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to show the overall accuracy. The total error ∆E/N is tested on the equilibrium test
set to emphasize accuracy around equilibrium position. ER=9.8/N shows that ML
can get very accurate dissociation limit. All errors are given in kcal/mol. . . . . . 53

3.2 Hydrogen chain data. N is the number of Hydrogen atoms in the chain. R is the
atomic distance between atoms. The number of DMRG data in each range is in
parenthese. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 WLO (J = 1) errors for H4 as a function of separation, for various values for ∆.
Chopping the PPW’s yields up to 48 functions, but setting η = 10−4 as the covari-
ance cutoff yields the number of functions and accuracy shown. . . . . . . . . . . 83

4.2 Same as Table 4.1, but for H10, with J = ∆ = 1, and two different covariance cutoffs. 83
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Solving Schrödinger’s equation is extremely important to determine the quantum mechanical prop-

erties of a material and model chemistry computationally. Density functional theory is one of the

best scaling methods for large numbers of particles and can be used as a tool to investigate large

quantum systems, but this method requires approximation in practice, leading to approximate an-

swers. The exact density functional theory is still useful for investigation, despite not having the

exact universal functional for all cases so the theory can be better understood. Here, we analyze

the properties of the exact theory by accessing the exact functional. We do so by constructing a

situation where this is possible: in one dimension with the aid of the density matrix renormaliza-

tion group and machine learning techniques. This toolset is used to study the properties of the

convergence of the exact functional. Important for any technique is how the problem is phrased

in a particular basis, and we combine the methods of the renormalization group, through a family

of transformations called wavelets, with density functional calculations to determine an optimized

basis set with wavelets for a given quantum computation.
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Chapter 1

Introduction

Quantum mechanics, as a predictive tool, is highly accurate. Even if the implications or physical

description of the quantum phenomenon is questioned by some, the practical results of this should

be trusted with a high confidence. While there exist some anomalous results that remain to be

explained, practical application of quantum theory has produced a deep understanding of materials

and many other (sometimes exotic) phenomenon. For example, if one wishes to snap a metal

in half, it is important to understand how the bonds holding the individual atoms together at the

molecular level will break. This understanding can lead to stronger materials or better conductors,

to name only a tiny fraction of the possible applications of the theory.

When applied to the prediction of the solid state, solution of the eigenvalue problem suffers from

the problem of many bodies. A material commonly encountered in the real world–perhaps a fork or

a geode–contains Avogadro’s number of electrons. Once it is established that these structures are

periodic, however, calculations only on the primitive cell need be considered. Or in other situations

such as a gas, computation on single molecules need be considered. Yet, this can still contain many,

many electrons in cases of practical interest. Forcing computation on more than even ten electrons

can easily surpass the computational resources that are available. This complexity extends from
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representing the system with the wavefunction, as it contains three coordinates for each electron.

Clearly, more clever approaches are required to obtain the properties of a quantum system.

Density functional theory is a way to reduce the amount of information that needs to be accounted

for to describe the entirety of the many-body state. The single particle density was shown to be a

sufficient to characterize a quantum system by Hohenberg and Kohn [1] and it contains only three

coordinates for all electrons. The issue is that the proof showing that Schrödinger’s equation can

be rewritten into a form that only depends on the density is not constructive, we only know of its

existence.

We know one more fact about the density functional which increases its usefulness. It is composed

of two pieces. The first has a closed form and characterizes the external potential energy of a given

system, though changing with each system. The second term is known as the universal functional

and is independent of the external potential; however, this functional is not known. The universality

of the density functional means that deriving an expression should give us access to any system,

provided we adjust the external potential functional correctly. In practice, this introduces errors that

can result in incorrect physics. Hence, it is possible to compute very efficiently with the density at

the cost of obtaining an incorrect, though not necessarily inexact, answer with an approximation.

The development of functionals can take decades before suitably improved semi-local density

functionals are constructed from exact statements. This could be a never-ending endeavor since

determining the exact universal density functional probably resides in a practically impossible

regime of computational complexity [2]. Further, some recent mathematical developments have

shed light on whether any method, or whether there can be any method, that solves any proposed

quantum system. The answer is proven no as seen from implementing the halting problem into the

quantum problem [3].

Not all hope is lost. Another, more realistic question can be asked: can a method, or functional, be

found so that any realistic system of interest can be found to chemical accuracy? In other words,
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can we get close enough for practical use?

The current work is focused on this question and also what can be found from from exact theory.

With many tens of thousands of papers published with density functional methods, it is more

critical than ever to understand exact elements of the theory so we know where functional approxi-

mations fail and where they must be improved. It is still very difficult to advance density funcitonal

theory from this route of exact statements and semi-local functionals, we can learn much about the

exact density functional from studies where it is feasibly used, namely in one dimension. Highly

accurate solvers in one dimension can be used to extract properties of exact density functional

theory (i.e., exact Kohn-Sham potentials, etc.). These would be inaccessible in higher dimensions

due to the computational cost of inverting the exact density functional.

In this thesis, a complete understsanding of the exact functional for the given problem is obtained.

We investigate the exact properties of the universal density functional with renormalization group

methods. Principally, we use the density matrix renormalization group in order to provide exact

answers in one dimension. In this setting, behaviors and features are more easily identifiable.

The fundamental theorems of density functional theory still apply in different dimensions and for

different interactions.

Chapter 2 was authored with E. Miles Stoudenmire and Lucas O. Wagner and details a one-

dimensional system that has some of the same behaviors of real chemical systems. It is used

to generate results in the following chapters. The system is based on a spherically averaged inter-

action in one dimension, uses the density matrix renormalization group for exact computation, and

derives a local density approximation for the exponential interaction. Chapter 3 was co-authored

with Li Li and uses kernel ridge regression to machine learn the exact density functional from

density matrix renormalization group results. Chapter 5 was co-authored with Lucas O. Wagner

and E. Miles Stoudenmire and studies the convergence of the exact density functional. Chapter 4

generates an optimized basis set from an approximate calculation using wavelet transformations.
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This basis set obtains answers to chemical accuracy with a minimal number of functions in one

dimension. Chapter 6 ends with a brief conclusion of the results of the work.

Two appendices were written as a part of the Putting the Theory Back in Density Functional The-

ory summer school at the Institute of Pure and Applied Mathematics. Appendix A was authored

with Professor Carlos Cervera of the University of California, Santa Barbara on the mathematical

specifics of the quantum many body problem, specifically following the arguments by von Neu-

mann using self-adjoint operators. Appendix B was authored with Professor John Perdew of the

Temple University on the history of the generalized gradient approximation. Note that variable

assignments are different for each chapter.
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Chapter 2

One Dimensional Mimicking of Electronic

Structure: The Case for Exponentials

2.1 Overview

Efficient computation with quantum mechanics can be achieved with density functional methods.

In order to explore these methods, it is important to examine them in a situation where the exact

theory can be examined. That is, a one dimensional Hubbard model with enough sites to appear as

a continuum. In this chapter, we generate an approximate density functional (the local density ap-

proximation) using the density matrix renormalization group and compare exact and approximate

theories. This system will be used in the following chapters.

An exponential interaction is constructed so that one-dimensional atoms and chains of atoms mimic

the general behavior of their three-dimensional counterparts. Relative to the more commonly used

soft-Coulomb interaction, the exponential greatly diminishes the computational time needed for

calculating highly accurate quantities with the density matrix renormalization group. This is due

to the use of a small matrix product operator and to exponentially vanishing tails. Furthermore, its
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more rapid decay closely mimics the screened Coulomb interaction in three dimensions. Choosing

parameters to best match earlier calculations, we report results for the one dimensional hydrogen

atom, uniform gas, and small atoms and molecules both exactly and in the local density approxi-

mation.

This work was published with E. Miles Stoudenmire, Lucas O. Wagner, Kieron Burke, and Steven

R. White and is republished here with permission from the American Physical Society [4].

2.2 Introduction

The notion that a strong electromagnetic field can be modeled well by a one dimensional (1d)

problem dates back to at least 1939 when a calculation by Schiff and Snyder [5] assigned a potential

in the x direction and “integrated out” the transverse degrees of freedom in the y and z directions

by averaging over radial wave functions. The resulting interaction has been studied by several

others [6, 7, 8, 9, 10, 11] including one work by Elliott and Loudon [6] that approximated the 1d

potential, so it can be solved more easily.

Today, the most common approximation for the 1d potentials in a strong electromagnetic field was

introduced by Eberly, Su, and Javaninen [12] who rewrote the Coulomb interaction 1/
√

x2 + y2 + z2

as 1/
√

x2 +a2; the x component is allowed to vary independently and the remaining radial term in

cylindrical coordinates, a, is set to a constant which is determined on a system-by-system basis for

the particular application of study to match the ionization energy. This soft-Coulomb interaction

has been used in a wide variety of applications requiring a 1d potential [12, 13, 14, 15, 16, 17, 18,

19, 20]. It has many attractive features including the avoidance of the singularity at zero separation

while retaining a Rydberg series of excitations [21, 22, 23]. Even when not considering a strong

electromagnetic field, the soft-Coulomb interaction has become the choice potential for 1d model

systems.
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A general use of 1d systems is as a computational laboratory for studying the limitations of elec-

tronic structure methods, such as density functional theory (DFT) [8, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38]. A key requirement is that the accuracy of such methods be at

least qualitatively similar to their three dimensional (3d) counterparts. Helbig, et. al. [33] had

already calculated the energy of the uniform electron gas with a soft-Coulomb repulsion, making

the construction of the local density approximation (LDA) simple. Recently, some of us [35] used

Ref. [33] to construct benchmark systems with the soft-Coulomb interaction which we used to

study DFT approximations [1, 39, 40, 41]. It was also shown that the model 1d systems closely

mimic 3d systems, particularly those with high symmetry. The 1d nature of these systems allows

us to use the density matrix renormalization group (DMRG) [42] to obtain ground states to numer-

ical precision. DMRG has no sign problem and works well even for strongly correlated 1d systems

[43]. We also apply various DFT approximations to these systems in order to understand how such

approximations could be improved, especially when correlations are strong. We have found that

our 1d “pseudomolecules” closely mimic the behavior of real 3d molecules in terms of the relative

size and type of correlations and also the errors made by DFT approximations [35]. Conclusions

can be drawn from the 1d systems that are relevant to realistic 3d systems, a key advantage over

lattice based models. Crucially, in 1d, we can extrapolate to the thermodynamic limit with far less

computational cost compared to a similar calculation in 3d [44].

However, the soft-Coulomb interaction has some drawbacks as a mimic for 3d electronic structure

calculations. First, the long 1/|x| tail has a bigger effect in 1d than in 3d, making the interaction

excessively long ranged. Second, in 3d, the electron-electron interaction induces weak cusps as

r→ 0; the soft-Coulomb induces no cusps at all. While this can be a significant computational

advantage with some methods, this precludes using it to study cusp behavior. Third, although the

extra cost for treating power-law decaying interactions within DMRG can be made to scale sub-

linearly with system size (via a clever fitting approximation [45, 46]), this cost is still much higher

than for a system with strictly local interactions, for example, the Hubbard model [47].
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As an alternative and complement to the soft-Coulomb interaction, we suggest an exponential

interaction that addresses each of these weaknesses but whose parameters are chosen to give very

similar results. Its tails are weaker, simulating the shorter ranged nature of the Coulomb interaction

in 3d if screening is taken into account. The presence of a cusp in the potential more accurately

reflects 3d calculations, since a discontinuity in the wavefunction or its derivatives may make

convergence more difficult. Finally, the cost for using exponential interactions within DMRG is no

more than for using local interactions; in practice this makes DMRG calculations with exponential

interactions more than an order of magnitude faster than with soft-Coulomb. Extrapolations to the

thermodynamic and continuum limits with exponential interactions also require less computational

time.

The primary purpose of this paper is therefore to show in what ways an exponential interaction

is preferable to the soft-Coulomb interaction in 1d electronic structure calculations and to provide

reference results for such systems. Showing that the soft-Coulomb interaction is well approximated

by the exponential would allow for the efficient and fast use of DMRG over QMC methods for 1d

systems, so we construct our exponential to also mimic 1d soft-Coulomb calculations and allow

for comparison with previous results [31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61].1

We derive some general analytic forms for the exponential hydrogenic atom in Sec. 2.3 and discuss

mimicking the soft-Coulomb interaction with a = 1 in Sec. 2.3.2. Section 2.4 summarizes the

numerical tools used to find accurate results of the exponential systems. We find the uniform

gas energies with DMRG and derive high and low density asymptotic limits in Sec. 2.5. Finite

system calculations and benchmarks for the soft-Coulomb-like exponential interaction are given in

Sec. 2.6. The Supplemental Material contains all necessary raw data to reproduce results [4].

1Notes by L. Balents for K. Burke.
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2.3 Hydrogenic Atoms

2.3.1 General Analytic Expressions

We wish to solve the 1d exponential Hydrogenic atom, with the potential:

ven(x) =−Zvexp(x), vexp(x) = Aexp(−κ|x|). (2.1)

where A and κ characterize the interaction and Z is the ‘charge’ felt by an electron (e) from a

nucleus (n). Since the potential is even in x, the eigenstates will be even and odd, and we label

them i = 0,1,2... (alternating even to odd). Writing

z(x) = (2
√

2AZ/κ) exp(−κx/2), x≥ 0, (2.2)

the Schrödinger equation becomes the Bessel equation. The wavefunction solution is a linear

combination of J±ν(z), where ν2 = −8E/κ2, and J is a Bessel function of the first kind. The

negative index (−ν) functions diverge as x→ ∞, so the wavefunction is proportional to Jν(z) and

the density is

n(x) =C2J2
ν(z(|x|)) (2.3)

where C is chosen so that
∫

dxn(x) = 1.

The eigenvalues, E, are determined by spatial symmetry, so that:

d
dx

Jν(z)
∣∣∣∣
z0

= 0 (even), Jν(z0) = 0 (odd), (2.4)

with z0 = z(0). This condition implies that the eigenfunctions are Bessel functions of non-integer

index. Defining j′i(ν) and ji(ν) to be zeroes of these functions, indexed in order (see e.g., Ref.
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[62], Sec 9.5), the energy eigenvalues are

Ei =−κ
2

ν
2
i (z0)/8, i = 0,1,2, .. (2.5)

where νi(z0) satisfies

j′i+1(ν2i) = z0, ji(ν2i−1) = z0. (2.6)

We found no source where these are generally listed or approximated but they are available in,

e.g., Mathematica. One can deduce the critical values of z0 at which the number of bound states

changes (when E = 0), since j′1(0) = 0, j′2(0) = 3.83171, j′3(0) = 7.01559, and j1(0) = 2.40483

and j2(0) = 5.52008 (Table 9.5 of Ref. [62]).

Unlike a soft-Coulomb potential, cusps appear for the exponential in analogy with 3d Coulomb

systems. Rewriting the Schrödinger equation as ψ ′′/(2ψ) = ven(x)+E, where ψ is the ground

state wavefunction and primes denote derivatives, shows this ratio contains the cusp of the potential

at the origin.

2.3.2 Mimicking Soft-Coulomb Interactions

Now we choose the parameters of our exponential to match closely those of the soft-Coulomb

we have previously used in these studies, which has softness parameter a = 1. In that case, the

ground-state energy of the 1d H atom is -0.669778 to µHa accuracy [12, 35],2 and the width of the

ground state density,
∫

dxn(x)x2, is 1.191612. We find A and κ of vexp(x) to match these values,

yielding:

A = 1.071295 and κ
−1 = 2.385345. (2.7)

2References [35] and [12] gives the ground state energy as -0.669777, but a truncation in the variables A and κ

change our energy slightly.
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Figure 2.1: An exponential interaction with A = 1.071295 and κ−1 = 2.385345 mimics the soft-
Coulomb (a = 1) hydrogen ground-state density very closely.
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Figure 2.1 shows the close agreement between the soft-Coulomb and the exponential in both the

potential and the density for the 1d H atom. Hereafter, we take these values as defining our choice

of exponential interaction.

These values for our hydrogen atom yield z0 = 6.983117, so that it binds exactly four states. Since

z0 is proportional to
√

Z, where Z is the nuclear charge for a hydrogenic atom, a fifth state is

just barely bound when Z = 1.00931. This is a marked difference from the non-interacting soft-

Coulomb [63] and non-interacting 3d hydrogen [64] atoms which each bind an infinite number of

states.

We then choose the repulsion between electrons to be the same but with opposite sign:

vee(x− x′) = vexp(x− x′). (2.8)

Solutions for more than one electron are remarkably similar to the soft-Coulomb under these con-

ditions. For example, both the soft-Coulomb and the exponential bind neutral atoms only up to

Z = 4. We further note that H− is bound, but H−− is not, for all three cases (exponential, soft-

Coulomb, and reality).

2.4 Calculational Details and Notation

DMRG is an exceedingly efficient method for calculating low-energy properties of 1d systems and

gives variational energies. For the types of systems considered here, DMRG is able to determine

essentially the exact ground state wavefunction [43, 46]. DMRG works by iteratively determining

the minimal basis of many-body states needed to represent the ground state wavefunction to a

given accuracy. For 1d systems, one can reach excellent accuracy by retaining only a few hundred

states in the basis. The basis states are gradually improved by projecting the Hamiltonian into

the current basis on all but a few lattice sites, then computing the ground state of this partially

12



projected Hamiltonian. The new trial ground state is typically closer to the exact one, making it

possible to compute an improved basis.

Our calculations are done in real space on a grid.3 The grid Hamiltonian is chosen to be the

extended Hubbard-like model also used in Ref. [35] (see Eq. (3) of that work). The electron-

electron interaction and external potentials are changed to the exponentials used here. Note that

the convention we use to evaluate integrals is to multiply the value of the integrand at each grid

point by the grid spacing to match Ref. [35]. So, for here,

∫
dx f (x)≈ ∆∑

i
f (xi) (2.9)

for some function f (x) and grid spacing ∆. Grid points are indexed by i and span the interval of

integration.

Using an exponential interaction within DMRG is very natural since it can be exactly represented

by a matrix product operator, the form of the Hamiltonian used in newer DMRG codes [45]. In

fact, the soft-Coulomb interaction used in Ref. [35] was actually represented by fitting it to ap-

proximately 25 exponentials [65].

The majority of our focus is on finite systems and we use a finite grid with end points chosen to

make the wavefunction negligible. For chains, we place the ends of the grid at the first missing

nucleus, although in the case of a single atom or isolated molecule, we will place the boundary

sufficiently far from the nuclei to avoid noticeable effects. This can be much nearer to the nuclei

than in the soft-Coulomb systems. We always use the convention of placing a grid point on a cusp

when possible, to avoid missing any kinetic energy.

