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"There would seem to be nothing more obvious, more tangible and 

palpable than the present moment. And yet it eludes us completely. All 

the sadness of life lies in that fact. In the course of a single second, our 

senses of sight, of hearing, of smell, register (knowingly or not) a 

swarm of events and a parade of sensations and ideas passes through 

our head. Each instant represents a little universe, irrevocably 

forgotten in the next instant."  

 

- Milan Kundera 
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ABSTRACT OF THE DISSERTATION 

 

 
An Optical Nanofiber Total Internal Reflection Microscopy Platform for 

Quantitatively Probing Nanoscale Interactions 

 

by 

 

Joshua T. Villanueva 

Doctor of Philosophy in NanoEngineering 

University of California, San Diego, 2016 

 

Professor Donald Sirbuly, Chair 

 

Pushing the boundaries of nanoscience and engineering requires the 

development of sensitive instrumentation for studying small-scale systems and 

interactions. One of the most fundamental nanoscale phenomena, Brownian motion, 

remains difficult to characterize experimentally and serves as the primary motivation 

for developing new tools capable of quantifying the stochastic nature of systems at this 

scale. The behavior of colloidal nanoparticles are particularly interesting as they are 
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ubiquitous in nature and are foundational to the field of nanomedicine. 

This dissertation discusses the development of an optical nanofiber-based total 

internal reflection microscopy (TIRM) platform for the statistical analysis of colloidal 

behavior near a surface. In this technique, the evanescent field surrounding a nanofiber 

waveguide provides a means for probing the physical interactions between a Brownian 

nanoparticle and the nanofiber surface. This interaction is quantified optically via the 

far field detection of an optical signal generated from the light scattered by a 

nanoparticle in the evanescent field. The accumulation of individual scattering events 

results in a statistical distribution of distance-dependent intensities that provides 

information about the underlying state of the system using appropriate physical 

models. While the technique is simple in principle, characterizing Brownian systems 

requires a thorough analysis of all parts of the instrumentation process to identify 

possible sources of error and verify the accuracy of quantitative measurements. 

The nanofiber-based TIRM’s overall function is verified by comparison with 

predicted results from a steady-state theoretical model of the Brownian motion of a 

particle near a surface, mediated by an electric double layer interaction. This analysis 

identifies practical limitations on the types of colloidal systems that are able to be 

investigated using this technique. Additionally, further examination of the far-field 

imaging process reveals that the error in quantifying nanoparticle behavior is directly 

related to the finite exposure time of the data collection process. With these system 

limitations in mind, the last part of the dissertation discusses extensions of the 

platform configuration for advanced characterization modalities. 
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Chapter 1 

 

 

Introduction 
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1.1. Generalized Theory of Instrumentation Development 

 From an instrumentation perspective, probing the physical world is based on a 

chain of transduction mechanisms that convert physical phenomena into quantifiable 

signals. This is what we define as a sensor. In an increasingly digital age the sensor’s 

output often relies on a transduction mechanism that converts an optical  [1], 

thermal  [2], mechanical  [3], or chemical  [4] signal into an electrical one that can be 

read out by a computer. For advanced instrumentation, several transducers may be 

coupled together to form a complex tool that can be used to investigate a very specific 

aspect of a system. In these platforms, each mechanism transforms the signal into 

another form until a link can be made between the property of interest and the 

electrical signal that is ultimately quantified. This is exemplified for a general sensor 

in Figure 1.1.  

With all these transduction mechanisms influencing the measured signal, the 

sensor output is only useful to the extent the entire instrument is properly 

calibrated.  [5–8] That is to say that the specific way of mapping the signal from one 

form to another needs to be defined for all elements in the transformation pathway. In 

Figure 1.1. this refers to f(X,Y,Z), g(A), and h(B). If we seek to know (within a 

desired level of certainty) to what particular system property the final signal read out 

corresponds, the only way to do so is to fully understand the physical underpinnings of 

each transduction mechanism. Development of complex sensors requires a detailed 

analysis of the entire signal transformation pathway because key information 

concerning the errors and limitations of the sensing platform can often be identified 
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and localized to specific parts of the transducer chain. From this theoretical 

understanding of the sensor as a whole, we can develop experimental calibration 

methods that can be used to verify expected sensor function and thereby bolster our 

confidence in the exact meaning or interpretation of the quantified signal. 

 

Generally speaking, we can group sensors based on the level of certainty we 

would have about the quantified signal output. Robust sensors are those that are well-

characterized by a signal transformation relationship that correctly describes sensor 

behavior in a wide set of cases. These sensors typically involve a single transducer 

element whose behavior is based on intrinsic material properties. Usually these 

material properties can be controlled and tuned via well-developed manufacturing 

processes. One example of this is a thermistor whose resistance is mediated by the 

number of charge carriers in the semiconducting material comprising the sensor, 

which changes as a function of the temperature.  [9] While these sensors have well 

characterized properties, they often can only be used in a narrow parameter space 

before their function deviates from a standard calibrated relationship. Additionally, 

 
Figure 1.1. Signal transformation pathway. Schematic representation of a 

generalize instrument workflow, quantifying a generic physical phenomenon. 
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they are limited in their capabilities and can only characterize the simplest of system 

properties. 

In a research settings, though, novel sensors are constantly being developed to 

study and characterize a variety of different systems. Often these platforms are 

comprised of multiple transduction elements that results in a less robust overall 

sensing mechanism; however, they may still be useful as long as there are calibration 

technique to empirically map out the overall transduction mechanism. In this case 

there are often underlying physical details (parts of the transformation pathway) that 

are either unknown or whose explicit treatment may be too difficult to address or 

unwarranted depending on the level of accuracy required of the measurement. 

Moreover, it may be possible also that the manufacturing process of such sensors are 

not as refined, so while the transduction mechanism is physically understood, 

controlling the aspects of the system that influence the transducer behavior prove to be 

challenging. 

Related to these novel sensors are tools and instruments where calibration 

techniques may be very difficult to perform or whose transduction mechanism has no 

simple analytical form. For these systems extracting meaningful data from a quantified 

signal additionally requires thoughtful technique design to indirectly access the 

desired information about the physical system. This can include methods such as  

signal normalization to a reference or extrapolation of a trend to physically 

unattainable conditions. 
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From this general discussion of sensor design, it is apparent that efficient 

instrumentation development has to innately be an application-centric endeavor. 

Without an end goal signal to measure, it will be very difficult to define the exact 

signal transformation pathway. Without this, identifying exactly what types of 

calibrated relationships are needed then will be challenging. Furthermore, the nature of 

the calibration may also depend on the required resolution or accuracy of the 

measurement. So while instrumentation development is an appealing engineering goal, 

it is an impractical effort to design for generality without first defining a specific 

application and thereby the signal transformation pathway. 

1.2. Colloidal Nanoparticles as a System of Interest 

 Colloidal particles are a particularly interesting system of research for 

nanotechnology at the present. They represent a prototypical model system used for 

fundamental investigations of Brownian motion where the stochastic nature of these 

systems has captivated researchers concerned with placing order and predictability on 

the randomness of their motion.  [10] Additionally, colloidal nanoparticles are a 

foundational material for the field of nanomedicine where they are leveraged as 

minimally invasive diagnostic reporters of the in vivo environment or as therapeutic 

agents to combat disease with a level of specificity previously unattainable.  [11–16] 

From a fundamental perspective, however, the application of simple colloidal systems 

in nanomedicine is complicated by a lack of understanding of the behavior of these 

systems in the complex environment of the body.  [17–23] 
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When considering nanoparticle systems, typically we are concerned with 

characterizing either physical properties of the particles themselves or the various 

interactions at play in a system of many particles. Physical particle properties include 

information of size, shape, material composition, and surface functionality. These 

properties influence the behavior of these system, which can be described by the 

interaction potential or force among multiple particles, or between particles and 

another surface. These forces and potentials then dictate how close colloidal particles 

can get other surfaces.  [24]  Furthermore, the dynamic nature of Brownian particles is 

also an aspect of interest, describing how the colloidal system behaves over 

time.  [25–28] 

Experimentally, colloidal nanoparticles are a difficult system to study because 

the scale of the interactions in the system and the dynamics of their transport require 

highly sensitive instrumentation. Also colloids are a many-bodied system, with 

characteristics at both the single-particle level and solution-level. Studying these 

systems requires high spatial and temporal resolution to probe different regimes of 

behavior. Since all these characteristic properties listed above are interrelated and 

depend on one another, to fully understand a system, one also needs to have the 

appropriate theories to relate the properties. 

1.3. Dissertation Outline 

 Our proposed method of measuring the properties of Brownian particles 

involves the development of a variant of a total internal reflection microscopy 

technique based on a nanofiber waveguide architecture. Because investigating 
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Brownian systems requires highly sensitive instrumentation, we must analyze every 

aspect of the signal transformation pathway with extreme care to ensure that we are 

quantifying the system behavior in the proper manner. The best way to understand the 

capabilities of the sensor and the subtle limitations of the technique is to first have a 

general overview of the system to form an intuition for predicting how the signal will 

be formed based on different physical colloidal behavior. We will first present a broad 

introduction to the proposed technique in Chapter 2, then the experimental and image 

processing details are discussed in Chapter 3 and 4 with thoughtful explanations for 

specific procedural choices; this is important for developing a robust technique. The 

quantified results are verified by comparison with a theoretical model for the platform 

physics in Chapters 5. After verification, further attention is given in Chapter 6 to the 

details of the far field imaging setup and the subtleties of quantitative microscopy, 

from which we identify the quantitative limitations of the technique. The last part of 

the dissertation in Chapters 7, 8 and 9  discusses the extension of the fiber-based 

TIRM platform in more complicated configurations for advanced characterization 

techniques. This dissertation is concerned with understanding the signal 

transformation pathway for the proposed platform, which is a generalization of the 

instrumentation and technique development process for all nanofiber TIRM sensing 

platforms. The foundational work presented here serves as an example for identifying 

key research aspects for novel sensor design, which are particularly important when 

designing tools and methods for quantifying stochastic, nanoscale phenomena.  
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Chapter 2 

 

 

Background on Colloidal Physics and 

State-of-the-Art Instrumentation 
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2.1. Qualitative Description of the Brownian Motion of a 

Particle Near a Surface 

 We first need to have a basic understanding of the system physics to tell us 

what we should expect by probing a colloidal system using our nanofiber waveguide 

platform. From that underlying physical understanding we can assign meaning to 

collected data if we know how the instrument functions. This will also determine the 

exact transduction mechanism employed to probe the system. If we have concrete 

analytical models of the system, then we may be able to back out quantitative 

information about the system. 

Colloidal particles move around in solution due to the random thermal 

fluctuations of the system. This was observed by Robert Brown with pollen grains in 

solution, thus it is called Brownian motion.  [10] The modern understanding of this 

random movement is that at any temperature above absolute zero molecules move due 

to the thermal energy in the system. For a colloid in solution, it is subject to the 

random bombardment of the solution molecules in all directions. At any instant in 

time, the net force on the particle from these bombardments is not zero and therefore it 

causes the particle to move in the direction of the net force. At the next instant in time 

the magnitude and direction of that force can change based on the new distribution of 

molecular forces acting on the particle. The higher the thermal energy of the system, 

the stronger the bombardments become and therefore the further the same particle will 

move in a given time. Via the fluctuation-dissipation theorem, this mechanism of 

random movement is also what causes the dissipation of energy (on the macroscopic 
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scale, it is the root of phenomena like viscous drag and diffusion).  [29] This random 

movement will be the driving transport mechanism for the colloidal particles when we 

consider a hydrostatic system. 

When a colloidal particle is near another solid structure, in addition to the 

random molecular bombardments from the solution it will also experience an 

electrostatic force that will influence its movement.  [30–32] This electrostatic 

interaction is due to the charges on both surface, which for like charges prevents the 

surfaces from getting too close to one another and for opposite charges causes surfaces 

to come together. Moreover, this interaction is mediated by the presence of ions in 

solution. Whenever a charged surface is in an ionic solution, an electric double layer 

forms around the charged surface where the oppositely charged ions accumulate on 

the surface, effectively screening the surface charges.  [33] These ion layers have an 

ordered structure that gradually decays away to the disordered state of the bulk 

solution; the characteristic dimension of this decaying ionic structure is called the 

Debye length. The Debye length is only dependent on the concentration of the ions in 

solution and not on the charges on the surface.  [24] The higher the salt concentration, 

the smaller the Debye length and the more the surface charge is screened, which 

means that the surfaces can get closer to one another.  

Of course at the nanoscale, nothing is as simple as it seems, and there are other 

phenomena that arise in more complicated, real world systems, particularly related to 

near-wall motion of colloidal particles.  [34,35] However these two phenomena, 

Brownian motion and the electric double layer mediated electrostatic interaction, 
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coupled together form a foundational understanding of colloidal behavior that will 

inform how we plan to quantitatively study nanoparticle system. These two 

phenomena are depicted schematically in Figure 2.1. This understanding forms the 

basis for many different characterization techniques and the mathematical treatment of 

the two phenomena will be discussed in Chapter 5. 

 

2.2. State-of-the-Art Characterization Methods 

 Typically when attempting to experimentally characterize colloidal system and 

measure the properties discussed in the previous section, the first choice one has to 

 
Figure 2.1. Brownian motion of a particle near a surface. Schematic 

representation of the molecular mechanisms dictating the stochastic motion of a 

colloidal particle near a charged surface. The red inset depicts an instantaneous 

state of the system where the distribution of molecules interacting with the particle 

surface result in a random net force vector. The blue inset shows the electric double 

layer that forms on a charged surface when there are ions present in the solution. 
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make is a matter of system scale. Does one want to focus on a single particle or on the 

multi-particle system? Both perspectives have their own benefits and drawbacks. 

2.2.1. Single-Particle Characterization 

For the single particle case, the level of detail attainable for characterizing the 

system is very high and very specific interactions can be probed. Single-particle 

characterization includes atomic force microscopy (AFM), and trap-based 

spectroscopy methods like optical trapping or magnetic trapping.  [36–41] In these 

techniques, a particle’s position is precisely controlled and  it is brought in proximity 

to a surface, and the forces acting on the particle at a particular distance are measured 

by modulation of an optical signal that is detected by an imaging sensor. For AFM the 

particle is attached directly to the cantilever or the AFM tip and the cantilever is 

moved relative to another surface via a piezo stage. Forces acting on the particle cause 

the cantilever to deflect and the reflection of a laser off the back of the cantilever is 

used to measure the deflection via an optical sensor. For optical and magnetic traps, 

the position of the trap center holding the particle is controlled by the focusing optics 

of the system or the configuration of magnets. The trap is moved relative to a surface 

via piezo elements or by changing the focusing of the optical or magnetic setup. The 

spatial distribution of light scattered from the particle in the trap center is monitored 

with an optical sensor and when the particle moves out of the trap center due to a 

force, this spatial distribution changes. The specific relationship between the change in 

the resulting optical signals and the force is a function of the particular instrument. For 

AFM, it is the stiffness of the cantilever, and for the optical/magnetic traps it is the 
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strength of the trapping mechanism (which can also be described as a stiffness). 

Interpreting how the actual quantified signal is generated from the optical modulation 

is a separate, non-trivial matter. These techniques are good for direct characterization 

of static system properties (size, shape, steady-state potential distribution) assuming 

the appropriate model is known, but they cannot look at the dynamics of a real system, 

and it is difficult to generate a lot of statistics for obtaining solution-average values of 

specific particle properties.  [42] 

2.2.2. Solution-Level Characterization 

While single-particle characterization techniques are fundamentally important 

for understanding the precise electrostatic interactions relevant to the system, solution-

level characterization is more practical because very rarely are colloidal particles 

leveraged in applications as single entities. Dynamic light scattering (DLS) is a 

standard method for measuring solution-averaged properties of particles suspended in 

a colloidal solution.  [38,43] In a DLS a beam of light is directed through the colloidal 

solution and the scattering of this light is monitored by an optical sensor on the other 

end. The modulation of this optical intensity is dictated by the interference of light 

scattered by multiple particles freely diffusing in the beam path. The way this 

interference pattern evolves over time is a function of how the particles diffuse 

through the solution, which can then be related to the physical properties of the 

nanoparticle. Because many particles pass through the beam of light, the quantified 

signal can only be related to an average of the individual properties. While DLS is 

good at collecting information about the state of the system as a whole, it can only 
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monitor particle movement in the beam path, and therefore cannot look at interactions 

of particles with a surface. Also, because it is a technique based on interference of 

multiple scattering sources, anything that scatters light more strongly will be more 

strongly weighted in the averaging and therefore the technique is sensitive to 

contamination and the presence of large particles in the solution. This last point is an 

important limitation of the DLS to be aware of because colloidal solutions are never 

perfectly uniform; there is an inherent inhomogeneity (with regard to size, shape, 

surface functionality, etc.) in all batch-synthesized colloidal particle solutions, and 

solution-average techniques lose that information.  [44,45] 

Of greater interest is in understanding how the characteristic of the individual 

particles determine the solution-level behavior of the system. There is a need for other 

characterization methods that can probe colloidal systems at both levels. Bridging the 

gap is the technique of total internal reflection microscopy (TIRM).  [35,46–48] The 

crux of the TIRM technique is the ability to sensitively measure distances between a 

colloidal particle and surface via modulation of an optical signal, much in the same 

way as AFM or optical traps. However, the primary difference is that the optical 

modulation is not built around a mechanism used to precisely hold the particle in a 

certain position (cantilever bending or deviation from trap center), but rather on the 

optical properties of the surface and medium as an independent transduction 

phenomenon. For TIRM, the scattering of  a nanoparticle within the evanescent field 

generated at the interface of a total internal reflection (TIR) setup is monitored in the 
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far field via an optical sensor. To understand this better, the basics of TIR must be 

explained. 

2.3. A Primer on Total Internal Reflection Microscopy 

 For TIR, two materials of different refractive indices form an interface; in the 

case of TIRM this is usually a solid-liquid interface with the solid material having a 

higher index than the liquid phase. Via Snell’s law (𝑛1sin𝜃1 = 𝑛2sin𝜃2) when a ray of 

light is incident on the interface, the angle of the refracted light ray will depend on the 

incident angle and the ratio of the refractive indices. When the light hits the interface 

from the high index medium above a certain critical angle, θC, the angle of refraction 

will be greater than 90 degrees and the refracted light will remain in the first material. 

Then at the interface, as a consequence of solving Maxwell’s equation, there must be 

an evanescent field that does not propagate in space, but is a standing wave with 

power that decays away from the interface exponentially. This is shown in in Figure 

2.3.  [49] 

It is this distance-dependent power decay of the evanescent field that is 

leveraged as the transduction mechanism linking distance with the intensity of light 

scattered by an object near the interface. However, proper calibration of this scattering 

intensity-distance relationship is very important. Furthermore, since the relationship 

that is required is the scattering intensity of a nanoparticle as a function of proximity 

to a surface, the specific physics involving the scattering mechanism may also play a 

role in the exact from of the exponential decay.  [50] Additionally, as has been 

suggested previously, the exact method of intensity collection and quantification will 
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be an important factor in the proper calibration of this transduction mechanism. As 

with the previously described techniques, the properties of the colloidal system that 

determine the interaction forces that influence how the particles move near the surface 

again must be determined using appropriate mechanistic  models. A major benefit of 

TIRM versus the single-particle characterization techniques is that high throughput 

data collection is more feasible because particles do not have to be individually held in 

place. The down side though is that it is much more difficult to obtain highly sensitive 

measurements of individual particle-surface interactions without any positional control 

because the fact dynamics of the system. Also the experimental procedure must be 

tuned to ensure the particles will be close enough to the surface for proper imaging. 

 

 
Figure 2.3. Total internal reflection. Schematic representation of total internal 

reflection. The rays (black) hit the interface from the high index phase and are 

refracted at an angle determined by Snell’s law. Above a critical angle (red), the 

rays (blue) are refracted at an angle greater than 90 degrees and remain in the high 

index medium. Under total internal reflection  an evanescent wave is generated in 

the low index medium, which exhibits an electric field power profile that 

exponentially decays as a function of distance from the interface. 
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Moreover most TIRM setups do not measure particles in bulk solution, but 

rather particles that have settled to the bottom of a fluid volume as the substrate acts as 

the interface.  [51] This is not really representative of colloidal behavior in the 

applications like nanomedicine where particles are constantly interacting with surfaces 

without settling out of solution.  [52] To overcome this, instead of a planar TIR 

configuration, our platform uses a nanofiber waveguide suspended across a 

microchannel. The nanofiber geometry allows for all-around sensing, which is not 

possible with planar TIRM. This technique is like DLS in that we probe in the middle 

of solution to get the bulk solution dynamics. However, instead of a laser beam we 

have a physical nanofiber, which allows for separation of the individual particle-

surface interactions. This is a major advantage over DLS as building up solution-

average properties from the accumulation of individual single-particle measurements 

results in less sensitivity to contamination by strongly scattering objects in solution. It 

is this configuration that we hope to probe the true dynamics of colloidal suspensions 

in a high throughput manner to generate robust solution level statistics that retain 

information about solution heterogeneity, and also provide both particle property 

information as well as particle-surface interaction information all in technique. The 

next chapter will discuss the nanofiber TIRM platform in more detail. 

Chapter 2, in part, is currently being prepared for submission for publication of 

the material. (Villanueva, Joshua, Qian Huang, Gaurav Arya, Donald. J. Sirbuly) The 

dissertation author is the primary investigator and author of this material. 
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Nanofiber TIRM Platform Description 
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3.1. Technique Overview 

A general schematic of the nanofiber-based TIRM platform and experimental 

setup is shown in Figure 3.1–1. The sensing element of the platform is a single-

crystalline tin dioxide (SnO2) nanofiber waveguide suspended across an etched 

channel in a silicon oxide (SiOx) substrate. Similar to traditional TIRM methods, the 

evanescent field surrounding a waveguiding nanofiber is leveraged to determine fine 

displacements of a colloidal nanoparticle that moves near the surface of the nanofiber 

via a distance-dependent scattering intensity signal. The 325 nm line of a helium-

cadmium (HeCd) laser is used to couple light in the optical cavity, which is guided 

down the fiber axis via TIR, thus forming the evanescent field. When a colloidal 

sample surrounds the nanofiber, light scattered by the nanoparticles in the evanescent 

field can be monitored in the far field. To collect this scattering signal, a thin glass 

coverslip is placed on top of the solution, over a thin polydimethylsiloxane (PDMS) 

spacer, to image the scattering through a flat surface. This full device assembly is 

imaged using an upright darkfield microscope through a 0.55 N.A. air objective lens 

(50x magnification) and the far field signal is collected by an electron multiplied 

charge-coupled device (CCD) camera. 

The raw data collected in the experiment is in the form of a video that captures 

transient scattering events along the length of the fiber as the particles in solution 

randomly diffuse around the fiber. A processing algorithm must be used to extract 

quantitative scattering intensity information from the raw data. Then a calibrated 

relationship between scattering intensity 𝐼𝑆 and distance 𝑑 converts the quantified 
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signal to a form that can be analyzed using the appropriate physical models. In this 

way the statistical distribution of scattering intensities collected in the experiment can 

be used to infer physical properties of the particles in the sample. In this work we 

consider the physics of the Brownian motion of the nanoparticles as well as the 

electric double layer interaction described in the previous chapter. Analytical 

expressions relate the shape of the distance distribution to parameters like particle size, 

surface charge, and solution ionic strength. 

 

 The full technique flowchart is shown in Figure 3.1–2 with the basic steps of 

the signal generation and transformation pathway numbered in order. The end goal of 

the experiment is to obtain quantitative values for the various physical parameters of 

the nanoparticle system investigated. However, the accuracy of these values will 

require considerable work to understand every possible step of the technique that will 

influence the final parameter estimate. Details of the device fabrication, experimental 

 
Figure 3.1–1. The nanofiber-based total internal reflection microscopy 

platform. The experimental setup shown at different scales. The fully assembled 

device is shown under a microscopy object on the left. The suspended fiber 

geometry is depicted in the red box, and the relevant device physics is listed in the 

green box. 
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setup, data processing, and system physics will need to be analyzed thoroughly to 

verify proper system function. Subsequent analysis of the limitations of the platform is 

also necessary to validate the use of the system for probing the behavior of Brownian 

particles in complex environments. 

