columns using high-level properties such as column, data types,
and presence of null values.

We consider a column eligible to participate implicitly (IsImplicitCand) if there exists a
column in the original set of implicitly participating columns of f that has the same column-
type and data-types. The rationale is that if a column participates implicitly, the criterion
determining its participation is most often a function of the column and data types.

In the second phase (lines 5-9), the mappings are tried one by one, highest-score first.
All the unique valid (non-empty) visualizations collected are returned at the end.

4.3 Evaluation

We focus on three main research questions to evaluate VizSmith:

RQ1: How diverse is the collective functionality of all visualization functions
Specifically, we explore the distributions over the size of the functions, the APIs explored,
and whether a function performs data pre-processing.

RQ2: How accurate is our metamorphic testing approach? We perform a manual
study comparing ground-truth reusability results to those obtained automatically via our
metamorphic testing approach to gauge its efficacy.

RQ3: What is the end-to-end code generation performance of VizSmith? We
evaluate the efficacy of VizSmith’s code generation approach via the use of an automatically
mined corpus.

4.3.1 RQ1: Diversity of Functionality in Mined Corpus

As it is infeasible to manually examine each function and classify its functionality, we ap-
proximate it as the set of API functions used in the body of the visualization function. Note
that we only consider functions classified as reusable by VizSmith. We find that all mined
functions collectively exercise a total of 289 API functions across 12 third-party libraries. We
further bucket each API function manually into four categories using simple criteria, namely

CHAPTER 4. VIZSMITH 88

Table 4.2: Competition Statistics. # notebooks is the number of notebooks eligible for
execution. ✓, ∅, ⊤, × indicate that at least one viz was mined, no visualizations mined,
timeout and error respectively. # viz. funcs is the number of visualization functions mined
with reusable count in brackets.

competition # kernels # viz. funcs
(✓ / ∅ / ⊤ / ×) (reusable)

LANL-Earthquake-Prediction 219 (46/159/0/14) 90 (86)
covid19-global-forecasting-week-1 223 (78/121/16/8) 397 (212)
house-prices 1025 (437/161/108/319) 3832 (2772)
mercari-price-suggestion-challenge 286 (29/227/24/6) 120 (67)
mercedes-benz-greener-manufacturing 44 (18/8/6/12) 95 (64)
otto-group-product-classification 77 (29/33/5/10) 68 (68)
santander-customer-satisfaction 63 (19/32/10/2) 39 (23)
santander-value-prediction-challenge 213 (16/72/14/111) 64 (47)
titanic 1015 (486/239/45/245) 4745 (3604)
tmdb-box-office-prediction 208 (30/30/62/86) 290 (233)

total 3373 (1188/1082/290/813) 9740 (7176)

Table 4.3: Top-10 API functions in each category, and the number of reusable viz. functions
that use the API.

plotting transform computation styling

sns.heatmap (1064) pd.groupby (367) pd.corr (687) mpl.title (948)
sns.countplot (1019) pd.drop (316) pd.isnull (352) sns.set (882)
sns.distplot (827) pd.fillna (308) pd.mean (241) mpl.ylabel (707)
sns.barplot (629) pd.sort values (264) pd.sum (221) mpl.xlabel (565)
sns.boxplot (576) pd.dropna (235) pd.value counts (217) mpl.xticks (377)
sns.factorplot (370) pd.concat (72) pd.replace (126) sns.set style (344)
mpl.scatter (304) pd.reset index (63) pd.isna (80) mpl.set title (302)
sns.scatterplot (213) pd.pivot table (53) pd.median (67) mpl.legend (252)
mpl.hist (212) pd.get dummies (52) pd.nlargest (63) sns.add legend (207)
sns.catplot (180) pd.head (35) pd.count (61) mpl.set ylabel (176)

CHAPTER 4. VIZSMITH 89

Table 4.4: Characterization of misclassifications by our metamorphic testing approach. FP
and FN stand for false positive and false negative respectively

ID Category Num. Cases

A Arbitrary Filtering using Multiple Columns (FP) 3
B Undetected Over-Specialization (FP) 4
C Visualization Design Choices (Bucketing/Axis-Limits) (FN) 4
D Overaggressive Mutation (FN) 14
E Adequately General Filtering Criterion (FN) 4

(a) “plotting” if it draws a visualization, (b) “transformation” if it involves reshaping or
filtering operations such as transpose, groupby, and dropping null rows, (c) “computation”
if it involves mathematical operations such as correlation and skew and (d) “styling” if it
only modifies the cosmetic attributes of a visualization or the text inside it.

We find that 100%, 27%, 38% and 80% of visualization functions use APIs in categories
(a), (b), (c) and (d) respectively. The top-10 API functions in each category with respect
to the number of visualization functions using the API are listed in Table 4.3. Evidently,
VizSmith’s database covers a wide variety of plotting, styling and transformation operations.

4.3.2 RQ2: Accuracy of Metamorphic Testing

Section 4.2.4 introduced the conceptual definition of reusability of visualizations. We also
proposed an approach using metamorphic testing where the metamorphic relation approxi-
mated this concept of reusability. In this RQ we measure the accuracy, precision, and recall
of this metamorphic testing approach with respect to a ground truth obtained via manual
inspection of the visualization functions using the conceptual definition.

We sampled 50 reusable and 50 non-reusable visualization functions as judged by our
metamorphic testing approach. We then designed an interface that displays these 100 func-
tions one-by-one in a random order. Three of the authors labeled each function as reusable or
non-reusable as per Definition 4.2.4. We computed the ground-truth label via majority vote.
In particular, the authors try to assess the intent of the visualization, the class of dataframes
where a similar visualization would be meaningful, and whether the implementation would
be able to produce that visualization without any modifications.

We find the accuracy of the metamorphic approach to be 71%, with a precision of 73% and
recall of 71%. There were 7 false positives (ground-truth non-reusable, classified reusable)
and 22 false negatives. We categorized these cases in Table 4.4. The category column sum-
marizes the reason for the misclassification of the metamorphic testing approach. Examples
of these categories are shown in Figure 4.10.

The 7 false positives occur because our mutation operators are only applied on one column
at a time (category A), or the code performs overly specific transforms that are not triggered

CHAPTER 4. VIZSMITH 90

def visualization(df, col1, col2):
import matplotlib.pyplot as plt
train_df = df.drop(
df[

(df[col1]>4e3) & (df[col2]<3e5)
].index

)
plt.scatter(train_df[col1],

train_df[col2])

def visualization(df, col1):
import seaborn as sns
df[col1]=df[col1].fillna("S")
df[col1]=df[col1].map({"S":0,"C":1,"Q":2})
sns.heatmap(df.corr(), annot=True)

def visualization(df, col1):
import matplotlib.pyplot as plt
df[col1].hist(bins=5, grid=False)
plt.xlabel(col1)

def visualization(df, col1, col2):
import numpy as np
import matplotlib.pyplot as plt
df[col1]=np.log(df[col1])
plt.scatter(df[col1],df[col2])

def visualization(df, col1):
import seaborn as sns
ms = df[df[col1] > 0]
sns.barplot(ms.index, ms[col1])

A B

C

D

E

Figure 4.10: Examples of each category in Table 4.4.

by mutations (category B), and hence pass the metamorphic testing check. The majority of
the false negatives occur because of over-aggressive mutation (category D). The example in
Figure 4.10 uses a log function that throws an error when our mutation introduces negative
values. In 4 cases, the design choice of using bucketing or changing the axis limits led to
the same visualizations being produced despite the mutations (category C). Finally, there
were 4 cases in Category E where the filtering was not arbitrary (all positive values), but
was judged to be the case by our approach. All categories except E can be handled by a
more sophisticated mutation scheme or finer-grained operators. Category E would require a
pre-defined notion of what is an adequately general filtering criterion.

4.3.3 RQ3: Code Generation Performance

Finally, we evaluate the end-to-end code-generation performance of VizSmith. We reuse the
Kaggle notebooks utilized for mining to create benchmarks. For every visualization slice
we extracted in Section 4.2.2.3, we select a visualization function and create a benchmark
where the dataframe corresponds to the original dataframe i.e. OrigDF(f) and the columns
to visualize are OrigParticipatingCols(f). The natural language query is set to the text
document associated with f as described in Section 4.2.5.1. We select the largest visualization
function, in terms of statements, whose statements all come from the same cell in the parent
notebook. The rationale is that this simulates a real usage scenario for VizSmith as notebook
cells often correspond to a single semantic unit of work. We also only consider reusable
functions as benchmarks. This yields 3284 benchmarks in total.

For each benchmark, we create an instantiation of VizSmith using only visualization
functions mined from competitions other than the one corresponding to the benchmark
(leave-one-out cross-project). We then runVizSmith as well as a baseline version of VizSmith

called VizSmithAll that searches over all visualization functions, including non-reusable
functions on each benchmark till they generate 10 visualizations or timeout after 60 seconds,
whichever is earlier.

We find that both VizSmith and VizSmithAll have a very low top-10 accuracy of 5%.
That is, both have an exactly matching visualization in the top-10 for only 5% of the cases.

CHAPTER 4. VIZSMITH 91

Through manual inspection, we determined two broad reasons for this low performance: (a)
the quality of the natural language query is poor, and (b) styling variations such as color
schemes, rotation of tick labels and legend positions will fail the matching visualization test.
In particular, with respect to a sample of 100 visualization functions, we found only 17% to
actually describe the kind of plot and the columns being visualized. Thus (a) is a distinct
possibility. To mitigate the effects of (b), we sample 50 benchmarks and examine the results
of both tools manually. In particular, we ignore stylistic variations such as color schemes,
rotations of tick labels, legend positions, etc. while comparing the visualizations with the
ground truth. Note that the goal of VizSmith is not to correctly handle queries with precise
styling information — this is best left to direct manipulation technology (see Section 4.4.4).

The top-10 accuracy, when ignoring stylistic changes, is 56% and 46% for VizSmith and
VizSmithAll respectively. Although the numbers are close, the difference lies in the number
of functions explored. VizSmith explores 50% fewer visualization functions than VizSmithAll

while still getting slightly better accuracy as it only searches over reusable functions which we
hypothesized to be more useful during code generation than their non-reusable counterparts.
Hence, we demonstrate the utility of reusability analysis to improve end-to-end performance.

4.4 Discussion

We elaborate on the main taking points behind VizSmith’s design and its limitations, and
highlight opportunities for improvement

4.4.1 Real-World Usage

We have not performed an explicit user study to gauge the performance of users using
VizSmith on real-world visualization authoring tasks. Hence, the results in Section 4.3.3
may not apply to real use cases. Note that performing such a study would require careful
experimental design to decouple the techniques behind VizSmith from the quality of the
mined code as well as the associated natural language comments, which are often imprecise or
even irrelevant. To enable external assessment, we have released a fully functioning prototype
of VizSmith along with a simple UI at https://github.com/rbavishi/vizsmith-demo.

4.4.2 Code Licensing and Security

VizSmith’s database is populated using code written by data scientists and machine learning
practitioners that is publicly available on the Internet. As such, code snippets returned by
VizSmith may not be appropriate for use in certain contexts due to the license of the parent
notebook containing the code snippet. This can be mitigated by passing an appropriately
vetted corpus to VizSmith. Security may also be a concern since VizSmith executes every
function in its database as part of its metamorphic testing phase. We could mitigate this by

https://github.com/rbavishi/vizsmith-demo

CHAPTER 4. VIZSMITH 92

adding extra checks to filter out functions with excessive resource consumption, unauthorized
file system access, or network requests.

4.4.3 Construct Validity

All three research questions involve manual analysis and thus have a subjective component.
For RQ1, we classified the functions manually. To reduce the effect of subjectivity, we
provided simple and easily reproducible criteria for arriving at this classification. For RQ3,
we analyzed the generated visualizations manually because it is hard to automatically identify
stylistic variations in a reliable manner. We precisely listed down the classes of stylistic
variations that we ignore while comparing two visualizations. Judging reusability as per
Def. 4.2.4 involves manual inspection of the code, the data, and the visualization. Thus,
RQ2 has a higher risk of imprecision than RQ1 and RQ3. We mitigated this by having three
reviewers independently judge reusability and taking the majority vote. We also assessed
the misclassifications qualitatively and characterized the failure cases.

4.4.4 Integrating Direct Manipulation

VizSmith failed to produce an exact-match visualization on most queries as matching against
stylistic variations without explicit information is difficult. That being said, VizSmith is
suitable for complex visualization tasks that combine data processing steps to reshape the
data into the right format before plotting. Stylistic improvements are best suited for direct
manipulation [5], and thus integration of VizSmith with direct manipulation capabilities for
touching up the produced visualizations can be potentially useful.

4.5 Summary

In this chapter, we presented VizSmith, a programming assistant for generating visualization
code given keyword-like natural language queries. With VizSmith, we introduce a novel
approach to search space design for aligned code and natural language, utilizing program
slicing to automatically mine diverse visualization code along with code comments from
Kaggle. We additionally present techniques to solve the resulting challenges from utilizing
code online: code quality and reuse. Not all publicly available code is equally good, and we
leverage simple yet effective metamorphic relations tailored for visualizations to discard low-
quality code snippets. Data analysis code often explicitly refers to elements of the underlying
data it is operating on, such as column names or specific values. Consequently, the code
must be suitably modified before it is applied to another compatible dataset. We also use
sophisticated program analysis to lift the code into reusable templates applicable to a much
wider variety of data. We integrated our prototype of VizSmith within Jupyter notebook,
and a demo is available publicly at https://github.com/rbavishi/vizsmith-demo.

https://github.com/rbavishi/vizsmith-demo

CHAPTER 4. VIZSMITH 93

VizSmith also introduces unsolved challenges. Building aligned code and natural lan-
guage corpora using human-written code comments, while convenient, comes with the risk
of poor natural language quality. Indeed, the evaluation results suggest that VizSmith is
strongly affected by the poor quality of descriptions with only 17% of the natural language
descriptions accurately describing its paired code snippet in the VizSmith’s corpus. The fi-
nal assistant contributed by this dissertation, namely Datana described in the next chapter,
tackles exactly this problem.

94

Chapter 5

Datana: Leveraging Automatic Code
Summarization for Code Generation

In the last chapter, we introduced VizSmith, a tool that accepts the data to visualize along
with a keyword-based natural language description to generate visualization code recom-
mendations. It services such queries by performing lookups on an indexed corpus of aligned
visualization code and natural language description pairs. Our key insight and contribution
in VizSmith were to leverage the abundance of open-source visualization code available on-
line on platforms such as Kaggle. We used dynamic program slicing to collect visualization
code from computational notebooks hosted on Kaggle and used program analysis along with
metamorphic testing to create reusable visualization code templates. More importantly,
we use a heuristic to collect accompanying natural language descriptions — we rely on the
assumption that analysts and scientists often include code comments and rich markdown de-
scriptions explaining their workflow in the notebook. Thus, we extracted the code comments
and markdown content surrounding the mined visualization code.

However, we found a sizeable proportion of descriptions obtained in this manner to be
irrelevant or imprecise. This is primarily because (1) analysts and scientists often do not
include detailed descriptions of every single analysis step, and (2) they often only describe
their findings or conclusions from a visualization rather than describe the visualization itself.
Thus, VizSmith does not do well on more precise queries that specify lower-level details such
as mark types, color schemes, titles, font styles and sizes, and legend placements.

It is thus natural to ask: can we eliminate the need to rely on human-written, possibly
imprecise, and/or irrelevant natural language descriptions for code? This chapter explores
the idea of automatically generating high-quality natural language descriptions for a corpus
of code using machine learning and then using it for code generation.

