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Solutions to a Class of Multidimensional SPDEsA. L. Piatnitski, H.Z. Zhao and W.A. Zheng�AbstractIn this paper, we consider multi-dimensional SPDEs of parabolic type with space-time whitenoise. We discretize the space-time white noise to independently identically distributed timewhite noise located on con�guration space and then consider the convergence of the discretizedsolution u(t; x; n). We �rst prove that in general the laws of u(t; x; n)dtdx form a tight sequenceand the limit is the law of some measure-valued random variable which gives a weak integralsolution in the linear case. For the stochastic multi-dimensional KPP equation, we prove that thesolution is real-valued. This is the �rst example of SPDEs discovered so far in multi-dimensionswith real-valued solutions.
1 IntroductionIn this paper, we study the multi-dimensional SPDE of the following form:@@tu(t; x) = 12�u(t; x) + f [u(t; x)] � _W (t; x); (1.1)where _W (t; x) is the space-time white-noise on Rd�R+ (see [24], [10], [20]). There have been manygood results in the case where d = 1 (see [24], [17], [20], [22], [10] for references). However, in thehigher dimensional (d > 1) case, there are only results for the linear case where f(u) = u (see [16],[18], [1], [23]). The main di�culty is that the solutions in multi-dimensional case was known asonly taking values in L. Schwartz's distribution space ([10]). Certainly it is di�cult to understandthe non-linear function of such a generalized random �eld (see [20]).We are going to use a random homogenization method ([8], [19], [13]) to discretize Equations(1.1) when f(u) = u and f(u) = u(1�u). While we denote by fu(t; x; n)g the discretized solutions,we are going to show that the laws of fu(t; x; n)dxdtgn form a tight sequence and any of their limitsis the law of some measure-valued random variable. So it suggests to consider any of the limits asan integral solution to (1.1). We hope this method will enable us to understand multi-dimensionalSPDE in an alternative way.When the above integral solution is di�erentiable with derivative u(s; x); it is natural to consideru(s; x) as a solution to (1.1) (see Theorem 3.3.)In sections 4 and 5, we study the following stochastic reaction di�usion equation with space-timewhite noise in Rd: @@tu(t; x) = 12�u(t; x) + (1� u(t; x))u(t; x) � _W (t; x); (1.2)�The 1st and the last authors were partially supported by N.S.F. Grants DMS-96256421



with an initial condition u(0; x) = u0(x): Here we assume that u0 2 C2 and 0 � u0 � 1. Thisequation (when replace _W (t; x) by 1) is known as KPP equation arised in mathematical biology,chemical engineering and population dynamics. With space-time white noise, the case for d = 1was considered in [22] and the solution is real-valued. But this equation used to be consideredmeaningless for d > 1 as solution for high dimensional SPDE used to be considered as a distributionso that (1 � u)u did not make sense if u is just a distribution-valued random variable. Howeverin this paper we will prove that this equation has a real-valued solution for any dimension. It isinteresting that the solution to the non-linear equation behaves better than linear equations. Thisphenomenon for the deterministic equation was noted in [5].The method for Equation (1.2) can be generalized easily to more general equation in Rd e.g.@@tu(t; x) = 12�u(t; x) + (a� u(t; x))u(t; x)h(u(t; x)) + (a� u(t; x))u(t; x)g(u(t; x)) � _W (t; x); (1.3)for any C2 functions h and g and assuming that if u � 0, u(1� u)h(u) � cu for a positive constantc > 0. Here a > 0 is a constant. For instance, h(u) = am + am�1u+ � � �+ aum�1 + um, where m isan integer, satis�es the requirements. Assume that 0 � u0(x) � a. We then still have the existenceof a real-valued solution to Equation (1.3).2 Discretize the space noiseDecompose Rd into the squares:L(n)k1;���;kd = f(x1; x2; � � � ; xd) : 1nkj � xj � 1n(kj + 1); for j = 1; 2; � � � ; dg;k1; k2; � � � ; kd = 0;�1;�2; � � � :Denote K = (k1; k2; � � � ; kd) and de�neWn(t; x; !) = n d2 XK a(x;K) _w(t;K) (2.1)where w(t;K), K 2 Zd, are independent Wiener processes of 1-parameter t on a probability space(
;F ; P ) and _w(t;K) denotes the Ito derivative of the Wiener process. Assume a(x;K) is a C1function and satis�es the following conditions: for any K : LnK � fx 2 Rd : jxij � n; i = 1; 2; � � � ; dg,RL(n)K a(x;K)dx = 1nd and a(x;K) = 0 for x 2 Rd � L(n)K and a(x;K) = 0 for all other K. Forsimplicity we assume that all a(x;K) are identical except for a shift.Then it is easy to see from the central limit theorem that for any block B = f(t; x1; x2; � � � ; xd) :t1 � t � t2; aj � xj � bj; j = 1; 2; � � � ; dg;ZBWn(t; x)dxdt = Z[a1;b1]�����[ad;bd] Z t2t1 n d2 XK a(x;K)w(dt;K)dx= Z t2t1 XK ZLK\([a1;b1]�����[ad;bd]) n d2 a(x;K)dxw(dt;K)= n d2 XK ZLK\([a1;b1]�����[ad;bd]) a(x;K)dx(w(t2;K) � w(t1;K)):2



