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Stable Algorithms for Large Sparse Eigenvalue Problems

Abstract

In this dissertation, we consider the symmetric eigenvalue problem and the buckling eigen-

value problem. We study existing algorithms and propose stable variants for both eigenvalue

problems.

We first analyze Hotelling’s deflation for the symmetric eigenvalue problem Ax = λx,

where A is a symmetric matrix. Hotelling’s deflation is a technique to displace computed

eigenvalues of A. It is combined with an eigensolver to compute a partial eigendecomposition of

A. Numerical stability of Hotelling’s deflation is not well understood. In this dissertation, we

derive computable upper bounds on the loss of orthogonality of computed eigenvectors and on

the backward error norm of computed eigenpairs. From the upper bounds, we identify crucial

quantities associated with the shifts and derive sufficient conditions for the backward stability of

Hotelling’s deflation. Based on these results, we propose a shift selection scheme for stabilizing

Hotelling’s deflation.

Next we consider the buckling eigenvalue problem Kx = λKGx, where the matrix

K is positive semi-definite, the matrix KG is indefinite, and the matrices K and KG share a

common nullspace. When K is positive definite, the shift-invert Lanczos method is a widely

accepted method for the buckling eigenvalue problem. However, in our case, there are two issues

associated with the method. First, the shift-invert operator (K − σKG)−1 does not exist or

is ill-conditioned. Second, the Lanczos vectors fall rapidly into the nullspace of K. The inner

product induced by K leads to rapid growth of the Lanczos vectors in norm. The large norms

introduce large round-off errors to the orthogonalization process, leading to loss of accuracy of

compute solutions and even break down of the method. In this dissertation, we address these

issues by generalizing the buckling spectral transformation to the singular pencil K −λKG and

regularizing the inner product to bound the norms of the Lanczos vectors. We propose a shift-

invert Lanczos method for the buckling eigenvalue problem and develop a validation scheme

using inertias.
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Chapter 1

Introduction

1.1 Motivations

An algorithm follows a set of well-defined procedures to solve a mathematical problem.

In finite precision arithmetic, however, behavior of algorithm could depart significantly from

the theoretical expectation. Naive implementation would lead to instability of the algorithm.

In this dissertation, we consider the symmetric eigenvalue problem and the buckling eigen-

value problem. We study existing algorithms and propose stable variants for both eigenvalue

problems.

We first analyze Hotelling’s deflation for the symmetric eigenvalue problem Ax = λx,

where A is a symmetric matrix. Hotelling’s deflation is a technique to displace computed

eigenvalues of A. It is combined with eigensolver to compute partial eigendecomposition of A. In

the literature, numerical stability of Hotelling’s deflation is not well understood. In the book [35,

p. 585], Wilkinson comments that Hotelling’s deflation has poor numerical stability. Parlett

argues that, when deflating out the largest computed eigenvalue, the change to the smallest

eigenvalue in magnitude would be at the same order of the round-off error incurred [26, Sec. 5.1].

Saad observes the loss of orthogonality of computed eigenvectors and proposes reorthogonalizing

computed eigenvectors before applying deflation. Saad performs a backward stability analysis

of this variant, and claims that the stability is determined by the angle between the computed

eigenvector and the deflated subspace [27]. In this dissertation, we demonstrate that the stability

of Hotelling’s deflation is determined by spectral gap and shift-gap ratio. We propose a shift

selection scheme for stabilizing Hotelling’s deflation.

Next we consider the shift-invert Lanczos method for the buckling eigenvalue problem
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Kx = λKG. The shift-invert Lanczos method is a Krylov subspace method with spectral

transformation. It is a widely accepted method to compute solutions for structural analysis.

The use of the inner product induced by a positive semidefinite matrix is common in practice.

We refer to [16] and the references therein for further detail.

The buckling eigenvalue problem arises from a buckling analysis of structure . The

problem has the properties that the matrix K is positive semi-definite, the matrix KG is indefi-

nite, and the matrices K and KG share a common nullspace. The shift-invert Lanczos method is

not applicable since (1) the shift-invert matrix (K−σKG)−1 does not exist or is ill-conditioned

and (2) the Lanczos vectors fall rapidly into the nullspace of K. The inner product induced by

K leads to rapid growth of the Lanczos vectors in norm. The large norms of the Lanczos vectors

introduce large round-off errors to the orthogonalization process, leading to loss of accuracy of

computed solutions and even break down of the method [23,25,33].

In the past, the norms are controlled by restricting the Lanczos vectors to a proper

subspace [23, 25]. A modified formula is also proposed to improve the Ritz vectors [25]. These

techniques however can not stop the unbounded growth of the Lanczos vectors. In this disser-

tation, we develop alternative strategies to address these issues.

1.2 Contributions

The main contributions to the analysis of Hotelling’s deflation are as follows.

1. We derive computable upper bounds on the loss of orthogonality of computed eigenvectors

and on the backward error norm of computed eigenpairs.

2. We identify crucial quantities associated with the shifts and derive sufficient conditions

for the backward stability of Hotelling’s deflation.

3. We propose a shift selection scheme for stabilizing Hotelling’s deflation.

Through numerical experiments, we demonstrate the sharpness of our bounds, and the effec-

tiveness of our shift selection scheme.

Next we address the issues associated with the buckling eigenvalue problem Kx =

λKGx. The main contributions on this part are as follows.

1. We generalize the buckling spectral transformation to the singular pencil K − λKG.

2



2. We regularize the inner product to bound the norms of Lanczos vectors.

We propose a shift-invert Lanczos method for the buckling eigenvalue problem and provide an

implementation of the matrix-vector product based on the scheme in [3]. A validation scheme

using inertias is developed. The efficacy of our method is demonstrated by a numerical example

from industrial analysis.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we introduce backgrounds and

theoretical tools. In particular, we introduce Lanczos method and several of its variants. In

Chapter 3, we present analysis of Hotelling’s deflation for the symmetric eigenvalue problem

Ax = λx. In Chapter 4, we propose a shift selection scheme for Hotelling’s deflation and present

the numerical results. In Chapter 5, we address the issues with the buckling eigenvalue problem

Kx = λKGx. The efficacy of our strategy is demonstrated in Chapter 6.

1.4 Notation

Throughout this dissertation, capital letters are matrices and lower case letters are

vectors or scalars. Ik is the k-by-k identity matrix. ej is the jth column of the identity matrix

Ik. X
T is the transpose of the matrix X and X−T is the inverse of the transpose XT. det(X)

is the determinant of X. ‖ · ‖1 and ‖ · ‖2 are matrix or vector 1-norm and 2-norm, respectively.

‖ · ‖F is the Frobenius norm. R(X) is the range of X and N (X) is the nullspace of X. S1 ⊕S2

is the direct sum of two subspace S1 and S2. S⊥ is the orthogonal complement to a subspace

S. PS is the orthogonal projection onto a subspace S.

We also use the machine epsilon ε, which is the gap between 1 and the next largest

floating point number. We use the Big O notation O(·) to state the order of magnitude. Other

notations will be explained as used.
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Chapter 2

Preliminaries

We first provide backgrounds for the rest of chapters.

2.1 Eigenvalue problems

2.1.1 Symmetric eigenvalue problem

The symmetric eigenvalue problem (SEP) is of the form

Ax = λx, (2.1)

where A is a n-by-n real-valued symmetric matrix. The eigenvalues of the symmetric matrix A

are denoted by

λ(A) = {λ | det(A− λI) = 0}.

If λ ∈ λ(A) and x is a nonzero vector satisfying (2.1), we say x is an eigenvector corresponding

to the eigenvalue λ.

The symmetric eigenvalue problem (2.1) has n real eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn, (2.2)

and there exist real eigenvectors X = [x1, x2, . . . , xn] ∈ Rn×n satisfying

XTAX = Λ. and XTX = In,

where Λ = diag(λ1, λ2, . . . , λn) [8]. The ordering (2.2) of the eigenvalues λi is used throughout

the rest of chapters.
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2.1.2 Symmetric semidefinite generalized eigenvalue problem

The symmetric semidefinite generalized eigenvalue problem (SGEP) is of the form

Ax = λBx, (2.3)

where A and B are n-by-n symmetric matrices and B is positive semidefinite. We call the

matrix pencil A−λB ∈ Rn×n a symmetric semidefinite pencil. The eigenvalues of the symmetric

semidefinite pencil A− λB are denoted by

λ(A,B) = {λ | det(A− λB) = 0}.

If λ ∈ λ(A,B) and x is a nonzero vector satisfying (2.3), we say x is an eigenvector corresponding

to the eigenvalue λ.

When the matrix B in (2.3) is a positive definite matrix, the generalized eigenvalue

problem (2.3) is equivalent to the symmetric eigenvalue problem

L−1AL−Ty = λy,

where B = LLT is the Cholesky factorization and y = LTx. Therefore, it has n real eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn,

and there exist real eigenvectors X = [x1, x2, . . . , xn] ∈ Rn×n satisfying

XTAX = Λ. and XTBX = In,

where Λ = diag(λ1, λ2, . . . , λn).

When the matrix B in (2.3) is positive semidefinite, the following decomposition is

derived by Fix and Heiberger [13] to analyze the generalized eigenvalue problem (2.3):

Lemma 2.1. For a symmetric semi-definite pencil A− λB, there exists a non-singular matrix

W ∈ Rn×n such that

W TAW =



n0 n1 n2 n0 n3

n0 A00 A01 A02 Θ 0

n1 AT01 A11 A12

n2 AT02 AT12 Ψ

n0 Θ 0

n3 0 0


and W TBW =



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0

n0 0

n3 0


,

(2.4)

where Ψ and Θ are non-singular, diagonal matrices with real diagonal entries.

5



From the decomposition (2.4), the finite eigenvalues of the generalized eigenvalue problem (2.3)

are the eigenvalues of the symmetric eigenvalue problem

(A11 −A12Ψ−1AT
12)z = λz.

We further analyze the decomposition (2.4) in Chapter 5.

2.2 Lanczos method

Lanczos method [5] is a projection method for the symmetric eigenvalue problem (2.1).

The method starts with a vector v ∈ Rn and builds up the Krylov subspace

Kj+1(A, v) = span{v,Av,A2v, . . . , Ajv}.

The symmetric eigenvalue problem (2.1) is projected onto the Krylov subspace Kj+1(A, v). At

each iteration, an orthonormal basis Vj+1 = [v1, v2, . . . , vj+1] of Kj+1(A, v) is computed by

orthogonalizing the product Avj against the basis Vj . The orthogonalization process generates

the Rayleigh Ritz projection Tj = V T
j AVj satisfying

AVj = VjTj + βjvj+1e
T
j . (2.5)

By construction, the projection matrix Tj is symmetric and tridiagonal. From (2.5), the basis

vector vj+1 satisfies the three-term recurrence

βjvj+1 = Avj − βj−1vj−1 − αjvj , (2.6)

where

Tj =



α1 β1

β1 α2
. . .

. . .
. . . βj−1

βj−1 αj


The Lanczos method is summarized in Algorithm 2.1. To compute approximate eigenpairs

(λi, xi), we solve the reduced eigenvalue problem

Tjsi = θisi

by the QR algorithm [1] and set the Ritz pair (λi, xi) = (θi, Vjsi). From (2.5), the residual error

of the Ritz pair (λi, xi) can be estimated by

‖ri‖2 = ‖Axi − λixi‖2 = |βj | · |sji|, sji = eT
j si.

6



Throughout the rest of chapters, the basis vectors vi in the Lanczos method are referred

to as the Lanczos vectors. The decomposition (2.5) of the symmetric matrix A is referred to as

the Lanczos decomposition.

Algorithm 2.1 Lanczos method

1: r ← v, where v is the starting vector

2: v0 ← 0

3: β0 ← ‖r‖2

4: for j = 1, 2, . . . do

5: vj ← r/βj−1

6: r ← Avj

7: r ← r − βj−1vj−1

8: αj ← vTj r

9: r ← r − αjvj

10: perform re-orthogonalization if necessary

11: βj ← ‖r‖2

12: Compute the eigenvalue decomposition of Tj

13: Check convergence

14: end for

15: Compute approximate eigenvectors of the converged eigenpairs

2.2.1 Loss of orthogonality

In the Lanczos method, the vector vj+1 is explicitly orthogonalized against the vector

vj . The orthogonality between the vectors vj+1 and vi, i < j, is determined by the three-

term recurrence (2.6). Round-off errors however enter the recurrence (2.6) in finite precision

arithmetic. The equations satisfied by the computed Lanczos vectors vi become

βivi+1 = Avi − βi−1vi−1 − αivi + fi, i = 1, . . . , j, (2.7)

where fi ∈ Rn are the terms from the round-off errors.

From (2.7), for i < j, the inner products ωk,l = vT
k vl satisfy

βjωi,j+1 = vT
i Avj − βj−1ωi,j−1 − αjωi,j + vT

i fj (2.8)

7



and

βiωj,i+1 = vT
j Avi − βi−1ωj,i−1 − αiωj,i + vT

j fi. (2.9)

Substracting (2.8) from (2.9), and using the symmetry of A, we have the difference equation

βjωi,j+1 = βiωi+1,j + (αi − αj)ωi,j + βi−1ωi−1,j − βj−1ωi,j−1 + vT
i fj − fT

i vj for i < j.

(2.10)

The difference equation (2.10) describes how the loss of orthogonality evolves in the

Lanczos method. From (2.10), the products ωi,j+1, i < j, is a weighted sum of the products ωi′,j

and ωi′,j−1 from the previous two Lanczos steps; the terms vT
i fj and fT

i vj from the round-off

errors introduce perturbation to ωi,j+1. In exact arithmetic, we have the zero round-off errors

fi = 0 and ωi,i+1 = vT
i vi+1 = 0. From the difference equation (2.10), ωi,j+1 = 0 for all i < j.

When the round-off errors are present, tiny products ωk,l are introduced through the terms

ωi,i+1, vT
i fj and fT

i vj . The nonzero products ωk,l are then propagated by the equation (2.10)

in the subsequent iterations. Potential instability of the difference equation (2.10) leads to the

amplification of the products ωi,j+1. The amplification results in the loss of orthogonality of

the Lanczos vectors vi [20, Sec. 10.6] [31].

Further analysis of the equations (2.7) leads to the well-known result by Paige [8,

p. 379] [26, p. 295]

xT
i vj+1 =

O(ε‖A‖2)

βjsji
, (2.11)

where xi = Vjsi is the Ritz vector. The result (2.11) tells that the Lanczos vectors vi are driven

toward the converged Ritz vectors.

