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Headwater Stream Microbial Diversity and Function across
Agricultural and Urban Land Use Gradients

Sarah M. Laperriere,a,b* Robert H. Hilderbrand,c Stephen R. Keller,c,d Regina Trott,c Alyson E. Santorob

aHorn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
bDepartment of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
cAppalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
dDepartment of Plant Biology, University of Vermont, Burlington, Vermont, USA

ABSTRACT Anthropogenic activity impacts stream ecosystems, resulting in a loss of
diversity and ecosystem function; however, little is known about the response of
aquatic microbial communities to changes in land use. Here, microbial communities
were characterized in 82 headwater streams across a gradient of urban and agricul-
tural land uses using 16S rRNA gene amplicon sequencing and compared to a rich
data set of physicochemical variables and traditional benthic invertebrate indicators.
Microbial diversity and community structures differed among watersheds with high
agricultural, urban, and forested land uses, and community structure differed in
streams classified as being in good, fair, poor, and very poor condition using benthic
invertebrate indicators. Microbial community similarity decayed with geodesic dis-
tance across the study region but not with environmental distance. Stream commu-
nity respiration rates ranged from 21.7 to 1,570 mg O2 m�2 day�1 and 31.9 to
3,670 mg O2 m�2 day�1 for water column and sediments, respectively, and corre-
lated with nutrients associated with anthropogenic influence and microbial commu-
nity structure. Nitrous oxide (N2O) concentrations ranged from 0.22 to 4.41 �g N2O
liter�1; N2O concentration was negatively correlated with forested land use and was
positively correlated with dissolved inorganic nitrogen concentrations. Our findings
suggest that stream microbial communities are impacted by watershed land use and
can potentially be used to assess ecosystem health.

IMPORTANCE Stream ecosystems are frequently impacted by changes in watershed
land use, resulting in altered hydrology, increased pollutant and nutrient loads, and
habitat degradation. Macroinvertebrates and fish are strongly affected by changes in
stream conditions and are commonly used in biotic indices to assess ecosystem
health. Similarly, microbes respond to environmental stressors, and changes in com-
munity composition alter key ecosystem processes. The response of microbes to
habitat degradation and their role in global biogeochemical cycles provide an op-
portunity to use microbes as a monitoring tool. Here, we identify stream microbes
that respond to watershed urbanization and agricultural development and demon-
strate that microbial diversity and community structure can be used to assess stream
conditions and ecosystem functioning.

KEYWORDS Benthic Index of Biotic Integrity, species-area curves, nitrous oxide,
respiration, aquatic ecosystems, Chesapeake Bay, species-area relationships

Biodiversity is critical to ecosystem functioning and is threatened by anthropogenic
activity (1). Microbes perform key ecosystem functions (2–4), necessitating a better

understanding of how microbes and microbial diversity respond to environmental
stressors (5–7). Streams are examples of threatened ecosystems, where watershed
modification decreases stream integrity and water quality (8–11), altering macroinver-
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tebrate, fish, and microbial diversity (11–15). The use of macroinvertebrate and fish
indices to assess stream conditions is fundamental to stream ecology (16) and depends
on known relationships between stream integrity and community structure (17, 18).
The Benthic Index of Biotic Integrity (B-IBI) is one such index, using the abundance and
diversity of stream benthic macroinvertebrates to accurately distinguish degraded
streams (B-IBI � 2.9) classified based on stream chemical and physical criteria (18).
Biotic indices are calibrated to specific regions, as the distribution of stream macroin-
vertebrates is controlled by a combination of dispersal limitation and local environ-
mental conditions (19). Despite their abundance and ecological importance, natural
microbial communities, unlike macroinvertebrates, are not used in stream monitoring
programs to assess stream conditions.

As with macroinvertebrates, dispersion and environmental selection control the
spatial distribution of microbes along stream continuums (20). Dispersion, or the
advection of microbes from the surrounding landscape, impacts headwater stream
community composition, and with increasing stream order, environmental sorting
becomes more important as stream residence times increase (20). Several studies have
demonstrated the influence of the surrounding landscape on stream microbes, show-
ing that watershed urbanization leads to shifts in bacterial communities (21–24). While
alpha diversity generally remains constant (22–24), the abundances of taxa associated
with anthropogenic activity and high-nutrient conditions increase in urbanized streams
(22, 24). Similar to larger organisms, microbes respond to environmental disturbance
and are strongly influenced by watershed land use (25, 26); therefore, their distribution
may be used to further characterize stream conditions.

Microbes mediate important stream ecosystem functions, controlling the movement
of carbon and nitrogen through freshwater ecosystems (2–4). Previous studies dem-
onstrate the effects of urbanization on stream nutrient transformations, such as nitro-
gen uptake (27), nitrogen retention (28), and carbon processing (29, 30). Community
respiration determines the fate of terrestrial carbon in headwater streams, where
carbon is either lost as carbon dioxide during respiration or transported farther
downstream (31). Community respiration is often used to assess ecosystem function
(32), as rates are influenced by watershed land use (33–35), correlated with stream
chemistry (30, 36), and sensitive to pollutants (37, 38). The effects of urbanization on
stream dissolved organic matter quality (39) and respiration (33–35) have previously
been demonstrated, and stream microbial community structure can potentially be used
to monitor these ecosystem functions.

In addition to respiration, dissolved organic matter fuels stream denitrification and
the microbial reduction of nitrate (NO3

�) to nitrous oxide (N2O) and dinitrogen (N2)
gases (40). Denitrification removes nitrogen from streams and is credited as the major
source of the greenhouse gas N2O (41, 42). Watershed land use and anthropogenic
nitrogen loading alter rates of stream denitrification (43), increasing the amount of
nitrogen transported downstream (44) and emissions of N2O to the atmosphere (41).
Urbanization has been linked to changes in denitrifier community composition (21, 22,
45, 46), and a previous study linked changes in denitrifier composition to changes in
denitrification potential, and therefore nitrogen loss, in urban streams (21). However, it
is less clear how changes in microbial community composition in response to land use
modification alter N2O production.

