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Solutions to a Class of Multidimensional SPDEs

A. L. Piatnitski, H.Z. Zhao and W.A. Zheng*

Abstract

In this paper, we consider multi-dimensional SPDEs of parabolic type with space-time white
noise. We discretize the space-time white noise to independently identically distributed time
white noise located on configuration space and then consider the convergence of the discretized
solution u(t, z,n). We first prove that in general the laws of u(t, z, n)dtdz form a tight sequence
and the limit is the law of some measure-valued random variable which gives a weak integral
solution in the linear case. For the stochastic multi-dimensional KPP equation, we prove that the
solution is real-valued. This is the first example of SPDEs discovered so far in multi-dimensions
with real-valued solutions.

1 Introduction

In this paper, we study the multi-dimensional SPDE of the following form:

%u(t,m) - %Au(t, ) + flu(t,2)] - Wt ), (1.1)
where W (t,z) is the space-time white-noise on R* x R, (see [24], [10], [20]). There have been many
good results in the case where d = 1 (see [24], [17], [20], [22], [10] for references). However, in the
higher dimensional (d > 1) case, there are only results for the linear case where f(u) = u (see [16],
[18], [1], [23]). The main difficulty is that the solutions in multi-dimensional case was known as
only taking values in L. Schwartz’s distribution space ([10]). Certainly it is difficult to understand
the non-linear function of such a generalized random field (see [20]).

We are going to use a random homogenization method ([8], [19], [13]) to discretize Equations
(1.1) when f(u) = w and f(u) = u(l —u). While we denote by {u(¢,z,n)} the discretized solutions,
we are going to show that the laws of {u(¢, z, n)dzdt},, form a tight sequence and any of their limits
is the law of some measure-valued random variable. So it suggests to consider any of the limits as
an integral solution to (1.1). We hope this method will enable us to understand multi-dimensional
SPDE in an alternative way.

When the above integral solution is differentiable with derivative u(s, ), it is natural to consider
u(s,x) as a solution to (1.1) (see Theorem 3.3.)

In sections 4 and 5, we study the following stochastic reaction diffusion equation with space-time
white noise in R%:

0 1 .
au(t, x) = §Au(t,a:) + (1 —wu(t,z))u(t,x) - W(t,x), (1.2)
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with an initial condition u(0,z) = ug(z). Here we assume that ug € C? and 0 < ug < 1. This
equation (when replace W (¢, z) by 1) is known as KPP equation arised in mathematical biology,
chemical engineering and population dynamics. With space-time white noise, the case for d = 1
was considered in [22] and the solution is real-valued. But this equation used to be considered
meaningless for d > 1 as solution for high dimensional SPDE used to be considered as a distribution
so that (1 — u)u did not make sense if u is just a distribution-valued random variable. However
in this paper we will prove that this equation has a real-valued solution for any dimension. It is
interesting that the solution to the non-linear equation behaves better than linear equations. This
phenomenon for the deterministic equation was noted in [5].
The method for Equation (1.2) can be generalized easily to more general equation in R? e.g.

0 1 .

Eu(t x) = §Au(t,a}) + (@ — u(t, x))u(t, x)h(u(t, z)) + (a — ult, z))u(t, z)g(u(t, x)) - W(t,x), (1.3)
for any C? functions h and g and assuming that if u > 0, u(1 — u)h(u) < cu for a positive constant
¢ > 0. Here a > 0 is a constant. For instance, h(u) = ™ 4+ a™ 'u+--- + au™ ' + 4™, where m is
an integer, satisfies the requirements. Assume that 0 < ug(z) < a. We then still have the existence
of a real-valued solution to Equation (1.3).

2 Discretize the space noise

Decompose R into the squares:

LECTIL?,kd = {(.’1’51,.’1’}2, e, X ) _k < T] (k + ]') fOI' 7 = 1’2’ e ’d}’

k17k27"'7kd - Oa:l:la:l:Qa
Denote K = (kq,ka,- -, kq) and define

Wit z,0) = n? Y a(e, K)ib(t, K) (2.1)
K

where w(t, K), K € Z%, are independent Wiener processes of 1-parameter ¢ on a probability space
(Q,F, P) and w(t, K) denotes the Ito derivative of the Wiener process. Assume a(z, ) is a C™
function and satisfies the following conditions: for any K : LY. C {z € R: |z <nyi=1,2,---,d},
fL;(c") a(z,K)dx = # and a(z,K) = 0 forz € R — Lscn) and a(xz, ) = 0 for all other K. For
simplicity we assume that all a(z, ) are identical except for a shift.

Then it is easy to see from the central limit theorem that for any block B = {(t, z1, 29, -, x4) :
41 §t§t27 a; SI'] Sbju j:1727"'7d}7

to
/ W (t, z)dzdt = / / nt Z x, K)w(dt, K)dz
B [al,bl XX ad,bd

= / / nia(m,}C)dmw(dt,}C)
a1,b1 X X[ad,bdD

d

= E

a(xz, K)dz(w(ty, ) — w(t, K)).

N(la1,b1]x - x[aq,ba])



Therefore

/W (t, z)dzdt)?

= (e, K)dry Bw(ts, K) — w(ty, K))?

N [al,bl XX ad,bd})

d 2
_ K)da)2 (ty —t
Z /T]Cﬂ [al,bl XX ad,bd}) a(x ) I} ( 2 1)

— (blf(l,l) (bg*(I,Q)X"-X(bd*(J,d)X(tQ*tl), as n — o0.