 

3.2. The SnO2 Waveguide 

To get the light into the nanofiber we employ a free space coupling 

mechanism, focusing the laser directly on the end facet of the waveguide (through the 

air-glass and glass-water interfaces of the device assembly) without the use of another 

optical fiber. Usually for waveguides under free space coupling the direct injection of 

a monochromatic laser line involves very precise positioning of the end facet crystal 

face relative to the laser beam to achieve proper TIR.  [49] However, this is a very 

 
Figure 3.1–2. Technique flowchart. The different aspects of the nanofiber TIRM 

platform as they relate to the one another in the overall signal transformation 

pathway. The numbered boxes represent the signal generation and transformation 

workflow while the unnumbered boxed are details of the signal transformation 

pathway that determine the accuracy of the quantified signal 
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difficult setup to achieve and reproduce because the fibers are so small (cross sectional 

dimensions on the order of hundreds of nanometers) and the smallest focusing spot of 

the laser is a spot approximately 20 μm in diameter. Instead, light is generated within a 

fiber’s optical cavity by excitation of the SnO2 material itself.  [53] The 325 nm light 

(𝐸 = 3.8 eV) is focused directly on the nanofiber and the SnO2 is excited above its 3.6 

eV bandgap energy. Since SnO2 has an indirect band gap structure, band edge 

emission is a very inefficient energy decay process. However, defects (oxygen 

vacancies) present in the SnO2 crystal allow for otherwise forbidden transitions by 

formation of defect states in the bandgap, thus offering another mechanism of energy 

decay in the excited material.  [54] These defect states explain why the light generated 

in the cavity and seen at the waveguide output has a broad spectrum. The evanescent 

field surrounding the nanofiber arises as a consequence of the TIR process that guides 

this light down the axis of the nanofiber 

When a colloidal particle is in the evanescent field of the fiber, the intensity of 

light it scatters is proportional to power of the evanescent field at the particle’s 

position as determined by Rayleigh scattering. Therefore quantified intensity signals 

give information about the particle’s position within the evanescent field if the power 

spatial distribution is known. In the traditional TIRM technique the evanescent field 

power decay constant is a function of the refractive indices of the waveguide and 

surrounding medium as discussed in Chapter 2. For the planar TIRM case the spatial 

variation of the evanescent field is only a function of the surface-normal distance from 



23 

 

 

the optical interface, resulting in a one-dimensional relationship between the scattering 

intensity and distance usually described by a decaying exponential of the form 

 𝐼𝑠 = 𝐼0exp⁡(−
𝑑

𝜏
) (1) 

where 𝐼0 is the scattering intensity at contact and 𝜏 is the characteristic decay 

constant.  [48] For our platform the SnO2 fibers have a relatively high index 𝑛𝑊𝐺 of 

2.1 and the experiments are performed in aqueous solutions with an index 𝑛𝑐𝑙 of 1.3. 

These indexes are the same for all experiments using the SnO2 nanofibers meaning the 

decay constant describing the evanescent power change in the normal direction is 

largely the same. However, for a nanofiber and the all-around sensing scheme we seek 

to achieve, the spatial distribution of the power at a given distance from the waveguide 

surface may not be uniform due to the rectangular shape of the waveguide. If the 

power spatially varies around the waveguide, then the exact scattering intensity profile 

will be more complicated than a one dimensional intensity-distance relationship. This 

is exemplified in Figure 3.2. Complicating this further is the wavelength dependence 

of the scattering intensity as well as the spectral distribution of the evanescent field 

generated by the sub-bandgap defect emission mechanism of light coupling into the 

fiber. The slight resonance at bluer wavelengths in the emission spectrum of the 

waveguide output is evidence of the wavelength dependence of the bound modes of 

the waveguide with bluer wavelengths exhibiting fewer losses along the fiber.  [49] 

A major assumption made in the treatment of the TIRM mechanism in this 

dissertation is that the scattering-intensity relationship for the nanofiber is similar to 

that of the planar TIRM case. The use of d as a surface-normal measure of particle 
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proximity implies we assume an angular uniformity of the evanescent decay about the 

fiber. Therefore we still rely on the form of Equation (1) for describing the 

relationship between scattering intensity and distance to the fiber surface in the 

experiments. 

 

Equation (1) describes the overall convoluted distance dependence of the 

evanescent power decay and the scattering cross section of the particle. Calculating the 

intensity-distance distribution will be very difficult because the spatial distribution of 

the waveguide power will depend on the fiber dimensions and composition 

(influencing distribution of excitable wavelengths in the material by the distribution of 

crystal defects). Formulating an analytical expression of Equation (1) that includes the 

physical properties of the system grounded in optical waveguide theory and scattering 

theory may be too involved for our purposes and still requires experimental 

determination of those properties themselves. Instead Equation (1) must be 

 
Figure 3.2. Spatial dependence of evanescent field around nanofiber. Total 

internal reflection results in an evanescent wave whose power decays away from 

the reflection interface as shown by the yellow graph of the intensity |𝐸|2 as a 

function of distance from the point (𝑥, 𝑦, 𝑧) from the waveguide surface. The 

coefficient of this power decay 𝐼0 is spatially dependent for a rectangular 

waveguide nanofiber. 
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experimentally calibrated. This tool falls in the second category of sensing platforms 

discussed in Chapter 1. The relationship between parameters must be empirically 

determined without explicit treatment of the underlying physical mechanism of signal 

generation. 

There are many different experimental methods to accomplish this calibration. 

In a previous study using the same SnO2 nanofibers, the scattering-distance 

relationship was described by a double exponential with two decay constants owing to 

the additional distance dependence of the plasmon-dielectric coupling of the 

system.  [55] Here however, we consider a simple single exponential profile. While 

the plasmon-dielectric coupling explains the steeper slope of the measured scattering 

profile via controlled layer-by-layer polymer deposition, the scattering enhancement 

due to this effect is only relevant for particles very close to the waveguide surface 

(within 20 nm), which is not achieved by the freely diffusing particles in the system. 

Despite the approximations here and difficulty of the analytical treatment of 

the system, the fiber synthesis can be tuned to grow more ideal fibers, knowing the 

physical mechanisms influencing the evanescent spatial distribution and that we want 

to maximize the overall evanescent power around the waveguide. The single-

crystalline SnO2 nanofibers are synthesized in-house via a chemical vapor transport 

(CVT) process using a standard benchtop tube furnace.  [53,56] In the general process, 

commercially purchased tin monoxide (SnO) powder is placed in an alumina boat 

crucible and heated to 1000°C in the center of the tube furnace under a 200 mT 

vacuum pressure to vaporize the powder. Additionally oxygen (mixed with inert argon 
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gas to a 0.01% partial pressure) is also flowed into the tube with a flow rate of 25 

sccm and is allowed to react with the vaporized SnO to form SnO2. Under the gas flow 

this reaction is carried downstream, and at a location in the tube furnace where the 

temperature has dropped by a certain amount, the vapor condenses to form single-

crystalline SnO2 fibers with rectangular cross sections. Typical fiber dimensions are 

around 200x400 nm in cross section and 200-300 μm in length. The fibers are 

chemically robust and highly flexible materials. In this fiber synthesis process, the 

above values for temperature, pressure, flow rate, and oxygen partial pressure are 

nominal and can be controlled and adjusted to try to control the fiber dimensions. It is 

believed that the smaller the nanofiber, the larger the loss and therefore the larger the 

evanescent power. However, a balance must be achieved because as the fiber becomes 

smaller, so does its capacity to support a bound mode. If the fibers are too small, they 

will not be able to guide light down the optical cavity, thus precluding the TIR 

transduction mechanism. 

Once the fibers are synthesized, they must be transferred from the substrate on 

which they were grown onto another substrate for easier manipulation of fibers under 

a microscope. They are typically placed onto a silicon oxide (SiOx) substrate via 

direct contact transfer from the growth substrate. The fibers must be transferred to a 

non-quenching substrate. Fibers directly on Si substrates without an oxide layer will 

not waveguide because the laser light will be absorbed by the substrate rather than 

exciting the oxide material. After the fibers are on the SiOx substrate, fibers with good 

optical properties must be harvested manually using a 3-axis micromanipulator and 
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tungsten dissecting probe. This is a tedious process as fibers must be individually 

separated from an entangled mass and checked one-by-one for good waveguiding 

properties since the growth of these fibers is not perfectly controlled and there will be 

a distribution of sizes and lengths. 

We check these fibers optically in air by focusing the 325 nm laser line on the 

end facet, but we only have qualitative properties by which to gauge the 

appropriateness of each fiber for our device. The first thing to check for is whether or 

not these fibers guide light by seeing if light is emitted from the fiber end facet after 

excitation of the SnO2. If they do not support a fundamental mode, then the fibers will 

not be good for TIR. To get a gauge on the size of the fibers, we look at the fiber 

output color. Since we know that the loss of the fiber is wavelength dependent and that 

the bluer light is more strongly bound within the optical cavity, we look for a blue or 

green output to tell us that the fiber is small enough to likely have a large evanescent 

field. This is a rough estimate of the optical properties of the fiber and has not been 

confirmed with specific evanescent mapping, fiber size, and waveguide output spectra, 

but it provides a good intuition for the specific fibers we seek for the device. The last 

property that is important for a good fiber is to have very few scattering centers along 

the fiber itself. These scattering spots can be due to either physical (surface roughness, 

step profiles) or chemical (molecular vacancies) crystal defects. Many defects will not 

be visible under the higher refractive index of water that the experiments are typically 

run in, but too many will obscure the active sensing area of the fiber and contribute to 

the background noise of the scattering signals. Conversely, a few scattering defects 
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along the length of the fiber can be beneficial as indicators of the varying power 

fluctuation in the fiber (this will be discussed later) and as visual cues to correlate 

positions along the fiber when comparing different experiments. These aspects must 

often be weighed on a case-by-case basis, depending on the specific application of the 

fiber. Because there is no definitive marker of a good fiber, usually, many fibers are 

harvested and placed on a single device to be evaluated in a preliminary experiment. 

After the fibers have been selected for the device, they are transferred to 

another SiOx substrate where they are positioned perpendicularly across 50 μm wide 

and 20 μm deep etched channels. This channel suspended configuration is what allows 

for the all-around sensing scheme. Once positioned, the probe is used to drop PDMS 

across the ends of the fiber and this PDMS is allowed to cure before using the device. 

This tacking down of the fibers enables the repeated use of the same fibers (upwards 

of hundreds of experiments). 

3.3. General Experimental Procedure 

 After the device is fabricated, the experiments are ready to be performed. Here 

we describe the general experimental procedure for using the nanofiber TIRM to 

probe the properties of free diffusing colloidal particles in solution. The details of this 

procedure are important because of the sensitivity required for probing the Brownian 

motion of the system. The following steps, in order, must be performed prior to each 

experimental run to ensure that all experiments are reproducible and performed in the 

same manner, enabling the proper correlation of measured signal with physical system 

attributes. 



29 

 

 

3.3.1. Device Cleaning 

 The disassembled device (no coverslip, no PDMS spacer) was cleaned before 

each experimental run to ensure a consistently charged nanofiber surface, facilitating 

comparison of different datasets. The procedure is as follows. A diluted piranha 

solution (3:1 sulfuric acid to hydrogen peroxide, diluted with an equal volume of 

deionized water) was pipetted (glass pipette) onto the device and allowed to soak for 3 

minutes. Immediately after the entire device was placed in a fresh deionized water 

(DI) bath for 3 minutes, then dried with compressed air. Aqua regia (3:1 hydrochloric 

acid to nitric acid) was then pipetted onto the device and allowed to soak for 3 mins. 

The entire device was again placed in a fresh DI bath for 3 minutes and subsequently 

dried with compressed air. After the aqua regia cleaning, the device was placed in an 

oxygen plasma cleaner for 5 minutes on the high setting (~ 30W RF power) at a base 

process pressure of 200 mT. Oxygen plasma cleaning standardized the surface groups 

on the nanofiber for each experiment. It also made the surface hydrophilic, which 

inhibited the trapping of microbubbles in the etched channels and near the fibers 

during sample preparation and final device assembly. 

3.3.2. Colloidal Sample Preparation 

 Commercially available 80 nm, 100 nm, and 150 nm gold nanoparticles 

stabilized in a citrate solution (Sigma Aldrich) were washed using the following 

procedure to ensure ionic concentrations were comparable during different 

experiments. First, 100 μl of the nanoparticle solution was added to an Eppendorf tube 

with 900 μl of DI. This solution was mixed for 10 sec using a vortex mixer and then 
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placed in a centrifuge and spun at 7500 RPM for 5 min. After centrifugation, the 950 

μl of the supernatant were discarded and replaced with 950 μl of fresh DI. Vortex 

mixing, centrifugation, and removal of supernatant were repeated for a total of 3 

times. The remaining 50 μl of washed gold nanoparticles were sonicated for 10 sec to 

redisperse the colloid and this prepared sample was kept at room temperature for the 

duration of the experiment (2-5 hours). The 80 nm DNA-coated gold nanoparticles 

were washed and prepared in a similar manner. These particles were synthesized from 

commercially purchased bare gold nanoparticles (Ted Pella, Inc) and characterized 

using a previously described method.  [56] 

A stock solution of 10x phosphate buffered saline (PBS) was prepared 

according to previous methods and adjusted to a pH of 7.4 using hydrochloric 

acid.  [57] For experiments varying ionic concentration, a serial dilution of the 10x 

PBS stock was performed using fresh DI to obtain final solutions of 0.1x, 0.075x, 

0.05x, 0.01x, and 0.005xPBS. The final step in preparing the colloidal solution for 

testing was to add the washed nanoparticle solution to the PBS solution. This final 

solution was only prepared immediately before data collection to avoid flocculation of 

the nanoparticles. The prepared nanoparticle solution was sonicated for 10 sec, then 4 

μl of this solution were added to 30 μl of the prepared PBS solution. After vortex 

mixing, 30 μl of this final prepared colloidal solution were placed on the device as 

described previously. 

  



31 

 

 

3.3.3. Experimental Setup and Alignment 

 First the nanofiber was imaged through the eyepiece in darkfield mode and 

focused by eye under the 50x objective, then the darkfield illumination was then 

turned off and the beam block removed to view the focused spot of the laser. This spot 

was positioned on or near the end facet of the waveguide, which resulted in scattered 

light to be seen coming from the nanofiber output (typically green-blue in color). The 

device was then rotated and translated on the stage (the focusing spot of the laser was 

also repositioned accordingly) until the output of the waveguide was maximized and 

the background scattering minimized. 

Once this device orientation was determined, positioning guides were taped 

down on the microscope stage to aid in fast and consistent orientation of the nanofiber 

relative to the laser beam for every experiment. Additionally visual markers were 

noted (e.g. edge of channel aligned with horizontal bar of eyepiece crosshair and 

length of waveguide oriented along vertical crosshair bar) after imaging the positioned 

waveguide in darkfield mode for consistent translational alignment of the nanofiber 

under the objective. 

After positioning of the device on the microscope was done, the laser was 

focused further with the aid of the Andor Solis program (version 4.22.30005.0), which 

was used to collect the video data. First the CCD was physically rotated on the 

microscope to align the waveguide axis perpendicular to the pixel shift axis. Then the 

512 x 512 pixel field of view was cropped to a tight subarea just around the waveguide 

that includes the waveguide output, but not the laser focus at the waveguide input, 
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typically about 330 x 20 pixels. This alignment enables the fast frame rate of the 

camera in frame transfer mode. The darkfield illumination was then turned off and the 

output scattering signal was the only signal seen by the CCD in live view video mode. 

In the Andor Solis program, the center of the waveguide output was selected and the 

pixel profile in the vertical and horizontal dimensions were seen on the program as 

shown in Figure 3.3 below. 

 

The data histogram was then locked to a specific intensity range (top grayscale 

bar in Figure 3.3) and the laser focusing knobs as well as the fine focus knob of the 

microscope stage were incrementally and repeatedly adjusted to maximize the peak 

value of Gaussian intensity profiles of the output. The procedure was repeated 

periodically between video collection to ensure consistent laser focusing and 

maximize coupling efficiency into the waveguide for every experiment. 

  

Figure 3.3. Selection of waveguide output in the Andor Solis program. 
Intensity profiles shown on the left and bottom of the image corresponding to the 

location of the cross hair. 
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The video data was collected using the frame transfer mode of the CCD, which 

is why the length of the waveguide had to be oriented a certain way relative to the 

CCD sensor and the image area must be cropped tightly around the waveguide. 

Typically videos are collect in 20k to 40k frame increments up to a total of between 

80k to 240k frames of video for one experimental run. This translates to about 20 

minutes of data collection depending on the exposure time of the experiment. Typical 

experiments are collected at a frame rate of about 190 Hz for a 5 ms exposure time 

with the gain set to 200. All other settings were left on the program default. With all 

these details defined in the experimental procedure, we have established a means of 

confidently comparing datasets with the knowledge that the variables under 

investigation are the ones being probed if the rest of the experimental setup is the 

same. 

Chapter 3, in part, is currently being prepared for submission for publication of 

the material. (Villanueva, Joshua, Qian Huang, Gaurav Arya, Donald. J. Sirbuly) The 

dissertation author is the primary investigator and author of this material. 
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Data Processing Algorithms 
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4.1. Event Detection 

 Once the raw data is collected, it must be processed to extract the quantitative 

scattering signals that will provide information about the solution-average interaction 

between the particles in the sample and the nanofiber surface. The data is in the form 

of a video that can be thought of as a 3D stack of 2D images. An example collected 

data frame is shown in Figure 4.1–1 with the corresponding darkfield image of the 

fiber next to it. The scattering from the waveguide output is always collected with 

dataset (for reasons to be discussed in the following chapter), and the experimental 

setup always has the waveguide output located at the bottom of the collected frames. 

A scattering event is depicted as a 2D bright spot on the image. This bright spot is 

from a diffraction limited scattering source, therefore its profile is an airy disc pattern 

that can be approximated as a 2D Gaussian. The peak of the Gaussian profile is equal 

to the scattering intensity. 

For these experiments, the scattering events only occurs along the region of the 

fiber suspended over the channel because the portion of the nanofiber on the substrate 

is covered by a thick layer of the tacking PDMS. This prevents the particles from 

getting close enough to the fiber surface to scattering light from the evanescent field. 

Over the channel, the background noise of the image is seen to be clearly elevated 

compared to the other parts of the image. This noise is due to scattering of the free 

space coupled laser or the ambient light of the lab off the channel walls and is 

unavoidable. The scattering event is overlaid on top of this background noise. The 

processing of this data to get a quantitative value for the scattering event is done in 
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three steps: event detection, signal quantification, and noise filtering. The detection 

algorithm will be discussed first where the scattering signals will be systematically 

distinguished from the background noise according to a threshold intensity value. 

 

 Detection of the scattering events essentially involves localizing the events in 

space and time. This is processing is required for these datasets where freely diffusing 

particles move in and out of the evanescent field because the scattering events are 

transient and can occur at any position along the fiber over the channel. For detecting 

the scattering events, a basic 1D contrast method is used. The overall schematic of the 

 

Figure 4.1–1. Example raw collected data. Two consecutive cropped video 

frames collected from an experimental run are shown alongside the full-frame 

darkfield image of the fiber in the experimental setup. The waveguide output is the 

large scattering signal at the bottom of the image;  nanoparticle scattering events 

only occur on the section of the fiber suspended across the substrate channel. 

Attached particles are identified by their persistent scattering while freely diffusing 

particles are marked by their transient scattering.  
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algorithm process is shown in Figure 4.1–2. This method required that the input data 

was a vector of pixel values and that we input a threshold value to discriminate the 

desired signal from the background noise. To transform the data into a vector form we 

averaged the pixel values across the width of the waveguide in each video frame and 

worked with the video dataset as a time-varying intensity profile along the length of 

the waveguide. This enabled us to use the findpeaks function in MATLAB while 

retaining the spatial and temporal information of the scattering event. Processing the 

data in this way acted as a rough noise filter that reduced many of the small, high-

frequency fluctuations in the pixel intensity along the length of the WG. However, the 

averaging of pixels also resulted in a minor loss of information, namely the scattering 

position in the transverse-waveguide direction (which is mostly localized within 3 

pixels of the center of the waveguide) as well as the possible elimination of very small 

(low intensity) scattering events. 
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Determination of the threshold value was not trivial as this dictated how much 

noise we collected in our data processing (and also influenced the speed of running 

our program). Selection of a single threshold value was not desirable because one 

number was not able to account for the background of the entire dataset, which would 

have resulted in the detecting many noisy pixels in some parts of the video dataset and 

possibly missing good data in other parts of the video. To understand this, we 

considered the form of the noisy background in our collected video. Because of the 

  

Figure 4.1–2. Diagram of detection algorithm steps. Raw data is processed in a 

frame-by-frame manner where persistent scattering is ignored and only transient 

scattering events are detected. The 2D frame image is collapsed to a 1D scattering 

profile along the fiber and the distribution of profile intensities (top histogram) is 

used to determine the thresholding parameter to identify scattering events.  
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free-space coupling of the laser into the nanofiber, slight fluctuations in the power of 

the supported modes in the waveguide resulted in a temporally fluctuating average 

background noise level. Also, as noted earlier, the scattering from the channel edges 

contributed to a spatially varying noise level, with more background noise in the 

pixels over the channel (primary sensing region) compared to the area of the image 

near the nanofiber output. Because we do not know a priori where and when the 

scattering events will occur, this presented a major problem for the accuracy and 

efficiency of processing our data. 

Calculating an ideal threshold value from which to distinguish the scattering 

events required first flattening the spatially and temporally varying background noise 

and then calculating the threshold value based on the distribution of background pixel 

values in in each image. To accomplish this, the individual frame intensity profiles 

were plotted in sequence to form a two-dimensional image of the entire video dataset 

with the y-axis representing the spatial positon along the length of the waveguide and 

the x-axis the frame (or time) of the collected intensity profile. This spatiotemporal 

image of the video dataset was processed using a tophat filter that flattened the 

background of the entire image, effectively accounting for the temporally and spatially 

varying background in a single step. From this flattened image, we calculated the 

threshold value for each video frame from the distribution of pixel values in each 

flattened intensity profile, which was generally Gaussian distributed. The threshold 

value was calculated by summing the mode pixel value 𝑀 plus one standard deviation 

of the distribution of pixel values 𝑆. 
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 𝑇ℎ𝑟𝑒𝑠ℎ = 𝑀 + 𝑆 (2) 

This is effectively determining the detection threshold based on the noise of the 

collected dataset, which is a more dynamic means of event detection rather than 

setting an arbitrary, constant threshold for the entire dataset. The mode value was used 

rather than the mean pixel value because the presence of scattering events skews the 

Gaussian distribution of pixel values towards higher intensities, which would affect 

the mean value. Using this threshold value in the peak finding algorithm resulted in 

identifying the location of brightest intensity for each identified scattering event. 

Efficient detection of the scattering intensity from the data employed 

processing the flattened 2D image using the 1D peak finding algorithm and cross-

referencing the detected intensity peaks in both the spatial and temporal dimensions. 

After identification of the scattering signal at a certain position along the waveguide in 

each frame of the dataset (profile-by-profile peak finding along x-axis of the 2D 

image), we independently identified the time of the scattering events that occur at each 

pixel position along the waveguide (profile-by-profile peak finding along the y-axis of 

the 2D image). We again calculated a threshold value using the method described 

above, but calculated the values for the distributions of pixels associated with a 

specified positon along the waveguide for the entire duration of the collected video 

dataset. After both datasets were collected, only scattering events that were detected 

independently both along the time and y-spatial axes were preserved for intensity 

quantification. In this cross-referencing scheme, the scattering of a single particle over 
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multiple frames is not counted as multiple events, but rather the brightest intensity is 

identified and counted as a single scattering event. 

 

To localize the signal in the transverse-waveguide spatial dimension (along the 

x-axis), we took a similar peak finding approach. For an identified scattering event 

frame, we took the subset of raw data within 3 pixels of the identified position of a 

scattering even and averaged this sub-image along the axial length of the waveguide. 

The peak finding algorithm was used to identify the position of highest intensity for 

this scattering event, using the same threshold value calculated for identifying the 

scattering event spatially in this frame. Once localized in both spatial dimensions and 

  

 

Figure 4.1–3. Signal cross-referencing in space and time. Scattering events are 

localized in a two-part detection scheme, thresholding against a background signal 

in both space (top row) and in time (bottom row). Independently detected events 

that are localized to the same pixel and frame are counted as true signals (red 

boxes) in left image. Temporally constant scattering events are not detected in the 

temporal threshold scheme and ignored (green boxes). 
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in time, the peak intensity value was readily obtained from the raw video data as 

described below. 

4.2. Quantifying Scattering Intensity 

4.2.1. Peak Intensity Method vs Integrated Intensity Method 

Once the scattering events are localized in space and time, the raw pixel value 

corresponding to the identified frame and x- and y-coordinate  is simply taken as the 

scattering intensity of the signal. The value of this pixel is a measure of the charge 

generated at that point in space as the photons from the nanoparticle scattering hit the 

image sensor in the far field. The charge is proportional to the number of photons 

collected at that pixel during the exposure time of the image collection corresponding 

to the time the aperture of the camera is open. 

Here it is worthwhile to discuss our choice of quantification, what we term the 

“peak intensity” corresponding to the maximum value of the 2D Gaussian profile for 

the scattering event, that differs from most other processing techniques that integrate 

(sum) all the pixel values over a localized region of interest (ROI), which will be 

referred to as the “integrated intensity”. The primary difference in the two methods 

comes down to the associated error of the quantified signal, which depends on the 

detection algorithm and the form of the collected data. The integrated intensity offers 

the benefit that the resulting calculated intensity is far less susceptible to random pixel 

fluctuations associated with the noise of the CCD and errors associated with 

localization of the peak pixel of a scattering event. However, a challenge of the 



43 

 

 

integrated ROI method lies in determining the appropriate ROI size to integrate over  

as well treatment of the integrated background noise. 

We can consider this integrated error using our approximation of the imaged 

Airy disc pattern of a scattering event with a symmetric 2D Gaussian overlaid on top 

of a noisy background. A perfect integrated intensity, 𝐼𝑅𝑂𝐼, quantifies the intensity of a 

scattering event as a volume of the 2D Gaussian, 𝑉2𝐷𝐺𝑎𝑢𝑠𝑠, that is proportional to its 

peak height, 𝐼𝑃𝑘, according to the equation for the volume of a 2D Gaussian 

 𝐼𝑅𝑂𝐼
∗ = 𝑉2𝐷𝐺𝑎𝑢𝑠𝑠 = 2𝜋𝐼𝑃𝑘

∗ 𝜎2 (3a) 

where 𝜎 is the standard deviation of the symmetric Gaussian and the asterisk indicates 

the ideal quantified value. For the actual quantified signals, our peak intensity method 

has an error, 𝜀𝑃𝑘, that is associated with the background scattering, pixel shot noise, 

and charge bleed that occurs in high speed CCD imaging.  