Therefore E(ZBWn(t; x)dxdt)2= ndXK fZLK\([a1;b1]�����[ad;bd]) a(x;K)dxg2E(w(t2;K) � w(t1;K))2= ndXK fZLK\([a1;b1]�����[ad;bd]) a(x;K)dxg2(t2 � t1)! (b1 � a1)� (b2 � a2)� � � � � (bd � ad)� (t2 � t1); as n!1:So (RBWndxdt) as a sequence of sum of independent random variables, as n ! 1, convergesin law to a normally distributed random variable with mean 0 and variance RB dxdt: Moreover,if B1 and B2 are disjoint, then (RB1 Wndxdt) is independent of (RB2 Wndxdt): Thus the limitingrandom process is a multi-parameter Brownian sheet. Thus, we can say that Wn converges in lawto a "white-noise" which is regarded as the weak derivative of the Brownian sheet. By using thecelebrated Skorohod's lemma, we can select a new probability space and assume that Wn convergesalmost everywhere to the white-noise _W . We will �x this new probability space and still denote itby 
:Consider the following stochastic parabolic equation with initial condition in Rd:du(t; x; n) = 12�u(t; x; n)dt+ n d2 XK a(x;K)u(t; x; n)dw(t;K);u(0; x; n) = u0(x): (2.2)Here u0 is a nonnegative and bounded C2 function.The solution of (2.2) is given by the Feynman-Kac integration. The proof of the followingLemma is standard (see, for example, Kunita [11], and Lemma 7.1 in [6] for the proof of (2.4)).Lemma 2.1 For any �xed n, equation (2.2) has a unique solution u(t; x; n) which is C2 in x andand continuous in t andu(t; x; n) = Êu0(Xt;0(x)) expf�12ndXK Z t0 a2(Xt;s(x);K)ds+n d2 XK Z t0 a(Xt;s(x);K)dw(s;K)g: (2.3)Here Xt;s is the inverse of the Brownian 
ow in Rd on a probability space (
̂; F̂ ; P̂ ) and Ê de-notes the expectation over that probability space. The stochastic integral R t0 a(Xt;s(x);K)dw(s;K)is de�ned to be Stratonovich integral on the product probability space (
 � 
̂;F � F̂ ; P � P̂ ). Itcoincides with the Ito integral as Xt;s(x) is independent of w(s;K) for any K. Moreover, we havethe following estimate, for x 2 L ~K, for certain ~K 2 Zd,Ê expfn d2 XK Z t0 a(Xt;s(x);K)dw(s;K)g� expfn d2 a(x; ~K)w(t; ~K)g(Ê expf2ndXK Z t0 (Da(Xt;s(x);K)w(s;K))2dsg) 12 : (2.4)Therefore (2.3) is bounded P a.s.. 3



In general, we considerdu(t; x; n) = 12�u(t; x; n)dt+ n d2 XK a(x;K)f(u(t; x; n))dw(t;K);u(0; x; n) = u0(x): (2.5)Lemma 2.2 Suppose for any n, the solution u(t; x; n) to (2.5) exists and is nonnegative and u0 2C20 (Rd) with a compact support G � Rd, then there exist constants C2 � C1 > 0 such that for anyn > 0, C1 expf�(dist(x;G))22t g � Eu(t; x; n) � C2 expf�(dist(x;G))22t g; (2.6)and therefore E ZRd u(t; x; n)dx <1: (2.7)Proof. Taking the expectation to both sides of (2.5), we have@Eu(t; x; n)@t = 12�Eu(t; x; n): (2.8)So v(t; x) = Eu(t; x; n) is the solution of the deterministic heat equation with initial conditionv(0; x) = u0(x), and is independent of n. As u0(x) has the compact support G � Rd, it is wellknown that there exist C2 � C1 > 0 (independent of n of course) such thatC1 expf�(dist(x;G))22t g � v(t; x) � C2 expf�(dist(x;G))22t g; (2.9)for a constant C > 0. So we have (2.6). It turns out thatZRd v(t; x)dx <1;for any t � 0. This is followed by (2.7) easily. zzIn the next section, we will always assume u0 2 C20 (Rd) and nonnegative.3 Tightness resultsLet Rd = RdSf1g: Denote by Pb the set of all measure on [0; 1] � Rd bounded by positive b:So P b is a compact polish space equipped with the topology of measure convergence, which is theleast �ne topology to make all the mapping � : RRd f(x)�(dx) continuous for all bounded continousfunction f(x) de�ned on Rd (see, for example, [3] III, 60). Denote ~P = Sb Pb: When we equip ~Pagain with the topology of measure convergence, it is easy to see that for each 0 < b <1;f� 2 ~P ; �[Rd] < bg4



is an open set and its closure is Pb: Thus ~P is locally compact polish space. Denote by P itsone-point compacti�cation. Finally, denote by P the set of all bounded measure on [0; 1] � Rd:Consider Vn(dt; dx) = u(t; x; n)dtdx as a sequence of random variable taking values in P: Here weassume u(t; x; n), the solution to (2.5), exists and is nonnegative.Theorem 3.1 Suppose u0 2 C20 (Rd) and nonnegative. There is a subsequence Vnk which convergesto a P�valued random variable V in law.Proof. 1) Denote by Pn the laws of Vn on P : Since P is compact and seperable, there is asubsequence Pnk which converges to some P1: We are going to show that P1 is carried by ~P: Wehave Pn[Vn([0; 1] �Rd) > c] � c�1E[Vn([0; 1] �Rd)] = c�1 Z 10 ZRd Eu(t; x; n)dxdt:Since f� 2 P; �([0; 1] �Rd) > cg is open in P ;P1[� 2 P ; �([0; 1] �Rd) > c] � c�1 lim infk Z 10 ZRd Eu(t; x; nk)dxdt;where we used the fact that weak convergent measures reduce their probabilities in the limit onopen sets (see, for example, [7] p.108). When c ! 1; the right-hand side of the above inequalitytends to 0: That is, P1 is carried by ~P:2) Now let us show that P1 is carried by P: Indeed, for �xed positive pairs � and c;f� 2 P; �([0; 1] � fx 2 Rd; jxj > cg) > �gis open in ~P : We have easilyPn[Vn([0; 1] � fx 2 Rd; jxj > cg) > �] � ��1E[Z 10 Zjxj>c u(t; x; n)dxdt];where the right-hand tends to 0 uniformly when c!1: Thus, we deduce that P1 carries on P: zzSince P is a Polish space, by the celebrated Skorohod's Lemma, we can assume that Vn and Vare all de�ned on the same probability space and Vn converges to V almost surely.Consider equation (2.2) and its solution u(t; x; n). Given any C20�function �(t; x) on [0; 1)�Rd;by (2.2), ZRd Z 10 �(t; x) @@tu(t; x; n)dtdx � ZRd 12 Z 10 �(t; x)�u(t; x; n)dtdx= ZRd Z 10 �(t; x)Wn(t; x; !)u(t; x; n)dtdx:Using integration by parts formula,ZRd Z 10 �(t; x)Wn(t; x; !)u(t; x; n)dtdx= � ZRd �(0; x)u0(x)dx� ZRd Z 10 u(t; x; n) @@t�(t; x)dtdx � ZRd 12 Z 10 u(t; x; n)��(t; x)dtdx! � ZRd �(0; x)u0(x)dx� ZRd Z 10 @@t�(t; x)V (dt; dx) � ZRd 12 Z 10 ��(t; x)V (dt; dx);5