Using Large Language Models (LLMs) for Code Summarization

Recent advances in large-scale, task-agnostic, pre-training to generate language representa-
tions have unlocked a wide spectrum of abilities, most notably in-context learning in language

CHAPTER 5. DATANA 95

models [16]. In-context learning for language models refers to a class of tasks where instruc-
tion for a task is provided as a natural language prompt, optionally along with a handful of
examples. The model is then expected to complete the tasks for unseen examples by simply
predicting the text that comes after. In other words, the model is expected to adapt to a
new task on the fly without any modifications to its weights. Empirical scaling laws, or the
performance trend of models, indicate relatively smooth trends of improvement in perfor-
mance as model sizes increase on text-synthesis tasks [57] as well as in-context learning tasks
[16]. This has led to major efforts in training very large language models with hundreds of
billions of parameters such as GPT-3 [16], and PaLM [25] on vast amounts of data obtained
by principled crawling of the internet. Models such as Codex [21] have been trained on
specially-crafted corpora of code and text and have demonstrated remarkable ability at a
variety of code-related tasks [21, 10]. Thus, we can exploit these advances to use models such
as Codex, specifically their in-shot learning capability with examples or few-shot learning,
to generate natural language descriptions of code snippets automatically.

Why Not Use LLMs Directly for Code Generation?

If we can use Codex to generate code summaries, why not use it directly for code generation
from natural language queries provided by the user? Models such as Codex indeed show
remarkable performance on general-purpose programming benchmarks[21, 10, 78]. Copilot
[40], a code completion tool powered by Codex, has been a commercial success.

However, these models are not perfect. A recent study by Vaithilingam et al. [119]
reported that participants were often bogged down by erroneous code produced by Copilot
and had to spend significant time debugging. This is especially problematic when users are
not familiar with how to solve a particular task with a given set of APIs, a scenario that
is of core interest in this thesis. Thus, there is a clear need to build upon and improve the
performance of this technology.

Retrieval-Based LLM Augmentation for Code Generation

In this chapter, we present an approach, and the resulting system Datana, that combines
the benefits of an automatically assembled corpus of aligned natural language and code pairs
with the code-generation ability of large language models. Specifically, given a code context
and a natural language query, Datana uses the query to retrieve the best-matching pairs of
code snippets and natural language descriptions from the corpus. Then for each retrieved
example, it creates a prompt containing the retrieved example, the original context, and
finally, the query. Then Datana simply returns the completions generated by Codex for
these prompts as suggestions.

Essentially, Datana breaks down the code-generation process into two stages: retrieval
and generation. The retrieval stage fetches relevant examples from a corpus which is then
used as a reference in the generation stage alongside the target query. the retrieved example
provides additional help, such as hints about the syntax and semantics of the functions to

CHAPTER 5. DATANA 96

use or even which algorithm to use to solve a particular task. This breakdown is analogous
to the two stages of the coding process employed by human developers and analysts — first,
a high-level plan of operations is devised that can be mapped to the abstractions available,
which is then translated into code. While analysts are able to do the first step owing to their
programming background, it is the second step of translation that requires them to look up
documentation or search online. In the same way, retrieved examples act as a reference for
easing the burden of the translation step for Codex.

This insight is also shared by Parvez et al. and Drain et al. in their respective retrieval-
augmented code generation systems [84, 30]. However, they rely on corpora created by
scraping functions and their documentation from Github or StackOverflow [51]. Datana’s
approach, which is also its key contribution, is to automatically generate such corpora by
utilizing large language models to automatically summarize mined code snippets. To ensure
a high degree of fidelity of a description generated in this manner to the corresponding
snippet, we introduce the novel notion of bidirectional consistency. Simply put, bidirectional
consistency ensures that the target code is reproducible from the generated description. In
other words, bidirectional consistency ensures that the generated description contains enough
information about the snippet to enable its reproduction. Furthermore, REDCODER and
Drain et al. perform explicit training of models for both the retrieval and generation tasks.
Thanks to the few-shot learning ability of LLMs, we are able to use Codex itself for the
generation task and only need to train a relatively much smaller CodeBERTmodel to perform
retrieval of examples from the corpus using sentence embeddings [97].

Overall, we find that this approach improves Codex’s accuracy by 26% on a large set of
real-world tasks involving the generation of dataframe-manipulating programs from natural
language. Furthermore, compared to the state-of-the-art approach Jigsaw, which applies
sophisticated program analysis to repair an erroneous Codex solution using input-output ex-
amples, Datana improves performance by 4%. This is especially remarkable as Datana does
require the use of any input-output examples or domain-specific post-processing strategies
as employed in Jigsaw.

In the next section, we walk through classes of scenarios where Codex returns erroneous
suggestions and how Datana’s retrieval approach helps Codex correct its mistakes.

5.1 Motivation

In this section, we walk through classes of scenarios where large language models like Codex
can underperform. These classes highlight the different ways in which Datana’s approach of
retrieving examples from a large, automatically-mined corpus can help Codex generate the
desired code snippet by providing additional context in the form of retrieved examples.

CHAPTER 5. DATANA 97

5.1.1 Correcting Algorithmic or Functional Errors

This scenario illustrates how Datana helps Codex correct algorithmic or functional errors.
This includes errors such as using the wrong API functions or wrong combinations of them,
missing a crucial operation, or misinterpreting the intent altogether.

The code snippet below contains a context where a dataframe is initialized and stored
into a variable. The intent of the analyst is recorded as a comment at the end, and the
italicized and highlighted assignment to dfout corresponds to the incorrect suggestion from
Codex. While the suggestion seems okay at a glance, it actually returns an empty dataframe.
The reason is that the inner expression dfin[dfin == "?"] simply evaluates to a dataframe
where the "?" with NaNs or null values. The index is thus exactly the same as dfin. Thus
dropping the index of this new dataframe from the original dfin is equivalent to dropping all
the rows. Essentially, Codex missed a dropna step right after dfin[dfin == "?"] which would
drop all the rows containing nulls.

dfin = pd.DataFrame({
'A': {0: 1, 1: 1, 2: 2, 3: 0, 4: 0, 5: 1, 6: 0},
'B': {0: 0, 1: 0, 2: '?', 3: 1, 4: 1, 5: 0, 6: 1},
'C': {0: 0, 1: 7.5, 2: 1.5, 3: 3.0, 4: '?', 5: 4.5, 6: 6.0},
'D': {0: 0, 1: 2, 2: '?', 3: 1, 4: 0, 5: 1, 6: 2}
})

drop rows in 'dfin' where values are '?'
dfout = dfin.drop(dfin[dfin == '?'].index) # incorrect

Recall that given a query, Datana first fetches relevant examples from its automatically
assembled corpus of aligned code and natural language descriptions. One of the examples
retrieved by Datana for the query above is shown below. While it does not exactly fit
the scenario of dropping rows from an entire dataframe, it does contain the algorithm for
dropping rows containing zeros in a series corresponding to a specific column.

Return a series containing the "population" column in "df" with 0 values replaced by NaN and
rows with NaN values dropped
df['population'].replace(0, np.nan).dropna()

Providing this example to Codex (details in Section 5.2.6) helps Codex adapt the algo-
rithm and make it work for the target query:

dfin.replace('?', np.nan).dropna() # correct

It is worth noting that this is not a trivial code adaptation involving a simple renaming
of variables or constants exercise for Codex. It has to recognize that the original snippet
is targeting a specific column while the goal is to apply the operation across an entire
dataframe. One of the baselines in our experiments uses a much smaller model than Codex
and trains it directly on Datana’s corpus. We found that it very much struggles with such
tasks, highlighting the need for models trained at a scale similar to Codex.

CHAPTER 5. DATANA 98

5.1.2 Highlighting Important Query Fragments

In this following scenario, we show how Codex can sometimes miss important aspects of
the query and how Datana can help out. Similar to the previous scenario, the code snippet
below contains the context (initialization of a dataframe variable) and the query as a natural
language comment. Codex’s suggestion (italicized and highlighted) is subtly incorrect. In
particular, it does the replacement correctly but performs the replacement across the entire
dataframe while the query specifically requests the replacement to be confined to the "city"
and "country" columns. In other words, Codex misses acting upon an important fragment
of the query.

dfin = pd.DataFrame({
'country': {0: 'USA', 1: 'FR', 2: 'UK', 3: 'India', 4: 'India'},
'city': {0: 'LA', 1: 'PAR', 2: 'London', 3: 'MUM', 4: 'DEL'},
'random': {0: 'India', 1: 'Mumbai', 2: 'DU', 3: 'London', 4: 'IN'}
})

Replace 'London' in column 'city' with 'LON', and 'India' in column 'country' with 'IN'
dfin.replace(to_replace=['London', 'India'], value=['LON', 'IN'], inplace=True) # incorrect

One of the best matches in the corpus, as deemed by Datana’s retrieval algorithm (Sec-
tion 5.2.6.1), is shown below.

Replace values "Ms" and "Mme" in the "Title" column with "Miss" and "Mrs" respectively
df['Title'].replace('Ms', 'Miss').replace('Mme', 'Mrs')

The example deals with replacing two values in a single column and doing so in a manner
that is quite different and arguably irrelevant to the target query. However, the example
serves as a clear illustration of confining the replacement to a specific column. Accordingly,
Codex picks up on this connection between the example’s description and corresponding
code and returns the correct solution, as shown below.

dfin.replace({'city': 'London', 'country': 'India'}, {'city': 'LON', 'country': 'IN'}) # correct

The code correctly restricts the replacement of "London" with "LON" to the "city" column,
and "India" with "IN" to the "country" column.

5.1.3 Providing Solutions with Low Adaptation Overhead

This final scenario illustrates how Datana can assume the burden of code generation al-
together when the retrieved example’s functionality exactly satisfies the target query’s re-
quirements. As before, the context below contains the initialization of the dataframe and
its subsequent assignment into a variable. Codex’s suggestion for the target query, which
is supplied as a comment, is shown at the end in italics and with a yellow highlight. The
suggestion is a bit off, as the query clearly requests a single number that corresponds to the

CHAPTER 5. DATANA 99

number of duplicated rows, but the suggestion simply returns the duplicated rows without
de-duplication. Note that the count of these rows would additionally include the first occur-
rence for every duplicated row. While the natural language is certainly ambiguous, counting
duplicates more commonly does not include the first occurrence.

dfin = pd.DataFrame({
'inp1': {0: 5, 1: 5, 2: 15, 3: 3, 4: 3, 5: 33, 6: 3},
'inp2': {0: 12, 1: 12, 2: -5, 3: 7, 4: 7, 5: 14, 6: 7},
'inp3': {0: 17, 1: 17, 2: 4, 3: 9, 4: 9, 5: 17, 6: 9},
'target': {0: 0, 1: 0, 2: 1, 3: 0, 4: 0, 5: 1, 6: 0}
})

count number of duplicate rows in 'dfin'
dup_rows = dfin[dfin.duplicated(keep=False)] # incorrect

The example retrieved by Datana exactly corresponds to the desired functionality. All
that is needed to be done is to replace the variable df with dfin.

Return the number of duplicate rows in "df"
df.duplicated().sum()

This task of variable replacement is relatively easy for Codex, and it expectedly comes
up with the right solution as shown below.

dfin.duplicated().sum() # correct

These three scenarios illustrated the various ways in which Datana helps Codex arrive
at the right solution. It is worth noting that the examples retrieved by Datana are created
using Codex itself. The key insight in Datana is that instead of asking Codex to solve a task
in a single step, we break it down into two steps: (1) creating a knowledge bank offline that
helps capture low-level syntactic, semantic, and algorithmic details, and (2) piecing together
the information from the examples as well as the target query online to solve the task.

5.2 Technique

This section describes the technical details behind Datana. We first give a high-level
overview of Datana’s architecture, followed by a detailed and formal treatment of every
individual component.

5.2.1 Architecture Overview

Figure 5.1 gives an overview of the architecture of Datana, for both the offline and the
online stages. In the offline stage, we prepare the corpus of aligned natural language and code
snippets related to data analysis. We use static program analysis, specifically type inference

CHAPTER 5. DATANA 100

Codex

Mining via
Static Analysis

Auto-Summarization
(Bidirectional Consistency)

Corpus of Data
Analysis Code

Corpus of Aligned
Data Analysis Code + NL

Offline Stage

Online Stage

Codex

Code Context

Natural Language Query

Generated
Suggestions

CodeBERT

Best-Matching
Examples

Figure 5.1: Overview of Datana architecture

(Section 5.2.2), to process ∼400k notebooks from the data science platform Kaggle [116].
Then, for each of the snippets mined, we use Codex to automatically generate descriptions
of varying styles for the mined snippets (Sections 5.2.3, 5.2.4, and 5.2.5). To ensure a high
degree of fidelity of the generated description to the corresponding snippet, we introduce
the notion of bidirectional consistency. Simply put, bidirectional consistency ensures that
the target code is reproducible from the generated description. Thus, we obtain a corpus of
aligned code and high-quality natural language pairs.

In the online stage, Datana accepts the current code context and natural language query
as input from the user. This context corresponds to the contents of the current file being
edited by the user in an IDE of their choice. The natural language query can be simply
supplied as a code comment. Then, examples from the corpus best matching the query are
retrieved. The retrieval algorithm in Datana (Section 5.2.6.1) uses a CodeBERT model [38]
to generate neural vector representations for all the descriptions in the corpus. The model

CHAPTER 5. DATANA 101

Type
e ∈ Eall ∧ type(e) ∈ {DataFrame, Series,Groupby}

e ∈ Epandas

Init
e ∈ Epandas
e ∈ Emined

Subscript
e ∈ Eall ∧ e ≡ v[i] ∧ v ∈ Emined

e ∈ Emined

Accessor
e ∈ Eall ∧ (e ≡ v.acc[i] ∨ e ≡ v.acc.v′) ∧ v ∈ Epandas ∧ acc ∈ KnownPandasAccessors

e ∈ Emined

Attribute
e ∈ Eall ∧ e ≡ v.attr ∧ v ∈ Epandas ∧ attr ∈ KnownPandasAttributes

e ∈ Emined

Pandas-API
e ∈ Eall ∧ e ≡ v.fn(a1, . . . , an) ∧ v ∈ Epandas

e ∈ Emined

Regular-Func
e ∈ Eall ∧ e ≡ fn(a1, . . . , an) ∧ ∃i. ai ∈ Emined

e ∈ Emined

Figure 5.2: Inference rules, applied till fixed-point, for mining expressions from a computa-
tional notebook. Eall is the set of all Python expressions in the notebook, Epandas is the set
of expressions with types related to pandas, and Emined is the final set of expressions mined.

is trained to generate vectors that are closer together for similar pairs of natural language
descriptions and farther apart for dissimilar pairs. The examples are then combined with
the user’s code context and query into a single text prompt for Codex (Section 5.2.6.2), and
the top-5 completion suggestions are returned.

We now describe each of the components inside Datana in detail.

5.2.2 Mining Pandas Expressions

Given a Kaggle notebook, we use standard static type inference to deduce the types of all
the expressions in the notebook. Specifically, we use the Mypy [117] optional static type
checker along with specialized type stubs for the Pandas and Numpy libraries. We obtain
these stubs by building upon third-party stubs [62]. Then, using this type information, we
repeatedly apply the rules described in Figure 5.2 till fixed-point is achieved to obtain the
final set of mined expressions from the notebook, denoted by Emined.

CHAPTER 5. DATANA 102

The Type rule in Figure 5.2 simply collects all expressions with inferred types being one
of the core pandas [118] types — dataframe, series, or a groupby expression, into the set
Epandas. The Init rule states that any expression with a pandas-related type is part of the
mined set Emined. All the other rules build off of these core set of expressions to mine more
complex ones.