The goal of this study was to identify stream microbes that respond to watershed
urbanization and agricultural development. These anthropogenic factors alter microbial
diversity and community structure, which can be used to assess stream conditions and
ecosystem functioning. We measured microbial diversity using 16S rRNA gene ampli-
con sequencing across 82 headwater streams within the Chesapeake Bay watershed in
the state of Maryland in the spring and summer for 2 years. Measurements were
collected in conjunction with stream physicochemical parameters and a macroinver-
tebrate indicator of stream health. Additionally, at a subset of streams, water column
and sediment community respiration were measured using oxygen consumption meth-
ods, and N2O concentrations were measured using gas chromatography. We deter-
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mined how stream bacteria and archaea are distributed across gradients of watershed
land use and stream conditions, assessed how changes in microbial community com-
position relate to benthic macroinvertebrate diversity and traditional indices of stream
conditions, and determined how these changes influence stream function by relating
microbial community composition to rates of microbial respiration and concentrations
of N2O.

RESULTS
Higher microbial alpha diversity in spring. Operational taxonomic unit (OTU)

richness differed according to substrate (water and sediment) and ranged from 115 to
996 and 459 to 895 for water and sediment samples, respectively, with sediment
richness being significantly higher than that of water (paired Wilcoxon, P � 0.001).
Sediment Shannon diversity, at 6.2 � 0.2 (mean � standard deviation), was greater
than water diversity, at 5.4 � 1.1 (paired Wilcoxon, P � 0.001), and sediment commu-
nities were more even, at 0.94 � 0.02, than were water communities, at 0.84 � 0.11
(paired Wilcoxon, P � 0.001). Similarly, beta diversity (Bray-Curtis dissimilarity) differed
by substrate (permutational multivariate analysis of variance [PERMANOVA], R2 � 0.11,
P � 0.001). Water communities had more Actinobacteria, Bacteroidetes, and Proteobac-
teria, while Acidobacteria, Planctomycetes, Chloroflexi, Nitrospirae, and Verrucomicrobia
were more abundant in sediments (see Fig. S1 in the supplemental material).

Interannually, there was no difference in alpha diversity between samples collected
in 2014 and 2015, and collection year only explained a small fraction of the variance in
beta diversity between water and sediment communities (PERMANOVA, R2 � 0.01, P �

0.001, and R2 � 0.01, P � 0.001, respectively). Seasonally, water Shannon diversity was
greater in spring than in summer (paired Wilcoxon, P � 0.001), a result of higher
richness (paired Wilcoxon, P � 0.001) and evenness (paired Wilcoxon, P � 0.001) in
spring. There was no seasonal difference in sediment Shannon diversity (paired Wil-
coxon, P � 0.49), though sediment richness was greater in spring than in summer
(paired Wilcoxon, P � 0.01), with no significant difference in evenness (paired Wilcoxon,
P � 0.13). Additionally, there were small seasonal changes in water and sediment
community structures (PERMANOVA, R2 � 0.05, P � 0.001, and R2 � 0.02, P � 0.001,
respectively), with Actinobacteria being more abundant in summer water samples than
in spring samples (Fig. S2).

Distance-decay relationships partially drive microbial diversity. Water sample
alpha diversity metrics differed across the three geographic regions, while sediment
diversity remained constant (Fig. 1). Streams on the Coastal Plain had lower Shannon
diversity than did streams in the Piedmont and Highlands regions (Dunn’s Kruskal-
Wallis, P � 0.001 and P � 0.001, respectively). This was driven by both lower evenness
(Dunn’s Kruskal-Wallis, P � 0.001 and P � 0.001 in Piedmont and Highlands, respec-
tively) and richness (Dunn’s Kruskal-Wallis, P � 0.001 and P � 0.001 in Piedmont and
Highlands, respectively) in Coastal Plain streams than that in the other regions. Regional
differences in Bray-Curtis dissimilarity and taxon abundances were observed in water
(PERMANOVA, R2 � 0.07, P � 0.001; Fig. 2a and S3a) and sediment (PERMANOVA, R2 �

0.08, P � 0.001; Fig. 2b and S3b) communities.
Partial Mantel tests detected correlations between water and sediment Bray-Curtis

dissimilarity and geographic distance (the Euclidean distance between sampling loca-
tions) (� � 0.26, P � 0.001; and � � 0.26, P � 0.001, respectively), and no significant
relationship was detected between Bray-Curtis dissimilarities and environmental
distance and the Euclidean distance between streams based on the continuous
environmental variables (� � �0.01, P � 0.62; and � � 0.07, P � 0.07, respectively).
Positive distance-decay relationships were observed between the natural-logarithm-
transformed least-squares linear regressions of water and sediment community simi-
larity (Sørensen index) and geodesic distance. The absolute value of the regression
coefficients (species-area Z-values) for water and sediment communities were 0.12
(R2 � 0.082, P � 0.001) and 0.11 (R2 � 0.066, P � 0.001) (Fig. 3) for water and sediment
communities, respectively.
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The effect of land use on spatial scaling was examined by comparing the distance-
decay relationships for streams in high-use urban, agricultural, and forested water-
sheds. Communities in streams with high urban and agricultural land use had signifi-
cant distance-decay relationships in both water (urban, R2 � 0.102, P � 0.001;
agricultural, R2 � 0.100, P � 0.001) and sediment (urban, R2 � 0.129, P � 0.001;
agricultural, R2 � 0.075, P � 0.001) samples. No significant distance-decay relationship
was observed for samples in highly forested watersheds. The species-area Z-values for
highly urban (water, 0.08; sediment, 0.10) and agricultural (water, 0.07; sediment, 0.06)
streams were lower than the Z-values when all streams were considered.