 𝐼𝑃𝑘 = 𝐼𝑃𝑘
∗ + 𝜀𝑃𝑘 (3b) 

The real integrated intensity will have a background noise error, 𝜀𝑏𝑘𝑔𝑑, associated 

with it also 

 𝐼𝑅𝑂𝐼 = 𝐼𝑅𝑂𝐼
∗ + 𝜀𝑏𝑘𝑔𝑑, 𝜀𝑏𝑘𝑔𝑑 = ∑ 𝜀𝑃𝑘𝑅𝑂𝐼 ≈ 𝐴𝑅𝑂𝐼𝜀𝑃𝐾̅̅ ̅̅̅ (3c) 

where 𝜀𝑏𝑘𝑔𝑑 is equal to the sum of all the individual pixel errors in the ROI, which can 

be approximated by multiplying an average per-pixel noise value for the image, 𝜀𝑃𝐾̅̅ ̅̅̅, 

with the area of the ROI, 𝐴𝑅𝑂𝐼. The mode value, 𝑀, from Equation (2) can be used as 

a rough measure of 𝜀𝑃𝐾̅̅ ̅̅̅. 

The integrated background noise minimizes the shot noise error of the 

calculated signal, but significantly increases any noise associated with the 
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accumulation of charge on the CCD sensor (i.e. fluctuating error about a mean is 

minimized, but offset noise is amplified). Therefore, for the integrated intensity 

method, a background subtraction is often necessary. As with any quantitative 

microscopy technique, determination of this noise is a nontrivial matter. Typically, an 

average background value per pixel is calculated for the image frame, multiplied by 

the integration area, and then subtracted from the integrated intensity value. However, 

due to the spatially varying quality of the background noise as previously described, it 

is difficult to obtain an accurate value for the average pixel noise of a frame. Therefore 

large offset errors result in trying to quantify the scattering intensity using the ROI 

integration method for the datasets associated with our fiber-based TIRM technique. 

This is exemplified by plot in Figure 4.2 where the same, real data is quantified using 

both the peak intensity and integrated ROI intensity method. 

 

  

Figure 4.2. Integrated region of interest (ROI) intensity vs peak intensity of 

unfiltered dataset. Right graph (zoom-in of red box in left graph) shows high 

density cluster of detected noise. Blue line is linear fit of scatter plot data. 
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The linearity of this trend validates our assumption that the scattering signal 

can be approximated as a 2D Gaussian as the volume of a 2D Gaussian is linearly 

proportional to its peak value. The negative y-intercept of the scattering plot shows 

that the mode pixel value method for calculating the integrated background 

overestimates the error. If this error was consistent across all datasets this would not 

be an issue for comparison, but as the background noise may be different between 

experimental runs, this poses a problem for comparing different datasets. Therefore 

the peak intensity method is preferred with only a minor offset error due to 

background scattering.  

 The previous discussion concerned the noise associated with each 

quantification method, and due to the spatially varying quality of the collected dataset, 

it was determined that the peak intensity method resulted in less overall error in the 

quantified intensity distribution. However, the linearity of the data in Figure 4.2 and 

Equation (3a) can provide insight on ways to improve the ROI integration method. 

This analysis, while still not idea for the dataset at hand with error due to the spatially 

varying background, is applicable to other datasets where the scattering signal may be 

localized to a single area (see Chapter 8) and therefore worthwhile to discuss here. 

Until now, we have not considered the effect of the ROI size on the error of the 

quantified signal. In most instances, the ROI size is arbitrarily determined. However, 

since we know that the integrated background error is proportional to the integration 

area by Equation (3c), one way to improve the ROI integration method would be to 

minimize the ROI size to as tight an area around the scattering event as possible. The 
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question is then, by what means are we going to define the appropriate ROI area? If 

we again consider the dataset as a 2D Gaussian overlaid on a noisy background, we 

know that any pixel data integrated beyond the width of the Gaussian that falls below 

the noise will significantly contribute to the offset error. Therefore, what we aim to do 

is define the ROI size based on the noise level of the data. We can do this by 

considering the equation for the full-width-at-half-maximum (FWHM) of a 1D 

Gaussian 

 𝐹𝑊𝐻𝑀 = 2√2 ln 2⁡𝜎 (4a) 

where the 2 in the natural logarithm comes from the fact we are calculating the width 

at half of the height of Gaussian peak. If we want to set the ROI size (width of a 

square) to the full width of the scattering intensity peak at the background noise level, 

then we simply replace the 2 in the logarithm by the signal-to-noise ratio (SNR) where 

the SNR would be the peak scattering intensity (Gaussian maximum) divided by the 

mode pixel value, 𝑀. 

 ROI⁡Size = 2√2 ln(𝑆𝑁𝑅)⁡𝜎, 𝑆𝑁𝑅 =⁡
𝐼𝑃𝑘

𝑀
 (4) 

The standard deviation can be determined empirically from a calibration dataset 

similar to that in Figure 4.2 where 𝜎 can be calculated from the slope of the linear fit 

by Equation (3a). For the specific data in Figure 4.2, 𝜎 = 1.26. For the value of the 

SNRs, that will depend on the specific scattering event. However, for the dataset in 4.1 

the SNR varies from about 1.15 at the low end (M values typically about 350 counts)  

to as much as 8.6 for bright scattering events calculated from the peak scattering 

intensity range shown along the x-axis. Therefore the ideal ROI size for these 



47 

 

 

scattering events is between 1 and 4 pixels (rounding to the nearest whole pixel). This 

ideal ROI size is small and further justifies the use of the peak intensity method, which 

is equivalent to the ROI integration over 1 pixel (without background subtraction). As 

the SNR increases, the ideal ROI size will increase more slowly according to the 

radical, but it is expected that σ may also increase as well. Regardless, for low SNR 

datasets Equation (4) can be a useful method for improving the ROI integration 

method to minimize integrates noise in the signal. 

4.2.2. Intensity Normalization 

The last part of the signal quantification procedure involves normalization of 

the scattering events signals. Intensity normalization is necessary because the 

fluctuations in the non-normalized scattering signal are not necessarily only due to 

changes in nanoparticle position, but also dependent on the power of the evanescent 

field as discussed in Chapter 3. The latter effect must be decoupled from the former to 

improve the accuracy of the conversion of intensity to distance. For the experimentally 

collected datasets we normalize to the waveguide output because the output signal 

changes with the guided power in the waveguide and therefore the evanescent power. 

Fluctuations in this output intensity signal are Gaussian distributed as a result of many 

different noise sources including fluctuating laser power, positional movements of the 

laser focusing spot relative to the waveguide end facet, and the scattering of the light 

from the beam path of the laser from nanoparticles as it passes through the colloidal 

solution. 
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Because the scattering from the output is spatially localized and persists for all 

frames of the dataset, detection and quantification of the output intensity is more 

straightforward. Spatial localization of the scattering event in each frame is 

determined using the peak finding algorithm as described in the previous section. The 

quantification method for the output signal is the same as that used for the scattering 

events, the peak intensity method. The implications of the normalization on the 

meaning of the quantified intensity will be discussed further in Chapter 5. 

4.3. Data Filtering 

 After the data has been detected and quantified, we need to know if the 

processing was accurate. Did we detect all the scattering events in the dataset? Are all 

the detected events true events or did we incorrectly identify some noise? Did we 

quantify the signal correctly? In order to judge the extracted data, we must first 

establish an intuition for what to expect the data to look like. We base this off of our 

general understanding of the physics of the colloidal physics described in Chapter 2, 

the TIRM mechanism of operation in Chapter 3, and other experimental TIRM work 

done by other groups.  

4.3.1. Expected Form of the Data Distributions 

 From the foundational work on traditional planar TIRM systems done by 

Prieve,  [58] we know that the quantified scattering intensities will form a distribution 

that can be converted to a distance distribution using Equation (1). This 

experimentally measured distance distribution is effectively the probability density 

function (PDF) of the system. If we assume the system follows a Boltzmann 
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distribution where the PDF (here denoted as P) is proportional to the exponential of 

the negative of the system energy, 𝑈(𝑑), relative to the thermal energy, 𝑘𝐵𝑇, where 

𝑘𝐵 is the Boltzmann constant and 𝑇 is the system temperature 

 𝑃(𝑑) ∝ exp [−
𝑈(𝑑)

𝑘𝐵𝑇
] (5) 

then the experimentally measured 𝑃(𝑑) can be inverted to determine the physical 

system properties if an appropriate model incorporating these properties is used for 

𝑈(𝑑). However, this accuracy of this analysis is strongly dependent on the accuracy of 

the IS–d calibration. 

To work directly with scattering intensity distributions instead of the distance 

distributions, we can use the transformation described by Prieve. His assumption was 

that the number of particles described by a given intensity interval should be equal to 

the number of particles in some other distance interval. The total number of particles 

described by an arbitrary interval on the PDF of a system is the integral of the PDF 

between the interval bounds. In a small interval, the number of particles is described 

by the differential interval width times the value of the PDF at some intensity value 

within the interval. For the above relation between the intensity and distance PDFs, a 

given number of particles, N, is given by  

 𝑁 = 𝑃(𝐼)𝛥𝐼 = 𝑃(𝑑)𝛥𝑑 (6a) 

where P(I) is the PDF of the collected intensity, P(d) is the PDF of the particle 

distances, and ΔI and Δd are the differential PDF interval widths for an intensity 

distribution and distance distribution, respectively. Rearranging Equation (6a) in the 

limit of a infinitesimally small interval widths we get 
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 𝑃(𝐼) = 𝑃(𝑑)|𝐼′(𝑑)|−1 ∝ exp [−
𝑈(𝑑)

𝑘𝐵𝑇
] [

𝜏

𝐼0exp⁡(−
𝑑

𝜏
)
] = (

𝜏

𝐼0
) exp [

𝑑

𝜏
−

𝑈(𝑑)

𝑘𝐵𝑇
] (6b) 

where we plug in Equation (5) for 𝑃(𝑑) and the quantity 𝐼′(𝑑) is the absolute value of 

the first derivative of the intensity-distance relationship calculated using Equation (1). 

While the exact values of τ and I0 are still required for Equation (6b), the general 

qualitative form of the intensity PDF based on the system physics can be inferred from 

an analysis of limiting cases. 

From Equation (1) we know that as the Brownian particles get close to the 

waveguide surface they will scatter more light; at the same time we qualitatively know 

that the electrostatic interaction between the particle and the surface increases for a 

repulsive interaction. For the purposes here, we can assume that the energy term of 

Equation (5), U(d), is itself a decaying exponential to describe the increasing electric 

potential of the system as the particle gets closer to the waveguide surface (we restrict 

our discussion here to purely repulsive electrostatic interactions). This results in a 

sigmoidal form of the distance PDF. This shape makes sense as the closest the particle 

will get to the fiber is dictated by balance between the thermal energy of the system 

and the electrostatic interaction between the surfaces. When the electrostatic potential 

decays to zero at large distances from the fiber, the surface charges on the fiber no 

longer have an influence on the diffusing nanoparticle and therefore the relative 

probability distribution should be constant. The closer the particle gets to the fiber 

surface, the larger the electrostatic potential, thus the probability of finding a particle 

as the particle’s proximity to the waveguide decreases should also decrease, eventually 

going to zero. 
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The high intensity edge of the scattering intensity histogram drops off to zero 

corresponding to the decrease in the distance PDF with decreasing distance. The low 

end of the intensity histogram corresponds to where the distance PDF is constant 

representing the bulk nanoparticle distribution of the system. From Equation (1) we 

know that the exponentially decaying intensity-distance relationship goes to zero at 

large distances from the waveguide. Consequently, all the detected particles in the 

bulk will results in a large accumulation of very low intensity scattering events in the 

ideal case that should result in the intensity PDF going to infinity as the intensity 

decrease. Figure 4.3–1 shows example intensity and distance distributions (solid line) 

calculated from Equations (5) and (6b) to exemplify these trends. 

 

As will be seen experimentally, though, the quantified intensity PDF obtained 

using the nanofiber TIRM platform goes to zero for low intensities, not to infinity. For 

planar TIRM setups, this behavior is also exhibited. In the traditional TIRM case, this 

 
Figure 4.3–1. Example theoretical intensity and distance distributions. The left 

plot shows an example intensity distribution (solid line) calculated from Equation 

(6b) based on the distance distribution (solid line) on the right calculated from 

Equation (5) where the form of the potential U(d) was assumed to be a decaying 

exponential. The dotted line represents a hypothetical sensitivity cutoff of the 

nanofiber TIRM system. The area under both curves represents the expected 

experimentally obtained distributions. 
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is explained due to an additional gravitational component to the potential profile, 

which keeps the particles near the TIR surface. Rather than a simple decaying 

exponential, these profiles have the form of a decaying exponential plus a linear curve 

corresponding to the gravitational potential. The decay is due to the thermal energy of 

the particles not being able to overcome the gravitational potential at large distances 

from the TIR surface. The balance of the electrostatic and gravitational potentials 

forms a potential well that the particles will tend to settle into for the planar TIRM 

case. 

For our system, since we allow for all-around sending, the effect of the 

gravitational potential is minimal. In fact, considering all radial positions a particle can 

sample around the waveguide and averaging the corresponding potential profiles gives 

a solution average potential profile that is purely electrostatic. However, due to the 

TIR generation mechanism and the size of our particles, the intensity distribution goes 

to zero because the particles move out of the sensing range of the nanofiber, unlike in 

the planar TIRM case where the particles are remain between a range of positions 

dictated by the potential well of the system, which is well within the device sensitivity 

range of the traditional TIRM setup. This means that for nanoparticle far from the 

nanofiber, they will not scatter enough light during the exposure time of the CCD to 

generate enough charge on the sensor to increase the pixel value above the noise floor 

of the system. These nanoparticles are still in solution, it is just that we cannot 

distinguish their signal from the noise and therefore we cannot detect them with our 

current TIRM method. This can be represented as a cutoff probability distribution 
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shown as the dotted line in Figure 4.3–1. In the nanofiber TIRM case, this low-

intensity cutoff is not so much a consequence of the system physics, but a result of the 

limitations of the sensing mechanism as well as the processing algorithm. These 

qualitative descriptions of the physical mechanism leading to the shape of the 

experimentally derived low-intensity/large-distance are summarized in Figure 4.3–1 

where the experimentally obtained histograms are expected to have a qualitative form 

similar to the shaded regions. 

 This analysis of the expected shape of the intensity distribution assumes a 

perfect detection scheme. Although in reality, in addition to the sensitivity cutoff of 

the TIR mechanism and CCD data collection scheme, there is an overlaid noise signal 

that represents the error of the detection algorithm that incorrectly identifies the 

background noise as scattering signal. This is present because the threshold value in 

Equation (2) is not perfect and may underestimate the noise level for some frames, 

even with the cross-referenced detection scheme. Because we know background noise 

is typically Gaussian distributed, we expect this overlaid noise signal to be likewise 

Gaussian distributed and centered about the signal cutoff edge of the intensity and 

distance distributions (dotted line). 

4.3.2. Noise-Based Filtering via Cluster Analysis 

Assuming this form of the noise signal lends the filtering process to cluster-

based methods for distinguishing the noisy data from good data. Cluster analysis of 

the intensity distributions typically requires plotting the data against two variables in a 

scatter plot. For this filtering method we use a scatter plot similar to the one in Figure 
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4.2 to perform the cluster analysis. The noise in both quantification methods should be 

Gaussian distributed although with different standard deviations. We use a Gaussian 

mixture model (GMM) to perform a soft clustering of the data into two clusters, noise 

and signal, where each data point is associated with a particular probability of being in 

either the noise cluster or the signal cluster. Data with a greater than 50% probability 

of being in the noise cluster are marked as noise and consequently removed from the 

dataset. GMM soft clustering of the dataset from Figure 4.2 and the subsequent 

histogram filtering based on this clustering is shown in Figure 4.3–2. The soft 

clustering scheme is employed because the Gaussian noise (signified by the red cluster 

in the scatter plot in Figure 4.3–2) is overlaid on top of good data and a hard cutoff 

clustering does not allow for potential preservation of some of the good noise buried 

in this noise of the dataset. 

 

While noise cluster filtering is a good way to ensure proper execution of the 

detection algorithm, it is remains difficult to know for sure how accurate the detection 

  

Figure 4.3–2. Clustering analysis and filtering. Left: Soft clustering using a 2-

cluster Gaussian Mixture Model (GMM) with posterior probability of being in the 

noise cluster shown with color. Right: Unfiltered and filtered distributions detected 

event intensity (black), corresponding waveguide output intensity (red), and 

normalized intensity (blue). 
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scheme performed short of going through the data by hand and identifying each 

scattering event by eye. This is very impractical, therefore to get at least a qualitative 

idea of how well we detect the scattering events as a secondary verification, we plot 

the scattering profile of the length of the fiber along the y-axis of an image and the 

frame number along the x-axis. We break up the total number of frames into 2000 

frame increments and vertically concatenate these subsets for easier viewing in a 

single image as shown below. We plot the detected scattering events on this image 

based on its centroid y-position and frame number (red circles) and qualitatively 

examine the images for sections of the video where we do not get consistent detection 

(possible threshold calculation errors, large background scattering, or setting of 

nanoparticle) or where we get horizontal streaks of circles (indicating detection of 

noise or persistent scattering data). Checking this plot, shown in Figure 4.3–3, after 

processing each dataset provides a general idea of how well the algorithm extracted 

the true distribution of scattering events from the raw video data. To look at these 

different sources of error further, we can plot the detected data as a function other 

processing parameters. 
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4.3.3. Stability-Based Filtering via Temporal Signal Analysis 

Once the quantitative scattering data has been extracted from the raw video 

and filtered as best as possible based on the known form of the noise, the next step 

towards inferring physical properties of the colloids in solution is to verify that the 

system setup was stable and that there are no physical peculiarities of the system that 

would skew the dataset. In this second filtering method, we filter the dataset based on 

physical sources of distribution skewing rather than data processing sources of error in 

the previous section. In particular, stability of the experimental setup and stability of 

the colloidal solution over time are the two aspects of the system under scrutiny. 

  

Figure 4.3–3. Data visualization of detected scattering events. Position-Frame 

image of scattering events and the detected signals (red circles) to visually inspect 

and qualitatively determine accuracy of detection algorithm. 1D intensity profiles 

along the fiber (approximately 300 pixels long) are horizontally concatenated for 

2000 frames to form a 300x2000 sub-image. These sub-images are vertically 

concatenated for the entire dataset to form the image above. 
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Verification of the setup stability effectively means that the device setup under 

the microscopy has minimal drift. Stage drift affects the datasets because it changes 

the efficiency of the free space coupling of the laser light into the fiber cavity, which 

as we know will affect the intensity-distance relationship of Equation (1), effectively 

changing the scaling factor, 𝐼0. Additionally, changes in the relative position of the 

focused laser beam on the device substrate can also change the background noise of 

the system. Background noise will affect both the quantified peak intensity and the 

integrated intensity. Because of these errors, we need to have ways of verifying the 

setup is consistent for all datasets. As we have discussed with the normalization of the 

scattering intensity, the waveguide output is a good measure of the coupling efficiency 

into the waveguide. Therefore we expect that the modulation of the waveguide output 

scattering in time will center around a mean intensity that is constant. Additionally, 

because we estimate the background noise in the detection algorithm by Equation (2), 

we can look at the threshold (and its components) over time to get a measure of the 

stability of the background noise. These plots are shown in Figure 4.3–4 below. If any 

of these plots show a trend over time other than fluctuation around a constant value 

then more critical examination of the dataset is needed to determine if it is a usable 

dataset. 
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 In Figure 4.3–4 the variation of the waveguide output in time for both the peak 

and integrated intensity method are shown in the top plot. For the most part, the 

intensity looks relatively stable for the middle portion of the collected data. The 

decaying trend in the initial part of the time series looks to be due to a settling of the 

  

Figure 4.3–4. Verification of experimental setup stability. Plots of the 

waveguide output signal (using both peak and integrated intensity methods) and the 

calculated threshold value (and its components) for each frame of the dataset. 
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experimental setup where perhaps the focus of the laser on the waveguide end facet 

becomes misaligned as the stage, the focusing lens, or the coverslip moves over time, 

causing the a change in the coupling efficiency of guided light in the nanofiber optical 

cavity. This gradual system settling is markedly different from the abrupt change in 

the intensities around Frame 120,000 or Frame 280,000. These abrupt changes in the 

intensity result from realigning of the experimental setup between data collection, 

where now the change in coupling efficiency is not gradual. However, because the 

magnitude of these changes is not to large, the dataset us still usable as long as the 

quantified intensities are normalized to this output signal. Considering the 

corresponding threshold in the bottom plots, it is clear from the mean signal (light 

blue) that the realignment does affect Equation (2). However, we see that the change 

in the threshold, while negligible, follows the trend in the above plot, indicating that 

the detection algorithm is dynamic and able to adjusts according to the state of the 

experimental setup. 

The next verification we must do is of the stability of the colloidal system 

itself. This setup is particular to the specific analysis we aim to perform on the steady-

state nanoparticle-nanofiber surface interaction, but may also be a method of particle 

characterization itself if the data is examined more thoroughly.  The static system 

analysis we aim to do relies on the assumption that the PDF of the system for any 

given PBS concentration does not vary over the course of the experiment. 

The first thing we must filter out of the datasets is the persistent scattering of 

particles that have attached to the fiber. Identification of these attached particles is 
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done primarily by comparison of the collected video with the standard image taken of 

the assembled, cleaned device in the experimental setup with a control solution of DI 

water without any nanoparticle. This can be taken once, immediately after device 

fabrication, to identify any intrinsic scattering centers along the fiber that are due to 

physical or crystal defects along the fiber itself (for an ideal nanofiber, these intrinsic 

scattering spots should be minimized because no good data can be collected from that 

position of the waveguide and they effectively reduce the active sensing area of the 

nanofiber). Then during the experiment, if a new scattering center is identified, we can 

be confident it is an attached nanoparticle. 

To filter out all data from persistently scattering locations along the waveguide 

(except for the waveguide output) we can plot the position of all the detected 

scattering events as a function of their position along the nanofiber axis, and any 

position along the fiber that has a much larger frequency of detected events can be 

excluded from the final dataset. Automatic filtering based on an expected frequency of 

hits in a given time interval can also be performed where the distribution of detected 

events in a 2000-frame interval is plotted. This can also provide dynamic information 

about localized contamination on the waveguide if a change in this distribution occurs 

over time. Additionally, localized accumulation of scattering events at particular 

points along the fiber could signify a physical difference of that particular location 

along the waveguide. The location distribution of the detected events is shown in 

Figure 4.3–5. 
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 The presence of patches of high frequency would have indicated that 

significant skewing is present in the final intensity distributions. This skewing would 

also likely obscure the real data as the detected intensities would be above the noise 

floor of the data. If the excluded persistent scattering data in the above figure were 

included in the final histogram, it would be seen as a high intensity Gaussian 

distribution, with width related to the fluctuation of the coupling efficiency. In Figure 

4.3–5, since there is no portion of the image that indicates that there is a concentration 

of high frequency signal, we can assume that the extracted data is correctly detected 

using the above algorithm. 

The slow formation of NP dimers, trimers, or larger aggregates in the prepared 

nanoparticle solutions may also skew the data histograms over time (which is what we 

  

Figure 4.3–5. Distribution of detected event location in time. Distribution of the 

location of the detected scattering events over a 2000-frame interval is shown for 

consecutive, non-overlapping intervals. Persistent scattering events are removed as 

indicated by the clearly seen zero frequency band between pixel 68 and 136. The 

output signal location is also removed from the plot.  
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were trying to avoid with DLS). The aggregation of particles also accelerates the 

flocculation of the colloidal system out of suspension, decreasing the rate of detection. 

To visualize any sort of change in the PDF over time, we can plot the scattering 

intensity histogram over an increment of 2000 frames as a single row profile (similar 

to the above datasets for detection location) and generate an image of those 

concatenated profiles in time. The, slow shifting of the histogram distribution over 

time may be easily visualized with this plot, which may indicate the presence of the 

dynamic physical phenomena described above. Aggregation would be seen as a slight 

shift of the scattering distributions towards higher intensities (see Chapter 6) as well as 

diminishing of the overall detection frequency over time. The detection frequency of 

the scattering events can be extracted also from this data by plotting the cumulative 

number of detected events over time. Aggregation would be also indicated be a 

corresponding plateauing of the cumulative detection plot as the number of individual 

scattering objects in solution would decrease. This plateauing could also just indicate 

overall settling of the colloidal out of suspension. These graphs of colloidal stability 

are plotted in Figure 4.3–6 where the distribution of intensities looks to be relatively 

stable over time and the cumulative detection is linear, indicating system stability. It is 

interesting to note that slight changes in the total detected events (frequency in the top 

image and slope of the bottom plot) correspond to the changes in the waveguide 

output signal of Figure 4.3–4. With all of these post-processing graphs, it is possible to 

identify the specific sources of error by cross-referencing the dynamic distribution 

plots (4.3–3 through 4.3–6) with each other and inferring the physical state of the 
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system stability and experimental setup as it is manifested in all the plots because they 

are all collected from the same dataset. 