So ([ Whdzdt) as a sequence of sum of independent random variables, as n — oo, converges
in law to a normally distributed random variable with mean 0 and variance [ dxdt. Moreover,
if By and By are disjoint, then ([ Wpdzdt) is independent of ( [z Wpdzdt). Thus the limiting
random process is a multi-parameter Brownian sheet. Thus, we can say that W,, converges in law
to a "white-noise” which is regarded as the weak derivative of the Brownian sheet. By using the
celebrated Skorohod’s lemma, we can select a new probability space and assume that W, converges
almost everywhere to the white-noise W. We will fix this new probability space and still denote it
by €

Consider the following stochastic parabolic equation with initial condition in R¢:

1
du(t,z,n) = EAu,(t, z,n)dt + n? Z a(x, K)u(t, z,n)dw(t, K),
K
u(0,2,n) = up(x). (2.2)

Here ug is a nonnegative and bounded C? function.
The solution of (2.2) is given by the Feynman-Kac integration. The proof of the following
Lemma is standard (see, for example, Kunita [11], and Lemma 7.1 in [6] for the proof of (2.4)).

Lemma 2.1 For any fized n, equation (2.2) has a unique solution u(t,z,n) which is C* in x and
and continuous in t and

u(t,z,n) = Euo(Xtyo(a:))exp{—%ndZ/ CLQ(Xt,S(I),,C)dS

tnt Z/ (X, (2), K)duw(s, K)}. (2.3)

Here X; 4 is the inverse of the Brownian flow in R on a probability space (Q,]:', }5) and E de-
notes the expectation over that probability space. The stochastic integral fga(Xt,S(:c),lC)dw(s,lC)
is defined to be Stratonovich integral on the product probability space (2 X O, F x F,P x ]3) It
coincides with the Ito integral as X ¢(z) is mdependent of w(s,K) for any K. Moreover, we have
the following estimate, for x € Lg, for certain K ez

Eexp{Tﬁ;/O a(Xs(2), K)dw(s, K)}

< exp{n%a(m, K)w(t,K)} {Eexp{?nd Z /Ot(D(I,(Xt’S((L‘), K)w(s, }C))st}} 2 . (2.4)
K

Therefore (2.3) is bounded P a.s..



In general, we consider

du(t,z,n) = %Au(t, x,n)dt + nt Z a(x, ) f(u(t,z,n))dw(t, K),
K
u(0,2,n) = ug(x). (2.5)

Lemma 2.2 Suppose for any n, the solution u(t,xz,n) to (2.5) exists and is nonnegative and ug €
C’g(Rd) with a compact support G C RY, then there exist constants Cy > Cy > 0 such that for any
n > 0,

(dist(z, G))? (dist(z, G))?

C1 exp{— 5 } < EBu(t,z,n) < Cyexp{— 57 } (2.6)
and therefore
E/ u(t, x,n)dxr < oo. (2.7)
R4
Proof. Taking the expectation to both sides of (2.5), we have

OFEu(t 1
% = EAEu(t,m,n). (2.8)
So v(t,x) = Eu(t,z,n) is the solution of the deterministic heat equation with initial condition

v(0,2) = wug(x), and is independent of n. As wug(z) has the compact support G C RY, it is well
known that there exist Cy > C7 > 0 (independent of n of course) such that

(dist(z, G))? (dist(z, G))*

Crexp{— ot }<w(tz) < Cyexp{— 2 H (2.9)
for a constant C' > 0. So we have (2.6). It turns out that
/ v(t,x)dr < 0o,
J R4
for any ¢ > 0. This is followed by (2.7) easily. i1

In the next section, we will always assume ug € CZ(R?) and nonnegative.

3 Tightness results

Let R4 = R U{oc}. Denote by Py the set of all measure on [0, 1] x R? bounded by positive b.
So Py is a compact polish space equipped with the topology of measure convergence, which is the
least fine topology to make all the mapping p1 @ [ f () u(dz) continuous for all bounded continous

function f(x) defined on R? (see, for example, [3] III, 60). Denote P = U, Py- When we equip P
again with the topology of measure convergence, it is easy to see that for each 0 < b < oc,

{ueP, w7 <b)



is an open set and its closure is Pj. Thus P is locally compact polish space. Denote by P its
one-point compactification. Finally, denote by P the set of all bounded measure on [0,1] x R?.
Consider V,,(dt, dx) = u(t, x,n)dtdx as a sequence of random variable taking values in P. Here we
assume u(t, z,n), the solution to (2.5), exists and is nonnegative.

Theorem 3.1 Suppose ug € Cg(Rd) and nonnegative. There is a subsequence V,, which converges
to a P—walued random variable V in law.

Proof. 1) Denote by P, the laws of V;, on P. Since P is compact and seperable, there is a
subsequence P, which converges to some P,,. We are going to show that Py, is carried by P. We
have

— _ 1
PuVa([0,1] x BRY) > ¢ < ¢ B[V, ([0,1] x RI)] = ¢! / Buft, x,n)dxdt.
Jo Jr
Since {v € P; v([0,1] x R4) > ¢} is open in P,
_ 1
Py € P; v([0,1] x Rd) > ¢] < ¢! lin}cinf/ ) Eu(t, z,ng)dxdt,
0o JRr

where we used the fact that weak convergent measures reduce their probabilities in the limit on
open sets (see, for example, [7] p.108). When ¢ — oo, the right-hand side of the above inequality
tends to 0. That is, P, is carried by P.

2) Now let us show that P is carried by P. Indeed, for fixed positive pairs k and ¢,

{veP, v(0,1] x {z € R% |z]| > ¢}) > K}
is open in P. We have easily
PuVo([0,1] x {z € R% |2 > c}) > #] < 5~ 1E/ / w(t, z,n)dudt],
|z|>c

where the right-hand tends to 0 uniformly when ¢ — co. Thus, we deduce that P, carries on P. i}

Since P is a Polish space, by the celebrated Skorohod’s Lemma, we can assume that V,, and V'
are all defined on the same probability space and V,, converges to V' almost surely.

Consider equation (2.2) and its solution u(t,z,n). Given any Cg —function ¢(¢, z) on [0,1) x R,
by (2.2).

/Rd/qstx tscndtda:—/ /(bta:Au(tccn)dtdg;
/Rd/ o(t, x)Wh (t, 2, w)u(t, z, n)dtdx.