The Subscript rule mines expressions that represent a subscript (array) access on an ex-
pression that is already part of the mined set. This helps mine expressions such as df["col"]
used to access a particular column in a dataframe. The Accessor rule helps collect ex-
pressions exercising accessors in pandas such as df["Date"].dt.weekday where the dt accessor
converts the dates in the "Date" column into a format from which weekdays can be extracted.
We maintain a set of known accessors denoted by KnownPandasAccessors. Similarly, the
Attribute rule helps mine expressions such as df.shape which evaluates to the shape of the
dataframe. We maintain a set of available attributes denoted by KnownPandasAttributes.
Next, the Pandas-API rule allows mining of expressions that correspond to Pandas API calls
called on a pandas object such as df.head(5). Finally, the Regular-Func rule helps mine
function calls that has at least one argument that is already considered as part of the mined
set. An example is sns.heatmap(df.corr()) which creates a heatmap of column correlations
in the dataframe using the seaborn library.

We designed these rules in an iterative manner, with the overall aim to capture a majority
of one-liner expressions involving pandas objects that we deemed common and with potential
value. Using these rules, from ∼400k Kaggle notebooks, we built a mined corpus containing
2.5 million expressions, out of which ∼760k were syntactically unique.

5.2.3 Auto Code Summarization using Large Language Models

After the corpus of expressions is mined, we automatically generate natural language de-
scriptions for each of the expressions or snippets using a large language model, specifically
Codex [21] from OpenAI. Codex contains 11 billion parameters and has been pre-trained on
vast amounts of code and text. Specifically, we use the few-shot learning ability of models
such as Codex [16] to generate these natural language descriptions.

A few-shot example for summarization is simply a tuple ⟨c, d⟩ where c is a code snippet
or expression, and d is its corresponding natural language description. We manually create
a set of five few-shot examples by randomly selecting five snippets from the mined corpus
and writing down their descriptions.

Codex is an autoregressive language model — it is trained to predict the next token given
a context of previous tokens. Therefore, to generate descriptions for a target code snippet,
we create a prompt containing (1) a description of the task, followed by (2) the few-shot
examples, and finally (3) the target code snippet itself. The prompt is passed to Codex,
which is then expected to complete the prompt up until a pre-determined stop token. In
other words, the model is expected to pick up the pattern and generate the description of
the target code snippet. Figure 5.3 shows an example of such a prompt.

CHAPTER 5. DATANA 103

Describe the following code snippets in plain English.

Code: df.drop(df[df["GrLivArea"] > 4000].index)
Description: Drop rows in "df" where "GrLivArea" is greater than 4000

Code: pd.merge(df1, df2, on=['shop_id', 'item_id'], how='left').fillna(0)
Description: Do a left-join of "df1" and "df2" on columns "shop_id" and "item_id"
and fill missing values with 0

< ... additional three examples omitted>

Code: pd.notna(df["col"]).mean()
Description: Return the percentage of non-null values in the column "col" of "df"

1
2
3
4
5
6
7

8
…

17
18

Task
Description

Few-Shot
Examples

(Code-to-NL)

Target Code
Generated
Description

Figure 5.3: Prompt supplied to Codex for generating descriptions of code snippets. The
gray, italicized text at the end corresponds to the Codex-generated description.

5.2.4 Bidirectional Consistency

Simply generating descriptions using the previously outlined approach does not guarantee
the description’s correctness. How do we know if the generated description precisely and
completely describes the code snippet? Given the size of the corpus, it is infeasible to devise
a manual or semi-manual verification approach. Our key insight here is that this concept of
correctness can be operationalized as follows.

Definition 5.2.1 (Description Correctness). We say a description d for a code snippet c is
correct if it is precise and complete. That is, the information contained in the description is
necessary and sufficient for an oracle that generates code from natural language to reproduce
the semantics of the code snippet c.

Definition 5.2.1 assumes the availability of an oracle that faithfully translates any ar-
bitrary natural language description into corresponding code whenever possible. While a
perfect oracle of this nature is impossible to obtain, we approximate it by exploiting the few-
shot learning ability of the same large language model, Codex, that we used for generating
the descriptions in the first place. We use the same prompting methodology as before, simply
flipping the natural language and code positions for the few-shot examples and providing
the target description to generate code for at the end. Figure 5.4 shows an example of a
prompt to generate code back from natural language. We formalize this use of prompting to
generate natural language descriptions from code as well as code from natural language as
the two functions CodeToNL and NLToCode respectively.

Definition 5.2.2 (CodeToNL(c,FS)). The function CodeToNL returns a set of strings cor-
responding to the natural language description of the target code snippet c using a large

CHAPTER 5. DATANA 104

Generate a Python code snippet given the English Description.

Description: Drop rows in "df" where "GrLivArea" is greater than 4000
Code: df.drop(df[df["GrLivArea"] > 4000].index)

Description: Do a left-join of "df1" and "df2" on columns "shop_id" and "item_id"
and fill missing values with 0
Code: pd.merge(df1, df2, on=['shop_id', 'item_id'], how='left').fillna(0)

< ... additional three examples omitted>

Description: Return the percentage of non-null values in the column "col" of "df"
Code: pd.notna(df.col).mean()

1
2
3
4
5
6
7

8
…

17
18

Task
Description

Few-Shot
Examples

(NL-to-Code)

Target Desc.
Generated

Code

Figure 5.4: Prompt supplied to Codex for generating code from natural language descrip-
tions. The gray, italicized text at the end corresponds to the Codex-generated code.

language model (LLM) and the set of few-shot examples FS.

Definition 5.2.3 (NLToCode(d,FS)). The function NLToCode returns a set of generated
code snippets from the given description d using a large language model (LLM) and the set
of few-shot examples FS.

Definition 5.2.1 also uses the concept of semantic equivalence in that it allows the oracle
to generate a code snippet that is syntactically different but preserves the semantics of the
original code snippet. Checking equivalence of programs is undecidable in general, and
approximations such as observational equivalence on a finite set of inputs are not applicable
in our setting as our mining procedure does not extract inputs to the mined snippets. Thus,
we further approximate this check as syntactic equivalence modulo code normalization. That
is, the oracle (model) is expected to exactly reproduce the original code from the description.
We use code normalization to eliminate superficial syntactic and simple semantic differences,
such as normalizing keyword argument orders, and replacing attribute-based column access
with subscript-based access, and code formatting. For example, the generated code in Figure
5.4 after normalization will be pd.notna(df["col"]).mean(). Note that syntactic equivalence
is an underapproximation of semantic equivalence — every pair of syntactically equivalent
code snippets are also semantically equivalent, but the reverse does not hold.

We call the correctness check with these oracle and equivalence approximations, bidirec-
tional consistency, as we use the same model for generating as well as verifying descriptions.

Definition 5.2.4 (Bidirectional Consistency, c
FS←→ d). We say that a code snippet c is bidi-

rectionally consistent with a description d (and vice-versa) with respect to a set of few-shot

examples FS, also denoted by c
FS←→ d, if the following holds:

CHAPTER 5. DATANA 105

Code: df.drop(df[df["GrLivArea"] > 4000].index)
Description:
* Drop rows in "df" where "GrLivArea" is greater than 4000
* Use the DataFrame.drop function and explicitly use the index

Code: pd.merge(df1, df2, on=['shop_id', 'item_id'], how='left').fillna(0)
Description:
* Do a left-join of "df1" and "df2" on columns "shop_id" and "item_id" and fill missing values with 0
* Use the pandas.merge and DataFrame.fillna functions and explicitly use the "on" and "how" keyword args

Figure 5.5: Examples of helper descriptions for snippets, italicized with a yellow highlight.

c
FS←→ d ≡ (d ∈ CodeToNL(c,FS)) ∧ (∃c′ ∈ NLToCode(d,FS). SNorm(c) = SNorm(c′))

where SNorm is a function that applies syntax normalization, which includes operations
such as normalizing keyword order, unifying variable names, and code formatting.

We use bidirectional equivalence to obtain as many descriptions as possible for a code
snippet within a budget. Since Codex has request and token rate limits in place, we gen-
erate 10 descriptions for a snippet and then only retain the ones passing the bidirectional
consistency check. Having multiple descriptions for a snippet helps in matching as well as
training the retrieval models (Section 5.2.6.1).

5.2.4.1 Better Approximating Semantic Equivalence

Using syntactic equivalence modulo normalization as described above is a sound approxima-
tion to semantic equivalence. However, in practice, we found it to be too strict. The pandas
library has a large number of function aliases (pd.merge and df.merge, pd.melt and df.melt,
df.fillna(method="ffill", ...) and df.ffill(...)), equivalent argument combinations (both
df.drop(["B", "C"], axis=1) and df.drop(columns=["B", "C"]) are equivalent), and multiple
ways of performing a set of operations in general. We found that enforcing syntactic equiva-
lence in such a scenario led to poor coverage of the mined corpus in terms of the proportion
of snippets for which bidirectionally consistent snippets could be generated.

Therefore, we augment the natural language descriptions with auxiliary or helper de-
scriptions. Helper descriptions contain information about the functions and the arguments
invoked but do not give away information about how to combine the functions or what values
the arguments should take. In other words, these helper descriptions contain just enough
information to tackle the aliasing and multiple-approaches problem described above. Figure
5.5 gives an example of a helper description alongside the main description. How do we
generate these helper descriptions? We simply use Codex again by manually writing and

CHAPTER 5. DATANA 106

Generate a Python code snippet given the English description.

Description:
* Remove rows where column values are bigger than a particular limit
* Use the DataFrame.drop function and explicitly use the index
Code:
 def code(df: pd.DataFrame, col1: str, num1: int):
 return df.drop(df[df[col1] > num1].index)

Description:
* Combine two dataframes, with one being the primary source of data, and fill nulls
* Use the pandas.merge and DataFrame.fillna functions and explicitly use the "on" and "how"
keyword args
Code:
 def code(df1: pd.DataFrame, df2: pd.DataFrame, col_list1: List[str], num1: int):
 return pd.merge(df1, df2, on=col_list1, how='left').fillna(num1)

< ... additional three examples omitted>

Description:
* Percentage of non-null values in a column
* Use the pd.notna and mean functions
Code:
 def code(df: pd.DataFrame, col: str):
 return pd.notna(df[col]).mean()

Task
Description

Few-Shot
Examples

(Imprecise NL
to Code)

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15

…

28
29
30
31
32
33

Target
Description

Code Context

Generated
Code (Body)

Figure 5.6: Prompt supplied to Codex for generating code from possibly imprecise or incom-
plete descriptions as part of the bidirectional consistency check. Additional code context is
provided to fill the information gap in the description. The gray, italicized text towards the
end corresponds to the Codex-generated code.

including helper descriptions in the few-shot examples and then using them in prompts in
both directions to both generate them and use them for verification.

5.2.5 Generating Imprecise and Incomplete Descriptions

The style of descriptions generated in the previous steps, as exemplified by the descriptions in
Figure 5.3, is arguably not representative of how a large fraction of analysts and developers
might state their intent. In particular, it is written in an imperative style and explicitly
states references, constants, and the variables used. Such details are often omitted from
intent specifications in natural language, as evidenced by recent studies [136]. For example,
for the target code in Figure 5.3, a user might very well put down the description as “Reading
a non-comma CSV with specific index column”. In fact, this better resembles how people
search on Google/StackOverflow — abstract concepts and the details are filled out or edited
later within the code.

CHAPTER 5. DATANA 107

Ideally, we would like to be able to generate descriptions of this flavor. However, such
descriptions are arguably imprecise and incomplete, which would preclude a bidirectional
consistency check as the model will not have all the information to be able to reproduce the
code back from the description.

The key idea behind still being able to perform a bidirectional consistency is to provide
the model with additional context when generating code back from a description. In par-
ticular, we ask the model to complete the body of a function, where the parameters exactly
correspond to the variable and constant references that are absent from a description. Fig-
ure 5.4 shows the prompt to generate the code from imprecise descriptions. The function
signature provided at the end of the prompt helps the model fill in the details missing from
the description. Note that to generate these descriptions, we use the prompt obtained by
simply flipping the order of descriptions and code in the few-shot examples, as illustrated in
Figures 5.4 and 5.3.

But a question remains - how do we obtain this context to provide to the model in the
first place? We again use the few-shot learning ability of the language model to parameterize
code snippets as functions and use the function signatures as the additional context.

5.2.5.1 Automatic Parameterization of Code Snippets

We first formally define a parameterization of a mined code expression or snippet.

Definition 5.2.5 (Parameterization(c, d,FSbd,FSparam)). Given a code snippet c and its

description d such that c
FSbd←−→ d, the parameterization of c with respect to the set of few-

shot examples FSparam is a function, with ρ = {p1, . . . , pn} as the set of n parameters and b
as the body, satisfying the following:

∃M : ρ→ Ec such that b[a1/M [a1]][. . .][an/M [an]] = c

where Ec is the set of all sub-expressions in c.

Informally, Definition 5.2.5 simply states that for the parameterization to be valid, there
must exist some assignment of its parameters to sub-expressions of c such that replacing the
parameter variables in b with those expressions yields c itself. To automatically generate
such parameterizations, we manually write down few-shot examples denoted by FSparam.
Note that we use the same code snippets as the ones used as part of few-shot examples for
generating descriptions. Figure 5.7 shows the prompt (and the few-shot examples) used for
generating parameterizations. We check whether the output of Codex satisfies the constraints
in Definition 5.2.5 using standard program analysis.

We use the approach described in Sections 5.2.3, 5.2.4, and 5.2.5 to generate descriptions
for all the mined code expressions. Note that we attempt to generate multiple bidirectionally
consistent descriptions for a single snippet by setting 0.5 as the temperature for Codex
when generating descriptions. Setting a non-zero temperature increases the diversity of
completions returned by Codex.

CHAPTER 5. DATANA 108

Parameterize the code and its natural language description into a reusable function that can
be applied to other input.

Description: Drop rows in "df" where "GrLivArea" is greater than 4000
Code: df.drop(df[df["GrLivArea"] > 4000].index)

Parameterized Description: Drop rows in [df] where [col1] is greater than [num1]
Parameterized Code:
 def code(df: pd.DataFrame, col1: str, num1: int):
 return df.drop(df[df[col1] > num1].index)

Description: Do a left-join of "df1" and "df2" on columns "shop_id" and "item_id" and fill
missing values with 0
Code: pd.merge(df1, df2, on=['shop_id', 'item_id'], how='left').fillna(0)

Parameterized Description: Do a left-join of [df1] and [df2] on columns [col_list1] and fill
missing values with [num1]
Parameterized Code:
 def code(df1: pd.DataFrame, df2: pd.DataFrame, col_list1: List[str], num1: int):
 return pd.merge(df1, df2, on=col_list1, how='left').fillna(num1)

< ... additional three examples omitted>

Description: Return the percentage of non-null values in the column "col" of "df"
Code: pd.notna(df["col"]).mean()

Parameterized Description: Return the percentage of non-null values in the column [col] of [df]
Parameterized Code:
def code(df: pd.DataFrame, col: str):

return pd.notna(df[col]).mean()

Task
Description

Few-Shot
Examples

(Parameterization)

1

2
3
4
5
6
7
8
9

10
11

12
13
14

15
16
17

…

35
36
37
38
39
40
41

Target Code
and

Description

Generated
Code (Body)

Figure 5.7: Prompt supplied to Codex for generating parameterizations of code snippets and
their bidirectionally consistent descriptions.

5.2.6 Augmenting Codex for Improved Code Generation

Now that we have a corpus of code snippets aligned with their bidirectionally-consistent de-
scriptions, we are ready to service online queries from the user in order to generate code from
natural language. Recall that our goal in Datana is to augment Codex when given a natural
language query by providing the best matches from the corpus as guides for generating the
correct code result. Thus, two problems need to be solved to enable augmentation of this
sort: (1) retrieving best matches from the corpus given a natural language query, and (2)
engineering the prompt to expose the results to Codex.