In Kohn-Sham (KS) DFT [39], we use density functionals which are defined on the KS system,

a non-interacting system that has the same density and energy as the full interacting system. Al-

though, this non-interacting system has a different potential, vs(x), the KS potential. The ground

3Calculations were performed using the ITensor Library: http://itensor.org/
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state energy, E, of an interacting electron system is the sum of the kinetic energy, T , the electron-

electron repulsion, Vee, and the one-body potential energy, V . The ground state energy, E, is the

minimization in n of the density functional

E[n] = TS[n]+U [n]+V [n]+EXC[n], (2.10)

where

TS[n] =
1
2 ∑

σ

Nσ

∑
i=1

∫
dx
∣∣∣∣ d
dx

φi,σ (x)
∣∣∣∣2 (2.11)

is the non-interacting kinetic energy evaluated on the occupied non-interacting KS orbitals, φi,σ ,

for Nσ particles of spin σ . The difference, TC = T−TS, gives the difference between the interacting

and non-interacting kinetic energy. The Hartree integral is defined as

U [n] =
1
2

∫∫
dxdx′ vee(x− x′)n(x)n(x′). (2.12)

The one-body potential functional is

V [n] =
∫

dxv(x)n(x), (2.13)

where v(x) is the attraction to the nuclei. Equation 2.10 defines the exchange-correlation (XC)

functional, EXC[n], which is the sum of the exchange (X) and correlation (C) energies. The ex-

change energy can be evaluated over the occupied KS orbitals as

EX[n] =−
1
2 ∑

σ

Nσ

∑
i, j=1

∫
dx
∫

dx′ vee(x− x′)φ∗i,σ (x)φ
∗
j,σ (x)φi,σ (x′)φ j,σ (x′), (2.14)

but in practice it is often approximted by an explicity density functional to reduce the computational

cost.
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2.5 Uniform Gas

In order to construct and employ the LDA for our exponential repulsion, we must first calculate

the exchange-correlation energy of the exponentially repelling uniform gas, expellium.

2.5.1 Kinetic, Hartree, and Exchange Energies

These energy components are straightforward and well known, as the single particle states are

simply plane waves. The unpolarized, non-interacting kinetic energy per length of a uniform gas

is given by [66, 67, 68]

tunpol
S (n) = π

2n3/24. (2.15)

The Hartree energy per length of a uniform system with exponential interaction is finite:

eHunif(n) = An2/κ. (2.16)

The exchange energy of the uniform gas was derived in Ref. [69], with the energy per length as

eunpol
X (n) = Aκ

(
ln(1+ y2)−2yarctany

)
/(2π

2) (2.17)

where y = π/(2κrs) where rs is the Wigner-Seitz radius [70] in 1d defined as rs = 1/(2n) [71].

The limits for this expression are

eunpol
X (n)→ −An/2, n→ ∞ (2.18)

eunpol
X (n)→ −An2/(2κ), n→ 0. (2.19)
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Both the exchange and kinetic energies depend separately on the orbitals of each spin, so they

satisfy simple spin scaling relation [72]:

EX[n,ζ ] =
1
2

{
Eunpol

X [(1+ζ )n]+Eunpol
X [(1−ζ )n]

}
(2.20)

where ζ (x) = (n↑(x)− n↓(x))/n(x) is the local spin polarization for spin up (down) densities n↑

(n↓). Applying the relation for TS yields:

tunif
S (n,ζ ) = tunpol

s (n)(1+3ζ
2)/2 (2.21)

and the exchange energy per length:

eunif
X (n,ζ ) = ∑

σ=±1
eunpol

X

(
(1+σζ )n

)
/2. (2.22)

In Fig. 2.2, we plot the exchange energies per unit length for both the unpolarized and fully po-

larized cases, comparing with the soft-Coulomb. For rS . 2, i.e. n & 1/4, they are very simi-

lar, but the exponential vanishes more rapidly in the low density limit. Applying Eq. (2.19) to

Eq. (2.22) shows eunif
X is independent of ζ in the high-density limit. Application of Eq. (2.18)

shows eunif
X (n,ζ )→ eunpol

X (n)(1+ζ 2) as n→ 0.

2.5.2 Correlation Energy

While we can determine the exchange energy of the uniform gas analytically, for correlation we

cannot. We first determine the high and low density limits and connect them with a Padé approxi-

mation.
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Figure 2.2: Exchange energy densities per particle of the uniform gas for the exponential (solid
lines), both unpolarized (blue) and fully polarized (red). Dashed lines show soft-Coulomb results.
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2.5.3 High Density Limit

In the high-density uniform gas, the RPA solution becomes exact [73, 74, 75, 76, 77, 78, 78, 79,

80, 81, 82]. Casula, et. al. [11] have derived a criteria for the RPA limit which for 1d systems

gives EC = −ϒrS/π4 where ϒ =
∫

∞

0 dqqṽ2
ee(q) for the Fourier transform, ṽee(q) = 2Aκ/(κ2 +q2)

[9, 10, 11, 33]. Thus,

ERPA
C (n) =


−2A2rs/π4 unpolarized,

−A2rs/(4π4) polarized.
(2.23)

Note that these expressions for the exponential eRPA
C are identical to the eRPA

C of the soft-Coulomb

interaction if A = 1 and so differ by less than 15% here [33].

2.5.4 Low Density Limit

To determine the low density limit of the correlation, we may work in the limit of a Wigner crys-

tal [83]. This phase occurs because the kinetic energy becomes less than the interaction energy

for low densities. The strictly correlated electron limit [29, 84, 85] is the exact limit of the low

density electron gas [71, 86]. For strictly correlated electrons, each electron sits some multiple

of 2rS away from any other. For short-ranged interactions, such as the exponential, the poten-

tial energy must decay exponentially with rS, so that EXC = −U , regardless of spin polarization

[72]. The actual form of the correlation energy EC, however, will depend on the polarization,

because the exchange energy eX does. For a spin-unpolarized system, using Eq. (2.19), we find

eX(n) = EC(n) = −An2/(2κ) in the low-density gas limit. After spin-scaling exchange, we ob-

tain the low-density limit epol
X (n) =−An2/κ , and this quantity already cancels the Hartree energy!

Therefore the correlation energy for spin-polarized electrons must decay more rapidly than n2 as

n→ 0.
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Figure 2.3: Correlation energy densities of the uniform gas from DMRG calculations. Solid
lines are parametrization of Eq. (2.24), red dots are calculated, and dashed lines are for the soft-
Coulomb.

2.5.5 Correlation Energy Calculations

The uniform gas correlation energy was found from a sequence of DMRG calculations in boxes

of increasing length, L, in which the average density is kept fixed. Grid errors become more

pronounced in these systems compared with soft-Coulomb interactions because there is no way to

ensure a grid point will always lie on the wave function’s cusp. Hence, a very fine grid spacing was

necessary to converge the points. As the density increases, finer and finer grids were necessary,

down to a practical limit of ∆ = 0.008. Energies for different box sizes were fit to a parabola in

1/L and the limit of L→ ∞ extracted. The various energy components of Sec. 2.5.1 were then

subtracted to find EC to make the dots in Fig. 2.3. For partially polarized gases, we used the same
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α β γ δ η σ

eunpol
C 2 -1.00077 6.26099 -11.9041 9.62614 -1.48334
epol

C 180.891 -541.124 651.615 -356.504 88.0733 -4.32708

Table 2.1: Fitting parameters for the correlation energy in Eq. (2.24). The parameter ν = 1 (unpo-
larized) or 8 (polarized).

procedure as for the unpolarized case except that each box contained various values of ζ for each

L used in the limit. Evaluating several partially polarized systems, we found that the correlation

energy was very nearly parabolic in ζ at several different densities.

2.5.6 Padé Approximation

Considering the asymptotic limits of the correlation energy, the full approximation that allows us

to accurately fit the data is

Eunif
C =

−Aκy2/π2

α +β
√

y+ γy+δy3/2 +ηy2 +σy5/2 +ν
πκ2

A y3
. (2.24)

where y was defined above and the fitting parameters are defined for this specific choice of A and κ

only. The parameters optimized by fitting DMRG uniform gas data are given in Table 2.1, and the

resulting fits are shown in Fig. 2.3. Although we know at full polarization EC should decay more

rapidly than n2 in the low density limit, we do not know how much more rapidly, so we use the

same form as the unpolarized case. This fit is accurate and the coefficient of n2 is about 1% that of

the unpolarized one. Finally, we approximate the ζ dependence as

EC(n,ζ ) = Eunpol
C (n)+ζ

2
(

Epol
C (n)−Eunpol

C (n)
)
, (2.25)

as justified in the previous section.

In Fig. 2.4, we show the combined XC energies (solid) for the unpolarized (blue) and polarized
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Figure 2.4: XC energy per particle, eXC/n (dashed), for the unpolarized (blue) and fully polarized
(red). Solid lines are eX/n only.

gases (red). Dashed lines are for exchange alone. Correlation is a much smaller effect in the fully

spin-polarized gas.

2.6 Finite Systems

2.6.1 Atomic Energies

We now refer to several tables that contain the information from several different systems as deter-

mined by the methods of the previous sections. To construct the LDA, ELDA
XC is constructed from

Eqs. (2.30) and (2.25). In practice, we always use spin-DFT, and the local spin density approxi-

mation (LSDA). The plot of eunif
XC (rS,ζ ) is very similar to those of the soft-Coulomb (see Fig. 2 of

Ref. [35]).

Table 2.2 contains many energy components for all 1d atoms and ions up to Z = 4. The total en-

ergies are accurate to within 1 mHa. The first approximation in quantum chemistry is the Hartree-

Fock (HF), and its error is the (quantum chemical) correlation energy, EQC
C . As required, this is
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Ne Symb. EHF E EQC
C T V Vee Ts U EXC EX EC TC ELDA ELDA

X ELDA
C

1 H -0.670 -0.670 0 0.111 -0.781 0 0.111 0.345 -0.345 -0.345 0 0 -0.643 -0.305 -0.009
He+ -1.482 -1.482 0 0.190 -1.672 0 0.190 0.379 -0.379 -0.379 0 0 -1.449 -0.337 -0.007
Li++ -2.334 -2.334 0 0.259 -2.593 0 0.259 0.397 -0.397 -0.397 0 0 -2.298 -0.355 -0.006
Be3+ -3.208 -3.208 0 0.321 -3.529 0 0.321 0.408 -0.408 -0.408 0 0 -3.171 -0.366 -0.005

2 H− -0.694 -0.737 -0.044 0.114 -1.311 0.460 0.081 1.070 -0.586 -0.535 -0.051 0.050 -0.711 -0.520 -0.073
He -2.223 -2.237 -0.014 0.286 -3.212 0.690 0.273 1.432 -0.730 -0.716 -0.014 0.013 -2.196 -0.633 -0.050
Li+ -3.884 -3.892 -0.008 0.433 -5.080 0.755 0.426 1.541 -0.779 -0.770 -0.009 0.007 -3.842 -0.686 -0.039
Be++ -5.606 -5.611 -0.005 0.564 -6.967 0.792 0.559 1.602 -0.806 -0.801 -0.005 0.005 -5.556 -0.715 -0.034

3 Li -4.199 -4.215 -0.016 0.628 -6.490 1.647 0.614 2.751 -1.089 -1.072 -0.017 0.014 -4.181 -0.999 -0.045
Be+ -6.447 -6.457 -0.010 0.910 -9.225 1.858 0.900 3.029 -1.161 -1.150 -0.011 0.010 -6.411 -1.074 -0.035

4 Be -6.756 -6.809 -0.053 1.118 -11.115 3.188 1.077 4.710 -1.481 -1.421 -0.060 0.041 -6.784 -1.371 -0.080

Table 2.2: Energy components for several systems as calculated by DMRG to 1 mHa accuracy.
Chemical symbols H, He, Li, and Be imply single atomic potentials of Z = 1,2,3, and 4, respec-
tively. All LDA calculations are self-consistent, except H−, which is unbound, so we evaluate
ELDA

XC on the exact density. These values are very similar to those of the soft-Coulomb.

always negative and is typically a very small fraction of |E|. Unlike real atoms and ions, for fixed

particle number N, EC→ 0 as Z→ ∞, not a constant [87].

The next three columns show the breakdown of E into its various components. The magnitude of

|V | is much greater than the other two. Unlike 3d Coulomb systems, there is no virial theorem

relating E and −T , for example [88]. Here the kinetic energies are much smaller than |E|, just

as for the soft-Coulomb [35]. In the following three columns we give the KS components of the

energy. These were extracted by finding the exact vS(x) from n(x) [38], and constructing the exact

KS quantities [39]. Unlike 3d Coulomb reality, TS is smaller in magnitude than |EXC|. But just like

in 3d Coulomb reality, both TS and EXC always grow with Z if N is fixed, with N if Z is fixed, or

with Z for Z = N [89].

The next set of columns break EXC into its components: EX, EC, and TC. The correlation energy is

negative everywhere and is slightly larger in magnitude than |EQC
C | as required [90]. We also see

TC is very close to −EC everywhere, a sign of weak correlation [91], which is the same as in 3d

Coulomb atoms and ions. We also report self-consistent LDA energies and the XC components.

All LDA energies are insufficiently negative. For N = 1, self-interaction error occurs and ELDA
XC is

not quite −U . Just as for reality, LDA exchange consistently underestimates the magnitude of EX,

while ELDA
C overestimates, producing the well-known cancellation of errors in ELDA

XC .
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Ne Symb. LDA HF Exact
−εH I −εH I I=−εH

1 H 0.412 0.643 0.670 0.670 0.670
2 H− – 0.062 0.058 0.024 0.068

He 0.478 0.714 0.750 0.741 0.755
Li+ 1.238 1.508 1.556 1.550 1.558
Be++ 2.061 2.348 2.402 2.403 2.403

3 Li 0.182 0.339 0.327 0.315 0.323
Be+ 0.643 0.855 0.850 0.836 0.846

4 Be 0.183 0.373 0.327 0.309 0.331

Table 2.3: Highest occupied eigenvalues (εH) and total energy differences (I) for several atoms
and ion, both exactly and approximately.

We close the section on atoms with details of eigenvalues. It is long known that [92], for the exact

KS potential, the highest occupied eigenvalue is at−I, the ionization energy, but that this condition

is violated by approximation. In Table 2.3, we list −εH and I for several atoms and ions exactly,

in HF and in LDA. Koopman first argued [93] that −εH should be a good approximation to I in

HF, and we see that, just as in reality, it is a better approximation to I than IHF, from total energy

differences. On the other hand, our 1d LDA exhibits the same well-known failure of real LDA: its

KS potential is far too shallow, so that εHLDA is above εH by a significant amount (up to 10 eV).

2.6.2 Molecular Dissociation

Next we consider 1d molecules with an exponential interaction. The behavior is almost identical to

that of the soft-Coulomb documented in Ref. [35]. For H+
2 , in Fig. 2.5, HF is exact, and ELSDA

0 (R→

∞) does not tend to ELSDA
0 (H) because of a large self-interaction error [94].

For H2, in Fig. 2.6, the exact curve is calculated with DMRG, which has no problems whatsoever

with stretching the bond (and can even break triple bonds [95]). But HF, restricted to a singlet,

tends to the wrong limit as R→ ∞, while unrestricted HF goes to a lower energy beyond the

Coulson-Fischer [96] point (R = 2.1) and dissociates to the correct energy (2E(H)) but the wrong
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Figure 2.5: Molecular dissociation for H+
2 for LSDA and HF. Dashed lines indicate the energy of

a single H atom. Results are in close agreement with the soft-Coulomb interaction. LSDA has the
well known failure of not dissociating to the correct limit.

0 1 2 3 4 5 6

-1.10

-1.15

-1.20

-1.25

-1.30

-1.35

-1.40

-1.45

R

E
0

HRL exact

HF

LSDA

Figure 2.6: Molecular dissociation for H2 with dots denoting the Coulson-Fischer points. Curves
are shown for the exact case; also shown are restricted (solid) and unrestricted (dashed) LSDA and
HF.
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H+
2 H2

quantity LSDA exact HF LSDA exact
De (eV) 3.94 3.72 2.04 3.25 2.74

R0 (bohr) 2.70 2.50 1.45 1.60 1.56
ω (×103 cm−1) 2.03 2.32 3.91 3.52 3.40

Table 2.4: Electronic well depth De (calculated relative to well-separated unrestricted atoms), equi-
librium bond radius R0, and vibrational frequency ω for the H+

2 and H2 molecules.

spin symmetry [97]. The same qualitative behavior occurs for LSDA at R = 3.5. These results

are almost identical to those with soft-Coulomb interactions (except R = 3.4 for the soft-Coulomb

LSDA Coulson-Fischer point), and qualitatively the same as 3D.

For reference purposes, we also report equilibrium properties of H2 and H+
2 in Table 2.4. HF is

exact for H+
2 , but underbinds H2, shortens its bond, and yields too large a vibrational frequency,

just as in 3d. Overall, LSDA results are substantially more accurate. LSDA overbinds, yields

slightly (to less than 1%) too large a bond, and only slightly overestimates vibrational frequencies,

just as in reality. Vibrational frequencies, ω , are chosen to fit the function E0 +ω2(r−R0)
2/2.

2.6.3 Relative Advantages

To illustrate the effective shorter range of the exponential relative to a soft-Coulomb, Fig. 2.7 shows

the exact binding energy of two H2 molecules (with bond lengths set to their equilibrium values

for each type of interaction) as a function of the separation between closest nuclei. These closed

shell molecules do not bind with either interaction, but the soft-Coulomb energy decays far more

slowly to its value at ∞.

Finally, we give an example of the much lower computational cost of the exponential in DMRG

over that of the soft-Coulomb due to the reasons discussed in Sec. 4.2. In Fig. 2.8, we plot

the densities and potentials for a 10-atom H chain with separations R = 2.8. The densities are

sufficiently similar for all practical purposes (but not the potentials) while the computational time

25



0 2 4 6 8 10
0

10

20

30

40

50

R

E
H2H

2
L

-20-15-10-5 0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

x

v
HxL

�6
n

HxL

Exp
sC

Figure 2.7: Binding energy curves for two H2 molecules a distance R apart (measured between
the innermost atoms), demonstrating the much slower decay of the soft-Coulomb. We subtracted
off the asymptote of the binding curve so that the curves tend to zero. The inset shows the soft-
Coulomb potentials from the two H2 atoms have a substantial overlap even at R = 18 while the
exponential does not.
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Figure 2.8: The density of an H10 chain with R = 2.8 with exponential and soft-Coulomb interac-
tions.

per DMRG sweep was about 4 times longer for the soft-Coulomb. With increasing interatomic

distance, Fig. 2.9 shows a decreased wall time of more than a factor of 20 for calculating larger

separations.