 

 

  

 

Figure 4.3–6. Quantified scattering intensity in time. Top: The scattering 

intensity distribution from consecutive 2000-frame increments of data. Bottom: The 

cumulated number of detected events as a function of experimental frame. 
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Chapter 4, in part, is currently being prepared for submission for publication of 

the material. (Villanueva, Joshua, Qian Huang, Gaurav Arya, Donald. J. Sirbuly) The 

dissertation author is the primary investigator and author of this material. 
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Experimental Verification of Platform 

Performance 
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5.1. Theoretical Model Formulation 

 Once the raw data has been processed and the accuracy of the detection and 

quantification algorithms have been verified, we are ready to examine the physics of 

the colloid-nanofiber interaction in further detail. After all, the utility of the nanofiber 

TIRM technique relies on relating the statistical distribution of experimentally-

measured intensities to the physical properties of the colloidal sample. Here, we aim to 

leverage simple models that can be easily combined in a multi-physics description of 

overall device operation. While we recognize that much more sophisticated (and 

potentially more accurate) physical description of each component of the platform 

have been developed, their application here is beyond the scope of this dissertation, 

with the primary goal of establishing a comprehensive and generalized understanding 

of the operation of the nanofiber-based TIRM. Once the device physics has been 

established with simple analytical expressions, we can then test these models 

experimentally to verify that they are accurate enough to describe platform operation 

within specified limits.  

Figure 3.1–1 highlights the different coupled physics associated with this 

platform. As was described qualitatively in Chapter 2, in an ionic solution the 

distance, 𝑑, between a Brownian particle and a stationary surface is dictated by the 

balance of the particle’s thermal energy and the electrostatic potential between the 

surfaces. A static model of the electric double layer (EDL) that surrounds all charged 

surfaces links particle-nanofiber interactions with physical properties like particle size, 

surface charges, and ionic strength of the solution. Accounting for the EDL in the 
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equations governing the stochastic motion of the diffusing particles forms the 

multiscale physical description required to statistically characterize colloidal 

interactions using the distance-dependent TIRM mechanism. Modeling the random 

colloid movement near a wall with an EDL-mediated electrostatic interaction is done 

via an iterative simulation method to describe the Brownian dynamics (BD) of the 

system. The following sections describe each aspect of this model in further detail. 

5.1.1. Electric Double Layer 

We utilized the interacting electric double layer (EDL) model as formulated by 

Ståhlberg to describe the interaction of a charged nanoparticle with a nanofiber 

surface.  [59] In this model the linearized Poisson-Boltzmann (P-B) equation was 

solved (with a constant surface charge boundary condition) for the potential 

distribution, 𝛹(𝑑), between two charged infinite flat surfaces in an electrolyte solution 

as a function of separation distance as shown in the blue inset in Figure 2.1. The result 

was used to calculate the interaction potential between the two surfaces. Applying the 

Derjaguin approximation yielded an expression for the interaction potential between a 

sphere and an infinite flat wall 

 𝑈𝐸𝐷𝐿 = −
𝜋𝑅

𝜀0𝜀𝜅2
[(𝜎𝑁𝑃 + 𝜎𝑊𝐺)

2 𝑙𝑛(1 − 𝑒−𝜅𝑑) + (𝜎𝑁𝑃 − 𝜎𝑊𝐺)
2 𝑙𝑛(1 + 𝑒−𝜅𝑑)] (7) 

where 𝑅 is the radius of the sphere, 𝜀 is the relative permittivity of the surrounding 

medium (in this work we used value for water), 𝜀0 is the permittivity of free space, 𝜅 

is the inverse of the Debye length (𝜅 = 𝜆𝐷
−1

), 𝜎𝑁𝑃 and 𝜎𝑊𝐺 are the surface charge 

densities of the sphere and flat wall respectively, and 𝑑 is the surface-to-surface 

sphere-wall distance. Although only a rough geometric estimate for our nanoparticle-
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nanofiber system, the following sections will test if Equation (7) sufficiently predicts 

the general qualitative trends in the nanoparticle distributions as a function of different 

colloidal parameter sweeps in proof-of-concept experiments. The equilibrium 

distribution of nanoparticles as a function of nanoparticle-nanofiber separation 

distance is described by Equation (5). 

Here we make use of a number of approximations whose limits of applicability 

must be understood and rigorously checked for all systems to which this analysis is 

applied. First, the Debye-Huckel approximation (i.e. a first order Taylor expansion of 

the exponential term) is used to linearize the P-B equation, effectively giving it a form 

similar to the Helmholtz equation, which has a known analytical solution. This 

linearization is valid for systems with potentials less than 25mV, but has been shown 

to be somewhat accurate for potentials up to ~50-80mV.  [60] Beyond that, the Debye-

Huckel approximation largely overestimates the potential distribution. In order to 

solve the linearized P-B equation, we have to use either constant charge density 

boundary conditions or constant surface potential boundary conditions. In this case we 

used the former because the interaction of Brownian particles is assumed to be too fast 

to allow for chemical potential changes due to surface adsorption. 

The second approximation used is the Derjaguin approximation, which enables 

us to calculate the interaction force between two charged objects in terms of the 

known interaction free energy between two charged flat surfaces. This approximation 

requires that the separation of the two charged surfaces be very small relative to the 

size of the particle, such that the ratio of the particle radius with the Debye length (𝜅𝑅) 
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is much larger than 1. For the PBS concentrations we consider in this work, the Debye 

length ranges from 10 nm – 2 nm (0.005xPBS – 0.1xPBS) and the particle radius is 

nominally 40nm, giving us a min κR of about 4. 

5.1.2. Brownian Dynamics 

While the long-time distribution of distances is described by Equation (5) and 

Equation (7), the movement of the nanoparticles around the nanofiber on a shorter 

timescale can be described using the Langevin equation shown in Eq. (8)  [61]:  

 𝑑 = 𝑑0 + [
−𝛻𝑈𝐸𝐷𝐿

𝛾
] ∆𝑡 + 𝜁(𝑡) (8) 

From Eq. (8) the new position 𝑑 of a spherical particle after a time, 𝛥𝑡, (the simulation 

time step) can be calculated from its current positon, 𝑑0, the instantaneous electrostatic 

force acting on the particle [calculated from the negative spatial gradient of Equation 

(7), −𝛻𝑈𝐸𝐷𝐿]  normalized by the drag coefficient of a sphere in a viscous medium, 𝛾, 

(equal to 6𝜋𝜇𝑅 where 𝜇 is the viscosity of the surrounding solution and 𝑅 is the 

nanoparticle radius), and a stochastic term, 𝜁(𝑡), which is modeled as a random 

number drawn from a Gaussian distribution of mean zero and standard deviation equal 

to the mean squared displacement (MSD) of a particle (MSD = ⁡√2𝐷𝛥𝑡⁡ where 𝐷 is 

the diffusivity of the spherical nanoparticle, 𝐷 =
𝑘𝐵𝑇

𝛾
). Using Equation (8), we can 

iteratively calculate these positions to obtain one-dimensional stochastic trajectories of 

several (non-interacting) particles randomly moving in the one-dimensional 

electrostatic potential field described by Eq. (7). Verification of the BD simulation 
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was done by comparing the accumulated distribution of distances with Equation (5) to 

make sure they match up according to the underlying system properties.  

To verify our physical interpretation of the system and test the accuracy of the 

model formulation for predicting the behavior of these systems, we present a side-by-

side comparison of experimentally-measured and theoretically-predicted intensity 

distributions in the following sections. For verification, proof-of-concept studies were 

performed with single-variable parameter sweeps, characterizing gold nanoparticle 

systems of various sizes (smaller than 200 nm), with two different surface coatings, 

and in solutions of different ionic strength. Equations (5) and (7) describe the long-

time behavior of the system based on the physical properties of the particles in 

solution, and along with our intuition for the expected datasets, we should be able to 

judge the accuracy of the model’s predictions with the experimental results.  

5.2. Varying Solution Ionic Strength 

 Intensity distribution trends were studied under different ionic solutions to test 

the accuracy of Eq. (7) for approximating the EDL interaction of our nanoparticle-

nanofiber geometry. Using the general experimental procedure described in Chapter 3, 

a nominal system of 80 nm citrate-coated gold nanoparticles was prepared in different 

concentrations of PBS, and each prepared solution was tested in a separate 

experimental run. The solutions were all prepared from a single batch of washed  

commercially purchased nanoparticles and diluted in different solutions of PBS 

concentration just prior to full device assembly and data collection. Between each 

experiment, the full device assembly was taken apart and cleaned according to the 



71 

 

 

procedure outlined in Chapter 3 and data for all the different ionic solutions was 

collected in the same day where experimental data was collected using a the nominal 

camera parameters described previously and a 10 ms exposure time. The effect of 

varying the ionic concentration [κ in Equation (7)] is shown in Fig. 5.2–1 as different 

colored histograms overlaid on a single plot. The raw collected videos were processed 

according to the algorithms described in Chapter 4. 

 

  

Figure 5.2–1. Experimental intensity distribution varying solution ionic 

strength. Detected and quantified peak scattering intensity data is normalized to 

the intensity of the waveguide output in the same frame. Histograms of the post-

processing filtered intensity data for experimental runs with 80 nm citrate-coated 

particles in different concentrations of PBS are shown with a 0.01 bin width. 

Scattering data was collected with an exposure time of 10 ms using the same 

waveguide, cleaned between each experimental run. All experiments were run 

using the same prepared solution of washed colloidal particles in the same day. 



72 

 

 

 Qualitatively, the shape of the distributions fits with our description of what we 

expect the processed data to look like from Chapter 4, Section 3. The high intensity 

edge of the datasets decrease to zero according to the balance between the thermal 

energy of the system (the same for all distributions) and the electrostatic potential 

between the surfaces (changing depending on the ionic strength of the solution).  As 

the salt concentration increases, the electrostatic potential between the nanoparticle 

and nanofiber surface is expected to be screened more, and therefore the particles can 

get closer, on average, to the fiber. According to Equation (1), the closer particles will 

result in higher intensities. At the low intensity edge of the distributions, the data also 

decreases to zero according to the sensitivity cutoff of the data. The data was filtered 

to remove a large portion of the Gaussian distributed noise that obscures the sensitivity 

cutoff and the intensities were normalized to the waveguide output. The fact that the 

high salt normalized scattering intensities is an interesting result suggesting that the 

quantified intensities for these high salt experimental runs was larger than the 

quantified waveguide output. The physical implications of this will be discussed in 

Chapter 6. 

Plots of theoretical electrostatic potential between the two surfaces and the 

predicted PDFs based on this potential are shown in Figure 5.2–2 for comparison with 

the experimental results. In order to calculate these curves, we must use nominal 

parameter values for all the variables in Equation (5) and Equation (7) that we assume 

are close to the real values that determine the experimental results shown in Figure 

5.2–1. For Equation (7) we use the values for the nominal 40 nm radius of the particle 
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and the relative permittivity of water. 𝜅 is calculated from the equation of the Debye 

length for a monovalent electrolyte solution with ionic strength calculated for the 

different PBS concentrations.  [57] A value for the surface charge density for the 

waveguide is taken from literature (0.05 Cm
-2

),  [62] and the surface charge density 

for the citrate-coated nanoparticle is calculated using the Grahame equation where the 

experimentally measure zeta potential of the prepared colloidal solutions (using a 

Zetasizer)  is used as an approximation of the surface potential of the nanoparticle 

(0.012 Cm
-2

).  [24] The temperature of the system was assumed to be room 

temperature, 298 K, for Equation (5). Since the long-time distribution of particle 

distances calculated using the Langevin equation should also result in Equation (5), we 

can also run the BD simulation to generate the expected distributions and compare 

them to the directly calculated trends in Figure 5.2–2. These simulated distance 

distributions are not explicitly shown here, but the resulting distributions of the BD 

simulations match with the theoretically predicted distance distributions. 
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Since the experimental histograms are of quantified intensity values, we can 

use Equation (6b) to calculate the expected intensity distributions. For this, we need to 

  

 

Figure 5.2–2. Theoretically predicted distance and intensity distributions as a 

function of ionic strength. Electrostatic potentials calculated for an 80 nm citrate-

coated particle near a SnO2 waveguide in units of kT. The corresponding relative 

(non-normalized) PDFs of the nanoparticle distance to the nanofiber surface are 

plotted below with the 𝑒−1 probability shown. The bottom plot shows the relative 

PDFs of intensity calculated from the distance PDFs and the nominal intensity-

distance relationship of Equation (1) with τ = 34 nm and the scattering normalized 

to the intensity of a particle at contact, I0. 
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have values for the scattering at contact, 𝐼0, and the surface-normal intensity-distance 

decay constant, 𝜏. For the purposes of comparison in this chapter, instead of using an 

estimated value for 𝐼0 we simply normalize the scattering intensities relative to this 

number in Equation (1), which eliminates the need to define it [i.e. 𝐼0 = 1 in Equation 

(6a)]. This is similar to normalizing the data to the waveguide output intensity as 

described in Chapter 4 because 𝐼0 will also fluctuate as a function of the evanescent 

power. However, here we know that 𝐼0 corresponds the scattering of a particle that is 

in contact with the nanofiber surface whereas the waveguide output intensity does not 

correspond to any physical nanoparticle distance. This is an important distinction to be 

made for interpreting physical meaning from the normalized intensities. For purposes 

of comparing the relative shape of the intensity distributions in this section, this 

contact normalization will be sufficient. For the decay constant, we use the 

experimentally measured decay constant of 34 nm from  [63], which was obtained by 

mapping out the distance-dependent scattering profile around a SnO2 nanofiber with 

an 80 nm gold nanoparticle attached to the tip of an AFM. In a similar manner as the 

treatment of the distance distributions, the BD simulations can also be used to map out 

the steady state distribution of Equation (6b) by calculating the individual intensities 

associated with each nanoparticle position [using Equation (1) and the contact 

normalization and decay constant described here] during the simulation and 

accumulating the intensities to form the distributions. The intensity distributions are 

shown in Figure 5.2–3 below where the intensity value was normalized in the same 

way as the theoretical distributions using the accumulated scattering intensity from a 
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stationary particle at contact with the fiber. Comparing Figure 5.2–2 and Figure 5.2–3 

shows qualitative similarities between the intensity distribution trends, but the contact-

normalized intensities are notably smaller for the simulated data compared to the 

theoretical distributions. This is attributed to the fact that the simulated intensities are 

generate from an accumulation of calculated intensity values in a finite exposure time, 

whereas the theoretical distributions are calculated under the assumption of zero 

exposure time. This idea will be discussed further in Chapter 6. 

The range of PBS concentrations examined here represent the limits of the 

operation for this particular nanofiber and nanoparticle system. For ionic concentration 

lower than 0.005xPBS, the nanoparticles cannot get close enough to the fiber to 

generate enough scattered light to be distinguishable from the background noise in the 

detection algorithm. At higher PBS concentrations, these electrostatic repulsion 

between the citrate-coated gold nanoparticles and the bare SnO2 nanofiber surface is 

screened enough that the particles that get close will then fall into a deep energy 

minimum (perhaps due to the van der Waals interaction and small optical gradient 

force of the TIR setup) that prevents from leaving the surface of the fiber. Since this 

configuration of the nanofiber-TIRM platform is concerned only with the interaction 

of freely diffusing particles near the nanofiber surface, these the persistent scattering 

from these attached particles will be ignored by the processing algorithm as described 

earlier. These limits imply that in this particular characterization mode of the platform, 

the limitations of the characterization for different particles will require experimental 

optimization of the ionic concentration of the system, which then must be considered 
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within the context of the application of the particles. In particular, for any sort of 

colloidal nanomedicine application, characterization of the particles using the 

nanofiber-TIRM platform will need to consider how the optimized ionic concentration 

of the experiment will translate to behavior of the particles in vivo where the ionic 

strength of the local environment (e.g. circulatory system)  may be closer to 1xPBS. 

 

  

Figure 5.2–3. Simulated intensity distributions as a function of varying ionic 

strength. Scattering intensities calculated using the Brownian dynamics to 

simulate particle trajectories near a wall under the influence of EDL interactions for 

an 80 nm citrate-coated nanoparticle near SnO2. Intensities are calculated using 

Equation (1) with τ = 34 nm and I0 arbitrarily set to 1. These instantaneous 

intensities are calculated for all positions simulated in a trajectory (using a time 

step, Δt, of 10
-8 

s) and accumulated for a 10 ms exposure time. This final 

accumulated intensity is normalized to the theoretical intensity of a similar particle 

that was stationary at contact for all time steps of the simulated trajectory. This was 

done for 100 particles for a total simulation time of about 50 s to obtain 500,000 

scattering events for each simulated distribution. 



78 

 

 

5.3. Varying Nanoparticle Surface Charge Density 

 We also verified the theoretical models against differences in the surface 

charge density of the nanoparticles. For this study we compared the nominal 80 nm 

citrate-coated nanoparticles prepared in the previous experiment with 80 nm DNA-

coated particles that were prepared in a similar manner. The DNA nanoparticles were 

synthesized with properties described in  [56], and this data was collected on a 

different day as the previous set of data with varying ionic strength. The experimental 

0.05xPBS distribution from Fig. 5.2–1 is replotted in Fig. 5.3–1 with the distribution 

obtained with the DNA-coated particles under the same experimental conditions (also 

collected with a 10 ms exposure time) for comparison. Qualitatively, the intensity 

distributions again have a similar form as expected from the cutoff of the device 

sensitivity and the noise filtering at the low-intensity edge of the distribution. It is 

expected that the DNA-coated surface is more negatively charged than the citrate-

coated surface, therefore a shift in the intensity distribution to lower intensities 

(corresponding to a slight increased electrostatic repulsion) makes sense for the high-

intensity distribution edge.  
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The simulation-predicted distributions for distance and intensity are shown in 

Figure 5.3–2 and Figure 5.3–3, respectively, calculated in a similar manner as 

described in the previous section. Here, the only difference is that we calculate the 

distributions for DNA-coated nanoparticle, which should have a different surface 

charge density.  We estimate the surface charge density of the DNA-coated particles, 

𝜎𝐷𝑁𝐴, to be 0.019 Cm
-2

 from back-of-envelope calculations based on the approximate 

  

Figure 5.3–1. Experimental intensity distribution varying surface charge 

density. Detected and quantified peak scattering intensity data is normalized to the 

intensity of the waveguide output in the same frame. Histograms of the post-

processing filtered intensity data for experimental runs with 80 nm particles of 

different coatings in 0.1xPBS are shown with a 0.01 bin width. The citrate data is 

replotted from Figure 5.2–1. Scattering data was collected with an exposure time of 

10 ms using the same waveguide, cleaned between each experimental run. Both 

experiments were run on different days with prepared colloidal solutions from 

different stocks with different nanoparticle concentrations. 
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number of quantified DNA strands per particle and the surface area of a spherical 

particle with radius of 40 nm. The amount of DNA per particle was quantified using 

the same method as  [64] results in about 3440 strands per nanoparticle. We assume a 

charge of 1 electron per DNA strand corresponding to the charge of the 3’ end of the 

grafted strand. 

Comparing the intensity distributions in Figure 5.3–2 and Figure 5.3–3 we 

again see the smaller simulated intensities as a result of the accumulation method of 

calculating the normalized intensities. Also, it is evident by how similar theoretical the 

distributions are that the in order to see accurate differences in the experimentally 

derived distributions, large datasets with very precisely filtered distributions are 

required. This highlights the importance of the work done in Chapters 3 and 4 for the 

determination of a very detailed procedure. The careful examination of the data will 

ultimately influence the experimental sensitivity of the technique. 

Comparison of the simulated data and the experimental data in Figure 5.3–1 

shows a larger difference between the high distribution edges of the distribution, 

which would indicate that there are some errors in the estimated values for the 

experimental surface charge densities. Also, the primary difference between 

experimental data and simulation is the large population of low-intensity scattering 

seen in the DNA-coated data. This is possibly attributable to differences in the 

experimental setup and data processing of the data as these two datasets were collected 

on different days using two different stock solutions of washed particles with different 

concentrations. A difference in the experimental setup on different days may result in 
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different coupling efficiencies that, while accounted for with normalization, may result 

in different detection limits due to different calculated threshold values. The large 

Gaussian-shaped population in the DNA-coated particle data may be due to poor 

filtering of the data using the processing algorithm as well. 

These possibilities must be investigated further to really identify the source of 

the difference between the datasets. However, considering that the simulated data 

compares distributions of particles under the exact same conditions save for the 

surface charge density (perfect detection accuracy, same nanoparticle concentration, 

same coupling efficiency, etc.), it is also possible that another physical phenomena 

could be at play. Because different surface functionality is a major design parameter 

for the field of nanomedicine, particularly with respect to specific targeting in vivo, 

this analysis shows how collecting experimental data and performing simulations in 

tandem (while also having a detailed understanding of the signal transformation 

pathway) can help identify errors in the modeling or data processing. These are critical 

observations for any physical interpretation of data using this platform for the study of 

colloidal particles. 
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Figure 5.3–2. Theoretically predicted distance and intensity distributions as a 

function of surface charge density. Electrostatic potentials calculated for an 80 

nm citrate-coated and DNA-coated particles near a SnO2 waveguide in units of kT. 

The corresponding relative (non-normalized) PDFs of the nanoparticle distance to 

the nanofiber surface are plotted below with the 𝑒−1 probability shown. The bottom 

plot shows the relative PDFs of intensity calculated from the distance PDFs and the 

nominal intensity-distance relationship of Equation (1) with τ = 34 nm and the 

scattering normalized to the intensity of a particle at contact, I0. 
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5.4. Varying Nanoparticle Size 

 Finally, the intensity distributions were collected and compared for separate 

experimental runs with particle of different size. These experiments were conducted 

using 80 nm, 100 nm, and 150 nm citrate-coated nanoparticles in 0.1xPBS, collected 

with a 5 ms exposure time. Considering the effect of particle radius in the EDL model, 

we expected that for any given distance, the electrostatic interaction between the 

particle and fiber would increase for larger particles as the potential in Equation (7) is 

proportional to 𝑅. The experimental distributions are shown in Figure 5.4–1. The 

  

Figure 5.3–3. Simulated intensity distributions as a function of surface charge 

density. Scattering intensities calculated using Brownian dynamics to simulate 

particle trajectories near a wall under the influence of EDL interactions for 80 nm 

citrate-coated and DNA-coated nanoparticles near SnO2. Intensities are calculated 

similarly to Figure 5.2–3 for a 10 ms exposure time. 
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experimental trends, however, do not look to be accurately described by a simple shift 

of the high intensity edge of the intensity distributions as would be expected from the 

theoretically predicted distance distributions shown in Figure 5.4–2. Here we assumed 

the same surface charge density of 0.024 Cm
-2

 used for the theoretical calculations of 

all other citrate-coated nanoparticles in this chapter. For the particle sizes 

experimentally examined, we see that the difference in the theoretical electrostatic 

potentials and thereby the PDFs is almost negligible, which does not correspond to the 

experimental distributions. The experimental distributions show the 150 nm particles 

have high-intensity distribution edges that are larger than that of the 100 nm particles, 

which are in turn larger than the 80 nm particles. This would imply that the 150 nm 

particles are closer to the fiber from our understanding of the data from Chapter 4, 

which is in direct opposition to the theoretical distributions of Figure 5.4–2. What has 

not been considered yet in the analysis of the chapter is how the scattering from the 

particles changes depending on the particle. This has not been an issue thus far since 

all particles experimentally examined up to this point have been the same size, but it is 

clearly a factor of the signal transformation pathway that must be considered. 

To explain this discrepancy,  we must now also consider the effect the particle 

size has on the scattering intensity separately from the simple electrostatics of the 

system. First we can consider that the Brownian motion of the particles would be 

different based on the Langevin equation in Equation (8). As the size of a colloidal 

sphere increases, the diffusion coefficient decreases. This means that the residence 

time of the nanoparticle near the fiber would effectively increase. Additionally, the 
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scattering cross section would be different for different sized particles based on the 

equation for Rayleigh scattering, which prevents us from directly generating the 

scattering intensity distributions here. We need to know more about how 𝐼0 varies as a 

function of particle size.  In order to explore this effect more, we needed to examine 

the dynamics of the signal generation process via far field imaging using a CCD in 

more detail. This is discussed in the Chapter 6. 

 

  

Figure 5.4–1. Experimental intensity distribution varying particle size. 

Detected and quantified peak scattering intensity data is normalized to the intensity 

of the waveguide output in the same frame. Histograms of the post-processing 

filtered intensity data for experimental runs with citrate-coated particles of different 

sizes in 0.1xPBS are shown with a 0.01 bin width. Scattering data was collected 

with an exposure time of 5 ms using the same waveguide, cleaned between each 

experimental run. All experiments were run on the same day with prepared 

colloidal solutions from different stocks with different nanoparticle concentrations. 
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Figure 5.4–2. Theoretically predicted distance and intensity distributions as a 

function of particle size with constant contact scattering. Electrostatic potentials 

calculated for different sized citrate-coated particles near a SnO2 waveguide in 

units of kT. The corresponding relative (non-normalized) PDFs of the nanoparticle 

distance to the nanofiber surface are plotted below with the 𝑒−1 probability shown. 

The bottom plot shows the relative PDFs of intensity calculated from the distance 

PDFs and the nominal intensity-distance relationship of Equation (1) with τ = 34 

nm and the scattering normalized to the intensity of a particle at contact, I0, which 

was held constant for all simulations. 
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Chapter 5, in part, is currently being prepared for submission for publication of 

the material. (Villanueva, Joshua, Qian Huang, Gaurav Arya, Donald. J. Sirbuly) The 

dissertation author is the primary investigator and author of this material. 
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Chapter 6 

 

 

Model for Far-Field Imaging 
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6.1. Generalization of the Intensity-Distance Relationship 

for TIRM 

The last component of verifying the device physics considers how the data is 

collected. This last step in the signal transformation pathway relates the 

experimentally acquired intensity data with the particle positions described by the BD-

EDL formulation. In planar TIRM, the conversion of scattering intensity to 

nanoparticle-nanofiber distance is straightforward using a calibrated intensity-distance 

relationship as described by Equation  (1).  [34] While the determination of 𝐼0 and 𝜏 is 

a non-trivial matter,  [63,65] once they are obtained the intensity is readily convertible 

to distance using a one-to-one correspondence. For our nanofiber system, however, we 

must examine in more detail how the scattering signal is generated to determine if 

Equation (1) is accurate for our purposes and can be used to explain the results of the 

particle size experiments in the previous chapter. This relies on understanding the 

general working principle of a CCD sensor. 