CHAPTER 5. DATANA 109

Use the following code example as a guide to write code for the comment below

Return a series containing the "population" column in "df" with 0 values replaced by
NaN and rows with NaN values dropped
df['population'].replace(0, np.nan).dropna()

dfin = pd.DataFrame({
'A': {0: 1, 1: 1, 2: 2, 3: 0, 4: 0, 5: 1, 6: 0},
'B': {0: 0, 1: 0, 2: '?', 3: 1, 4: 1, 5: 0, 6: 1},
'C': {0: 0, 1: 7.5, 2: 1.5, 3: 3.0, 4: '?', 5: 4.5, 6: 6.0},
'D': {0: 0, 1: 2, 2: '?', 3: 1, 4: 0, 5: 1, 6: 2}
})

drop rows in 'dfin' where values are '?'
dfin.replace('?', np.nan).dropna()

Figure 5.8: Prompt supplied to Codex for code generation in the presence of retrieved
examples. The gray, italicized text towards the end corresponds to the Codex-generated
code.

5.2.6.1 Retrieval

We use the Sentence-BERT framework [98] to train a CodeBERT-base [38] model for produc-
ing embeddings of natural language descriptions that are closer together (cosine similarity
close to 1) for descriptions that are semantically similar and further apart (cosine similarity
close to 0) for dissimilar descriptions. Then given a natural language query, we use the
model to produce an embedding of the query and find the top-k closest natural language
descriptions from the aligned corpus. The code snippets associated with these descriptions
constitute the desired matches.

Training such a model requires access to pairs of descriptions that are known to be
similar (and dissimilar). We create similar pairs by picking two different bidirectionally
consistent descriptions for the same code snippet. To create dissimilar pairs, we simply pair
up descriptions for two randomly chosen code snippets. We further ensure that the training
dataset contains an equal number of similar and dissimilar pairs to avoid class imbalance.

5.2.6.2 Prompt Engineering for Augmenting Codex

The vanilla prompt supplied to Codex for generating code from natural language consists
of the code context followed by the natural language description as a code comment. The
model is then expected to complete the prompt by generating code following the comment.
To utilize retrieval results, we simply add a retrieved example towards the beginning of the

CHAPTER 5. DATANA 110

prompt, as shown in Figure 5.8, with explicit instruction for using the example as a guide.
We create such a prompt for every retrieved snippet and collect Codex completions for all of
them individually. The top-k results for Datana then correspond to the completions for the
top-(k-1) retrieval results, plus the original completion from Codex, that is, the completion
obtained without using any examples. We set k = 5 for the main set of experiments as it
strikes a balance between giving the tool some leeway while not placing too large a cognitive
burden on the users.

A natural alternative to our augmented prompt approach is to combine all retrieval results
into a single prompt. However, we observed poor performance when using this strategy. Our
hypothesis is that this is primarily because too many examples distract from the code context
and make it unclear how to use them.

5.3 Evaluation

In this section, we evaluate Datana using four main research questions:

RQ1: Does Datana complement Codex and improve end-to-end performance on
real-world benchmarks? We use a comprehensive benchmark suite (described in the
next section) to measure the difference in accuracy between Datana and vanilla Codex,
among other baselines.

RQ2: How does Datana compare against a state-of-the-art code generation tool?
We compare against Jigsaw, a state-of-the-art approach for repairing incorrect solutions
from Codex using sophisticated post-processing powered by program analysis.

RQ3: Does Datana complement core improvements in large language models?
Do fundamental architecture and/or training improvements subsume the benefits of Datana?

RQ4: What is the contribution of different components of Datana? We measure
the significance of the major low-level design decisions in Datana.

In order to answer these questions, we first describe the experimental setup — the bench-
marks and the baselines.

5.3.1 Benchmarks

We use the same two datasets used in the evaluation of the Jigsaw system by Jain et al.
[52]. Both datasets contain code generation tasks for data transformations using the pandas
library, containing a natural language description and one or more input-output examples.
The examples are primarily used to check the correctness of the generated programs if any.

CHAPTER 5. DATANA 111

Table 5.1: Performance (% Accuracy) on Jigsaw benchmarks. Results marked (*) are
reported directly from Jigsaw evaluation results [52].

Codex % of Benchmarks Solved
Version PandasEval1 PandasEval2

Datana Only-Generational (Corpus Baseline-1) N/A 13.2 5.3
Datana Generational+Search (Corpus Baseline-2) N/A 14.7 4.3
Jigsaw Var-Renaming* 001 54.9 51.0
Datana Only-Var-Context (Codex Baseline) 001 59.7 50.3
Jigsaw Few-Shot+Var-Renaming* (Simple-Corpus Baseline) 001 63.7 67.5
Jigsaw Full-Offline* 001 66.7 72.2
Datana (top-5) 001 70.1 76.7

Datana Only-Var-Context (Codex Baseline) 002 71.6 60.4
Datana (top-5) 002 79.1 81.1

The first dataset, called PandasEval1, consists of 68 tasks collected from StackOverflow,
with the natural language description being written by the authors themselves. The second
dataset, called PandasEval2, contains 21 tasks for which the accompanying natural lan-
guage descriptions were collected from 25 users as part of a hackathon. Since each task can
have multiple associated queries from different users, this dataset comprises a total of 725
benchmarks.

Since PandasEval1 is constructed by the authors, the natural language descriptions re-
semble the precise descriptions we create using the approach in Section 5.2.4. That is, they
are mostly complete and explicitly state the variables and constants to use. In contrast,
since PandasEval2 is crowdsourced, the queries cover a wider spectrum and may not be as
precise or complete.

Table 5.1 contains the results for Datana, Jigsaw, and a number of baselines which we
describe next.

5.3.2 Baselines and Other Systems

We develop four baselines to illustrate the benefits of combining search results and language
model generation within Datana.

5.3.2.1 Corpus Baselines

These baselines only use the mined corpus to solve the tasks. The first baseline, Datana

Only-Generational is a CodeBERT-base [38] model trained on our entire mined and aligned
corpus to generate code from natural language descriptions. Note that for this baseline,
we only use the precise description and code pairs from our corpus. The second baseline,
Datana Generational+Search is a hybrid baseline where a CodeBERT-base model is trained
to only solve the instantiation problem — given a search result and the actual query, the

CHAPTER 5. DATANA 112

model simply adapts the search result to the query by replacing variable names or constants.
Thus, these two baselines measure the effectiveness of the mined corpus in isolation for
solving natural language to code tasks.

5.3.2.2 Codex Baseline

This baseline, Datana Only-Var-Context, is used to measure the effectiveness of Codex in
isolation for solving the tasks. The prompt provided to Codex in this setting is simply the
variable context comprising the available dataframes, followed by the target natural language
description as a code comment. This prompt exactly corresponds to the augmentation
prompt in Figure 5.8 minus the retrieved example. We believe providing this context is
important as it better simulates real-world scenarios where the data is presumably loaded
into a variable before performing any analyses on top.

5.3.2.3 Simple Corpus Baseline

We also consider a baseline that uses a simpler and limited corpus of examples manually
collected from forums such as StackOverflow and pandas documentation. We adapt the
entry in the Jigsaw paper [52] corresponding to a version of their system that uses retrieved
examples from their hand-collected corpus to provide additional context to Codex. We also
choose the version with variable renaming enabled, which is closer to our setting for Codex
where we provide the variable context.

5.3.2.4 Jigsaw Results

Jigsaw is a proprietary system hence we could not obtain the source. Since we use the same
set of benchmarks, we report the results stated in the paper directly.

5.3.3 Codex Versions

A new version of Codex (code-davinci-002) was recently released with training data up un-
til June 2021. While we are not aware of any further technical differences, we empirically see
better performance with this version as opposed to the previous version (code-davinci-001).
Since Jigsaw was published when only the old version (code-davinci-001) was available,
only results using this model are directly comparable to Jigsaw. The improvements across
the models form the basis for the third research question.

5.3.4 RQ1: End-to-End Performance Improvement Over Codex
and Search Baselines

The results in Table 5.1 clearly demonstrate that Datana’s approach of combining the
strengths of Codex and retrieval significantly boosts end-to-end performance. Datana, when

CHAPTER 5. DATANA 113

using the 001 version of Codex, correctly solves 70.1% and 76.7% of benchmarks in Panda-
sEval1 and PandasEval2 respectively. Codex Baseline is only able to solve 59.7% and 50.3%
of benchmarks in PandasEval1 and PandasEval2, respectively. Only using the mined corpus
(Corpus Baseline-1 and Corpus Baseline-2) leads to poor performance on both datasets.
This confirms our hypothesis that search results need to be significantly altered to adapt
to a new context and that this capability is difficult to learn solely from the mined corpus.
Similar findings have been reported by developers when it comes to adapting StackOverflow
examples for use in their own workflow [134]. At the same time, the search results con-
tain enough useful information to help Codex use the right set of functions or pick up on
information it previously missed.

The benefits of using a large, mined corpus as opposed to a simpler, limited, and hand-
collected corpus are also clear. Simple-Corpus Baseline only solves 63.7% and 67.5% of
benchmarks from PandasEval1 and PandasEval2 respectively. This is a relatively smaller
improvement over Codex Baseline which is expected since many tasks are multi-step oper-
ations, examples for which are hard to collect just from documentation and a handful of
StackOverflow posts.

5.3.5 RQ2: Comparison With Jigsaw

Jigsaw uses sophisticated semantic post-processing techniques, including variable renaming,
argument transformations, AST-to-AST transformations, and enumerative search to repair
results from Codex, additionally using the input-output examples. As shown in Table 5.1,
this allows Jigsaw to solve 66.7% and 72.2% of PandasEval1 and PandasEval2 benchmarks.

While this form of post-processing is general in principle, it is still restricted by the logic
and functionality expressed in the implementation. For example, an approach like Jigsaw
would not be able to correct Codex’s output using an enumerative search if the repair, if
any, is not expressible in the search space. Datana simply augments Codex by providing
retrieved examples in the prompt, thus retaining the full generality of the Codex’s code-
generation capabilities. It is important to note that this approach, unlike Jigsaw, allows
Datana to work without the presence of input-output examples.

5.3.6 RQ3: Complementarity with Core LLM Improvements

Table 5.1 clearly shows a significant boost in performance when using the 002 version of
Codex. Specifically, there is a jump of 11.9 and 10.1 percentage points on PandasEval1 and
PandasEval2 between the Codex baselines. We are not aware of any differences between the
two version apart from updated training data for 002. While one hypothesis may simply
be that the 002 version may have Jigsaw benchmarks as part of the training data, we still
find that Datana boosts the performance by roughly the same amount. For 001, Datana

improves performance over the Codex baseline by 10.4% and 26.4% on PandasEval1 and
PandasEval2 respectively. The gains are 8.5% and 20.7%, respectively, for the version 002.

CHAPTER 5. DATANA 114

Table 5.2: Performance (% accuracy) of Datana on Jigsaw benchmarks for different top-k.

Codex % of Benchmarks Solved
Version PandasEval1 PandasEval2

Datana (top-5) 001 70.1 76.7
Datana (top-10) 001 77.6 80.7
Datana (top-20) 001 79.1 82.5

Datana (top-5) 002 79.1 81.1
Datana (top-10) 002 80.6 83.9
Datana (top-20) 002 85.1 85.8

Thus, these results provide promising evidence that Datana’s benefits do not necessarily go
away when using models trained with a better architecture or more comprehensive data.

5.3.7 RQ4: Ablation Study

We first study the effect of varying k in Datana which controls the number of suggestions
returned. Then we separately study the benefits of training a retrieval model as well as
diversifying description styles in our corpus.

5.3.7.1 Effect of Varying Top-k

We choose k as 5 in the main set of experiments in Table 5.1. Table 5.2 shows the im-
provement in performance as we increase k. For both models, the boost in performance is
significant. This is not surprising as increasing the number of retrieval examples improves
the chances of fetching more relevant examples. These results also signal an opportunity to
improve the search mechanism. In our current implementation of Datana, we use existing
training approaches on off-the-shelf models to form the retrieval component. There is room
for innovation here to rank the more relevant results higher.

5.3.7.2 Ablations for Retrieval Architecture and Description Styles

In this final research question, we evaluate the benefits of lower-level design decisions in
Datana. Specifically, we measure the benefits of training the CodeBERT model for search
as opposed to using the vanilla CodeBERT model since it has already been trained on a
large corpus of natural language and code. We also measure the benefits of diversifying the
style of descriptions in our corpus (Section 5.2.5). Table 5.3 presents the results for these
ablations on PandasEval1 and PandasEval2. Vanilla CodeBERT corresponds to the setting
where the model is not trained for search, and No-Add-Desc is the setting when additional
diverse descriptions are ignored during training as well as retrieval.

CHAPTER 5. DATANA 115

Table 5.3: Ablation Study for Jigsaw benchmarks. Datana is compared against using
vanilla CodeBERT as the search engine (Vanilla CodeBERT) and without using additional
descriptions in the search corpus (No-Add-Desc)

Codex Percentage of Benchmarks Solved
Version PandasEval1 PandasEval2

Vanilla CodeBERT 001 70.1 73.2
No-Add-Desc 001 73.1 72.1
Datana 001 70.1 76.7

Vanilla CodeBERT 002 77.6 77.9
No-Add-Desc 002 82.1 79.6
Datana 002 79.1 81.1

Although small, we do see improvements from these two components, especially on Pan-
dasEval2. We hypothesize this is the case because PandasEval2 contains more diversity in
terms of the descriptions owing to its crowdsourced nature. Thus, having a variety of de-
scriptions for the same code snippet to match against and training a model to pick up on
these differences should, in principle, lead to improvements. On PandasEval2, we see consid-
erable improvement when not using additional descriptions. A possible explanation is that
PandasEval1 contains more precise and imperative descriptions; thus, focusing only on such
styles of descriptions leads to better performance. This also indicates room for improvement
on the retrieval component of Datana.

CHAPTER 5. DATANA 116

5.4 Discussion

We elaborate on the limitations of Datana’s approach and opportunities therewith.

5.4.1 Disambiguation and Ranking

Our primary evaluation results use the top-5 suggestions from Datana to compute the ac-
curacy on the benchmark sets. This is made possible with the availability of input-output
examples in the Jigsaw benchmarks as they allow lightweight verification of a candidate so-
lution. This may not however reflect real-world usage; users cannot be expected to provide
an example alongside a description every time when using Datana. Thus, with the current
usage scenario, we expect the users to inspect the suggestions manually, hence informing the
choice of k = 5 to balance performance and the cognitive burden on the user.

However, such a manual inspection can be prohibitively difficult if the user is not well-
versed with pandas. These users are very much the target audience for the assistants pre-
sented in this dissertation, including Datana. Thus, there is a need to devise approaches
to help users understand the results in an efficient manner. Options include disambigua-
tion either on the code space or the input space [74], or visualization of the operations,
whenever applicable [59]. There is also the possibility of innovations in ranking solutions,
either by training additional, better models or incorporating domain-specific heuristics as a
post-processing step.

5.4.2 Contextual Discoverability

Users may not always know how to best describe a particular operation and may benefit from
natural language auto-completion suggestions that inform them about the set of possible
operations [104]. Although the current implementation of Datana does not have any auto-
completion feature, Datana’s underlying corpus of aligned natural language and code pairs
seems like a natural solution for enabling basic auto-completion. However, this opens up
doors for innovation on contextual auto-completion: a natural language auto-completion
system that takes the current code or data context into account while showing or completing
queries. Such a mixed-initiative approach could also help with the disambiguation problem
above, as users can use the completed queries as a means of choosing between options
immediately. In contrast, in the current implementation, users have to wait for Datana to
come back with suggestions given a single query crafted from scratch.