2.7 Conclusion

We have introduced an exponential interaction that allows us to mimic many features of real elec-

tronic structure with 1d systems. Using the exponential in place of the more standard soft-Coulomb

interaction not only improves the computational time of DMRG , but it also allows faster conver-

gence for other calculations due to its fast decay and local nature. To facilitate comparison with

existing calculations, we choose the parameters in the exponential to best match a soft-Coulomb

potential. A parameterization for the LDA is given by calculating and fitting to uniform gas data.
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Figure 2.9: The exponential performs sweeps in DMRG much faster, leading to a greatly reduced
computational time. Here we show the cost of the H10 of Fig. 2.8 as a function of interatomic
separation. The number of many body states is fixed at 30 for 10 sweeps and each system has 1161
grid points. The maximum truncation error in each sweep is ∼ 10−8.
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2.8 Supplementary material: Construction of the Local Den-

sity Approximation

This section contains more information on the low and high density limits for the exchange and

correlation energy derived cursorily in the above text.

In any Kohn-Sham calculation, the exchange-correlation energy, EXC, must be approximated. We

will note that exact exchange may be determined from the following functional

EX = −1
2 ∑

σ

Nσ

∑
i, j=1

∫
dx
∫

dx′ vee(x− x′)ψiσ (x)ψ jσ (x)ψ jσ (x′)ψiσ (x′). (2.26)

(where a spin sum over σ and occupied orbital sum over i, j is performed) but is often compu-

tationally expensive to use in a DFT calculation and may not induce a cancellation of errors that

allows DFT to reach better accuracy as we do not have a closed form for exact correlation [? ].

The next section will derive the LDA exchange which will greatly diminish the computational time

necessary for the calculation of the exchange at only a tiny cost of accuracy. This will also allow a

cancellation of errors with the eventual LDA correlation functional.

2.8.1 Exchange Energy

The exchange energy is known to satisfy exact sum rules in that the exchange hole, nX, integrates

to -1. By deriving the exact exchange hole in the local approximation, we can determine a closed

form expression for the exchange energy. We do so to construct our LDA.

Since the exchange hole relates exactly to the single particle density matrix, nX(x,x′)=−|γs(x,x′)|/n(x),

we may set about determining the single particle density matrix γs for the uniform gas containing
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plane wave eigenstates,

γs(x,x′) = N
∫

dx2 . . .
∫

dxNψ
∗(x,x2 . . . ,xN)

×ψ(x′,x2 . . . ,xN) =
sin(kFu)

πu
(2.27)

where we note that for the uniform gas, a neglected term dependent on x+ x′, measured from

a coordinate system with its origin at the walls placed at −∞, is a much larger number than the

difference u≡ x−x′. Since sincu decays extremely quickly, only the term containing the difference

u contributes to γs.

With the single particle density matrix and the density of the uniform gas being constant, we have

the exchange energy as

EX[n] =
∫∫

dxdx′Aexp(−κ|x− x′|)n(x)nX(x,x′). (2.28)

with

nX(x,x′) =−
n
4

sinc2(kF(x− x′)) (2.29)

The exchange energy for the uniform gas will diverge as it is an infinite system (and therefore the

exchange of two particles, even in the non-interacting KS system, will require an infinite amount

of energy at infinite distance). So, we may then instead focus on the energy density, εX(n,x), which

relates as EX[n] =
∫

εX(n,x)dx.
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Performing the integration gives

εX(n,x) = A
(

ln(1+n2π2/κ2)

2π2/κ
− n

π
arctan(nπ/κ)

)
. (2.30)

This exchange energy captures the exchange energy of a Hartree-Fock calculation exactly proving

its validity.

Having derived the exchange functional, we move onto the correlation functional.

2.8.2 Low Density Limit

To determine the low density limit of the correlation, one may notice that scaling the coordinates

by a factor γ (x→ γx) shows that in the low density limit, the electron-electron interaction is greater

than the kinetic energy,

lim
γ→0

T γ [n] = lim
γ→0

γ
2T [n] = 0 < lim

γ→0
V γ

ee[n] = A. (2.31)

Hence, the electron will localize as a Wigner crystal and the energy of this system will be primarily

determined by the electrostatic interaction of the electrons with the positive background charge

(which neutralizes the total charge of the system). Note that the broken translational symmetry

phase very closely matches the energy of the uniform gas in the region. Implicitly, we include a

positive uniform background and cancel the Hartree term which would produce an infinite energy

for the exponentially interacting system otherwise.

In a Wigner crystal, which may occur for low, uniform densities n(x) = n of electrons that individ-

ually localize in a region from x =−rs to rs where rs is the Wigner-Seitz radius in one dimension

defined as 2/rs(x) = n(x) [71]. For the electrostatic energy, first consider the positive background

charge which will have the same density as that of the electrons. Locally, the electrons will be

attracted to the positive charge on the line from −rs to rs. For an exponential interaction, the
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potential, Φ(x) produced by this uniform positive charge is

Φ(x) =
∫ rs

−rs

dynAexp(−κ|x− y|) = r−1
s [1− exp(−κrs)coshκx]. (2.32)

From this potential, we can determine the relevant energies. A classical electron sitting in this

potential will rest at x = 0 with energy −Φ(0). The background charge interacts with itself with

energy, Vb,

Vb =
1
2

∫ rs

−rs

dxnΦ(x) =
A

2rs

(
1− exp(−κrs)

κrs
sinhκrs

)
. (2.33)

Therefore, the potential energy of this unit cell with one electron is

−Φ(0)+Vnn = − A
2rs

+
A
rs

exp(−κrs)−
A

2κr2
s

exp(−κrs)sinhκrs (2.34)

which is also the total energy per electron. Since the uniform density must be n = N/L, we have

that the total energy is the integral of Eq. (2.34). In the low density limit, rs→ ∞. So, the most

important term in the Hartree energy, U , is the lead term −(2rs)
−2 =−n2.

In the strictly correlated electron limit [84, 85], the coupling constant of the adiabatic connection

connecting the KS system at the real system is taken to be sufficiently large to localize the electron’s

wave functions so that they appear as point-like and are well modeled by the Dirac delta function

[29]. This limit applies well to the Wigner crystal phase and implies that the important pieces of the

energy are the Hartree and exchange-correlation which relate as U =−EXC. The Hartree energy per

length for our exponential interaction is n2. Expanding the exchange energy about small n reveals
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that the exchange energy per length’s behavior is −n2/2. This requires the correlation energy to

be −n2/2 to counter balance the Hartree energy and avoid a self interaction error.

So far, our analysis has focused on the unpolarized case. The polarized case has a different behavior

in the low density limit as can be seen by spin scaling the exchange energy. This will determine

how we construct the local spin density approximation (LSDA), the generalization of LDA for

polarized and partially polarized systems. The polarized exchange energy relates to the unpolarized

exchange energy as Epol
X [npol] = Eunpol

X [2nunpol]/2 [Burke and friends]. This gives the revised low

density limit for the polarized gas as −n2 which completely cancels the Hartree energy in this

limit! This implies that correlation must be of some higher power than 2 as there is no correlation

energy in this limit.

However, in the following we will find that a fit to a correlation energy depending like −n2/η will

provide a suitable parameterization for our data for some undetermined coefficient η . We now

proceed to deriving the high density behavior for the correlation energy.

2.8.3 High Density Limit

With the low density limit well characterized, we turn to the high density limit. The random

phase approximation (RPA) must be evaluated to determine the relationship [73, 74]. In this limit,

one decomposes the real, many-body Hamiltonian for a number of particles to expand around the

electron-electron interaction. The sum at each order of peturbation theory relies on assuming the

dominant part of the energy is well characterized by the first diagram (also known as the “ring

diagram”) in the self-energy [78].

Despite some early misconceptions in the literature, RPA does not decrease its usefulness in low

dimensional systems [75, 76, 77]. In fact, by capturing the plasmon frequency exactly, regard-

less of the form of the interaction, RPA is describing the long wave-length limit which precisely
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corresponds with the high density/long wavelength limit.

Rewriting the electron-electron operator in the real, many-body Hamiltonian, the second quantized

form [78], we may examine the correlation function in the two particle Green’s function formalism.

The term Vq is the Fourier transform of the electron-electron interaction,

Vq =
∫

∞

−∞

dxAexp(−κ|x− x′|)exp(iqx) =
2Aκ

κ2 +q2 . (2.35)

We note that this form is identical to the Fourier transform of the soft-Coulomb interaction if

A = κ = 1.

The vacuum polarization diagram has a well known form in 1d [78, 79, 80],

Π0 =
1

qπ
ln

ω2−
(

q2

2 −
π

4rs
q
)2

ω2−
(

q2

2 + π

4rs
q
)2

 . (2.36)

This is taken as the entire contribution to the self-energy. The system’s correlation energy is given

by [78, 81]

Ec =
∫ dqdω

(2π)2 Im[ln
(
1−VqΠ0

)
+VqΠ0]. (2.37)

The integration over q is best split into three regions,
∫

∞

−∞
=
∫

κrs
−∞

+
∫

κrs
−κrs

+
∫

∞

κrs
. In the limit where

RPA is valid (i.e., that of rs→ 0), the middle integral goes to zero by the midpoint rule since for

small intervals of integration the integral is well approximated by
∫

κrs
−κrs

F(x)dx = 2rsF(rs). The

first and third regions of integration are identical.

Examining the term VqΠ0, we see that substituting q→ q/rs provides the opportunity to expand this

term about small rs. Using the specific form of Vq for this interaction, we notice that an expansion

as a geometric series is available so long as we consider q > rs hence motivating the consideration
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of three intervals of integration. The logarithmic quantity may be expanded about the argument,

written in a variable z, to first order if rs is the limit of being infinitesimal, ln[(1+ z)/(1− z)] ≈

2z = 2πq3/(4r4
s ω2− q4−π2q2/4), since q3 is always valued between q4 + q2 or equal to (in the

special case where q = 1) leading to q3/(q4 +q2)≤ 1 always. The correlation energy at this point

takes the form

Ec =
2
rs

∫
∞

0

∫
∞

κrs

dqdω

(2π)2 Im

ln

1−κA
4

1+ κ2r2
s

q2

r3
s

4r4
s ω2−q4− π2

4 q2

 (2.38)

+κA
4

1+ κ2r2
s

q2

r3
s

4r4
s ω2−q4− π2

4 q2



With a substitution of ω → ω/r2
s , rewriting the term (1+ κ2r2

s
q2 )−1 in a geometric series, and ex-

panding the remaining logarithm, we see that the surviving low order terms (those remaining after

subtraction) are

Ec =−
1
r3

s

∫
∞

−∞

∫
∞

κrs

dqdω

(2π)2 Im


[

4κA
r3

s

4ω2−q4− π2

4 q2

]2
 (2.39)

Using contour integration to evaluate the ω integral and choosing a half-circle contour closed in

the upper half plane, we can evaluate the final integral to give

ERPA
c =


− A2

π4n unpolarized

− A2

4π4n polarized
(2.40)

The above calculations are summarized for the unpolarized case. The polarized case relies on

changing the spin sum in the vacuum polarization (so that Π0→Π0/2).

To check the rather surprising result that the length scale, κ , of the exponential does not affect

the RPA limits, we note that a simplified condition for the coefficient of the high density limit
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was derived by Rajagopol and Kimball in Ref. [82] using finite temperature methods and has been

investigated in other works [9, 10, 11, 33]. This condition, that µ−1 =
∫

dqqV 2
q , gives exactly the

same limit as above.

With these two limits in the high and low density regimes, the uniform gas densities are determined

and parameterized to Padé approximation which limits to these derived asymptotes.
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Chapter 3

Machine Learning the Exact Density

Functional

3.1 Overview

Having constructed a test system in the previous chapter, we use machine learning methods to

directly access the exact functional and perform self-consistent computation.

We use the density-matrix renormalization group, applied to a one-dimensional model of con-

tinuum Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and

numbers of atoms. We train and test a machine-learned approximation to F [n], the universal part

of the electronic density functional, to within quantum chemical accuracy. We also develop a

data-driven, atom-centered basis set for densities which greatly reduces the computational cost

and accurately represents the physical information in the machine learning calculation. Our cal-

culation (a) bypasses the standard Kohn-Sham approach, avoiding the need to find orbitals, (b)

includes the strong correlation of highly-stretched bonds without any specific difficulty (unlike all

standard DFT approximations) and (c) is so accurate that it can be used to find the energy in the
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thermodynamic limit to quantum chemical accuracy.

This work was published with Li Li, Steven R. White, and Kieron Burke and is republished here

with permission from the American Physical Society [? ].

3.2 Introduction

Although widely used in solid-state physics, chemistry, and materials science [98], Kohn-Sham

density functional theory (KS-DFT) with standard approximations fails for strong correlation [38,

39]. The prototype is the H2 molecule. When stretched, the electrons localize on each site while

remaining in a singlet state, but this is not captured by such calculations [97]. These kinds of

difficulties have led to the popularity of many beyond-DFT schemes, ranging from the simple

addition [99] of a Hubbard U to the use of dynamical mean field theory [100] as well as many

others.

But even KS-DFT is too slow for many large calculations, such as those using classical MD or

continuum mechanics [101]. The original DFT, first suggested in the Thomas-Fermi approximation

[66, 102] and later justified by the Hohenberg-Kohn theorem [1], uses only pure functionals of the

total density, n(r). This “orbital-free” version has the potential to be much faster than even the

most efficient KS implementations, because the KS equations need not be solved [103]. Several

recent attempts have constructed machine-learning (ML) kinetic energy functionals specifically to

bypass this step [104, 105, 106, 107]. These are designed to be used in conjunction with standard

KS approximations to speed up such calculations, but not to improve their accuracy.

Meanwhile, beyond the world of DFT, density matrix renormalization group (DMRG) has become

a standard tool for finding extremely accurate solutions to strongly correlated lattice problems

[108, 109, 110, 111]. In recent years, a one-dimensional analog of ab-initio Hamiltonians has been

developed, using typically about 20 grid points per atom and interactions involving many grid
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Figure 3.1: Electronic energy of the infinite chain from a model learned from extrapolated chain
densities and energies. The accurate value was calculated with infinite DMRG (see text).

points, with the express purpose of rapidly exploring both conceptual and practical issues in DFT

[4, 35, 36, 37, 38]. A particular advantage is that, since 2000 grid points is routinely accessible,

this includes up to 100 atoms, and extrapolations to the thermodynamic limit are much easier than

in three dimensions. Applications include a demonstration of the behavior of the KS gap in a Mott-

Hubbard insulator [36] and a proof of convergence of the KS equations with the exact functional,

regardless of the starting point or strength of correlation [35].

In the present work, we combine all these methodologies to demonstrate several important features.

We perform DMRG calculations on a variety of one-dimensional hydrogen atom chains, with from

2 to 20 atoms, and whose interatomic spacing R varies from 1 to 10 Bohr radii, and use these to

train a ML model of F [n], the “universal” part of the density functional identified by Hohenberg-

Kohn. This simulanteously includes both the non-interacting kinetic energy sought in orbital-free

DFT and the exchange-correlation energy that is approximated in KS calculations. We demonstrate
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that, with reasonable amounts of training, we can self-consistently calculate densities and energies

for these chains at new values of R, outside the training set, with quantum chemical accuracy.

This includes highly stretched systems which are strongly correlated, and where all popular DFT

approximations fail. We furthermore extrapolate the DMRG densities from the center of finite

chains to the infinite chain limit, i.e., a one-dimensional (1D) solid. We train a new ML model

and find we can solve self-consistently the solid problem at the same level of accuracy. Fig. 3.1

shows the convergence of our ML method for a typical separation of the infinite chain with respect

to the number of training points. The horizontal lines show two independent DMRG estimates of

the energy.

3.3 Background

3.3.1 DFT

The Hohenberg-Kohn theorem [1] establishes that the ground-state energy and density of a many-

body problem may be found by minimizing a density functional:

E = min
n

{
F [n]+

∫
d3r n(r)v(r)

}
, (3.1)

where n(r) is the single-particle density, normalized to N particles, and v(r) is the one-body po-

tential. The functional F can be defined via a constrained search as [112]

F [n] = min
Ψ→n
〈Ψ| T̂ +V̂ee|Ψ〉 (3.2)

where T̂ is the kinetic energy operator and Vee is the electron-electron repulsion operator, while Ψ is

a normalized antisymmetric (for fermions) wavefunction. While this showed that the old Thomas-

Fermi theory [66, 68, 102] was an approximation to an exact formulation, few modern calculations
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perform such a direct minimization. In practice, almost all calculations use the famous Kohn-Sham

(KS) scheme, which uses an auxillary set of non-interacting orbitals in a single, multiplicative

potential whose density is defined to match that of the original system, and in terms of which we

can write

F [n] = TS[n]+U [n]+EXC[n], (3.3)

where TS is the non-interacting kinetic energy of the KS electrons, U is the Hartree self-repulsion,

and EXC is the exchange-correlation energy (defined by this equation).

The genius of the KS formulation is that EXC is typically a small fraction of F , so that much higher

accuracy can be achieved by approximating only this component. The cost of the KS scheme

is formally N3, the cost of solving for the orbitals. Much of modern DFT research is devoted

to improving approximations to EXC, within which all quantum-many body effects are contained

(by definition). The smaller field of pure DFT, also known as ‘orbital-free’, aspires to approximate

TS[n] directly, as in the old TF theory [66, 102], and thus bypass the need to solve the KS equations.

Many modern XC approximations are local or semilocal, i.e., use the density and its gradient to

approximate the XC energy density at a point. While remarkably useful results can be obtained

with such approximations, there remains a classic failure that can be understood in terms of the

simple H2 molecule [94]. Those approximations work well in the vicinity of the equilibrium bond

length, but as the bond is stretched, they fail more and more badly. In the limit of a large but finite

bond length (which we call stretched), a spin-restricted calculation yields the highly inaccurate

energy of two unpolarized H atoms. On the other hand, an unrestricted calculation yields an

accurate stretched energy, but has broken spin symmetry. Neither situation is satisfactory [97],

most modern semi-local approximations fail in this way [94, 113] and efforts to overcome such

difficulties are ongoing [114, 115]. An analogous failure occurs for semilocal approximations to

TS[n] when bonds are stretched in orbital-free DFT. Fig. 3.2 illustrates the failure of semilocal XC,
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Figure 3.2: Binding curve for a 1D H2 molecule. Black: highly accurate, converged DMRG
results. Blue: LDA result restricted to a spin singlet.

by comparing the blue restricted LDA curve with the black DMRG curve. There is a huge error in

the stretched limit.

3.3.2 DMRG benchmark data

It is difficult to overemphasize the utility of benchmark quantum chemical calculations for the de-

velopment of DFT. The DFT revolution in quantum chemistry was made possible by the existence

of the well-tested G2 data set for small molecules, and databases in quantum chemistry have pro-

liferated ever since. On the other hand, calculations of “quantum chemical” accuracy, i.e., errors

below 1 kcal/mol, are much more difficult and rarer for solids. A recent heroic effort [116] was

made for benzene, a molecular crystal.