To generate the raw collected signals in the experiments, the photons scattered 

by a particle in the evanescent field are collected by a CCD sensor in the far field. This 

results in a spatial distribution of charge on the sensor as photons hit specific pixels, 

which is then read out as a 2D array of numbers (pixel counts) on the computer to 

form an image. The photons from scattering events are allowed to accumulate on the 

sensor for finite exposure times, corresponding to how long the aperture of the camera 

is open. The time that the aperture is open directly relates to how many  photons hit 

the sensor before the image is formed, resulting in different quantified intensities. This 
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time must be adjusted  to collect enough photons to generate an image where the 

signal  can be distinguished from the intrinsic noise of the CCD’s sensor, but not so 

long that too many photons from other sources of light obscure the signal coming from 

the scattering nanoparticle. Then this process is quickly repeated to collect successive 

images in time, forming a video of the scattering event. 

In this finite exposure time, the Brownian nanoparticles are constantly moving 

and will typically diffuse several hundred nanometers. From the distance-dependent 

scattering intensity of Equation (1), we know that while the particle’s position varies 

relative to the nanofiber surface, the amount of light it will scatter will also vary. This 

means that there will be a varying rate of photons hitting the sensor during a given 

exposure time to generate an image of a scattering event. It is difficult now to use 

Equation (1) because we do not know to what actual distance a given intensity 

corresponds. In fact, a single intensity signal corresponds to an unknown stochastic 

trajectory rather than a single position, and there are a number of different trajectories 

that can produce the same scattering intensity. This idea is exemplified in Figure 6.1. 
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Because we realize now that the  scattering intensity depends on the movement  

of a Brownian particle, proper treatment of our intensity data requires a new model for 

collecting dynamic scattering data during the course of an extended exposure time, 

𝑡𝑒𝑥𝑝. In this way we can relate the scattering intensity to the size of the particle, which 

influences how the particle moves. In this new model, the total scattering intensity 

associated with a nanoparticle trajectory is then represented by the integral of all the 

instantaneous scattering intensities along this simulated particle trajectory. Equation 

(9) expresses this accumulation of intensities mathematically as an integral of intensity 

during a certain exposure time as the instantaneous scattering rate changes along the 

trajectory of the nanoparticle: 

 𝐼𝑠 = ∫ 𝐴 exp [
−𝑑(𝑡)

𝜏
] 𝑑𝑡

⁡

𝑡𝑒𝑥𝑝
 (9) 

 

Figure 6.1. Varying instantaneous scattering of a diffusing Brownian 

nanoparticle during a 5 ms exposure time. A single quantified scattering event 

imaged by a CCD in the far field is obtained by integrating the intensities plotted 

by the black line over the exposure time, here 5 ms. The intensities change as the 

particle randomly diffuses near the nanofiber surface according to Equation (1) and 

shown here as the exponentially decaying surface. This intensity represents the 

nanoparticle’s trajectory, rather than a single position. 
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where 𝐼𝑆 is now the total scattering intensity of a particle (defined as number of counts 

in the peak intensity pixel) integrated over the exposure time, 𝑡𝑒𝑥𝑝, with the term in 

the integral representing the instantaneous scattering of the particle at a particular 

time, 𝑡. The coefficient, 𝐴, is the instantaneous scattering rate at contact in units of 

counts per second, 𝑑(𝑡) is the trajectory of the nanoparticle in time, and τ is the same 

decay constant as in Equation (1) for the same waveguide. Because we calculate 

defined spatial trajectories of individual particles in the BD simulation, we can also 

calculate the instantaneous scattering of the particles at the different positions sampled 

using Eq. (1). Equation (9) is then incorporated in the BD simulations by 

approximating this integral as a Riemann sum using the trapezoidal rule. While we are 

specifically concerned with Brownian trajectories in our particular experimental setup, 

it is interesting to note that Equation (9) is a general expression that can be applied to 

any form of 𝑑(𝑡). With this generality in mind, we can examine limiting cases and 

different forms of particle trajectories to validate this model before we revisit the 

experimental trends with particle size. In fact we can classify different types of TIRM 

experiments now by the general quality of the particle trajectory in any particular 

experimental setup. In the following sections we consider three different types of 

particle trajectories: stationary, linear, and stochastic. 

6.2. Model Verification: Stationary Particle 

 The simplest case of this generalized model is where the particle is held 

stationary. In this situation, the particle trajectory is a constant value independent of 
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time, d, and can be taken out of the integral. Evaluating the integral results in the static 

form of the equation: 

 𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = 𝐴𝑡𝑒𝑥𝑝 exp [
−𝑑

𝜏
] + ⁡𝐵, (10a) 

which is similar to Equation (1). However, here it is clear that the coefficient of the 

decaying exponential is a function of the exposure time, 𝐼0 = 𝐴𝑡𝑒𝑥𝑝. Additionally, we 

include a constant term, ⁡𝐵, to represent the background signal of the data. This form 

of the scattering intensity-distance relationship was the basis for the experimental 

mapping of the evanescent field in  [55] (without the background term). In this 

calibration method, knowing the approximate distance of the nanoparticle while the 

scattering intensity is being collected at a particular exposure time enables us to back 

out the decay constant. 

To ensure that this equation makes sense with our understanding of the device 

physics, we examine the limiting cases of the station particle position.  In the limit that 

the particle is really far from the nanofiber and 𝑑 equals infinity, then the first term in 

Equation (10a) goes to zero and the collected scattering is simply equal to 𝐵, the 

intrinsic noise of the sensor plus the signal from background light sources collected by 

the CCD. This makes sense as there is no particle in the evanescent field. Conversely, 

when the particle gets close to the nanofiber 𝑑 goes to zero, the exponential 

approaches 1, and we get a linear relationship between the scattering intensity and the 

exposure time of the system, with the slope equal to the instantaneous scattering rate 

of the system. 

 𝐼𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐴𝑡𝑒𝑥𝑝 + ⁡𝐵 (10b) 
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Since Equation (10b) represents the scattering of a stationary particle at contact, we 

can use this relationship to back out the parameters 𝐴 and 𝐵 by imaging a particle at 

contact at many different exposure times, getting the slope and y-intercept of the linear 

trend, respectively. 

Figure 6.2 shows several linear trends for different nanoparticles attached to a 

fiber in pink, where an experimental run similar to that described in Chapter 5, Section 

2 was prepared in a 0.1xPBS solution and a few particles were allowed to attach to the 

nanofiber before data was collected. Once the particles attached, the exposure time of 

the camera was varied and the data collected for 5000 image frames. The intensities 

plotted in Figure 6.2 were quantified using the peak intensity method (no filtering 

needed) and averaged over the 5000 collected frames for each attached particle. While 

the linear trends strongly validates Equation (10b), we see that the parameters fits 

from Figure 6.2 vary for different particles. This means that many particles must be 

analyzed in this manner to get an acceptable average value for 𝐴 and 𝐵 that can be 

generally applicable to all scattering events collected. The average over all 

nanoparticles is shown as the red line with the scattering from the nanofiber output is 

shown in black. 
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This is a difficult experiment to perform because there are many sources of 

error that contribute to the final quantified intensity and we need to ensure that only 

variation in the particle size and shape are contributing to the different fitted 

parameters. To get a distribution of fits from multiple attached particle though is a 

tedious process because the number of particles that can be attached an analyzed for 

any one given experiment must be limited to only a few (less than 5) particles at a 

time. This is because we see that as more particles attach to the nanofiber, the output 

intensity diminishes, implying that multi-particle attachment will not produce the same 

fits as for a single attached particle.  Therefore, allowing only a few particles to attach 

to the fiber at any one time ensures the quantified intensities are not affected by 

  

Figure 6.2. Exposure time analysis of multiple 80 nm particles in contact with 

the nanofiber. The pink data fit to different lines represents different attached 

particles, while the red data shows the average trend over all particles. The black 

data is the scattering from the waveguide output, and the error bars for the black 

and pink line show ± the standard deviation in the scattering intensities over 5000 

collected video frames at each exposure time. The red error bars are ± the standard 

deviations of the particle average intensities at each exposure time.  
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upstream scattering of the particles as they may affect the guided power in the fiber. 

However, in addition to physical particle parameters, slight variation of the fitted 

parameters is inevitable due to variations in the setup when multiple particle data is 

collected, which cannot be perfectly repeated between different runs. The good thing 

though is that once the particle is stuck to the fiber, data collection is done by simply 

changing the settings on the camera via the computer and the experimental setup can 

be left undisturbed. This minimizes experimental setup variation in a single 

experimental run varying 𝑡𝑒𝑥𝑝, resulting in a highly linear trend with exposure time for 

any given attached particle as long as its orientation and position do not change during 

the exposure time analysis or other particles do not attach the fiber during the data 

collection. Getting a good average for 𝐴 and 𝐵 should enable us to predict how the 

scattering intensity of a stationary, roughly spherical, 80 nm particle should change as 

a function of scattering intensity and distance from the nanofiber surface (assuming 

the same 34 nm scattering intensity decay for 𝜏. 

6.3. Model Verification: Linear Particle Trajectory 

 The true test of this model formulation is extension to a dynamic system, the 

simplest of which is a linear nanoparticle trajectory towards or away from the 

nanofiber surface. This trajectory can be described by the general linear form 

 𝑑(𝑡) = 𝑅𝑡 + 𝑑0 (11) 

where 𝑅 is the constant particle velocity, 𝑡 is time, and 𝑑0 is the initial position of the 

particle relative to the fiber surface. For this case we define a negative particle velocity 

as a particle moving towards the fiber, while a positive velocity is a particle moving 
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away from the surface. Plugging this into Equation (9) and evaluating the indefinite 

integral results in 

 𝐼𝑙𝑖𝑛𝑒𝑎𝑟 = 𝐴(−
𝜏

𝑅
) exp (−

𝑅𝑡+𝑑0

𝜏
) + 𝐵 (12a) 

where we still get an expression similar to Equation (10a) with a decaying 

exponential, a coefficient, and a background term. Again in the limit that the particle is 

moving at a really far distance away from the fiber where 𝑑0 ≫ 𝑅𝑡 the scattering 

intensity is approximately the background value. When the particle is really close to 

the fiber, the total scattering will depend on how long the exposure time is set. If we 

evaluate the definite integral from an initial time 𝑡𝑖 = 0 to a final time 𝑡𝑓 = 𝑡𝑒𝑥𝑝 we 

obtain 

 𝐼𝑙𝑖𝑛𝑒𝑎𝑟 = 𝐴(−
𝜏

𝑅
) [exp (−

𝑅𝑡𝑒𝑥𝑝+𝑑0

𝜏
) − exp (−

𝑑0

𝜏
)] (12b) 

Equation (12b) is equivalent to the difference in scattering intensity of a static particle 

at the final and initial times of the exposure time multiplied by a constant factor 

 𝐼𝑙𝑖𝑛𝑒𝑎𝑟 = (−
𝜏

𝑅𝑡𝑒𝑥𝑝
) [𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑡𝑓) − 𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑡𝑖)] (12c) 

Here, we assume the background is equivalent at both times and it is eliminated in the 

subtraction. 

Experimentally, this system can be realized by controlling particle movement 

using an AFM tip as exemplified in  [63]. In this experiment, we prepare an 80 nm 

gold nanoparticle on the tip of an AFM and bring it in contact with the nanofiber 

surface in a controlled manner using a linear approach and retraction of the AFM 
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cantilever at a set rate, 𝑅, while collecting the scattering from the particle in the far 

field. The scattering profile is shown in Figure 6.3. 

 

  

Figure 6.3. Scattering intensity from a linearly moving particle attached to 

AFM tip. Scattering from an 80 nm citrate-coated gold nanoparticle in time as it is 

brought closer to the nanofiber surface (linear approach regime) with a velocity 

magnitude, |R|, of 8 nm/s and retracted from the surface (linear retraction regime) 

at the same rate. The plateau region in the center represent the nanoparticle contact 

where the cantilever continues to move towards the surface, but the particle cannot 

get closer therefore the intensity is flat. At the center of this plateau region the 

direction of the cantilever changes and retraction begins. The flat regions at the 

beginning and end of the intensity plot show the background scattering. The bottom 

two plots are the fits of the approach and retraction region to Equation (12a) to 

obtain the scattering decay constant for the fiber, τ. This fiber is different from the 

fiber used to collect all the data in Chapter 5.
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Here we do not know the decay constant of the scattering profile, 𝜏, but we can use the 

shape of the scattering curve to back it out. We know the total time of the approach 

and retraction, and we can assume that the flat part of the intensity trend in time 

corresponds to the time when the nanoparticle is touching the nanofiber surface. 

Additionally, if we assume the particle started far away from the fiber well below the 

noise floor of the CCD, then we can use the initial part of the intensity curve as an 

estimate of 𝐵. Knowing this, the intensity in the plateau region of the curve can be 

averaged to get a value for 𝐴, since we know the exposure time of the camera. All 

these parameters can be used to back out the fit for the decay constant, 𝜏. In this way, 

the AFM method can be used to calibrate the scattering intensity-distance profile of 

the fiber without a layer-by-layer polymer deposition. The extracted parameters here 

make sense with what is expected for the SnO2 fibers of similar size and using 80 nm 

gold nanoparticles, but as the previous discussion highlighted, a more thorough 

analysis of the particle intensity under different exposure times and using different 

particles might give more accurate values. 

6.4. Size Trends Revisited 

 With evidence that this general expression is applicable to multiple different 

classes of nanoparticle trajectories, we can reexamine the experimental trends with 

particle size presented in the previous chapter. Using the exposure time analysis in the 

previous sections we can also account for how the scattering intensity might change at 

any given distance as the size of the particle changes. To do this we perform the same 

analysis as in Section 6.2, but as a function of different particle sizes, to get an 
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empirical trend that describes the change in scattering rate. The result of this trend for 

the 4 different particle sizes simulated in the Chapter 5 is summarized in Figure 6.4–1. 

The expression for the scattering rate at contact as a function of particle size is 

 𝐴 = 0.39(particle⁡diameter)1.31 (13) 

The value for this faster-than-linear trend makes sense compared to the experimentally 

derived relation for dielectric particles by Prieve and Walz in  [66] as the scattering 

here is due to plasmonic particles. 

 We can also use this exposure time analysis to examine how the difference in 

normalization between the experimental and theoretical data affects the quantified 

signals. In Figure 6.4–1 the ratio of the contact scattering rate to the waveguide output 

scattering rate is shown. By using these ratios, it should be easy to transform the 

normalized experimental data to a form that is more informative of the proximity of 

the particles to the surface. It is expected in a perfect set of experiments that the 

waveguide output, 𝐼𝑜𝑢𝑡𝑝𝑢𝑡, would be constant, and thus dividing the experimental data 

by this ratio (corresponding to the appropriate particle size) should both account for 

the fluctuation in the coupling efficiency and also relate the data to an absolute 

distance. This would enable direct comparison of the experimental data to the 

simulated distributions. However, due to the differences in the experimental setup 

between each run, this value varies as seen by the different slopes of the black lines in 

the top row of the figure. This is complicated by the fact that the different slopes might 

be due to both experimental setup differences and also the change in the evanescent 
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field as particles attach to the fiber surface. This prevents the relation of the output-

normalized experimental data to contact-normalized data. 

 

 

  

Figure 6.4–1. Exposure time analysis of particles in contact with fiber surface 

as a function of particle size. Top Row: The faint pink lines represent linear fits to 

exposure time data collected for individual attached particles with the error bars 

showing standard deviation of the intensity fluctuation over 5000 collected frames.  

The red line is the average fit for all nanoparticles with the error bars here 

representing the standard deviation of the mean intensities for all particles at that 

exposure time. The black line is the exposure time analysis of the waveguide 

output. All data for each nanoparticle size was collected from a single experimental 

run. Bottom row: The left plot is the fitted scattering rates (red line slope) for each 

nanoparticle size on a log-log plot with the scattering rate-size relationship 

obtained from the fit of the line through the points. Error bars here represent slopes 

fit to mean ± standard deviation of the mean particle data shown in red. The right 

plot is the ratio of the red line slope to the waveguide output slope for each particle 

size with error bars calculated in the same way as for the left plot. The line is a 

ratio of 1 for comparison to the data. 
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Regardless of this limitation on directly comparing the experimental and 

theoretical data, the theoretical intensity distributions as a function of particle size can 

now be corrected to account not only for the different electrostatic interaction but also 

for the difference in scattering intensity. Since we know particle size affects its 

dynamics also, we can begin to understand how differences in diffusion during a given 

exposure time will be reflected in different overall scattering intensities using the BD 

simulations as well. When we model the system now, we calculate 𝐴⁡based on 

Equation (13) and use Equation (12c) to calculate the scattering of a particle that we 

assume has a linear trajectory between calculated positions, 𝑟 and 𝑟0, using Equation 

(8) in the BD simulations. We then accumulate these intensities until we have 

simulated the particle trajectories for a given exposure time. This final accumulated 

intensity is used as the quantified intensity, and we normalize these values to the 

scattering intensity from a stationary particle at contact with the same scattering rate 

and imaged for the same exposure time as in Equation (10b). We see that the new 

theory accurately predicts the experimental trends with size as shown in the simulated 

scattering intensity curves in Figure 6.4–2, which have a similar quality to the 

experimental distributions in Figure 5.4–1. 

The experimental particle sizes shown here also represent the practical 

limitations of using the nanofiber-TIRM platform in the presently described 

configuration for characterizing different particles. For particles smaller than 80 nm, 

the scattering rate is expected to be smaller and therefore for the typical exposure 

times used in these experiments (5 or 10 ms) the total scattering intensity will still be 
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too small to be distinguishable form the background noise, much like the case for low 

salt concentration. This can in theory be remedied by simply using a longer exposure 

time, but this case will be considered in Section 6.6. For larger particles, the main 

limitation is the timescale of settling. As the particles become larger, the gravitational 

component of their potential increases with the third power of the particle radius 

[𝑈𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔ℎ = (𝜌𝑁𝑃 − 𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (
4

3
𝜋𝑅3)𝑔ℎ] where ρNP and ρsolution are the 

densities of the particle material and the suspending medium respectively, 𝑔 is the 

gravitational constant, and ℎ is the height of the particle. The falling out of suspension 

is significant for the 200 nm citrate-coated particles in the water and over the course of 

the 20 minute data collection only about 10 scattering events were detected within the 

first 5 minutes of data collection. This would imply that in order to get more statistical 

datasets for larger particles in this same nanofiber-TIRM configuration, multiple 

experimental setups would need to be repeated and the data consolidated or a higher 

concentration of particles would need to be examined. The higher concentration of 

particles might be a more efficient option, but physical differences in the system and 

the accuracy of the electrostatic models must be considered as the assumption of non-

interaction particles in the BD simulations may no longer hold. Furthermore, this 

flocculation may not necessarily be a limitation for studies of particles in biological 

conditions as the incorporation of fluid flow may agitate the colloidal system enough 

to prevent settling. 
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Figure 6.4–2. Theoretically predicted and simulated intensity distributions as 

a function of particle size corrected with varying contact scattering. The top 

plot is the PDF calculated from Equation (6b), here with a contact scattering value 

determined by particle size from Equation (13). The bottom plot shows scattering 

intensities calculated using Brownian dynamics to simulate particle trajectories 

near a wall under the influence of EDL interactions for citrate-coated nanoparticles 

of varying size near SnO2. Here only distributions for particle sizes experimentally 

investigated are simulated. Intensities are calculated similarly to Figure 5.2–3 for a 

5 ms exposure time.  
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6.5. Robustness Against System Heterogeneity 

 One of the benefits of the nanofiber-based TIRM setup described in Chapter 2 

was that it was a means of efficiently collecting high-throughput single-particle 

interaction information for solution-level characterization similar to DLS. The main 

advantage of this approach was that this technique was less sensitive to sample 

contamination, enabling the accurate characterization of colloidal systems without the 

need to filter the particles by size. For traditional DLS, this is almost always necessary 

due to the inherent heterogeneity of batch-synthesized nanoparticle samples. 

To test the robustness of this technique against particle size skewing, we 

collected data on mixed solutions of 80 nm and 150 nm CNPs in 0.1xPBS collected 

with a 5 ms exposure time. This analysis is now possible because we can account for 

the difference is scattering intensities of the two sizes of particles in solution. We first 

collected control runs with only 80 nm particles and only 150 nm particles, then 

collected a 50:50 mixture of the two samples as well as mixtures of a 25:75 ratio and 

75:25 ratio of the particles solutions. We also compared the experimental runs with the 

Brownian dynamics simulations. The experimental and theoretical results of the 

scattering intensities are shown in Figure 6.5–1. 
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While the shape of the distributions changes as a function of the relative 

proportion of the different populations, it is evident by the qualitative trends of the 

mixtures that the presence of multiple populations of particle size will not skew the 

  

Figure 6.5–1. Experimental and simulated intensity distributions of solutions 

with a mixture of particle sizes. 80 nm and 150 nm citrate-coated gold 

nanoparticles are mixed in various proportions in 0.1xPBS. Experimentally 

collected (5 ms exposure time) and quantified intensities at are shown in the left 

column where the peak intensities are normalized to the waveguide output. The 

right column shown BD simulations for the same experimental conditions, using 

size-based contact scattering values. 
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data like with traditional DLS. In fact, the agreement with the theoretical simulations 

suggest that this platform has potential to characterize the solution-level interaction of 

real colloidal solutions with non-specified surfaces, accounting for the polydispersity 

of the sample. Theoretical simulations of samples with varying polydispersity are 

shown in Figure 6.5–2 and show clear qualitative differences. This is a major benefit 

of this platform.  In practice, it will require much more thorough analysis of the data 

and the experimental procedure to actually derive quantitative polydispersity values, 

but this analysis present a novel capability that is unique to TIRM systems. 

 

  

  

Figure 6.5–2. Simulated intensity distributions of samples with varying 

polydispersity. A nominal system of citrate-coated particles in 0.1xPBS is 

simulated using the size-dependent scattering intensity with a Gaussian particle 

size distribution with mean 80 nm and varying standard deviations. 
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6.6. Stochastic Particle Trajectories and the Problem of 

Parameter Estimation 

 With the development of the scattering intensity data collection model, we 

were able to account for the difference in scattering rates for different size particles. 

However, we can also look at how differences the collection time affect the quantified 

intensity signal and what that means for relating these collected intensity distributions 

to the theoretical distributions calculated from Equation (5). The effect of exposure 

time was already alluded to in Chapter 5 where the theoretical normalized intensity 

distributions were larger than the simulated distributions. This trends with exposure 

time was examined further both experimentally and with the simulations as shown in 

Figure 6.6–1. The experimental intensity distributions shown in the left plot were 

collected for a prepared 80 nm citrate-coated nanoparticle sample in 0.1xPBS. Here, 

the experimental setup was undisturbed and the only difference between distributions 

was that the camera settings were changed. The BD simulation distributions are shown 

in the center plot and, using the intensity-distance relationship from Equation (1) 

(shown in the inset), the intensities were converted to distances whose corresponding 

distributions are shown in the right plot. 

 The actual distance distribution of the particles from the BD simulation is 

shown as the dotted line in the right plot and this should be the same for all 

distributions as the colloidal system did not change at all. It is clear that changing the 

exposure time also changes the intensity distribution (experimentally and in the 

simulations), and this change corresponds to the idea presented in Chapter 5 where the 
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difference between theory and simulation is due to the finite exposure time of the 

simulation versus the physically impossible 0 ms exposure time of theory. As 

exposure time increases, the normalized intensity distribution gets shifted to smaller 

intensities. If we consider the non-normalized intensities, they should increase with 

increasing exposure time as the integral of Equation (9) would suggest. However, 

because we normalize to a stationary particle at contact, see from these simulations 

that the constant scattering increases faster with exposure time than the moving 

particle. This makes sense comparing Equation (9) and Equation (10b). The longer the 

exposure time, the large this discrepancy between the two increasing intensities. 

 

  

Figure 6.6–1. Effect of exposure time on experimental and simulated 

distributions. Left: Experimentally measured and quantified scattering from 80 nm 

citrate-coated gold nanoparticles in 0.1xPBS collected at varying exposure times, 

normalized to the waveguide output. Center: BD simulation of the experiment, 

normalized to the scattering of stationary particle at contact. The inset shows the 

intensity-distance calibration curve described in Equation (1) with a decay constant 

of 34 nm and contact scattering of 1. Right: Theoretical distance PDFs obtained 

from calculating the distance values from the simulated intensities in the center plot 

using the calibration curve shown in the inset. The theoretical distance distribution 

for the system calculated using Equation (5) is shown as the dotted line 

(corresponding to intensity data collected with 0 ms exposure time) scaled so the 

flat portion of the theoretical PDF coincides with the flat portion of the simulated 

PDFs.  
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 Using Equation (1) for the distance conversion now highlights the difficulty in 

estimating the parameters from the experimentally obtained intensity distributions and 

using the electrostatic models of Equation (7). We know by nature of the experiment 

that all the different distributions in Figure 6.6–1 all correspond to the theoretical 

distribution shown by the dotted line, and it is really only this dotted line that we can 

extract quantitative parameter values because that is what the analytical model 

describes. However, experimentally we can never collected data that will results in 

this theoretical distributions because we always need to collected scattering intensities 

using finite exposure times. Furthermore, use of Equation (1) shows that not only is 

the data shifted to larger distances, but there is the formation of an anomalous 

population in the distance distribution, which should not be there as there is no 

physical mechanism in the simulations that would result in an accumulation of 

particles in this way. 