Using integration by parts formula,

/Rd / o(t, x) Wy (t, 2, w)u(t, z,n)dtdr
= —/ (0, x)ug (z)dr — /Rd /lqt(t,m,n)gqﬁ(t,m)dtdm - /Rd l/1 u(t,x,n)A¢(t, r)dtdx
— —/R (0, x)ug (x dac—/Rd/a o(t, z)V (dt,dx) — / /A(bta: V(dt,dz),



as n — oo, where V(dt,dz) is given by the previous Theorem. Thus we may consider the last side
as the definition of

/Rd /01¢(t=x)W(t,x).V(dt,dx)

where TW(.,.) is the space-time whit noise. Thus V gives a weak solution to (1.1) when f(u) = u
with initial condition u(0,z) = ug(z).

Let Fj,+ be the natural filtration of {W,,(¢,z)},. Let us consider a sequence of new probability
space (£2 x Rd,Fn,l X B, P x p) with filtration (F,; x B);<; where B is the Borel o—algebra of
subsets in R¢ and u(dz) gives the standard normal law on RY. Now we consider u(t,z,n) as a
process (depending only on #) on this new probability space R% x (,

1 1
sup{/ [/ u(t,z,n)dtd(P x p)} < sup/ / Eu(t,z,n)dzxdt < co. (3.1)
n JOxRrYJO n Jo JR?

Then we can obtain from Theorem 4 in [15],

Theorem 3.2 {{ [ u(t,.,n,.)dt}s<1}n forms a tight sequence and any limiting process is of the
form {&(s, ) }s<1 where £(s,.) is an increasing process of s for almost all (z,w).

If we can have more uniform control on u(¢,x,n), then we have the following

Theorem 3.3 Suppose there is p > 1 such that the following condition is satisfied:

1
sup/ [/ lu(t, 2, n) PAA(P x 1) < oo, (3.2)

n JOxRY JO
Then &(s,x) in Theorem 3.2 is differentiable with respect to s almost surely under dP x du. Denote
u(s,z) = %. Moreover, u(s,z) = % where V' is given by Theorem 3.1. So u gives a

weak solution to (1.1).

Proof. According to Theorem 3 of [25], (3.2) implies

1 O&(s,x) »
/Qde[/O |T| ds]d(P x u) < 0.

So we get the first statement.
Let us consider the second statement. By using the Skorohod’s lemma, we may assume that
for almost every (w,z), and all bounded continuous ¢(s),

/1 o(s)u(s,x,n,w)ds — /1 o(s)u(s, x,w)ds, as n — oo.
0 Jo

Let (s, z) be any bounded continuous function on [0, 1] x R?. For any M < oo, by the dominated
convergence theorem

1 1
/ / P(s, z)u(s,z,n,w)dsdr — / / P(s,z)u(s,z,n,w)dsdx, as n — oo.
|z|<M JO J|z|<M J0O



On the other hand, by (2.6), J;>u fol P(s,z)u(s, z,n,w)dsdx tends to 0 in probability (uniformly
in n) when M — oco. Hence for any given € > 0,

P /Rd /01¢(8,x)u(5,x,n,w)dsdx - /Rd /Olzp(s,a:)u(s,:c,w)dsdcc >e =0, asn— oo

Take a sequence of bounded continuous functions {1y (s, z)} which are dense in uniform convergence
norm in the space of all bounded contionuous functions on [0, 1] x R%. By diagonal line method, we
may find a subsequence u(s, x,n,,,w) such that

1 1
P[/ / Y8, x)u(s, x, Ny, w)dsdr — / / Y (s, x)u(s, x,w)dsdr as m — oc] = 1.
JRd Jo JRd Jo

On the other hand, u(s,z, ny,,w)dsdz tends to V. So we get the second conclusion. 11

4 Nonlinear stochastic reaction diffusion equations with time white
noise

In this section, we study the following semilinear SPDE with global Lipschitz nonlinear term

dv(t,z,n) = %Av(t, x,n)dt + n' Z a(z, K)F(v(t,z,n))dw(t, K),
K
v(0,z,n) = wug(x). (4.1)

Assume that ug € C%(RY) is bounded and F(v) satisfies the following global Lipschitz condition:
there exists an L > 0 such that

|F(U1) - F(Ug)‘ S L|U1 - 1)2‘. (42)

The mild solution of the equation (4.1) is defined as the solution of the following integral
equation if exists ([2])

v(t,z,n) = ./Rd pi(y, v)uo(y)dy + n? ; ./Ut ./Rd pi—s(y, x)aly, K)F(v(s,y,n))dydw(s, ).  (4.3)

Here p;(y, =) is the heat kerkel of the Laplacian operator %A on R%:

ly — x|

pi(y, ) =pily —x) = ! 7 exp{— }

(2nt)2 2t
It has been proved in Walsh [24] that the mild solution is equivalent to the weak solution which is
defined using test functions.

The following is a special case of the well-known Burkholder inequality. We list it here ready
to use in the proof of lemma 4.2.



Lemma 4.1 (Burkholder inequality) Assume f(s) is Fs measurable and X (t) = f[f f(s)dw(s), then
for any p>1,

EX? () < (2p — )PP ! /0 "B (s)ds. (4.4)

The following theorem first gives the existence and uniqueness of mild solution associated with
(4.3). Then under some extra conditions on F' and ug, we prove that the mild solution turns out to
be a strong solution to equation (4.1). Some of the ideas in our proof are inspired by stochastic flow
theory for stochastic ordinary differential equations (see e.g. [4], [11]). We don’t strike here the
minimal conditions on F' and ug needed for the regularity results as our purpose in this paper is to
apply the results to stochastic KPP equation (5.1) with time noise. Actually following our proof,
one can find easily that if F, F’, F" satisfy global Lipschitz conditions and linear growth conditions,
the results of the following theorem still holds. Actually, one only needs one more estimate that
for any p > 1,

E{v(t,z,n)}** < C(n,p,t), (4.5)

for a constant C(n,p,t) > 0. This follows from our proof and the linear growth condition of F
easily.

