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Technical Challenges of Real-Time
Adaptive MR-Guided Radiotherapy
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2 Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States

In the past few years, radiotherapy (RT) has experienced a major technological innovation
with the development of hybrid machines combining magnetic resonance (MR) imaging
and linear accelerators. This new technology for MR-guided cancer treatment has the
potential to revolutionize the field of adaptive RT due to the opportunity to provide high-
resolution, real-time MR imaging before and during treatment application. However, from
a technical point of view, several challenges remain which need to be tackled to ensure
safe and robust real-time adaptive MR-guided RT delivery. In this manuscript, several
technical challenges to MR-guided RT are discussed. Starting with magnetic field strength
tradeoffs, the potential and limitations for purely MR-based RT workflows are discussed.
Furthermore, the current status of real-time 3D MR imaging and its potential for real-time
RT are summarized. Finally, the potential of quantitative MR imaging for future biological
RT adaptation is highlighted.

Keywords: MR-linac, MR-guided radiotherapy, biologically adaptive radiotherapy, MR-only radiotherapy, online
adaptive radiotherapy, real-time adaptive radiotherapy
INTRODUCTION

The development of radiation therapy (RT) technology has enabled radiation oncologists to
conform radiation doses to a level that was assumed to be physically impossible during the first
90 years of the field. Tumor margin prescriptions were developed to account for the differences
between the radiation dose distribution and the patient’s anatomy based on patient positioning
errors, anatomical changes, and intrafraction motion (1). In-room imaging went a long way to
reduce the margins needed to account for positioning and anatomical changes, but intrafraction
motion remained a challenge due to the lack of real-time internal imaging of soft tissues (2, 3). This
limitation was solved with the recent development of magnetic resonance (MR)-guided RT, defined
as the integration of a radiation-delivery machine and an MR scanner (4, 5). While intra-fraction
and real-time imaging became more straightforward, the improved soft tissue contrast of MR and
the relatively low level of artifacts made this modality the first practical platform for adaptive RT
(6–12).

While MR imaging delivers no ionizing radiation, some acquisition protocols are limited due
to tissue heating, which restricts some of the real-time imaging protocols, especially for high
magnetic field systems. The clearance between the patient and the machine is also smaller than for
conventional linear accelerators, limiting patient positioning strategies. The impact of the main
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magnetic field on the delivered radiation dose can be profound,
and unlike computed tomography (CT), maintaining adequate
spatial accuracy requires great care and needs to be checked
routinely. Still, with all of these caveats, MR-guided RT
(MRgRT) is likely to revolutionize some RT treatments,
especially those that need high spatial resolution soft
tissue imaging each fraction or real-time imaging for linear
accelerator gating.

The aim of this review is to discuss technical challenges in the
field of real-time adaptive MRgRT and to highlight current
directions of research which reach out for new technical
solutions to provide a basis for future clinical achievements in
this field.
MAGNETIC FIELD STRENGTH
TRADEOFFS

One of the more obvious differences between the commercial
MRgRT systems is their main magnetic field strengths (4, 5).
Current systems span the range of 0.35 to 1.5 T, inviting the
question of what, if any, are the tradeoffs between the different
magnetic field strengths? Radiology’s history of MR imaging main
magnetic field strengths may imply that greater magnetic field
strengths always provide better images than can be acquired at
lower magnetic field strengths. Because the images are produced by
the net polarization of water protons, which is proportional to the
mainmagnetic field, the number of protons available to produce the
radiofrequency (RF) signal required for image acquisition increases
with increasing field strength. All other things being equal, the
subsequent signal to noise ratio (SNR) increases due to the increased
number of polarized protons.

The purpose of MRgRT systems is to treat cancer, and since all
commercial systems treat with x-rays, generally accepted clinical
quality and accuracy specifications, e.g., established by the
International Commission on Radiation Units and Measurements
(ICRU), should be met, as should imaging accuracy. The core
functionality of MRgRT systems is not to mimic diagnostic systems,
and as such the benchmark for their imaging performance should
not come from diagnostic radiology requirements, but from
radiation oncology requirements (13, 14).