as n!1, where V (dt; dx) is given by the previous Theorem. Thus we may consider the last sideas the de�nition of ZRd Z 10 �(t; x) _W (t; x):V (dt; dx)where _W (:; :) is the space-time whit noise. Thus V gives a weak solution to (1.1) when f(u) = uwith initial condition u(0; x) = u0(x).Let Fn;t be the natural �ltration of fWn(t; x)gx: Let us consider a sequence of new probabilityspace (
 � Rd; Fn;1 � B; P � �) with �ltration (Fn;t � B)t�1 where B is the Borel ��algebra ofsubsets in Rd and �(dx) gives the standard normal law on Rd: Now we consider u(t; x; n) as aprocess (depending only on t) on this new probability space Rd � 
;supn fZ
�Rd [Z 10 u(t; x; n)dtd(P � �)g � supn Z 10 ZRd Eu(t; x; n)dxdt <1: (3.1)Then we can obtain from Theorem 4 in [15],Theorem 3.2 ffR s0 u(t; :; n; :)dtgs�1gn forms a tight sequence and any limiting process is of theform f�(s; x)gs�1 where �(s; :) is an increasing process of s for almost all (x; !):If we can have more uniform control on u(t; x; n); then we have the followingTheorem 3.3 Suppose there is p > 1 such that the following condition is satis�ed:supn Z
�Rd [Z 10 ju(t; x; n)jpdt]d(P � �) <1: (3.2)Then �(s; x) in Theorem 3.2 is di�erentiable with respect to s almost surely under dP �d�: Denoteu(s; x) = @�(s;x)@s . Moreover, u(s; x) = @d+1V@s@x1���@xd where V is given by Theorem 3.1. So u gives aweak solution to (1.1).Proof. According to Theorem 3 of [25], (3.2) impliesZ
�Rd [Z 10 j@�(s; x)@s jpds]d(P � �) <1:So we get the �rst statement.Let us consider the second statement. By using the Skorohod's lemma, we may assume thatfor almost every (!; x); and all bounded continuous �(s);Z 10 �(s)u(s; x; n; !)ds! Z 10 �(s)u(s; x; !)ds; as n!1:Let  (s; x) be any bounded continuous function on [0; 1]�Rd. For any M <1; by the dominatedconvergence theoremZjxj<M Z 10  (s; x)u(s; x; n; !)dsdx! Zjxj<M Z 10  (s; x)u(s; x; n; !)dsdx; as n!1:6



On the other hand, by (2.6), Rjxj�M R 10  (s; x)u(s; x; n; !)dsdx tends to 0 in probability (uniformlyin n) when M !1: Hence for any given � > 0;P [j ZRd Z 10  (s; x)u(s; x; n; !)dsdx � ZRd Z 10  (s; x)u(s; x; !)dsdxj > �]! 0; as n!1:Take a sequence of bounded continuous functions f k(s; x)g which are dense in uniform convergencenorm in the space of all bounded contionuous functions on [0; 1]�Rd: By diagonal line method, wemay �nd a subsequence u(s; x; nm; !) such thatP [ZRd Z 10  k(s; x)u(s; x; nm; !)dsdx! ZRd Z 10  k(s; x)u(s; x; !)dsdx as m!1] = 1:On the other hand, u(s; x; nm; !)dsdx tends to V: So we get the second conclusion. zz4 Nonlinear stochastic reaction di�usion equations with time whitenoiseIn this section, we study the following semilinear SPDE with global Lipschitz nonlinear termdv(t; x; n) = 12�v(t; x; n)dt+ n d2 XK a(x;K)F (v(t; x; n))dw(t;K);v(0; x; n) = u0(x): (4.1)Assume that u0 2 C2(Rd) is bounded and F (v) satis�es the following global Lipschitz condition:there exists an L > 0 such that jF (v1)� F (v2)j � Ljv1 � v2j: (4.2)The mild solution of the equation (4.1) is de�ned as the solution of the following integralequation if exists ([2])v(t; x; n) = ZRd pt(y; x)u0(y)dy + n d2 XK Z t0 ZRd pt�s(y; x)a(y;K)F (v(s; y; n))dydw(s;K): (4.3)Here pt(y; x) is the heat kerkel of the Laplacian operator 12� on Rd:pt(y; x) = pt(y � x) = 1(2�t) d2 expf�jy � xj22t g:It has been proved in Walsh [24] that the mild solution is equivalent to the weak solution which isde�ned using test functions.The following is a special case of the well-known Burkholder inequality. We list it here readyto use in the proof of lemma 4.2. 7



Lemma 4.1 (Burkholder inequality) Assume f(s) is Fs measurable and X(t) = R t0 f(s)dw(s), thenfor any p � 1, EX2p(t) � (2p� 1)ptp�1 Z t0 Ef2p(s)ds: (4.4)The following theorem �rst gives the existence and uniqueness of mild solution associated with(4.3). Then under some extra conditions on F and u0, we prove that the mild solution turns out tobe a strong solution to equation (4.1). Some of the ideas in our proof are inspired by stochastic 
owtheory for stochastic ordinary di�erential equations (see e.g. [4], [11]). We don't strike here theminimal conditions on F and u0 needed for the regularity results as our purpose in this paper is toapply the results to stochastic KPP equation (5.1) with time noise. Actually following our proof,one can �nd easily that if F; F 0; F 00 satisfy global Lipschitz conditions and linear growth conditions,the results of the following theorem still holds. Actually, one only needs one more estimate thatfor any p � 1, Efv(t; x; n)g2p � C(n; p; t); (4.5)for a constant C(n; p; t) > 0. This follows from our proof and the linear growth condition of Feasily.Theorem 4.2 Assume F satis�es the global Lipschitz condition (4.2) and u0 is bounded. Thenthere exists a unique solution u(t; x; n) 2 L2(
) to equation (4.3) for any t � 0. Assume furtherthat u0 2 C2(Rd) and F 2 C2(R1) and F; F 0 and F 00 are bounded, then the mild solution is a strongsolution to the equation (4.1) that is C2 with respect to x.Proof. De�ne a Banach space:S = fv : for each t 2 [0; 1]; v(t; x; !) is continuous in t; and x and is Ft measurableand v 2 L2(
)g;with the norm: jjjvjjj = sup0�t�1 supx qEv2(t; x):De�ne a map: � : S ! S by�(v)(t; x; n) = ZRd pt(y; x)u0(y)dy+n d2 XK Z t0 ZRd pt�s(y; x)a(y;K)F (v(s; y; n))dydw(s;K): (4.6)Then for v1; v2 2 S,E(�(v1)(t; x; n)� �(v2)(t; x; n))2= ndEfXK Z t0 ZRd pt�s(y; x)a(y;K)(F (v1(s; y; n)) � F (v2(s; y; n)))dydw(s;K)g28