Theorem 4.2 Assume F satisfies the global Lipschitz condition (4.2) and ug is bounded. Then
there exists a unique solution u(t,z,n) € L*(Q) to equation (4.3) for any t > 0. Assume further
that ug € C?(RY) and F € C*(R") and F,F' and F" are bounded, then the mild solution is a strong
solution to the equation (4.1) that is C? with respect to x.

Proof. Define a Banach space:

S=  {v: foreach t € [0,1],v(¢, z,w) is continuous in ¢, and = and is F; measurable

and v € L*(Q)},

with the norm:

llelll = sup supy/Ee2(t,2).
0<t<1 =
Define a map: 6: 5 — S by
O(v)(t,z,n) = /Rd pi(y, x)uo(y)dy
p t
+n?2 Z/U /Rd pr—s(y, x)aly, C)F(v(s,y,n))dydw(s, K). (4.6)
K

Then for vy,vy € S,
E0(v1)(t,z,n) — 0(v3) (L, z,n))>

= By [ [ sty 21ty K () = (st )y, K



SR 2L R R S T A R GO

t
< ndZE// Pi—s(y, x)a’ (y, K)dy
K 0 JR4
< [ prsa) (F (s, y.m) — F(va(s, ) *dyds
t
< Lallen® S [ el ) B (sym)  va(s, ) dyds
K

< Llfalfn®)” sup SupE(vl(s y,n) —va(s,y,n / / pi—s(y, v)dyds
i 0<s<t

< L

1%

nd|K|t sup sup E(vi(t,z,n) — vs(t, z,n))% (4.7)
0<t<1 =

Here ||a||ooc = sup, |a(x,K)|, |K]| is the number of the indices in . We have used the Lipschitz
condition of F, the identity [pipi—s(y,z)dy = 1 and the Holder inequality. Therefore we have

proved that
16(v1) — O(v2)ll| < (\/ Lllal B[ KI)]][v1 — vall]. (4.8)

It then follows from the contraction principle that there is a unique fixed point v € S of 0 for all
t < tg for tq satisfying L||a||?2,n? K|ty < 1. Tt is evident that v is the solution of the stochastic
integral equation (4.3). This solution can be extended to ¢ € [0,7] for any T' > 0 as we can use the
same argument on [tg, 2¢g], etc.

For the regularity, we first need to prove the Lipschitz continuity of v(¢,x,n) in x. For this we
consider for z1, 25 € R,

v(t,z1,n) — v(t,x9,n)

- / pe(y, @1 )uo(y)dy — / pe(y, o) () dy
Rd Rd
#8321 sl KO P05 )y (s, K)
E D[ s )aly K)F( sy )5, K
= / pe(y, 21 o (y) dy — /R pe(y, o) () dy
+mz / / pesW)aly + z1, K)F (u(s,y + 21, n))dyduw(s, K)
_mz / / pesW)aly + w9, K)F (u(s,y + 22, n))dyduw(s, K)
= / pe(y, @1 )uo(y)dy — / pe(y, o) () dy
R4 R4

+n? Z/ / pi—s(y)(aly + 21, K) — a(y + 22, K))F(v(s,y + x1,n))dydw(s, K)



+n22/ / pe—s(y)aly + 2, K)
{F(v(s,y +z1,n)) — F(v(s,y + xz2,n)) }dydw(s, K). (4.9)

We need moment estimates. For this we use the inequality (a-+b+c¢)%? < 22— (g% 4 p?% 4 %)
(see e.g. [4]), Burkholder inequality (4.4) and Holder inequality,

E(v(t,x1,n) — v(t, xg,n))Qp

< 2O plaou)dy - [ paul)dy®
+22(2p71)(2p 1)Pppisp-1 Z/ E{/ pi—s(y)(aly + 21, K) — a(y + 29, K))
F(u(s,y + x1,n))dy}*Pds
+22(2p71)(2p pnpdtp 12/ E{/ pis(y)aly + 22, K)
{F(v(s,y +x1,n)) = F(v(s,y + w2,1)) }dy}*Pds
t
< Moy aP? 4 2000 1wt ol 2K B [ ()
0 JRd
{F(v(s,y +x1,n)) — F(v(s,y + x2,n))}dyds
t
< Ml — o 422770 (2p — 1)”n”dt”*1l\al\§é’lK\L2”/ / pe—s(y)
0 JRd
E{v(s,y + x1,n) — v(s,y + x2,n)}*Pdyds
< Mz — x| + 227D (2p — 1)PnPdP ||| 22| K| L%

t
/ sup E{v(s,z1,n) — v(s, x2,n)}*Pds.
0

21,22:0<|z1 —z2|<ho

Here we have used the Lipschitz condition on F' and the differentiability of [, pi(y, )uo(y)dy with
respect to = (see [9]). The constant M depends on n, a(z, K), upper bound of |F'| and uy. Therefore
by Gronwall inequality, we have for any hg > 0

sup E(v(t,z1,n) — v(t, x9,n))%
$1,$2:0<‘$1712‘<h0
< Mz — 29| exp{22®~V (2p — 1)PnP4|a||?P | K| L?PP). (4.10)

The following estimate holds for any p > 1.
In the following, for a scalar h > 0 and a vector e € R, denote by V, the directional derivative
along e € R (see [4]). From (4.9), and Lipschitz estimate (4.10), we have

v(t,z + he,n) —v(t, z,n)
- ve(/ pi(ys 2)uo(y)dy)h + ha ()

+n22/ / s () (Vealy + 2, K))h + has(h))

(F(v(s,y +x,n)) + as(h,y + x, s))dydw(s, K)

10



+n?Z// pi+(w)aly + . )L (0(s.y + 2.1) 05,y + & + he,n) = v(s.y +.1))

+ay(h,y + z, s) }dydw(s, K).