2.2.2 Reorthogonalization

We discuss commonly used techniques at step 10 of Algorithm 2.1 to maintain the

orthogonality of the computed Lanczos vectors vi:

• Full reorthogonalization. The vector r is explicitly orthogonalized against the vectors

Vj at each iteration of the Lanczos method. The orthogonalization is done using the

classical Gram-Schmidt

r′ ← r − Vj(V T
j r). (2.12)

The decrease in the norm ‖r‖2 after the orthogonalization is monitored. Additional or-

thogonalization by (2.12) is performed if ‖r′‖2 < 1√
2
‖r‖2 [6].

8



• Selective reorthogonalization. From the difference equation (2.10), we compute an

upper bound ωk,l on the loss of orthogonality ωk,l by

ωi,j+1 =
1

βj
·
(
βiωi+1,j + |αi − αj |ωi,j + βi−1ωi−1,j + βj−1ωi,j−1 + f j

)
,

where f j is an estimate of the order of the terms vT
i fj − fT

i vj [31]. We orthogonalize the

vectors r and vj against the vector vi whenever ωi,j+1 ≥
√
ε [30] [31]. We refer to [16] and

the references therein for further details on the robust reorthogonalization technique.

2.3 Restarted Lanczos methods

In this section, we consider the Lanczos decomposition of a symmetric matrix A

AVm = VmTm + βmvm+1e
T
m. (2.13)

We discuss techniques to re-compute the decomposition (2.13) with refined projection subspace.

2.3.1 Implicit restart

Implicit restart [32] first computes a new basis V
(1)
m+1 through QR iteration of the

tridiagonal matrix Tm. The QR iteration is the transformation

T (1)
m = QT

1 TmQ1,

where Tm − µ1Im = Q1R1 is the QR decomposition and µ1 ∈ R is a shift. Implicit restart

computes the new basis V
(1)
m by the orthogonal transformation

V (1)
m = VmQ1. (2.14)

The orthogonal transformation in (2.14) serves to filter the starting vector v1 by

v
(1)
1 =

(A− µ1Im)v1

‖(A− µ1Im)v1‖2
.

The new basis V
(1)
m satisfies the equation

AV (1)
m = V (1)

m T (1)
m + βmvm+1e

T
mQ1,

where the matrix T
(1)
m = V

(1)
m

T
AV

(1)
m is the Rayleigh Ritz projection.

Implicit restart then continues QR iterations on the matrix T
(1)
m and updates the basis

V
(1)
m . At i-th QR iteration, i ≥ 2,

T (i)
m = QT

i T
(i−1)
m Qi,

9



where T
(i−1)
m − µiIm = QiRi is the QR decomposition and µi ∈ R is the shift, implicit restart

updates the basis Vm by

V (i)
m = V (i−1)

m Qi = VmQ1Q2 . . . Qi.

After p QR iterations, p < m, the starting vector v
(p)
1 is

v
(p)
1 =

∏p
i=1(A− µiIm)v1

‖
∏p
i=1(A− µiIm)v1‖2

. (2.15)

The new basis V
(p)
m satisfies the equation

AV (p)
m = V (p)

m T (p)
m + βmvm+1h

T, (2.16)

where the matrix

T (p)
m = V (p)

m

T
AV (p)

m =



α
(p)
1 β

(p)
1

β
(p)
1 α

(p)
2

. . .

. . .
. . . β

(p)
m−1

β
(p)
m−1 α

(p)
m


.

is the Rayleigh Ritz projection and hT = eT
mQ1Q2 . . . Qp.

To restart, implicit restart starts the Lanczos method with the filtered vector v
(p)
1

(2.15). We note that, in (2.16), each orthogonal matrix Qi is upper Hessenberg, and the leading

m− p− 1 entries of the row vector hT are zero, i.e.,

hT = eT
mQ1Q2 . . . Qp = [0, . . . , 0, hk, . . . , hm], k = m− p,

Therefore, from (2.16), the leading k basis vectors of V
(p)
m , denoted by V +

k , satisfy

AV +
k = V +

k T
+
k + (β

(p)
k v

(p)
k+1 + βmhkvm+1)eT

k := V +
k T

+
k + β+

k v
+
k+1e

T
k

where T+
k is the leading k-by-k submatrix of the tridiagonal matrix T

(p)
m , and we can start with

the (k + 1)th step of the Lanczos method.

2.3.2 Thick restart

Thick restart [36] first solves the reduced eigenvalue problem

Tmsi = θisi.

The desired Ritz vectors ui1 , . . . , uik are identified. Thick restart then starts the Lanczos

method with the vectors

V +
k+1 =

[
v+

1 , . . . , v
+
k , v

+
k+1

]
= [ui1 , . . . , uik , vm+1] .
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The starting vectors V +
k+1 satisfy the equation

AV +
k = V +

k Dk + βmv
+
k+1h

T,

where Dk = diag(θi1 , . . . , θik), hT = eT
mSk and Sk = [si1 , . . . , sik ].

In the subsequent iterations, Lanczos method builds the projection subspace

K+
j+1 = span{ui1 , . . . , uik , vm+1, Avm+1, . . . , A

j−kvm+1}.

The orthonormal basis

V +
j+1 = [v+

1 , . . . , v
+
k , v

+
k+1, . . . , v

+
j+1]

of K+
j+1 is computed by orthogonalizing the product Av+

j against the basis V +
j . The orthogo-

nalization process generates the Rayleigh Ritz projection T+
j = V +

j
T
AV +

j satisfying

AV +
j = V +

j T
+
j + β+

j v
+
j+1e

T
j . (2.17)

The projection matrix T+
j now is symmetric and has the banded structure,

T+
j =



Dk βmh

βmh
T α+

k+1 β+
k+1

β+
k+1 α+

k+2 β+
k+2

. . .
. . .

. . .

β+
j−2 α+

j−1 β+
j−1

β+
j−1 α+

j


. (2.18)

From (2.17) and (2.18), the Lanczos vector v+
j+1 is computed by the recurrence

β+
j+1v

+
j+1 =


Av+

j − α
+
j v

+
j − βmV

+
j−1h if j = k + 1,

Av+
j − α

+
j v

+
j − β

+
j−1v

+
j−1 if j > k + 1.

To compute approximate eigenpairs, we solve the reduced eigenvalue problem

T+
j si = θisi

and set the Ritz pair (λi = θi, xi = V +
j si). From (2.17), the residual error of the Ritz pair

(λi, xi) can be estimated by

‖ri‖2 = ‖Axi − λixi‖2 = |βj | · |sji|, sji = eT
j si.

In finite precision arithmetic, we may perform full reorthogonalization to maintain the

orthogonality of the computed Lanczos vectors [39]. A selective reorthogonalization scheme is

developed in [36].

11



2.4 Shift-invert Lanczos method

Shift-invert Lanczos method [11, 16, 25] generalizes the Lanczos method to the SGEP

(2.3). The method computes the eigenvalues λ and the associated eigenvectors x of (2.3) near

a prescribed shift σ. It begins by converting (2.3) via a shift-invert spectral transformation into

the equivalent eigenvalue problem

Cx ≡ (A− σB)−1Bx = µx, µ =
1

λ− σ
. (2.19)

The spectral transformation (2.19) maps the eigenvalues λ near the shift σ into the extremal

eigenvalues µ of C. Next, it is noted that C is symmetric with respect to the inner product

induced by B. The Lanczos method is then run on C to compute the eigenpairs (µ, x) with the

extremal eigenvalues µ.

The Lanczos method starts with a vector v ∈ Rn and builds the Krylov subspace

Kj+1(C, v). An orthonormal basis Vj+1 of Kj+1(C, v) is computed with the inner product

induced by B. The orthogonalization process generates the projection Tj = V T
j BCVj satisfying

CVj = VjTj + βjvj+1e
T
j (2.20)

with

Tj =



α1 β1

β1 α2
. . .

. . .
. . . βj−1

βj−1 αj


.

The Lanczos vector vj+1 satisfies the three-term recurrence

βjvj+1 = Cvj − βj−1vj−1 − αjvj .

The shift-invert Lanczos method is summarized in Algorithm 2.2. To compute approximate

eigenpairs (λi, xi) of the original problem (2.3), we solve the reduced eigenvalue problem

Tjsi = θisi

and set (λi, xi) = ( 1
θi

+ σ, Vjsi). From (2.20), the residue vector of (λi, xi) is

ri = Axi − λiBxi = −βjsji
θi

(A− σB)vj+1, sji = eT
j si.
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Typically, the extremal eigenvalues of C are well separated. The eigenpairs (λi, xi)

near the shift σ converge after a few iterations of the shift-invert Lanczos method. At step 12 of

Algorithm 2.2, to maintain the orthogonality of the Lanczos vector vi, full reorthogonalization

performs the classical Gram-Schmidt

r′ ← r − Vj(V T
j Br).

Robust selective reorthogonalization schemes are developed in [16] [20, Sec. 10.6].

Algorithm 2.2 Shift-invert Lanczos method

1: r ← v, where v is the starting vector

2: v0 ← 0

3: p← Br

4: β0 ← (pT r)1/2

5: for j = 1, 2, . . . do

6: vj ← r/βj−1

7: r ← Cvj , where C = (A− σB)−1B

8: r ← r − βj−1vj−1

9: p← Br

10: αj ← vTj p

11: r ← r − αjvj

12: perform re-orthogonalization if necessary

13: p← Br

14: βj ← (pT r)1/2

15: Compute the eigenvalue decomposition of Tj

16: Check convergence

17: end for

18: Compute approximate eigenvectors of the converged eigenpairs

2.5 Hotelling’s deflation

Hotelling’s deflation [19] is a technique to displace computed eigenvalues of symmetric

matrix A. Given a computed eigenpair (λ, x) of A by an eigensolver, Hotelling’s deflation
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displaces the eigenvalue λ by choosing a real shift σ and applying the low-rank update,

A′ = A+ σ · xxT. (2.21)

The low-rank update (2.21) displaces the computed eigenpair (λ, x) to an eigenpair (λ + σ, x)

of A′ while the rest of the eigenpairs are not changed.

Hotelling’s deflation is originally combined with the power method to compute the

largest eigenvalues of A in magnitude [19] [26, Sec. 5.1] [28, p. 90] [35, p. 585]: we start with

computing the largest eigenvalue λ and the associated eigenvector x of A by the power method.

We apply Hotelling’s deflation with the shift σ = −λ to reveal the next largest eigenvalue λ′ of

A. Then we compute the eigenvalue λ′ by applying the power method to the low-rank updated

matrix A′.

Through the rest of chapters, Hotelling’s deflation is referred to as explicit external

deflation (EED).

2.6 Inertias of symmetric matrix

The inertias of a symmetric matrix A refer to the numbers ν+(A), ν0(A) and ν−(A),

where ν+(A), ν0(A) and ν−(A) are the numbers of positive, zero and negative eigenvalues of A,

respectively. Sylvester law states that the inertias are invariant under congruent transformation:

Theorem 2.1 (Sylvester Law [15, p. 448]). If the matrix A ∈ Rn×n is symmetric and the

matrix W ∈ Rn×n is non-singular, then the matrices A and WTAW have the same inertias.

The inertias of a symmetric matrix A are available from the LDLT factorization of

A. The inertias of A are equal to the inertias of the block diagonal matrix D by the Sylvester

law [18, Sec. 11].

For the symmetric semidefinite generalized eigenvalue problem (2.3), the inertias can

be used to count the number of eigenvalues in an interval. If some linear combination αA+βB

is positive definite, the number of eigenvalues in an interval [σl, σr] is equal to the difference [16]

ν−(A− σrB)− ν−(A− σlB). (2.22)

The inertias in (2.22) can be computed by the LDLT factorizations of the shifted matrices

A− σlB and A− σrB.
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2.7 Backward error of computed eigenpairs

Let (Λ̂, X̂) be computed eigenpairs of a symmetric matrix A, and let U be the polar

decomposition of X̂. We consider the symmetric backward errors for the SEP (2.1),

HU = {∆ | (A+ ∆)U = U Λ̂,∆ = ∆T ∈ Rn×n}.

The following theorem by Sun [34] gives an upper bound on the norm min∆∈HU
‖∆‖F.

Theorem 2.2. The set HU is non-empty and there exists a unique ∆U ∈ HU such that

min
∆∈HU

‖∆‖F = ‖∆U‖F ≤
√
‖R‖2F + ‖P⊥

R(X̂)
R‖2F

/
σmin(X̂),

where R = AX̂− X̂Λ̂ is the residual and P⊥
R(X̂)

is the orthogonal projection onto the orthogonal

complement of R(X̂).

For the SGEP (2.3), we consider the backward error of the computed eigenpair (λ̂i, x̂i),

η(λ̂i, x̂i) := min
{
ε | (A+ ∆A)x̂i = λ̂i(B + ∆B)x̂i, ‖∆A‖2 ≤ ε‖A‖, ‖∆B‖2 ≤ ε‖B‖

}
, (2.23)

where ‖A‖ and ‖B‖ are the norms of A and B, respectively. The following theorem, given by

Frayssé and Toumazou [14], shows that the backward error η(λ̂i, x̂i) can be computed from the

residual norm ‖ri‖2 = ‖Ax̂i − λ̂iBx̂i‖2.

Theorem 2.3. The backward error defined in (2.23) is given by

η(λ̂i, x̂i) =
‖ri‖2

(‖A‖+ |λ̂i| · ‖B‖)‖x̂i‖2
, (2.24)

where ri = Ax̂i − λ̂iBx̂i is the residual vector.

When A and B are symmetric and λ̂i is real, we may consider the symmetric backward

error

ηT(λ̂i, x̂i) := min{ε | (A+ ∆A)x̂i = λ̂i(B + ∆B)x̂i, ∆A = ∆AT, ∆B = ∆BT,

‖∆A‖2 ≤ ε‖A‖, ‖∆B‖2 ≤ ε‖B‖}.

The following theorem by Higham and Higham [17] analyzes the symmetric backward error

ηT(λ̂i, x̂i).

Theorem 2.4. If A and B are symmetric and λ̂i is real, we have ηT(λ̂i, x̂i) = η(λ̂i, x̂i).
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Chapter 3

Solving the symmetric eigenvalue

problem with the EED

In this chapter, we analyze the EED for the symmetric eigenvalue problem (2.1).

Without loss of generality, we consider an interval I = [λlow, λupper] containing the eigenvalues

λ1, λ2, . . . , λne at the lower end of the spectrum. We consider computing the partial eigende-

composition

AXne = XneΛne , (3.1)

where Λne = diag(λ1, λ2, . . . , λne), Xne = [x1, x2, . . . , xne ] and XT
ne
Xne = Ine .