Microbial diversity relates to stream physicochemistry. Stream physicochemistry
varied by geographic region (Table S2), land use (Table S3), and stream conditions
(Table S4). N2O concentrations ranged from 0.22 � 0.00 to 4.41 � 0.7 �g N2O liter�1 (58
to 1,217% saturated; Table 1), with no difference in N2O concentrations or saturation
between individual streams sampled in 2014 and 2015 (paired t test, P � 0.2). N2O
concentration negatively correlated with percent forest cover and positively correlated
with total nitrogen (TN), NO2

�, and Br, NO3
�, and NH4

� concentrations, and agricul-
tural cover (Table S5). N2O concentration did not correlate with water or sediment
microbial diversity.
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FIG 1 (a to f) Alpha-diversity metrics for water column (a, c, and e) and sediment (b, d, and f) samples in spring
(white) and summer (gray) when grouped by geographic region. *, P � 0.05; **, P � 0.01; ***, P � 0.001, Dunn’s test,
with seasonal differences shown below and regional differences shown above.
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Respiration rates in Coastal Plain streams ranged from 21.7 to 1,573 mg O2 m�2

day�1 and 31.9 and 3,668 mg O2 m�2 day�1 for water and sediments, respectively
(Table 2). There was no significant difference in water rates measured in streams in both
2014 and 2015 (paired t test, P � 0.9), while sediment rates were higher in 2014 than
those in 2015 (paired t test, P � 0.04). Water respiration rates most strongly negatively
correlated with specific conductance, Cl�, Ca, and urban cover and positively correlated
with forest cover, embeddedness, and Shannon diversity (Table S6). Sediment respira-
tion rates negatively correlated with Zn, total phosphorus (TP), and PO4

3� concentra-
tions (Table S7). Both water and sediment microbial community structures correlated
with respiration rates (Mantel, r � 0.51, P � 0.001; and r � 0.24, P � 0.04, respectively).

Water Shannon diversity negatively correlated with several environmental variables,
including embeddedness, Cu, thalweg depth, dissolved organic carbon (DOC), and TP
and positively correlated with forest cover and stream velocity (Table S8). The best-fit
stepwise multiple linear regression model explained 41% of the variance in water
Shannon diversity and included pH, DOC, SO4

2�, TP, forest cover, Mg, Cu, and thalweg
depth as predictor variables. Sediment diversity negatively correlated with DOC, em-
beddedness, and forest cover, and positively correlated with pH, B-IBI, NO3

�, and TN
(Table S9). A stepwise linear regression model explained 22% of the variation in
sediment Shannon diversity, with pH, DOC concentration, forest cover, Mg concentra-
tion, and thalweg depth being the most significant predictors. Similarly, Bray-Curtis
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dissimilarity correlated with several environmental variables (Tables S10 and S11),
including pH, DOC concentration, embeddedness, and Zn concentration. The measured
physicochemical variables explained 7% of the variation in community structure ac-
cording to constrained correspondence analysis in both stream water and sediment
communities.

Strong associations between taxon abundance and stream physicochemistry were
observed in water and sediment samples (Fig. 4). Pedosphaerales positively correlated
with forest cover and negatively correlated with acid-neutralizing capacity (ANC) and
urban cover (Fig. 4a). The order iii1-15 (Acidobacteria) strongly negatively correlated
with TP and Zn concentrations. Cenarchaeales (Thaumarchaeota) negatively correlated
with DOC and TP concentrations. The strongest sediment associations were positive
correlations between Pirellulales (Planctomycetes) and ANC, Ca concentration, and
conductivity, and the strongest negative associations were between Acidobacteria-

TABLE 1 Nitrous oxide concentrations and percent saturation relative to equilibrium at in situ temperature

Stream site

Concn and saturation data by yr

2014 2015

N2O concn (mean � SD) (�g liter�1) % saturation N2O concn (mean � SD) (�g liter�1) % saturation

CORS102 1.16 290 1.06 � 0.03 302
LMON302 0.87 � 0.01 224
LOCR102 1.68 � 0.32 537 1.16 � 0.04 353
MATT104 0.55 � 0.01 140
MATT115 1.17 � 0.03 286
MATT320 0.55 � 0.00 152
NASS108 0.22 � 0.00 58 0.48 � 0.04 120
NASS302 1.33 � 0.01 394 0.74 � 0.01 197
PAXL294 0.55 � 0.01 142 0.65 � 0.03 168
SEAS109 1.1 � 0.03 263
SEAS111 1.41 � 0.01 385
UMON134 0.55 � 0.04 139
UMON299 2.88 � 0.10 711
UPCK102 1.65 � 0.01 398 1.11 � 0.05 287
UPCK113 1.28 � 0.00 316
UPCR208S 0.76 � 0.03 179
WIRH215 4.26 � 0.15 1,217
WIRH220 4.41 � 0.07 1,116 4.13 � 0.12 1,040

TABLE 2 Rates of water column and sediment respiration from streams on the Coastal
Plain

Stream site

Respiration rates by yr (mean � SD) (mg O2 m�2 day�1)

2014 2015

Water Sediment Water Sediment

CORS102 148.8 1,563.7 181.9 � 51.7 204.7 � 68.8
LMON302 37.5 788.2
LOCR102 246.0 3,220.3 267.3 � 79.6 31.9 � 9.9
LOWI104 221.7 2,441.1
MATT104 95.0 128.7
MATT115 52.6 394.2
MATT320 23.8 1,897.1
NASS108 348.5 716.5
NASS302 1,573.2 3,667.9 248.2 � 31.8 96.3 � 19.6
PAXL294 45.3 235.7 264.2 � 49.9 498.2 � 123.4
SEAS109 21.7 264.2
SEAS111 35.9
UMON134 452.6 1,741.3
UPCK102 314.3
UPCK113 112.3 77.2 � 8.0 98.2 � 18.8
UPCK208 79.0 889.1 67.3 � 12.5 97.7 � 18.8
WIRH215 56.5 1,124.4
WIRH220 77.0 1,593.4 1,029.3 � 633.9 357.6 � 233.4
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les and Mg and TN concentrations and between Pedosphaerales with NO2
� and Mg

concentrations (Fig. 4b).
Microbial communities vary according to watershed land use and stream

conditions. Stream water alpha and beta diversity differed in watersheds with high
agricultural, urban, and forested land use. Sediment community structure also differed
according to land use, with no change in alpha diversity. Forested streams had higher
water Shannon diversity, richness, and evenness than that of agricultural (Kruskal-
Wallis, P � 0.001) and urban (Kruskal-Wallis, P � 0.001) streams (Fig. 5). Similarly, com-
munity structure differed in both water (PERMANOVA, R2 � 0.11, P � 0.001) and
sediment (PERMANOVA, R2 � 0.07, P � 0.001) communities. Taxa were identified
that were more abundant and pervasive in streams in watersheds with high
forested, agricultural, and urban land use (Tables 3 and S12). Forested streams had
more taxa in the phyla Verrucomicrobia, Planctomycetes, and Acidobacteria. Agricul-
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tural streams had more taxa in the phyla Bacteroidetes, Firmicutes, and Chloroflexi,
while urban streams had several abundant taxa in the Proteobacteria, Firmicutes,
and Chloroflexi phyla.