Here a1, ag, as, ay are infinitely small in the following sense

aj(h) =  O(h) uniformly in =z, t,

az(h) = O(h) uniformly in =z, t,

sup Eagp(h,rl:, s) = O(h?P) uniformly in s,
T

sup B (h,z,s) =  O(h*) uniformly in s.
T

The last two estimates for ag and a4 follow from (4.10). Define

v(t,z + he,n) —v(t,z,n)

J(t7 I? n7 h) = h

It is evident that J(t,xz,n,h) satisfies the following integral equation:
Ianh) = Vel py2)unl)dy) + o (h)

iy [ / () (Vealy + 2, K) + as(h)
F(v(s,y +x,n)) +as(h,y + z,s))dydw(s, K)

tn? 2/ / s ()aly + o, K){F'(0(s,y + x,n)) T (¢, 2,n, h)

+ha4(h y + x,s) pdydw(s, K).

Denote by J(t,z,n) the solution of the following stochastic integral equation:
Iam) = Vel pilyaua()dy)

+n5 ; /0 ./Rd Pi—s(y — ) (Vealy, K))F(v(s,y,n))dydw(s, K)

+n? ; ./ot ./Rd pi—s(y — x)aly, K)F' (v(s, y.n))J (t, y. n)dyduw(s, K).

It turns out that
Ttam) = Vel iy o)uo(w)dy)

ap> [ [ pe ) (Fealy + K P, + ) dyduls, K

(4.15)

(4.16)

—H“Z/ / pis(y)aly +x, K)F' (v(s,y + x,n))J(t,y + z,n)dydw(s, K).
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This is then followed by
J(t,x,n,h) — J(t,z,n)

= )+ nz Z/ / prs(y)as(h)(F(v(s,y + z,n)) + az(h,y + x, s))dydw(s, K)
—HﬁZ/ /dpth(y)Vea(y+$7’C)043(h,y—I—Sc,s)dydw(s,lC)
+n?2 Z/ / prs(y)aly +z, K){F' (v(s,y + z,n))(J(t,y + z,n,h) — J(t,y + x,n))

+ha4(h Y+ x,s) pdydw(s, K).

So again using Holder inequality, Burkholder inequality and (a + b+ ¢+ d)% < 2221 (q% 4 p?P 4
2p 2p
P 4+ d°P),

E(J(t,rr:,n, h) o J(taman))Qp
= 22(2%1)(041(;1))21) 4+ 92(2p—1) ,pdyp—1 Z /t
Jo
E(/Rd pes(y)ea(h)(F(u(s,y + z,n)) + as(h,y + z,5))dy)*ds

t
+22(2p—1)pdyp-1 Z / E{/ s Vealy + 2, K)as(h,y + @, 5)dy} P ds

222 ypdyp- 12/ / pe—s(y)aly + z,K)
1

{FI(U(Sa Yy + T, n))(‘](ta Yy + x,n, h) o J(ta Y + T, n)) + Eaél(ha Yy + T, n)}dy)2pds
t
— ah) +22<2P*1>\|a\|§gnpdtpflz/
K 0

E [ o s@{F @i,y +5,m) sy + 0.0, h) — J(s.y+ 2,m))} Pdyds
R

t
< alh) + 220 a2 P [ sup B (s 2,n,h) = T (s, .m)) s
0 x

t
a(h) = 22(2”’1)(041(11))2”+23(2”’1)n”d\}C|a2p(h)2t”’1{t\|F|\gg—I—/O snga%p(h,m,s))ds}
t
+22Cr=1ppd| | . HVE(J,HZg/ SllpE(]’.gp(h,.’L‘,S)dS
0 x

t 1
+220r Vi) a2 P2 [ sup B(yaa(h,, ) ds
0 T

= O(h™).
The estimate O(h?P) follows from (4.11) (4.14). Again using the Gronwall inequality
sup sup E(J(t,xz,n,h) — J(t,z,n))*

T 0<h<ho

12



< alho) exp{22P~V]|a| Zn?!|| F'| 2| K|} (4.17)

That is to say that J(¢,x,n,h) = J(t,z,n) in L?P(2) as h — 0 uniformly in ¢ and z. Therefore by
Chebyshev’s inequality, J(t,xz,n,h) — J(t,z,n) as h — 0 in probability, so that in law. Therefore
there exists a sequence hy — 0 as k — oo such that J(t,z,n,hy) — J(t,x,n) P almost surely.
Furthermore, by Kolmogorov’s continuity criterion, J(¢,2,n,h) can be extended continuously to
J(t,z,n) for almost all w € Q. That is to say J(t,x,n,h) — J(t,x,n) as h — 0 for a.e. w € Q.
Similar to the proof of (4.10), we can deduce that

E('](ta mlan) - J(ta L2, n))Qp <G (napa t)‘ml - '7"2‘2’)’ (418)
for any p > 1. Here Cy(n,p,t) is a constant depending on p, n and ¢. Actually the proof is the
same as the proof of (4.28) given below. Again by Kolmogorov’s continuity criterion, J(t,z,n) is a
continuous process for a.e. w. Therefore v(t,z,n) is differentiable with respect to x for a.e. w.

For C? property of v(t,x,n), denote J;(t,z,n) = gv(t,m,n) and V; = % fori =1,2,---,d.
Then by (4.16), J;(t,z,n) satisfies the following linear integral equation

Kt = Vil ply)un(y)dy)
| [ by = ) (Vialy, K F (ol )y, K)
ot 2 7 s 2t KO oy ) s ). (419
Note that for any p > 1, using Burkholder inequality (4.4) and Holder inequality,
V([ pilasa)uo()dy) ¥ < sup | Vi (a) (4.20)

E{// pi—s(y — ) (Via(y, K))F (v(s,y,n))dydw(s,IC)}QZ’

< @17Vl P2 FIE. (4.21)
B[ vy = 2)aly, KR W, ) s,y K7
t
< @l ZIFE [ sup (s w2 (4.22)
0 T

Similar to the proof of (4.10), using Gronwall inequality, there exists a constant Cy(n, p,t) > 0 such
that

sup E{J;(t,z,n)}** < Ca(n,p,1), (4.23)