To compute the partial eigendecomposition (3.1) with the EED, we compute the lowest

eigenpair (λ, x) of A by an eigensolver such as TRLan [36]. We apply the EED with a shift

σ > λupper − λ to displace the eigenvalue λ to the higher end of the spectrum. Algorithm 3.1

summarizes the solution procedure. The solution procedure is referred to as the EED procedure.

In the literature, numerical stability of the EED procedure outlined in Algorithm 3.1

is not well understood. In [35, p. 585], Wilkinson comments that EED procedure is numerically

unstable. Parlett argued that, when deflating out the largest computed eigenvalue, the change

to the smallest eigenvalue in magnitude would be at the same order of the round-off error

incurred [26, Sec. 5.1]. In [27], Saad observes the loss of orthogonality of computed eigenvectors

and proposes reorthogonalizing computed eigenvectors before applying deflation. Saad performs

a backward stability analysis of this variant, and claims that the stability is determined by the

angle between the computed eigenvector and the deflated subspace.

In the following, we develop a backward stability analysis of the EED procedure. In
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Algorithm 3.1 EED procedure

Input: (i) the symmetric matrix A. (ii) the interval I = [λlow, λupper] at the lower end of the

spectrum of A.

Output: nev lowest eigenpairs of A.

1: A0 = A;

2: compute the lowest eigenpair (λ1, x1) of A0 by EIGSOL;

3: for j = 1, 2, . . . do

4: pick a shift σj > λupper − λj ;

5: Aj = Aj−1 + σjxjx
T
j = A+XjΣjX

T
j ;

6: compute the lowest eigenpair (λj+1, xj+1) of Aj by EIGSOL;

7: if λj+1 > λupper, stop

8: end for

9: return the partial eigendecomposition (3.1) of A;

Section 3.1, we derive a governing equation of the EED procedure in finite precision arithmetic.

In Section 3.2, we derive computable upper bounds on the loss of orthogonality of computed

eigenvectors and on the symmetric backward error norm of computed eigenpairs. In Section 3.3,

we identify the crucial quantities associated with the shifts and derive sufficient conditions for

the backward stability of the EED procedure.

3.1 Governing equation of the EED procedure in finite precision

arithmetic

We consider the eigensolver EIGSOL in Algorithm 3.1 to be a generic one. It could be

TRLan [36] or ARPACK [22]. We only assume that EIGSOL can compute the lowest eigenpair

(λ̂, x̂) of A with

Ax̂ = λ̂x̂+ η,

where ‖x̂‖2 = 1 and the residual vector η satisfies

‖η‖2 ≤ tol · ‖A‖2 (3.2)

for a prescribed convergence tolerance tol.

The EED procedure starts with computing the lowest eigenpair (λ̂1, x̂1) of A by
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EIGSOL satisfying

Ax̂1 = λ̂1x̂1 + η1,

where the residual vector η1 satisfies (3.2). At the first EED step, we choose a shift σ1 and

define

Â1 ≡ A+ σ1x̂1x̂
T
1 .

By choosing the shift σ1 > λupper − λ̂1, the lowest eigenpair of Â1 is an approximation of the

second eigenpair (λ2, x2) of A. Subsequently, we use EIGSOL to compute the lowest eigenpair

(λ̂2, x̂2) of Â1 satisfying

Â1x̂2 = λ̂2x̂2 + η2,

where the residual vector η2 satisfies (3.2). Meanwhile, expressing the computed eigenpair

(λ̂1, x̂1) in terms of Â1, we have

Â1x̂1 = (λ̂1 + σ1)x̂1 + η1.

Proceeding to the second EED step, we choose a shift σ2 and define

Â2 ≡ Â1 + σ2x̂2x̂
T
2 = A+ X̂2Σ2X̂

T
2 ,

where X̂2 = [x̂1, x̂2] and Σ2 = diag(σ1, σ2). By choosing the shift σ2 > λupper − λ̂2, the lowest

eigenpair of Â2 is an approximation of the third eigenpair (λ3, x3) of A. Then we use EIGSOL

again to compute the lowest eigenpair (λ̂3, x̂3) of Â2 satisfying

Â2x̂3 = λ̂3x̂3 + η3,

where the residual vector η3 satisfies (3.2). Meanwhile, expressing the computed eigenpairs

(λ̂1, x̂1) and (λ̂2, x̂2) in terms of Â2, we have

Â2X̂2 = X̂2(Λ̂2 + Σ2) + X̂2Σ2Φ2 + E2,

where Λ̂2 = diag(λ̂1, λ̂2), E2 = [η1, η2], and Φ2 ∈ R2×2 is the strictly lower triangular part of

the matrix X̂T
2 X̂2 − I2, i.e., Φ2 + ΦT

2 = X̂T
2 X̂2 − I2.

In general, at the j-th EED step, we choose a shift σj and define

Âj ≡ Âj−1 + σj x̂j x̂
T
j = A+ X̂jΣjX̂

T
j , (3.3)
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where X̂j ≡ [x̂1, . . . , x̂j ] and Σj = diag(σ1, . . . , σj) with Â0 ≡ A. Then by choosing the shift

σj > λupper − λ̂j , the lowest eigenpair of Âj is an approximation of the (j + 1)-th eigenpair

(λj+1, xj+1) of A. We use EIGSOL to compute the lowest eigenpair (λ̂j+1, x̂j+1) of Âj satisfying

Âj x̂j+1 = λ̂j+1x̂j+1 + ηj+1, (3.4)

where ‖x̂j+1‖2 = 1 and the residual vector ηj+1 satisfies (3.2), i.e.,

‖ηj+1‖2 ≤ tol · ‖A‖2. (3.5)

Meanwhile, for the computed eigenpairs (λ̂j , x̂j) in terms of Âj , we have

Âj x̂j = Âj−1x̂j + σj x̂j = (λj + σj)x̂j + ηj , (3.6)

and for the computed eigenpairs (λ̂i, x̂i) with 1 ≤ i ≤ j − 1 in terms of Âj , we have

Âj x̂i =
(
Âj−1 + σj x̂j x̂

T
j

)
x̂i

=
(
Âi−1 + σix̂ix̂

T
i + X̂i+1:jΣi+1:jX̂

T
i+1:j

)
x̂i

=
(
Âi−1 + σix̂ix̂

T
i

)
x̂i + X̂i+1:jΣi+1:jX̂

T
i+1:j x̂i

= λ̂ix̂i + ηi + σix̂i + X̂i+1:jΣi+1:jX̂
T
i+1:j x̂i

= (λ̂i + σi)x̂i + X̂i+1:jΣi+1:jX̂
T
i+1:j x̂i + ηi

= (λ̂i + σi)x̂i + X̂jΣj

 0

X̂T
i+1:j x̂i

+ ηi, (3.7)

where X̂i+1:j ≡ [x̂i+1, . . . , x̂j ] and Σi+1:j ≡ diag(σi+1, . . . , σj).

Combining (3.6) and (3.7), we have

ÂjX̂j = X̂j(Λ̂j + Σj) + X̂jΣjΦj + Ej , (3.8)

where Λ̂j = diag(λ̂1, . . . , λ̂j), Ej = [η1, . . . , ηj ], Φj is the strictly lower triangular part of the

matrix X̂T
j X̂j − Ij and Φj + ΦT

j = X̂T
j X̂j − Ij . Eqs. (3.4) and (3.8) are referred to as the

governing equations of the EED procedure in finite precision arithmetic.

Now we introduce the following two quantities associated with the shifts σ1, . . . , σj for

a j-step EED:

• the spectral gap of Âj , defined as the separation between the computed eigenvalues and

the shifted ones:

γj ≡ min
λ∈Ij+1,θ∈Jj

|λ− θ| > 0, (3.9)
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where Ij+1 ≡ {λ̂1, . . . , λ̂j , λ̂j+1}, the set of computed eigenvalues, and Jj ≡ {λ̂1 +

σ1, . . . , λ̂j + σj}, the set of computed eigenvalues after shifting (see Figure 3.1 for an

illustration);

λ̂1 λ̂i λ̂j+1 λ̂1 + σ1 λ̂i + σi λ̂j + σj

γj

Figure 3.1: Illustration of the spectral gap γj

• the shift-gap ratio, defined as the ratio of the largest shift to the spectral gap γj :

τj ≡
1

γj
· max

1≤i≤j
|σi|. (3.10)

We will see that γj and τj are crucial quantities to characterize the backward stability of the

EED procedure.

3.2 Backward stability analysis

In this section, we derive upper bounds on the following two quantities measuring the

accuracy of the computed eigenpairs (Λ̂j+1, X̂j+1):

• the loss of orthogonality of the computed eigenvectors X̂j+1,

ωj+1 ≡ ‖X̂T
j+1X̂j+1 − Ij+1‖F, (3.11)

• the symmetric backward error norm of the computed eigenpairs (Λ̂j+1, X̂j+1),

δj+1 ≡ min
∆∈HUj+1

‖∆‖F, (3.12)

where HUj+1 is the set of the symmetric backward errors for the orthonormal basis Uj+1

from the polar decomposition of X̂j+1, namely,

HUj+1 ≡
{

∆ | (A+ ∆)Uj+1 = Uj+1Λ̂j+1, ∆ = ∆T ∈ Rn×n
}
. (3.13)

For a prescribed tolerance tol of the stopping criterion (3.5) for an eigensolver EIGSOL,

the EED procedure is considered to be backward stable if

ωj+1 = O(tol) (3.14)
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and

δj+1 = O(tol · ‖A‖2), (3.15)

where the constants in the big-O notations are low-degree polynomials in the number j of the

EED steps.

3.2.1 Loss of orthogonality

We first prove the following lemma to reveal the structure of the orthogonality between

the computed eigenvectors X̂j+1.

Lemma 3.1. By the governing equations (3.4) and (3.8) of j steps of EED, if τjωj <
√

2, then

for i = 1, 2, . . . , j, the matrices Γi ≡ Λ̂i + Σi − λ̂i+1Ii and Ii + ΦT
i ΣiΓ

−1
i are non-singular, and

X̂T
i x̂i+1 = Γ−1

i

(
Ii + ΦT

i ΣiΓ
−1
i

)−1
[
X̂T
i ηi+1 − ET

i x̂i+1

]
. (3.16)

Furthermore,

(i) ‖Γ−1
i ‖2 ≤ γ

−1
j ,

(ii) ‖(Ii + ΦT
i ΣiΓ

−1
i )−1‖2 ≤ (1− τjωj/

√
2)−1,

where γj and τj are the spectral gap and the shift-gap ratio defined in (3.9) and (3.10), respec-

tively, and ωj is the loss of the orthogonality defined in (3.11).

Proof. By the governing equations (3.4) and (3.8) of j steps of EED, for 1 ≤ i ≤ j, we have

X̂T
i Âix̂i+1 = λ̂i+1X̂

T
i x̂i+1 + X̂T

i ηi+1

and

X̂T
i Âix̂i+1 = (Λ̂i + Σi)X̂

T
i x̂i+1 + ΦT

i ΣiX̂
T
i x̂i+1 + ET

i x̂i+1.

Consequently,

(Γi + ΦT
i Σi)X̂

T
i x̂i+1 = X̂T

i ηi+1 − ET
i x̂i+1, (3.17)

where Γi = Λ̂i + Σi − λ̂i+1Ii is a diagonal matrix.

By the definition (3.9) of the spectral gap γj , the minimal singular value

σmin(Γi) = min
1≤k≤i

|λ̂k + σk − λ̂i+1| ≥ γj > 0.
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Hence the matrix Γi is non-singular and the bound (i) holds.

Since Φi is the strictly lower triangular part of the matrix X̂T
i X̂i − Ii,

‖ΦT
i ‖2 ≤ ‖ΦT

i ‖F =
ωi√

2
≤ ωj√

2
.

Consequently,

‖ΦT
i ΣiΓ

−1
i ‖2 ≤ ‖Φ

T
i ‖2‖Γ−1

i ‖2‖Σi‖2 ≤
ωj√

2
· γ−1

j · ‖Σj‖2 =
ωj√

2
· τj < 1, (3.18)

where for the last inequality, we use the assumption τjωj <
√

2. By (3.18), the matrix Ii +

ΦT
i ΣiΓ

−1
i is non-singular and the bound (ii) holds due to ‖(I +G)−1‖2 ≤ (1− ‖G‖2)−1 for any

G with ‖G‖2 < 1.

Since both matrices Γi and Ii + ΦT
i ΣiΓ

−1
i are invertible, the identity (3.16) follows

from (3.17).

Next we exploit the structure of the product X̂T
i x̂i+1 to derive a computable upper

bound on the loss of orthogonality ωj+1 of the computed eigenvectors X̂j+1.

Theorem 3.1. By the governing equations (3.4) and (3.8) of j steps of EED, if τjωj <
√

2,

then the loss of orthogonality ωj+1 of the computed eigenvectors X̂j+1 defined in (3.11) satisfies

ωj+1 ≤ 2
cj
γj

(
1 + 2

cj
γj
‖Ej+1‖F

)
‖Ej+1‖F, (3.19)

where cj = (1− τjωj/
√

2)−1, and γj and τj are the spectral gap and the shift-gap ratio defined

in (3.9) and (3.10), respectively.

Proof. By the definition (3.11), we have

ω2
j+1 = 2 ·

∥∥ΦT
j+1

∥∥2

F
= 2 ·

j∑
i=1

‖X̂T
i x̂i+1‖22. (3.20)

Recall Lemma 3.1 that, for any 1 ≤ i ≤ j,

‖X̂T
i x̂i+1‖2 ≤

cj
γj
· ‖X̂T

i ηi+1 − ET
i x̂i+1‖2.

Hence we can derive from (3.20) that

ω2
j+1 ≤

2c2
j

γ2
j

·
j∑
i=1

‖X̂T
i ηi+1 − ET

i x̂i+1‖22

=
2c2
j

γ2
j

· 1

2
‖X̂T

j+1Ej+1 − ET
j+1X̂j+1‖2F

≤
2c2
j

γ2
j

· 2‖X̂T
j+1Ej+1‖2F ≤

4c2
j

γ2
j

· ‖X̂T
j+1‖22‖Ej+1‖2F.
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Since

‖X̂T
j+1‖22 = ‖X̂T

j+1X̂j+1‖2 ≤ ‖Ij+1‖2 + ‖X̂T
j+1X̂j+1 − Ij+1‖2 ≤ 1 + ωj+1,

we arrive at

ω2
j+1 ≤

4c2
j

γ2
j

· (1 + ωj+1) · ‖Ej+1‖2F. (3.21)

Letting t = ωj+1/χj+1, where χj+1 = 2cj‖Ej+1‖F/γj , then the inequality (3.21) is recast as

t2 − χj+1t− 1 ≤ 0. (3.22)

By the fact that the quadratic polynomial in (3.22) is concave, we conclude that

t ≤ 1

2
·
(
χj+1 +

√
4 + χ2

j+1

)
≤ 1

2
· (χj+1 + 2 + χj+1) ≤ 1 + χj+1.