The requirements of dose distribution accuracy and image
fidelity can be examined independently. With respect to dose
distribution accuracy, the AAPM stipulates that the overall
accuracy goal is that the delivered dose should agree with the
physical dose to within 5%, a specification that includes
uncertainties in machine calibration and dose calculation
accuracy (15). While x-rays themselves are not impacted by
the magnetic field, the secondary electrons are. When an external
magnetic field is applied, the electrons are influenced by the
Lorenz force, causing them to travel in a circle, but because of
their many medium interactions, the overall paths are instead
distorted in the direction of the Lorenz force. This distortion
increases with increasing magnetic field. For larger radiation
fields in a homogeneous water phantom, this distortion affects
only the lateral beam penumbra. As the fields get small with
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respect to their secondary electron range, the entire high dose
region distorts towards the Lorenz force direction (16, 17). When
heterogeneities such as air cavities are encountered, the curved
electron trajectories caused by the Lorentz force cause those
secondary electrons to return to the exit cavity surface,
substantially increasing the dose at those surfaces. These
surfaces include tissue-air interfaces (such as bowel gas, the
trachea, or nasal cavities) and tissue-lung interfaces, and the
dose hot spots can be as large as 48% for a 1.5 T MRgRT
system (18). State-of-the-art dose calculation software utilizes
Monte Carlo transport calculations that model the influence
of the magnetic fields, so the calculated dose can meet the
accuracy requirements for a static patient, but changes in
the heterogeneity distribution between the simulation scan and
the patient’s anatomy during the treatment can cause the doses at
these interfaces to differ substantially from the calculated doses.
That said, the relative dose heterogeneities can be somewhat
compensated by overlapping beams from different directions.
Finally, exit skin dose can exhibit the same behavior as internal
heterogeneities, causing the skin exit dose to considerably higher
than it would in a non-MRgRT treatment (19, 20).

Importantly, radiation dosimetry of air-filled ionization
chambers is significantly influenced by the presence of a static
magnetic field. To account for this effect during absolute
dosimetry, dedicated field strength and chamber type and
orientation specific correction factors need to be identified via
measurements or simulations (21–25).

The imaging fidelity can be summarized as image quality for
organ delineation, and geometric accuracy. It is generally
considered that MRgRT systems provide image quality that is
adequate for its intended purpose. MR images are generated
using magnetic field gradients and an assumption of the
knowledge of the relationship between the magnetic field
strengths and position. Errors in this relationship cause the
imaged features to appear offset from their actual positions.
CT-based IGRT geometric alignment specification tolerance is
1 mm (26). Published spatial accuracy of the commercial MRgRT
systems show that the 0.35 T system meets the 1 mm
specification within 5 cm radius from isocenter and a 2 mm
specification at 17.5 cm from isocenter (27), while the 1.5 T
system has a 1.1 mm maximum spatial distortion within 20.0 cm
from isocenter (28, 29).

Machine-based magnetic field errors are not the only source
of MR image distortion. The patient chemical makeup will also
modify the local magnetic field and therefore the apparent
position of an imaged structure. Such susceptibility artifacts or
chemical shifts lead to shifts in the imaged positions of
anatomical structures which are proportional to the magnetic
field. For human tissues, these can be in the order of millimeters
for 1.5 T scanners (30), while the same artifact at 0.35 T would be
much lower. For specific sequences, the susceptibility artifacts
can be reduced by increasing the RF bandwidth, which has the
corresponding side-effect of reducing SNR, reducing, but not
eliminating the advantage of the increased field strength.

Finally, the radiofrequency energy emitted by the MR
scanner is absorbed by the human body, heating the body.
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The term used to describe this for clinical MR scans is the
specific absorption rate (SAR). The amount of heating is
proportional to the square of the magnetic field strength
(31), so limiting the SAR will be more challenging for the
higher field MRgRT systems. Limiting the SAR may be most
challenging when conducting real-time imaging for purposes
of linear accelerator gating. Two of the “selling points” of MR
are that it does not deliver ionizing radiation and that it can
provide real-time internal imaging, so restricting this imaging
due to SAR concerns would reduce the perceived benefit
of MRgRT.
REAL-TIME MR AUTO-SEGMENTATION

Current clinical experience of online adaptive MRgRT shows
that one of the main bottle necks is the lack of fast and accurate
segmentation of MR images. As the requirement for real-time
adaptive MRgRT is to robustly provide MR-based structure
delineations in the order of seconds, deep learning (DL)
approaches have been investigated recently by several groups
(32–36). Most DL models for auto-contouring were trained so
far for the pelvic region providing to generate organ structures
based on MR images (32, 34). Additionally, DL concepts for
contour propagation from simulation images to daily MR have
been proposed recently (37). Since adaptive MRgRT is a novel
clinical application, annotated MR data for model training and
validation is sparse, thus alternative approaches such as cross-
modality learning have been explored (38). Even though
numerous challenges remain concerning real-time MR-based
auto-segmentation, first investigations regarding the clinical
implementation have reported fast (few seconds) and robust
use in MRgRT of prostate cancer (39).
MR-ONLY PLANNING

During real-time adaptive MRgRT, treatment planning as well as
dose calculation need to be conducted for every RT fraction, but a
CT simulation is no longer available. Consequently, approaches for
MR-based dose planning—so called MR-only planning workflows
—have been proposed to support real-time adaptive MRgRT.