Benthic macroinvertebrate Shannon diversity weakly correlated with water and
sediment microbial Shannon diversity (� � 0.17, P � 0.008; and � � 0.15, P � 0.02,
respectively), and B-IBI scores weakly correlated with sediment microbial Shannon
diversity (Spearman, � � 0.15, P � 0.03). Additionally, benthic macroinvertebrate Bray-
Curtis dissimilarities correlated with sediment and water microbial Bray-Curtis dissim-
ilarities (Mantel, � � 0.37, P � 0.001; and � � 0.35, P � 0.001, respectively), and B-IBI
scores weakly correlated with water (Mantel, � � 0.07, P � 0.02) and sediment microbial
community structure (Mantel, � � 0.13, P � 0.002). Microbial community structure was
only slightly different in streams classified as in good, fair, poor, and very poor condition
using the B-IBI (PERMANOVA, water, R2 � 0.02, P � 0.006; sediment, R2 � 0.03,
P � 0.001). Hydrogenophaga spp. (Burkholderiales), unclassified Deltaproteobacteria in
the order Desulfobacterales, and heteroC45 (Chthoniobacterales), a Verrucomicrobia
bacterium, were all more abundant and pervasive in streams in very poor condition
than in streams in good and fair condition (Table 4).
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DISCUSSION

The aims of this study were to understand how stream bacteria and archaea are
distributed across gradients of watershed land use and water quality, to assess how
changes in microbial community composition relate to benthic macroinvertebrate
diversity, and to discern how changes in stream conditions alter stream ecosystem
processes, as reflected in community respiration and N2O concentrations. Bacterial and
archaeal diversity significantly differed across the geographic regions of Maryland (Fig.
1 and 2), demonstrating the influence of the surrounding landscape on headwater
stream microbial communities. Regional alluvium composition likely influenced stream
alpha diversity, causing lower alpha diversity in Coastal Plain streams (Fig. 1). Sediments
on the Coastal Plain of the eastern United States are composed of gravel, sand, silt, and
clay (47), making streams more embedded (Table S2). Embeddedness was the envi-

TABLE 3 Microbial OTUs indicative of streams in highly forested, agricultural, and urban watershedsa

Group Substrate Taxonomy (domain/phylum/class/order/family/genus) Indicator r P value Ab Bc

Agriculture Water Bacteria/Bacteroidetes/Flavobacteriia/Flavobacteriales/Cryomorphaceae/Fluviicola 0.77 0.03 0.61 0.95
Water Bacteria/Cyanobacteria/4C0d-2/YS2/unclassified/unclassified 0.70 0.006 0.54 0.90
Water Bacteria/Proteobacteria/Epsilonproteobacteria/Campylobacterales/Campylobacteraceae/Sulfurospirillum 0.63 0.021 0.84 0.48
Water Bacteria/OP3/BD4-9/unclassified/unclassified/unclassified 0.60 0.028 0.58 0.62
Water Bacteria/Acidobacteria/BPC102/MVS-40/unclassified/unclassified 0.60 0.017 0.57 0.62
Sediment Bacteria/Firmicutes/Bacilli/Bacillales/Bacillaceae/Bacillus 0.80 0.001 0.68 0.95
Sediment Bacteria/Chloroflexi/Anaerolineae/GCA004/unclassified/unclassified 0.78 0.002 0.62 1.00
Sediment Bacteria/Proteobacteria/Gammaproteobacteria/Methylococcales/Crenotrichaceae/Crenothrix 0.75 0.002 0.59 0.95
Sediment Bacteria/Verrucomicrobia/Verrucomicrobiae/Verrucomicrobiales/Verrucomicrobiaceae/Prosthecobacter 0.74 0.003 0.67 0.81
Sediment Bacteria/Verrucomicrobia/Verrucomicrobiae/Verrucomicrobiales/Verrucomicrobiaceae/Luteolibacter 0.73 0.010 0.57 0.95

Forest Water Bacteria/Verrucomicrobia/Spartobacteria/Chthoniobacterales/Chthoniobacteraceae/DA101 0.91 0.001 0.83 1.00
Water Bacteria/Planctomycetes/Planctomycetia/Gemmatales/Gemmatacea/unclassified 0.84 0.001 0.71 1.00
Water Bacteria/Planctomycetes/Phycisphaerae/WD2101/unclassified/unclassified 0.84 0.001 0.70 1.00
Water Bacteria/Elusimicrobia/Elusimicrobia/FAC88/unclassified/unclassified 0.84 0.001 0.76 0.92
Water Bacteria/Verrucomicrobia/Pedosphaerae/Pedosphaerales/auto67_4W/unclassified 0.84 0.001 0.70 1.00
Sediment Bacteria/Proteobacteria/Alphaproteobacteria/Rhizobiales/Hyphomicrobiaceae/unclassified 0.80 0.001 0.67 0.96
Sediment Bacteria/Acidobacteria/Chloracidobacteria/PK29/unclassified/unclassified 0.77 0.001 0.63 0.92
Sediment Bacteria/Verrucomicrobia/Spartobacteria/Chthoniobacterales/Chthoniobacteraceae/DA101 0.73 0.001 0.53 1.00
Sediment Bacteria/Planctomycetes/Planctomycetia/Gemmatales/Gemmatacea/unclassified 0.72 0.001 0.52 1.00
Sediment Bacteria/Acidobacteria/Acidobacteriia/Acidobacteriales/Koribacteraceae/unclassified 0.71 0.049 0.59 0.85