For the present study, we need to consider chains of up to 20 H atoms, with many different values
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of the interatomic spacing ranging from about 1 to 10 Bohr. Extracting this large amount of data

at the required level of accuracy from a quantum chemical code would be extremely demanding,

if not impossible, given the strong correlation effects when the bonds are stretched.

Recently, DMRG has been applied to a one-dimensional analog of real-space Coulomb-interacing

Hamiltonians, for precisely the purpose of performing demanding, highly accurate benchmark

calculations of strongly correlated systems. In particular, the interaction is modeled as

vee(u) = A exp(−κ |u|) (3.4)

where A = 1.071 and κ−1 = 2.385 [4] and u is the separation. This choice best mimics the popular

soft Coulomb interaction, while having a single exponential allows DMRG to run very fast [4].

The one-body potential is then taken as v(x) = −Zvee(x), where Z is the “charge” on a nucleus.

Here Z = 1 for each H atom in the chain. This 1D analog allows rapid testing of novel ideas in

electronic structure, especially those involving the bulk limit. Figure 3.2 is in fact for 1D H2 with

these parameters, and illustrates that the failures of standard DFT approximations such as LDA

mimic those of three-dimensional (3D) Coulomb systems. The DMRG curve plateau is at twice

the ground-state energy of one of these 1D H atoms.

3.3.3 Machine learning of the KS kinetic energy functional

ML is a set of algorithms developed to find hidden insights in data. It is widely used especially

when the pattern behind complicated data is difficult to deduce explicitly. Successful applications

include computer vision [117], cybersecurity [118], ancient abstract strategy games [119], etc.

Recently, in chemistry and materials science, machine-learning has become a popular tool for

analyzing properties of molecules and materials, and finding specific functions from large data sets

[120, 121]. But it has also been applied to the problem of finding density functionals, constructed
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by interpolation from accurate examples. To date, the focus has been on the KS kinetic energy,

TS[n], partially because of the ready availability of data (every cycle of every one of the 30,000

KS-DFT calculations each year [98] produces an accurate example of TS[n]) and because of the

enormous potential for speeding up routine DFT calculations.

The ML algorithm we used for modeling TS[n] is kernel ridge regression (KRR). It is a nonlinear

regression method with an L2 regularization [122]. The density functional is represented as

T ML
S [n] =

NT

∑
i=1

αik[n,ni], (3.5)

where NT is the number of training data, ni(x) are the training data and k[n,ni] is a kernel, some

measure of the “similarity” between densities. Throughout this work, we use a Gaussian kernel,

k[n,n′] = exp(−‖n−n′‖2/2σ
2), (3.6)

where

‖n−n′‖=
∫

dx[(n(x)−n′(x)]2. (3.7)

Such a kernel is standard in KRR, and has yielded excellent results in previous studies of TS[n]

[106]. The weights α = (α1, · · · ,αNT) are found by optimizing the cost function

C (α) =
NT

∑
i=1

(T ML
S [ni]−TS[ni])

2 +λα
TKα (3.8)

where K is the kernel matrix, Ki j = k[ni,n j]. The regularization strength λ and length scale σ

are hyperparameters which are found via cross validation. A crucial principle in kernel ridge

regression is the separation of the training data from the test data. A test set is constructed entirely

independently from the training set. The cross-validation to find the hyperparameters occurs using

only training data. The resulting approximate functional is tested only on the test data.
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While highly accurate results for TS[n] can be found with relatively little data [104], it was immedi-

ately realized that the corresponding functional derivative is highly inaccurate. This is unfortunate,

as the practical usefulness of an accurate model for TS[n] is in finding the density via solution of

the Euler equation (for the KS system):

δTS

δn(x)
=−vS(x), (3.9)

where vS(x) is the KS potential. This difficulty has been surmounted in a sequence of increas-

ingly sophisticated methods [105, 106, 107], each of which constrains the density search to only

the manifold of densities spanned by the data, avoiding searching in directions for which there is

insufficient data to evaluate TS accurately. With such techniques, it has been possible to demon-

strate an ML TS functional that correctly mimics the KS solution even as a bond stretches [105],

something impossible for any local or semilocal approximation to TS. The value of this is to cut

down the computational cost of large, repetitive KS calculations, but one still uses some standard

XC approximation. Thus a machine-learned functional for TS can, at best, reproduce the incorrect

LDA curve of Fig. 3.2.

3.4 Method

In all applications in this work, we generate a large data set of highly accurate results generated

using DMRG. We use a real-space grid with spacing 0.04, which has previously been shown to

be sufficient to converge the results [4]. We calculate the energies and densities of chains of even

numbers of atoms, from 2 to 20, with interatomic separations between 1 and 10 Bohr. Higher

accuracy is achieved when every atom is centered on a grid point, discretizing the set of allowed

separations. The specific separations used are listed in the Appendix.

Then a subset of these data are left out as test set. The training set, with NT values of R, are collected
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Figure 3.3: Same as Fig. 3.2. The green curves are ML with NT = 5 on both the exact (dashed) and
ML-optimized (solid) densities. The red solid curve is the ML with NT =20 (number of training
points) on ML-optimized (solid) densities. Black dashed curve is the exact DMRG curve, matching
nearly exactly the NT =20 on ML line.

from the remaining data. These are chosen to be as close to equally spaced as practical. The test

set is excluded from the data where the training set is sampled from, to avoid contamination via

the cross-validation process.

3.4.1 Machine-learned F [n] for a given molecule

The first improvement on previous work is to apply ML to F [n] itself, not TS[n] as in earlier work

[105]. All the equations of Sec. 3.3.3 apply directly, by replacing TS[n] with F [n] and vS(x) with

v(x). It is not a priori obvious that one might not encounter some difficulty, as F [n] contains all

the many-body physics of the ground state.

We continue to use the H2 molecule to illustrate our method. Contrary to previous work, we apply
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Figure 3.4: Optimal densities for 1D H2 molecule in the test set: DMRG (black dashed), ML with
NT =5 (orange solid), ML with NT =20 (red solid).

KRR algorithms to ML the interacting functional F [n] itself, by training on highly accurate DMRG

energies and densities at various values of R. In Table 3.1, we list the errors for H2 as a function

of NT, both on the exact density and on an optimally constrained density found by the methods of

Ref. [123].

To illustrate the procedure, in Fig. 3.3, we show the energies with only 5 training points, R =

1.00,3.20,5.48,7.76,10.00, yielding the smooth, green dashed curve, when evaluated on the exact

densities. The curve (almost) exactly matches at the training points, but is noticeably inaccurate in-

between. But note that, in contrast to all previous studies, we are fitting the full F [n], not just TS[n],

so that, e.g., our inaccurate curve dissociates H2 correctly, while no standard DFT calculation, with

a standard XC approximation, can.

The problem is actually much greater than even the smooth dashed green curve would suggest. In
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practice, we not only need the energy functional, but also its derivative, at least in the vicinity of

a solution density. This is because we use the functional to find the density itself, via the Euler

equation

δF
δn(x)

=−v(x). (3.10)

In fact, the derivatives of ML functionals such as that of Eq (6) are highly inaccurate and cannot

be used to find the minimizing density. Methods have been developed to constrain the search to

the manifold of training data via non-linear gradient denoising (NLGD) [123]. For our H2 with

NT = 5, these lead to the (even worse) solid green curve of Fig. 3.3. The optimal density is shown

in Fig. 3.4. We clearly see that (a) the accuracy is not high enough and (b) the error is dominated

by the error in the densities. (This is called a density-driven error [124] in a DFT calculation.)

However, when we increase to 20 data points, the ML curve (red solid) is indistinguishable from

the exact one, and the error at equilibrium is only 0.007 kcal/mol, and shrinks with increasing R.

This calculation applies all the principles discussed in Ref. [105], but is now applying them to the

many-body problem, not just the KS problem. Even in the stretched limit, where the system is

strongly correlated, there is no loss of accuracy. Note that we are not just fitting the binding curve,

as we are reproducing the many-body density at every value of R, starting from data at a limited

number of values. In Fig. 3.4, we plot the optimally-constrained densities at R = 4.0 (outside all

training sets) for NT = 5 and NT = 20, compared with the exact density.

Here, ML has entirely bypassed the difficulty of solving the many-fermion problem. The machine

learns the characteristics of the solution without ever solving the differential equation. Moreover,

the HK theorem is a statement of the minimal information needed to characterize the ground-state

of the system. In some ways, this ML approach is the purest embodiment of the HK theorem.

We note that the Euler equation (3.10) is merely the same as in KS theory but with TS replaced by

F . Thus, the entire algorithm for learning is synonymous with the previous works [105] but with
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Figure 3.5: Partition density of each H atom in H8.

TS replaced by F [n].

3.4.2 Finding a data-driven optimal basis for longer chains

The cost of optimal gradient descent methods, evaluated on a spatial grid, grows very rapidly with

the number of grid points, and rapidly becomes unfeasible as the number of H atoms grows. Thus

a simpler representation of the density is required. To overcome those difficulties, we introduce a

basis set. Inspired by the localized atomic bases used in most quantum chemical codes, we devel-

oped a data-driven basis set using Hirshfeld partitioning [125] and principal component analysis

(PCA).

To partition a molecular density via the Hirshfeld scheme, begin with the protomolecule of over-

lapped atomic densities at the nuclear positions of the real molecule. If n0
i (x) = n0

1(x− (i−1)R) is

an isolated atomic density at the i-th nuclear center, spaced R apart, then

n0(x) =
N

∑
i=1

n0
i (x) (3.11)
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Figure 3.7: First 7 principal components of the densities shown in Fig. 3.6, from top to bottom.
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is the density of the protomolecule, where R is the interatomic spacing. We define a weight

wi(x) = n0
i (x)/n0(x), (3.12)

associated with each atom, and then define the density of each Hirshfeld atom within the real

molecule as

ni(x) = wi(x)n(x), (3.13)

where n(x) is the exact molecular density. The ground state density of a single hydrogen atom

n0
i (x) is reported in Ref. [4]. Fig. 3.5 shows partition densities ni(x) of atoms in one H8.

Next, for a specific chain length N, we consider a range of interatomic separations R, and consider

the collection of every atomic density within the chain for every value of R in a training set, each

centered on the origin, as shown in Fig. 3.6. These individual atomic partition densities reflect

the diverse behaviors caused by the interaction between the hydrogen atoms inside the chains.

A principal component analysis is applied to these densities, and the eigenvalues are ordered in

decreasing magnitude to find a subspace with the maximum variance. Each atomic density can be

accurately represented by the base density f0(x) (red in Fig. 3.6) and 7 principal components (Fig.

3.7),

ni(R,x) = f0(x)+
7

∑
p=1

ci,p(R) fp(x) (3.14)

where i is the index of atom and p is the index of principal components. Thus the total density

of HN with separations R is ∑
N
i ni(R,x), and is described by just 7N coefficients. Note that f0(x)

is very close to an isolated atom density, but we use the average to center our data for the PCA

analysis. Our representation greatly reduces the number of variables in the density representation

for a given chain length, and saves a significant amount of computational cost when solving for

the ground state density of the system. This new basis set is completely data-driven and physically
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Figure 3.8: Learning curves for several 1D H chains. (a) ML using the total density. (b) ML using
the bulk partition densities (see text).

meaningful. Further, the derivation of this method is not limited to 1D.

We next repeated these calculations for a sequence of chains of increasing length. In each case,

we train FML[n] on a limited training set, and then compare on a test set (see Appendix), with the

accurate results supplied by DMRG. The learning curves, i.e., error as a function of NT, of chains

of differing length, are shown in Fig. 3.8(a). The error typically decreases with amount of training

data, but for fixed NT, longer chains display substantially larger errors. This is because the binding

energy curve changes more rapidly when the chain length is increased.

In applied machine learning, feature engineering, which uses domain knowledge of the data to

improve the efficiency of ML algorithms, is a crucial step. Here, we know that as the chain length

increases, the central density should converge to a fixed value (thermodynamic limit). We therefore

choose the central two atomic densities alone to use as a minimal input feature for learning the

energy of a given finite chain. The learning curves for models trained only on this central partition

52



N NT λ σ |∆EF|/N max |∆EF|/N |∆E|/N max |∆E|/N EML
R=9.8/N EDMRG

R=9.8 /N

2 5 1.0×10−8 1000 2.54 7.02 9.74 20.3 -421.291 -425.797

2 20 4.6×10−10 2.15 0.00121 0.00802 0.005 0.013 -425.785 -425.797

2 50 1.0×10−12 0.70 0.00003 0.00034 0.050 0.304 -425.798 -425.797

4 50 2.2×10−11 46.4 0.0021 0.016 0.005 0.017 -428.617 -428.620

8 50 1.0×10−4 2.15 0.011 0.31 0.28 1.68 -430.011 -430.032

12 50 1.0×10−12 0.46 0.0031 0.010 0.24 0.88 -430.502 -430.503

16 50 2.2×10−11 0.46 0.0042 0.012 0.08 0.41 -430.738 -430.738

20 50 2.2×10−11 0.46 0.0042 0.014 0.26 0.88 -430.880 -430.880

∞ 50 1.0×10−8 0.46 0.012 0.050 0.073 0.27 -431.447 -431.444

Table 3.1: ML performance on different chains HN . NT is the size of training set. Regularization
strength λ and kernel length scale σ are the model hyperparameters selected by cross validation.
The functional driven error ∆EF is tested on the entire test set to show the overall accuracy. The
total error ∆E/N is tested on the equilibrium test set to emphasize accuracy around equilibrium
position. ER=9.8/N shows that ML can get very accurate dissociation limit. All errors are given in
kcal/mol.

density are shown in Fig. 3.8(b). For chain lengths greater than or equal to 12, substantially greater

accuracy is reached for a fixed amount of training data. Here we still use the total density for N ≤ 8

and the bulk density for N ≥ 12. The model performance and hyperparameters are presented in

Table 3.1.

3.4.3 Extrapolation to the thermodynamic limit

Our ultimate goal is to use ML to find the energy of the infinite chain to within chemical accu-

racy, for all interatomic separations. To do this, we first build a set of infinite chain energies and

densities. For each value of R, we extrapolate both the density and energy of our finite chains as a

function of N. This then gives us a set of data for the infinite chain that we can both train and test

on and gave rise to Fig. 3.1. Figure 3.9 shows the extrapolation DMRG electronic energy curve.

The ML results match nicely.

In an entirely separate calculation, we also performed DMRG directly for the infinite chain, using
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Figure 3.9: Electronic energy per atom in the thermodynamic limit, both via DMRG chains (ex-
trapolated to infinity) and using machine learning with 50 data points per chain.

the method of McCulloch [126] for a four atom unit cell.1 The system is initialized by solving the

equivalent finite size system with box edges at R/2. As a part of the iDMRG algorithm [126], a

single unit cell is then inserted into the center of the finite system and 15 sweeps are performed over

the inserted unit cell. The sequence is repeated–after adding another unit cell–until convergence.

We compare these energies with the extrapolated values, finding agreement to within 1 kcal/mol

for all values of R. This agreement validates our extrapolation procedure. We find that, with 50

data points, the ML result, on the optimized density, also agrees to within 1 kcal/mol. Thus, armed

with the 50-data-point machine learned functional, one can self-consistently find the density and

energy of the infinite chain to quantum chemical accuracy.

Our final figure, Fig. 3.10, simply demonstrates that the error for the infinite chain (and for all the

ML calculations) is almost entirely due to the error in the optimized density. The functional-driven

1Calculations were performed using the ITensor Library: http://itensor.org/
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Figure 3.10: For a given training set with NT training points, the functional driven error, ∆FF per
atom is shown in red (lower curve). The upper curve is the total energy error per atom evaluated
self-consistently.

error [124] is the energy error made on the exact density:

∆EF = EML[n]−E[n] = FML[n]−F [n]. (3.15)

We see that, at any level of training, ∆EF is an order of magnitude smaller than the final energy

error on the optimized density. Thus the error is density-driven but, nonetheless, can be forced

down to quantum chemical limits with enough data.
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3.5 Discussion

We have shown that it is in principle possible to construct, via machine learning, the entire interact-

ing functional of Hohenberg and Kohn, F [n], so accurately that optimized densities and energies

evaluated on them are within quantum chemical accuracy. We have done this using the 1D sim-

ulation of continuum Hamiltonians established over the last several years, and using DMRG as

an efficient solver. We apply the ML methods previously developed for approximating the non-

interacting kinetic energy. Here, because we have precise energies for the interacting system to

train on, we are able to construct the interacting functional, including all exchange and correla-

tion effects. Our ML functional has no difficulties when bonds are stretched so that correlations

become strong. We have even managed to apply this methodology to chains extrapolated to the

thermodynamic limit, producing chemically accurate results for solids. This level of accuracy is

far beyond that of any existing DFT calculation of a solid.

We conclude with a discussion of the steps needed to generalize this calculation to realistic solids.

The first point is that, while we have performed the present calculations in 1D for both computa-

tional and programming efficiency, there is absolutely no reason they could not be repeated for real

3D hydrogen chains. These can readily be treated using DMRG [127, 128] and the ML algorithms

are independent of the dimensionality. The extrapolation to an infinite chain limit should behave

in a similar fashion. While the algorithm for generating a model of F [n] was already developed,

merely replacing TS in the algorithm in Refs. [105, 106] with F [n], this is the first demonstration

that this algorithm works for interacting electrons. The ground-state density is solved by the tech-

niques of Ref. [123]. However, instead of using a spatial grid, a data-driven atom-centered basis set

for the density is developed. The distance metric, derivatives, and second derivatives are calculated

on these basis functions. This greatly reduces the number of variables in the algorithm. For H20,

the calculation in this new basis can easily be performed on a personal laptop.

We note also that the (relatively) large amount of data needed to achieve chemical accuracy is
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solely because we have chosen to approximate the entire HK functional F [n] and also need to find

its derivative sufficiently accurately to produce an accurate energy. If, instead, we had used the

KS scheme with a standard approximation for EXC, we could used ML simply for the error in that

approximation, yielding inherently much more accurate densities, and requiring much less data for

the same level of accuracy in the energy.

More generally, an accurate general purpose solver such as QMC or accurate quantum chemical

methods could be used to provide the highly-accurate data needed to train the machine learn-

ing. For 2D or 3D solids, extrapolation to the limit requires many more atoms. But since e.g.,

a 20x20x20 array is emminently practicable within KS-DFT, this is accessible with a machine-

learned correction. Thus, at least within KS-DFT, there is no reason that an ML-constructed func-

tional could not be created from QMC data to extract the bulk energy of a solid.

It has also recently been shown [129] that the amount of data needed to bypass the KS equations can

be greatly reduced by learning the density as a functional of the KS potential, so that the functional

derivative of the KS kinetic energy is never used. This was demonstrated for 3D molecules.