= ndXK E Z t0 fZRd pt�s(y; x)a(y;K)(F (v1(s; y; n))� F (v2(s; y; n)))dyg2ds� ndXK E Z t0 ZRd pt�s(y; x)a2(y;K)dy� ZRd pt�s(y; x)(F (v1(s; y; n)) � F (v2(s; y; n)))2dyds� Ljjajj21ndXK Z t0 ZRd pt�s(y; x)E(v1(s; y; n)� v2(s; y; n))2dyds� Ljjajj21ndXK sup0�s�t supy E(v1(s; y; n)� v2(s; y; n))2 Z t0 ZRd pt�s(y; x)dyds� Ljjajj21ndjKjt sup0�t�1 supx E(v1(t; x; n)� v2(t; x; n))2: (4.7)Here jjajj1 = supx ja(x;K)j, jKj is the number of the indices in K. We have used the Lipschitzcondition of F , the identity RRd pt�s(y; x)dy = 1 and the H�older inequality. Therefore we haveproved that jjj�(v1)� �(v2)jjj � (qLjjajj21ndjKjt)jjjv1 � v2jjj: (4.8)It then follows from the contraction principle that there is a unique �xed point v 2 S of � for allt � t0 for t0 satisfying Ljjajj21ndjKjt0 < 1. It is evident that v is the solution of the stochasticintegral equation (4.3). This solution can be extended to t 2 [0; T ] for any T > 0 as we can use thesame argument on [t0; 2t0], etc.For the regularity, we �rst need to prove the Lipschitz continuity of v(t; x; n) in x. For this weconsider for x1; x2 2 Rd,v(t; x1; n)� v(t; x2; n)= ZRd pt(y; x1)u0(y)dy � ZRd pt(y; x2)u0(y)dy+n d2 XK Z t0 ZRd pt�s(y; x1)a(y;K)F (v(s; y; n))dydw(s;K)�n d2 XK Z t0 ZRd pt�s(y; x2)a(y;K)F (v(s; y; n))dydw(s;K)= ZRd pt(y; x1)u0(y)dy � ZRd pt(y; x2)u0(y)dy+n d2 XK Z t0 ZRd pt�s(y)a(y + x1;K)F (v(s; y + x1; n))dydw(s;K)�n d2 XK Z t0 ZRd pt�s(y)a(y + x2;K)F (v(s; y + x2; n))dydw(s;K)= ZRd pt(y; x1)u0(y)dy � ZRd pt(y; x2)u0(y)dy+n d2 XK Z t0 ZRd pt�s(y)(a(y + x1;K) � a(y + x2;K))F (v(s; y + x1; n))dydw(s;K)9



+n d2 XK Z t0 ZRd pt�s(y)a(y + x2;K)fF (v(s; y + x1; n))� F (v(s; y + x2; n))gdydw(s;K): (4.9)We need moment estimates. For this we use the inequality (a+b+c)2p � 22(2p�1)(a2p+b2p+c2p)(see e.g. [4]), Burkholder inequality (4.4) and H�older inequality,E(v(t; x1; n)� v(t; x2; n))2p� 22(2p�1)(ZRd pt(y; x1)u0(y)dy � ZRd pt(y; x2)u0(y)dy)2p+22(2p�1)(2p� 1)pnpdtp�1XK Z t0 EfZRd pt�s(y)(a(y + x1;K) � a(y + x2;K))F (v(s; y + x1; n))dyg2pds+22(2p�1)(2p� 1)pnpdtp�1XK Z t0 EfZRd pt�s(y)a(y + x2;K)fF (v(s; y + x1; n))� F (v(s; y + x2; n))gdyg2pds� M jx1 � x2j2p + 22(2p�1)(2p� 1)pnpdtp�1jjajj2p1jKj Z t0 E ZRd pt�s(y)fF (v(s; y + x1; n))� F (v(s; y + x2; n))g2pdyds� M jx1 � x2j2p + 22(2p�1)(2p� 1)pnpdtp�1jjajj2p1jKjL2p Z t0 ZRd pt�s(y)Efv(s; y + x1; n)� v(s; y + x2; n)g2pdyds� M jx1 � x2j2p + 22(2p�1)(2p� 1)pnpdtp�1jjajj2p1jKjL2pZ t0 supx1;x2:0<jx1�x2j<h0Efv(s; x1; n)� v(s; x2; n)g2pds:Here we have used the Lipschitz condition on F and the di�erentiability of RRd pt(y; x)u0(y)dy withrespect to x (see [9]). The constantM depends on n; a(x;K), upper bound of jF j and u0. Thereforeby Gronwall inequality, we have for any h0 > 0supx1;x2:0<jx1�x2j<h0E(v(t; x1; n)� v(t; x2; n))2p� M jx1 � x2j2p expf22(2p�1)(2p� 1)pnpdjjajj2p1jKjL2ptpg: (4.10)The following estimate holds for any p � 1.In the following, for a scalar h > 0 and a vector e 2 Rd, denote by re the directional derivativealong e 2 Rd (see [4]). From (4.9), and Lipschitz estimate (4.10), we havev(t; x+ he; n)� v(t; x; n)= re(ZRd pt(y; x)u0(y)dy)h + h�1(h)+n d2 XK Z t0 ZRd pt�s(y)((rea(y + x;K))h + h�2(h))(F (v(s; y + x; n)) + �3(h; y + x; s))dydw(s;K)10