Urban Water Bacteria/Proteobacteria/Betaproteobacteria/Burkholderiales/Comamonadaceae/Hydrogenophaga 0.83 0.001 0.86 0.81
Water Bacteria/Proteobacteria/Alphaproteobacteria/Sphingomonadales/Sphingomonadaceae/Novosphingobium 0.78 0.001 0.61 1.00
Water Bacteria/Proteobacteria/Betaproteobacteria/Burkholderiales/Alcaligenaceae/unclassified 0.78 0.001 0.81 0.75
Water Bacteria/Proteobacteria/Betaproteobacteria/Burkholderiales/Comamonadaceae/Rhodoferax 0.74 0.021 0.55 1.00
Water Bacteria/Bacteroidetes/Saprospirae/Saprospirales/Chitinophagacea/Sediminibacterium 0.72 0.010 0.56 0.94
Sediment Bacteria/Proteobacteria/Deltaproteobacteria/Desulfuromonadales/Geobacteraceae/Geobacter 0.74 0.004 0.55 1.00
Sediment Bacteria/Firmicutes/Clostridia/OPB54/unclassified/unclassified 0.62 0.017 0.69 0.56
Sediment Bacteria/Chloroflexi/Anaerolineae/CFB-26/unclassified/unclassified 0.61 0.037 0.53 0.69
Sediment Bacteria/Proteobacteria/Deltaproteobacteria/Syntrophobacterales/Syntrophaceae/Desulfobacca 0.57 0.034 0.58 0.56
Sediment Bacteria/Firmicutes/Clostridia/Clostridiales/unclassified/unclassified 0.56 0.013 0.63 0.50

aHigh defined as �90% for forest, �50% for agricultural, and �50% for urban watersheds.
bA, mean relative abundance of the OTU in each group compared to all groups.
cB, relative frequency of each OTU belonging to each group.

TABLE 4 Microbial OTUs indicative of stream conditions according to the B-IBI

Groupa Substrate Taxonomy (domain/phylum/class/order/family/genus) Indicator r P value Ab Bc

Good Sediment Archaea/unclassified/unclassified/unclassified/unclassified/unclassified 0.59 0.04 0.58 0.60

Poor Water Bacteria/Proteobacteria/Gammaproteobacteria/Methylococcales/Crenotrichaceae/Crenothrix 0.71 0.03 0.58 0.86
Water Bacteria/Proteobacteria/Betaproteobacteria/Gallionellales/Gallionellaceae/Gallionella 0.53 0.04 0.53 0.54

Very poor Water Bacteria/Proteobacteria/Betaproteobacteria/Burkholderiales/Comamonadaceae/Hydrogenophaga 0.62 0.01 0.72 0.54
Water Bacteria/Proteobacteria/Deltaproteobacteria/Desulfobacterales/Desulfobulbaceae/unclassified 0.60 0.00 0.53 0.69
Water Bacteria/Verrucomicrobia/Spartobacteria/Chthoniobacterale/Chthoniobacteraceae/heteroC45_4W 0.59 0.00 0.56 0.62
Water Bacteria/Proteobacteria/Alphaproteobacteria/Rhizobiales/Beijerinckiaceae/unclassified 0.57 0.041 0.60 0.54
Water Bacteria/Proteobacteria/Gammaproteobacteria/Alteromonadales/Chromatiaceae/Rheinheimera 0.54 0.005 0.63 0.46
Water Bacteria/Proteobacteria/Alphaproteobacteria/Rhodospirillales/Rhodospirillaceae/Magnetospirillum 0.50 0.003 0.68 0.38

aNo indicative OTUs were identified from streams in fair condition.
bA, mean relative abundance of the OTU in each group compared to all groups.
cB, relative frequency of each OTU belonging to each group.
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ronmental factor that most strongly negatively correlated with Shannon diversity (Table
S8), and homogeneous fine sediments have been shown to have lower diversity than
that of sites with riffles, shallow turbulent sections (48). Similarly, community structure
varied across the geographic regions (Fig. 2) and strongly correlated with DOC con-
centration, pH, and embeddedness (Table S10 and S11), all of which significantly
differentiate Coastal Plain streams from the other regions (Table S2). This finding is in
agreement with those from previous studies, demonstrating the strong influence of
DOC concentration and pH on freshwater communities (20, 49, 50).

Despite the strong influence of stream chemistry on microbial communities (20, 49,
50), in this study, geodesic distance explained more of the variation in community
composition than environmental distance. Partial Mantel test results indicated that
community structure was correlated with geographic distance rather than the mea-
sured environmental variables. Geographic distance is likely a strong controlling factor
in structuring headwater stream communities because there are regional differences in
landscape, and stream microbes are locally seeded from the surrounding soil (20, 25,
26). Alpha diversity was greatest in spring, when water flow through the landscape is
greatest and, therefore, when advection of microbes from the surrounding landscape
is greatest to headwater streams. While seasonal changes in microbial diversity during
fall and winter are unknown, the higher diversity in spring than in summer was likely
due to higher terrestrial inputs in spring, further demonstrating the influence of
landscape on stream microbial communities.

Distance-decay relationships were also observed between water column and sedi-
ment community similarity and geodesic distance (Fig. 3), further highlighting the
finding that headwater stream microbes display geographic distribution patterns.
Alternatively, the distance-decay relationship could be a result of spatial differences in
unmeasured environmental variables. Microbial distance-decay relationships have been
observed previously in streams (51, 52). Z-values represent the rate at which species
similarity decreases with increasing distance; in this study, Z-values (0.12 and 0.11) are
similar to microbial values from soil, salt marshes, and lakes (53–56) but lower than
regional differences observed in salt marshes (57), suggesting different dispersal limi-
tations across regional scales. In contrast to highly urban and agricultural streams,
community dissimilarity in highly forested streams did not increase with distance.
Neither geographic distance nor environmental distance correlated with community
structure, implying that highly forested streams have a similar terrestrial microbial
source.