MR-only planning in combination with MR-simulation for
RT planning without the need of additional planning CT has
been previously proposed (40, 41). Early on, mechanistic models
using dedicated MR sequences, such as e.g., Dixon-based
sequences, were proposed to generate synthetic CT data sets
based on MR imaging data (42). Alternative approaches
proposed voxel-intensity based approaches to translate MR
signal values into synthetic CT readings (42). Dosimetric
studies analyzing the accuracy of radiation dose calculation
using synthetic CT reported dose differences on the order of
0.5% relative to CT-based dose simulation (43). Today, several
commercial products for synthetic CT generation are available
and studies reporting first clinical experience using MR-only
simulation for RT planning have been recently published (44).
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Because the acquisition of dedicated MR sequences for
synthetic CT determination is time consuming, online adaptive
MRgRT in today’s clinical practice mostly relies on extremely
simplified methods to generate synthetic CT information, such
as bulk density assignments to anatomical structures. This
simplification may compromise the dosimetric accuracy as
currently robust conversion approaches from MR to CT are
lacking. To overcome this, several groups have recently proposed
deep learning models for the calculation of synthetic CT data sets
based on anatomical MR imaging which has shown to be a time-
efficient and robust approach (45–48). Dosimetric evaluations
have shown promising results in terms of dose differences of 0–
0.5% (49, 50). However, online quality assurance of synthetic CT
seems to be challenging and bears dosimetric risks especially
when it comes to the anatomical location and electron density
assignment of bony structures. The use of undistorted MR
images for synthetic CT generation is crucial in the light of
real-time high precision MR-guidance. Nevertheless, the use of
artificial intelligence (AI) tools for MR-only workflows may open
new opportunities for real-time adaptive MRgRT using hybrid
MR-linacs.
REAL-TIME MRI

One of the most compelling features of MRgRT is the ability to
conduct real-time imaging (51, 52). Real-time imaging provides
unparalleled visualization of internal organs to enable the clinicians
to monitor and ultimately limit the impact of intra-fraction motion.
This motion may be due to peristalsis, bladder filling, or breathing.
The MRgRT system will provide a sequence of images, typically at a
few Hertz. This sequence is typically started immediately after any
setup images are acquired where the tumor is identified, and the
patient moved to account for relative shifts or deformations. If the
motion is due to breathing, the sequence is typically visualized for a
few breathing cycles to determine the amount of motion. If gating is
available and desired, a gating window is defined by segmenting the
target or a suitable surrogate and applying a margin to act as a
gating structure. The MRgRT system then tracks that gating
structure for each image frame and monitors whether the
structure is within the gating window, typically to within a pre-
selected percentage. Note that this process is currently 2D, due to a
lack of commercially available real-time 3D imaging sequences.
Recent studies however showed promising approaches towards real-
time 3D MR image acquisition (53–56) and reconstruction (57).

A critical concern is the latency between the time, the images
are acquired and the time the machine or operator can respond
to an undesired motion. This is related to the amount of time
required to acquire the image data, to reconstruct the data, and to
analyze the data and determine that a significant deviation has
occurred. The latter could be the time required for the system to
conduct the contouring, the determination that the motion
should trigger a change in machine state and implement that
change (beam on or off) or the time a human operator would
take to evaluate and manually change the machine state. The
latency of the image acquisition step is typically assumed to be
March 2021 | Volume 11 | Article 634507
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approximately half of the image acquisition time because the
image is expected to reflect the average state during the
acquisition time. The remaining latency sources are functions
of the hardware and software that the manufacturer employs.
These times should be short, especially for free breathing motion
gating, where multiple gating events will take place during
a treatment.

Recent studies have shown latency times of real-time 3D
MR imaging on MR-linac systems of 300–500 ms (58). Quality
assurance to verify real-time interventions should be performed
using a dynamic phantom that contains MR-imageable
structures and the ability to do both point (ion chamber) and
area (film) dosimetry. An end-to-end test of a gated treatment
that uses clinically realistic treatment times and gating windows
will determine if the latency significantly degrades the treatment
dose accuracy (59).
ONLINE ADAPTIVE RT

With the advent of 4D-MR imaging with minimal latency
times, real-time adaptive RT seems to be one of the next
technological steps of MR-guided radiotherapy. Consequently,
it might be possible to irradiate moving targets with highest
precision using MLC-tracking based on real-time MR readings.
MLC-tracking based on CBCT imaging has been proposed
earlier and proven to be suitable for clinical usage (60). A
major challenge of real-time adaptive RT is the methodology of
real-time dose calculation or reconstruction. Fast et al. (61)
proposed a tool for online dose reconstruction which
determined the delivered dose based on pre-calculated dose
influence data in less than 10 ms. After initial investigations of
online dose reconstruction based on 2D cine MR images (62)
and 3D cine MR in addition to treatment log files (63), recent
studies proposed deep learning strategies to empower real-time
dose calculation and motion prediction (64, 65). Even though
proposed for offline planning, methods for deep learning-based
dose prediction seem to be promising tools to support real-time
dose reconstruction (66, 67). In the light of current trends for
reduced number of RT fractions, dose adaptation and
calculation based on real-time anatomical information gets
more and more important.