+n d2 XK Z t0 ZRd pt�s(y)a(y + x;K)fF 0(v(s; y + x; n))(v(s; y + x+ he; n)� v(s; y + x; n))+�4(h; y + x; s)gdydw(s;K):Here �1; �2; �3; �4 are in�nitely small in the following sense�1(h) = O(h) uniformly in x; t; (4.11)�2(h) = O(h) uniformly in x; t; (4.12)supx E�2p3 (h; x; s) = O(h2p) uniformly in s; (4.13)supx E�2p4 (h; x; s) = O(h4p) uniformly in s: (4.14)The last two estimates for �3 and �4 follow from (4.10). De�neJ(t; x; n; h) = v(t; x+ he; n)� v(t; x; n)h : (4.15)It is evident that J(t; x; n; h) satis�es the following integral equation:J(t; x; n; h) = re(ZRd pt(y; x)u0(y)dy) + �1(h)+n d2 XK Z t0 ZRd pt�s(y)(rea(y + x;K) + �2(h))(F (v(s; y + x; n)) + �3(h; y + x; s))dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)a(y + x;K)fF 0(v(s; y + x; n))J(t; x; n; h)+1h�4(h; y + x; s)gdydw(s;K):Denote by J(t; x; n) the solution of the following stochastic integral equation:J(t; x; n) = re(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y � x)(rea(y;K))F (v(s; y; n))dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y � x)a(y;K)F 0(v(s; y; n))J(t; y; n)dydw(s;K): (4.16)It turns out thatJ(t; x; n) = re(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y)(rea(y + x;K))F (v(s; y + x; n))dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)a(y + x;K)F 0(v(s; y + x; n))J(t; y + x; n)dydw(s;K):11



This is then followed byJ(t; x; n; h) � J(t; x; n)= �1(h) + n d2 XK Z t0 ZRd pt�s(y)�2(h)(F (v(s; y + x; n)) + �3(h; y + x; s))dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)rea(y + x;K)�3(h; y + x; s)dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)a(y + x;K)fF 0(v(s; y + x; n))(J(t; y + x; n; h)� J(t; y + x; n))+1h�4(h; y + x; s)gdydw(s;K):So again using H�older inequality, Burkholder inequality and (a+ b+ c+ d)2p � 22(2p�1)(a2p+ b2p+c2p + d2p),E(J(t; x; n; h) � J(t; x; n))2p= 22(2p�1)(�1(h))2p + 22(2p�1)npdtp�1XK Z t0E(ZRd pt�s(y)�2(h)(F (v(s; y + x; n)) + �3(h; y + x; s))dy)2pds+22(2p�1)npdtp�1XK Z t0 EfZRd pt�s(y)rea(y + x;K)�3(h; y + x; s)dyg2pds+22(2p�1)npdtp�1XK Z t0 E(ZRd pt�s(y)a(y + x;K)fF 0(v(s; y + x; n))(J(t; y + x; n; h) � J(t; y + x; n)) + 1h�4(h; y + x; n)gdy)2pds= �(h) + 22(2p�1)jjajj2p1npdtp�1XK Z t0E ZRd pt�s(y)fF 0(v(s; y + x; n))(J(s; y + x; n; h) � J(s; y + x; n))g2pdyds� �(h) + 22(2p�1)jjajj2p1npdtp�1jjF 0jj2p1jKj Z t0 supx E(J(s; x; n; h) � J(s; x; n))2pds:Here�(h) = 22(2p�1)(�1(h))2p + 23(2p�1)npdjKj�2p(h)2tp�1ftjjF jj2p1 + Z t0 supx E�2p3 (h; x; s))dsg+22(2p�1)npdjKj � jjreajj2p1 Z t0 supx E�2p3 (h; x; s)ds+22(2p�1)npdjKj � jjaj2p1jjF 0jj2p1 Z t0 supx E( 1h�4(h; x; s))2pds= O(h2p):The estimate O(h2p) follows from (4.11){(4.14). Again using the Gronwall inequalitysupx sup0<h<h0E(J(t; x; n; h) � J(t; x; n))2p12



� �(h0) expf22(2p�1)jjajj2p1npdjjF 0jj2p1jKjtpg: (4.17)That is to say that J(t; x; n; h)! J(t; x; n) in L2p(
) as h! 0 uniformly in t and x. Therefore byChebyshev's inequality, J(t; x; n; h) ! J(t; x; n) as h! 0 in probability, so that in law. Thereforethere exists a sequence hk ! 0 as k ! 1 such that J(t; x; n; hk) ! J(t; x; n) P almost surely.Furthermore, by Kolmogorov's continuity criterion, J(t; x; n; h) can be extended continuously toJ(t; x; n) for almost all ! 2 
. That is to say J(t; x; n; h) ! J(t; x; n) as h ! 0 for a.e. ! 2 
.Similar to the proof of (4.10), we can deduce thatE(J(t; x1; n)� J(t; x2; n))2p � C1(n; p; t)jx1 � x2j2p; (4.18)for any p � 1. Here C1(n; p; t) is a constant depending on p, n and t. Actually the proof is thesame as the proof of (4.28) given below. Again by Kolmogorov's continuity criterion, J(t; x; n) is acontinuous process for a.e. !. Therefore v(t; x; n) is di�erentiable with respect to x for a.e. !.For C2 property of v(t; x; n), denote Ji(t; x; n) = @xi v(t; x; n) and ri = @@xi for i = 1; 2; � � � ; d.Then by (4.16), Ji(t; x; n) satis�es the following linear integral equationJi(t; x; n) = ri(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y � x)(ria(y;K))F (v(s; y; n))dydw(s;K)+n d2 XK Z t0 ZRd pt�s(y � x)a(y;K)F 0(v(s; y; n))Ji(s; y; n)dydw(s;K): (4.19)Note that for any p � 1, using Burkholder inequality (4.4) and H�older inequality,Efri(ZRd pt(y; x)u0(y)dy)g2p � supx jriu0(x)j2p; (4.20)EfZ t0 ZRd pt�s(y � x)(ria(y;K))F (v(s; y; n))dydw(s;K)g2p� (2p� 1)ptp�1jjriajj2p1jjF jj2p1; (4.21)EfZ t0 ZRd pt�s(y � x)a(y;K)F 0(v(s; y; n))Ji(s; y; n)dydw(s;K)g2p� (2p� 1)ptp�1jjajj2p1jjF 0jj2p1 Z t0 supx EfJi(s; x; n)g2pds: (4.22)Similar to the proof of (4.10), using Gronwall inequality, there exists a constant C2(n; p; t) > 0 suchthat supx EfJi(t; x; n)g2p � C2(n; p; t): (4.23)Furthermore, for any x1 2 Rd; x2 2 Rd,Ji(t; x1; n)� Ji(t; x2; n)= ri(ZRd pt(y; x1)u0(y)dy) �ri(ZRd pt(y; x2)u0(y)dy)13