Microbial diversity differed in streams in watersheds with high urban, agricultural,
and forested land use. In contrast to previous studies, degraded streams had lower
alpha diversity than that of forested streams (Fig. 5) (22–24), likely due to elevated
pollution and habitat loss. Several abundant and pervasive taxa found in urban and
agricultural streams (Table 3) are often associated with high-nutrient and low-oxygen
environments. Members of the order Burkholderiales (families Alcaligenaceae and Co-
mamonadaceae) were abundant in urban streams and correlated strongly with several
anthropogenic nutrients (Fig. 4a). Comamonadaceae are often associated with high-
nutrient conditions and are ubiquitous in many environments, including aquatic, soil,
activated sludge, and wastewater (24, 58). Comamonadaceae have previously been
associated with urban streams (24) and have been found to have the highest number
of urban-tolerant taxa (23, 24). Sulfurospirillum spp., in the order Campylobacterales,
were abundant in highly agricultural streams and are often associated with microaero-
philic polluted habits, commonly growing on arsenate or selenate using NO3

� and
sulfur compounds as electron acceptors (59, 60). In contrast, an unclassified and
potentially phototrophic member of Acidobacteria and Hyphomicrobiaceae (Rhizobiales)
were more abundant in forested streams. These taxa are often associated with low-
nutrient conditions and were previously identified as indicators of forested streams (21,
22) and shown to decrease in abundance with increasing watershed urbanization (23).

Only weak associations were detected between sediment and water microbial
community composition and B-IBI scores. This is in contrast to findings of Simonin
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et al., who found that stream microbial community structure correlates with a macro-
invertebrate biotic index in North Carolina (23). Simonin et al. identified concurrent
changes in microbial taxa and environmental conditions associated with the biotic
index, finding a higher number of negatively responding taxa (n � 68; taxa at higher
abundance in streams in good condition) than positive responding taxa (n � 8; taxa at
higher abundance in streams in fair and poor condition) (23). Here, only one taxon (an
unclassified Archaea) was more abundant and pervasive in streams in good condition,
while several taxa were found to be abundant and pervasive in streams in very poor
condition (Table 4). Hydrogenophaga spp. (Burkholderiales) and an unclassified member
of Desulfobacterales, commonly associated with anaerobic, reducing, and contaminated
environments (58, 61), were both more abundant in streams in very poor condition
(Table 4). Forested water communities were more even than agricultural and urban
communities, suggesting that certain taxa increase in abundance disproportionality in
degraded streams, which is likely why the indicator analysis identified more taxa in
streams in very poor condition. The findings here suggest that land use cover and
stream chemistry are better predictors of headwater stream microbial community
composition than are macroinvertebrate indices of stream conditions.

In agreement with the idea that structure determines function, in this study, water
community respiration correlated with microbial community composition. Similarly,
previous studies report that changes in community metabolism, specifically, the deg-
radation of organic matter, are related to shifts in community composition and diversity
(62–67). In contrast, other studies report that respiration depends on substrate avail-
ability rather than community composition due to functional redundancy (68), finding
no connection between stream bacterial diversity and the activity of enzymes associ-
ated with carbon cycling (69). The weaker correlation between community respiration
and community composition in sediments compared to water samples could be due to
a high level of functional redundancy within sediment communities; if dominated by
generalists, shifts in community composition would likely not significantly affect rates
of respiration (70).

Degraded streams had lower rates of community respiration than forested streams,
as evidenced by the positive correlation between water respiration and forest cover
and the negative correlation between respiration and urban cover (Table S4). Rates of
community respiration also negatively correlated with several physicochemical vari-
ables (Table S6 and S7), including conductivity, Cl�, Ca, Mg, pH, SO4

2�, and ANC. All
signatures of anthropogenic influence, ANC, Cl� and Zn concentrations, and pH, were
found to previously correlate with benthic stream respiration across the Highlands,
Piedmont, and Coastal Plain regions of the eastern United States (30), and Zn is a
common urban pollutant (33, 71–73). These results suggest that environmental condi-
tions associated with land use drive differences in community respiration, altering
carbon processing in headwater streams.

In addition to altering carbon transformations, watershed modification affected
stream nitrogen processing. Agricultural streams had higher N2O concentrations than
those of forested streams (Table S5), with higher N2O concentrations being associated
with elevated TN, NO2

�, NO3
�, and NH4

� concentrations (Table S5). The N2O concen-
trations measured in this study, at 0.22 to 4.41 �g N2O liter�1 (58 to 1,217% saturated),
were comparable to the values reported for agricultural streams in Illinois (74, 75) but
lower than values published for agricultural drainage waters in Scotland, UK (76) and
higher than values reported for other forested and agricultural streams (42, 76–78). N2O
production is known to vary by land use, with higher production from denitrification in
streams in agricultural and urban basins (41, 76, 79), and changes in community
composition have been shown to influence denitrification rates in agricultural (80) and
urban streams (21). However, Audet et al. found no difference in N2O concentrations
measured in forested and agricultural streams in Sweden (76). Stream N2O concentra-
tions are often correlated with dissolved nitrogen concentrations (41, 76, 79, 81);
however, variability in this relationship is often observed between sites (74, 75, 77). In
this study, N2O concentrations were not correlated with microbial community compo-
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sition, but rather, N2O production was likely elevated in streams indirectly due to high
rates of denitrification in response to NO3

� pollution.
We demonstrate that headwater stream microbial communities and ecosystem

processes, such as microbial carbon and nitrogen transformations, respond to gradients
in land use and stream conditions. Regional differences in stream microbial commu-
nities and the observed distance-decay relationships are further evidence that stream
communities are seeded from the surrounding landscape. Across geographic regions,
microbial community composition varied in streams with high urban, agricultural, and
forested land use, and changes in microbial diversity and land use correlated with
stream community respiration, linking changes in biodiversity to changes in ecosystem
function. Our results suggest that certain microbial groups respond to land use similarly
across ecosystems, making them potential candidate taxa to be used in the develop-
ment of a microbial index of stream conditions.