5.5 Summary

In this chapter, we introduced Datana, a tool for generating data analysis code from natural
language queries. We expanded upon the core idea developed in VizSmith in Chapter 4 of
using an automatically mined corpus of aligned natural language and code pairs to retrieve

CHAPTER 5. DATANA 117

and adapt code. In particular, we identified the utility of such a corpus as a knowledge bank
of a wide spectrum of analysis code, which can help break down the code-generation task into
two stages: (1) retrieving a small set of relevant examples, and (2) combining insight from
the examples to solve the task by either adapting one or more examples directly or stitching
together useful components. This closely resembles workflows reported by developers when
using forums such as StackOverflow — they often search for similar snippets, understand
them, and adapt them suitably for use in their development context.

VizSmith relies on a heuristic to extract human-written descriptions for the mined code
snippets along with a simple keyword-based search to retrieve examples. However, the
downside is the low quality of such descriptions in terms of precision and relevance. This
precludes precision searching for visualizations with specific characteristics. In this chapter,
we eliminate the need of relying on human-written descriptions by using the few-shot learning
ability of large language models such as Codex to automatically generate precise descriptions
for the mined snippets. To verify the quality of these descriptions, we also develop a novel
notion of bidirectional consistency. We also eliminate the need for sophisticated program
analysis and testing as employed in VizSmith by using Codex again for the code generation
stage.

Our experiments show that this combination of retrieval and Codex’s code-generation
ability significantly improves upon the state-of-the-art, increasing accuracy by 4%, which
can go as high as 10% with further improvements in retrieval. We also show that Datana’s
performance expectedly improves when the underlying language models are improved. More
importantly, however, the benefits of Datana’s retrieval-based augmentation are retained
in the face of these model improvements. Overall, Datana serves as a strong example of
the promise of augmenting powerful machine learning approaches with carefully assembled
knowledge banks using program analysis. We believe this line of research can lead to prac-
tically usable assistants in the near future.

118

Chapter 6

Related Work

This chapter discusses related work on program synthesis and program recommendation
techniques generating code from a variety of input specifications, as well as other relevant
flavors of programming assistants for data analysis powered by alternate technologies.

6.1 Code Generation

In this section, we survey and compare against a broad body of work on code generation
techniques. Note that we use code generation as an umbrella term for program synthesis
approaches where there is a checkable specification such as logical formulas or input-output
examples, as well as recommendation or parsing approaches that generate code from non-
checkable specifications such as natural language.

6.1.1 Intent Specifications

We first survey various intent specifications utilized by code generation systems.

6.1.1.1 Logical Specifications

Manna and Waldinger [72] proposed Dedalus, one of the earliest program synthesis sys-
tems. Their inspiration came from the successful use of logical specifications in program
verification. Dedalus accepts specifications in a high-level language akin to first-order logic
that precisely and completely captures the behavior of the desired program. In other words,
the specification describes the behavior of the program on all possible (valid) inputs. Since
such specifications provide rich information about the target program, powerful search algo-
rithms based on deduction can be designed. However, this comes at the cost of ease of use;
coming up with such a logical specification typically solicits a high degree of expertise from
the user. For more complex domains that go beyond simple numbers and lists, coming up
with such a specification may be as hard as writing the program itself. Subsequent research

CHAPTER 6. RELATED WORK 119

has thus targeted specifications that are weaker (less precise and complete) but easier to
write.

6.1.1.2 Input-Output Examples

Synthesizing programs from input-output examples, or programming-by-example (PbE), has
been a popular research bet, buoyed by the commercial success of the seminal work FlashFill
by Gulwani [42]. Since then, numerous systems have been developed, targeting a variety of
domains such as string processing [42, 83, 29], data wrangling [35, 37, 64], data processing
[108, 137], SQL queries [122, 138], syntax transformations [100], learning repair strategies
for static analysis violations [15, 11], and bit-vector manipulations [53] among others.

6.1.1.3 Natural Language

Natural language has also been the specification of choice for many code recommendation
systems targeting visualizations [41, 103], database queries [138, 141], repetitive text editing
[28]. All these systems either only allow a restricted subset of the language or exhibit good
performance only when queries are posed a certain way. That is, they are not suitable
for arbitrary queries and thus implicitly impose a learning curve to using the tool. While
supporting such arbitrary queries are long been intractable, advances in natural language
processing, particularly large language models such as GPT-3 [16] have enabled a whole suite
of programming-related tasks, including editing, code-generation, and summarizing.

6.1.1.4 Demonstrations

The programming-by-demonstration (PbD) [27] paradigm, where demonstrations are used
as a specification, has been applied to a number of application domains. A prominent one
is web-scraping, where systems such as Helena [18], and Rousillon [19] generalize a single
demonstration of how to collect data from a specific web resource into a fully-fledged scraping
program. While demonstrations, in general, can be taxing to provide [43], they capture
the user’s intent better than input-output examples, which helps scale synthesis in difficult
domains like these. Recall how Gauss also exploits this fact to deliver superior performance.

6.1.1.5 Combinations of Specifications

Combinations of different specifications have also been explored. Along with input-output
examples, Scythe [122] expects a bag of constants to be used in the target SQL query.
Mars [23] also exploits keywords from natural language descriptions and short snippets from
forums such as StackOverflow on top of input-output examples. TF-Coder [106] also uses
natural language descriptions to speed up the search for a tensor manipulation program given
input-output examples. Here, natural language is used as an auxiliary source of information
to speed up the search while still using input-output examples as the primary specification.

CHAPTER 6. RELATED WORK 120

6.1.2 Algorithms

Modern synthesis and recommendation search algorithms use either one or a combination of
three strategies. The first strategy is to prune the search space — portions of the search space
are systematically discarded based on the results of checking a candidate program against
the specification. The second is to bias the exploration of the search space wherein manually-
written heuristics or statistical approaches are used to impose an exploration order with the
assumption that the desired program is higher up in the order. And third, using statistical
models to predict whole candidate programs directly — the search space is implicit in this
setting. In AutoPandas, we exclusively rely on the second strategy as we use neural-backed
generators to guide the search but do not eliminate any part of the search space without
checking the candidates explicitly. The same holds for VizSmith as we use simple TF-IDF
document similarity matching to rank mined visualization templates. Gauss, however, is an
example of a system utilizing both the first and second strategies together. We use graph-
based reasoning and previous candidate failures to prune the search space while also using
lightweight machine learning models to explore more likely function sequences first. Finally,
Datana is an example of the third strategy as we augment large language models to generate
data processing and visualization code directly from natural language without an explicit
representation of the search space, which in turn is arbitrary text.

In the next few sections, we present a categorization of prior work based on the classifi-
cation of the primary search algorithm used per the taxonomy above and further drill down
into the high-level approach developed.

6.1.2.1 Pruning via Logical Reasoning.

At a high level, approaches using logical reasoning either encode the synthesis problem as
a constraint-solving problem and use SAT/SMT solvers to generate valid solutions to the
constraints [53], or use logical specifications to prune the search space. These specifications
can be manually specified [35, 91] or learned as lemmas during synthesis [37, 127]. These
approaches are best suited for target domains that are amenable to logical specification, such
as string processing and numerical domains.

6.1.2.2 Pruning via Domain-Specific Inductive Synthesis

This class of approaches involves the design of a special-purpose DSL tailored towards the
target domain such as string processing [42], table data extraction [63], and learning code
transformations [15]. Each DSL operator is backed by an algorithm called a witness function
that prunes away impossible candidates for the given I/O example. Such approaches are
highly efficient and can solve a large number of tasks provided their solutions can be expressed
in the DSL. However, scalability issues arise if the DSL is too large or poorly designed.

CHAPTER 6. RELATED WORK 121

6.1.2.3 Pruning via Abstractions

Abstractions have also been leveraged to simplify reasoning for complex search spaces.
Blaze [126] and Atlas [128] use abstract semantics of the DSL components to construct a
compact representation of all candidate programs to reason about them simultaneously. At-
las learns these abstract semantics from a separate training set of I/O examples. Synquid
[90] and Morpheus [34] prune invalid programs using refinement-types and first-order logic
specifications respectively. Morpheus uses linear relationships between table attributes as
specifications for components. Singh et al. [107] use I/O examples in the abstract domain
of shapes, termed storyboards, to synthesize low-level data-structure manipulations. The
shapes discard irrelevant details about the data structure. Our approach in Gauss essen-
tially combines the story-board and component-level specifications approach. Gauss accepts
partial input-output examples along with graph-based specifications of intent and searches
the space of programs efficiently using the graph abstractions of components written by us.

6.1.2.4 Pruning via Type Information

Given a type specification of the target program Sypet [33] uses type specifications of
individual API components to synthesize the target program as a composition of these com-
ponents. The TDE system [46] mines a large corpus of API methods along with the raw
arguments taken by those methods using static analysis, à la VizSmith. Then, given a new
I/O example, it searches through this corpus using a mix of statistical and static analysis
techniques. However, these methods rely on the availability of sufficiently rich type informa-
tion about the API as well as the I/O example, something which is not available for popular
Python libraries for data analysis such as pandas and matplotlib.

6.1.2.5 Biasing via Machine Learning

A number of systems exploit lightweight machine learning models to bias the search towards
more likely candidates. Morpheus [34] and Neo [36] train n-gram models on sequences
of R functions mined from public code repositories to explore candidates utilizing more
likely sequences first. Chen et al. [23] train a seq2seq [114] model to predict likely function
sequences from natural language.

Akin to AutoPandas, DeepCoder [13] trains a model using random data to predict
likely components or functions to use given an input-output example. However, AutoPandas

goes a step further and uses models to predict the arguments for the functions.
This class of approaches uses probabilistic models to rank program candidates generated

by the synthesizer [37, 96, 66]. These models are trained on data extracted from large open
repositories of code such as Github and StackOverflow.

CHAPTER 6. RELATED WORK 122

6.1.2.6 Generation via Machine Learning

Advances in deep learning have helped spur research in systems entirely based on machine
learning models. These models take in a representation of the intent specification and directly
predict the candidate program. A number of systems accept input-output examples and
target domains such as string-processing and lists of bounded integers [14, 29, 54] where
machine learning models such as cross-correlational networks, LSTMs with attention are
applicable. However, these models cannot target dataframes of arbitrary shapes and values.
This also precludes models like CNNs accepting a fixed-size grid as leveraged in the Karel
domain [17].

Newer network architectures based on attention [12] such as the transformer [120] have
led to tremendous advances in natural language processing, in particular large language
models [16, 21]. These models are trained with the simple objective of predicting the next
token given a context of previous tokens at scale. Models such as GPT-3 [16] and Codex [21]
are trained on vast amounts of text and code and have shown unprecedented performance
on difficult general-purpose programming benchmarks such as HumanEval [21]. Codex has
also been integrated into the popular in-IDE programming assistant Copilot [40]. However,
these models make mistakes [52], which are often subtle and can hamper productivity [119].
In Datana we propose a retrieval-augmented approach that augments these models with an
automatically generated knowledge base which significantly boosts correctness.

Similar to Datana, REDCODER [84] and Drain et al.’s system [30] also augment lan-
guage models using retrieval by fetching relevant examples from a corpus. The primary differ-
ence withGauss is how the corpus is obtained. The two systems use function-documentation
pairs mined from Github or question-answer pairs from StackOverflow as the basis for their
corpus. VizSmith uses the same idea, and thus, the imprecision and irrelevance problems
mentioned in VizSmith are applicable to these systems as well. In contrast, Datana auto-
matically generate descriptions.

6.2 Alternate Programming-Based Data Analysis

Assistants

While interactive interfaces often provide an easy-to-use interface to suggest interesting
statistics and visualizations of data [132, 115, 112, 56, 95], they are not widely used by
scientists and analysts with programming backgrounds, with a major factor being the pro-
hibitive cost of switching between these tools and their preferred text and code editing
platforms such as notebooks [130].

In response, tooling offering high-level abstractions for producing rich statistical sum-
maries and visualizations of dataframes have been developed [1, 32, 81]. Lux [65] propose
always-on visualization recommendations. Whenever a dataframe is printed to the console,
Lux offers a quick overview of the data along with visualizations for interesting trends with
the objective of guiding further exploration. Lux also features a rich domain-specific lan-

CHAPTER 6. RELATED WORK 123

guage that users can employ to specify target visualizations on demand. Drawing on the
need for visualization automation for exploration [101], Lux’s language also allows fuzzy
specifications with wildcards to generate multiple visualizations for different attributes at
once.

There has also been work on directly bringing the benefits of interaction and direct ma-
nipulation to coding environments [2, 31, 133]. The challenge lies in ensuring minimal friction
while switching between the two modes. Wrex [31] and B2 [133] propose specially-designed
widgets in Jupyter notebooks [61] that maintain a tight integration between code and oper-
ations performed on the widget. Wrex uses program synthesis to infer data transformation
programs in an internal DSL, which is then translated to human-readable Python code. B2
tracks operations on dataframes and accordingly suggests visualizations. Interactions such
as filtering and sorting on the visualizations are captured back in code. This helps keep the
interaction reusable and reproducible.

The tools and techniques developed in this dissertation share the broad motivation of
meeting the needs of data scientists and analysts with a programming background, to help
them author complex analyses quickly or get started with an unfamiliar tool faster. As such,
all four tools, namely AutoPandas, Gauss, VizSmith, and Datana, seek to complement the
aforementioned systems by filling the authoring gap. While interaction and direct manipula-
tion are important tools to help analysts be more productive in understanding and exploring
their data, our tools aim to tackle the problem of authoring complex reshaping, processing,
and visualization programs that may not be easily expressible in such forms. Examples in-
clude correlation heatmaps, rolling window calculations, min-max normalization, etc. This is
facilitated by the use of high-level specifications suitable for different tasks — input-output
examples for reshaping tasks, demonstrations for reshaping combined with computational
tasks, and natural language for tasks involving conditionals or a complex composition of
multiple operations.

124

Chapter 7

Conclusion

This dissertation presented four major techniques and prototypes of programming assistants
for data analysis, with the end goal of improving the productivity of data scientists and
analysts who prefer to use programming-based data analysis libraries such as pandas, mat-
plotlib, and scikit-learn among others. These assistants accept high-level specifications such
as input-output examples, demonstrations, and natural language and automatically generate
suitable data analysis code.

Given the choice of specifications, the design of these assistants can then be understood
from the lens of the two underlying dimensions: the search space, which controls the ex-
pressivity of the assistant, and the search algorithm, which controls the performance and/or
accuracy of the assistant. Clearly, there is a tension between the two — making the search
space larger will, in turn, make search that much harder. This then translates to a trade-off
between expressivity and performance/accuracy. In this dissertation, we introduced new
approaches to push the limits on this trade-off barrier by drawing upon insights from recent
advances in program synthesis, testing, analysis, and machine learning.

In Chapter 2, we introduced AutoPandas, an assistant that accepts input-output data
frames and automatically generates programs that satisfy the example. That is if run on
the input, the returned solutions produce the target output. The primary concern in Au-

toPandas was the need to support a significant fraction of pandas functionality, whose
size and complexity meant that the traditional approach of designing a compact DSL or a
limited grammar of transformations would be insufficient. Our key inspiration in solving
this problem of representing a complex search space came from random testing, specifically
QuickCheck-style random generators. Generators present a natural, programmatic way of
capturing a complex input space — arbitrary program logic, unrestricted by context-free
grammars or any similar restrictive structures, can be used to precisely capture the param-
eter spaces. The choosing of parameters is delegated to simple random operators in the
same programming environment. We used generators to instead capture the space of pandas
programs. To guide the search, we replaced random operators with their smart counterparts
using modern machine learning methods. The result is an enumerative search that tries out
program candidates one by one, ordered by their likelihood of satisfying an example.