This proves the upper bound in (3.19).

3.2.2 Symmetric backward error norm

We derive a computable upper bound on the symmetric backward error norm δj+1 of

computed eigenpairs (Λ̂j+1, X̂j+1) of A defined in (3.12). First, the following lemma gives an

upper bound on the norm of the residue for (Λ̂j+1, X̂j+1):

Rj+1 ≡ AX̂j+1 − X̂j+1Λ̂j+1. (3.23)

Lemma 3.2. By the governing equations (3.4) and (3.8) of j steps of EED, if τjωj <
√

2, then

for the computed eigenpairs (Λ̂j+1, X̂j+1) of A, the Frobenius norm of the residual Rj+1 defined

in (3.23) satisfies

‖Rj+1‖F ≤
(

1 +
√

2cjτj(1 + ωj+1)
)
‖Ej+1‖F, (3.24)

where cj = (1− τjωj/
√

2)−1, and γj and τj are the spectral gap and the shift-gap ratio defined

in (3.9) and (3.10), respectively.

Proof. From the governing equation (3.8) of the EED procedure after j + 1 steps, we have

Âj+1X̂j+1 = X̂j+1(Λ̂j+1 + Σj+1) + X̂j+1Σj+1Φj+1 + Ej+1. (3.25)

On the other hand, by the definition (3.3) of Âj+1, we have

Âj+1X̂j+1 = AX̂j+1 + X̂j+1Σj+1X̂
T
j+1X̂j+1

= AX̂j+1 + X̂j+1Σj+1(Φj+1 + Ij+1 + ΦT
j+1). (3.26)
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Combining (3.25) and (3.26), we obtain the residual

Rj+1 = AX̂j+1 − X̂j+1Λ̂j+1 = Ej+1 − X̂j+1Σj+1ΦT
j+1. (3.27)

Consequently, the norm of the residual Rj+1 is bounded by

‖Rj+1‖F ≤ ‖Ej+1‖F + ‖X̂j+1‖2‖Σj+1ΦT
j+1‖F. (3.28)

Note that Σj+1 = diag(σ1, . . . , σj+1) and ΦT
j+1 is the strictly upper triangular part of the matrix

X̂T
j+1X̂j+1 − Ij+1, and we have

‖X̂j+1‖2‖Σj+1ΦT
j+1‖F ≤ ‖X̂j+1‖2‖Σj‖2‖ΦT

j+1‖F

≤ ‖X̂j+1‖2‖Σj‖2 ·
1√
2
ωj+1

≤ 1√
2
‖Σj‖2

√
(1 + ωj+1)ω2

j+1, (3.29)

where, for the third inequality, we again use the fact that ‖X̂j+1‖2 ≤
√

1 + ωj+1 by the definition

of the loss of orthogonality ωj+1. Left-multiplying (3.21) by 1 + ωj+1, we know that

(1 + ωj+1)ω2
j+1 ≤

4c2
j

γ2
j

· (1 + ωj+1)2 · ‖Ej+1‖2F.

Plugging into (3.29), we obtain

‖X̂j+1‖2‖Σj+1ΦT
j+1‖F ≤

√
2‖Σj‖2cjγ−1

j · (1 + ωj+1) · ‖Ej+1‖F

=
√

2cjτj · (1 + ωj+1) · ‖Ej+1‖F.

Combine with (3.28) and we arrive at the upper bound (3.24) of ‖Rj+1‖F.

From Lemma 3.2 and Theorem 2.2, we have the following computable upper bound

on the symmetric backward error norm δj+1 of the computed eigenpairs (Λ̂j+1, X̂j+1) of A.

Theorem 3.2. By the governing equations (3.4) and (3.8) of j steps of EED, if τjωj <
√

2 and

ωj+1 < 1, then the symmetric backward error norm δj+1 of the computed eigenpairs (Λ̂j+1, X̂j+1)

of A defined in (3.12) has the following upper bound

δj+1 ≤
√

2

(
1 + cjτj(1 + ωj+1)√

1− ωj+1

)
‖Ej+1‖F, (3.30)

where cj = (1− τjωj/
√

2)−1, and γj and τj are the spectral gap and the shift-gap ratio defined

in (3.9) and (3.10), respectively.
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Proof. For the computed eigenvectors X̂j+1 of A, let Uj+1 be the orthonormal basis from the

polar decomposition of X̂j+1, and the set HUj+1 be defined in (3.13). It follows from the

definition (3.12) and Theorem 2.2 that

δj+1 = min
∆∈HUj+1

‖∆‖F ≤
1

σmin(X̂j+1)

√
‖Rj+1‖2F + ‖P⊥

R(X̂j+1)
Rj+1‖2F, (3.31)

where Rj+1 is the residual of (Λ̂j+1, X̂j+1) defined in (3.23), and P⊥
R(X̂j+1)

is the orthogonal

projection onto the orthogonal complement of the subspace R(X̂j+1), i.e.,

P⊥R(X̂j+1)
= I − X̂j+1(X̂T

j+1X̂j+1)−1X̂T
j+1.

By the equation (3.27), P⊥
R(X̂j+1)

Rj+1 = P⊥
R(X̂j+1)

Ej+1. Hence we have

‖P⊥R(X̂j+1)
Rj+1‖F = ‖P⊥R(X̂j+1)

Ej+1‖F ≤ ‖Ej+1‖F. (3.32)

On the other hand, by the definition (3.11) of ωj+1 and the assumption ωj+1 < 1, we have

|σ2
min(X̂j+1)− 1| ≤ ‖X̂T

j+1X̂j+1 − Ij+1‖2 ≤ ωj+1 < 1,

which implies the following lower bound of the singular value

σmin(X̂j+1) ≥
√

1− ωj+1. (3.33)

Plug (3.32) and (3.33) into (3.31) and recall the upper bound of ‖Rj+1‖F in Lemma 3.2, and

then we obtain

δj+1 ≤
√

1 +
(

1 +
√

2cjτj · (1 + ωj+1)
)2
· ‖Ej+1‖F√

1− ωj+1

≤
√

2

(
1 + cjτj(1 + ωj+1)√

1− ωj+1

)
‖Ej+1‖F,

where the second inequality is due to 1+(1+
√

2a)2 ≤ 2(1+2a+a2) = 2(1+a)2. This completes

the proof.

3.3 Conditions for the backward stability

In Theorems 3.1 and 3.2, the upper bounds (3.19) and (3.30) for ωj+1 and δj+1 involve

the quantity ωj from the previous EED step. In this section, under a mild assumption, we

derive explicit upper bounds for ωj+1 and δj+1, and then reveal conditions for the backward

stability of the EED procedure.
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Lemma 3.3. Consider j steps of EED governed by Eqs. (3.4) and (3.8). Assume

τj
‖A‖2
γj
· 4
√
j + 1 · tol < 0.1. (3.34)

Then

(i) it holds that

τiωi < 0.11 and ci = (1− τiωi/
√

2)−1 < 2 for i = 1, 2, . . . , j; (3.35)

(ii) the loss of orthogonality ωj+1 is bounded by

ωj+1 ≤
(
‖A‖2
γj
· 5
√
j + 1

)
· tol; (3.36)

(iii) the backward error norm δj+1 is bounded by

δj+1 ≤
(
τj · 5

√
j + 1

)
· tol · ‖A‖2. (3.37)

Proof. First observe that by the definitions (3.9) and (3.10), γi is monotonically decreasing with

the index i and τi ≥ 1 is monotonically increasing with i. Therefore, the assumption (3.34)

implies the inequalities

‖A‖2
γi
· 4
√
i+ 1 · tol < 0.1 and τi

‖A‖2
γi−1

· 4
√
i · tol < 0.1 for all i ≤ j. (3.38)

Since the stopping criterion (3.5) of EIGSOL implies

‖Ei‖F = ‖[η1, . . . , ηi]‖F ≤
√
i · tol · ‖A‖2, (3.39)

inequalities (3.38) leads to

4

γi
· ‖Ei+1‖F < 0.1 and τi ·

4

γi−1
· ‖Ei‖F < 0.1 for all i ≤ j. (3.40)

(i) We prove the inequality (3.35) by induction. To begin with, recall that ‖x̂1‖2 = 1,

which implies ω1 = ‖x̂T1 x̂1 − 1‖F = 0, τ1ω1 = 0 < 0.11, and c1 = 1 < 2. Hence (3.35) holds for

i = 1. Now, for 2 ≤ i ≤ j, assume that τi−1ωi−1 < 0.11 and ci−1 < 2. Since τi−1ωi−1 < 0.11,

we can apply Theorem 3.1 and derive from (3.19) that

τiωi ≤ τi ·
2ci−1

γi−1
‖Ei‖F ·

(
1 +

2ci−1

γi−1
‖Ei‖F

)
< 0.1 · (1 + 0.1) = 0.11, (3.41)

where the last inequality of (3.41) is by 2ci−1 < 4 and (3.40). This implies immediately

ci = (1− τiωi/
√

2)−1 ≤ (1− 0.11/
√

2)−1 < 2.
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Therefore, (3.35) follows by induction.

(ii) Since we have τjωj < 0.11 and cj < 2 by (3.35), we can apply Theorem 3.1 and

derive from (3.19) that

ωj+1 ≤
2cj
γj
· ‖Ej+1‖F ·

(
1 +

2cj
γj
‖Ej+1‖F

)
≤ 4

γj
· ‖Ej+1‖F · (1 + 0.1) , (3.42)

where in the second inequality we used 2cj < 4 and the first inequality in (3.40). Recall the

error bound of ‖Ej+1‖F from (3.39) and we obtain (3.36).

(iii) We have τjωj < 0.11 and cj < 2 by (3.35). It also follows from (3.42) and (3.40)

that ωj+1 < 0.11. Therefore, we can apply Theorem 3.2 and derive from (3.30) that

δj+1 ≤
√

2

(
1 + cjτj(1 + ωj+1)√

1− ωj+1

)
‖Ej+1‖F ≤

√
2

(
1 + 2τj(1 + 0.11)√

1− 0.11

)
· ‖Ej+1‖F,

where in second inequality we used 0 ≤ ωj+1 < 0.11. Since τj ≥ 1 by definition (3.10), we can

relax the leading constant as
√

2(1.06 + 2.36 · τj) ≤
√

2(3.42 · τj) < 5τj . Recall the error bound

of ‖Ej+1‖F from (3.39) and we prove (3.37).

By the error bounds (3.36) and (3.37) in Lemma 3.3, we can see that the quantities

γ−1
j ‖A‖2 and τj play important roles for the stability of the EED procedure. A sufficient

condition to achieve the backward stability (3.14) and (3.15) is given by γ−1
j ‖A‖2 = O(1) and

τj = O(1). In summary, we have the following theorem for the backward stability of the EED

procedure.

Theorem 3.3. Under the assumptions of the residual norm ‖ηi‖2 of EIGSOL satisfying (3.2)

and the inequality (3.34), the backward stability of the EED procedure, in the sense of (3.14)

and (3.15), is guaranteed if the shifts σ1, . . . , σj are dynamically chosen such that

γ−1
j ‖A‖2 = O(1) and τj = O(1). (3.43)

We note that when the shifts σj are dynamically chosen such that the conditions (3.43)

are satisfied, the assumption of the inequality (3.34) is indeed mild.

Remark 3.1. From the upper bound (3.36) of the loss of orthogonality ωj+1, we see that if

the spectral gap γj is too small, i.e., γj � ‖A‖2, then ωj+1 could be amplified by a factor of

γ−1
j ‖A‖2. On the other hand, from the upper bound (3.37) of the symmetric backward error

norm δj+1, we see that when τj is too large, i.e., τj � 1, δj+1 could be amplified by a factor of

τj . We will demonstrate these observations in the numerical experiments in next chapter.
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Chapter 4

Stabilizing the EED procedure

In this chapter, we propose a shift selection scheme for stabilizing the EED procedure

discussed in Chapter 3 and present numerical results.

4.1 Shift selection scheme

We consider the following choice of the shift at the j-th EED step,

σj = µ− λ̂j , (4.1)

where µ ∈ R is a parameter with µ > λupper. Recall that I = [λlow, λupper] is an interval at the

lower end of the spectrum. The shift selection scheme (4.1) has been used in several previous

works, although without elaboration on the choice of the parameter µ [24, 37] [26, Sec. 5.1].

We discuss how to choose the parameter µ such that the sufficient conditions (3.43) for the

backward stability of the EED procedure can hold.

The shift selection scheme (4.1) implies that the spectral gap γj in (3.9) satisfies

γj = min
θ∈Ij+1, λ∈Jj

|λ− θ| = min
1≤i≤j+1

|µ− λ̂i|, (4.2)

where Ij+1 = {λ̂1, . . . , λ̂j , λ̂j+1} and Jj = {λ̂1 + σ1, . . . , λ̂j + σj} = {µ}. On the other hand, it

also implies that the shift-gap ratio τj in (3.10) satisfies

τj =
1

γj
· max

1≤i≤j
|σi| =

max1≤i≤j |µ− λ̂i|
min1≤i≤j+1 |µ− λ̂i|

. (4.3)

Now recall that µ > λupper and the computed eigenvalues λ̂i ∈ [λlow, λupper], for i = 1, 2, . . . , j+1,

so we have

µ− λupper ≤ min
1≤i≤j+1

|µ− λ̂i| ≤ max
1≤i≤j+1

|µ− λ̂i| ≤ µ− λlow.
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Hence, (4.2) and (4.3) lead to

γg ≤ γj ≤ γg τg and τj ≤ τg, (4.4)

where

γg ≡ µ− λupper and τg ≡
µ− λlow

µ− λupper
.

Now we focus on the choice of the parameter µ such that the quantities γg and τg

satisfy the conditions (3.43). Let us consider a frequently encountered case in practice where

the width of the interval I = [λlow, λupper] satisfies

λupper − λlow ≤
1

2
‖A‖2.