Furthermore, for any z; € R4, x5 € RY,
Ji(t,x1,n) — Ji(t, x9,n)
= Vil puau)dy) ~ Vil | iy m2)um)dy)
Rd Rd

13



#nt 3 [ [ pe s {(Fualy + 00, KD F ety -+ 0,0)
(Vz (y—l—:cQ,lC))F(v(s,y+x2,n))}dydw(s,l€)
—|—n22/ / Prs( (y + 21, K)F'(v(s,y + x1,n))J;(s,y + 21,n)

- (y + T2, IC)F,(U(Sa Y + @2, n))JZ(Sa y+ m?an)]dydw(sa }C)

First we note that the smooth property of the heat semigroup implies

(V[ pulo o yua)dy) — Vil | pilya2)ualy)dy)}? < Colan — ol
Secondly, by Burkholder inequality (4.4) and Holder inequality, we have
B [ pe ) (Viaty + 21, KDF(ols,y -+ 1m)
(V a(y + g, ]C))F(U(Sa Y + T2, n))}dydw(sa ,C)}Qp
= B[ [ pe s(Fialy +21,K)) — (Vialy + 22, KDIF (5,9 + 1,7)

(4.24)

(4.25)

+(Via(y + z2, K))[F(v(s,y + z1,n)) — F(v(s,y + z2,n))] Ydydw(s, £)}?

< wl(gp - 1y IE/ (P @ity +21,K)) = (Vialy + 22, K))
F(v(s,y + x1,n))dy}*Pds
t
#2220 E [ [ pi ) (Vialy +22,0)
JO JR
[F(u(s.y +21,m)) — F(o(s,y + w2,n)))dy}*ds
< Culpt)|zr — x|
t
27 2p = 1o Vil 227 [ [ )
Jo JR4
E[(U(Say +m17n)) - F(?)(s,y—l-mg,n))]}deyds
< Cilp e — ol + 22 (2p — 1P [Vial 2L

t
/ SupE[U(57y+I17n) —U(S,y+a}2,n)]}2pd8
0 v
< Ca(p,t)|x1 — .1:2|2p + Cs(n, p, t)|z1 — 1:2\2”.

The last inequality follows form (4.10). Similarly for the last term in (4.24),

E{// s (W)[aly + 21, K)F' (0(5,y + 21,1)) Ji(s, y + 21, 71)
—a(y + w2, K)F' (v(s,y + 2, n)) Ji(s,y + 2, n)|dydw(s, K)}*
= B [ pswllely + ma KOF s,y +m)
—a(y + x2, K)F'(v(s,y + x2,1)) ] Ji(s,y + z1,n)
(

(4.26)

+a(y + xo, K)F' (v(s,y + z9,n))[Ji(s,y + z1,n) — Ji(s,y+x2,n)]}dydw(5,/C)}2”
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IN

IN

IN

IN

B[ v sloly +0,K) — aty + 22, K)F(uls,y +21,m)

(y + 29, K)[F' (v(s,y + x1,n)) — F'(v(s,y + x2,n))]Ji (5, + 21,n)
(y + TQaIC)F’(U(S y+x2,n ))[Jl(say +.’I}1,TL) - Ji(say +m27n)]}dydw(salc)}2p

20 D=1 [ B[ e wlaty +01,K) — aly + 2 KL Wl -+ ) s

+
+

+22(2P*1)(2p )Ptp 1/ E{/ i s y+T2,IC)
P/ (o5, +a1.m)) = (o, y+x2,n))m<s,y+x1,n>dy}2pds
20 op 1 [ B[ sty + 2 )P (0(s,y +22,m)

[Ji(s,y + 21,n) — Ji(s,y + z2,n)] }dy}*Pds
Cﬁ(napa )|‘/'U1 _I2|2p

20 p e a2 [ [
E[F'(v(s,y 4+ 71,n)) — F'(v(s Y+ x9,m ))]QP(Ji(s,y+51:1,n))2pdyds
20 0 (op 10 ol BIEIZ [ [ pe )B4 1m) — Ty )]y
Cﬁ(n,p, )|I1 - SC2| %
#2200 (2 — 10l [ up{ETF(0(s,y + 1,1m) — F(0(s,+ 2, )] )

sup{E( i(s,y +x1,n)) p}%ds

t
+2°CP=1(2p — )77 |al 28] | F'(| 22 /U sup E[Ji(s,y + x1,n) — Ji(s,y + x9,n)]*Pds
E Y
Cﬁ(nuput”Il - I2|2p + C7(Tb,p,t)|.’£1 - J;2|2p
t
+2°CP=1(2p — )77 |a| 28] | F'[| 22 /U sup E[Ji(s,y + x1,n) — Ji(s,y + x9,n)|*Pds.  (4.27)
E Y

Here C3,---,Cg are constants depending on n,p,t. So similar to the proof of (4.10), The above
estimates are followed by that there exists a constant C7(n,p,t) > 0 such that

sup E[Ji(t,y + z1,n) — Ji(t,y + x9,1)]*P < Cr(n,p, )]z — za|*. (4.28)
Y

This estimate will be used soon later. To prove the existence of the 2nd order derivatives, note

Ji(t,x + he,n) — Ji(t,z,n)
Vil v+ heun(w)dy) = Vil | iy o)uo(y)dy)

4n$ Z /t / s ){(Vialy + @ + he, K)F(o(s,y + o + he,n))
—(Via(y + z,K))F(v(s,y + x,n)) }dydw(s, K)

—i—nZZ// pis(y)aly +z + he, K)F'(v(s,y + x + he,n))J;(t,y + = + he,n)
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—a(y +z,K)F (v(s,y + x,n))Ji(t,y + z,n)]dydw(s, K)
= V[l heuolw)dy) = Vil | pily2)uow)dy)
+n? Z/ / pi—s(W{[(Vialy + x + he,K)) — (Via(y + =, K))]F(v(s,y + = + he,n))
F(Vialy + 2, K)[F((s,y + 7 + he,n) — F(o(s,y + 7, m))]}dydu(s, K)
+n22// pi—s(y)aly +x + he,K) — a(y + =z, K)]

F'(v(s,y +x + he,n))Ji(t,y + = + he,n)
+aly + 2, K)[F'(v(s,y + x + he,n)) — F'(v(s,y + a,n))|Ji(t,y + 2 + he,n)
+aly +, K)F'(v(s,y + x,n))[Ji(t,y + = + he,n) — Ji(t,y + 2, n)|dydw(s, K).