+n d2 XK Z t0 ZRd pt�s(y)f(ria(y + x1;K))F (v(s; y + x1; n))�(ria(y + x2;K))F (v(s; y + x2; n))gdydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)[a(y + x1;K)F 0(v(s; y + x1; n))Ji(s; y + x1; n)�a(y + x2;K)F 0(v(s; y + x2; n))Ji(s; y + x2; n)]dydw(s;K): (4.24)First we note that the smooth property of the heat semigroup impliesfri(ZRd pt(y; x1)u0(y)dy)�ri(ZRd pt(y; x2)u0(y)dy)g2p � C3jx1 � x2j2p: (4.25)Secondly, by Burkholder inequality (4.4) and H�older inequality, we haveEfZ t0 ZRd pt�s(y)f(ria(y + x1;K))F (v(s; y + x1; n))�(ria(y + x2;K))F (v(s; y + x2; n))gdydw(s;K)g2p= EfZ t0 ZRd pt�s(y)f[(ria(y + x1;K)) � (ria(y + x2;K))]F (v(s; y + x1; n))+(ria(y + x2;K))[F (v(s; y + x1; n))� F (v(s; y + x2; n))]gdydw(s;K)g2p� 22p�1(2p� 1)ptp�1E Z t0 fZRd pt�s(y)[(ria(y + x1;K)) � (ria(y + x2;K))]F (v(s; y + x1; n))dyg2pds+22p�1(2p� 1)ptp�1E Z t0 fZRd pt�s(y)(ria(y + x2;K))[F (v(s; y + x1; n))� F (v(s; y + x2; n))]dyg2pds� C4(p; t)jx1 � x2j2p+22p�1(2p� 1)ptp�1jjriajj2p1L2p Z t0 ZRd pt�s(y)E[(v(s; y + x1; n))� F (v(s; y + x2; n))]g2pdyds� C4(p; t)jx1 � x2j2p + 22p�1(2p� 1)ptp�1jjriajj2p1L2pZ t0 supy E[v(s; y + x1; n)� v(s; y + x2; n)]g2pds� C4(p; t)jx1 � x2j2p + C5(n; p; t)jx1 � x2j2p: (4.26)The last inequality follows form (4.10). Similarly for the last term in (4.24),EfZ t0 ZRd pt�s(y)[a(y + x1;K)F 0(v(s; y + x1; n))Ji(s; y + x1; n)�a(y + x2;K)F 0(v(s; y + x2; n))Ji(s; y + x2; n)]dydw(s;K)g2p= EfZ t0 ZRd pt�s(y)f[a(y + x1;K)F 0(v(s; y + x1; n))�a(y + x2;K)F 0(v(s; y + x2; n))]Ji(s; y + x1; n)+a(y + x2;K)F 0(v(s; y + x2; n))[Ji(s; y + x1; n)� Ji(s; y + x2; n)]gdydw(s;K)g2p14



= EfZ t0 ZRd pt�s(y)f[a(y + x1;K)� a(y + x2;K)]F 0(v(s; y + x1; n))+a(y + x2;K)[F 0(v(s; y + x1; n))� F 0(v(s; y + x2; n))]Ji(s; y + x1; n)+a(y + x2;K)F 0(v(s; y + x2; n))[Ji(s; y + x1; n)� Ji(s; y + x2; n)]gdydw(s;K)g2p� 22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)[a(y + x1;K)� a(y + x2;K)]F 0(v(s; y + x1; n))dyg2pds+22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)a(y + x2;K)[F 0(v(s; y + x1; n))� F 0(v(s; y + x2; n))]Ji(s; y + x1; n)dyg2pds+22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)a(y + x2;K)F 0(v(s; y + x2; n))[Ji(s; y + x1; n)� Ji(s; y + x2; n)]gdyg2pds� C6(n; p; t)jx1 � x2j2p+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 ZRd pt�s(y)E[F 0(v(s; y + x1; n))� F 0(v(s; y + x2; n))]2p(Ji(s; y + x1; n))2pdyds+22(2p�1)(2p� 1)ptp�1jjajj2p1jjF 0jj2p1 Z t0 ZRd pt�s(y)E[Ji(s; y + x1; n)� Ji(s; y + x2; n)]2pgdyds� C6(n; p; t)jx1 � x2j2p+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 supy fE[F 0(v(s; y + x1; n))� F 0(v(s; y + x2; n))]4pg 12supy fE(Ji(s; y + x1; n))4pg 12ds+22(2p�1)(2p� 1)ptp�1jjajj2p1jjF 0jj2p1 Z t0 supy E[Ji(s; y + x1; n)� Ji(s; y + x2; n)]2pds� C6(n; p; t)jx1 � x2j2p +C7(n; p; t)jx1 � x2j2p+22(2p�1)(2p� 1)ptp�1jjajj2p1jjF 0jj2p1 Z t0 supy E[Ji(s; y + x1; n)� Ji(s; y + x2; n)]2pds: (4.27)Here C3; � � � ; C6 are constants depending on n; p; t. So similar to the proof of (4.10), The aboveestimates are followed by that there exists a constant C7(n; p; t) > 0 such thatsupy E[Ji(t; y + x1; n)� Ji(t; y + x2; n)]2p � C7(n; p; t)jx1 � x2j2p: (4.28)This estimate will be used soon later. To prove the existence of the 2nd order derivatives, noteJi(t; x+ he; n)� Ji(t; x; n)= ri(ZRd pt(y; x+ he)u0(y)dy)�ri(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y)f(ria(y + x+ he;K))F (v(s; y + x+ he; n))�(ria(y + x;K))F (v(s; y + x; n))gdydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)[a(y + x+ he;K)F 0(v(s; y + x+ he; n))Ji(t; y + x+ he; n)15