MATERIALS AND METHODS
Sample collection and physicochemistry. Stream sediment and water column samples were

collected across three general geographic regions (Coastal Plain, Highlands, and Piedmont) in Maryland
under baseflow conditions during spring (March and April) and summer (June to September) of 2014 and
2015 (Fig. 6). In 2014, 82 headwater streams (Table S1) were sampled for microbial diversity (Coastal Plain,
n � 36; Highlands, n � 29; Piedmont, n � 17), and in 2015, 23 streams across the three regions (Coastal
Plain, n � 10; Highlands, n � 8; Piedmont, n � 5) were resampled to assess temporal variability. Com-
munity respiration and N2O samples were collected at a subset of sites (Tables 1 and 2) based on
proximity to the laboratory to ensure proper temperature and light-controlled incubations. Sampling
sites were colocated and collected in parallel with Maryland Biological Stream Survey (MBSS) sampling,
a Maryland Department of Natural Resources (DNR) monitoring program that assesses the condition of
wadeable streams via physicochemical and biological variables.

One water sample for bacterial and archaeal diversity was collected from each stream in a 500-ml
sterile bottle by submerging the bottle into the stream water. Water samples (n � 210) were refrigerated
until they were filtered on to 0.22-�m pore size, 47-mm-diameter polyethersulfone filters (Mo Bio,
Carlsbad, CA, USA) and stored at – 80°C. Three sediment samples (n � 630) were collected within pools
from each stream by inserting the open plunger end of a sterile 5-ml syringe to a depth of 1 cm, and the
cores were stored in Whirl-Pak bags at – 80°C until extraction.

Benthic invertebrate samples were collected to calculate a Benthic Index of Biotic Integrity (B-IBI) (17),
which is a legal biocriterion in the state. Covariates used as predictors of stream quality in our analyses
were provided by the Maryland DNR Monitoring and Non-tidal Assessment Division (https://dnr
.maryland.gov/streams/Pages/default.aspx), including watershed land use (urban, agricultural, and
forested), substrate embeddedness, average thalweg depth, maximum depth, average stream width,
average velocity, pH, specific conductance, acid-neutralizing capacity (ANC), and dissolved organic
carbon (DOC), chloride (Cl�), sulfate (SO4

2�), total nitrogen (TN), total phosphorus (TP), orthophosphate
(PO4

3�), ammonium (NH4
�), nitrite (NO2

�), nitrate (NO3
�), magnesium (Mg), calcium (Ca), bromide (Br),

zinc (Zn), and copper (Cu) content. Land use data, benthic macroinvertebrate samples, and water
chemistry samples were collected in spring of each year, while substrate embeddedness, average
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thalweg depth, maximum depth, average stream width, and average velocity were measured each
summer.

Nitrous oxide concentrations. Nitrous oxide samples were collected from a subset of Coastal Plain
and Highlands streams (Table 1) in summer 2014 and summer 2015. Samples were collected in triplicate
in 160-ml glass serum vials by inserting silicon tubing into the bottom of the vial and then inverting and
submerging the vial into the stream water with the other end of the tube venting to the atmosphere.
Samples were preserved with 100 �l of a saturated mercuric chloride (HgCl2) solution, sealed with gray
butyl septa and aluminum crimp tops, and stored at room temperature until analysis.

Nitrous oxide concentrations were measured using a headspace equilibration method, as described
by Laperriere et al. (82). Each headspace was overpressurized with an addition of 2.5 or 5 ml of
ultrahigh-purity (UHP) N2 and equilibrated with the underlying stream water by gentle shaking at room
temperature for at least 2 h. Subsamples from each headspace were analyzed using an SRI Greenhouse
gas monitoring gas chromatograph (GC) equipped with an electron capture detector (ECD), dual
HayeSep D packed columns, and a 1-ml sample loop (SRI Instruments, Torrance, CA, USA). The carrier gas
was UHP N2, and the sample loop and column oven were heated to 60°C and 100°C, respectively. Two
certified standards, 0.1 ppm and 1 ppm N2O, from Matheson Tri-Gas were used for daily calibration. The
N2O concentrations (CN2O) from the original stream sample were calculated according to Walter et al. (83),
using the following equation:

CN2O �
�F � PVw �

xP

RT
Vh�

Vw

where F is equal to ln F � A1 � A2(100/T) � A3ln(T/100) � A4(T/100)2 � S[B1 � B2(T/100) � B3(T/100)2],
S is salinity, T is the equilibration temperature (K), A and B are constants from Weiss and Price (84), x is
the dry gas mole fraction of N2O in the headspace, P is atmospheric pressure, Vw is the water volume,
Vh is the headspace volume, and R is the gas constant (in liters atm K�1 mol�1). The equilibrium N2O
concentration with the atmosphere at in situ temperature was calculated using the Weiss and Price (84)
solubility equations, using an atmospheric mole fraction of 328 ppb (https://www.esrl.noaa.gov/gmd/
hats/data.html).

Community respiration rates. Sediment and water respiration rates were measured in a subset
of Coastal Plain streams (Table 2) using two O2 consumption methods. In 2014, O2 consumption was
measured using a membrane inlet mass spectrometer (MIMS), following Kana et al. (85), and in 2015
using a Fibox 3 fiber optic oxygen meter (PreSens, Regensburg, Germany). In 2014, water incubations
were conducted in 12-ml Exetainer vials (Labco, Lampeter, Wales, UK). For each stream, 9 water
samples were collected by inserting a piece of tubing into the bottom of the vial and inverting and
submerging the vial into the stream, with the other end of the tube venting to the atmosphere.
Three vials were sacrificially killed with a concentrated HgCl2 solution at three time points, with the
first time point immediately after collection and the remaining time points every 4 to 6 h. Vials were
transported in a dark cooler back to the laboratory, where they were incubated in the dark at in situ
temperature for the remainder of the incubation. Sediment incubations were conducted in 160-ml
serum vials with butyl septa and aluminum crimp tops. Modified from the above-described collec-
tion procedure, sediment was collected by inserting the plunger end of a sterile 30-ml syringe into
the sediment and collecting 5 to 10 ml of sediment. The sediment was placed into each vial and
topped with stream water.