It turns out that

Ji(t,x + he,n) — Ji(t,z,n)

G’i(tamanah) = h

satisfies
Gi (t7 €, 1, h)

N / pi(y, 2)uo(y)dy) + By (h t, )

+n22// P sAIVVialy +2,K)) + B,z + y)][F(o(sy +2,m)) + Bah, s,y + )

+(Vialy + 2, K))[F' (v(s,y + 2,n))J(s,y + x,n,h) + Ba(h, s, 2 + y)] }dydw(s, K)
ity | ] pes@(Feay +2.K) + Bs(h,y + o)

[F'(v(s,y +2,n)) + Bs(h, s,y +2)][Ji(s,y +x,n) + B7(h, s, 7)]

+aly +, K)[F"(v(s,y + x,n)) I (s,y + 2,n) + Bs(h, 5,2 + )]

[Ji(s,y +z,n) + Bo(h, s,y + x)]

+a(y +z, K)F' (v(s,y + z,n))[Gi(s, y + z,n)]dydw(s, K). (4.29)

Here (1(h), -+, B9(h) are infinitesimals in the following sense respectively:

Bi(h,t,x) = O(h), uniformly in z,¢, (4.30)
Bi(h,z) = O(h), uniformly in z, for i = 2,5, (4.31)
E{Bi(h,t,z)}?" = O(h*"), uniformly in z,t, for i = 3,4,6,7, (4.32)
E{Bi(h,t,z)}** = O(h*), uniformly in z,t, fori=8,9. (4.33)

The estimate (4.30) for 3; follows from the smooth property of the heat semigroup and (4.31) for /3,
and (5 follows from the differentiability of a(z, ). The moment estimates (4.32) and (4.33) follows
from (4.10) and (4.28). We need 4p-th moment estimates for g and (9 as we need to estimate the
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following term in (4.29) in procedure of the proof of (4.35):

B [ v sdaty + 2, K 0o,y +2,m) T s,y ),y +-0)

+Ji(s,y 4+ 2,n)Bs(h, 5,2 +y) + Bs(h, s,z + y)Bo(h, s,y + x)]dydw(s, K)}*
22(2p=1) (2 — 1)P¢P~ 1/ E{/ pis(y)aly + =, K)

[F"(v(s,y + 2,n))J(s,y + z,n) By (h, s,y + x)dy}*Pds

+22(2p71)(2p )ptp 1/ E{/ Dt— s y+T }C)Ji(s,y+m,n)ﬁg(h,s,m+y)dy}2pds

IN

#2200 e 17 [CB( [ oty )0+ ) s+ )y P

IN

200D (2p 1P PINEEL [ [ @) BUI s+ ) s, ) Py
+2°07 0 (2p — )P a2 /0 /R Pes () E{Ti(s,y + @) Bs (b s, + y) }*Pdyds

t
+220r- 1) (2p — 1)”t”’1|\a|\§2’/0 {/Rd pi—s(Y)E{Bs(h. 5,7 +y)Bo(h, s,y + ) }*]dyds

IN

t
22000 (2p 1) [al 2P [ sup{E{T(s,m,m)}7)E sup E{a(h, 5,2)} 7} 7ds
JO x T

t
+22C@r=1)(9p — 1)Ptpfl|\a,|\gg/ sup{ E{J;(s,z,n)}*?}2 sup{ E{Bs(h, s, z)}*P} 2ds
0 x T

t
#2202 — 170l 2L [ sup{E{Bs (. 5,20 F7}E sup{ BB (B 5, 2)} 7 ds

= O(h®). (4.34)
Here we have used the 4p-th moment estimate (4.33) and (4.23), Burkholder inequality and Holder
inequality.

Let G;(t,x,n) be the solution of the following integral equation
Gi(t,z,n)
= VS ply)uoly)dy)
n? ; /Ot ./Rd pi—s(Y){VeVialy + 2, K))F(v(s,y + x,n))
+(Via(y +z,K))F'(v(s,y + x,n))J (s, z,n, h) }dydw(s, K)
+nf ; /Ot /Rd pi—s(y)Vealy + 2, K)F' (v(s,y + x,n))Ji(t,y + z,n)

+aly +z,K)F"(v(s,y + z,n))J(s,y + z,n)J;(t,y + z,n)
+a(y +z, K)F' (v(s,y + z,n))[Gi(t,y + z,n)]dydw(s, K).

Then similarly to the proof of (4.17), using Burkholder inequality, H6lder inequality, Gronwall in-
equality and (4.30)-(4.33), (4.34), now it is routine to derive that there exists a constant Cg(n, p,t) >
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0 such that
E{G;(t,z,n,h) — Gi(t,x,n)}Qp < Cg(n, p, t)th. (4.35)

Then by Kolmogorov continuity criterion, we know that G;(t,x,n,h) — G;(t,x,n) as h — 0 for a.e.
w € Q. Then similar to the proof (4.23) we can prove that there exists a constant Cy(n,p,t) > 0
such that

B{G;(t,z,n)}* < Cy(n,p,t). (4.36)

Thus similar to the proof of (4.28), without any difficulty, we can prove that there exists a constant
Cio(n,p,t) > 0 such that

E{Gi(taxlan) - Gi(tam%n)}Qp < OlU(napa t)‘ml - mQ‘Qp' (437)

We leave the details to the reader. Therefore again by Kolmogorov continuity criterion, G; (¢, x,n)
is a continuous process. Therefore G;(t,z,n) is differentiable with respect to = for a.e. w. That is
to say v(t,z,n) € C? with respect to z for a.e. w € Q. it

5 Stochastic KPP equations

In this section, we consider stochastic KPP equation (1.2). As a mean of approximation, we consider
the following stochastic KPP equation with time white noise

du(t,z,n) = %Au(t,a},n)dt +nt Z a(z, K)(1 —u(t,z,n))u(t,z,n)dw(t, K),
K
u(t, z,m) = up(z). (5.1)

We will prove that the stochastic KPP equation (5.1) with time white noise is an approximation
to the stochastic KPP equation (1.2) with space-time white noise.