�a(y + x;K)F 0(v(s; y + x; n))Ji(t; y + x; n)]dydw(s;K)= ri(ZRd pt(y; x+ he)u0(y)dy)�ri(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y)f[(ria(y + x+ he;K)) � (ria(y + x;K))]F (v(s; y + x+ he; n))+(ria(y + x;K))[F (v(s; y + x+ he; n)) � F (v(s; y + x; n))]gdydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)[a(y + x+ he;K) � a(y + x;K)]F 0(v(s; y + x+ he; n))Ji(t; y + x+ he; n)+a(y + x;K)[F 0(v(s; y + x+ he; n)) � F 0(v(s; y + x; n))]Ji(t; y + x+ he; n)+a(y + x;K)F 0(v(s; y + x; n))[Ji(t; y + x+ he; n)� Ji(t; y + x; n)]dydw(s;K):It turns out that Gi(t; x; n; h) = Ji(t; x+ he; n)� Ji(t; x; n)h :satis�esGi(t; x; n; h)= reri(ZRd pt(y; x)u0(y)dy) + �1(h; t; x)+n d2 XK Z t0 ZRd pt�s(y)f[reria(y + x;K)) + �2(h; x+ y)][F (v(s; y + x; n)) + �3(h; s; y + x)]+(ria(y + x;K))[F 0(v(s; y + x; n))J(s; y + x; n; h) + �4(h; s; x+ y)]gdydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)[rea(y + x;K) + �5(h; y + x)][F 0(v(s; y + x; n)) + �6(h; s; y + x)][Ji(s; y + x; n) + �7(h; s; x)]+a(y + x;K)[F 00(v(s; y + x; n))J(s; y + x; n) + �8(h; s; x + y)][Ji(s; y + x; n) + �9(h; s; y + x)]+a(y + x;K)F 0(v(s; y + x; n))[Gi(s; y + x; n)]dydw(s;K): (4.29)Here �1(h); � � � ; �9(h) are in�nitesimals in the following sense respectively:�1(h; t; x) = O(h); uniformly in x; t; (4.30)�i(h; x) = O(h); uniformly in x; for i = 2; 5; (4.31)Ef�i(h; t; x)g2p = O(h2p); uniformly in x; t; for i = 3; 4; 6; 7; (4.32)Ef�i(h; t; x)g4p = O(h4p); uniformly in x; t; for i = 8; 9: (4.33)The estimate (4.30) for �1 follows from the smooth property of the heat semigroup and (4.31) for �2and �5 follows from the di�erentiability of a(x;K). The moment estimates (4.32) and (4.33) followsfrom (4.10) and (4.28). We need 4p-th moment estimates for �8 and �9 as we need to estimate the16



following term in (4.29) in procedure of the proof of (4.35):EfZ t0 ZRd pt�s(y)a(y + x;K)[F 00(v(s; y + x; n))J(s; y + x; n)�9(h; s; y + x)+Ji(s; y + x; n)�8(h; s; x+ y) + �8(h; s; x+ y)�9(h; s; y + x)]dydw(s;K)g2p� 22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)a(y + x;K)[F 00(v(s; y + x; n))J(s; y + x; n)�9(h; s; y + x)dyg2pds+22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)a(y + x;K)Ji(s; y + x; n)�8(h; s; x+ y)dyg2pds+22(2p�1)(2p� 1)ptp�1 Z t0 EfZRd pt�s(y)a(y + x;K)�8(h; s; x+ y)�9(h; s; y + x)]dyg2pds� 22(2p�1)(2p� 1)ptp�1jjajj2p1jjF 00jj2p1 Z t0 ZRd pt�s(y)EfJ(s; y + x; n)�9(h; s; y + x)g2pdyds+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 ZRd pt�s(y)EfJi(s; y + x; n)�8(h; s; x + y)g2pdyds+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 fZRd pt�s(y)Ef�8(h; s; x + y)�9(h; s; y + x)g2p]dyds� 22(2p�1)(2p� 1)ptp�1jjajj2p1jjF 00jj2p1 Z t0 supx fEfJ(s; x; n)g4pg 12 supx Ef�9(h; s; x)g4pg 12 ds+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 supx fEfJi(s; x; n)g4pg 12 supx fEf�8(h; s; x)g4pg 12 ds+22(2p�1)(2p� 1)ptp�1jjajj2p1 Z t0 supx fEf�8(h; s; x)g4pg 12 supx fEf�9(h; s; x)g4pg 12 ds= O(h2p): (4.34)Here we have used the 4p-th moment estimate (4.33) and (4.23), Burkholder inequality and H�olderinequality.Let Gi(t; x; n) be the solution of the following integral equationGi(t; x; n)= reri(ZRd pt(y; x)u0(y)dy)+n d2 XK Z t0 ZRd pt�s(y)freria(y + x;K))F (v(s; y + x; n))+(ria(y + x;K))F 0(v(s; y + x; n))J(s; x; n; h)gdydw(s;K)+n d2 XK Z t0 ZRd pt�s(y)rea(y + x;K)F 0(v(s; y + x; n))Ji(t; y + x; n)+a(y + x;K)F 00(v(s; y + x; n))J(s; y + x; n)Ji(t; y + x; n)+a(y + x;K)F 0(v(s; y + x; n))[Gi(t; y + x; n)]dydw(s;K):Then similarly to the proof of (4.17), using Burkholder inequality, H�older inequality, Gronwall in-equality and (4.30)-(4.33), (4.34), now it is routine to derive that there exists a constant C8(n; p; t) >17