Then by setting

µ = λ̂1 + ‖A‖2,

we have

1

2
‖A‖2 ≤ γg =

(
1− λupper − λ̂1

‖A‖2

)
‖A‖2 ≤ ‖A‖2

and

τg = 1 +
λupper − λlow

γg
≤ 2.

Consequently, by (4.4), the spectral gap γj and the shift-gap ratio τj satisfy the desired condi-

tions (3.43).

In summary, assuming that λupper−λlow ≤ 1
2‖A‖2. we recommend the use of the shift

selection scheme at the j-th EED,

σj = µ− λ̂j with µ = λ̂1 + ‖A‖2, (4.5)

to compute the eigenvalues in the interval I = [λlow, λupper].

4.2 Algorithm

We summarize the EED procedure with the shift selection scheme (4.5) in Algo-

rithm 4.1
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Algorithm 4.1 EED procedure with the shift selection scheme (4.5)

Input: (i) the symmetric matrix A. (ii) the interval I = [λlow, λupper] at the lower end of the

spectrum of A. (iii) the relative tolerance tol in (3.2) for EIGSOL.

Output: the approximate eigenpairs (λ̂i, x̂i) of A in the interval I.

1: Â0 = A;

2: use EIGSOL to compute the lowest eigenpair (λ̂1, x̂1) of Â0 and an estimate Anorm of ‖A‖2;

3: µ = λ̂1 + Anorm;

4: for j = 1, 2, . . . do

5: σj = µ− λ̂j ;

6: Âj = Âj−1 + σj x̂j x̂
T
j = A+ X̂jΣjX̂

T
j ;

7: compute the lowest eigenpair (λ̂j+1, x̂j+1) of Âj by EIGSOL;

8: check if all the eigenpairs in the interval I have been computed;

9: end for

10: return the approximate eigenpairs (λ̂i, x̂i) in the interval I;

A few remarks are in order:

• In practice, we never need to form the matrix Âj at step 6 explicitly. We can assume that

the only operation that is required by EIGSOL is the matrix-vector product y := Âjx.

• At step 7, the computation of the lowest eigenpair (λ̂j+1, x̂j+1) of Âj can be accelerated

by warm starting the EIGSOL with the lowest unconverged Ritz vectors of Âj−1. This is

possible for iterative eigensolver such as TRLan [36].

• At step 8, an ideal validation method is to use the inertias of the shifted matrix A−λupperI.

However, computation of the inertias could be a prohibitive cost for large matrices. An

empirical validation is to monitor the lowest eigenvalue λ̂j+1 of Âj . All eigenpairs in the

interval I are considered to be found when λ̂j+1 is outside the interval I.

4.3 Numerical results

In this section, we first use synthetic examples to verify the sharpness of the upper

bounds (3.19) and (3.30) on the loss of orthogonality and the symmetric backward error norm of

the EED procedure under the choice (4.5) of the shifts σj . We present the cases the shifts σj may
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lead to numerical instability of the EED procedure. Then we demonstrate the numerical stability

of the EED procedure for a set of large sparse symmetric matrices arising from applications.

We use TRLan as the eigensolver in Algorithm 4.1. TRLan is a C implementation of

the thick-restart Lanczos method with adaptive sizes of the projection subspace [36,38,39]. The

convergence criterion of an approximate eigenpair (λ̂j+1, x̂j+1) is the residual norm satisfying

‖ηj+1‖2 = ‖Âj x̂j+1 − λ̂j+1x̂j+1‖2 < tol · Anorm,

where tol is a user-specified tolerance and Anorm is a 2-norm estimate of A computed by TRLan.

The starting vector is a random vector.

Example 4.1. In this example, we demonstrate the sharpness of the upper bounds (3.19) and

(3.30) on the loss of orthogonality and the symmetric backward error norm with the choice (4.5)

of the shifts σj .

We consider a diagonal matrix A with diagonal elements

akk =


1
2dk, if 1 ≤ k ≤ n/2,

1
2(1 + dk−n/2), if n/2 < k ≤ n,

where dk = 10
−5(1− k−1

n/2−1
)

and the matrix size n = 500. The spectrum range of A is (0, 1]. The

eigenvalues of A are clustered around 0 and 0.5. We are interested in computing the ne = 65

eigenvalues in the interval I = [0, 10−4]. The computed 2-norm of A is Anorm = 1.00.

To closely observe the convergence, TRLan is modified so that the convergence test is

performed at each Lanczos iteration. The maximal dimension m of the projection subspace is

set to be 40.

Numerical results of the EED procedure for computing all the ne eigenvalues in the

interval I are summarized in Table 4.1, where the 4th column is the loss of orthogonality ωne ,

the 5th column is the upper bound (3.19) of ωne , the 6th column is the norm of the residue Rne

(3.23), and the 7th column is the upper bound (3.30) of δne .

From Table 4.1, we observe that with the choice (4.5) of the shifts σj , γ
−1
g Anorm ≈ 1

and τg ≈ 1. Therefore, the conditions (3.43) of the spectral gap γj and the shift-gap ratio τj for

the backward stability are satisfied. Consequently, the loss of orthogonality of the computed

eigenvectors is ωne = O(tol) and the symmetric backward error norm of the computed eigenpairs

(Λ̂ne , X̂ne) is δne = O(tol · Anorm). In addition, we observe that the upper bounds (3.19) and

(3.30) of ωne and δne are tight within an order of magnitude.
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Table 4.1: Numerical stability of the EED procedure for different tolerances tol (Example 4.1).
The eigensolver is the TRLan.

tol µ γg ωne bound (3.19) ‖Rne‖F bound (3.30)

10−6 1.00 1.00 2.37 · 10−6 1.59 · 10−5 7.87 · 10−6 2.24 · 10−5

10−8 1.00 1.00 1.78 · 10−8 1.58 · 10−7 7.95 · 10−8 2.24 · 10−7

10−10 1.00 1.00 1.82 · 10−10 1.58 · 10−9 7.94 · 10−10 2.24 · 10−9

Figure 4.1: The loss of orthogonality ωj+1 and the upper bound (3.19) of ωj+1 against the

computed eigenvalues λ̂j+1 for 2 ≤ j + 1 ≤ ne, tol = 10−8 (Example 4.1).

Example 4.2. In this example, we illustrate that improperly chosen shifts σj may lead to

instability of the EED procedure.

We consider the same diagonal matrix A as in Example 4.1. The combination of TRLan

and EED is used to compute the ne = 65 eigenvalues in the interval I = [0, 10−4]. Let us set

the shifts σj = µ − λ̂j with µ = 2 · 10−4, which is much smaller than the recommended value

of µ = λ̂1 + ‖A‖2 ≈ 1.00. Numerical results are summarized in Table 4.2, where the tolerance

tol = 10−8 for TRLan. We observe that γj = O(γg) � Anorm, and the loss of orthogonality of

the computed eigenvectors is indeed amplified by a factor of γ−1
g · Anorm. We note that since

τj = O(1), the symmetric backward error norms δne = O(tol · Anorm).

Now we flip the sign of the diagonal elements of A defined in Example 4.1, and set

n = 200. We compute ne = 74 eigenvalues in the interval I = [−1.0,−0.5001] using the EED

procedure. The computed 2-norm of A is Anorm = 1.00.

Table 4.2: Instability of TRLan with EED when the spectral gaps γj = O(γg) are too small.

tol µ γg ωne bound (3.19) ‖Rne‖F bound (3.30)

10−6 2 · 10−4 10−4 8.26 · 10−3 1.79 · 10−1 8.00 · 10−6 3.29 · 10−5

10−8 2 · 10−4 10−4 8.28 · 10−5 1.53 · 10−3 7.96 · 10−8 3.22 · 10−7

10−10 2 · 10−4 10−4 8.27 · 10−7 1.52 · 10−5 7.95 · 10−10 3.22 · 10−9
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Figure 4.2: The loss of orthogonality ωj+1 (left) and the residual norm ‖Rj+1‖F (right) against

the computed eigenvalues λ̂j+1 for 2 ≤ j + 1 ≤ ne. The red lines are tol (left) and tol · Anorm
(right).

Instead of the choice (4.5) for the shifts σj , we set σj = µ − λ̂j with µ = −0.5. The

blue ×-lines in Figure 4.2 are the loss of orthogonality and the residual norms for the computed

eigenpairs (λ̂j+1, x̂j+1) for 2 ≤ j+ 1 ≤ ne. We observe that for the first 6 computed eigenvalues

in the subinterval [−1.0,−0.75] of I, since the spectral gap γj ≥ 0.25 and the shift-gap ratio

τj ≤ 2, the computed eigenpairs are backward stable with ω6 = 2.48 · 10−9 = O(tol) and

‖R6‖F = 9.05 · 10−9 = O(tol · Anorm). However, for the computed eigenvalues in the subinterval

[−0.75,−0.5001] of I, the computed eigenpairs are not backward stable due to the facts that

the spectral gaps γj become small, γj ≈ 1.03 · 10−4, and the shift-gap ratios τj grows up to

τj ≈ 4.86 · 103. Consequently, the loss of orthogonality ωne and the residual norm ‖Rne‖F are

increased by a factor of up to 103, respectively. The stability are restored if the shifts are chosen

according to the recommendation (4.5) as shown by the green +-lines in Figure 4.2.

Example 4.3. In this example, we demonstrate the numerical stability of the EED procedure

for a set of large sparse symmetric matrices from applications.

The statistics of the matrices are summarized in Table 4.3, where n is the size of

the matrix, nnz is the number of nonzero entries of the matrix, [λmin, λmax] is the spectrum

range, and ne is the number of eigenvalues in the interval I = [λlow, λupper]. The quantities ne

are calculated by computing the inertias of the shifted matrices A− λupperI. Laplacian is the

negative 2D Laplacian on a 200-by-200 grids with Dirichlet boundary condition [21]. worms20 is

the graph Laplacian worms20 10NN in machine learning datasets [7]. SiO, Si34H36, Ge87H76

and Ge99H100 are Hamiltonian matrices from PARSEC collection [7].

We run TRLan with a maximal number m of Lanczos vectors to compute the lowest
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Table 4.3: Statistics of the test matrices.

matrix n nnz [λmin, λmax] [λlow, λupper] ne

Laplacian 40, 000 199, 200 [0, 7.9995] [0, 0.07] 205
worms20 20, 055 260, 881 [0, 6.0450] [0, 0.05] 289

SiO 33, 401 1, 317, 655 [−1.6745, 84.3139] [−1.7, 2.0] 182
Si34H36 97, 569 5, 156, 379 [−1.1586, 42.9396] [−1.2, 0.4] 310
Ge87H76 112, 985 7, 892, 195 [−1.214, 32.764] [−1.3,−0.0053] 318
Ge99H100 112, 985 8, 451, 395 [−1.226, 32.703] [−1.3,−0.0096] 372

eigenpairs of the matrix Âj . The convergence test is performed at each restart of TRLan. All

the converged eigenvalues in the interval I are shifted by EED. Meanwhile, we also keep a

maximal number m0 of the lowest unconverged eigenvectors as the starting vectors of TRLan

for the matrix Âj+1. All the eigenvalues in I are assumed to be computed when the lowest

converged eigenvalue is outside the interval I. This combination of TRLan and EED is referred

to as TRLED 1.

TRLED is compiled using the icc compiler (version 2021.1) with the optimization

flag -O2, and linked to BLAS and LAPACK available in Intel Math Kernel Library (version

2021.1.1). The experiments are conducted on a MacBook with 1.6 GHz Intel Core i5 CPU and

8GB of RAM.

For numerical experiments, we set the maximal number of Lanczos vectors m = 150.

When starting TRLED for Âj+1, the maximal number of the starting vectors is m0 = 75. The

convergence tolerance for the residual norm was set to tol = 10−8 as a common practice for

solving large scale eigenvalue problems with double precision [30].

Numerical results of TRLED are summarized in Table 4.4, where the 2nd column

is the number n̂e of the computed eigenpairs (λ̂i, x̂i) in the interval I, the 3rd column is the

number jmax of steps of EED performed, the 4th column is the loss of orthogonality ωn̂e
, and the

5th column is the relative residual norm ‖Rn̂e
‖F/Anorm of the computed eigenpairs (Λ̂ne , X̂ne).

From the quantities ne in Table 4.3 and n̂e in Table 4.4, we see that for all test matrices the

eigenvalues in the prescribed intervals I are successfully computed with the desired backward

stability.

The left plot of Figure 4.3 is a profile of the number of converged eigenvalues at each

external deflation of a total of 74 EEDs for the matrix Ge99H100. The right plot of Figure 4.3

shows the relative residual norms of all 372 computed eigenpairs in the interval. We observe

1https://github.com/cplin722/trleed
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Table 4.4: Numerical results of TRLED.

matrix n̂e jmax ωn̂e
‖Rn̂e

‖F/Anorm
CPU time (sec.)

TRLED TRLan

Laplacian 205 60 1.93 · 10−8 6.33 · 10−8 66.5 86.0
worms20 289 86 2.63 · 10−8 7.24 · 10−8 57.3 74.8
SiO 182 41 2.33 · 10−8 4.71 · 10−8 42.4 47.1

Si34H36 310 72 3.41 · 10−8 7.50 · 10−8 309.9 310.4
Ge87H76 318 66 4.08 · 10−8 8.50 · 10−8 388.7 421.0
Ge99H100 372 74 3.65 · 10−8 7.63 · 10−8 501.1 533.4

Figure 4.3: The number of deflated eigenpairs at each EED for the matrix Ge99H100 (left). The
relative residual norms of 372 computed eigenpairs (right).

that a large number of converged eigenvalues are deflated and shifted away at some EED steps.

To examine whether the multiple explicit external deflations lead to a significant in-

crease in execution time, in the 6th and 7th columns of Table 4.4, we record the CPU time of

TRLED and TRLan for computing all eigenvalues in the same intervals. For TRLan, we set the

maximal number of Lanczos vectors to ne + 150. The restart scheme with restart=1 is used.

TRLan is compiled and executed under the same setting as TRLED. We observe comparable

execution time of TRLED and TRLan.
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Chapter 5

Shift-invert Lanczos method for the

buckling eigenvalue problem

In this chapter, we consider the buckling eigenvalue problem

Kx = λKGx, (5.1)

where K and KG are n × n sparse symmetric matrices, K is positive semidefinite and KG is

indefinite, and the matrices K and KG share a common nullspace Zc. We consider computing

a few nonzero finite eigenvalues around a prescribed shift σ 6= 0 and the associated eigenvectors

x perpendicular to the common nullspace Zc. We assume that a basis Z ≡ [ZN ZC ] of the

nullspace of K and a basis ZC of the common nullspace Zc of K and KG are available, and the

pencil K − λKG is simultaneouly diagonalizable.