This problem may be remedied by using a different intensity-distance 

relationship. We already developed a different model of this relationship that 

accurately describes the experimental data, but the integral form of Equation (9) 

cannot be used to convert intensities to distance. The main problem here is that the 

intensities obtained using a finite exposure time are not actually related to individual 

distances, but rather they correspond to particle trajectories. Using the BD simulation, 

we can invert the collected intensity information to map out the distribution of particle 

positions that underlie each quantified intensity. This is plotted for different exposure 

times in Figure 6.6–2. 
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 These plots represent the simulated trajectories of the particles as a mean value 

(colored data point) and ± the standard deviation of positons (span of the gray line), 

  

Figure 6.6–2. Intensity-trajectory relationship obtained from BD simulations. 

Lines representing particle trajectories plotted at the quantified intensities for 

different exposure times. The colored scatter plot is the mean position of each 

trajectory while the gray line spans ± the standard deviation of positions in the 

trajectory. The nominal intensity-distance relationship of Equation (1) is plotted for 

comparison with contact scattering equal to 1 and decay constant equal to 34 nm.  
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and this is plotted at the intensity quantified as a result of that trajectory using the 

relationship of Equation (1) with I0 equal to 1 and τ equal to 34 nm, plotted as the 

black line for comparison in all the plots. From these plots it is clear that as the 

normalized intensity approaches is maximum value for each exposure time, the 

number of different particle trajectories that can result in that intensity decreases. In 

theory, the absolute maximum intensity should related to a single particle trajectory 

with zero standard deviation and mean equal to the absolute closest approach of the 

particle allowed by the electrostatics and thermal fluctuations of the system. As the 

intensities decrease, many more particle trajectories can result in the same intensity, 

which is shown by the higher density of trajectories at low intensity as well as the 

wider spread of position standard deviations. The question of what analytical 

intensity-distance relationship is appropriate for signal transformation still remains, 

however. While these plots give us more information about the intensity relates to 

particle trajectories, these trajectories were still obtained by using nominal values 

input into the BD simulation. Therefore, it would seem that we are at an impasse 

because the parameters we want to extract from the distributions also affect these 

intensity-distance plots. 

To understand this problem further, it may be useful to consider why this data 

is different from other traditional TIRM datasets. The Brownian motion of a freely 

diffusing nanoparticle in our case can be represented by a random walk, or what is 

called a Wiener process.  [67] The accumulation of the piecewise linear trajectory of 
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the simulated particle motion done in the previous sections results in an expression 

that can approximate the dynamic scattering from a Brownian particle: 

 𝐼𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 = ∑ 𝐼𝑙𝑖𝑛𝑒𝑎𝑟,𝑖
𝑁
𝑖=1  (14) 

In the limit that the time between 𝑡𝑓 and 𝑡𝑖 goes to zero, the summation will be over 

infinitely many terms, with each term representing close to zero change in intensity, 

but this total summation will then essentially become an integral over the stochastic 

trajectory of the particle as in Equation (9). The influence of a surface and the EDL 

excludes some possible positions, and thus the trajectories are bound on one side by an 

electrostatic potential, but open on the other side. A similar situation occurs with a 

particle in a potential well. This can be represented by a mean-reverting random walk, 

or what is called an Ornstein-Uhlenbeck process,  [68] and is typically realized in the 

traditional planar TIRM setup, but also related to a tethered or attached particle 

configuration. Similar to the freely diffusing particle case, each quantified intensity 

represents a random one-dimensional trajectory of the nanoparticle in the surface-

normal direction. However, for this situation the trajectory is bound between two 

positions and therefore the particle only samples those positions in between. From a 

statistical point of view this is an easier system to work with. By representing an 

Ornstein-Uhlenbeck trajectory with a mean position, eventually the entire potential 

profile will be mapped because of the boundedness of the system.  This is why it is 

possible to use Equation (1) for a traditional TIRM setups. On the other hand Equation 

1) is not applicable for the nanofiber-TIRM setup in a non-bound particle 

configuration because a system profile with possible positions unbound on one or both 
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sides is impossible to map out using a one-to-one mapping. The unboundedness of the 

profile precludes mapping of the entire profile. 

Chapter 6, in part, is currently being prepared for submission for publication of 

the material. (Villanueva, Joshua, Qian Huang, Gaurav Arya, Donald. J. Sirbuly) The 

dissertation author is the primary investigator and author of this material. 
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7.1. Introduction  

Atomic force microscopes (AFM) and optical/magnetics traps are useful for 

measuring molecular level forces and mechanically characterizing nano-scale systems 

for a variety of applications. [5,40,69–71] Particularly in areas of chemistry, materials 

science, biology, and medicine, these technologies have played an important role in 

studying the underlying physical mechanisms of various chemical interactions and 

physical phenomena that occur across several length scales (nanometers to 

micrometers). Examples include the mechanical properties of advanced soft materials 

and tissues, [72] the stiffness of cells in diseased and healthy states, [73] and the 

binding strength of specific ligand-receptor interactions and drug-target 

complexes. [74] However, because of the larger size of the transducer components 

(micron-sized cantilevers and trapped beads) and complex control/feedback 

mechanisms, it is often difficult to use these technologies to investigate mechanical 

phenomena within systems, beyond their surface. [69,75] Furthermore integration of 

AFM or trapping setups with multiplexed read-out and high-throughput analysis 

schemes (e.g., lab-on-a-chip and biodiagnostic devices) remains challenging despite 

the need for statistical datasets to understand the inherently stochastic nature of 

systems at these length scales. [37,73,75] While many sophisticated AFM and trap 

systems have been built that can achieve high force and displacement 

resolutions, [36,39] there is an immediate need to develop alternative transducer 
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designs that can facilitate high-throughput nanomechanical studies in situ inside of a 

material. 

One method of addressing this size issue is to use a transducer that operates 

based on the mechanical response of a compressible polymer thin film. In principle, 

such a system could be synthesized on a probe of arbitrary size and shape to suit the 

desired application, relying only on a characteristic force-indentation profile to 

quantify nano-scale events that physically deform the polymer. Moreover, by 

eliminating the need for a large cantilever arm, piezo-stage, or high numerical aperture 

objectives, the compact design could offer a new dimension of portability and 

integration for nanomechanical studies. For example, small optical nanofiber 

platforms [76] could leverage the compressible properties of a soft polymer cladding 

to provide mechanical resistance and feedback for individual plasmonic optical 

transmitters that decorate its surface. Forces under investigation would displace these 

transmitters into the cladding, within the fiber’s evanescent field, and can be measured 

in the far-field via indentation-sensitive scattering intensity modulation. [64] The one-

dimensional structure and angstrom-level displacement sensitivity of these systems are 

promising features for developing nano-scale analytical alternatives to AFM and 

trapping technologies that can probe diverse intracellular environments. [75] 

Additionally, there is a particular interest in utilizing polymeric systems as sensing 

elements because of the diverse catalogue of advanced stimuli-responsive materials 

being developed. [77–79] Coupling the capability of fine mechanical measurements 
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with one of these stimuli-responsive systems is an appealing design for a versatile 

multi-functional probe. 

Development of this new class of mechanical transducers requires a well 

characterized force-indentation profile for accurate force measurements. However, 

because the motivation for these transducers is largely application-orientated, it would 

be difficult and inefficient to design and optimize a new polymer film on an 

individual-experiment basis. In this work we propose a general polymer brush 

indentation model to guide the development of such transducers, from a bottom-up 

synthetic approach, aiming to help circumvent guess-and-check design methods for 

these thin films. The model is formulated based on an application of Alexander-de 

Gennes polymer scaling laws, via simple geometric arguments, to an elastic Winkler 

foundation representation of a thin compressible film. We start from a single-chain 

perspective to describe the packed structure of the brush, but depart from the 

traditional free energy treatment of these systems under loads to derive an expression 

for the single-chain stiffness that also incorporates the linear elastic modulus of the 

compressible layer. The latter is useful for characterizing these systems in terms of a 

quantitative material property for comparison among different mechanical transducers. 

In doing so, we develop a new hybrid model that bridges a molecular-level 

thermodynamic analysis and a macroscopic continuum theory. This enables us to 

begin to understand how the fine molecular structure can influence bulk mechanical 

properties, facilitating the bottom-up optimization and top-down characterization of 

these transducers with a single model. 
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7.2. System Description and Model Formulation 

7.2.1. Previously Established Compression Models 

Development of a new indentation model is largely driven by a need to 

understand the mechanical behavior of the transducer across multiple length-scales. 

On the one hand, many traditional indentation models are rooted in Hertzian contact 

mechanics and formulated based on a continuum treatment of a compressible sample. 

The original work formulated and solved by Hertz [80] and Boussinesq [81] 

considered the changing contact area between two deformable bodies as they are 

forced together under different loads, resulting in a varying pressure distribution 

across the contacting surfaces that depends on the bulk elastic properties and shapes of 

both materials. Applying a load to a compliant surface via a rigid indenter, a relation 

between force and indentation distance was derived. Sneddon expanded on this idea 

and derived expressions for the general case of axisymmetric solids indenting elastic 

half-spaces. [82] With the advent of micro- and nano-analytical instrumentation like 

AFM, these models were used to back out the bulk elastic moduli of materials from 

experimentally obtained force-indentation curves. As trends towards investigating 

smaller systems progressed, various adjustments to the Hertzian model were 

developed by several researchers to account for different phenomena at these scales 

that affected the force curves in different ways. Of particular interest for compact 

films, Dimitriadis’ formulation accounted for the finite thickness of thin, elastic 

materials. [72] 



120 

 

 

Along the same lines, simpler models for describing the force-indentation 

relation between an indenter and a compliant foundation were developed by 

Winkler, [83] who assumed that the local indentation of a material was proportional to 

the local pressure. This established the bed-of-springs representation of an elastic film, 

of uniform height, on a rigid substrate. As Kerr summarized, [84,85] several 

improvements to the Winkler elastic foundation were also derived to model the force-

indentation relation more accurately by increasing the complexity of the spring 

foundation. Mathematically, these adjusted models involved higher order terms that 

could be understood mechanically by the addition of shearing and bending layers over 

the original bed-of-springs foundation. Popov [86,87] and Heβ, [88] by their methods 

of dimensionality reduction, discussed the similarities between the continuum and 

elastic foundation approaches and defined spring constant criteria for the latter model 

that would result in exact solutions calculated from the former. This drastically 

simplified the mechanical characterization of flat elastic films for certain simple 

indenter geometries. However, despite the ubiquity of this macroscopic treatment of 

thin film indentation mechanics, both Hertzian and elastic foundation theories do not 

address the molecular-level structural elements of these systems. 

From a thermodynamic standpoint, much of the work describing thin 

polymeric films and the conformations of chains in grafted brush systems can be 

traced back to the free energy balances examined by Flory [89] and Huggins. [90] In 

their work, the characteristic size of a linear polymer chain in solution was related to 

the number of monomers in the chain by balancing the energetic costs of chain 
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extension and collapse, respectively. The former reduces the conformational entropy 

of the system, while the latter increases the internal energy via enhanced monomer-

monomer interactions in a denser state. This characteristic length scale, called the 

Flory radius, RF, can also be described by the self-avoiding walk statistics of the 

monomers’ spatial distribution, and describes the size (diameter) of a spherical volume 

(often referred to as a correlation blob) that the chain will occupy under 

thermodynamic equilibrium. The size of a real, free chain in a good solvent is 

approximated as: 

 𝑅𝐹 = 𝑎𝑁
3

5, (15) 

where a is the length of a single monomer, N is the number of monomers in the chain 

(equal to the molecular weight, MW, of the chain divided by the molecular weight of 

the individual monomer, m), and the good solvent condition implies that the 

temperature-dependent interactions between the polymer and solution are stronger 

than the monomer-monomer and monomer-substrate interactions. 

Extension of Flory-Huggins theory was carried out by Alexander [91] and de 

Gennes [92,93] who applied the thermodynamic analysis of polymer systems to 

grafted and adsorbed polymer brushes. The fundamental construct of Alexander-de 

Gennes theory says that the characteristic correlation blob size where the chain’s 

monomers behave according to self-avoiding walk statistics is dictated by the spacing 

between chain grafting sites, D, in a brush system. [94] Because the entirety of the 

chain will not fit in a blob of size D if D is smaller than RF, the chain will tend to 

extend along its free dimension to minimize the free energy of the packed chain 
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resulting in a linear array of correlation blobs.  Balancing the entropic cost of 

extension and increased internal energy of the system leads to calculation of the 

equilibrium brush height, t, that is a product of the lateral geometric confinement of 

each chain. The grafting site spacing, which is approximately the inverse root of the 

grafting density, affects the overall thickness of the brush as 

 𝑡 = 𝑁𝑎
5

3𝐷−
2

3 (16) 

In this way, Alexander-de Gennes theory extends the applicability of self-

avoiding walk statistics to a brush system based on a boundary condition imposed by 

the nano-structure of the film. Since this mechanism of chain extension occurs when D 

is smaller than RF, only under this condition is Equation 16 valid. Where D equals RF 

is the distinction between the polymer brush regime (D < RF) and the mushroom 

regime (D > RF), the latter consisting of sparsely grafted chains in non-interacting 

domains on the film substrate and is not addressed in the model. [95] Improvements to 

this free energy analysis were done by Milner et al. who derived a parabolic 

distribution of the chain ends using mean field theory. [96] The application of forces 

to these brush systems lead to free energy expressions for individual chains that 

depend on the compression distance. [97] By taking the derivative of the single-chain 

free energy with respect to the indentation dimension, force expressions could be 

backed out. Although these models could be applied to polymer brush compression, 

and described the system in terms of chain length and grafting density, there was no 

explicit term that could be backed out and related to a bulk mechanical modulus. 
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7.2.2. Hybrid Mechanistic Compression Model 

Bridging the molecular level thermodynamic treatment of polymer films with 

the macroscopic theories of thin elastic film indentation is possible by making a few 

geometric assumptions about the microstructure of a polymer brush. With the 

Alexander-de Gennes representation of each polymer chain in the brush as a linear 

array of correlation blobs, it is a reasonable extension to consider each chain as a 

single cylindrical volume with diameter, D, and height, t (Equation 16).  Additionally, 

if we assume each chain is identical and contributes independently to the mechanical 

response of the transducer, the entire polymer film can be modeled as a close-packed 

array of these right cylindrical volumes as in the case of the simplest Winkler 

foundation model. This system is depicted in Figure 7.2A. In this way we have 

formulated a nano-structured continuum representation of the film whose partitioning 

is dependent on thermodynamically derived scaling laws. This allows us to obtain 

macroscopic material properties of the film for mechanical characterization and also to 

examine the brush packing structure for bottom-up force response optimization using a 

single model. To obtain a force-indentation relationship, we now only need to derive 

the form of the proportionality (the spring constant) for each cylindrical volume. Then 

by accounting for the shape of the indenter, the local forces can be calculated from the 

local indentation and summed for a total force response. This is summarized in 

Equation 17: 

 𝐹𝑡𝑜𝑡 =⁡∑ 𝐹𝑆𝑖
𝑁𝐶
𝑖=1 = −∑ 𝑘𝑖𝛥𝑧𝑖

𝑁𝐶
𝑖=1 , (17) 
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where ki is the stiffness of the ith compressed spring and Δzi is its indentation. NC is 

the total number of chains compressed by the indenter, which will be a function of the 

size of the indenting sphere and its indentation distance into the polymer film, 

NC(Δzmax,RNP), following contact mechanics. To reduce some of the ambiguity in the 

model with respect to the indenter, we have assumed a rigid sphere of radius RNP.  [98] 

 

With the shape and size of the indenter defined and its indentation distance the 

independent variable, the term that remains unknown in Equation 17 is the single-

 

Figure 7.2. Schematic of a polymer brush system compressed under a 

spherical indenter. In the upper panel (A), the Alexander-de Gennes brush is 

shown on the left with each chain comprised of multiple correlation blobs of size D 

determined by the spacing between grafting sites. The corresponding cylindrical 

volume structured brush used in our formulated model is depicted on the right. In 

lower panel (B), the unpacked single-chain volume (VM) is on the left, the packed 

and uncompressed volume (VB) in the center, and the packed and loaded cylinder 

volume (VL) on the right. VM is approximated as a cylinder of diameter and height 

equal to the Flory radius, RF, rather than a single spherical correlation blob. For VB 

the confinement of the brush geometry is effectively loading the brush laterally, 

which causes expansion in the vertical direction (inward and upward pointing red 

arrows). The force compressing VL is represented by the downward red arrow.  
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chain spring constant, k. Describing the film nano-structure by subunits of simple right 

cylinders, we derive a form of k that depends on the deformation of these volumes. 

This keeps the model general enough to be widely applicable to any polymer brush 

system. The deformation of a bulk material, though, requires the use of a generalized 

Hooke’s law where the modulus of the material is a tensor, but we aim to derive an 

equation for the scalar value of the single-chain stiffness. To overcome this challenge, 

we neglect any shear components of the stress required to indent the thin film and 

assume that changes in an occupied chain volume are caused by an isotropic pressure. 

In this way we are able to decouple and simplify the system of equations from a 

generalized Hooke’s law, and transform a 3-dimensional film deformation into a 1-

dimensional force response. By approximating the occupied space of the chain as a 

continuous, compressible material, we can relate its volume change to the local 

pressure required for its deformation using the bulk modulus equation, [99] which can 

be rearranged into the form: 

 𝛥𝑃 =⁡−𝛫ln (1 +
𝛥𝑉

𝑉0
), (18) 

where ΔP is the change in pressure from an initial state to the final state, Κ is the bulk 

modulus of the material, ΔV is the change in volume between final and initial state, 

and V0 is the initial volume. The change in volume is assumed to be negative under 

compression, therefore the leading negative sign in Equation 18 ensures that with 

increasing system compression, the pressure increases (becomes more positive). 

Rearranging the linear form of Hooke’s law, the single-chain stiffness can be related 

to the pressure via Equation 19: 
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 𝑘 = −
𝑑𝐹𝑠

𝑑𝑧
= −

𝑑𝐹𝑠

𝑑𝑧

𝐴

𝐴
=

𝑑𝑃

𝑑𝑡
𝐴 =

𝑑𝑃

𝑑𝐷
(
𝑑𝑡

𝑑𝐷
)
−1

𝐴, (19) 

where A is the cross-sectional area of the cylinder under compression (proportional to 

D
2
) and the change in indentation, dz, is the negative of the change in film thickness, 

dt. Therefore, we can use Equations 18 and 19 to derive the linear stiffness of a single 

chain from changes in its occupied cylindrical volume. 

It is assumed that the stiffness can be decomposed into two components: the 

first from packing the free chain into a brush structure and the second from the 

compression of the packed chain itself (kp and kz respectively). To obtain the final 

form of the single-chain stiffness, the volume changes from the two chain states must 

be derived and related to a pressure change between states (here the pressures are 

defined as relative to the initial pressure of the unpacked free polymer state in the 

mushroom regime). Figure 7.2B depicts the different volumetric states of a single-

chain. The initial state of a grafted chain in the mushroom regime is assumed to 

occupy the volume (VM) of a cylinder with height and diameter both equal to RF. Upon 

packing, the occupied volume (VB) of the chain is a cylinder of diameter D and height 

equal to Equation 16. The relative change in volume between these two states is given 

by: 

 
𝛥𝑉

𝑉0
=

𝑉𝐵−𝑉𝑀

𝑉𝑀
=

𝑉𝐵

𝑉𝑀
− 1 = [

(
𝜋𝐷2

4
)𝑡

(
𝜋𝑅𝐹

2

4
)𝑅𝐹

] − 1 = (
𝐷2𝑡

𝑅𝐹
3) − 1. (20a) 

The final state of the chain is when it’s under an axial load, and therefore the 

volume is equal to a cylinder of diameter D but with height t-Δzi. The relative volume 

change between the packed state (VB) and the compressed state (VL) is:  
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𝛥𝑉

𝑉0
=

𝑉𝐿−𝑉𝐵

𝑉𝐵
=

(
𝜋𝐷2

4
)𝛥𝑧𝑖

(
𝜋𝐷2

4
)𝑡

=
𝛥𝑧𝑖

𝑡
. (20b) 

Plugging Equations 20a and 20b into Equation 18 respectively and summing 

the two resulting pressure expressions gives the final form of the stiffness equation: 

 𝑘𝑖 = 𝑘𝑝 + 𝑘𝑧 =
𝜋

4
𝛫 [2 (

𝐷

𝑅𝐹
)

5

3
𝐷 −

𝛥𝑧𝑖

(
𝑅𝐹
𝐷
)

10
3
+(

𝑅𝐹
𝐷
)

5
3
(
𝛥𝑧𝑖
𝐷
)

]. (20c) 

By plugging Equation 20c back into Equation 17, we are able to obtain the 

force-indentation profile for a generic polymer thin film based on the size and packing 

of the chains in the brush-structured transducer. 

7.3. Model Trends 

Examining the trends that the model predicts from both a single-chain and 

brush perspective can give us insight into the physical mechanisms that influence the 

total force response of a device that uses these compressible polymers for mechanical 

feedback. To mechanistically understand how local chain deformations affect the 

mechanical properties of the entire brush we must analyze the system in 

thermodynamic terms. Specifically, how changes in each cylindrical chain volume 

affect the free energy of the system. 

7.3.1.  Single-Chain Stiffness 

We first discuss the limits of the model with regard to the film partitioning. As 

described previously, the scaling law used is only applicable to a polymer brush and 

requires that the grafting site spacing between adjacent chains (D) is less than the 

Flory radius (RF). In the limit that D equals RF (i.e., mushroom regime where occupied 
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chain volumes do not overlap) the packing stiffness (kp) in Equation 20c only depends 

on RF and thereby scales with the molecular weight (MW) of the chain. Additionally, 

Equation 16 shows that in this limit the thickness of the film (t) is equal to RF so the 

indentation stiffness (kz) primarily depends on the indentation (Δz) relative to its MW. 

Conversely, with a completely packed film where D approaches the size of a monomer 

(a) both kp and kz decrease to very small, finite values. 

This k(D) trend for the individual chain can be explained from a 

thermodynamic standpoint by considering that as the chain is confined laterally the 

number of conformations available to it decreases, and thereby the single-chain 

entropy decreases. With decreasing entropy, the free energy of the chain increases, and 

it becomes more favorable to compress the chain axially to return it to its unstretched 

state. Thus the linear stiffness of the single chain decreases because packing is similar 

to pre-stretching the polymer. In this case there is already an intrinsic tendency for the 

chain to collapse, and it would be easier to compress an individual chain the larger its 

lateral confinement (without considering chain-chain interactions or the effect of 

compressing multiple chains). This decreasing stiffness corresponds not only to a 

decreasing D, but also to an increasing t (i.e., k(t) has a negative slope), which is 

obvious from Equation 16 where D is in the denominator. By the limits of D, it is clear 

that t is constrained to be larger than RF and smaller than the fully extended length of 

the linear chain (RF < t < Na). 

With RF in the denominator of both stiffness terms, k(MW) has a decreasing 

trend, which makes sense for the same reasons as the k(D) trend. Increasing MW while 
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maintaining a constant D results in decreasing the chain’s entropy in a similar way as 

decreasing D with a constant MW. Again, t is shown to increase with the decreasing 

stiffness trend because t is proportional to MW. The bulk modulus (Κ) can be pulled 

out of both stiffness components in Equation 20c and is directly proportional to the 

stiffness of the chain. Yet, because K is a bulk material property, the significance of 

this will be discussed later in the context of the total system force response. 

A nonlinear k(Δz) is expected and goes from some finite value at no 

indentation to infinity as Δz approaches the film thickness (remember that Δz is 

negative because it describes a compression into the film). The model as formulated 

shows that Δz only influences kP. The fact that k is finite and depends on the packing 

of the film in the undisturbed state (k = kP at Δz = 0) highlights the importance of D 

and MW in determining an intrinsic material property based on the nanostructure of 

the brush. With the pre-stretched chain in the packed brush as the baseline state, we 

must now consider the effect of the lateral confinement by adjacent chains. Therefore, 

as Δz increases in magnitude, the volume available to the chain will always decrease 

because its footprint is always constrained to a circle of diameter D. The effect of 

increasing Δz on the free energy is thus to decrease the entropy of the single chain 

even further. Also, as the chain is being compressed the internal energy related to the 

density of monomers in the cylindrical volume (distance-dependent monomer-

monomer interactions; e.g., steric, electrostatic) increases.  With respect to full 

compression, k should approach infinity at an indentation less than t because of the 

finite space each monomer occupies; the remaining portion of the film can be 
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considered incompressible. However, the hard sphere repulsion of each monomer has 

not been accounted for in the model, and because of this large errors are expected in 

the high compression regime. 

7.3.2. Total Force Indentation 

Our analysis of the per-chain stiffness trends in the model is important for 

understanding the nano-structural underpinnings of the total force-indentation profile. 