CHAPTER 7. CONCLUSION 125

In Chapter 3, we identified a key issue with the use of input-output examples to spec-
ify dataframe transformations — they lose valuable information when the transformations
involve computation and aggregation. However, this information is readily available; users
know the precise relationship between the individual input and output cells when construct-
ing the output. This information loss, quite needlessly, increases the burden on the assistant,
and an enumerative approach like AutoPandas devolves into inefficient trial-and-error. With
Gauss, we explored the possibility of using dedicated interfaces to preserve this information
and developed a novel reasoning algorithm that led to significant speed-ups in search when
such information could be exploited.

We then switched our focus to natural language specifications. While examples can be
penned for a wide class of useful transformations, when it comes to complex statistical cal-
culations or making visualizations, they can be limiting. Our goal behind enabling natural
language is to give users a quick way to get started in code for their tasks, be it recalling
the syntax of a particular operation or creating quick and simple visualizations that are still
quite tedious to write from scratch. This shift also entailed a change in our approach to
code-generation altogether, stemming from the inherent ambiguity of natural language spec-
ifications. For starters, it is not possible to adopt the enumerative approach of AutoPandas

and Gauss, as, unlike examples, candidates cannot be checked against the query. In other
words, the synthesis problem is turned into a recommendation problem. Fundamentally, the
loss of the ability to iteratively prune the search space using a smart search algorithm shifts
part of the generation burden onto the search space itself. The search space needs to be
designed in a manner that facilitates retrieval or instantiation of a small pool of candidates
given the target query, which can then be ordered by a dedicated ranking component for
presentation to the user.

In Chapter 4, we took a new approach to search space design. We applied dynamic
program analysis for mining a search corpus of reusable visualization code automatically
from publicly available computational notebooks hosted on the data science platform Kag-
gle. Additionally, we extracted surrounding code comments and markdown descriptions to
align the extracted code with their natural language descriptions. Thus, we reduced code
generation to a retrieval problem: code snippets from the corpus whose aligned descriptions
best match the query are returned. We argued that this approach has two main benefits:
(1) being crowdsourced, the mined corpus is diverse and expressive enough, and (2) the need
for manual design is eliminated, and the corpus can be continuously updated automatically.
However, one major issue was the quality of extracted descriptions. Since we used a heuristic,
there were no guarantees around the relevance or precision of these descriptions.

Finally, we presented a solution to this issue in Chapter 5 and the resulting tool Datana.
We fully eliminated the need to rely on human-written descriptions by exploiting the few-shot
learning ability of large language models to generate descriptions for snippets in a mined
corpus. The code generation component was also replaced with the same large language
model. Intuitively, we split the code generation task into two stages: the creation of a
knowledge bank and subsequent retrieval, extracting relevant information from the retrieved
examples to solve the task. We drew parallels to how human developers and analysts solve

CHAPTER 7. CONCLUSION 126

these tasks in a similar way — they gather additional resources and help online, and then
adapt and generalize from the gathered information to come up with the right code.

Future Work

This dissertation primarily innovates on the technical side of the overall problem of build-
ing useful assistants, contributing techniques and algorithms to improve the expressivity
and performance of these assistants. There is a significant opportunity for innovation in
improving the usability of these assistants.

Humans are not perfect, and thus the specifications they provide may also be erroneous
from time to time. While AutoPandas and Gauss simply won’t return a correct program if
there is any error in the example or demonstration, VizSmith and Datana offer some leeway
due to the use of statistical models for generating code, which is inherently more robust to
errors than symbolic methods. Still, it is important to highlight what parts of the query
might be wrong and ask clarification from the user if necessary.

While AutoPandas and Gauss employ some form of ranking to order the generated
code solutions, helping the users disambiguate and choose between multiple solutions is an
open problem. Approaches such as generating distinguishing inputs to help understand the
differences between solutions have been proposed. The challenge, however, lies in generating
inputs that do not impose a cognitive burden on the user. Multi-modal specifications such as
combining natural language and input-output examples, although not explored specifically
in this dissertation, are another alternative for filtering unwanted solutions and have been
successful in practice. Still, supporting more interesting multi-modal specifications, such as
those involving an iterative mixing of direct manipulation or interaction alongside natural
language or examples, is an open problem and is critical for supporting a wider variety of
analyses in a useful manner.

Software development is inherently an iterative process, and programming assistants
need to support an iterative workflow. Enabling users to provide feedback, especially in
settings such as VizSmith and Datana involving the use of natural language, is important
for making assistants more useful. Note that our notion of feedback goes beyond simple
positive or negative votes indicating whether the assistant did the right thing. Feedback
must be leveraged in an active manner where the solutions are updated on the fly after
entering into a dialogue with the user. As an example, imagine a user giving iterative
feedback to incrementally construct a target visualization in matplotlib. Recent advances in
natural language processing and in-context learning can help in realizing this active feedback
loop.

It is equally important to give recommendations to help users who may be stuck. Auto-
completion suggestions that inform users about the set of possible operations [104] can be
useful. Going a step further, such auto-completion can also take existing code context into
account. Such a mixed-initiative approach could also help with the disambiguation problem
above, as users can use the completed queries as a means of choosing between options

CHAPTER 7. CONCLUSION 127

immediately. In contrast, in the current implementation, users have to wait for Datana to
come back with suggestions given a single query crafted from scratch.

We are optimistic that programming assistants with a well-designed collection of high-
level specifications, combined with smart algorithms and good interface design, can help
raise the level of abstractions available to analysts, ultimately improving their productivity.
We hope that the techniques and ideas contributed in this dissertation seed further research
on building assistants with these qualities.

128

Bibliography

[1] adamerose. pandasgui. url: https://github.com/adamerose/pandasgui.

[2] Eytan Adar. “GUESS: a language and interface for graph exploration”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (2006).

[3] Hiralal Agrawal and Joseph R. Horgan. “Dynamic Program Slicing”. In: SIGPLAN
Not. 25.6 (June 1990), pp. 246–256. issn: 0362-1340. doi: 10.1145/93548.93576.
url: https://doi.org/10.1145/93548.93576.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. “Learning to Rep-
resent Programs with Graphs”. In: International Conference on Learning Represen-
tations. 2018. url: https://openreview.net/forum?id=BJOFETxR-.

[5] Sara Alspaugh et al. “Futzing and Moseying: Interviews with Professional Data An-
alysts on Exploration Practices”. In: IEEE Transactions on Visualization and Com-
puter Graphics 25.1 (Jan. 2019), pp. 22–31. issn: 1077-2626. doi: 10.1109/TVCG.
2018.2865040. url: https://doi.org/10.1109/TVCG.2018.2865040.

[6] Alteryx Trifacta. Trifacta Software. url: https://trifacta.com.

[7] R. Alur et al. “Syntax-guided synthesis”. In: Formal Methods in Computer-Aided
Design. Cham: Springer, Oct. 2013, pp. 1–8. doi: 10.1109/FMCAD.2013.6679385.

[8] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling enumerative pro-
gram synthesis via divide and conquer”. In: International conference on tools and
algorithms for the construction and analysis of systems. Springer. 2017, pp. 319–336.

[9] Giambattista Amati. “BM25”. In: Encyclopedia of Database Systems. Ed. by LING
LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009, pp. 257–260. isbn:
978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_921. url: https://doi.
org/10.1007/978-0-387-39940-9_921.

[10] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint
arXiv:2108.07732 (2021).

[11] Johannes Bader et al. “Getafix: Learning to Fix Bugs Automatically”. In: Proc. ACM
Program. Lang. 3.OOPSLA (Oct. 2019). doi: 10.1145/3360585. url: https://doi.
org/10.1145/3360585.

https://github.com/adamerose/pandasgui
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/93548.93576
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2018.2865040
https://trifacta.com
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1007/978-0-387-39940-9_921
https://doi.org/10.1007/978-0-387-39940-9_921
https://doi.org/10.1007/978-0-387-39940-9_921
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585

BIBLIOGRAPHY 129

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Translate”. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http:
//arxiv.org/abs/1409.0473.

[13] Matej Balog et al. “DeepCoder: Learning toWrite Programs”. In: CoRR abs/1611.01989
(2016). arXiv: 1611.01989. url: http://arxiv.org/abs/1611.01989.

[14] Matej Balog et al. “DeepCoder: Learning toWrite Programs”. In: CoRR abs/1611.01989
(2016). arXiv: 1611.01989. url: http://arxiv.org/abs/1611.01989.

[15] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. “Phoenix: Automated Data-
Driven Synthesis of Repairs for Static Analysis Violations”. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2019. Tallinn,
Estonia: ACM, 2019, pp. 613–624. isbn: 9781450355728. doi: 10.1145/3338906.
3338952. url: https://doi.org/10.1145/3338906.3338952.

[16] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 1877–1901. url: https://proceedings.neurips.cc/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[17] Rudy Bunel et al. “Leveraging Grammar and Reinforcement Learning for Neural
Program Synthesis”. In: CoRR abs/1805.04276 (2018). arXiv: 1805 . 04276. url:
http://arxiv.org/abs/1805.04276.

[18] Sarah Chasins and Rastislav Bodik. “Skip Blocks: Reusing Execution History to Ac-
celerate Web Scripts”. In: Proc. ACM Program. Lang. 1.OOPSLA (Oct. 2017). doi:
10.1145/3133875. url: https://doi.org/10.1145/3133875.

[19] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. “Rousillon: Scraping Dis-
tributed Hierarchical Web Data”. In: Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technology. UIST ’18. Berlin, Germany: As-
sociation for Computing Machinery, 2018, pp. 963–975. isbn: 9781450359481. doi:
10.1145/3242587.3242661. url: https://doi.org/10.1145/3242587.3242661.

[20] Souti Chattopadhyay et al. “What’s Wrong with Computational Notebooks? Pain
Points, Needs, and Design Opportunities”. In: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1–12. isbn: 9781450367080. url: https://doi.
org/10.1145/3313831.3376729.

[21] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: arXiv e-
prints, arXiv:2107.03374 (July 2021), arXiv:2107.03374. arXiv: 2107.03374 [cs.LG].

[22] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. “Metamorphic testing: a new ap-
proach for generating next test cases”. In: Technical Report HKUST-CS98-01, (1998).

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/3338906.3338952
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1805.04276
http://arxiv.org/abs/1805.04276
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://arxiv.org/abs/2107.03374

BIBLIOGRAPHY 130

[23] Yanju Chen, Ruben Martins, and Yu Feng. “Maximal Multi-Layer Specification Syn-
thesis”. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2019. Tallinn, Estonia: ACM, 2019, pp. 602–612. isbn: 9781450355728.
doi: 10.1145/3338906.3338951. url: https://doi.org/10.1145/3338906.
3338951.

[24] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation”. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, 2014, pp. 1724–1734. doi: 10.3115/v1/D14-1179.
url: http://www.aclweb.org/anthology/D14-1179.

[25] Aakanksha Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”. In:
arXiv e-prints, arXiv:2204.02311 (Apr. 2022), arXiv:2204.02311. arXiv: 2204.02311
[cs.CL].

[26] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: SIGPLAN Not. 46.4 (May 2011), pp. 53–64. issn:
0362-1340. doi: 10.1145/1988042.1988046. url: https://doi.org/10.1145/
1988042.1988046.

[27] Allen Cypher et al., eds. Watch What I Do: Programming by Demonstration. Cam-
bridge, MA, USA: MIT Press, 1993. isbn: 0262032139.

[28] Aditya Desai et al. “Program Synthesis Using Natural Language”. In: Proceedings of
the 38th International Conference on Software Engineering. ICSE ’16. Austin, Texas:
Association for Computing Machinery, 2016, pp. 345–356. isbn: 9781450339001. doi:
10.1145/2884781.2884786. url: https://doi.org/10.1145/2884781.2884786.

[29] Jacob Devlin et al. “RobustFill: Neural Program Learning under Noisy I/O”. In:
ICML 2017. 2017. url: https://www.microsoft.com/en-us/research/publication/
robustfill-neural-program-learning-noisy-io/.

[30] Dawn Drain et al. “Generating Code with the Help of Retrieved Template Func-
tions and Stack Overflow Answers”. In: arXiv e-prints, arXiv:2104.05310 (Apr. 2021),
arXiv:2104.05310. arXiv: 2104.05310 [cs.IR].

[31] Ian Drosos et al. “Wrex: A Unified Programming-by-Example Interaction for Synthe-
sizing Readable Code for Data Scientists”. In: Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: ACM,
2020, pp. 1–12. isbn: 9781450367080. doi: 10.1145/3313831.3376442. url: https:
//doi.org/10.1145/3313831.3376442.

[32] Fbdesignpro. sweetviz. url: https://github.com/fbdesignpro/sweetviz.

https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.3115/v1/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/2884781.2884786
https://doi.org/10.1145/2884781.2884786
https://www.microsoft.com/en-us/research/publication/robustfill-neural-program-learning-noisy-io/
https://www.microsoft.com/en-us/research/publication/robustfill-neural-program-learning-noisy-io/
https://arxiv.org/abs/2104.05310
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://github.com/fbdesignpro/sweetviz

BIBLIOGRAPHY 131

[33] Yu Feng et al. “Component-Based Synthesis for Complex APIs”. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL
2017. Paris, France: ACM, 2017, pp. 599–612. isbn: 9781450346603. doi: 10.1145/
3009837.3009851. url: https://doi.org/10.1145/3009837.3009851.

[34] Yu Feng et al. “Component-Based Synthesis of Table Consolidation and Transforma-
tion Tasks from Examples”. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2017. Barcelona, Spain:
ACM, 2017, pp. 422–436. isbn: 9781450349888. doi: 10.1145/3062341.3062351.
url: https://doi.org/10.1145/3062341.3062351.

[35] Yu Feng et al. “Component-based Synthesis of Table Consolidation and Transforma-
tion Tasks from Examples”. In: SIGPLAN Not. 52.6 (June 2017), pp. 422–436. issn:
0362-1340. doi: 10.1145/3140587.3062351. url: http://doi.acm.org/10.1145/
3140587.3062351.

[36] Yu Feng et al. “Program Synthesis Using Conflict-Driven Learning”. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018, pp. 420–435. isbn:
9781450356985. doi: 10.1145/3192366.3192382. url: https://doi.org/10.1145/
3192366.3192382.

[37] Yu Feng et al. “Program Synthesis Using Conflict-driven Learning”. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018, pp. 420–435. isbn:
978-1-4503-5698-5. doi: 10.1145/3192366.3192382. url: http://doi.acm.org/
10.1145/3192366.3192382.

[38] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Programming and Natu-
ral Languages”. In: Findings of the Association for Computational Linguistics: EMNLP
2020. Online: Association for Computational Linguistics, Sept. 2020, pp. 1536–1547.
doi: 10.18653/v1/2020.findings-emnlp.139. url: https://aclanthology.org/
2020.findings-emnlp.139.

[39] A. Ferrari and M. Russo. Introducing Microsoft Power BI. Introducing. Pearson Ed-
ucation, 2016. isbn: 9781509302758. url: https://books.google.com/books?id=
U1qsDAAAQBAJ.

[40] Nat Friedman. 2021. url: https://github.blog/2021- 06- 29- introducing-
github-copilot-ai-pair-programmer/.

[41] T.a Gao et al. “Datatone: Managing ambiguity in natural language interfaces for
data visualization”. In: Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology - UIST ’15. UIST ’15 (2015), pp. 489–500. doi:
10.1145/2807442.2807478. url: http://www.scopus.com/inward/record.
url ? eid = 2 - s2 . 0 - 84958249800 % 7B % 5C & %7DpartnerID = 40 % 7B % 5C & %7Dmd5 =

f0eb3ceb834a66e6d0eb6b59ffc57163.

https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3140587.3062351
http://doi.acm.org/10.1145/3140587.3062351
http://doi.acm.org/10.1145/3140587.3062351
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://books.google.com/books?id=U1qsDAAAQBAJ
https://books.google.com/books?id=U1qsDAAAQBAJ
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://doi.org/10.1145/2807442.2807478
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=f0eb3ceb834a66e6d0eb6b59ffc57163
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=f0eb3ceb834a66e6d0eb6b59ffc57163
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=f0eb3ceb834a66e6d0eb6b59ffc57163

BIBLIOGRAPHY 132

[42] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-output
Examples”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’11. Austin, Texas, USA: ACM,
2011, pp. 317–330. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926423. url:
http://doi.acm.org/10.1145/1926385.1926423.