We will first prove in the following that equation (5.1) has a unique strong solution which is
C? in space, and moreover, 0 < u(t,z,n) < 1. Note that the linear equation does not have this
boundedness property. It is this property and Meyer’s pseudo-path topology argument we used in
section 3 lead us to prove that u(¢,z,n) — u(t,z) in measure and the u(t, z) is a function of (¢, z).
The latter is a solution to equation (1.2).

The nonlinear term (1 — u)u does not satisfy global Lipschitz condition. However it is locally
Lipschitz. We will prove the existence and uniqueness of (5.1) by using the results in section 4
about nonlinear equations with global Lipschitz nonlinearity.

We have the following key lemma.

Lemma 5.1 Assume ug € C?(R?) and 0 < ug < 1. Then the solution u(t,z,n) of the stochastic
KPP equation (5.1) exists and is unique and C? in x and satisfies:

0 <u(t,z,n) <l (5.2)
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Proof. Define

-2 ifu<—1
[u(l —u) + 2] exp{l + -5} — 2 if 1<u<0

F(u) = (1 —u)u if0<u<l1
[u(lfu)—l—Q]exp{l—l— 2 gy 2 ifl<u<?2
-2 ifu> 2.

Then it is evident that F'(u) is a global Lipschitz function and there exists a C* function C4 (u)
such that F(u) = Ci(u)u. Consider the following SPDE

1
dv(t,z,n) = §Av(t,:1;,n)dt
+n? Z a(z, K)Cy (v(t,z,n))v(t,z,n)dw(t, ),
K
v(0,z,n) = wug(x). (5.3)

This equation has a unique regular solution according to Theorem 4.2. As

n? Z,C:/o a(z, K)Cq(v(s,z,n))v(s,z,n)dw(s, K)
= n2 Z,C:/o a(xz, K)Cq(v(s,z,n))v(s,z,n) odw(s,K)
1 4 t
—gn? Z,C:/o a(z, K)ds{Ci(v(s,z,n))v(s,z,n)}dw(s, K)
= n2 ZK:/O a(xz, K)Cq(v(s,z,n))v(s,z,n) odw(s,K)
1 4 t )
—gn? ZK:/O a(z, K){C (v(s,z,n))v(s,z,n) + Ci(v(s,z,n))}dv(s,z,n)dw(s, K)
= n2 ZK:/O a(xz, K)Cy(v(s, z,n))v(s,z,n) o dw(s,K)

1 t, ,
9 d;/o a”(z, K)Y{Cq (v(s, z,n))v(s, z,n)
+C1(v(s,2,n))}Cr (v(s, z,n))v(s, z,n)ds. (5.4)

So the Ito type equation (5.3) is equivalent to the following Stratonovich type equation:

dv(t,z,n) = %Av(t,m,n)dt - %ndZaQ(m,}C){C’i(v(t,fr:,n))v(t,m,n)
K
+Ci(v(t,z,n))}C1(v(t, x,n))v(t, z,n)dt
%Z (z, K)Cy (v(t, z,n))v(t,z,n) o dw(t, K). (5.5)
K
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By the Feynman-Kac formula,

o(t,w,n) = Bug(X{(z)) exp{ ——ndZ/Ot a*(X(2), K){C1 (v(s, X{(@), n))o(s, X (), n)
K

—I—Cl(v(s,XE(II:),n))}C’l(v(s,Xﬁ(m),n))ds
—|—n% Z/o a(Xt(x), K)Cy(v(s, Xi(x),n)) o dw(s, K)}
K

= Buo(Xfe)en —3n' S [ @ (K1) K)CE ol XL (o), )
K

+n? Z’C: /Ot a(X{(x), K)C1 (v(s, X{(x),n))dw(s, K)}.

Here the stochastic flow X!(z) is the same as in Lemma 2.1 and the stochastic integral with o is a
Stratonovich integral and the one without o is an Ito integral. It is evident from the formula that

v(t,z,n) > 0. (5.6)
Let Z =1—v. Then Z(t,z,n) satisfies the following Ito type SPDE

1
dZ(t,z,n) = EAZ(t,m,n)dt
—n% " alz, K)C(Z(t, 1)) Z(t, @, n)dw(t, K),
K
Z0,z,n) = 1—ug(z). (5.7)
So by the Feynman-Kac formula again, we have a slution
Z(t,z,n) >0, (5.8)
as 1 —ug > 0. Combine (5.6) and (5.8), we obtain
0<w(t,z,n) <1. (5.9)

But when 0 < v(t,z,n) < 1, F(v(t,z,n)) = (1 —v(t,x,n))v(t,z,n). Therefore v(t,z,n) satisfies
actually

1
dv(t,z,n) = §Av(t, x,n)dt + n' Z a(z, K)(1 —ov(t,z,n))v(t,z,n) o dw(t,K),
K
v(t,x,n) = up(x). (5.10)

That is to say that u(t,z,n) = v(t,z,n) is a solution of (5.1) and satisfies (5.2). The uniqueness of
the solution to (5.1) follows from the uniqueness of the solution to (5.3). i1

Now, it is trivial to verify that the condition (3.2) of Theorem 3.3 is satisfied, so we get

Theorem 5.2 Assume ug € CZ(R?) and 0 < ug(x) <1 for all z € R?. Then Equation (1.2) has
a real-valued solution.
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