The total force trends though are more interesting for the purposes of predicting the 

mechanical response of force transducers (during optimization) and for ultimately 

quantifying measurements (using established systems). Parameters important for 

transducer design in the context of our model are K, RNP, MW, and D as we have 

discussed in the single-chain analysis. Although of particular interest are MW and D 

because they constitute the parameters that directly determine the film partitioning and 

can be tuned during brush synthesis. In this section we examine the effect varying the 

each of these four parameters has on the shape of the force-indentation curve. By 

looking at the relative slopes of these profiles, we can begin to understand how to tune 

the stiffness of the force response by careful design and selection of the transducer 

components. 
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As described earlier, Ftot is calculated by summing the forces (FSi) required to 

compress each chain under the indenter where each of these forces depends on the 

local indentation and stiffness (Δzi and ki; the latter also depends on Δzi). An ideal 

brush system was modeled where the grafting site positions were determined based on 

a hexagonal close-packed array with spacing equal to D. Then Δzi and ki were 

 

Figure 7.3. Force-indentation trends predicted by the hybrid brush 

compression model. Trends based on four model parameters: elastic modulus (A), 

indenter radius (B), molecular weight (C), and grafting site spacing (D). A baseline 

PEG brush (E = 1 MPa, MW = 10 kDa, RNP = 30 nm, and D = 2 nm) is modeled 

and shown as the bolded curve in each plot for comparison with the sweeping 

parameter. Only one parameter is varied in each plot with the blue curve 

corresponding to the smallest parameter value and the largest in red. Intermediate 

curves increase incrementally in value in the direction indicated by the arrow in 

each plot. The parameter values modeled in each plot are: E = {0.1:0.1:1, 2:1:10, 

20:10:100} MPa, RNP = {5:5:50 75:25:250} nm, MW = {1:1:25} kDa, and D = 

{0.5:0.5:8} nm. The notation used here is {min:step:max}. 
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calculated based on the ith chain’s position under a rigid sphere of radius RNP with 

maximum indentation (apical indentation) of Δzmax. Force-indentation profiles were 

simulated by calculating Ftot(Δzmax) under various system configurations that affect ki 

and the number of chains compressed under the indenter (NC). The results are shown 

in Figure 7.3. In general terms, for each trend the curve corresponding to the smallest 

parameter value is plotted in blue and the largest parameter value in red. Alternatively, 

the increasing parameter trend is shown by the arrow direction in each plot. Each of 

the curves starts at zero force when the indenter is at initial contact with the film and 

increases to infinite force as the indentation approaches t (full compression). 

The baseline system under investigation is a grafted 10 kDa molecular weight 

polyethylene glycol (PEG) brush with a 1 MPa elastic modulus, and a grafting site 

spacing of 2 nm. The indenting sphere radius is set as 30 nm. This nominal system is 

plotted as the darker curve in the figures for easy comparison.  Because the bulk 

modulus is not typically the mechanical property extracted in indentation studies, we 

have replaced K in Equation 20c with the elastic modulus, E, by the simple relation: 

 𝛫 =
𝐸

3(1−2𝜈)
 (21) 

where ν is the non-dimensional Poisson’s ratio. [99] Here we set ν to be 0.3, and we 

use the reported ethylene glycol monomer size (a) of 0.358 nm to calculate RF. [100] 

For each plot, only one parameter is varied with all the other parameters set to their 

nominal values as listed above. 

The dependence of the force-indentation profile on E is shown in Figure 7.3A. 

For these trends, Ftot is plotted against the relative indentation of the film on the 
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bottom axis where Δzmax is normalized to t, giving the indentation percentages (i.e., 

strain). This ensures that the parametric profiles can be easily compared to one another 

by examining their relative slopes alone. However, because the thickness for all 

profiles plotted is the same when only E is varied, the indentation axis can also be 

plotted with absolute values (top axis). As Δzmax approaches the nominal film 

thickness of 25.8 nm (100 percent indentation), all of the trends ultimately converge to 

a single curve (not plotted), but the traces show that with increasing E the parametric 

curves have a steeper rise to infinite force.  Larger forces are required to compress 

films with higher E a certain distance. As pointed out from the single-chain analysis, 

this bulk material property can be factored out of the stiffness expression, and 

therefore simply scales the force curve vertically without changing t or the total 

number of compressed chains, NC. Because E is an independent parameter that is not 

affected by the nano-structure of the film, it is truly a material property in the context 

of our model and can be backed out of measured force-indentation curves for 

characterization purposes. Furthermore, the decoupled nature of E from MW and D 

suggests that slight variations in the extracted moduli of differently packed brushes of 

the same polymer may be attributed to nano-structural effects.  

Considering RNP in Figure 7.3B, the trends present similarly to those of E 

where increasing RNP results in steeper profiles, and all curves converge to the same 

nominal film thickness since MW and D remain fixed (here again both relative and 

absolute indentations can be plotted). However, unlike the modulus trends that vary 

due to changes in ki, the effective stiffening of the force response is caused by changes 
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in NC while ki remains constant. In calculating Ftot(Δzmax) we have assumed that for the 

indentation of films beyond a distance of RNP, NC is held constant. For compression in 

this regime the indenter shape has no further influence on the force-indentation trends 

via changes in the number of compressed chains, and the shape of the force profiles 

become completely dominated by the form of the single-chain stiffness. While the 

same criterion was applied for calculating the modulus trends, here the rate of change 

of NC with respect to Δzmax (i.e., dNC/dΔzmax = f(RNP)) varies with different RNP until 

Δzmax equals RNP  whereas dNC/dΔzmax is constant for all values of E modeled. This 

difference can be seen in Figure 7.3 as the slight differences in profile shapes between 

the RNP and E parameter sweeps. 

Examining the force-response trends as a function of MW and D is a little more 

complicated as changing either of these parameters will also change t. Therefore, here 

absolute indentation values cannot be plotted for these last two trend plots, and the 

only way to accurately compare the stiffnesses of different film configurations is to 

normalize Δzmax to t. In this way all response curves still converge to one value at full 

compression, and the relative slopes can still be used as comparative measure of 

stiffness. By normalizing the indentation, varying the MW of the chains in the brush 

affects Ftot in an opposite manner expected from the analysis of ki. As MW increases, 

the stiffness of each chain decreases, but ultimately the total force shows a stiffer 

profile. This difference between the single-chain and brush perspectives highlights the 

effect of the lateral confinement due to the brush packing. In the brush case, increasing 

MW leads to a larger system internal energy from the additional monomer-monomer 
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interactions, resulting in an increase of the free energy and an effective stiffening of 

the force response. 

Trends in the total force-indentation profile as a function of D are perhaps the 

most complicated to analyze in the model because, unlike the other three parameters, 

changes in D affect both ki and NC. Moreover, these two qualities are competing 

phenomena that affect the force response in antagonistic ways. As D decreases, ki also 

becomes small as discussed in the single-chain stiffness analysis, but NC increases in 

the summation which buffers the decreasing stiffness in the total force response. When 

we consider the normalized trends as a function of D the model predicts what would 

generally be expected for such systems. Decreasing D and effectively packing the 

chains into a denser brush will increase the stiffness of the force profile as the 

increasing slope indicates. The thermodynamic argument made for explaining the 

trends with MW applies here as well; namely, the larger free energy is due to the larger 

chain-chain interactions (dictated here by brush density rather than just an additional 

number of interactions), resulting in a stiffer film. 

7.4. Comparison to Experimental Data 

Our model’s predictive power was validated by comparing theoretical force 

curves with experimentally obtained AFM curves. The films tested were PEG brushes 

of various molecular weights (2k, 5k, 10k Da) deposited on SiO2 substrates via the 

graft-to method with a silane-based reaction [101], similar to those synthesized and 

mechanically characterized in our previous work. [102] PEG was selected for the 

study because it is a well characterized system that is chemically robust and can form 
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monolayers, [101] has tunable mechanical properties, [103–105] and is used in many 

applications as an inert biological interface. [106–108] The average number of 

monomers in each sample (N) was calculated from the MW assuming a monomer 

molecular weight (m) of 44 Da, and again RF was calculated using Equation 15 

assuming a is 0.358 nm. Based on our synthesis method, the films were assumed to be 

monolayers and to have chain packing densities that result in compressible thicknesses 

(i.e., tC = Δzmax(Ftot = ∞) − Δzmax(Ftot = 0)) less than 20 nm. For each film, tC was 

determined from the indentation data and used in Equation 16 to calculate D. An AFM 

equipped with a 30 nm (RNP) SiN tip (spring constant = 0.14±0.02 N/m) was used to 

indent the films. The tip radius was calibrated by imaging a standard sample with 

sharp features [109,110] and the cantilever stiffness was quantified using a thermal 

tune method. [111] Because RNP is much larger than tC, the spherical indenter 

assumption holds true. All indentations were conducted in 1x phosphate buffered 

saline (PBS) to minimize the electrostatic interactions between the tip and the 

substrate to obtain a purely mechanical force response from film deformation.  

Before we use the model in a predictive capacity and calculate theoretical force 

curves, a nominal value of E is required. In this study several AFM indentation curves 

were analyzed from each MW sample, and an average modulus for each film was 

backed out. Since K can be pulled out of the summation in the model expression, we 

can easily calculate E for particular packed brush states by examining how the 

theoretical curves need to be scaled to fit the experimental profiles. Here we first 

assume a nominal elastic modulus, E0, of 1 MPa. By dividing the measured AFM 
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force at a particular indentation by the theoretical model force, a scaling factor, ε, of 

the nominal modulus can be extracted, and the true modulus of the film (E) can be 

calculated and plotted for each AFM data point according to the following equation: 

 𝐸 = [
𝐹𝐴𝐹𝑀(𝛥𝑧)

𝐹𝑚𝑜𝑑𝑒𝑙(𝛥𝑧)
] 𝐸0 = 𝜀(𝛥𝑧)𝐸0. (22) 

Plotting E as a function of normalized Δzmax for the various PEG brushes 

synthesized is shown in Figure 7.4.  There are three datasets for each MW, which 

corresponds to different AFM indentation locations on the same substrate. The 2k, 5k, 

and 10k samples are distinguished by color (black, red, and blue, respectively) and are 

ordered from top to bottom. Different AFM measurements on the same sample are 

distinguished by shape. 

A perfectly fit model curve would show a flat trend with constant E as the film 

indentation increased. It is clearly seen that below an indentation of about 30% and 

above an indentation of about 90% (grayed out indentation regions in Figure 7.4) there 

are large errors in the extracted moduli. For the small indentation regime, the large 

fluctuations in E are due to the small force values analyzed. Here slight deviations 

between the model and experimental profiles are greatly magnified in the calculation 

of ε because the denominator is nearly zero. For the large indentation regime, sharp 

decreases or increases in the modulus curves are possibly due to the errors associated 

with defining the point of contact in the AFM data, which can shift the experimental 

plots laterally as contact is always set as the origin of our plots. Similar to the small 

indentation regime, slight misalignment of the experimental and modeled curves can 

result in magnified errors under high compression because the numerator is very large. 
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Additionally, we have noted that the finite compressibility of the chains has been 

ignored in the model as have any indenter-substrate interactions which can cause 

underestimations of the film moduli. The gradually increasing E(Δzmax) trends seen in 

Figure 7.4 for intermediate compressions (between 30% and 90%) are indicative of 

these underestimations. As is anticipated, the thinner films seem to be more 

susceptible to substrate effects, which can be seen in the steeper trends with 

decreasing MW. For this reason, only the data between 30% and 60% compression for 

the 2k film was used in the calculation of E. 

By defining the packing parameter, Ƥ, with the expression:  

 Ƥ = 1 − (
𝐷

𝑅𝐹
), (23) 

we can plot the average E as a function of the packing for each respective MW film 

(Figure 7.4, inset). The vertical error bars are the standard deviation in E for the 

intermediate compression region (between 30% and 60% indentation for the 2k 

measurements and between 30% and 90% indentation for the 5k and 10k 

measurements), and the horizontal error bars are the standard deviation in Ƥ based on 

the three indentation curves collected for each MW. The extracted moduli values are 

0.7218 ± 0.0171 MPa, 0.6977 ± 0.0581 MPa, and 0.5962 ± 0.0819 MPa for the 2k, 5k, 

and the 10k films respectively, which are consistent with the E(MW) trends 

determined by Stan et al. [105] Analyzing these samples using Dimitriadis’ 

model, [72] the moduli values are 1.100 ± 0.170 MPa, 0.780 ± 0.180 MPa, and 0.600 

± 0.180 MPa (2k, 5k, 10k, respectively), [102] which are comparable and within the 

error for the 5k and 10k films. It is possible that the smaller indentation range 
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analyzed (30% to 60%) is responsible for the larger underestimation of E seen with the 

2k sample. Because of the large overlapping error bars associated with our calculated 

moduli, we use an average extracted film modulus of about 600 kPa to plot the 

theoretical force responses of all films to see how well the model predicts the form of 

the force-indentation profiles measured experimentally with AFM. In this way we can 

evaluate the predictive power of the nano-structural formulation of the model alone, 

where the differences between force curves are determined only by MW and D. The 

comparison is presented in Figure 7.5–1, which shows the experimental data (scatter 

plot) along with the model’s curve. It is clear that there is strong agreement between 

the model and the experimental data. This is a promising result as predictions are 

reasonable even without explicitly including steric forces, electrostatic 

repulsions/attractions, or solvent-chain interactions in the model. 



140 

 

 

 

7.5. Theoretical Transducer Sensitivity 

Understanding how the force sensitivity of these compressible polymers 

compares to that of AFM and optical trapping systems is important if these films are 

going to be used as mechanical feedback in novel, compact force transducer designs. 

To this end we investigated the force sensitivity, defined as the smallest force 

resolvable by the transducer, as a function of the two main parameters relevant to the 

 

Figure 7.4. Point-by-point calculation of the elastic film modulus extracted 

from the experimental AFM indentation data. The data was taken on 2k (black, 

top scatter plot), 5k (red, middle), and 10k (blue, bottom) molecular weight brush 

samples. The three different shapes (triangle, square, circle) plotted for each 

molecular weight indicates different indentation curves taken on the same sample. 

Grayed regions at low and high indentations indicate regimes of poor model fitting 

for this modulus extraction analysis. The inset shows the average fitted modulus for 

each molecular weight plotted as a function of its respective brush packing. For the 

2k brush, the average modulus was calculated from the data between 30% and 60% 

indentation, whereas for the 5k and 10k brushes, the average modulus was 

calculated from data between 30% and 90% indentation. Error bars represent ± 

standard deviation for each axis variable based on the 3 indentation curves obtained 

per sample. 
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physical packing of these films: MW and D. While E and RNP can also influence the 

force sensitivity, here we are mainly interested in understanding the effect of changing 

the film nano-structure because application-specific design criteria of multi-functional 

probes can often limit the ability to readily change transducer materials. 

 

Although it is difficult to define brush parameters for a generic transducer 

design, we can refer to the nanofiber system described earlier as an example platform 

to demonstrate how the polymeric transducers discussed in this work can be used in a 

real system, and how to identify specific design criteria for these compressible films 

based on desired mechanical properties. It has been shown that light-matter 

interactions occurring within the near-field of a fiber optic can be extremely sensitive 

to distance, [112] and we can leverage this, in conjunction with the work presented 

 

Figure 7.5–1. Comparison of the predicted force response (solid line) with 

individual representative AFM indentation plots (scatter points) for each molecular 

weight brush synthesized: 2k, 5k, and 10k (black, red, and blue curves, 

respectively, ordered from left to right).  
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here, to develop a novel, highly sensitive force probe for high throughput in situ (or in 

vivo) measurements. Figure 7.5–2A shows a schematic of such a nanofiber force probe 

where the position of plasmonic gold nanoparticles (AuNPs) embedded in the 

evanescent field of a tin dioxide (SnO2) nanofiber waveguide can be tracked via their 

distance-dependent far-field scattering signals. Recently it was been experimentally 

shown that these platforms can resolve angstrom-level displacements. [64] This spatial 

sensitivity, which is on-par with state-of-the-art optical traps and exceeds that of 

current AFM technologies, [5] is crucial for unlocking the high force resolution 

afforded by thin, compressible polymer coatings. In this platform, a compliant 

polymer cladding would surround the fiber (Figure 7.5–2A, inset) and individual 

nanoparticles attached to the cladding would serve as independent force transducers 

(assuming they were spatially isolated by distances greater than the wavelength of 

light). 

If we assume a minimum resolvable indentation distance (Δzmax) of 1 Å, an E 

of 600 kPa for a PEG-based transducer, and an RNP of 40 nm, then we can plot the 

force sensitivity of the transducer element in the system-space determined by various 

packing conditions. This is plotted in Figure 7.5–2B where each force curve represents 

the 1 Å compression of a different MW film, plotted as a function of D, within the 

model constraint of D less than RF. With the decaying evanescent field and distance-

dependent scattering intensity, the films used in these total internal reflection (TIR) 

sensing schemes are also limited to thicknesses below about 20 nm to achieve the 

highest spatial resolutions. [64] Thickness cutoffs are presented in the figure for MW 
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and D combinations that result in films thicker than 10 nm (light gray region) and 20 

nm (dark gray region), respectively. Additionally, the experimental limitations of 

synthesizing very dense films must be taken into account. This is shown by the green 

line assuming a maximum achievable film packing of 50% (i.e., D > 0.5RF), where 

regions below the line indicate brush configurations that require high chain densities 

and would be difficult to synthesize. The plot also captures the predicted force 

sensitivity for the PEG brushes (2k, 5k, and 10k) that were analyzed with AFM in the 

previous section.  
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Figure 7.5–2. Schematic of a nanofiber force probe and the force sensitivity of 

the mechanical feedback mechanism using a polymer brush. (A) Schematic of a 

nanofiber force probe depicting two forces causing different particle indentations 

into the thin film transducer. Forces cause displacements of plasmonic nanoparticle 

indenters within the evanescent field that also compress the thin polymer 

transducer (insets). By monitoring the distance-dependent scattering of the 

nanoparticles in the far-field, the forces can be measured.  (B) Predicted force 

sensitivity of a TIR fiber optic-based force transducer with 1 Å spatial sensitivity. 

The minimum resolvable force is plotted versus brush synthesis parameters: MW 

and D. Each curve represents a different MW (increasing for each curve from blue 

to red). MW curves are plotted for brushes between a grafting site spacing of 0.5 

nm at the low end and D = RF at the upper bound. The light gray region indicates 

MW and D combinations that result in a film thickness larger than 10 nm as 

determined by Equation (16). The dark gray region indicates films thicker than 20 

nm. The green curve shows the synthetic parameters that result in brush packing of 

50% as calculated from Equation (23). This packing curve divides the system-

space into a densely packed brush regime (below curve) and a sparsely packed 

brush regime (above curve). The synthesized PEG films corresponding to the 

experimental indentation curves shown in Figure 7.5–1 are also plotted here to 

show their relative force sensitivities (2k, 5k, and 10k plotted in black, red, and 

blue respectively).    
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This system space analysis implies that the thickest brushes are those that will 

be most sensitive for detecting small forces. For a given D, Figure 7.5–2B shows that 

higher MW brushes boost force resolution. Likewise for a given MW, a smaller D 

results in a more sensitive brush (where slight fluctuations in the curves for increasing 

D towards the RF limit are due to the simulation algorithm  [98]). However, as 

mentioned for the TIR-based sensing scheme, there is a trade-off between film 

thickness and high spatial resolution. While the thickest brushes may be able to 

deform under the smallest loads, these indentations may not cause scattering signals 

above the noise of the far-field detection method, therefore, the system space must be 

limited to thinner film brush structures. Also, because actual synthesized films may 

have more limited structural properties, the system space is bounded to a smaller 

region (above the shaded areas and the 50% packing line) that represents practical 

combinations of MW and D available for nanomechanical performance optimization. 

From these considerations, it is clear that the benefit of utilizing the model in this 

manner is twofold: (1) we get an idea of the force response of a system before actual 

film synthesis, assuming the grafting methods are well established and the packing can 

be estimated a priori, and (2) if a required force-sensitivity is known then brush 

nanostructure criteria can be quickly identified and used to expedite experimental 

testing and optimization. Of our synthesized brushes, the 10k PEG film appears to be 

the most mechanically sensitive based on Figure 7.5–2B, but ultimately the 5k film 

may be better since the particles are closer to the fiber’s surface resulting in higher 

signal-to-noise ratio and stronger distance-dependent scattering. Finally, it should be 
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noted that the model predicts sub-pN force sensitivity using the TIR fiber optic 

platform. These findings justify experimental development of such systems since the 

fiber force transducers can be much smaller (< 10x) than AFM or trap technologies [5] 

and their force sensitivities can match or exceed that of state-of-the-art instruments. 

While the usefulness of the system space modeling approach is apparent for 

efficiently identifying practical packing states of the polymer brush, there are some 

important points to note that put this type of optimization analysis into perspective. 

First, on the synthetic side, these thin polymer brushes can be deposited using one of 

two well established techniques: the “graft-to” approach [101] or the “graft-from” 

approach. [113,114] For the films synthesized in this study we use the former method 

where PEG chains of fixed molecular weight are attached to the substrate as a pre-

polymerized unit. In this case, the chain molecular weight in the brush is well defined, 

but it is difficult to control and tune the grafting site spacing. For the latter synthetic 

approach, the spatial density of reactive sites on a substrate can be tuned to some 

extent, [115] but the degree of polymerization is less controllable, leading to more 

variability in the final molecular weight of each chain. So while the system space 

analysis assumes that both MW and D are readily tunable synthesis parameters, the 

usefulness of the model in this capacity is ultimately limited by how well both packing 

variables can be controlled. This will vary depending on the specific polymer selected, 

brush synthesis method used, as well as on the particular substrate supporting the 

brush. Here, the 5k brush was shown to be the best film synthesized in terms of both 

mechanical and optical sensitivity, but that was for a brush synthesized on a flat Si 



147 

 

 

substrate. Perhaps using a nanostructured substrate like the single crystalline SnO2 

optical fiber may impose additional constraints on the packing density and therefore 

further limit transducer design options. 

To this end, another potential error is related to the accuracy with which E can 

be known a priori. Again, we did not account for any electrostatic substrate effects in 

the model that can contribute extra force components to the indentation profile as 

discussed in the previous section. Furthermore, the osmotic pressure resulting from 

forcing solvated molecules (like water) out of the brush upon compression has not 

been explicitly accounted for in the indentation model either. [116]  Depending on the 

indentation dependence of these extra terms, the slope of the indentation profile could 

increase or decrease which would alter the minimum resolvable force. 

Other measurement criteria beyond force sensitivity may need to be considered 

as well such as the dynamic range of these transducers. It is suspected that the 2k 

brush has a small dynamic range because the 1 Å indentation accounts for a larger 

percentage of the total compressible thickness of the brush compared to the 5k or 10k 

films. This is another design limitation that must be deliberated on when optimizing 

these mechanical transducers for particular applications. Moreover, because the TIR-

based optical sensing relies on an exponential decay of the optical field away from a 

waveguide surface, spatial sensitivity may actually change over the device’s operable 

range. Therefore it is important to distinguish this sensitivity analysis, which 

highlights the capacity for detecting small forces, from an analysis of the resolution of 

the system, which would be important for designing systems to track small force 
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fluctuations during spectroscopic measurements. The latter may not be as fine as the 

initial indentation sensitivity. 

Lastly, the idealized brush geometry used in the formulation of the model is a 

fundamental source of error associated with the analysis in this work. The Alexander-

de Gennes scaling laws for the brush assumes a step function monomer density profile 

(i.e., all chains have the same height in the brush), but we have noted that a more 

accurate description of this profile is presented by Milner. [117] The surface 

roughness of the film and the irregular shape of an arbitrary scattering nanoparticle 

can also play a large role in determining the true sensitivity of a real system. As was 

the case for the previous indentation models described in this paper, further 

modifications can always be developed for a more accurate representation of these 

systems, but often those adjustments come at a cost of model complexity. However, 

for application of a real transducer system, experimental calibration is still always the 

first step before true quantitative measurements are collected, and is a major 

component to achieving high resolution and quantitative data from AFM and trap-

based instruments. Thus, despite the many considerations that must be accounted for 

when modeling a real system, the model is still extremely useful as a tool for 

predicting the performance of a transducer to a reasonable degree, and for 

understanding the physical mechanisms contributing to the shape of the force profile. 
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7.6. Conclusion 

In this work we developed a mechanistic model that can (1) analyze the 

mechanical properties of thin, compressible polymer coatings, (2) screen candidate 

systems for high-resolution, compact polymer-based nanomechanical transducers, and 

(3) predict the performance of force transducers that utilize thin polymer layers for 

mechanical feedback. We have formulated a discretized contact mechanics model 

where the partitioning is rooted in molecular scaling laws. Because the model’s utility 

relies on its predictive power and general applicability to a breadth of different 

polymeric systems, we methodically analyzed profile trends in a realistic parameter 

space to understand how the structure determines the shape of the force response. The 

model was validated by comparing predicted force-indentation profiles for a thin 

polyethylene glycol (PEG) film to experimental AFM force curves which showed 

excellent agreement. Moreover, this analysis highlighted the usefulness of the model 

for backing out bulk mechanical properties from molecular-based scaling laws. 

Finally, as an example we presented the theoretical force sensitivities of a TIR-based, 

polymer-coated fiber optic probe to demonstrate how the model can be used to guide 

the synthetic optimization of polymeric layers for different applications based on 

sensitivity and dynamic range criteria. While the expression for the total force 

response was formulated on a purely geometric and mechanical basis that ignored 

substrate effects, solvation effects, and electrostatic interactions, these simplifications 

are justified by the model’s predictive capacity and utility in guiding system 

development. Consequently, by knowing how film structure affects the force response 
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we can adapt the model to investigate other phenomena such as the influence of non-

mechanical parameters (e.g., solvent, temperature) on polymer conformational 

changes which can have immediate implications for surface engineering, chemical 

encoding of surfaces, nanoparticle synthesis, and sensor technologies.  