[43] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. “Program Synthesis”. In:
Foundations and TrendsÂ® in Programming Languages 4.1-2 (2017), pp. 1–119.
issn: 2325-1107. doi: 10.1561/2500000010. url: http://dx.doi.org/10.1561/
2500000010.

[44] Philip J. Guo et al. “Proactive Wrangling: Mixed-Initiative End-User Programming of
Data Transformation Scripts”. In: Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology. UIST ’11. Santa Barbara, California,
USA: Association for Computing Machinery, 2011, pp. 65–74. isbn: 9781450307161.
doi: 10.1145/2047196.2047205. url: https://doi.org/10.1145/2047196.
2047205.

[45] Pat Hanrahan. “VizQL: A Language for Query, Analysis and Visualization”. In: Pro-
ceedings of the 2006 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’06. Chicago, IL, USA: Association for Computing Machinery, 2006,
p. 721. isbn: 1595934340. doi: 10.1145/1142473.1142560. url: https://doi.org/
10.1145/1142473.1142560.

[46] Yeye He et al. “Transform-data-by-example (TDE): An Extensible Search Engine for
Data Transformations”. In: Proc. VLDB Endow. 11.10 (June 2018), pp. 1165–1177.
issn: 2150-8097. doi: 10.14778/3231751.3231766. url: https://doi.org/10.
14778/3231751.3231766.

[47] Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. “Predictive Interaction for
Data Transformation”. In: CIDR. 2015.

[48] Joseph M Hellerstein, Jeffrey Heer, and Sean Kandel. “Self-Service Data Preparation:
Research to Practice.” In: IEEE Data Eng. Bull. 41.2 (2018), pp. 23–34.

[49] How can I normalize data and create a stacked bar chart? url: https://stackoverflow.
com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-

bar-chart (visited on 04/22/2021).

[50] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[51] Hamel Husain et al. “CodeSearchNet challenge: Evaluating the state of semantic code
search”. In: arXiv preprint arXiv:1909.09436 (2019).

https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.14778/3231751.3231766
https://doi.org/10.14778/3231751.3231766
https://doi.org/10.14778/3231751.3231766
https://stackoverflow.com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-bar-chart
https://stackoverflow.com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-bar-chart
https://stackoverflow.com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-bar-chart
https://doi.org/10.1109/MCSE.2007.55

BIBLIOGRAPHY 133

[52] Naman Jain et al. “Jigsaw: Large Language Models Meet Program Synthesis”. In:
Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1219–
1231. isbn: 9781450392211. doi: 10.1145/3510003.3510203. url: https://doi.
org/10.1145/3510003.3510203.

[53] Susmit Jha et al. “Oracle-guided Component-based Program Synthesis”. In: Proceed-
ings of the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1. ICSE ’10. Cape Town, South Africa: ACM, 2010, pp. 215–224. isbn: 978-
1-60558-719-6. doi: 10.1145/1806799.1806833. url: http://doi.acm.org/10.
1145/1806799.1806833.

[54] A. Kalyan et al. “Neural-Guided Deductive Search for Real-Time Program Synthesis
from Examples”. In: ArXiv e-prints (Apr. 2018). arXiv: 1804.01186 [cs.AI].

[55] Sean Kandel et al. “Enterprise Data Analysis and Visualization: An Interview Study”.
In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012), pp. 2917–
2926. doi: 10.1109/TVCG.2012.219.

[56] Sean Kandel et al. “Wrangler: Interactive Visual Specification of Data Transformation
Scripts”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’11. Vancouver, BC, Canada: Association for Computing Machinery,
2011, pp. 3363–3372. isbn: 9781450302289. doi: 10.1145/1978942.1979444. url:
https://doi.org/10.1145/1978942.1979444.

[57] Jared Kaplan et al. “Scaling Laws for Neural Language Models”. In: arXiv e-prints,
arXiv:2001.08361 (Jan. 2020), arXiv:2001.08361. arXiv: 2001.08361 [cs.LG].

[58] Mary Beth Kery et al. “The Future of Notebook Programming Is Fluid”. In: Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. CHI
EA ’20. Honolulu, HI, USA: Association for Computing Machinery, 2020, pp. 1–8.
isbn: 9781450368193. doi: 10.1145/3334480.3383085. url: https://doi.org/10.
1145/3334480.3383085.

[59] Meraj Khan et al. “Data Tweening: Incremental Visualization of Data Transforms”.
In: Proc. VLDB Endow. 10.6 (Feb. 2017), pp. 661–672. issn: 2150-8097. doi: 10.
14778/3055330.3055333. url: https://doi.org/10.14778/3055330.3055333.

[60] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: ArXiv
e-prints (Dec. 2014). arXiv: 1412.6980.

[61] T. Kluyver et al. “Jupyter Notebooks - a publishing format for reproducible compu-
tational workflows”. In: ELPUB. 2016.

[62] Virtus Lab. Pandas Stubs. https://github.com/VirtusLab/pandas-stubs. 2021.

https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
https://arxiv.org/abs/1804.01186
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://arxiv.org/abs/2001.08361
https://doi.org/10.1145/3334480.3383085
https://doi.org/10.1145/3334480.3383085
https://doi.org/10.1145/3334480.3383085
https://doi.org/10.14778/3055330.3055333
https://doi.org/10.14778/3055330.3055333
https://doi.org/10.14778/3055330.3055333
https://arxiv.org/abs/1412.6980
https://github.com/VirtusLab/pandas-stubs

BIBLIOGRAPHY 134

[63] Vu Le and Sumit Gulwani. “FlashExtract: A Framework for Data Extraction by
Examples”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’14. Edinburgh, United Kingdom: ACM,
2014, pp. 542–553. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594333. url:
http://doi.acm.org/10.1145/2594291.2594333.

[64] Vu Le and Sumit Gulwani. “FlashExtract: A Framework for Data Extraction by
Examples”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’14. Edinburgh, United Kingdom: ACM,
2014, pp. 542–553. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594333. url:
http://doi.acm.org/10.1145/2594291.2594333.

[65] Doris Jung-Lin Lee et al. “Lux: Always-on Visualization Recommendations for Ex-
ploratory Dataframe Workflows”. In: Proc. VLDB Endow. 15.3 (Nov. 2021), pp. 727–
738. issn: 2150-8097. doi: 10.14778/3494124.3494151. url: https://doi.org/
10.14778/3494124.3494151.

[66] Woosuk Lee et al. “Accelerating Search-based Program Synthesis Using Learned
Probabilistic Models”. In: Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 2018. Philadelphia, PA, USA:
ACM, 2018, pp. 436–449. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192410.
url: http://doi.acm.org/10.1145/3192366.3192410.

[67] Fei Li and H. V. Jagadish. “Constructing an Interactive Natural Language Interface
for Relational Databases”. In: Proc. VLDB Endow. 8.1 (Sept. 2014), pp. 73–84. issn:
2150-8097. doi: 10.14778/2735461.2735468. url: https://doi.org/10.14778/
2735461.2735468.

[68] Fei Li and H. V. Jagadish. “Constructing an interactive natural language interface for
relational databases”. In: Proceedings of the VLDB Endowment 8.1 (2014), pp. 73–
84. issn: 21508097. doi: 10.14778/2735461.2735468. url: http://dl.acm.org/
citation.cfm?doid=2735461.2735468.

[69] Yujia Li et al. “Gated Graph Sequence Neural Networks”. In: CoRR abs/1511.05493
(2015). arXiv: 1511.05493. url: http://arxiv.org/abs/1511.05493.

[70] Steve Lohr. “For big-data scientists,‘janitor work’is key hurdle to insights”. In: New
York Times 17 (2014), B4.

[71] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. “Show Me: Automatic Presentation
for Visual Analysis”. In: IEEE Transactions on Visualization and Computer Graphics
13.6 (Nov. 2007), pp. 1137–1144. issn: 1077-2626. doi: 10.1109/TVCG.2007.70594.
url: https://doi.org/10.1109/TVCG.2007.70594.

[72] Z. Manna and R. Waldinger. “Synthesis: Dreams → Programs”. In: IEEE Transac-
tions on Software Engineering SE-5.4 (1979), pp. 294–328. doi: 10.1109/TSE.1979.
234198.

https://doi.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1145/3192366.3192410
http://doi.acm.org/10.1145/3192366.3192410
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
http://dl.acm.org/citation.cfm?doid=2735461.2735468
http://dl.acm.org/citation.cfm?doid=2735461.2735468
https://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TSE.1979.234198
https://doi.org/10.1109/TSE.1979.234198

BIBLIOGRAPHY 135

[73] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: http://tensorflow.
org/.

[74] Mikaël Mayer et al. “User interaction models for disambiguation in programming by
example”. In: Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. 2015, pp. 291–301.

[75] Wes Mckinney. “pandas: a Foundational Python Library for Data Analysis and Statis-
tics”. In: Python High Performance Science Computer (Jan. 2011).

[76] Microsoft.Gated Graph Neural Network Samples. https://github.com/Microsoft/gated-
graph-neural-network-samples. Accessed October 17th, 2018. 2017.

[77] Microsoft Corporation. Microsoft Excel. url: https://www.microsoft.com/en-
us/microsoft-365/excel.

[78] Maxwell Nye et al. “Show Your Work: Scratchpads for Intermediate Computation
with Language Models”. In: arXiv e-prints, arXiv:2112.00114 (Nov. 2021), arXiv:2112.00114.
arXiv: 2112.00114 [cs.LG].

[79] C. Olsten et al. “VIQING: visual interactive querying”. In: Proceedings. 1998 IEEE
Symposium on Visual Languages (Cat. No.98TB100254). 1998, pp. 162–169. doi:
10.1109/VL.1998.706159.

[80] Michael Palmer. Data is the New Oil. https://ana.blogs.com/maestros/2006/
11/data_is_the_new.html.

[81] pandasprofiling. url: https://github.com/pandas-profiling/pandas-profiling.

[82] Yannis Papanikolaou. Teach me how to Label: Labeling Functions from Natural Lan-
guage with Text-to-text Transformers. 2021. arXiv: 2101.07138 [cs.CL].

[83] Emilio Parisotto et al. “Neuro-Symbolic Program Synthesis”. In: ICLR 2017. 2017.
url: https : / / www . microsoft . com / en - us / research / publication / neuro -
symbolic-program-synthesis-2/.

[84] Md Rizwan Parvez et al. “Retrieval Augmented Code Generation and Summariza-
tion”. In: Findings of the Association for Computational Linguistics: EMNLP 2021.
Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 2719–2734. doi: 10.18653/v1/2021.findings-emnlp.232. url: https:
//aclanthology.org/2021.findings-emnlp.232.

[85] DJ Patil. Data Jujitsu. ” O’Reilly Media, Inc.”, 2012.

[86] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: J. Mach.
Learn. Res. 12.null (Nov. 2011), pp. 2825–2830. issn: 1532-4435.

[87] F Pérez and BE Granger. Computational Narratives as the Engine of Collaborative
Data Science. 2015.[Internet][cited 4 Oct 2018].

http://tensorflow.org/
http://tensorflow.org/
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://arxiv.org/abs/2112.00114
https://doi.org/10.1109/VL.1998.706159
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://github.com/pandas-profiling/pandas-profiling
https://arxiv.org/abs/2101.07138
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-program-synthesis-2/
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-program-synthesis-2/
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232

BIBLIOGRAPHY 136

[88] Daniel Perry et al. “VizDeck: Streamlining exploratory visual analytics of scientific
data”. In: 2013.

[89] Spreadsheet Planet. How to Fill Blank Cells with Value above in Excel (3 Easy Ways).
url: https://spreadsheetplanet.com/fill-blank-cells-with-value-above-
in-excel/.

[90] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. “Program Synthesis
from Polymorphic Refinement Types”. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’16. Santa
Barbara, CA, USA: ACM, 2016, pp. 522–538. isbn: 9781450342612. doi: 10.1145/
2908080.2908093. url: https://doi.org/10.1145/2908080.2908093.

[91] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. “Program Synthesis
from Polymorphic Refinement Types”. In: SIGPLAN Not. 51.6 (June 2016), pp. 522–
538. issn: 0362-1340. doi: 10.1145/2980983.2908093. url: http://doi.acm.org/
10.1145/2980983.2908093.

[92] Oleksandr Polozov and Sumit Gulwani. “FlashMeta: A Framework for Inductive Pro-
gram Synthesis”. In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications. OOP-
SLA 2015. Pittsburgh, PA, USA: ACM, 2015, pp. 107–126. isbn: 9781450336895. doi:
10.1145/2814270.2814310. url: https://doi.org/10.1145/2814270.2814310.

[93] V. Raman and J.M. Hellerstein. “Potter’s wheel: An interactive data cleaning sys-
tem”. In: Proceedings of the international conference on Very Large Data Bases. 2001,
pp. 381–390.

[94] Bernadette M Randles et al. “Using the Jupyter notebook as a tool for open science:
An empirical study”. In: 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL). IEEE. 2017, pp. 1–2.

[95] Tye Rattenbury et al. Principles of Data Wrangling: Practical Techniques for Data
Preparation. 1st. O’Reilly Media, Inc., 2017. isbn: 1491938927.

[96] Veselin Raychev, Martin Vechev, and Eran Yahav. “Code Completion with Statistical
Language Models”. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’14. Edinburgh, United King-
dom: ACM, 2014, pp. 419–428. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.
2594321. url: http://doi.acm.org/10.1145/2594291.2594321.

[97] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410.
url: https://aclanthology.org/D19-1410.

https://spreadsheetplanet.com/fill-blank-cells-with-value-above-in-excel/
https://spreadsheetplanet.com/fill-blank-cells-with-value-above-in-excel/
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2980983.2908093
http://doi.acm.org/10.1145/2980983.2908093
http://doi.acm.org/10.1145/2980983.2908093
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410

BIBLIOGRAPHY 137

[98] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational Linguistics, Nov.
2019. url: http://arxiv.org/abs/1908.10084.

[99] Acumen Research and Consulting. Data Preparation Tool Market. 2021. url: https:
//www.acumenresearchandconsulting.com/data-preparation-tools-market.

[100] Reudismam Rolim et al. “Learning Syntactic Program Transformations from Exam-
ples”. In: Proceedings of the 39th International Conference on Software Engineering.
ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 404–415. isbn: 978-1-5386-
3868-2. doi: 10.1109/ICSE.2017.44. url: https://doi.org/10.1109/ICSE.2017.
44.

[101] Arvind Satyanarayan et al. “Critical Reflections on Visualization Authoring Systems”.
In: IEEE Transactions on Visualization and Computer Graphics 26.1 (2020), pp. 461–
471. doi: 10.1109/TVCG.2019.2934281.

[102] Brain Scally. How to make a correlation matrix in Tableau. url: https://www.
thedataschool.co.uk/brian-scally/how-to-make-a-correlation-matrix-in-

tableau.

[103] Vidya Setlur et al. “Eviza: A Natural Language Interface for Visual Analysis”. In:
Proceedings of the 29th Annual Symposium on User Interface Software and Technology
- UIST ’16 (2016), pp. 365–377. doi: 10 . 1145 / 2984511 . 2984588. url: http :
//doi.acm.org/10.1145/2984511.2984588.

[104] Vidya Setlur et al. “Sneak Pique: Exploring autocompletion as a data discovery scaf-
fold for supporting visual analysis”. In: Proceedings of the 33rd Annual ACM Sympo-
sium on User Interface Software and Technology. 2020, pp. 966–978.