When the matrix K in (5.1) is positive definite, the shift-invert Lanczos method,

introduced in Section 2.4, is a widely accepted method to compute solutions of (5.1) near a

prescribed shift σ [16]: the buckling eigenvalue problem (5.1) is first converted via a buckling

spectral transformation into the equivalent eigenvalue problem

Cx = (K − σKG)−1Kx = µx, µ =
λ

λ− σ
. (5.2)

The solutions of (5.2) are computed by the Lanczos method with the inner product induced by

K.

For our buckling eigenvalue problem (5.1), however,

• the matrices K and KG share a common nullspace Zc. The shift-invert matrix (K −

σKG)−1 does not exist or is extremely ill-conditioned.
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• The Lanczos vectors fall rapidly into the nullspace N (K). The inner product induced by

K leads to rapid growth of the Lanczos vectors in norm. The large norms of the Lanczos

vectors introduce large round-off errors to the orthogonalization process, leading to loss

of accuracy of computed solutions and even break down of the method [23,25,33].

In the past, the norms are controlled by restricting the Lacnzos vectors to a proper

subspace. In [25], the authors note that the subspace R(C) is both a complimentary subspace

of N (K) and an invariant subspace of C. It is proposed to restrict the Lanczos vectors vi by

picking a starting vector v in the subspace R(C). This technique may fail since the fall is

caused by the instability of the difference equation (2.10) [25]. In [23], Meerbergen proposes to

project the Lanczos vectors vi back onto the subspace R(C) through implicit restart. From the

governing equation

CVj = VjTj + βjvj+1e
T
j + Fj , (5.3)

Meerbergen notes that, with the QR decomposition Tj = Q1R1, the new basis V
(1)
j = VjQ1 by

the implicit restart satisfies the equation

V
(1)
j + βjvj+1e

T
j R
−1
1 + FjR

−1
1 = CVjR

−1
1 .

Applying implicit restart will effectively put the Lanczos vectors v1, . . . , vj−1 back onto the

subspace R(C). From the governing equation (5.3), the following inexpensive formula is also

proposed to improve the Ritz vector [25],

xi = Vj+1wi, wi =
1

θi

 Tjsi

βji

 . (5.4)

It is observed that the modified formula (5.4) will effectively put the Ritz vector xi back onto

the subspace R(C).

In this chapter, we propose alternative strategies to address these issues. We first derive

a canonical form of the pencil K−λKG in Section 5.1. We then convert (5.1) into an equivalent

ordinary eigenvalue problem Cx = µx by generalizing the buckling spectral transformation

(5.2) in Section 5.2. In Section 5.3, we construct a positive definite matrix M by applying

low-rank updating to the matrix K. We show that the matrix C is symmetric with respect

to the inner product induced by M . In Section 5.4, we propose a shift-invert Lanczos method

for the buckling eigenvalue problem (5.1) and provide an implementation of the matrix-vector

product u = Cv. A validation scheme using inertias is developed in Section 5.5.

37



5.1 Canonical form

We start with a canonical form of the pencil K − λKG. For the compactness of

presentation, we interchange the roles of K and KG in (5.1) and consider the reversal of the

pencil K − λKG, i.e., KG − λ#K.

Theorem 5.1. For the pencil KG − λ#K, there exists a non-singular matrix W ∈ Rn×n such

that

W TKGW =



n1 n2 n3

n1 Λ#
1

n2 Λ#
2

n3 0

 and W TKW =



n1 n2 n3

n1 In1

n2 0

n3 0

, (5.5)

where Λ#
1 and Λ#

2 are diagonal matrices with real diagonal entries, and Λ#
2 is non-singular.

Furthermore, by conformally partitioning W = [W1,W2,W3], we have

W T
3 W1 = 0 and W T

3 W2 = 0, (5.6)

Proof. see Appendix A.

By the canonical form (5.5), we immediately know that (i) the columns of W3 span

the common nullspace Zc of K and KG, and the columns of [W1 W2] span the orthogonal

complement to Zc, i.e., Z⊥c ; (ii) the columns of W1 are eigenvectors associated with real finite

eigenvalues (Λ#
1 , In1) of the pencil KG − λ#K and are perpendicular to Zc; (iii) The columns

of W2 are eigenvectors associated with an infinite eigenvalue (Λ#
2 , 0) of the pencil KG − λ#K

and are perpendicular to Zc; (iv) For x ∈ Zc, (λ#, x) is an eigenpair of the pencil KG − λ#K

for any λ# ∈ C.

5.2 Generalized buckling spectral transformation

Mathematically, a generalized buckling spectral transformation of the singular pencil

K − λKG is to replace the inverse in (5.2) by the pseudo-inverse and leads to the ordinary

eigenvalue problem

Cx = µx with C = (K − σKG)†K, (5.7)

where (K−σKG)† is the pseudo-inverse of the singular matrix K−σKG [15, p. 290]. Note that

the non-zero real shift σ cannot be an eigenvalue of the pencil K − λKG.
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We now present the relationship of non-trivial eigenpairs between the original gener-

alized eigenvalue problem (5.1) and the ordinary eigenvalue problem (5.7). We first use the

canonical form (5.5) to derive an eigenvalue decomposition of C and provide the eigenvalue and

eigenvector relations between C and KG − λ#K.

Lemma 5.1. With the canonical form (5.5) in Theorem 5.1, an eigenvalue decomposition of

the matrix C defined in (5.7) is given by

CW = W


(In1 − σΛ#

1 )−1

0

0

 . (5.8)

Proof. Recall that, since the matrix K − σKG is symmetric,

R(K − σKG) = N (K − σKG)⊥ = Z⊥c . (5.9)

In addition, by the condition (5.6) in the canonical form (5.5), we have

R(W1)⊕R(W2) = R(W3)⊥ = Z⊥c . (5.10)

Therefore, from (5.9) and (5.10),

R(K − σKG) = R(W1)⊕R(W2) = R(W3)⊥ = Z⊥c . (5.11)

Now note that, from the canonical form (5.5),

W TKW =


In1

0

0

 and W T (K − σKG)W =


In1 − σΛ#

1

−σΛ#
2

0

 .
Therefore, we have

W TKW =


In1

0

0

 = W T (K − σKG)W


(In1 − σΛ#

1 )−1

0

0

 . (5.12)

Left multiplying (5.12) by (K − σKG)†W−T ,

(K − σKG)†KW = (K − σKG)†(K − σKG)W


(In1 − σΛ#

1 )−1

0

0

 . (5.13)
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The pseudo-inverse (K − σKG)† satisfies the Moore-Penrose conditions [15, p. 290], which give

(K − σKG)†(K − σKG) = PR((K−σKG)T ) = PR(K−σKG), (5.14)

namely (K−σKG)†(K−σKG) is an orthogonal projection ontoR((K − σKG)T ) = R(K − σKG).

Therefore, from (5.11) and (5.14),

(K − σKG)†(K − σKG)W = W


In1

In2

0

 . (5.15)

From Eqs. (5.13) and (5.15), we have the eigenvalue decomposition (5.8) of C.

Lemma 5.2. The matrix C defined in (5.7) has the following properties:

(i) (λ#, x) is an eigenpair of KG − λ#K with non-zero finite λ# and x ∈ Z⊥c if and only if

(µ, x) is an eigenpair of C with µ 6= 0 and µ 6= 1 and x ∈ Z⊥c , where µ = 1
1−σλ# .

(ii) (λ#, x) is an eigenpair of KG − λ#K with λ# = 0 and x ∈ Z⊥c if and only if (µ, x) is an

eigenpair of C with µ = 1 and x ∈ Z⊥c .

(iii) (λ#, x) is an eigenpair of KG − λ#K with |λ#| = ∞ and x ∈ Z⊥c if and only if (µ, x) is

an eigenpair of C with µ = 0 and x ∈ Z⊥c .

(iv) If x ∈ Zc, Cx = 0.

Proof. The lemma can be proved by comparing the eigenvalue decomposition (5.8) of C with

the canonical form (5.5) of KG − λ#K. Specifically, for (i) and (ii), recall that each column

of W1 is an eigenvector associated with a real, finite eigenvalue λ# of the pencil KG − λ#K

and the eigenvector is perpendicular to the common nullspace Zc. From (5.8), each column of

W1 is now an eigenvector associated with a non-zero, finite eigenvalue µ = (1− σλ#)−1 of the

eigenproblem (5.7).

To show (iii), recall that each column of W2 is an eigenvector associated with an infinite

eigenvalue of the pencil KG−λ#K and the eigenvector is perpendicular to the common nullspace

Zc. From (5.8), each column of W2 is now an eigenvector associated with zero eigenvalue of the

eigenproblem (5.7).

Finally, for (iv), the common nullspace Zc is spanned by the columns of W3 and, from

(5.8), we know that Cx = 0 if x ∈ Zc.
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Figure 5.1: Buckling spectral transformation with σ < 0 (left) and σ > 0 (right).

The following theorem provides the relationship of non-trivial eigenpairs between the

original generalized eigenvalue problem (5.1) and the ordinary eigenvalue problem (5.7).

Theorem 5.2. (λ, x) is an eigenpair of the pencil K − λKG with non-zero finite eigenvalue λ

and x ∈ Z⊥c if and only if (µ, x) is an eigenpair of the matrix C in (5.7) with µ 6= 0 and µ 6= 1

and x ∈ Z⊥c , where µ = λ
λ−σ and σ 6= 0.

Proof. Note that (λ, x) is an eigenpair of K−λKG with non-zero finite eigenvalue λ and x ∈ Z⊥c

if and only if (λ#, x) is an eigenpair of KG−λ#K with non-zero finite eigenvalue λ# = λ−1 and

x ∈ Z⊥c . Also, from Lemma 5.2 (i), we know that (λ#, x) is an eigenpair of KG − λ#K with

non-zero finite eigenvalue λ# and x ∈ Z⊥c if and only if (µ, x) is an eigenpair of the eigenvalue

problem Cx = µx with µ = 1
1−σλ# , µ 6= 0 and µ 6= 1, and x ∈ Z⊥c . Therefore, (λ, x) is an

eigenpair of the pencil K − λKG with non-zero finite eigenvalue λ and x ∈ Z⊥c if and only if

(µ, x) is an eigenpair of the eigenvalue problem Cx = µx with µ = λ
λ−σ , µ 6= 0 and µ 6= 1, and

x ∈ Z⊥c . �

By Theorem 5.2, near the shift σ, the eigenpairs (λ, x) of K−λKG with non-zero finite

eigenvalues λ and x ∈ Z⊥c are transformed into eigenpairs (µ, x) of C with non-zero eigenvalues

µ, which typically are well-separated, and those away from the shift σ are transformed into

clustered eigenpairs (µ, x) of C near unity as shown in Figure 5.1. We note that the eigenpairs

(µ, x) with µ = 0 or µ = 1 are not the ones of interest. The eigenpairs (1, x) correspond to

eigenpairs of K−λKG with infinite eigenvalues and the eigenpairs (0, x) correspond to eigenpairs

of K − λKG with x ∈ N (K).
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5.3 Regularized inner product

In this section, we introduce a positive definite matrix M from a low-rank updating of

K, and then show that the matrix C in the generalized buckling spectral transformation (5.7)

is symmetric with respect to the inner product induced by M .

Theorem 5.3. Let C be defined in (5.7). Let Z = [ZN ZC ] span the nullspace N (K) and ZC

span the common nullspace Zc of K and KG. Define

M = K + (KGZN )HN (KGZN )T + ZCHCZ
T
C , (5.16)

where HN and HC are arbitrary positive definite matrices. Then

(i) the matrix M is positive definite,

(ii) the matrix C is symmetric with respect to the inner product induced by M .

Proof. By the canonical form (5.5), we have

N (K) = R(W2)⊕R(W3) = R(ZN )⊕R(ZC) and Zc = R(W3) = R(ZC),

and [
ZN ZC

]
=

[
W2 W3

] R22 O

R32 R33


for some matrices R22 ∈ Rn2×n2 , R32 ∈ Rn3×n2 , R33 ∈ Rn3×n3 , and R22 and R33 are non-

singular. Therefore,

W TKGZN = W TKG(W2R22 +W3R32) = W TKGW2R22 =


0

Λ#
2 R22

0

 .
Since the basis W satisfies the condition (5.6),

W TZC = W TW3R33 =


0

0

(W T
3 W3)R33

 .
Therefore,

W TMW = W T
(
K + (KGZN )HN (KGZN )T + ZCHCZ

T
C

)
W =


In1

ĤN

ĤC

 , (5.17)
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where

ĤN = Λ#
2 R22HNR

T
22Λ#

2 and ĤC = (W T
3 W3)R33HCR

T
33(W T

3 W3).

To prove that M is positive definite, we show that both ĤN and ĤC are positive definite. For the

matrix ĤN , we note that the matrix HN is positve definite and the matrix R22 is non-singular.

Also, from Theorem 5.1, the diagonal matrix Λ#
2 is non-singular. Therefore, the matrix ĤN is

positive definite. For the matrix ĤC , we note that the matrix HC is positive definite and the

matrix R33 is non-singular. Also, since the matrix W3 is of full rank, the symmetric matrix

W T
3 W3 is non-singular. Therefore, the matrix ĤC is also positive definite. This proves (i).

To prove (ii), by the eigenvalue decomposition (5.8) of C and (5.17), we have

W TMCW = W TMWW−1CW =


(In1 − σΛ#

1 )−1

0

0

 .
Therefore, the matrix MC is symmetric, which means that the matrix C is symmetric with

respect to the inner product induced by M .

5.4 Shift-invert Lanczos method

By Theorem 5.3, the matrix C in (5.7) is symmetric with respect to the inner product

induced by the positive definite matrix M in (5.16). It naturally leads that to solve the buckling

eigenvalue problem (5.1), we can use the Lanczos method on the matrix C with the inner product

induced by M . This new strategy is also referred to as the shift-invert Lanczos method and

outlined in Algorithm 5.1.

We provide an implementation of the matrix-vector product u = Cv at line 7 of

Algorithm 5.1. We first show that the matrix-vector product u = Cv = (K − σKG)†Kv is

connected with the solution of a consistent singular linear system with constraint.