Lastly, we mention that the geometries used here are rather simple. We have not attempted to

create ML-functionals that apply to many different atoms in many diverse bonding situations, as

has been done in other work, and our functionals do not apply outside the domain they have been

trained on. But since the energy curve of a bulk solid does not require such a functional, our ML

approximation is sufficient for the purpose here.

Ultimately, any ML method can be limited by the need for excessive training. But our work here

shows that this is possible in principle, and there is no reason to think it more difficult in practice.

57



3.6 Supplementary Material for Machine Learning the Exact

Density Functional

3.6.1 Description of Data

The density matrix renormalization group (DMRG) [108, 109, 110, 111] has become the gold

standard for calculations in one dimension. The ansatz made for the wavefunction is that of a

matrix product state (MPS). This ansatz allows for a site-by-site determination of the wavefunction

by concentrating on a small number (in our implementation, two) lattice sites at a time. Once the

wavefunction is updated on those two sites, the next two sites are treated. The entire system is

swept back and forth until convergence which usually occurs very quickly in one dimension.

To evaluate the Hydrogen chains in this work, an extended Hubbard model [4, 35, 36],

H = ∑
j,σ

−1
2a2

(
ĉ†

j,σ ĉ j+1,σ +h.c.
)
− µ̃n jσ +∑

j
v jn j +

1
2 ∑

i j
vi j

eeni(n j−δi j), (3.16)

can be constructed to recover the continuum limit in the limit of many sites. The prefactor on

the kinetic energy terms is chosen to match the finite difference approximation for the kinetic

energy with grid spacing a. An external potential is applied in the variable v j while µ̃ = µ− 1
a2 for

chemical potential µ . Also, an electron-electron term, vi j
ee is represented by an exponential function

[4], This exponential mimicks the soft-Coulomb interaction, which itself is an approximation of

the Coulomb interaction in 3d but spherically averaged [4]. The similarity between these functions

gives the similar behaviors of the 1d atoms and their 3d counterparts when the symmetry is high.

Systems are calculated with open boundary conditions (“box” boundary conditions). The limit

where the box boundary is far from the nearest atomic center is always taken, so no finite size
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N training set range entire test set range equilibrium test set range

2 1.0≤ R≤ 10 (146) 1.2≤ R≤ 9.8 (80) 1.2≤ R≤ 3.12 (19)

4 1.4≤ R≤ 10 (136) 1.6≤ R≤ 9.8 (80) 1.6≤ R≤ 4.08 (25)

8 1.4≤ R≤ 10 (136) 1.6≤ R≤ 9.8 (80) 1.6≤ R≤ 4.28 (27)

12 1.6≤ R≤ 10 (131) 1.8≤ R≤ 9.8 (80) 1.8≤ R≤ 4.32 (26)

16 1.6≤ R≤ 10 (131) 1.8≤ R≤ 9.8 (80) 1.8≤ R≤ 4.32 (26)

20 1.6≤ R≤ 10 (131) 1.8≤ R≤ 9.8 (80) 1.8≤ R≤ 4.4 (27)

Table 3.2: Hydrogen chain data. N is the number of Hydrogen atoms in the chain. R is the atomic
distance between atoms. The number of DMRG data in each range is in parenthese.

effects appear.

A complication is apparent in 1d that does not appear in 3d. There is no angular momentum in 1d.

Thus, not all neutral atoms bind their electrons. One can see this in a reduced example as follows:

Consider a delta function interaction in 1d of the form −δ (x−R/2)− δ (x+R/2) [29]. When

R = 0, there is only one solution. At any finite R, the number of electrons that will bind increases

from two. The same effect occurs for the exponential interaction, though it is not as easy to see.

This implies that a lower cutoff in the exponentially interaction hydrogen chains will impose a

lower limit on suitable chain length. We are interested in systems that do bind all electrons, so

a systems below a critical R are ignored. Table 3.2 lists the range of interatomic distances used

for each chain. For each Hydrogen chain data generated by DMRG, first sample 80 data from the

entire test set range in Table 3.2 equi-distantly. This test set is inaccessible in the training process.

The rest of data in training set range in in Table 3.2 are used as grand training set, where the NT

training data are uniformly sampled to train the model. The equilibrium test set range is a subset of

entire test set range, emphasizing the performance around equilibrium positions. The upper bound

is around twice the equilibrium position given by DMRG result.
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Chapter 4

Approximate natural orbitals from density

functional theory

4.1 Overview

We return to the basis set used in Chapter 3 where a partitioning scheme was used to represent the

density in only a few basis functions. This concept can be generalized for a given system into a

basis set. But the particulars of the basis set from Chapter 3 were derived for a particular system

and only had a few orbitals in it. We explore extending this concept to a more general class of

functions here.

The concept of reproducing the natural orbitals of a given system is generalized to a series of local

functions known as wavelets. The wavelet functions are embedded in a natural orbital mimic we

call the product plane wave ansatz. This is a rapidly convergent set of functions that is based on

the orbitals of an approximate single Slater determinant calculation such as Hartree-Fock or the

local density approximation.
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This is a paper that was submitted with Kieron Burke and Steven R. White.

In this chapter, we propose a general method for constructing system-dependent basis functions

for correlated quantum chemical calculations. Our construction combines features from several

traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional

mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve chemical

accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy

curves and chains of many atoms. We discuss the promise and challenges for realistic quantum

chemical calculations.

4.2 Introduction

Many tens of thousands of electronic structure calculations are performed each year, the vast

majority in a single-particle basis set of some sort. These calculations can be divided into two

types: those that extract the energy from a set of single-particle occupied orbitals (denoted single-

determinant) such as density functional theory (DFT) [1, 39, 40, 41, 130] or Hartree Fock (HF),

and those that go beyond a single determinant, such as configuration interaction [131, 132], cou-

pled cluster methods [133, 134, 135], density matrix renormalization group (DMRG) [42, 110,

111, 127, 136, 137], and some types of quantum Monte Carlo. Going beyond a single determi-

nant is necessary for many systems, but is typically much more demanding computationally. Such

calculations are more difficult because larger basis sets are needed to achieve chemical accuracy

(1 kcal/mol), and computation times usually scale as a high power of the number of basis func-

tions. These larger basis sets are needed to represent the electron-electron cusp in the wavefunction

which exists at every point in space.

A natural question arises: what would be the optimal basis set for an electronic structure calcula-

tion, assuming the basis is specifically adapted to that system? For a single-determinant method,
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the answer is clear: the self-consistent occupied orbitals are the optimal basis for that calculation:

used as a basis, they reproduce the exact energy and properties. The number of these basis func-

tions (for a spin-restricted calculation) is thus Ne/2, where Ne is the number of electrons. Of course,

this minimal basis does not offer a computational shortcut: the occupied orbitals must be deter-

mined in a separate, non-adapted basis calculation. Here, we are concerned with multi-determinant

methods, and we will assume that the computation time for a traditional single-determinant calcu-

lation is small in comparison to the multi-determinant method.

For post-HF methods, there is no exact finite system-adapted basis: any finite basis introduces

errors. However, the natural orbitals are close to the most rapidly converging single-particle basis,

at least in terms of allowing the greatest possible overlap with the exact ground state [138, 139].

The natural orbitals are the eigenstates of the single-particle density matrix (also known as the

equal-time one-particle Green’s function). The number of nonzero eigenvalues (occupancies) is

infinite. A (near) optimal basis of Mno orbitals consists of the Mno natural orbitals with the greatest

occupancy.

One obvious weakness in using natural orbitals is that one does not know them until after one has

solved the interacting system, using a post-HF method, with another larger basis. Iterative natural

orbital methods are a way to reduce the computational expense, but approximate natural orbitals

that did not need a post-HF method to determine them could be very useful [140]. But natural

orbitals have another key weakness: they are (normally) completely delocalized across the system.

This delocalization prevents a number of shortcuts that can greatly decrease computation times for

large systems. Delocalization is especially harmful for low-entanglement methods such as DMRG,

since there is no area law for the entanglement entropy in a delocalized basis.[141]

Here we describe an approach that starts with the occupied orbitals of a DFT (or HF) calculation,

and yields basis sets which produce chemically accuracy in correlated calculations. We test this

approach in 1D, using potentials that make 1D mimic 3D in many respects, and using DMRG [4].

The computational effort for the basis construction is minimal. The number of basis functions
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needed is typically about 2Mno, where Mno is the minimal number of natural orbitals needed to

reach chemical accuracy, or about two or three times the number of electrons. We expect this

method can be easily extended to quasi-1D systems (such as large-Z atoms or chains of real H

atoms) and hope it can applied more generally in 3D.

The first step produces what we call “product plane waves” (PPWs) by multiplying the occupied

orbitals by a set of low momentum cutoff plane waves. The lowest momentum is determined

by the spatial extent of the entire system. This simple ansatz converges well in our tests in 1D,

and we show how its convergence is within about a factor of 2 compared to natural orbitals. But

a weakness of PPW’s, shared with natural orbitals, is that the basis is not local. As the second

major part of this work, we describe fragmentations of the PPW’s that utilize wavelets [142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 154, 155, 156, 157, 158, 159, 159, 160,

161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 174, 175, 176, 177, 178,

179, 180, 181, 182, 183, 184, 185, 186] to produce atom-centered adapted orthogonal bases with

good completeness and locality. This approach requires only a modest additional number of basis

functions to yield the same accuracy as PPW’s, but with a smooth, local, and orthogonal basis.

4.3 Background

4.3.1 The one dimensional Hamiltonian

Our non-relativistic many-electron Hamiltonian, expressed in second quantized form, either in a

basis set or on a grid, is [187, 188]

Ĥ MB = ∑
i, j,σ

(
ti jĉ

†
iσ ĉ jσ + ∑

k,`,σ ′
Vi jk`ĉ

†
iσ ĉ†

jσ ′ ĉ`σ ′ ĉkσ

)
, (4.1)
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with fermionic operators ĉ labeled either by site or basis-function i, j,k, ` and with spin σ (or σ ′).

We define the ‘exact’ solution as solving this Hamiltonian on a very fine grid, which is close to the

continuum limit[4, 35]. For both the grid and for basis functions, we find the exact many-particle

ground state of these 1D reference systems using DMRG. The one-electron integrals are

ti j =
∫

drϕ
∗
i (r)

(
−∇2

2
+ vext(r)

)
ϕ j(r), (4.2)

where ∇2 = ∂ 2
x for the 1d calculations, vext(r) is the external potential, discussed below. In a basis,

with functions ϕi(r), the two-electron integrals are

Vi jk` =
1
2

∫∫
drdr′ϕ∗i (r)ϕ

∗
j (r
′)vee(r− r′)ϕk(r′)ϕ`(r). (4.3)

On a grid, the interaction takes a much simpler diagonal form with i= ` and j = k, with the integral

taking the value vee(ri− r j). For grid calculations, we use the ITensor library, along with matrix

product operator technology.[ITe] In the basis, we use the Block DMRG code since it is specifically

tailored to avoid stationary states that are not the ground state in a basis set and has implemented

the form of the Hamiltonian efficiently [137, 189, 190, 191, 192].

Previously, we have explored 1D potentials which mimic as closely as possible the behavior of

real 3D systems. A particularly convenient choice matching a number of 3D features is a single

exponential function, vee(x−x′) = Aexp(−κ|x−x′|) with A = 1.071 and κ = 0.419, and vext(x) =

−Zvee(x), where Z is the atomic number, just as in 3D. This particular function closely mimics the

results from a soft-Coulomb interaction, but at a reduced cost for grid DMRG calculations[4, ITe].

This potential also more closely mimics 3D since it has a mild singularity at zero distance. In

3D, the Coulomb interaction is divergent, but its effect is moderated, and integrals over it are

finite, because of the very small volume associated with the r → 0 region, and the associated

integration factor 4πr2. In 1D, we get qualitatively similar behavior from the slope discontinuity

in the potential at r = 0. A local density approximation (LDA) was also derived for this interaction.
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Figure 4.1: (color online) First two natural orbitals, labelled by their occupation numbers, of (1D)
He. An X marks the location of the nucleus.

Our finite difference grid Hamiltonian looks like an extended Hubbard model[35],

Ĥ fine = ∑
i

(
− 1

2δ 2

(
ĉ†

i+1ĉi−2n̂i + ĉ†
i ĉi+1

))
+∑

i
vin̂i +∑

i, j

(
vi j

een̂i(n̂ j−δi j)
)

(4.4)

where the superscript “fine” indicates we will use this lattice on the finest (original) grid of spacing

a = 1/32, n̂i = ĉ†
i ĉi, external potential vi, and long-ranged electron-electron interaction vi j

ee on sites

i and j. A distance of 60 from the outermost grid points to the first or last atom is used for all

systems that follow, allowing wavefunctions to have extended tails.

The natural orbitals are the eigenvectors of the one-particle reduced density matrix (RDM), which
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is the equal-time one-particle Green’s function, with matrix elements:

ρi j = 〈ĉ†
i ĉ j〉. (4.5)

The eigenvalues of ρi j are the occupation numbers and the eigenvectors are the natural orbitals,

which we order in decreasing occupation. Fig. 4.1 shows the first two for 1D He, and we later

show (Fig. 4.3) that, in a basis set of these 2 orbitals alone, the expectation value of the Hamiltonian

is only 1 kcal/mol above the exact ground-state energy. The term chemical accuracy refers to errors

not exceeding 1 kcal/mol, or 0.0015 Ha, and is often used as a standard for accuracy of quantum

chemical methods for covalent bonds.

4.3.2 Wavelets

Wavelets were originally introduced by Haar in 1910 [142] but they have since been modernized

and expanded by several works by Gabor [143], Grossman and Morlet [144], Meyer [145], Mallat

[146], and Daubechies [147, 148, 149] and many others. These functions have become widely used

in audio and image compression (such as jpeg and mp3 file formats). These were also connected

to a quantum gate structure, tensor network algorithms, and compression of matrix product states

[178, 179, 180].

Consider a localized function f (x) located near the origin. We can form a basis from this function

by translating it by all integer translations, i.e., { f (x− j)} for integer j. A wavelet transformation

(WT) is a mapping of f (x) to an new function f ′(x) defined by

f ′(x) = ∑
k

ck f (xd− k), (4.6)
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where d is the dilation factor, which is normally taken to be 2. The WT is defined by the coefficients

ck. We will only consider compact wavelets, for which the number of nonzero ck’s is finite. The

scaling function of the WT, S(x), is the fixed point of this mapping. The ck are chosen cleverly

to make the S(x− j) to be orthogonal for different j, and to have a number of other desireable

properties, such as polynomial completeness up to a certain order[147]. The scaling function is

designed to represent smooth, low momentum parts of functions. The scaling function is not a

wavelet, although it does form the top layer of a wavelet basis. A wavelet is formed from S(x)

using another set of coefficients wk (which are defined in terms of the ck):

W (x) = ∑
k

wkS(xd− k). (4.7)

The wavelets capture higher momentum features.

A wavelet basis consists of scalings and translations of S(x) and W (x), and it is complete and

orthonormal. It is characterized by a coarse grid with spacing ∆. At all integer multiples j of ∆,

one puts a scaling function, of size ∆, namely S(x/∆− j)/
√

∆. Then, at scales ∆, ∆/2, ∆/4, etc.,

one puts down a grid of scaled wavelets, with the spacing and the size of the functions always

equal. All these functions together are complete, and they are all orthogonal to each other. Some

of the functions of a wavelet basis are shown in Fig. 4.2.

Wavelet bases are an attempt to have locality in both space and momentum simultaneously, as

much as possible, subject to the constraint of orthgonality. The layer of scaling functions represent

all momenta from 0 to roughly O(1/∆); the coarsest layer of wavelets represents momenta from

roughly O(1/∆) to O(2/∆), etc., but with significant overlap in the momentum coverage between

different layers.

We have briefly described wavelet bases in terms of continuous functions, but they can equally be

described in terms of WTs acting on an initial fine grid. The WTs we use are based on the fine grid
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Figure 4.2: (color online) One of the scaling functions (solid blue line) and some of the wavelets
(dashed lines) of a wavelet basis of type Coiflet-18. These functions are based on a fine grid with
spacing 1/32, and the level parameter z gives the size-scale of each function as 2z/32. Both the
scaling function and rightmost wavelet are at z = 5.

used by the grid DMRG calculations, and these are what is shown in Fig. 4.2.

Many different types of wavelet transforms have been constructed. Here we choose Coiflets, de-

rived by Daubechies, which are characterized by the number ν of nonzero ck. We choose relatively

high ν to get good completeness and smoothness. Wavelets can be easily extended to higher di-

mensions by taking products such as S(x)S(y)S(z) [181], so the principal features of 1D carry over

to 3D [176, 193, 194, 194, 195, 196, 197, 198, 199].

4.4 Product Plane Waves

In this section, we describe our new approach to design a specific system-dependent basis with as

few functions as is practical. We first argue that the exact natural orbitals provide a natural least

possible number, but rely on knowing the exact solution[138, 139]. We then show how to combine
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planewave-type basis functions (PPW’s), wavelet technology, and adaptation via approximate DFT

(or other) single-particle orbitals, to create a basis with no more than about twice this number, but

still yielding chemical accuracy. A crucial feature is that we never use more than a few of each kind

of function, so that we never come close to being limited by the asymptotic convergence properties

of any one set of basis functions.

4.4.1 Natural orbitals as a basis

We wish to find basis sets which, when solved exactly, gives ground-state energies at most about

chemical accuracy (1 kcal/mol) above the exact, complete basis limit. We wish to find basis sets

that converge to this accuracy with as few functions as possible, but also without needing to know

the exact solution to determine them. With the fine grid DMRG wavefunction, we can calculate ρi j

exactly and find the exact natural orbitals. Since our DMRG solutions do not break spin symmetry

if the number of electrons is even, the up and down RDMs are identical. (For odd electron numbers,

we average the up- and down-RDMS and use that to define our natural orbitals.)

The first two natural orbitals for a 1D helium atom were shown in Fig. 4.1. The natural orbitals

yield the smallest number of basis functions that can be expected to yield chemical accuracy, i.e.,

when ordered by occupancy, the least number Mno which, when used as a basis, yields an error

below chemical accuracy. Fig. 4.3 shows the energy error for a variety of systems, when the basis

is chosen as a finite number of the most occupied exact natural orbitals. We see that Mno = 2 for

He, but is 3 for H2 either close to equilibrium (R = 2) or stretched (R = 4). For Li, Mno = 4, while

Be has Mno = 6. Unstretched H4 also has Mno = 4, but stretched H4 requires Mno = 7. Thus Mno

increases with the number of electrons, and also (slightly) with the number of centers.