Chapter 7, in part, is a reprint of the material that appears in Journal of Applied 

Physics.  (Villanueva, Joshua, Qian Huang, Donald J. Sirbuly. "Identification and 

design of novel polymer-based mechanical transducers: A nano-structural model for 

thin film indentation." Journal of Applied Physics 116, no. 10 (2014): 104307.) The 

dissertation author was the primary investigator and author of this material. 
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Advanced Nanofiber TIRM Configurations 
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8.1. Configuration Space 

 Expansion of the nanofiber-based TIRM platform for more advanced 

characterization techniques is feasible, but requires a clear understanding of the 

physical differences in each setup. The effective implementation of the nanofiber 

TIRM platform for other applications must consider requirements of both spatial 

sensitivity and (perhaps more importantly) temporal sensitivity. As the analysis of 

Chapter 6 has shown, more complicated configurations of the transduction mechanism 

may have limitations determined by the dynamics of the nanoparticle near the surface 

and the data collection scheme implemented. This chapter highlights the versatility of 

nanofiber-based TIRM by formulating a configuration space to aid in identifying the 

capabilities and limitations of different manifestations of the platform. Several natural 

extensions of the previous, simple platform are shown in Figure 8.1. and they will be 

first discussed in an abstract sense before specific examples are presented.  

 The experiments described in Chapters 5 and 6 were based on the bare 

nanofiber case under hydrostatic conditions. From a device fabrication and 

experimental setup perspective this configuration, represented in Figure 8.1 as the 

upper left quadrant of the configuration space, is the simplest implementation of the 

nanofiber TIRM platform requiring only the bare nanofiber and an etched substrate. In 

this work much of the analysis was done with either a freely diffusing particle, or a 

particle stuck to the surface as shown in the figure. The main requirements for 

experimental reproducibility were a well-defined device cleaning, sample preparation, 

and experimental setup procedure. The more challenging aspect of this experimental 
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setup was developing and testing the accuracy of an appropriate data processing 

workflow for detecting and quantifying transient, spatially varying scattering events in 

the low signal-to-noise (SNR) regime. Additionally, identifying the appropriate 

models to understand the quantified signals and relate them to the physical properties 

of the colloidal system under investigation proved difficult due to the temporal 

resolution of the CCD imaging method. 

 

The addition of a mechanically characterized polymer layer was considered 

theoretically in Chapter 7, again in the hydrostatic case. This setup is shown in the 

bottom left quadrant of the configuration space. In this form of the platform, the 

addition of the polymer layer adds another level of complexity to the fabrication 

process of the device. Identification and development of a robust polymer system and 

 

Figure 8.1. Configuration space of the nanofiber-TIRM platform. Extension of 

the nanofiber TIRM platform to other techniques that require adjustments to the 

base system of a bare nanofiber under static conditions. The addition of mechanical 

feedback for force measurements is depicted in the bottom row and the 

incorporation of fluid flow is shown in the right column.  
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synthesis procedure that produces a reproducible, chemically and mechanically stable 

coating around the nanofiber and the proper attachment of a nanoparticle on its surface 

is foundational to the implementation of the sensor. Moreover, the accurate calibration 

of the force-distance relationship is very important for the quantitative measurement of 

forces acting on the particle. Here, though, the data processing algorithms do not need 

to be as sophisticated because the scattering signal is spatially static and intensity 

fluctuations will most likely be in a higher SNR regime with the particle transducer 

localized close to the fiber surface. However, with the addition of a polymer layer the 

physical models describing the transducer mechanics must be thoroughly investigated 

to decouple the intensity modulation due to mechanical loading of the polymer itself 

from actuation of the particle. Also, the proper intensity-distance calibration will need 

to account for the variability in polymer thickness and roughness, which determine the 

attached particle’s equilibrium position. There are also possible refractive index 

changes in the system with the addition of the polymer layer, which could influence 

the scattering intensity of the transducer. Depending on the type of characterization 

performed, the temporal resolution of the CCD may not be an issue. 

Incorporating flow as an external force in the system also represents an 

interesting direction for exploring the capabilities of this device, shown in the right 

column of Figure 8.1. Flow-based characterization methods require further efforts in 

device design and integration. At the very least, these nanofibers must be integrated 

into a sealed microfluidic channel that can interface to a syringe pump or have some 

other means of flow generation. The difficulty lies in designing a system that can be 
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properly sealed during the experiment, but can also be opened for device cleaning. The 

seal must be good to eliminate bubbles in solution that can prevent proper imaging and 

also damage  channel-suspended fiber. The appropriate processing algorithm will rely 

on the specific use of the fiber to study either free particles in solution or attached 

particles as discussed in the previous examples. The calibrations again will be very 

important. The intensity-distance calibration will always be required for the TIRM 

technique relying on distance measurements, and the operation of the device with 

mechanical feedback will require force-distance calibration. With flow, the local fluid 

velocity will also need to be measured simultaneously during the experiment and 

appropriate models will again be required to extract information from modulations of 

the scattering signal. 

8.2. Bare Nanofiber for Bond Strength Characterization 

 An example of extending the nanofiber TIRM platform for more advanced 

characterizations involves the use of the bare fiber for characterization of bond 

strengths by measuring the bond lifetimes using the TIRM mechanism. In this 

configuration, the scattering intensity serves only as an indicator of the formation of a 

bond or interaction and its strength is measured by the time it takes for the 

spontaneous breaking of the bond and correspondingly the loss of the scattering signal. 

Therefore, the exact intensity-distance calibration may not be necessary in this case, 

but consideration of the temporal resolution of the technique with respect to the 

maximum frame rate of the CCD will need to be examined. 
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This technique can be operated under static conditions or under flow to extend 

the dynamic range of the bond lifetime measurements. In the static fluid case, the 

behavior of the datasets can be extrapolated from the results of Chapter 5. It is 

expected that strong repulsive interactions will prevent the particle from getting close 

enough to the fiber for detection (similar to the low PBS concentration experiments). 

As the particles get closer (higher PBS concentration), the surface charges will 

eventually be screened enough such that the electrostatic repulsion between the 

nanoparticle and nanofiber will not be enough to prevent adsorption of the particles to 

the fiber. For the specific system conditions where the particles are attached to the 

fiber in a shallow potential minimum, the depth of this minimum will be related to the 

bond lifetime. Changing the properties of the system will influence this potential and 

therefore the distribution of scattering event lifetimes; the statistical analysis of the 

probability of escape under these different conditions will be required to extract 

quantitative potential information from the lifetime of the scattering events. 

This nonspecific binding in a static fluid will comprise the lower limit for the 

obtainable lifetime measurements. The formation of a specific bond will naturally 

result in longer scattering event lifetimes. Generally speaking, as the bond strength 

increases, the likelihood of spontaneous bond breaking decreases and the scattering 

event will persist for impractically long periods of time. In this regime, the technique 

can still be useful if the addition of flow is leveraged. This will extend the dynamic 

range of the system by applying loads to the attached particles and thus alter the 

potential profiles to facilitate bond breaking. For this case, special attention must be 
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given to the development of the physical model that describes the fluid transport of a 

colloidal particle near the fiber as well as the flow-mediated load applied to the 

particle attached to a large fiber that itself will influence the exact flow profile in the 

microfluidic system. Furthermore, practical implementation will require considerable 

efforts to verify formation of the bond itself via several controls. 

8.3. DNA-Coated Nanofiber for Hybridization 

Characterization 

 In another use of the fiber, we propose to leverage the fine distance sensitivity 

of the TIRM technique to examine the conformational changes of a DNA strand 

tethering a nanoparticle to the nanofiber surface as the strand is conjugated with 

complementary strands of varying degrees of base pair mismatch. In this 

implementation of the nanofiber TIRM, similar to the previous section, the particles 

only act as optical reporters of the properties of the bonds under investigation. It is 

expected that for the hybridization of a complementary strand to the single strand 

DNA tether, the hybridization will cause the tether to both  stiffen and also change 

length. This should be detectable using the TIRM platform by both a change in the 

average scattering intensity of the tethered particle (the TIRM has been shown to have 

angstrom level distance sensitivity) and a change in the intensity fluctuations. With 

different levels base pair mismatch in the complementary strand, it is hypothesized 

that the degree of hybridization will change and result in different average intensity 

changes and likewise different intensity fluctuations.  
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 Preliminary work for this project was done to test whether or not the nanofiber 

TIRM would be able to detect any physical changes to a single stranded DNA tether 

by conjugation of a complementary strand. The initial conceptualized experiments 

involved a 2D-DNA array with tether strands that were formed around the SnO2 

nanofiber.  [118] An 80 nm DNA-coated gold nanoparticle was conjugated to the 

tether strand to form the sensor, and a free complementary strand was added to the 

solution to hybridize with the single stranded portion of the DNA tether as shown 

schematically in Figure 8.3–1. Data was collected of the scattering intensities of the 

attached particles before and after the addition of the free DNA strands to determine if 

there was a modulation of the signal as shown in Figure 8.3–2 and Figure 8.3–3. 

 

 

Figure 8.3–1. Characterization of DNA hybridization via changes in strand 

conformality. Schematic representation of the system setup. In the preliminary 

experiments, the nanoparticle was coated with DNA brush (blue coating) 

comprised of short strands of 10 adenine bases. The DNA-coated nanoparticle is 

conjugated to the end of a 20-thymine single-stranded DNA tether (red) that is 

attached to specific locations on a 2D-DNA array that coats the nanofiber (green). 

Free 10-base strands are added to the solution to conjugate with the open bases of 

the 20-thymine strand to induce a distance change, Δd, that can be detected by the 

TIRM method. 
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Figure 8.3–2. Location of persistent scattering signal during different stages of 

experiment. Each image shows the scattering intensity in the collected image 

averaged over the first 2k frames of the 20k frames comprising each experimental 

condition denoted by the different numbers. Image (1) and (2) shows the control 

scattering from the initial setup with 10 mM magnesium acetate solution 

surrounding the waveguide. In (3), (4), and (5) DNA-coated nanoparticles 

(synthesized on the same day) were added to the solution. (6), (7), and (8) are a 

washing step to remove any excess particles in solution after a few were allowed to 

attach to the fiber. (9), (10), and (11) show the addition of the free complementary 

DNA strands and (12), (13), and (14) are another washing step to remove the free 

DNA strands. All steps were performed using with the same 10 mM magnesium 

solution to maintain a consistent ionic strength. The ROI locations were determined 

using (14). 
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It is evident in looking at the scattering data for multiple attached particles that 

no modulation of scattering intensity was seen in the initial experiments before and 

after the addition of the free DNA strand. This does not necessarily mean the device is 

 

 

Figure 8.3–3. Scattering intensity of attached DNA-coated nanoparticles and 

corresponding waveguide output intensity. Preliminary data showing changes in 

the scattering intensity of attached DNA-coated nanoparticles in under different 

system conditions as well as the waveguide output intensity. 
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not sensitive enough to detect changes due to hybridization. However, it is clear that 

the complicated assembly of the nanoparticle tether sensor must be analyzed 

thoroughly to verify the system under investigation is similar to the one shown in 

Figure 8.3–1. This is a nontrivial endeavor as the setup procedure must be optimized 

to verify the proper implementation of the technique, as was the case for the simple 

configuration in Chapter 5. 

It is unclear if the attached particles in the experiment were actually DNA-

tethered nanoparticles or if the particles were simply electrostatically adsorbed to the 

fiber or DNA array surface. The first step to verifying this sensor structure requires all 

parts of the setup being verified including the presence and conformation of the DNA 

array and tethers on the fiber. This is typically done using AFM for DNA arrays on a 

flat substrate, but in this case AFM is difficult with the suspended fiber architecture. 

Furthermore, the DNA array is formed in solution around the fiber rather than 

wrapping a pre-formed array sheet on the fiber. The electrostatic interactions at play 

dictating the DNA-coated nanofiber system must be understood better. Also, the 

presence of the tether and its orientation away from the nanofiber must be verified. 

The state of the DNA-coating on the nanoparticles must be examined as well. Once 

the sensor has been verified, then the hybridization of the free strand must also be 

considered, in particular where and how the free strands attach to the tether (if at all). 

Only once all aspects of the setup are thoroughly investigated can the experiment be 

used to probe the specifics of hybridization.  
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Chapter 9 

 

 

Conclusion and Future Outlook 
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9.1. Summary of Contributions 

 In this dissertation we presented the development of a nanofiber-based TIRM 

platform and technique for characterizing the nanoscale interaction that dictate the 

behavior of freely diffusing Brownian nanoparticles near a wall in ionic solutions. 

Integral to the accuracy of the quantitative measurement, this dissertation outlined in 

detail the experimental and data processing procedure that influence the signal 

transformation pathway and ultimately determine what information is obtained from 

the measurements. We have performed a thorough analysis of the system from both a 

theoretical and experimental basis, showcasing a wide range of studies that can be 

performed using the nanofiber TIRM. For each parameter investigated experimentally, 

we were able to accurately predict the distributions trends expected from the model. 

This verifies the use of the model for analysis of more complex colloidal systems that 

may be more difficult to experimentally characterize. In an attempt to verify the 

system with theoretical predictions for nano particle size, we formulated a generalized 

far-field imaging model, which can be used to analyze all forms of scattering intensity 

data that are collected in the far field. Lastly, we generalized the development process 

of this technique for the simple colloidal characterization case and provided insight for 

the development of more complicated nanofiber TIRM instrumentation modalities. 

These included  the incorporation of a polymeric mechanical feedback components, 

the use of the platform for characterization of bonds in a nanofiber-nanoparticle tether 

configuration, and the addition of fluid flow for the characterization of nanoscale 

interactions under mechanical loading. 



164 

 

 

9.2. Future Outlook 

 The development of a unique nanofiber TIRM technique is the first step 

towards formulating predictive theories that can extrapolate fundamental colloidal 

physics principles to mechanistically explain the solution-level behavior of these 

nanoparticle systems in complex environments. Performing both experimental and 

theoretical characterization on simpler colloidal systems in tandem has provided us 

with significant insight as to the delicate nature of properly analyzing their behavior. 

In particular, careful consideration of the effect all aspects of the experiment have on 

the quantitative signal output—from experimental setup and data collection to data 

processing—is crucial for comparison to theory. Addressing the limitations of the 

technique with respect to imaging speed or the mathematical treatment of the 

stochastically generated signals could have significant implications for the 

experimental investigation of complex colloidal systems, pushing the boundaries of 

nanomedicine research. 

 

  



165 

 

Appendix 

Scattering Event Detection and Quantification Algorithm 

%% CLEAN AND INITIALIZE ENVIRONMENT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

format compact 

close all 

clear all 

  

%% LOAD FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

maxfile = 160; f = 2000; 

% Number of files in dataset; Number of video frames in each file 

 

allimg = []; sigmat = []; threshmat = zeros(maxfile,f,3); 

% Initialized parameters 

 

for file = 1:maxfile   

    fprintf('\nFile: %d ... ',file) 

     

    filename = num2str(file); 

    fileext = '.asc'; 

    raw2d = load(horzcat(filename,fileext)); 

     

    [l,h] = size(raw2d); 

    w = l/f; % Width of a single frame in video 

    raw3d = reshape(flipud(raw2d'),h,w,f); 

    raw3d = raw3d(2:h-1,:,:); 

    w = length(raw3d(1,:,1)); 

    h = length(raw3d(:,1,1)); 

    clear raw2d 

     

    %   User Selected ROI for WG Output 

    if file == 1 

        favg = sum(raw3d,3)./f; 

        imagesc(favg) 

        axis image 

        set(gca,'xticklabel',[]) 

        xlabel(sprintf('Box the WG Output')) 

        recthandle = imrect(gca,[]); 

        api = iptgetapi(recthandle); 

        npos = api.getPosition(); 

        ypx = max([1 floor(npos(2))]):min([ceil(npos(2)+npos(4)) h]); 

        close all 

    end 

    fprintf('Load and Reshape File Complete.\n') 

     

%% SPATIAL/TEMPORAL EVENT DETECTION, CROSS-REFENCING, QUANTIFICATION %%%%% 

 

%   Position-time image generation and background flattening 

w2 = (round(w/2)-5):(round(w/2)+4); 

% New 9px width centered tighter around WG. 

    postime = reshape(mean(raw3d(:,w2,:),2),h,f); 

% Width-averaged intensity profile along length of fiber vs frame. 

    ptflat = imtophat(postime,strel('disk',15)); 

% Background flattening (in space and in time) using disk-shaped 

structuring element or radius 15px. 

    kern = fspecial('gaussian',9,1); 
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% Gaussian kernel for filtering; 5x5 size, 0.75 sigma. 

    ptfinal = conv2(ptflat,kern,'same'); 

% Gaussian blurring of image to reduce high (spatial) frequency noise. 

    allimg = vertcat(allimg,[ptflat;mean(ptfinal,1)]); 

% Image matrix for comparison of entire dataset. 

  

    tdet = []; tX = 1; 

    for i = 1:ypx(1) 

        tprof = ptfinal(i,:); 

        tmph = mean(tprof)+tX*std(tprof); 

        tprof(diff([0 tprof]) < tX*std(tprof)) = tmph*0.9; 

        if sum(tprof > tmph) ~= 0 

            [pkt,t] = 

findpeaks(tprof,'minpeakheight',tmph,'threshold',0*tmph, 

'npeaks',round(f./2)); 

            tdet = vertcat(tdet,[reshape(t,[],1) ones(length(t),1).*i]); 

        end 

    end 

 

    thresh = zeros(1,f,3); pdet = []; pX = 1; mpd = 3; 

    for j = 1:f 

        pprof = ptfinal(1:ypx(1),j); 

        pmph = mean(pprof)+pX*std(pprof); 

        thresh(:,j,:) = reshape([mean(pprof),std(pprof),pmph],1,1,3); 

        if sum(pprof > pmph) ~= 0 

            [pky,y] = 

findpeaks(pprof,'minpeakheight',pmph,'minpeakdistance',mpd, 

'npeaks',50); 

            pdet = vertcat(pdet,[ones(length(y),1).*j reshape(y,[],1)]); 

        end 

    end 

    threshmat(file,:,:) = thresh; 

     

    det = sortrows(intersect(tdet,pdet,'rows'),1); 

    for k = 1:length(det(:,1)) 

        if mod(k,10) == 0 | k == length(det(:,1)) 

            fprintf('File %0.0f/%0.0f - Percent Done: %0.1f\n', 

file,maxfile,k./length(det(:,1))*100) 

        end 

        sf = raw3d(:,:,det(k,1)); 

        rw = 3; %%% Half-width of ROI Size %%% 

  

%   Localization of event peak scattering value: (locy,sx) 

        ly1 = max([det(k,2)-2, 1]); 

        ly2 = min([det(k,2)+2, h]); 

        [pksx,sx] = findpeaks(mean(sf(ly1:ly2,:),1),'minpeakdistance',w-1); 

  

%   Localization of output peak scattering value: (outy,outx) 

        [pkouty,outy] = findpeaks(mean(sf(ypx,w2),2),'minpeakdistance', 

length(ypx)-1); 

        outy = outy + ypx(1) - 1; 

        ly1 = max([outy-2, 1]); 

        ly2 = min([outy+2, h]); 

        [pkoutx,outx] = findpeaks(mean(sf(ly1:ly2,:),1), 

'minpeakdistance',w-1);         

         

%   Defining ROI Bounds for scatering event 

        sh = max([det(k,2)-rw,1]):min([det(k,2)+rw,h]); 

        sw = max([sx-rw,1]):min([sx+rw,w]); 

        nh = max([outy-rw,1]):min([outy+rw,h]); 
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        nw = max([outx-rw,1]):min([outx+rw,w]); 

  

%   Calculating background-subtracted, ROI-integrated intensity for event and 

output                    

        bkgd = mode(reshape(sf,1,[])); 

        As = (sh(end)-sh(1)+1)*(sw(end)-sw(1)+1); 

        An = (nh(end)-nh(1)+1)*(nw(end)-nw(1)+1); 

        Isb = sum(sum(sf(sh,sw))); 

        Inb = sum(sum(sf(nh,nw))); 

        Is = Isb-As*bkgd; 

        In = Inb-An*bkgd; 

        Iscb = Isb./Inb; 

        Isc = Is./In; 

  

%   Calculating peak-value intensity for event and output (not background 

subtracted) 

        Ispk = sf(det(k,2),sx); 

        Inpk = sf(outy,outx); 

        Iscpk = Ispk./Inpk; 

  

%   DATA MATRIX 

        sigmat0 = [file, det(k,1), det(k,2), sx,... 

% [1,2,3,4]   (event time and location) 

                        Ispk, Inpk, Iscpk,... 

% [5,6,7]     (peak intensity) 

                        Is, In, Isc,... 

% [8,9,10]    (integrated intensity, background subtracted) 

                        Isb, Inb, Iscb,... 

% [11,12,13]  (integrated intensity with background)  

                        As, An, bkgd]; 

% [14,15,16]  (ROI areas and background value) 

        sigmat = vertcat(sigmat,sigmat0); 

    end 

end 

  

Isctot = sigmat; 

save Isctot Isctot 

save allimg allimg 

save paramvec h w f maxfile rw  

save threshparams ypx threshmat mpd w2  
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Gaussian Mixture Model Data Filtering 

%% GAUSSIAN MIXTURE DISTRIBUTION CLUSTER ANALYSIS %%%%%%%%%%%%%%%%%%% 
pv = [Isctot(:,5) Isctot(:,8)]; 
gm = gmdistribution.fit(pv,2); 
P = posterior(gm,pv); 
idx = cluster(gm,pv); 
sclust = idx(pv(:,1) == max(pv(:,1))); 
nclust = setdiff([1 2],sclust); 
detnoise = (idx == nclust); 
detsig = (idx == sclust); 

  
%   Filtering out GMM-based noise cluster (double filtering) 
IsctotGMM = Isctot(P(:,sclust)-rand(size(P(:,1))) > 0 & P(:,nclust)-

rand(size(P(:,1))) < 0,:); 
IsctotGMM(IsctotGMM(:,3) <= 10,:) = []; 
save IsctotGMM IsctotGMM 
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Brownian Dynamics Simulations 

clc 

close all hidden 

clear all 

format compact 

  

%% PARAMETERS 

S = 1000;                   % size of simulation box (nm) 

N = 500;                    % number of NPs in simulation 

R = ones(N,1).*75;          % radius of NP (nm) 

T = 298;                    % temp (K) 

kB = 1.38e-23*1e9;          % Boltzmann constant (N*nm/K) 

e0e = 7.08e-10*1e-9;        % Permitivity of solution (F/nm) 

mu = 8.9e-4*1e-18;          % viscosity of water at 298K (Ns/nm^2) 

g = 6*pi*mu.*R;             % drag coefficient (Ns/nm) 

  

K = 0.415;                  % Debye-Huckel parameter (nm^-1) 

                            % K = {0.093, 0.131, 0.293, 0.359, 0.415} nm^-1 

                            % for {0.005x, 0.01x, 0.05x, 0.075x, 0.1x} PBS  

s1 = 0.05*1e-18;            % surface charge density (C/nm^2) 

B = 0.24;                   % ratio of s1 to s2 (m/m) 

tau = 34;                   % Isc decay constant (nm) 

I0 = (R./40).^0.69; 

  

exptime = 5000e-6;          % exposure time (s) 

dt2 = exptime/1000;         % recorded time step (s) 

dt = dt2/100;               % simulation time step(s) 

t = 25000000*dt2/N;         % total simulation time (s) 

  

%%  1D-BD SIMULATION 

rx = (R)+(S-R).*(rand(N,1));   % random initial x-position (nm) 

rx0 = rx;                      % initial position distribution 

H = rx-(R);                    % distance from WG (nm) 

  

count = 1; 

l = round(t/dt2); 

posmat = zeros(N,2,l-1); 

I = zeros(N,1); 

expnum = round(exptime./dt); 

rxmat = zeros(N,expnum); 

Imat = zeros(N,4,round(t./exptime)-1); 

expdispmat = zeros(N,round(t./exptime)); 

expdispmat(:,1) = H; 

expcount = 0; 

Icount = 0; 

ncount = 0; 

  

for i = 2:round(t/dt)     

    i/(t/dt) 

    Fx = ((pi.*R.*s1^2*1e9)./(e0e*K)).*((((B+1)^2)./... 

        (exp(K.*H)-1))-(((B-1)^2)./(exp(K.*H)+1))); 

                              % deterministic force term (N) 

    Sx = sqrt(2*kB*T.*g*dt).*randn(N,1); 

                              % stochastic term (N) 

    H0 = rx-R;                % old distance from WG (m) 

    rxnew = rx+(Fx./g).*dt+(Sx./g); 

                              % new particle position after time dt (m) 
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    jx = find(rxnew >= S); 

    ncount = ncount + length(find(rxnew-R <= 0)); 

% periodic boundary conditions 

    if isempty(jx) == 0 

        for w = 1:length(jx) 

            rxnew(jx(w)) = S-rem(rxnew(jx(w)),S); 

        end 

    end 

        

                               

    rx = rxnew; 

    H = rx-R;  % distance from WG (m) 

     

    if expcount.*dt <= exptime 

        I = I + (0.5).*(I0.*exp(-H0./tau)+I0.*exp(-H./tau)).*dt; 

        expcount = expcount + 1; 

        rxmat(:,expcount) = single(rx); 

    else 

        Icount = Icount + 1; 

        Imat(:,:,Icount) = [I./exptime mean(rxmat,2) std(rxmat,0,2) R]; 

        It0(:,:,Icount) = [I0.*exp(-H./tau) H]; 

        expdispmat(:,Icount+1) = rx; 

        expcount = 0; 

        I = zeros(N,1); 

        rxmat = zeros(N,expnum); 

    end     

    if mod(i,round(dt2./dt)) == 0 

        count = count + 1; 

        posmat(:,:,count-1) = [single(rx) R]; 

        i*dt/t 

    end 

end 
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