In 2015, water and sediment incubations were conducted in 60-ml glass biological demand (BOD)
bottles with ground glass stoppers. Each BOD bottle contained a PSt3 oxygen sensor (PreSens, Regens-
burg, Germany). Five replicates were collected, with one killed control from each stream using the
methods described above. Once the bottles were full, a thin layer of stream water was added to the top
of each stopper to reduce gas exchange with the atmosphere. The bottles were stored in a cooler and
transported back to the laboratory, where they were incubated in the dark at in situ temperature. O2

consumption was measured using a Fibox 3 fiber optic oxygen meter (PreSens) every hour until the killed
control bottle equilibrated and thereafter every 3 to 6 h for up to 24 h. All respiration rates were
calculated using linear least-squares models with the function lm in the R package stats v. 3.5.0 (86). Rates
in 2014 were calculated by fitting a model through all 9 data points, while rates from 2015 are the mean
of models from each of the replicate bottles. Water respiration rates were subtracted from sediment rates
to isolate O2 consumption in the sediments.

16S rRNA gene sequencing and processing. Water and sediment DNA were extracted using a
PowerSoil-HTP 96-well soil DNA isolation kit (Mo Bio, Carlsbad, CA, USA), with modifications. For water
samples, half of the filter was extracted, and filters were suspended in 925 �l of PowerSoil-HTP bead
solution and 75 �l of solution C1 and vortexed for 10 min. Samples were digested with 20 �l of a 20 mg
ml�1 proteinase K solution for 30 min at 56°C and then centrifuged for 1 min at 3,000 � g. The sediment
samples were also digested with proteinase K; additionally, samples were bead beaten at 20 Hz for 20
min on a Qiagen TissueLyser. The PowerSoil-HTP 96-well soil DNA isolation kit protocol was followed for
the remainder of the extractions.

16S rRNA gene amplicons were prepared using the standard Illumina protocol (San Diego, CA,
USA) with primers 515F and 806R. After amplicon PCR, the three sediment core samples from each
site were pooled prior to PCR cleanup. Following the second PCR cleanup, DNA was quantified using
a Qubit double-stranded DNA (dsDNA) high-sensitivity kit. Illumina MiSeq 2 � 150-bp (samples
collected in 2014) and 2 � 250-bp (samples collected in 2015) sequencing was conducted at the
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University of Maryland Center for Environmental Science Institute of Marine and Environmental
Technology.

Amplicon data were analyzed using the mothur software package v. 1.31.2 (87). The samples
sequenced in 2014 did not have adequate read overlap to merge the reads, and for this reason, only the
forward reads were used for all analyses. The mothur standard pipeline was followed, with modifications
(87). Prior to quality screening, the samples contained 70,189,751 forward reads, with a median read
length of 151 bp. Modified from the standard pipeline, sequences with primer mismatches were
removed, and reads were trimmed using an average quality score cutoff of 35 over a 50-bp sliding
window. After screening for sequencing and PCR error, 19,731,498 sequences remained, with a median
read length of 132 bp. Sequences were aligned with SILVA (v. 119) and classified using Greengenes (v.
13.8.99). Sequences were binned based on taxonomy prior to clustering into operational taxonomic units
(OTUs) at a 97% identity level, with a mean sample coverage of 61%. All samples were rarefied to 1,344
sequences, and after pooling, trimming, and rarefaction, 210 water and 204 sediment samples remained.

Statistical analyses. All statistical analyses were computed in R (v. 3.5.0) (86). OTU richness, Shannon
diversity, and Pielou’s evenness were used to estimate microbial alpha diversity and were calculated using
the R package phyloseq (v. 1.24.2) (88). Benthic macroinvertebrate Shannon diversity was calculated using the
function diversity in the vegan package. Linear least-squares models and stepwise linear regression models
for Shannon diversity and the physicochemical data were fit using lm in the stats package. All colinear
variables (Pearson’s |r| � 0.7) were removed prior to stepwise linear regression analysis.

Beta diversity was quantified using Bray-Curtis dissimilarity and Sørensen indices and was calculated,
with singletons removed using vegdist in the vegan package (v. 2.5.2) (89). Community similarity was
visualized using nonmetric multidimensional scaling (NMDS), which was calculated using metaMDS in
the vegan package. Correlations between Bray-Curtis dissimilarity and the physicochemistry were
calculated using the mantel function in vegan. Similarly, the relationships between Bray-Curtis dissimi-
larity, Euclidean geographic distance, and environmental variables were examined using the mantel and
partial.mantel functions in vegan. The geodesic distance between two sites was calculated using gdist in
the Imap package. Distance-decay was calculated using the natural-logarithm-transformed linear least-
squares regressions of water and sediment community similarity (Sørensen index) and geodesic distance.
The absolute values of the regression coefficients equal the exponent Z in the taxon-area relationship
S � cAZ, where A is area, S is the number of species, and c is a constant. Correlations between taxon
abundance and environmental data were quantified using Spearman correlations with the function
“associate” in the microbiome package (v. 1.1.10013; http://microbiome.github.io/). Correlations were
calculated at the order rank level because a higher proportion of sequences were classified using
Greengenes (v. 13.8.99) at the order rank level (73%) than the proportion classified at the family (57%)
and genus (32%) rank levels. The resulting P values were converted to Z-scores, and only correlations
with a |Z-score| of �1.96 are reported. Indicator taxon analysis was used to identify microbial taxa that
were both abundant and pervasive in streams of a particular land use and stream condition. Indicator
taxa were identified using multipatt in indicspecies (v.1.7.6), according to Dufrêne and Legendre (90) for
highly urban (�50%), agricultural (�50%), and forested (�90%) streams, as well as streams classified by
B-IBI scores as good (4 to 5), fair (3 to 3.9), poor (2 to 2.9), and very poor (1 to 1.9). An indicator was
considered significant with an indicator statistic r of �0.5, specificity value A of �0.5, fidelity value B of
�0.1, and P value of �0.05.

Data availability. Sequences are accessible from NCBI under BioProject accession number
PRJNA545742.
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