Fig. 4.4 shows the first four natural orbitals for an H4 chain, which is stretched. Clearly, the orbitals

delocalize over the entire chain. We also see from Fig. 4.3 that even in this basis, there remains

about 8 kcal/mol error, and 3 more orbitals are needed to reach chemical accuracy.
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Figure 4.3: (color online) Energy errors for He, Li, Be, H2, and H4 when evaluated in a basis of
N f exact NOs of greatest occupancy.

Figure 4.4: (color online) Same as Fig. 4.1 but for H4 at R = 4. X’s mark the locations of the
nuclei.
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4.4.2 Constructing the basis

Given the orbitals from a HF or DFT calculation, perhaps the simplest conceivable basis would be

the occupied HF or DFT orbitals, since this allows the reproduction of the single determinant. One

well-known approach for enlarging this basis to allow for correlation is to use additional eigen-

states of the Fock matrix, selected by an energy cutoff [162, 199, 199, 200]. It is clear, however,

that this eventually becomes inappropriate. For a more complete basis, one needs functions with

positive energy, but there are an infinite number of functions at zero energy far from the molecule.

To remedy this, we could put a box around the molecule and include only functions within that box.

However, this can be very wasteful, since the box needs to include extended tail regions, where

additional basis functions are not very useful. Instead of using energies, we adopt a quite differ-

ent approach, motivated by the construction of variational wavefunctions—in particular, Jastrow

functions.

Single-particle determinantal states ϕ from DFT or HF are rough approximations to the many-

particle wavefunction, but can be improved substantially by multiplication by a Jastrow factor, J ,

which provides explicit correlation. Modifying a determinantal wavefunction with a Jastrow factor

is often the first step in designing a variational wavefunction for quantum Monte Carlo calculations

[201] The Jastrow factor acts as a multiplicative factor for the wavefunction and simple form for

J is [202]

J (r1,r2, . . .) = ∏
i< j

J2(ri− r j). (4.8)

The J2 term is near 1 if ri and r j are far away, and becomes less than one as ri and r j come

together, building in the electron-electron cusp. We now ask the question: what would be a good

single-particle basis to represent J or J2?

The fact that J2 is a function of the difference of two position vectors means that there is no benefit

to increasing resolution in one region relative to another, at least for fitting J2. One does expect,
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Figure 4.5: (color online) Product plane wave (PPW) functions for a 1d H2 at R = 3. Here the
box size is L = 7.72, and marked by pink vertical lines. The upper figure shows the windowing
functions cos(k1x) and sin(k1x) and the lower figure shows the first three PPW’s (the first is just
the LDA orbital).

however, that longer wavelength functions are more important than short wavelength functions.

This suggests that a plane wave basis, restricted to the general vicinity of the molecule, with a

momentum cutoff which is not too high, is a reasonable approximate basis for a Jastrow function.

Since the Jastrow function in a variational wavefunction multiples the determinant of occupied

DFT orbitals, this suggests a very simple ansatz for a basis for correlated calculations: the product

of occupied orbitals and low momentum cutoff plane waves, which we call a product plane wave

(PPW). To be more specific: let {bk(r)} be a set of plane waves with a low momentum cutoff,

and let {ϕ j(r)} be the occupied orbitals from a DFT/HF calculation. Then our product plane-wave

(PPW) basis is {ϕ j(r)bk(r)}. The momentum cutoff in {bk(r)} corresponds to some minimal

resolution. Linear combinations of the bk(r) can represent a correlation hole at any position within

the system, while high momentum behavior near the nuclei is captured by the {ϕ j(r)}. bk=0 = 1,

so that the {ϕ j(r)} themselves are part of the basis.
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In generating a PPW basis, several choices must be made. First, we want to put the molecule in

a “box” that defines the sequence of momenta in the plane waves. Since the detailed correlations

we want from the plane waves are weak in the tails, and since the box size is only used to define

momenta, we do not include long density tails. We simply choose a small density cutoff, ρm,

to define the edge of our box, from our DFT (or HF) calculation. Here ρm = 10−3 throughout,

but we expect our qualitative results to be very insensitive to this choice. For neutral atoms, the

corresponding box sizes are 4.90,5.34,8.40, and 8.71 for Z = 1 to 4. A simple example of a

product plane wave basis is illustrated in Fig. 4.5. The first two functions resemble the natural

orbitals of He in Fig. 4.1 and the natural orbitals here. This resemblence between PPW’s and NOs

tends to continue for higher functions, although the precise order of the functions can vary.

Let K be the number of occupied orbitals in a DFT or other approximate calculation. Let L

be the width of the box defined by the cutoff ρm. Then choose an integer J ≥ 0 to create 2J +

1 trigonometric functions, cos(knx) and sin(knx), where kn = nπ/L, and multiply each by the

occupied DFT orbitals, creating (2J + 1)K PPW’s. These functions are exactly orthogonalized.

The results for H4 are shown in Fig. 4.6 and compared to the exact natural orbitals. The PPW’s are

remarkably close, especially for those orbitals that are occupied in the DFT calculation, but also

even for those that are not.

Finally, in Fig. 4.7, we show the energies for our systems as a function of the number of PPW’s. For

He and H2, K = 1, so increasing J by 1 yields two more PPW’s (the sine and the cosine); for the

rest, K = 2, and 4 PPW’s are added each time. A quick glance shows a remarkable similarity to

the ordered natural-orbital energy errors of Fig. 4.3. The PPW’s functions yield chemical accuracy

with few more functions than Mno, showing that they do not just look similar to the NO’s, they are

similar in an energetically meaningful sense. We denote MPPW as the least number needed to reach

chemical accuracy. A more careful inspection shows that they are not quite as accurate, even for

He, and that the difference grows with the number of electrons and the number of atoms. It is most

noticeable for stretched H4, where MPPW = 18, whereas Mno = 7. But this is still a remarkably
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Figure 4.6: (color online) The first five PPW’s (blue) compared to the exact natural orbitals (red
dashed) for H4 with R = 3. Here L = 13.8.
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Figure 4.7: (color online) Finite-basis error of PPW’s, to be contrasted with Fig. 4.3, which has
exact NO’s.

small number for a strongly correlated system.

4.5 Wavelet localization

So far, so good. Our PPW’s yield chemical accuracy with about 2Mno basis functions. But, to be

efficient, tensor network methods such as DMRG require the low entanglement that comes from

localized basis sets. Other methods may also benefit from localized basis functions, which make

Hamiltonians sparse. Now we study cases with more than one atom, showing how we can use

wavelet technology to break down a PPW into localized, smooth orthogonalized basis functions,

centered around each atom, without too large an increase in the number of functions.

Traditional methods for localization rely on orthogonal transformations within the set of basis

functions one already has. Not enlarging the set of functions puts a strong limit on how localized

the functions can be made. However, if one enlarges the space without limit, one can make the
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basis as local as one wishes. One can think of “chopping up” each delocalized basis function

(which we can picture as a molecular orbital): partition all of space into a chosen number of

disjoint regions, or cells [203, 204, 205, 205, 206]. For example, one can make the number of

cells the same as the number of atoms, and define each cell by associating each point in space

with the closest nucleus. Form a basis by projecting each delocalized basis function into each

cell, i.e. multiplying it by a function which is unity for points in the cell and zero outside, and

repeating for all delocalized functions. Linear combinations of chopped up functions would allow

one to reproduce any of the original delocalized functions, but this would make a terrible basis, for

two reasons: 1) discontinuous basis functions have infinite kinetic energy, and 2) the number of

localized functions scales as the square of the number of atoms.

Using wavelets, we can retain this idea of “chopping up” basis functions into different regions, but

fix these two problems. As discussed in 4.3.2, we define a complete wavelet basis consisting of a

grid of scaling functions with lattice spacing ∆ (say with ∆∼ 1 Bohr), and an infinite sequence of

wavelets at scales ∆, ∆/2, ∆/4, etc, as shown in Fig. 4.2. We will refer to any of these functions,

either a scaling function or a wavelet of any scale, as a WF (wavelet-function).

Now to chop up a delocalized basis: expand all delocalized functions in terms of the WFs. Many

WFs will not have significant overlap with any functions, and can be dropped. This procedure

thus produces a localized but smooth basis encompassing the original functions, assuming one has

chosen smooth wavelets. However, the number of functions tends to be rather high, so we use this

only as a starting point.

Again we partition all of space into cells, associated with atoms. Associate each WF to a cell. A

natural way to do this is to define a center of mass for each function, and then the WF goes in

the cell that contains its center of mass. Now we can project each delocalized function into each

cell, simply by expanding the function in terms of the WFs belonging to the cell. This cuts the

delocalized function into pieces which are all orthogonal. An example of this procedure is shown

in Fig. 4.8.
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Figure 4.8: (color online) The function exp(−0.5 ∗ |x+ 3|)+ exp(−|x− 3|) (black dashed) is di-
vided into two orthogonal pieces (red and green solid lines) using wavelets. The wavelet basis used
was based on Coiflet-24 with ∆ = 1, and the dividing line separating the two cells (dotted line) was
x = 0.9. The small oscillating tails make the two function pieces orthogonal. The two singularities
each only appear in one piece, because the high momentum wavelets representing the singularities
are more and more localized the higher the momentum.
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If we repeat this with additional delocalized functions, the pieces in different cells will be orthog-

onal, even if they came from different delocalized functions, since the WFs of different cells are

orthogonal. Within a single cell, the pieces will not be orthogonal, and may have substantial over-

lap. The final step is to recombine all the pieces in a particular cell into a reduced set of orthogonal

functions for that cell, and repeat for all cells. Note that while the original delocalized functions

may be normalized, the pieces come from a projection and will not be, and some pieces may have

very small normalization. It is important to leave the pieces unnormalized. For each cell, we wish

to find the minimal set of basis functions that can represent all the pieces to within a specified ac-

curacy. This is a well known linear algebra problem with a simple solution. Let f i
j be the piece of

delocalized function i, expanded in terms of the WFs j belonging to a cell c. Form a cell covariance

matrix ρc as

ρ
c
j j′ ≡∑

i
f i

j f i
j′ (4.9)

Then the reduced basis we seek is the set of eigenvectors of ρc (which is positive semi-definite)

with eigenvalues above a specified cutoff, η . This cutoff is roughly the mean-square error in

representing all the different pieces. This is often called a principal component analysis [207, 208,

209, 210, 211]. Here we call the entire process wavelet localization (WL) and the resulting basis

functions wavelet-localized orbitals (WLO’s). Although the WLO procedure could be applied to

other delocalized bases, here we will only consider its application to PPWs.

Fig. 4.9 shows the results of wavelet localization for 1D H4, with a spacing R = 2, discussed

more in Sec. 4.5.1. For simplicity, the figure shows only the two leading eigenfunctions and their

eigenvalues for only cells 1 and 3. The dashed lines show the dividing lines between the different

boxes; the nuclei are at x =−3, −1, 1, and 3. The functions are all orthogonal, with oscillations in

the tails of each function to ensure orthogonality between boxes.
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Figure 4.9: Some of the WLO’s for each cell of an H4 chain. Shown are the first two in both
the first atom’s cell (far left) and third atom’s cell. Green vertical lines are drawn midway between
each atom and weights of each function are labeled near each curve. The calculation this was taken
from was b = 0, ∆ = 1.0, NJ = 0.

The parameter ∆, the spacing of the scaling functions, is crucial, as it sets the size of the region in

which functions on adjacent boxes overlap. In the limit ∆→ 0, this chopping up procedure reduces

to the naive discontinuous procedure mentioned at the beginning of this section. The procedure

also becomes poorly behaved if ∆ is larger than the interatomic spacing. Roughly, one should set

∆ to a modest fraction of the interatomic spacing, but later on we show results as a function of ∆

to determine optimal values.

Lastly, we note that, for multi-center stretched systems, if R > La, the box for an atom, then we

use La instead of L for that cell. This can greatly increase the number of functions to Na×N f a,

where N f a is the number needed to reach chemical accuracy for the isolated atom, but unneeded

functions will be discarded by our wavelet localization.
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Figure 4.10: Error as a function of bond length R for H2 using both pure PPW’s and WLO’s,
for various values of J. The sudden shift is at the Coulson-Fischer point of the LDA calculation,
beyond which a broken spin-symmetry solution, with twice as many orbitals, has the lowest energy.

4.5.1 Performance of WLO bases

In this section, we wish to check that our WLO’s work well for typical quantum chemical calcula-

tions, and find out how many WLO’s are needed for a given task. Our procedure requires, at most,

Nocc×(2J+1)×Ncell functions. Thus, for a H4 chain that is unstretched (no spin-symmetry break-

ing), Nocc = 2, we will usually choose J = 1, and have 4 cells. A PPW calculation has 6 functions,

and up to 24 (6 per cell) when fragmented. However, in practice, up to half those functions can be

eliminated by the cutoff of our covariance matrix. This removal of irrelevant functions becomes

increasingly important as the number of atoms grows.

The prototype calculation is the dissociation of molecular hydrogen. All single-determinant meth-

ods fail as bonds are stretched and electrons localize on distinct sites. Molecular hydrogen dissoci-

ates into an open-shell biradical (two H atoms). The molecular energy as a function of separation is

given in Fig 6 of Ref. [4]. That figure also shows the failure of LDA, with a Coulson-Fischer point
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[212] RCF = 3.53, where the unrestricted broken symmetry solution becomes lower in energy than

the spin-singlet within LDA. In Fig 4.10, we show the error in the energy curve, using pure PPW’s,

and also separating into separate cells, using ∆ = 1 and η = 10−4.

Beginning with the PPW’s (dashed lines), we see that increasing J improves accuracy systemati-

cally, as expected. Moreover, for a given J = 1 or higher, we see that the error increases systemat-

ically as the bond is stretched until RCF is reached. This is because the LDA orbital is becoming

less and less close to the exact natural orbital as the bond is stretched. Beyond this point, there

is a great decrease in error, as the the number of LDA orbitals doubles (due to spin-symmetry

breaking). Even the largest PPW basis shown here (J = 2) does not achieve chemical accuracy

close to the CF point. But our WLO’s do reach chemical accuracy everywhere for J = 2, and

almost everywhere with J = 1, using 3× 2 = 6 functions for R < RCF , and double that beyond.

(The wavelet localization does not throw out any WLO’s here.) Thus our basis set works, even

through the CF point. Of course, in practice, quantum chemists want forces, and some smoothing

procedure would be adopted to avoid the kink at the CF point.

The strong changes with R in the error in the red curve past the CF point can be attributed to the

grouping of the scaling and wavelet functions. As the bond is stretched, because the functions are

fixed in real space, some of the functions are assigned to the left cell, and others to the right. This

assignment can change suddenly, causing a drop in the eigenvalue weights in the covariance matrix

of one of the cells and decreasing the number of functions. Note that this effect occurs only for

errors far below the chemical accuracy threshold.

Next we consider performance for longer chains of H atoms. Now the covariance cutoff becomes

important for curtailing the total number of functions. Figure 4.11 illustrates the effect of the

covariance cutoff for H4 near equilibrium. The higher the value of η , the more functions are

thrown away, but the greater the error is. If η is set too small, then no functions are removed, not

even those that have essentially no effect on the energy. The figure shows that the full basis has

an error of about 0.1 kcal/mol. But chemical accuracy is achieved with η = 10−3 and only 14
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Figure 4.11: Finite-basis energy error as a function of covariance cutoff η for H2 at R = 2 with
J = ∆ = 1. Without cutoff, there are 24 functions in the basis. The integer near each point is the
number of functions in the basis.

functions. This is to be contrasted with Mno = 6 from Fig 4.3 and MPPW = 14 from Fig 4.7. In this

case (near equilibrium), the WLO’s form a near-complete localized orthogonal basis with no more

functions than PPW, and with lower error. Note that setting η = 10−4 does not add in any more

functions.

To see the effect as a function of bond length, in Table 4.1, we give energy errors and numbers

of basis functions for various values of R and several values of ∆, for a J = 1 calculation with

η = 10−4. (In all cases, J = 0 was found to yield errors higher than 1 kcal/mol.) We see that the

least number of functions needed occurs for ∆ = 1, especially as the chain is stretched.

Finally, we have run examples of 10-atom chains. We achieve chemical accuracy for J = 1, ∆ = 1

throughout the range of R shown in the table, with about 5 functions per site when η = 10−4.

This may seem like a large number of functions, but keep in mind that, as R increases, this is a

strongly correlated system tending toward its thermodynamic limit. Moreover, we have required

our total energy to be accurate to 1 kcal/mol all along the curve, not just the energy per atom.
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R 2 3 4 5 6

∆ N f ∆E N f ∆E N f ∆E N f ∆E N f ∆E

0.5 16 0.24 16 0.33 26 0.11 24 0.09 23 0.21

1.0 14 0.43 16 0.26 24 0.15 22 0.11 22 0.16

2.0 16 0.37 15 1.50 28 0.04 25 0.08 24 0.15

4.0 18 0.34 18 0.52 29 0.04 25 0.10 25 0.17

Table 4.1: WLO (J = 1) errors for H4 as a function of separation, for various values for ∆. Chop-
ping the PPW’s yields up to 48 functions, but setting η = 10−4 as the covariance cutoff yields the
number of functions and accuracy shown.

R 1 2 3 4

η N f ∆E N f ∆E N f ∆E N f ∆E

10−4 42 0.47 51 0.10 50 0.63 49 0.25

10−3 42 0.47 43 1.29 49 1.08 40 0.83

Table 4.2: Same as Table 4.1, but for H10, with J = ∆ = 1, and two different covariance cutoffs.

One would also expect most energy differences to converge more rapidly than the total energy.

Table 4.2 also illustrates the benefits of the covariance cutoff. By setting its value to 10−3, we

significantly reduce the number of functions as R increases, but in the middle, our error is slightly

greater than 1 kcal/mol. For many practical purposes, this should be sufficient, but the larger lesson

is that, for any desired application, there is a controllable trade-off between accuracy and number

of functions.

We end with a heteronuclear diatomic, LiH, to show that our method still works in the absence of

left-right symmetry. Fig. 4.12 was calculated with J = ∆ = 1 and η = 10−4. The LDA orbitals

remain an excellent starting point for approximating the NO’s, and the NO’s in the WLO basis are

identical (on this scale) to the exact NO’s. The energy error is only 1.04, using 11 basis functions.
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Figure 4.12: The first two natural orbitals for stretched LiH (X’s denote nuclear centers with Li
on right). The exact NO’s are marked in red, and are indistinguishable from the WLO NO’s
(∆ = J = 1, η = 10−4), black dotted line, but slightly different from the occupied LDA orbitals
(green). Also shown are WLO’s with weights above 10−4 (dashed lines). The WLO basis has 11
functions, and an error of 1.04 kcal/mol.