Accurate dose assessment of fractionated RT requires deformable
dose accumulation for targets and OARs. So far, no clinically usable
solution has been proposed for this problem. Therefore, robust
algorithms for 4D dose accumulation are required to provide
precise voxel-readings of recorded, locally varying dose distributions
for better TCP and NTCP estimation (68).

Nevertheless, clinical real-time adaptive MRgRT needs
thorough quality assurance and testing. To date, dedicated
end-to-end tests were proposed to specifically test certain
aspects of adaptive MR-guided RT (7, 59, 69–71). Future end-
to-end test developments may focus on ways to evaluate real-
time imaging, dose calculation, and accumulation. Furthermore,
mechanisms that ensure robust and safe radiation delivery need
to be implemented in real-time MR guided workflows.
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FUNCTIONAL IMAGING

In addition to the enormous potential of MRgRT for geometrical
precision and adaptation in real-time, functional MR data has been
shown by several studies to be prognostic for outcome after RT in
different tumor entities (72, 73). Consequently, interventions steered
by functional MR imaging biomarkers seem to be one of the
most promising concepts towards personalized, biologically
individualized RT. Even though prognostic information using
functional MR imaging may also be gathered with state-of-the-art
diagnostic MR systems which do not suffer from hardware
limitations such as the hybrid MR-linac scanners (74), biological
real-time adaptation such as image biomarker guided dose painting
to overcome local tumor radiation resistances can only be realized
on hybrid MR-linacs (75). Biological RT individualization in terms
of dose adaptation based on imaging information requires the
measurement of quantitative imaging biomarkers (76). Recent
studies have shown that quantitative MR imaging is possible
using hybrid MR-linacs (77). Diffusion-weighted imaging (DWI),
for example, can be implemented such that robust quantitative
diffusion data can be measured with high repeatability and
reproducibility (77). A major challenge for using quantitative
biomarkers in observational and also interventional multi-center
MR-linac studies will be the validation of imaging protocols for
reproducibility of quantitative imaging in order to prove that
quantitative imaging biomarkers are comparable between centers
(78). Furthermore, test-retest studies to assess the level of
repeatability will be prerequisites for future quantitative imaging
studies in different tumor entities. So far, most studies have focused
on quantitative imaging assessments and on investigating
prognostic value of DWI (72, 74, 77, 79–81). A further challenge
will be the realization of functional interventions. Currently, echo
planar MR imaging (EPI) techniques are mostly used for DWI even
though these are known to be susceptible for geometrical distortions
(82). However, dose painting based on functional MR data requires
geometrical accuracy. Consequently, current research strategies in
this field include investigation of alternative MR imaging
techniques, e.g., turbo spin echo (TSE) based sequences such as
SPLICE (83) or strategies to correct for geometrical distortions (82).
Nevertheless, hybrid MR-linacs are a major technological
innovation towards real-time biological adaptation of RT aiming
for increasing tumor control rates in different cancer types in
the future.
DISCUSSION

MR-guided RT offers high-resolution real time MR imaging before
and during RT and allows thus to adapt for inter- and intra-fraction
changes. Consequently, smaller target margins and potentially
better organ-at-risk sparing may be possible with MRgRT,
opening new horizons towards single or few fraction RT delivery
(84). For real-time MR-guidance, many involved steps require
automatization. Researchers in different sub-fields have started to
automatize and speed-up processes using AI methods. However, to
generate robust and intelligent models which can assist with
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treatment decisions, large sets of curated, standardized and well
documented data are needed for model training and validation.

Furthermore, there is evidence, that biological characteristics
of the tumor microenvironment play an important role in terms
of radiation resistance. Consequently, quantitative MR imaging
biomarkers need to be identified as predictive for RT outcome,
validated in phantom and clinical studies and might then in
the future qualify for interventional, quantitative MR based
RT studies.

Ultimately, all technical solutions developed to overcome
challenges related to real-time adaptive MR-guided RT deserve
intensive clinical validation before unsupervised usage in
routine MRgRT.
Frontiers in Oncology | www.frontiersin.org 5
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