[105] Helen Shen. “Interactive notebooks: Sharing the code”. In: Nature 515.7525 (2014),
pp. 151–152.

[106] Kensen Shi, David Bieber, and Rishabh Singh. “TF-Coder: Program Synthesis for
Tensor Manipulations”. In: ACM Trans. Program. Lang. Syst. 44.2 (May 2022). issn:
0164-0925. doi: 10.1145/3517034. url: https://doi.org/10.1145/3517034.

[107] Rishabh Singh and Armando Solar-Lezama. “Synthesizing Data Structure Manipula-
tions from Storyboards”. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. ESEC/FSE
’11. Szeged, Hungary: ACM, 2011, pp. 289–299. isbn: 9781450304436. doi: 10.1145/
2025113.2025153. url: https://doi.org/10.1145/2025113.2025153.

[108] Calvin Smith and Aws Albarghouthi. “MapReduce Program Synthesis”. In: Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’16. Santa Barbara, CA, USA: ACM, 2016, pp. 326–340. isbn:
978-1-4503-4261-2. doi: 10.1145/2908080.2908102. url: http://doi.acm.org/
10.1145/2908080.2908102.

http://arxiv.org/abs/1908.10084
https://www.acumenresearchandconsulting.com/data-preparation-tools-market
https://www.acumenresearchandconsulting.com/data-preparation-tools-market
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/TVCG.2019.2934281
https://www.thedataschool.co.uk/brian-scally/how-to-make-a-correlation-matrix-in-tableau
https://www.thedataschool.co.uk/brian-scally/how-to-make-a-correlation-matrix-in-tableau
https://www.thedataschool.co.uk/brian-scally/how-to-make-a-correlation-matrix-in-tableau
https://doi.org/10.1145/2984511.2984588
http://doi.acm.org/10.1145/2984511.2984588
http://doi.acm.org/10.1145/2984511.2984588
https://doi.org/10.1145/3517034
https://doi.org/10.1145/3517034
https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2908080.2908102
http://doi.acm.org/10.1145/2908080.2908102
http://doi.acm.org/10.1145/2908080.2908102

BIBLIOGRAPHY 138

[109] Armando Solar-Lezama et al. “Combinatorial Sketching for Finite Programs”. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS XII. San Jose, California, USA:
ACM, 2006, pp. 404–415. isbn: 1-59593-451-0. doi: 10.1145/1168857.1168907.
url: http://doi.acm.org/10.1145/1168857.1168907.

[110] Stacked bar chart. url: https://matplotlib.org/stable/gallery/lines_bars_
and_markers/bar_stacked.html (visited on 04/22/2021).

[111] Chris Stolte, Diane Tang, and Pat Hanrahan. “Polaris: A System for Query, Analysis,
and Visualization of Multidimensional Relational Databases”. In: IEEE Transactions
on Visualization and Computer Graphics 8.1 (Jan. 2002), pp. 52–65. issn: 1077-2626.
doi: 10.1109/2945.981851. url: https://doi.org/10.1109/2945.981851.

[112] Chris Stolte, Diane Tang, and Pat Hanrahan. “Query, Analysis, and Visualization
of Hierarchically Structured Data Using Polaris”. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’02. Edmonton, Alberta, Canada: Association for Computing Machinery, 2002, pp. 112–
122. isbn: 158113567X. doi: 10.1145/775047.775064. url: https://doi.org/10.
1145/775047.775064.

[113] Chengnian Sun et al. “Perses: Syntax-Guided Program Reduction”. In: Proceedings
of the 40th International Conference on Software Engineering. ICSE ’18. Gothenburg,
Sweden: Association for Computing Machinery, 2018, pp. 361–371. isbn: 9781450356381.
doi: 10.1145/3180155.3180236. url: https://doi.org/10.1145/3180155.
3180236.

[114] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press,
2014, pp. 3104–3112.

[115] Tableau. Tableau Software. url: https://tableau.com.

[116] The Kaggle Data-Science Platform. url: https://www.kaggle.com/.

[117] The Mypy Optional Static Type Checker. url: http://mypy-lang.org/.

[118] The pandas project. https://pandas.pydata.org. Accessed October 11th, 2018.
2014.

[119] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. “Expectation vs. Experi-
ence: Evaluating the Usability of Code Generation Tools Powered by Large Language
Models”. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems. CHI EA ’22. New Orleans, LA, USA: Association for Comput-
ing Machinery, 2022. isbn: 9781450391566. doi: 10.1145/3491101.3519665. url:
https://doi.org/10.1145/3491101.3519665.

https://doi.org/10.1145/1168857.1168907
http://doi.acm.org/10.1145/1168857.1168907
https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_stacked.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_stacked.html
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/775047.775064
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://tableau.com
https://www.kaggle.com/
http://mypy-lang.org/
https://pandas.pydata.org
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665

BIBLIOGRAPHY 139

[120] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

[121] Voice Call Quality Customer Experience. url: https://data.gov.in/catalog/
voice-call-quality-customer-experience.

[122] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing Highly Expres-
sive SQL Queries from Input-Output Examples”. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2017. Barcelona, Spain: ACM, 2017, pp. 452–466. isbn: 9781450349888. doi: 10.
1145/3062341.3062365. url: https://doi.org/10.1145/3062341.3062365.

[123] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing Highly Expres-
sive SQL Queries from Input-output Examples”. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2017. Barcelona, Spain: ACM, 2017, pp. 452–466. isbn: 978-1-4503-4988-8. doi: 10.
1145/3062341.3062365. url: http://doi.acm.org/10.1145/3062341.3062365.

[124] Chenglong Wang et al. “Falx: Synthesis-powered visualization authoring”. In: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021,
pp. 1–15.

[125] Chenglong Wang et al. “Visualization by Example”. In: Proc. ACM Program. Lang.
4.POPL (Dec. 2019). doi: 10.1145/3371117. url: https://doi.org/10.1145/
3371117.

[126] Xinyu Wang, Isil Dillig, and Rishabh Singh. “Program Synthesis Using Abstraction
Refinement”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi: 10.1145/
3158151. url: https://doi.org/10.1145/3158151.

[127] Xinyu Wang, Isil Dillig, and Rishabh Singh. “Program Synthesis Using Abstraction
Refinement”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017), 63:1–63:30. issn:
2475-1421. doi: 10.1145/3158151. url: http://doi.acm.org/10.1145/3158151.

[128] Xinyu Wang et al. “Learning Abstractions for Program Synthesis”. In: Computer
Aided Verification. Ed. by Hana Chockler and Georg Weissenbacher. Cham: Springer
International Publishing, 2018, pp. 407–426. isbn: 978-3-319-96145-3.

[129] Elaine Weyuker. “On Testing Non-Testable Programs”. In: Computer Journal 25
(Nov. 1982). doi: 10.1093/comjnl/25.4.465.

[130] Kanit Wongsuphasawat, Yang Liu, and Jeffrey Heer. “Goals, Process, and Challenges
of Exploratory Data Analysis: An Interview Study”. In: ArXiv abs/1911.00568 (2019).

[131] Kanit Wongsuphasawat et al. “Voyager 2: Augmenting Visual Analysis with Partial
View Specifications”. In: ACM Human Factors in Computing Systems (CHI). 2017.
url: http://idl.cs.washington.edu/papers/voyager2.

https://data.gov.in/catalog/voice-call-quality-customer-experience
https://data.gov.in/catalog/voice-call-quality-customer-experience
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
http://doi.acm.org/10.1145/3062341.3062365
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
http://doi.acm.org/10.1145/3158151
https://doi.org/10.1093/comjnl/25.4.465
http://idl.cs.washington.edu/papers/voyager2

BIBLIOGRAPHY 140

[132] Kanit Wongsuphasawat et al. “Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations”. In: IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis) (2016). url: http://idl.cs.washington.edu/papers/voyager.

[133] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. “B2: Bridging Code
and Interactive Visualization in Computational Notebooks”. In: ACM User Interface
Software & Technology (UIST). 2020. doi: 10.1145/3379337.3415851. url: http:
//vis.csail.mit.edu/pubs/b2.

[134] Yuhao Wu et al. “How Do Developers Utilize Source Code from Stack Overflow?”
In: Empirical Softw. Engg. 24.2 (Apr. 2019), pp. 637–673. issn: 1382-3256. doi: 10.
1007/s10664-018-9634-5. url: https://doi.org/10.1007/s10664-018-9634-5.

[135] Frank F Xu et al. “Incorporating External Knowledge through Pre-training for Nat-
ural Language to Code Generation”. In: Annual Meeting of the Association for Com-
putational Linguistics. ACL. ACL, 2020, pp. 6045–6052. doi: http://dx.doi.org/
10.18653/v1/2020.acl-main.538.

[136] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. “In-IDE Code Generation from
Natural Language: Promise and Challenges”. In: ACM Trans. Softw. Eng. Methodol.
TOSEM 31.2 (2022). issn: 1049-331X. doi: http://dx.doi.org/10.1145/3487569.
url: https://doi.org/10.1145/3487569.

[137] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. “Automated Migration of Hierar-
chical Data to Relational Tables Using Programming-by-example”. In: Proc. VLDB
Endow. 11.5 (Jan. 2018), pp. 580–593. issn: 2150-8097. doi: 10.1145/3187009.
3177735. url: https://doi.org/10.1145/3187009.3177735.

[138] Navid Yaghmazadeh et al. “SQLizer: Query Synthesis from Natural Language”. In:
Proc. ACM Program. Lang. 1.OOPSLA (Oct. 2017). doi: 10.1145/3133887. url:
https://doi.org/10.1145/3133887.

[139] Kuat Yessenov et al. “A Colorful Approach to Text Processing by Example”. In:
Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology. UIST ’13. St. Andrews, Scotland, United Kingdom: Association for Com-
puting Machinery, 2013, pp. 495–504. isbn: 9781450322683. doi: 10.1145/2501988.
2502040. url: https://doi.org/10.1145/2501988.2502040.

[140] Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolating Failure-Inducing
Input”. In: IEEE Trans. Softw. Eng. 28.2 (Feb. 2002), pp. 183–200. issn: 0098-5589.
doi: 10.1109/32.988498. url: https://doi.org/10.1109/32.988498.

[141] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2SQL: Generating Structured
Queries from Natural Language using Reinforcement Learning”. In: arXiv e-prints,
arXiv:1709.00103 (Aug. 2017), arXiv:1709.00103. arXiv: 1709.00103 [cs.CL].

http://idl.cs.washington.edu/papers/voyager
https://doi.org/10.1145/3379337.3415851
http://vis.csail.mit.edu/pubs/b2
http://vis.csail.mit.edu/pubs/b2
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/http://dx.doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/http://dx.doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/http://dx.doi.org/10.1145/3487569
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3187009.3177735
https://doi.org/10.1145/3187009.3177735
https://doi.org/10.1145/3187009.3177735
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.1145/2501988.2502040
https://doi.org/10.1145/2501988.2502040
https://doi.org/10.1145/2501988.2502040
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://arxiv.org/abs/1709.00103

BIBLIOGRAPHY 141

[142] Moshé M. Zloof. “Query-by-Example: The Invocation and Definition of Tables and
Forms”. In: Proceedings of the 1st International Conference on Very Large Data Bases.
VLDB ’75. Framingham, Massachusetts: Association for Computing Machinery, 1975,
pp. 1–24. isbn: 9781450339209. doi: 10.1145/1282480.1282482. url: https://doi.
org/10.1145/1282480.1282482.

https://doi.org/10.1145/1282480.1282482
https://doi.org/10.1145/1282480.1282482
https://doi.org/10.1145/1282480.1282482

	Contents
	List of Figures
	List of Tables
	Introduction
	Reducing the Specification Burden via Interaction
	The Need for Programming Assistants
	Choice of High-Level Specifications
	Code Generation from High-Level Specifications

	AutoPandas
	Overview
	Technique
	Generators
	Generator-Based Program Synthesis
	Program Candidate Generator
	Building an Exhaustive Depth-First Enumerative Synthesis Engine
	Building a Smart Enumerative Synthesis Engine

	Neural-Backed Generators for Pandas
	Neural-Network Query
	Query Encoding
	Operator-Specific Graph Neural Network Models

	Training Neural-Backed Generators for Pandas

	Evaluation
	Implementation
	Training and Setup
	RQ1: Performance on Real-World Benchmarks
	RQ2: Analysis of Neural Network Models
	Function Sequence Prediction Performance
	Comparison with Deterministic and Randomized Semantics

	Discussion
	Generator Implementation
	Representative Training Data
	Ease of Providing I/O Examples

	Summary

	Gauss
	Overview
	Extracting Query Graphs
	Deciding Skeletons for Exploration
	Learning from Failures
	Smart Enumeration

	Technique
	Preliminaries and Notation
	Table Transformation Programs
	Graphs

	Graph Abstractions
	Problem Statement
	Synthesis Algorithm
	Graph Decompositions
	Overall Algorithm
	Enumeration
	The Feasible Check
	Strengthening Decompositions
	The Oracle
	Soundness and Completeness

	User Interface Implementation

	Evaluation
	Baselines and Benchmarks and Hardware
	RQ1: Pruning Power
	RQ2: Reduction in Size of Specifications

	Discussion
	Necessity of a User Interface
	Ease of Use
	Multiple Possible Representations
	Noise in Demonstrations
	Experience with Real Users

	Summary

	VizSmith
	Overview
	Technique
	Architecture of VizSmith
	Mining
	Collecting and Replaying Notebooks
	Instrumentation and Execution
	Visualization Objects and Visualization Slices
	Minimizing Visualization Slices

	Extracting Visualization Functions
	Participating Columns vs. Column Parameters

	Analysis of Mined Visualization Functions
	Defining Reusability
	Metamorphic Testing for Checking Reusability

	Visualization Code Generation
	Search
	Generating Visualizations

	Evaluation
	RQ1: Diversity of Functionality in Mined Corpus
	RQ2: Accuracy of Metamorphic Testing
	RQ3: Code Generation Performance

	Discussion
	Real-World Usage
	Code Licensing and Security
	Construct Validity
	Integrating Direct Manipulation

	Summary

	Datana
	Motivation
	Correcting Algorithmic or Functional Errors
	Highlighting Important Query Fragments
	Providing Solutions with Low Adaptation Overhead

	Technique
	Architecture Overview
	Mining Pandas Expressions
	Auto Code Summarization using Large Language Models
	Bidirectional Consistency
	Better Approximating Semantic Equivalence

	Generating Imprecise and Incomplete Descriptions
	Automatic Parameterization of Code Snippets

	Augmenting Codex for Improved Code Generation
	Retrieval
	Prompt Engineering for Augmenting Codex

	Evaluation
	Benchmarks
	Baselines and Other Systems
	Corpus Baselines
	Codex Baseline
	Simple Corpus Baseline
	Jigsaw Results

	Codex Versions
	RQ1: End-to-End Performance Improvement Over Codex and Search Baselines
	RQ2: Comparison With Jigsaw
	RQ3: Complementarity with Core LLM Improvements
	RQ4: Ablation Study
	Effect of Varying Top-k
	Ablations for Retrieval Architecture and Description Styles

	Discussion
	Disambiguation and Ranking
	Contextual Discoverability

	Summary

	Related Work
	Code Generation
	Intent Specifications
	Logical Specifications
	Input-Output Examples
	Natural Language
	Demonstrations
	Combinations of Specifications

	Algorithms
	Pruning via Logical Reasoning.
	Pruning via Domain-Specific Inductive Synthesis
	Pruning via Abstractions
	Pruning via Type Information
	Biasing via Machine Learning
	Generation via Machine Learning

	Alternate Programming-Based Data Analysis Assistants

	Conclusion
	Bibliography