0 such that EfGi(t; x; n; h) �Gi(t; x; n)g2p � C8(n; p; t)h2p: (4.35)Then by Kolmogorov continuity criterion, we know that Gi(t; x; n; h)! Gi(t; x; n) as h! 0 for a.e.! 2 
. Then similar to the proof (4.23) we can prove that there exists a constant C9(n; p; t) > 0such that EfGi(t; x; n)g2p � C9(n; p; t): (4.36)Thus similar to the proof of (4.28), without any di�culty, we can prove that there exists a constantC10(n; p; t) > 0 such thatEfGi(t; x1; n)�Gi(t; x2; n)g2p � C10(n; p; t)jx1 � x2j2p: (4.37)We leave the details to the reader. Therefore again by Kolmogorov continuity criterion, Gi(t; x; n)is a continuous process. Therefore Gi(t; x; n) is di�erentiable with respect to x for a.e. !. That isto say v(t; x; n) 2 C2 with respect to x for a.e. ! 2 
. zz5 Stochastic KPP equationsIn this section, we consider stochastic KPP equation (1.2). As a mean of approximation, we considerthe following stochastic KPP equation with time white noisedu(t; x; n) = 12�u(t; x; n)dt+ n d2 XK a(x;K)(1 � u(t; x; n))u(t; x; n)dw(t;K);u(t; x; n) = u0(x): (5.1)We will prove that the stochastic KPP equation (5.1) with time white noise is an approximationto the stochastic KPP equation (1.2) with space-time white noise.We will �rst prove in the following that equation (5.1) has a unique strong solution which isC2 in space, and moreover, 0 � u(t; x; n) � 1. Note that the linear equation does not have thisboundedness property. It is this property and Meyer's pseudo-path topology argument we used insection 3 lead us to prove that u(t; x; n)! u(t; x) in measure and the u(t; x) is a function of (t; x).The latter is a solution to equation (1.2).The nonlinear term (1 � u)u does not satisfy global Lipschitz condition. However it is locallyLipschitz. We will prove the existence and uniqueness of (5.1) by using the results in section 4about nonlinear equations with global Lipschitz nonlinearity.We have the following key lemma.Lemma 5.1 Assume u0 2 C2(Rd) and 0 � u0 � 1. Then the solution u(t; x; n) of the stochasticKPP equation (5.1) exists and is unique and C2 in x and satis�es:0 � u(t; x; n) � 1: (5.2)18



Proof. De�neF (u) = 8>>>>><>>>>>: �2 if u � �1[u(1� u) + 2] expf1 + 1u2�1g � 2 if �1 < u < 0(1� u)u if 0 � u � 1[u(1� u) + 2] expf1 + 1(u�1)2�1g � 2 if 1 < u < 2�2 if u � 2:Then it is evident that F (u) is a global Lipschitz function and there exists a C1 function C1(u)such that F (u) = C1(u)u. Consider the following SPDEdv(t; x; n) = 12�v(t; x; n)dt+n d2 XK a(x;K)C1(v(t; x; n))v(t; x; n)dw(t;K);v(0; x; n) = u0(x): (5.3)This equation has a unique regular solution according to Theorem 4.2. Asn d2 XK Z t0 a(x;K)C1(v(s; x; n))v(s; x; n)dw(s;K)= n d2 XK Z t0 a(x;K)C1(v(s; x; n))v(s; x; n) � dw(s;K)�12n d2 XK Z t0 a(x;K)dsfC1(v(s; x; n))v(s; x; n)gdw(s;K)= n d2 XK Z t0 a(x;K)C1(v(s; x; n))v(s; x; n) � dw(s;K)�12n d2 XK Z t0 a(x;K)fC 01(v(s; x; n))v(s; x; n) + C1(v(s; x; n))gdv(s; x; n)dw(s;K)= n d2 XK Z t0 a(x;K)C1(v(s; x; n))v(s; x; n) � dw(s;K)�12ndXK Z t0 a2(x;K)fC 01(v(s; x; n))v(s; x; n)+C1(v(s; x; n))gC1(v(s; x; n))v(s; x; n)ds: (5.4)So the Ito type equation (5.3) is equivalent to the following Stratonovich type equation:dv(t; x; n) = 12�v(t; x; n)dt � 12ndXK a2(x;K)fC 01(v(t; x; n))v(t; x; n)+C1(v(t; x; n))gC1(v(t; x; n))v(t; x; n)dt+n d2 XK a(x;K)C1(v(t; x; n))v(t; x; n) � dw(t;K): (5.5)
19



By the Feynman-Kac formula,v(t; x; n) = Êu0(Xt0(x)) expf �12ndXK Z t0 a2(Xts(x);K)fC 01(v(s;Xts(x); n))v(s;Xts(x); n)+C1(v(s;Xts(x); n))gC1(v(s;Xts(x); n))ds+n d2 XK Z t0 a(Xts(x);K)C1(v(s;Xts(x); n)) � dw(s;K)g= Êu0(Xt0(x)) expf �12ndXK Z t0 a2(Xts(x);K)C21 (v(s;Xts(x); n))ds+n d2 XK Z t0 a(Xts(x);K)C1(v(s;Xts(x); n))dw(s;K)g:Here the stochastic 
ow Xts(x) is the same as in Lemma 2.1 and the stochastic integral with � is aStratonovich integral and the one without � is an Ito integral. It is evident from the formula thatv(t; x; n) � 0: (5.6)Let Z = 1� v. Then Z(t; x; n) satis�es the following Ito type SPDEdZ(t; x; n) = 12�Z(t; x; n)dt�n d2 XK a(x;K)C1(Z(t; x; n))Z(t; x; n)dw(t;K);Z(0; x; n) = 1� u0(x): (5.7)So by the Feynman-Kac formula again, we have a slutionZ(t; x; n) � 0; (5.8)as 1� u0 � 0. Combine (5.6) and (5.8), we obtain0 � v(t; x; n) � 1: (5.9)But when 0 � v(t; x; n) � 1, F (v(t; x; n)) = (1 � v(t; x; n))v(t; x; n). Therefore v(t; x; n) satis�esactually dv(t; x; n) = 12�v(t; x; n)dt+ n d2 XK a(x;K)(1 � v(t; x; n))v(t; x; n) � dw(t;K);v(t; x; n) = u0(x): (5.10)That is to say that u(t; x; n) = v(t; x; n) is a solution of (5.1) and satis�es (5.2). The uniqueness ofthe solution to (5.1) follows from the uniqueness of the solution to (5.3). zzNow, it is trivial to verify that the condition (3.2) of Theorem 3.3 is satis�ed, so we getTheorem 5.2 Assume u0 2 C20 (Rd) and 0 � u0(x) � 1 for all x 2 Rd. Then Equation (1.2) hasa real-valued solution.Acknowledgement. The authors would like to thank R.Getoor, Y.Hu, Z.Qian and R.Williamsfor helpful discussions on the earlier versions of this paper.20
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