4.6 Discussion and conclusions

We have presented algorithms to generate a basis set that is adapted to a specific molecular system

and designed to be used in correlated calculations. The basis begins with an inexpensive DFT or

HF calculations, and the generation of additional functions from the occupied orbitals to allow

correlation is even less expensive. A product plane wave (PPW) ansatz adds additional functions

using a product of low momentum plane waves times each occupied orbital. In our 1D test systems,

this ansatz produces results within chemical accuracy using about twice as many functions as in

an ideal natural orbital basis. Then, to generate basis functions localized near each atom, we

introduced a wavelet localization procedure. Compared to standard localization methods, which

involve an orthogonal transformation of the existing functions without expanding the basis, wavelet

localization produces stronger localization with much smaller orthogonalizing tails, at the expense

of adding basis functions. This procedure is particularly useful for DMRG calculations, where

84



locality in the basis is an important criteria. It may also improve scaling on large systems in other

correlation approaches. Our method, as presented here, should allow much larger systems to be

treated than previously possible in our 1D mimic of realistic electronic structure (such as the 100-

atom chains of Ref. [36]).

Our procedure has only been given and tested upon a 1D mimic of the 3D world. A naive general-

ization of PPW to arbitrary 3D problems would involve many more plane waves, roughly the cube

of the number in 1D. For a fixed momentum cutoff the number of plane waves also grows with

the length of the system, even in 1D. This would appear to generate far too many functions to be

practical, but the wavelet localization would counteract this effect. We can think about how this

works by considering one particular cell, centered on an atom. The PPW basis generates occupied

orbitals times plane waves with a low momentum cutoff. The number of functions needed to span

this set in one cell should not be too large, since the only high frequencies present are from the

cusps of the occupied orbitals at the nuclei, which in a Gaussian basis can be represented by a

small number of basis functions. Otherwise, there are only a limited number of low frequency

modes in a single atom cell. This means that there must be significant redundancy in the PPW

functions, particularly for many electrons. The principle component analysis of the wavelet local-

ization would remove this redundancy. This makes it clear that except for very small molecules,

one should not apply PPW on its own, but in conjunction with wavelet localization. Nevertheless,

there are likely significant challenges in going to 3D which we must leave for future work. In

1D, our bases give chemical accuracy with only about twice as many functions as in an equivalent

natural orbital basis. It seems reasonable that a variation of our 1D approach can be found for 3D

which is similarly less efficient than a natural orbital basis by only a modest factor.

One improvement to our PPW approach which we have not explored here is to give more weight

to the occupied orbitals than to the additional functions coming from the plane waves with nonzero

momentum. This would be fairly simple to implement in our wavelet localization, by multiplying

the J > 0 functions by a weighting factor less than 1. One would expect this natural modification
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to further reduce the number of functions needed for chemical accuracy. We also note that our

procedure could also be applied without chopping, but still removing irrelevant basis functions, by

constructing the orthonormal basis from the PPW’s

gi
j = ∑

k
O−1/2

jk f i
k, (4.10)

where O is the overlap matrix of the f i. Now ρc = O, so the principle component analysis consists

of forming a basis of the eigenvectors of the overlap matrix with the largest eigenvectors, up to

cutoff η . This procedure reduces basis-set linear dependence; here it might reduce the PPW basis

size significantly without much loss of accuracy.

A number of existing approaches also utilize or are based on approximate natural orbitals. For

example, some Gaussian basis sets attempt to reproduce properties of atomic natural orbitals [213].

A key difference with our approach is that we start from the beginning with orbitals adapted to the

specific molecule under consideration, based on a DFT or HF calculation. It would be interesting

to compare the number of functions needed to reach chemical accuracy in 3D between our PPW

approach and standard Gaussian basis sets. (We do not have these Gaussian basis sets for our 1D

test systems.)

Another common approach is to find approximate natural orbitals from a low-order correlation

calculation, such as second order perturbation theory, e.g. MP2 [214]. Our PPW method is simpler

and faster, and it would be interesting to compare the accuracy of these two approaches. One might

also combine them: in cases where the perturbation calculation was expensive to do in a large basis,

one might first get a PPW basis, which would be much smaller than an unadapted basis, and then

refine it further by getting approximate natural orbitals with a perturbation theory approach.

The localization using wavelets could be applied in a broader context than we have used here, such

as to standard Gaussian bases or to approximate natural orbitals coming from a low order correla-
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tion method. This could potentially improve the performance of DMRG or other tensor network

methods. By improving the sparsity of the Hamiltonian, it may also improve the computational

scaling for DFT on large systems. In particular, using wavelet localization to impose locality only

at the atomic level may be more efficient than existing wavelet approaches which do not recombine

the wavelets into a smaller number of functions. Specifically, one could wavelet filter a standard

Gaussian basis to produce an orthogonal basis with more locality and sparsity than traditionally

localized Gaussian bases.

Since we are trying to produce basis sets for correlated calculations, where basis set convergence

is slower than for DFT or HF calculations, we must think about the effect of the basis on the

electron-electron cusp. Our choice of 1D potential interaction, which has a slope discontinuity

at the origin, is designed to partially mimic the electron-electron cusp behavior in 3D. In 3D, the

potential diverges as r → 0, but the effect is substantially reduced by the 3D volume element.

The moderate singularity we have in 1D is similar, but we cannot expect our results to match

3D precisely. Also, when trying to achieve chemical accuracy, the short range cusp behavior

is thought to be less relevant than intermediate distance electron-electron correlation. This further

complicates the comparisons between 1D and 3D, and a 3D procedure and benchmark calculations

are clearly needed.

Another difficulty in implementing our approach in 3D is the computation of the integrals defining

the Hamiltonian, once the basis is defined. In our 1D implementation, all integrals are written in

terms of sums over the fine grid; this would not be practical in 3D. Wavelet bases, which are a

crucial part of our wavelet localization, are able to represent nuclear cusps more efficiently than

grids, so one might try to work directly in the wavelet basis, expressing all the final basis functions

as linear combinations of wavelet functions [152, 157, 177]. However, wavelets are much less

efficient than atom-centered Gaussians for representing nuclear cusps, and so a much more efficient

approach might be to try to combine wavelets with a few Gaussians per nucleus. Another approach

to dealing with nuclear cusps would be to use pseudopotentials, so there are no cusps. Yet another
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is to employ a basis set that inherently has a one dimensional structure[204, 215, 216, 217] We

leave this set of 3D implementation problems for future work.

4.7 Supplemental Information

We point out that the form of our density matrix for the partitioned wavelet basis has the form

ρ̂ =
Na⊕

k=1

ρ̌
c
k =



ρ̌c
1 0 0 0 . . .

0 ρ̌c
2 0 0 . . .

0 0 ρ̌c
3 0 . . .

0 0 0 ρ̌c
4 . . .

...
...

...
... . . .



(4.11)

We did investigate what happens if we project our scaling functions from each of the boxes in-

dividually. This causes each of the sub-density matrices for each atomic region to have the form

ρ̌
c
k = Λ̌⊕ 1̌S (4.12)

where 1̌S is an identity matrix of dimension of the number of scaling functions. Λ̌ represents the

sub-density matrix formed by the remaining vectors.

However, adding scaling functions in this manner did not improve the energy appreciably or fast

enough. In general, the best combination was ∆ = J = 1.
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Chapter 5

Kohn–Sham calculations with the exact

functional

5.1 Overview

As a proof of principle, self-consistent Kohn–Sham calculations are performed with the exact

exchange-correlation functional. Finding the exact functional for even one trial density requires

solving the interacting Schrödinger equation many times. The density matrix renormalization

group method makes this possible for one-dimensional, real-space systems of more than two inter-

acting electrons. We illustrate and explore the convergence properties of the exact KS scheme for

both weakly and strongly correlated systems. We also explore the spin-dependent generalization

and densities for which the functional is ill defined.

This work was published with Lucas O. Wagner, E. Miles Stoudenmire, Steven R. White, and

Kieron Burke and is republished here with permission from the American Physical Society [38].
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5.2 Introduction

Four score and seven years ago, our physics forebears [66, 67] brought into this world a new

theory, conceived in simplicity, and dedicated to the proposition that although all particles are

waves [218], their density can be simply calculated [66, 67]. Now we are engaged in a great

electronic structure debate, testing whether Kohn–Sham theory [39], or any density functional

theory [1] so conceived and so dedicated, can endure in the face of strongly correlated systems.

We have come to dedicate a portion of this paper, as a final convergence proof [37] for those who

have dedicated their lives to developing the constrained search [219] and approximations thereto

[220, 221, 222]. It is altogether fitting and proper that we should prove this.

Kohn–Sham (KS) [39] density functional theory (DFT) is now a widely used electronic struc-

ture method, attaining useful accuracy with present approximations [40]. The method finds the

ground-state energy of a many-electron, interacting system by solving an effective non-interacting

problem. This non-interacting problem must be solved self-consistently, because its potential (the

KS potential) is a functional of the electron density. The most vital piece of this KS potential

is derived from the mysterious exchange-correlation functional, which can be computed exactly

with great cost [112, 223]. This exact functional provides the formal foundations of KS-DFT

for all electronic systems (with some caveats) [219]. However, the utility of KS-DFT derives

from simple and computationally efficient approximations to the exchange-correlation (XC) en-

ergy [220, 221, 222] which can be surprisingly reliable and usefully accurate for broad classes of

systems, yet fail badly for others.

Traditionally, study of the exact XC energy functional focused on finding general exact properties

that can either be built into approximations, or used to understand their failures [72, 222, 224, 225].

In studying the exact theory, we learn what is and is not reproduced by the exact functional; e.g.

that the HOMO-LUMO gap of the KS system is not equal to the fundamental (charge) gap of the

system [226, 227]. As computational power and algorithms evolved, it also became possible to
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take a highly accurate solution of the Schrödinger equation, extract the ground-state density, and

find the exact KS potential for the system of interest, notably for few electron systems [27, 35,

228, 229, 230, 231, 232, 233, 234, 235]. These inversions are often quite demanding, since all

quantities must be sufficiently accurate to extract the small differences in energies and potentials

that form the various components of exchange and correlation.

But even such heroic efforts do not produce a way of solving the KS equations with the exact XC

functional. This is because, in an actual KS calculation, the XC functional is needed not just for the

ground-state density of the system to be solved, but for a sequence of trial densities that ultimately

converges to the solution for that problem. To find the XC functional for some trial density, one

must solve the Schrödinger equation for the potential for which that density is the ground state, both

for interacting and non-interacting electrons. Worse still, these potentials are a priori unknown.

Advancing just one step in the KS calculations thus requires solving many interacting electronic

problems in order to find the right potential that yields the trial density. We call this an interacting

inversion, and previous examples have been limited to 2 electrons [223, 236, 237].

In this paper, we detail how to find the exact XC functional for realistic models of electrons in one

dimension. By realistic, we mean models whose properties mimic those of real systems, and whose

treatment with approximate density functionals yields results similar to those for real systems [35].

We use the density matrix renormalization group [238, 239, 240] to solve the Schrödinger equation,

because of its tremendous efficiency for one-dimensional (1d) systems. In Ref. [37], we used this

capability to explore the convergence of a simple algorithm for the KS scheme, ultimately proving

that, no matter how strongly correlated, convergence can always be achieved in a finite number

of iterations. Various approximate functionals have their own convergence proofs [241? ], but

here we detail exactly how the exact calculations are done, and test further properties of the exact

functional.
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5.3 Background

Typical solid state and quantum chemistry investigations into electronic structure begin with the

non-relativistic continuum Hamiltonian in the Born–Oppenheimer approximation,

Ĥ ≡ T̂ +V̂ +V̂ee (5.1)

≡
N

∑
i=1

(
−1

2
∇

2
i + v(ri)

)
+

1
2

N

∑
i6= j

1
|ri− r j|

,

which describes the quantum behavior of N electrons in an external potential v(r) determined by

the (classical) nuclei via the operators: the electron kinetic energy T̂ , their potential energy V̂ , and

the electron-electron interaction V̂ee. The eigenstates Ψ j and eigenvalues E j (the energies) of the

Hamiltonian Ĥ determine all the properties of the system.

Despite Eq. (5.1) being the key to everyday electronic structure, an accurate solution for even the

ground-state energy E and wavefunction Ψ is not presently tractable for large molecules. This

problem continues to inspire the development of new approximations and methods to solve the

many-body problem. Some methods—such as Hartree–Fock theory [242], quantum Monte Carlo

[243], and coupled cluster [242]—attempt to approximate, sample, or construct the wavefunction.

Density functional theory, on the other hand, approaches the many-body problem quite differently.

While Ψ allows one to characterize the system completely, the much simpler ground-state elec-

tron density n(r) was proven by Hohenberg and Kohn (HK) to also determine all the properties

of the system [1]. Their theorem allows us to formally work with the density as the basic vari-

able instead of the wavefunction [219]. The keystone of this far-reaching proof is the one-to-one

correspondence between the ground-state density n(r) and the potential v(r) of a system, which

characterizes the system completely. This one-to-one mapping will be explored in greater detail in

Sec. 5.4, since it is crucial for calculate the exact functional.
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As an important mathematical aside, the potential corresponding to a given density is unique if it

exists, but there are some densities n(r) which are not ensemble v-representable, i.e. not the ground

states of any potential v(r) [244]. We explore this complication later, in Sec. 5.5.7.

A simple corollary of the HK theorem is that the ground-state energy of a system can be determined

by minimizing over trial electron densities [1]

Ev = min
n

Ev[n] (5.2)

Ev[n] ≡ F [n]+
∫

d3r n(r)v(r), (5.3)

where F [n] accounts for the electronic kinetic energy and electron-electron repulsion energy, and

is universal, i.e., independent of the external potential v(r). When degeneracy is not an issue [245],

the functional F [n] can be found by minimizing the expectation value of T̂ + V̂ee over all properly

antisymmetric wavefunctions Ψ that yield the density n(r) [112, 219]:

F [n] = min
Ψ→n
〈Ψ|{T̂ +V̂ee}|Ψ〉, (5.4)

and the minimizing Ψ is denoted Ψ[n]. This is the pure-state formulation of DFT. The generaliza-

tion for degenerate systems involves replacing the expectation value in Eq. (5.4) with a trace over

the ground-state ensemble Γ [219]. The only known way to exactly calculate the functional thus

implicitly requires use of a wavefunction (or a density matrix for degenerate systems).

We now turn to the formulation of the most popular of DFT implementations, Kohn–Sham DFT

[39]. Kohn–Sham theory creates a doppelgänger of the interacting system: a set of non-interacting

electrons with the same density. This non-interacting system, the KS system, is characterized by

its potential, vS[n](r), defined implicitly so that a system of N non-interacting electrons in this

potential has density n(r). This means that after solving the non-interacting Schrödinger (i.e. KS)

93



equation and obtaining the KS orbitals φ j(r) (in Hartree units):

{
−1

2
∇

2 + vS[n](r)
}

φ j(r) = ε j φ j(r). (5.5)

One finds the density n(r) by occupying the N/2 lowest-energy orbitals,

n(r) = 2
N/2

∑
j=1
|φ j(r)|2 (5.6)

(where for simplicity we assume that the system is spin-unpolarized). Obtaining the KS potential

vS[n](r) for a density n(r) is an inverse problem, on a firm foundation through the HK theorem

applied to non-interacting systems. (Some densities, however, will prove to be non-v-representable

[246], so the potential vS[n](r) is unique, up to a constant, but only if it exists.) Many algorithms to

invert a density to find its KS potential have been suggested [229, 231, 234, 247, 248, 249, 250];

ours will be described in Sec. 5.4.

As a descendent of DFT, Kohn–Sham DFT determines the energy of a system by knowledge of the

density alone. Within the KS framework, the universal functional F [n] is written as

F [n] = TS[n]+U [n]+EXC[n] (5.7)

where TS[n] is the kinetic energy of the KS orbitals:

TS[n]≡−
N/2

∑
j=1

∫
d3r φ

∗
j (r)∇

2
φ j(r), (5.8)

U [n] is the Hartree energy:

U [n]≡ 1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′|

, (5.9)

and EXC[n] is the exchange-correlation (XC) energy, defined by Eq. (5.7). Very successful (albeit
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crude) approximations to EXC[n] have been developed [220, 221, 222], which make KS theory a

standard and practical approach to electronic structure. Our work focuses on the exact EXC[n], with

a few comparisons to the simplest density functional approximation, the local density approxima-

tion (LDA) [220].

The KS framework offers a convenient way to minimize Ev[n] as in Eq. (5.2), by solving non-

interacting systems with an effective potential. We guess an input density n(i)in (r) and use it to

calculate a trial KS potential v(i)S (r):

v(i)S (r) = v(r)+ vH[n
(i)
in ](r)+ vXC[n

(i)
in ](r), (5.10)

where vH[n](r) = δU [n]/δn(r) is the Hartree potential:

vH[n](r) =
∫

d3r′
n(r′)
|r− r′|

, (5.11)

and vXC[n](r) = δEXC[n]/δn(r) is the XC potential. The Hartree and XC potentials together ac-

count for two-body interactions [34], and are found by taking functional derivatives of their parent

energy functionals.

After calculating v(i)S (r) for the given input density, we solve the trial KS system (i.e. Eq. (5.5) with

our trial KS potential) to obtain an output density n(i)out(r). If the output density equals the input

density, we have achieved self-consistency and have found a stationary point of Ev[n]. This may

be quantified by calculating a simple criterion for convergence:

η
(i) ≡ 1

N2

∫
d3r
(

n(i)out(r)−n(i)in (r)
)2

, (5.12)

declaring the calculation converged when η(i) < δ , If the calculation has not converged, a new

guess density n(i+1)
in (r), such as n(i)out(r), is plugged into Eq. (5.10) for the next iteration, and we

repeat until converged. For the exact XC functional, the converged density is the ground-state
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Figure 5.1: The KS scheme.

density of interacting electrons in the potential v(r) [37]. This iterative-convergence procedure

is known as the KS scheme [251], and is illustrated in Fig. 5.1. The possibility of finding other

stationary points besides the ground-state for the exact functional will be addressed in Sec. 5.5.

The Kohn–Sham DFT approach to electronic structure thus converts the many-body problem into

a non-interacting problem which must be solved self-consistently. The exact procedure requires

finding the many-body system with a given density, with wavefunction Ψ[n], to determine EXC[n]

and vXC[n](r), and thus is as costly as solving the original many-body problem (see Sec. 5.5). How-

ever, the KS scheme would be neither useful nor practical at such a computational cost. Evaluating

vXC[n](r) at each iteration of the KS scheme is (usually) a trivial and inexpensive step with present

approximations, since the functional derivative is known explicitly.
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5.4 Inversions

Inverting a density n(r) to find its KS potential vS[n](r), or to find its external potential v[n](r)

(for real, interacting electrons) is not a straightforward task. In this section we discuss how to do

this for an arbitrary v-representable density. As a by-product of these inversions, we obtain the

implicitly defined KS orbitals and interacting wavefunction Ψ[n], which allow us to evaluate the

XC potential and energy in Sec. 5.5.