Theorem 5.4. Given v ∈ Rn, the vector

u = (K − σKG)†Kv (5.18)

is the unique solution of the consistent singular linear system

(K − σKG)u = Kv (5.19)
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Algorithm 5.1 Shift-invert Lanczos method for the buckling eigenvalue problem (5.1)

1: r ← v, where v is the starting vector

2: v0 ← 0

3: p←Mr, where M = K + (KGZN )HN (KGZN )T + ZCHCZ
T
C

4: β0 ← (pT r)1/2

5: for j = 1, 2, . . . do

6: vj ← r/βj−1

7: r ← Cvj , where C = (K − σKG)†K

8: r ← r − βj−1vj−1

9: p←Mr

10: αj ← vTj p

11: r ← r − αjvj

12: perform re-orthogonalization if necessary

13: p←Mr

14: βj ← (pT r)1/2

15: Compute the eigenvalue decomposition of Tj

16: Check convergence

17: end for

18: Compute approximate eigenvectors of the converged eigenpairs

with the constraint

ZTCu = 0, (5.20)

where ZC is a basis of the common nullspace of K and KG.

Proof. First note that since both K and K − σKG are symmetric, we have

R(K) = N (K)⊥ and R(K − σKG) = N (K − σKG)⊥ = Z⊥c (5.21)

and

Zc = N (K − σKG) ⊂ N (K). (5.22)

Therefore from (5.21) and (5.22),

Kv ∈ R(K) ⊂ R(K − σKG),
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which implies that the linear system (5.19) is consistent. From (5.18),

(K − σKG)u = (K − σKG)(K − σKG)†Kv = PR(K−σKG)Kv = Kv, (5.23)

where PR(K−σKG) is an orthogonal projection onto R(K − σKG) (by the Moore-Penrose con-

ditions [15, p. 290]). This means that u is a solution of the consistent singular linear system

(5.19).

On the other hand, from (5.18) and (5.23),

u = (K − σKG)†Kv = (K − σKG)†(K − σKG)u = PR((K−σKG)T )u = PR(K−σKG)u.

Since R(K−σKG) = Z⊥c , it implies that u is perpendicular to the common nullspace Zc, which

is also the nullspace N (K − σKG).

The uniqueness can be shown as follows. Given two solutions u1 and u2 to (5.19), the

difference u1−u2 would satisfy (K−σKG)(u1−u2) = 0, which implies u1−u2 ∈ Zc. However,

since both solutions satisfy the constraint (5.20), ZTC (u1 − u2) = 0. Therefore, u1 − u2 = 0.

We now present method to compute the matrix-vector product u = Cv. First, we have

the following theorem to extract a non-singular submatrix of K − σKG by exploiting the basis

ZC .

Theorem 5.5. Let ZC ∈ Rn×n3 be a basis of N (K − σKG) and P ∈ Rn×n be a permutation

matrix such that P TZC ≡

 Y1

Y2

, and Y2 ∈ Rn3×n3 is non-singular. Define

S = P T (K − σKG)P and S =


n−n3 n3

n−n3 Sσ11 S12

n3 ST12 S22

. (5.24)

Then

(1) the submatrix Sσ11 ∈ R(n−n3)×(n−n3) is non-singular,

(2) ν+(Sσ11) = ν+(K − σKG) and ν−(Sσ11) = ν−(K − σKG), where ν+(X) and ν−(X) denote

the numbers of positive and negative eigenvalues of the symmetric matrix X, respectively.

Proof. Let

E =


n−n3 n3

n−n3 In−n3 Y1

n3 0 Y2

 ∈ Rn×n.
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The matrix E is non-singular since Y2 is non-singular. By the congruence transformation, we

have

ETSE = ETP T (K − σKG)PE = ET

 Sσ11 S12

ST12 S22

E =


n−n3 n3

n−n3 Sσ11 0

n3 0 0

. (5.25)

Sylvester’s law [15, p. 448] tells that the matrices K − σKG and ETSE have the same inertias.

In particular, from (5.25), we know that

ν+(K − σKG) = ν+(Sσ11), ν−(K − σKG) = ν−(Sσ11),

and

ν0(K − σKG) = ν0(Sσ11) + n3 (5.26)

But ν0(K − σKG) = dim(N (K − σKG)) = n3. Therefore, from (5.26), ν0(Sσ11) = 0 and Sσ11 is

non-singular.

Theorem 5.5 was inspired by [2, Theorem 2.2] where the authors consider solving a

consistent semi-definite linear systems Ax = b from the electromagnetic applications [3]. The

matrix A, generated from the finite element modeling, is positive semi-definite and an explicit

basis of the nullspace of A is available. This explicit basis of the nullspace is then used to

identify a non-singular part of A and a solution of the linear system can be computed from

it. Although in the generalized eigenvalue probem (5.1), the matrix K − σKG is indefinite, we

found that the strategy developed in [2] can be generalized to the system (5.19) and (5.20).

By Theorem 5.5, the method to solve (5.19), i.e., compute the matrix-vector product

u = Cv = (K − σKG)†Kv, can be described in two steps:

1. Find a solution up of the consistent singular linear system (5.19).

2. Compute u = PR(K−σKG)up to satisfy the constraint (5.20), where PR(K−σKG) is an

orthogonal projection onto R(K − σKG).

Specifically, in Step 1, find the permutation matrix P as described in Theorem 5.5, and

rewrite (5.19) in the partitioned form (5.24): Sσ11 S12

ST12 S22


 w1

w2

 =

 c1

c2

 ∈ R(S), (5.27)
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where  w1

w2

 ≡ P Tu and

 c1

c2

 ≡ P TKv.
Since Sσ11 is non-singular, Sσ11 is of full rank and the leading n − n3 columns of S are linearly

independent. On the other hand, we know that rank(S) = rank(K−σKG) = n−n3. Therefore,

the leading n − n3 columns of S is a basis of R(S), and there is a solution wp of (5.27) with

w2 = 0. Direct substitution gives

wp =

 (Sσ11)−1c1

0

 ,
where the inverse (Sσ11)−1 can be computed using the sparse LDLTfactorization of Sσ11 [4, 10].

A solution up of (5.19) is then given by

up = P

 (Sσ11)−1c1

0

 .
In Step 2, since ZC is a basis of N (K − σKG), which is the orthogonal complement to R(K −

σKG), the vector u can be computed by the projection

u = PR(K−σKG)up = (I − ZC(ZTCZC)−1ZTC )up.

If ZC is an orthonormal basis, then

u = PR(K−σKG)up = (I − ZCZTC )up.

5.5 Eigenvalue counting

In this section, as a validation scheme, we discuss a way to count the number of

eigenvalues in a given interval. In the following, ν+(A) and ν−(A) denote the number of positive

and negative eigenvalues of a symmetric matrix A, respectively. n(α, β) and n#(α, β) denote

the numbers of eigenvalues of the pencil K − λKG and the reversed pencil KG − λ#K in an

interval (α, β), respectively.

First, we consider the following lemma.

Lemma 5.3. Let Z = [ZN ZC ] span the nullspace N (K) and ZC span the common nullspace

Zc of K and KG, then
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(i) for α < 0, n(α, 0) = ν−(K − αKG)− ν−(ZTNKGZN ),

(ii) for α > 0, n(0, α) = ν−(K − αKG)− ν+(ZTNKGZN ).

In addition, the matrix ZTNKGZN is non-singular.

Proof. The proof is based on the following two facts: (1) (λ, x) is an eigenpair of the pencil

K − λKG with non-zero finite eigenvalue λ and x ∈ Z⊥c if and only if (λ#, x) is an eigenpair

of the pencil KG − λ#K with non-zero finite eigenvalue λ# = λ−1 and x ∈ Z⊥c . (2) By the

canonical form (5.5), we have

W T (KG −
1

α
K)W =


Λ#

1 − 1
αIn1

Λ#
2

0

 .
Consequently, by Sylvester’s law, we have

ν−(KG −
1

α
K) = ν−(Λ#

1 −
1

α
In1) + ν−(Λ#

2 ),

ν+(KG −
1

α
K) = ν+(Λ#

1 −
1

α
In1) + ν+(Λ#

2 ).

Now, for (i), since α < 0,

n(α, 0) = n#(−∞, 1

α
)

= ν−(Λ#
1 −

1

α
In1)

= ν−(KG −
1

α
K)− ν−(Λ#

2 )

= ν−(K − αKG)− ν−(Λ#
2 ). (5.28)

For (ii), since α > 0,

n(0, α) = n#(
1

α
,+∞)

= ν+(Λ#
1 −

1

α
In1)

= ν+(KG −
1

α
K)− ν+(Λ#

2 )

= ν−(K − αKG)− ν+(Λ#
2 ). (5.29)

On the other hand, by the canonical form (5.5), we have

N (K) = R(ZN )⊕R(ZC) = R(W2)⊕R(W3) and Zc = R(ZC) = R(W3),
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and

ZN = W2R22 +W3R32,

where R22 ∈ Rn2×n2 , R32 ∈ Rn3×n2 and R22 is non-singular. Also, we know that W T
2 KGW2 =

Λ#
2 . Therefore,

ZTNKGZN = RT22(W T
2 KGW2)R22 = RT22Λ#

2 R22.

This implies that the matrix ZTNKGZN is non-singular, and by Sylvester’s law, we have

ν−(Λ#
2 ) = ν−(ZTNKGZN ) and ν+(Λ#

2 ) = ν+(ZTNKGZN ). (5.30)

The lemma is an immediate consequence of (5.28), (5.29) and (5.30).

Lemma 5.3 establishes the relation between the number of eigenvalues in the interval

(α, 0) or (0, α) and the inertia ν−(K − αKG). Below, we discuss how to express the inertia

ν−(K − αKG) in terms of the submatrix Sα11 in (5.24).

Lemma 5.4. In terms of the submatrix Sα11 in (5.24),

ν−(K − αKG) = ν−(Sα11). (5.31)

Proof. The equality (5.31) immediately follows from Theorem 5.5.

Combining Lemmas 5.3 and 5.4, we have the following theorem which provides a

computational approach to count the number of eigenvalues of K − λKG using the inertias of

Sα11.

Theorem 5.6. In terms of the submatrix Sα11 in (5.24), we have

(i) n(α, 0) = ν−(Sα11)− ν−(ZTNKGZN ), if α < 0.

(ii) n(0, α) = ν−(Sσ11)− ν+(ZTNKGZN ), if α > 0.

In practice, the inertia ν−(Sα11) is a by-product of the sparse LDLTfactorizations of

the submatrix Sα11 [18, p. 214]. The inertias ν−(ZTNKGZN ) and ν+(ZTNKGZN ) can be easily

computed since the size of ZTNKGZN is small in buckling analysis.

49



Chapter 6

Numerical Results

In this chapter, we begin with a synthetic example to illustrate the growth of the norms

of Lanczos vectors with K-inner product, and the consequence of the growth, as discussed in

Chapter 5. Then we demonstrate the efficacy of the proposed shift-invert Lanczos method for

an example arising in industrial buckling analysis of structures.

Algorithm 5.1 is implemented in MATLAB 1. The accuracy of a computed eigenpair

(λ̂i, x̂i) of the generalized eigenvalue problem (5.1) is measured by the relative residual norm

η(λ̂i, x̂i) ≡
‖Kx̂i − λ̂iKGx̂i‖2

(‖K‖1 + |λ̂i|‖KG‖1)‖x̂i‖2
.

The Euclidean angle θi = ∠(x̂i,Zc) is computed for checking if x̂i is perpendicular to the

common nullspace Zc of K and KG [14, 17].

Example 6.1. Let us consider the following matrix pair (K,KG) similar to the ones con-

structed by Meerbergen [23] and Stewart [33]:

K = QΛQT ∈ Rn×n and KG = QΦQT ∈ Rn×n,

where Q ∈ Rn×n is a random orthogonal matrix, Λ ∈ Rn×n and Φ ∈ Rn×n are diagonal matrices

with diagonal elements

Λkk =


k, if 1 ≤ k ≤ n−m

0, otherwise

and Φkk = (−1)k, 1 ≤ k ≤ n.

By construction, K is positive semi-definite and KG is indefinite, and the pencil K − λKG is

regular. The last m columns of Q form a basis of the nullspace N (K). For 1 ≤ k ≤ n−m, the

1https://github.com/cplin722/bucklingEigs
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Figure 6.1: Left: the 2-norms of the Lanczos vectors vj . Middle: the relative residual norms of

the approximate eigenpairs (λ̂i, x̂i). Right: the 2-norms of the Lanczos vectors vj with (+) and
without (x) implicit restart.

k-th column of Q is an eigenvector and the associated eigenvalue is λk = (−1)k · k. The zero

eigenvalue of C ≡ (K −σKG)−1K is a well-separated eigenvalue, and the associated eigenspace

is also the nullspace of K. We use the MATLAB function ldl to compute the LDLTfactorization

of the shifted matrix K − σKG.

For numerical experiments, we take n = 500 and m = 1. We use the buckling spectral

transformation (5.2) with the shift σ = −0.6. We run the Lanczos method withK-inner product,

and the starting vector Cx0 with x0 = [1, . . . , 1]T . The approximate eigenpairs (λ̂i, x̂i) of (5.1)

are computed by (λ̂i, x̂i) = ( σµ̂i
µ̂i−1 , x̂i).

The left plot of Figure 6.1 shows the 2-norms of 40 Lanczos vectors vj . As observed by

Meerbergen [23] and Stewart [33], the 2-norms of Lanczos vectors vj grow rapidly. Consequently,

as shown in the middle plot of Figure 6.1, the accuracy of approximate eigenpairs (λ̂i, x̂i)

deteriorates. In contrast, when we replace the K-inner product by the positive definite M -inner

product with HN = Im, we observe that the 2-norms of the Lanczos vectors are well bounded.

Multiple eigenvalues near the shift σ are computed with the relative residual norms around the

machine precision.

In [23], Meerbergen proposed to control the norms of the Lanczos vectors by applying

implicit restart. We experimented with the schemes with and without the implicit restart. The

results are shown in the right plot of Figure 6.1. We observe that the 2-norms of the Lanczos

vectors still grow rapidly.

Example 6.2. This is an example from the buckling analysis of a finite element model of an

airplane shown in Figure 6.2. The size of the pencil K−λKG is n = 67, 512. The stiffness matrix

K is positive semi-definite and the dimension of the nullspace N (K) is known to be 6, which

corresponds to the 6 rigid body modes [12]. The geometric stiffness matrix KG is symmetric
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i di/‖KG‖1 ‖Kzi‖2
‖K‖1‖zi‖2

‖KGzi‖2
‖KG‖1‖zi‖2

1 6.90 · 10−5 2.74 · 10−16 6.78 · 10−5

2 3.25 · 10−5 4.88 · 10−16 9.06 · 10−6

3 2.32 · 10−5 4.71 · 10−16 1.19 · 10−5

4 7.32 · 10−16 2.68 · 10−17 5.01 · 10−18

5 1.26 · 10−16 1.90 · 10−17 4.89 · 10−18

6 7.81 · 10−18 2.37 · 10−17 5.00 · 10−18

Figure 6.2: Left: Finite element model of an airplane. Right: Accuracy of the bases for the
nullspace of K and common nullspace of K and KG. The second column shows the singular
values di of KGY with Y being an orthonormal basis of N (K). The third and fourth columns
show the accuracy of the basis Z = [ZN ZC ] = [z1 z2 . . . z6].

but indefinite. The basis Z of N (K) is computed by Z = [−(K−1
11 K12)T I6]T [12], where

[K11 K12] ∈ R(n−6)×n is the leading block rows of K. The dimension of the common nullspace

Zc of K and KG is 3, which can be easily computed from the basis Z, see [15, Theorem 6.4.1].

The accuracy of the bases is shown in the table in Figure 6.2. We are interested in computing

the nonzero eigenvalues of the pencil K − λKG in an interval around zero and the associated

eigenvectors perpendicular to the common nullspace Zc.

We use the method to compute the matrix-vector product u = Cv described in Sec-

tion 5.4. We determine the permutation matrix P by maximizing the number of non-zero entries

in the last n3 columns of S in (5.24). The MATLAB function ldl, which uses MA57 [9] for

real sparse matrices, is used to compute the sparse LDLTfactorization of the submatrix Sσ11.

The pivot tolerance τ = 0.1 is used to control the numerical stability of the factorization [9].

In defining the positive definite matrix M , we form the product KGZN and normalize each col-

umn of the matrices KGZN and ZC . The condition number of KGZN after the normalization

is κ2(KGZN ) = 1.03. Then we set the matrices HN = ωIn2 and HC = ωIn3 , ω = ‖K‖1, to

balance the matrix M [29]. The starting vector of the Lanczos procedure is v = Cx0 with x0

being a random vector [25].

To monitor the progress of the shift-invert Lanczos method, an approximate eigenpair

(µ̂i, x̂i) computed from an eigenpair (µ̂i, ŝi) of the reduced matrix Tj is considered to have

converged if the following two conditions are satisfied:

|µ̂i| ≥ tol and
|σ|

(µ̂i − 1)2
|βj ||eTj ŝi| < tol,

where the first condition excludes the zero eigenvalues and the second condition bounds the

error of the computed eigenvalue λ̂i = σµ̂i
µ̂i−1 with the prescribed tolerance tol (see [11, 16]
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Table 6.1: Results of 12 computed eigenvalues in the interval (−8, 0) after 38 steps of the Lanczos
method with the shift σ = −4.0. ‖X̂TMX̂ − I12‖F = 4.75 · 10−12 with X̂ ≡ [x̂1 . . . x̂12].

i λ̂i η(λ̂i, x̂i) cos∠(x̂i,Zc)
1 −2.716598 1.48 · 10−17 8.52 · 10−17

2 −2.883589 1.73 · 10−17 8.27 · 10−17

3 −3.292700 1.37 · 10−17 4.84 · 10−18

4 −3.378406 1.01 · 10−17 2.38 · 10−17

5 −5.754628 2.72 · 10−17 4.04 · 10−17

6 −5.854071 2.92 · 10−17 3.47 · 10−17

7 −6.089281 3.14 · 10−17 2.47 · 10−17

8 −6.228974 2.67 · 10−17 6.24 · 10−17

9 −6.784766 5.33 · 10−16 4.93 · 10−17

10 −6.886759 2.57 · 10−15 7.67 · 10−18

11 −7.561377 1.88 · 10−12 1.31 · 10−16

12 −7.745144 3.83 · 10−12 4.87 · 10−17

and [26, p. 357]). In this numerical example, we experiment with the tolerance tol = 10−6.

We now show the numerical results for computing nonzero eigenvalues of the pencil

K − λKG and corresponding eigenvectors perpendicular to the common nullspace Zc in the

interval (−8, 8). First, let us consider the left-half interval (−8, 0). With the shift σ = −4.0, the

shift-invert Lanczos method (Algorithm 5.1) computed 12 eigenvalues to the machine precision

in the interval (−8, 0) at 38-th iteration. The accuracy of the computed eigenpairs (λ̂i =

σµ̂i
µ̂i−1 , x̂i) is shown in Table 6.1. To validate the number of eigenvalues in the interval (−8, 0),

we use the counting scheme described in Section 5.5. Using the inertias of the submatrix Sα11

with α = −8 and Theorem 5.5, we have

n(−8, 0) = ν−(Sα11)− ν−(ZTNKGZN ) = 15− 3 = 12.

This matches the number of eigenvalues found in the interval.

Next let us consider the right-half interval (0, 8). In this case, we use the shift σ = 4.0.

By the shift-invert Lanczos method (Algorithm 5.1), we found 13 eigenvalues to the machine

precision in the interval (0, 8) at 44-th iteration. The accuracy of the computed eigenpairs

(λ̂i = σµ̂i
µ̂i−1 , x̂i) are shown in Table 6.2. To validate the number of eigenvalues in the interval

(0, 8), we again use the counting scheme described in Section 5.5. Using the inertias of the

submatrix Sα11 with α = 8 and Theorem 5.5, we have

n(0, 8) = ν−(Sα11)− ν+(ZTNKGZN ) = 13− 0 = 13.

This also matches the number of computed eigenvalues in the interval.
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Table 6.2: Results of 13 computed eigenvalues in the interval (0, 8) after 44 steps of the Lanczos
method with the shift σ = 4.0. ‖X̂TMX̂ − I13‖F = 1.79 · 10−11 with X̂ ≡ [x̂1 . . . x̂13].

i λ̂i η(λ̂i, x̂i) cos∠(x̂i,Zc)
1 2.967043 3.80 · 10−17 1.10 · 10−16

2 3.025965 2.96 · 10−17 3.39 · 10−17

3 3.917831 1.71 · 10−17 7.71 · 10−17

4 4.008941 1.61 · 10−17 7.13 · 10−17

5 4.591063 2.43 · 10−17 4.29 · 10−17

6 4.662575 2.64 · 10−17 2.47 · 10−17

7 5.699271 5.24 · 10−17 7.45 · 10−17

8 5.725937 7.44 · 10−17 1.38 · 10−17

9 6.465175 7.40 · 10−16 1.14 · 10−16

10 6.598173 7.96 · 10−15 2.18 · 10−16

11 7.285975 4.45 · 10−15 3.32 · 10−16

12 7.626265 2.41 · 10−14 1.39 · 10−15

13 7.880296 1.24 · 10−12 3.71 · 10−14
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Chapter 7

Concluding remarks

In the first part of this dissertation, we analyzed the EED procedure for the symmetric

eigenvalue problem Ax = λx. In the analysis, two crucial quantities associated with the shifts

are identified: the spectral gap γj and the shift-gap ratio τj . The following sufficient conditions

for the backward stability of the EED procedure are derived:

γ−1
j ‖A‖2 = O(1) and τj = O(1).

A shift selection scheme is proposed to satisfy the conditions. We conclude that the EED

procedure is backward stable with a proper choice of the shifts.

Future work include generalization of the EED procedure to the SGEP (2.3) and

spectrum analysis of the deflated matrix Âj . Improving existing eigensolvers with the EED

procedure is also a subject worth studying.

In the second part of this dissertation, we study the buckling eigenvalue problem

Kx = λKGx, and address the issues associated with the shift-invert Lanczos method. In

this part, the buckling spectral transformation is generalized to the singular pencil K − λKG,

and a regularization scheme is proposed for the inner product. An implementation of the

matrix-vector is provided and a validation scheme using inertias is proposed. For the industrial

example, we found that our method can successfully compute the eigenvalues, and the associated

eigenvectors, in an interval. For this part, one future direction is to study the choice of the

matrices HN and HC for the optimal conditioning of M .
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Appendix A

Canonical form of a symmetric

semi-definite pencil A− λB

We give a constructive derivation of a canonical form of a symmetric semi-definite

pencil A− λB, namely A is symmetric and B is symmetric semi-positive definite.

Theorem A.1. For a symmetric semi-definite pencil A−λB, there exists a non-singular matrix

W ∈ Rn×n such that

W TAW =



2n0 n1 n2 n3

2n0 S

n1 Λ

n2 Ψ

n3 0


and W TBW =



2n0 n1 n2 n3

2n0 Ω

n1 In1

n2 0

n3 0


, (A.1)

where

S ≡ In0 ⊗

 0 1

1 0

 , Ω ≡ In0 ⊗

 1 0

0 0

 ,
Λ and Ψ are diagonal matrices with real diagonal entries, and Ψ is non-singular. Moreover, we

have

n0 = dim(N (B))− n2 − n3,

n1 = rank(B)− n0,

n2 = rank(PN (B)APN (B)),

n3 = dim(N (A) ∩N (B)),

where PN (B) is the orthogonal projection onto N (B).
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We first introduce the following lemma due to Fix and Heiberger [13], also see [26, Sec.

15.5].

Lemma A.1. For the symmetric semi-definite pencil A−λB, there exists a non-singular matrix

W ∈ Rn×n such that

W TAW =



n0 n1 n2 n0 n3

n0 A00 A01 A02 Θ 0

n1 AT01 A11 A12

n2 AT02 AT12 Ψ

n0 Θ 0

n3 0 0


and W TBW =



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0

n0 0

n3 0


,

where Ψ and Θ are non-singular, diagonal matrices with real diagonal entries.

Proof of Theorem A.1. By Lemma 2.1, there exists a non-singular matrix W0 ∈ Rn×n such that

A(1) ≡W T
0 AW0 =



n0 n1 n2 n0 n3

n0 A00 A01 A02 Θ 0

n1 AT01 A11 A12

n2 AT02 AT12 Ψ

n0 Θ 0

n3 0 0


and

B(1) ≡W T
0 BW0 =



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0

n0 0

n3 0


,

where Ψ and Θ are non-singular, diagonal matrices with real diagonal entries.
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Let

W1 ≡



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 In2

n0 −Θ−1A00/2 −Θ−1A01 −Θ−1A02 In0

n3 In3


,

then

A(2) ≡W T
1 A

(1)W1 =



n0 n1 n2 n0 n3

n0 0 Θ

n1 A11 A12

n2 AT12 Ψ

n0 Θ 0

n3 0


and

B(2) ≡W T
1 B

(1)W1 =



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0

n0 0

n3 0


.

Next let

W2 ≡



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 −Ψ−1AT12 In2

n0 In0

n3 In3


,
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then

A(3) ≡W T
2 A

(2)W2 =



n0 n1 n2 n0 n3

n0 0 Θ

n1 C

n2 Ψ

n0 Θ 0

n3 0


and

B(3) ≡W T
2 B

(2)W2 =



n0 n1 n2 n0 n3

n0 In0

n1 In1

n2 0

n0 0

n3 0


,

where C ∈ Rn1×n1 is symmetric and C = A11 −A12Ψ−1AT12.

Define the permutation matrix

P3 ≡



In0 0 0 0 0

0 0 In1 0 0

0 0 0 In2 0

0 In0 0 0 0

0 0 0 0 In3


,

then

A(4) ≡ P T3 A(3)P3 =



n0 n0 n1 n2 n3

n0 Θ

n0 Θ

n1 C

n2 Ψ

n3 0


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and

B(4) ≡ P T3 B(3)P3 =



n0 n0 n1 n2 n3

n0 In0

n0 0

n1 In1

n2 0

n3 0


.

Since C ∈ Rn1×n1 is symmetric, it admits the eigen-decomposition

C = QΛQT ,

where Q ∈ Rn1×n1 is an orthogonal matrix and Λ ∈ Rn1×n1 is a diagonal matrix. Applying the

congruent transformation associated with W4 ≡ diag(In0 ,Θ
−1, Q, In2 , In3), we have

A(5) ≡W T
4 A

(4)W4 =



n0 n0 n1 n2 n3

n0 In0

n0 In0

n1 Λ

n2 Ψ

n3 0


and

B(5) ≡W T
4 B

(4)W4 =



n0 n0 n1 n2 n3

n0 In0

n0 0

n1 In1

n2 0

n3 0


.

Last, define the permutation matrix P5 ≡ diag(E, In1 , In2 , In3), where the matrix
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E ≡ [e1 en0+1 e2 . . . e2n0 ], and we have the canonical form in (A.1)

A(6) ≡ P T5 A(5)P5 =



2n0 n1 n2 n3

2n0 S

n1 Λ

n2 Ψ

n3 0


and

B(6) ≡ P T5 B(5)P5 =



2n0 n1 n2 n3

2n0 Ω

n1 In1

n2 0

n3 0


,

where

S ≡ In0 ⊗

 0 1

1 0

 and Ω ≡ In0 ⊗

 1 0

0 0

 .
The canonical form (A.1) is obtained with W ≡W0W1W2P3W4P5.

Now we interpret the dimension of each block matrix. From the canonical form of

B in Eq. (A.1), we can infer that n0 = dim(N (B)) − n2 − n3 and n1 = rank(B) − n0. Also,

n3 = dim(N (A) ∩ N (B)). To interpret n2, let Z ∈ Rn×(n0+n2+n3) be the basis of N (B)

consisting of the columns of W and consider the QR decomposition of Z = QR. Since Q is

an orthonormal basis of N (B), rank(PN (B)APN (B)) = rank(QTAQ). By the Sylvester’s law,

rank(QTAQ) = rank(ZTAZ). But, from the canonical form (A.1), ZTAZ = diag(0n0 ,Ψ, 0n3)

and rank(ZTAZ) = n2. Therefore, n2 = rank(PN (B)APN (B)). �

Corollary A.1. The symmetric semi-definite pencil A−λB is simultaneously diagonalizable if

and only if n0 = 0. In this case, we have the canonical form

W TAW =



n1 n2 n3

n1 Λ

n2 Ψ

n3 0

 and W TBW =



n1 n2 n3

n1 In1

n2 0

n3 0

,
Proof. From the pairs (S,Ω) and (Ψ, 0) in Eq. (A.1), we note that the algebraic and geometric

multiplicity of the infinite eigenvalues are 2n0 + n2 and n0 + n2, respectively. Therefore, the

symmetric semi-definite pencil A−λB is simultaneously diagonalizable if and only if n0 = 0.
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