Non-interacting inversions are performed to find the KS potential of exact densities for a variety of

systems [27, 35, 232]. The notation we use for the potential corresponding to the density n(r) of

non-interacting electrons is vS[n](r), which we have already seen in Eq. (5.5). This inversion is a

simple matter for one or two electrons with opposite spins, since the KS equation can be rearranged

to obtain:

vS[n](r) =
1
2

∇2
√

n(r)√
n(r)

+ ε, (N ≤ 2) (5.13)

where ε is a constant (the only occupied KS eigenvalue). For more electrons, one can use an

iterative procedure to determine vS[n](r). Initially a potential v(1)S (r) is guessed, e.g. Eq. (5.13).

Then, starting with i = 1:

1. For the potential v(i)S (r), solve the non-interacting Schrödinger equation for orbitals φ
(i)
j (r),

doubly-occupying to obtain the density n(i)(r).

2. If n(i)(r) is within tolerance of n(r), we are done, i.e. v(i)S (r) = vS[n](r) and φ j(r) = φ
(i)
j (r).

Otherwise, continue.

3. A new potential v(i+1)
S (r) is chosen, based on how different n(i)(r) is from n(r). Roughly

speaking, where n(i)(r) is too low, the new potential v(i+1)
S (r) is lowered from the old v(i)S (r),

and where n(i)(r) is too high, the new potential is raised.
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4. Increment i and repeat steps 1 to 4.

The only difference between different inversion algorithms is how the new potential is determined

in step 3. The problem can be reduced to finding the root of a nonlinear function of many variables,

which can be treated at various levels of sophistication [252]. We discuss Broyden’s method at the

end of this section. With the KS potential vS[n](r) and orbitals φ j(r), we can evaluate functionals

such as TS[n] using Eq. (5.8).

Interacting inversions are rarely done, since they are far more expensive than non-interacting inver-

sions, and require solving the many-body problem many times. Only two-electron problems have

been studied, in one case to understand the adiabatic approximation within TDDFT [236, 237] and

in another to study the self-interaction error within LDA [223]; though we have recently studied

four-electron systems [37]. The potential v[n](r), which corresponds to the interacting system of

electrons with density n(r), can be found using the same algorithm as for vS[n](r), though in step

1 we must solve an interacting problem for the many-body wavefunction Ψ(i) rather than the non-

interacting Schrödinger equation for orbitals φ
(i)
j (r). At the end of the inversion we obtain Ψ[n],

the wavefunction which minimizes F [n] in Eq. (5.4), allowing us to compute F [n] for that specific

density.

To illustrate the theory behind KS-DFT, we solve interacting systems using the density matrix

renormalization group (DMRG) [238, 239], which is the most efficient wavefunction solver in 1d,

capable of handling both strong and weak correlation. We apply DMRG to model 1d continuum

systems by discretizing space into Ng grid points with a small grid spacing ∆ [35, 36]. With this

method, we can invert 1d systems with over 100 electrons [36]. For our model systems we employ

a softened Coulomb interaction between electrons [12, 33, 35, 36, 236]:

vee(u) = 1/
√

u2 +1. (5.14)
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Figure 5.2: Density inversion of arbitrary 4-electron density for non-interacting and interacting
potentials. Solving either the interacting Schrödinger equation in the potential v[n](x) or solving
the non-interacting Schrödinger equation in the potential vS[n](x) yields the density in the top panel.

Figure 5.2 shows a four-electron example of an interacting inversion 1. For some arbitrary density

like this one (meaning a density we would not find in nature), we want to find the associated KS

and interacting potentials. This is the problem we encounter during the self-consistent calculation

of the KS equations. Since we ultimately find Ψ[n] at the end of the inversion, we can evaluate

F [n] (given soft-Coulomb interactions); likewise with φ j(r) we can obtain TS[n]. For the example

density of Fig. 5.2 we find F [n] = 3.07, TS[n] = 0.843, U [n] = 3.628, so EXC[n] =−1.397. The XC

energy is thus calculated using simple energy differences; and we obtain the XC potential in the

same way. We further describe these matters in the next section.

To close this section, we describe our recipe for step 3 of the inversion algorithm. The idea is to

build an approximation for the density-density response matrix, χ , which determines how a small

1The density shown in Fig. 5.2 is given by ñ(x) = ex/15−x2/2+x4/20−x6/750, divided by a normalization factor such
that it contains four electrons.
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change in the potential will change the density:

∫
d3r′ χ(r,r′)δv(r′) = δn(r). (5.15)

Restricting our attention to 1d, we recast this equation as the matrix equation χ δv = δn, where

χ is an (unknown) Ng×Ng matrix, and δv, δn are vectors with Ng components, where Ng is the

number of grid-sites in the system. A constant change in the potential (i.e. δv = c1) will give zero

change in the density (δn = 0), and a constant change in the density (δn = c2) is impossible, since

N is fixed. Therefore we consider orthonormal basis functions for changes in the potential and

density which integrate to zero, encoded as columns in the matrices W and M, respectively [253].

Within this basis, the density-density response matrix can be approximated by a smaller matrix, A:

χ ≈MAW T . (5.16)

This factorization of the matrix χ looks very much like (and is inspired by) the singular value

decomposition (SVD) of χ , which would give an exact breakdown of χ into optimal bases M and

W , with A being diagonal. We do not know χ a priori, but an approximation to χ (or A) can be

iteratively improved using a quasi-Newton method (we use Broyden’s method from Ref. [254]).

We construct appropriate basis vectors for M and W using orthonormalized differences of trial

densities from the target density. As A is refined, the bases M and W can be optimized (if desired)

by computing the SVD of A, a procedure which is also useful to compute A−1, and thus χ−1. The

next trial potential for step 3 is determined by: v(i+1) = v(i)+ χ−1(n− n(i)). Typically around 20

basis vectors in M and W are required to obtain a trial density indistinguishable from the target

density on the scale of Fig. 5.2.

100



5.5 Results

We have now sufficient machinery to calculate the exact exchange-correlation energy and potential

for any trial density, as encountered in the KS scheme. For convenience, we define EHXC[n] ≡

U [n]+EXC[n], which can be evaluated (using Eqs. (5.4) and (5.7)) as:

EHXC[n] = 〈Ψ[n]|{T̂ +V̂ee}|Ψ[n]〉−TS[n]. (5.17)

From Section 5.4, we know how to obtain Ψ[n] and TS[n] using inversions. Therefore the exact

EXC[n] is no obstacle in principle, but extremely computationally expensive in practice. Similarly,

the HXC potential is:

vHXC[n](r) = vS[n](r)− v[n](r), (5.18)

which are available from interacting and non-interacting inversions. The construction of the exact

functional using inversions is illustrated in Fig. 5.3.

To algorithmically implement the KS scheme, we must choose our input densities n(i)in (r) for each

iteration i; each output density n(i)out(r) is determined by solving the KS equations (5.5). Although

more sophisticated algorithms are used in practice [241, 255, 256, 257, 258, 259? ], we choose the

simple algorithm given below. We emphasize that we make no claims as to the efficiency of this

particular algorithm. We expect many other algoritms to be more efficient. But this simple choice

allows a simple proof of convergence, and provides an initial framework to study convergence rate

questions.

The first input density n(1)in (r) is arbitrarily chosen. The subsequent input densities are calculated

via the linear density mixing algorithm,

n(i+1)
in (r) = (1−λ )n(i)in (r)+λ n(i)out(r), (5.19)
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Figure 5.3: To determine the EHXC[n] and vHXC[n](r): Our exact calculation requires a computation-
ally demanding inversion algorithm to find the one-body potential v[n](r) of the interacting system
whose density is n(r), with KS orbitals φ(r), in addition to a non-interacting inversion to find
vS[n](r). In case of degeneracy, mixed-states should be used instead of pure-state wavefunctions in
both non-interacting and interacting inversions. The right hand side differs from the left in that it
describes an interacting inversion.
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where λ is a parameter between 0 and 1, which aids convergence. At λ = 1, no density mixing is

performed, and the output density of iteration i is used as the input for iteration i+ 1. While this

might allow for quick convergence, there is the danger of repeatedly overshooting the ground-state

density and not converging. If this happens, smaller steps must be taken, i.e. small λ (λ = 0 not al-

lowed) must be used. These convergence issues are discussed more thoroughly in Sec. 5.5.2, where

we investigate how small this density mixing λ needs to be in order to converge the calculation.

5.5.1 Illustration

In this section we use the exact functional within the KS scheme for a model one-dimensional

continuum system, demonstrating convergence to the true ground-state density. We also explain

why the only stationary point of the exact functional is the true ground-state density.

In our model one-dimensional system, electrons are attracted to the nuclei via the potential [35]

ve-nuc(x) =−1/
√

x2 +1, (5.20)

and electrons interact with the corresponding repulsive potential as already mentioned via Eq.

(5.14).

In Fig. 5.4, we plot the trial densities and KS potentials for a four-electron, four-atom system.

The interatomic spacing R is chosen to make correlations moderate. Choosing a density mixing of

λ = 0.30 affords fairly rapid convergence. We find that the final density, calculated within our KS

algorithm, is equal to the true ground-state density of the system. We plot the final converged KS,

Hartree, and XC potentials in Fig. 5.5.

Regarding stationary points of the exact functional, we find that, in all the cases we ran, our KS

algorithm converged to the true ground-state density. An analytic result confirms that, given v-

representable densities, the only stationary point of the exact KS scheme is the ground-state density
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of the system [260]. We can see this by plugging the exact vHXC[n](r) from Eq. (5.18) into the KS

update (5.10). The exact scheme then proceeds as

vS(r) := vS[nin](r)+
(
v(r)− v[nin](r)

)
, (5.21)

with self-consistency reached when v(r) = v[nin](r). This occurs at precisely one density: at the

ground-state density ng.s.(r), which is unique by the HK theorem. Thus the exact KS scheme has

only one stationary point for v-representable densities.

In density functional theory, there is no guarantee that a KS potential exists for a given phys-

ical system. The guarantee is that if it does exist, it is unique and, as we pointed out above,

the only stationary point of the KS equations. Densities with legitimate KS potentials are called

non-interacting v-representable. We have performed many non-interacting inversions on accurate

ground-state densities of atomic chains, and have always found their KS potentials to exist, even

when the bond lengths are stretched. Since standard density functional approximations usually

become inaccurate for strongly correlated systems, such as when bonds are stretched, a potential

pitfall for KS-DFT is that such systems may fail to be non-interacting v-representable. While there

are subtleties to identifying whether a density is v-representable or not (as discussed further in

Sec. 5.5.7), v-representability does not appear to be the main issue when strong correlation is in-

volved [261, 262, 263, 264]. Instead, good approximate functionals simply are missing at present

[265, 266]. If v-representability were to blame, the entire KS apparatus, despite being exact in

principle, could not be applied to such systems. Happily, our results show no evidence of such a

disastrous situation.

5.5.2 First steps

Knowing that there is only one stationary point of the KS scheme (for v-representable densities)

tells us nothing about the difficulty in finding it. In this section we consider the most basic part of
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the KS scheme – a single step in the KS algorithm – which will help us understand the convergence

behavior of the exact functional for different systems. We will see why strongly correlated systems

are more difficult to converge than weakly correlated systems.

To explore how the KS scheme converges, we calculate the energy of the system which interpolates

between the input and output densities for a single step of the algorithm, measured against the

ground-state energy:

∆E(λ ) = Ev[nλ ]−Ev, (5.22)

where nλ (r) linearly interpolates between the input density (at λ = 0) to the output density (λ = 1),

just as in Eq. (5.19). We plot ∆E(λ ) as well as the input, output, and exact densities for various

systems in Figures 5.6 and 5.7. As can be seen, the output density is in the right direction to

minimize Ev[n], but it overshoots the minimum. Starting the next iteration of the KS scheme with

this output density would not (in general) allow convergence; therefore a mixture of the input

and output densities is used as the next input, thus motivating Eq. (5.19). The optimal mixing λ

minimizes Ev[nλ ] on the interval (0,1], and could be found using a line search. But even with

the optimal mixing, neither of the chosen starting points (a non-interacting and a pseudouniform

density) produces the ground-state density on the first iteration, so it takes a few iterations to

converge. It is perhaps surprising, however, that a single iteration of the KS scheme could get so

close to the ground state. For the weakly correlated system (Fig. 5.6), the non-interacting starting

point gets within ∆E = 0.001 of the ground-state energy with λ = 0.45, whereas the pseudouniform

starting point minimizes ∆E = 0.004 with λ = 0.45. For the strongly correlated system (Fig. 5.7),

the optimal λ ’s are smaller and the ∆E’s are larger: the non-interacting initial point minimizes at

∆E = 0.002 with λ = 0.44, and the pseudouniform initial point minimizes ∆E at 0.094 around

λ = 0.21.

Figures 5.6 and 5.7 each plot only two cuts through the infinite-dimensional functional landscape.
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Figure 5.6: A single step in the KS scheme for a weakly correlated system (H4 with R = 2) away
from two different initial densities: non-interacting electrons in the external potential (NI) and a
pseudouniform electron density (PU). These initial densities are the dashed curves in (a) and (b),
and the solid curves are the output densities for each KS step; for comparison the dotted curve is
the exact density. The lower panel plots Eq. (5.22), the energy of the system as it interpolates from
the input to the output density.
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the input to the output density.

108



Figure 5.6 models a weakly correlated system—a four atom system with an interatomic spacing

of R = 2—where a Slater determinant [267] of non-interacting electrons is a good approximation

to the underlying wavefunction. But as we stretch the bonds to R = 4 for Fig. 5.7, strong static

correlation arises, and the KS wavefunction is less like the true wavefunction of the interacting

system than that of Fig. 5.6. Thus the density of a non-interacting system in the external potential

is a poor start for the KS scheme, and energy differences from the ground-state are larger for the

strongly correlated system than for the weakly correlated system. Besides the scale, one might ask

how the functional landscape differs between strongly correlated systems and weakly correlated

systems. While the two NI curves in Figures 5.6 and 5.7 are deceptively similar, the PU curves

begin to reveal the treacherous landscape of the strongly correlated system near the minimum.

We now look at the second iteration of the KS scheme to see if there is a difference between the

strongly and weakly correlated systems. We choose the NI-path density from Fig. 5.7 with a good

(but not optimal) mixing of λ = 42% as input into the KS equations. For the weakly correlated

system of Fig. 5.6, the second KS step (not shown) looks much like the first step, though with a

much smaller energy scale involved. Thus a fairly large λ may be used when correlations are weak,

and convergence is rapid. But it is not the same for the strongly correlated system. As shown in

Fig. 5.8, the next iteration of the KS procedure will not allow us to make the same giant stride as

in the first iteration. For the new λ -mixed density, we again evaluate ∆E(λ ) from Eq. (5.22) and

find that it reaches a minimum much sooner. Thus a much smaller λ—around 6% as seen in the

inset—must be chosen in order not to go far off track. Furthermore, choosing even the optimal λ

does not result in a much better energy as it did in the first iteration. This makes convergence a

long and difficult process, since we can only afford to take small steps.

In the last part of this section, we give some formulas which may aid in determining the optimal

λ each step. We consider derivatives of Ev(λ ) ≡ Ev[nλ ] with respect to λ . For example, large

E ′′v (λ ) ≡ d2Ev[nλ ]/dλ 2 relative to the magnitude of E ′v(λ ) ≡ dEv[nλ ]/dλ requires a smaller λ to

lower the energy. Given some bound on E ′′v (λ ), one could analytically determine a safe (i.e. not
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too large or too small) approximation to the optimal λ [268]. The derivatives of Ev(λ ) may be

taken analytically [37, 269]:

E ′v(λ ) =
∫

d3r
δEv[n]
δn(r)

∣∣∣∣
nλ (r)

(
n1(r)−n0(r)

)
=
∫

d3r
(

v(r)+ vHXC[nλ ](r)− vS[nλ ](r)
)(

n1(r)−n0(r)
)

(5.23)

E ′′v (λ ) =
∫

d3r
∫

d3r′
(
n1(r)−n0(r)

)(
fHXC[nλ ](r,r′)−χ

−1
S [nλ ](r,r′)

)(
n1(r′)−n0(r′)

)
, (5.24)

where n1(r) = nout(r) and n0(r) = nin(r) for the current KS step of interest, the HXC kernel

fHXC[n](r,r′) is:

fHXC[n](r,r′) = χ
−1
S [n](r,r′)−χ

−1[n](r,r′), (5.25)

and χ
−1
S [n](r,r′) = δvS[n](r)/δn(r′) (χ−1[n](r,r′) = δv[n](r)/δn(r′)) is the non-interacting (in-

teracting) inverse density-density response matrix. Calculating fHXC[n](r,r′) is quite challenging,

and has recently been evaluated with time dependence for some simple systems [270].

We emphasize that nout(r) is a functional of nin(r) and does not depend on λ at all. Thus Eqs.

(5.23) and (5.24) are strictly functionals of the input density n0(r) alone.

Towards the end of approximating the optimal λ , one may fit Ev[nλ ] given some information on

the derivatives. At the end points the derivatives simplify to

E ′v(0) ≡
∫

d3r
(

vS,1(r)− vS,0(r)
)(

n1(r)−n0(r)
)

(5.26)

E ′v(1) ≡
∫

d3r
(

v1
HXC(r)− v0

HXC(r)
)(

n1(r)−n0(r)
)
, (5.27)

where vS, j(r) = vS[n j](r) and v j
HXC(r) = vHXC[n j](r). We find that in many systems a Hermite spline

fit [252] (using Ev(0), Ev(1), and the derivatives E ′v(0) and E ′v(1)) is a good approximation to the
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Figure 5.8: Taking a second step in the KS scheme for a strongly correlated system (H4 with R= 4).
Panel (a) shows the input density which is near to the exact density (the λ = 42% density of the NI
input density of Fig. 5.7) and the resulting output density, which is far from the ground-state. The
lower panel (b) plots Eq. (5.22), and the inset (c) magnifies the small λ region.

energy curve Ev(λ ), or at least to where it attains the minimum. However, this fit requires an

inversion to find Ev(0) and E ′v(0), which may be impractical for standard KS calculations.

5.5.3 Why convergence is difficult for strongly correlated systems

In this section, we discuss an important reason why convergence is difficult for strongly correlated

systems, and mention some algorithms which counteract the underlying problem. Frequently,

systems with strong static correlation possess a small gap [271], which in turn makes convergence

difficult [256]. We can understand this difficulty by considering the non-interacting density-density

response matrix χS(r,r′):

χS(r,r′) = 2
∞

∑
i6= j

f j− fi

ε j− εi
φi(r)φ∗j (r)φ

∗
i (r
′)φ j(r′), (5.28)

111



where 0 ≤ f j ≤ 1 is the Fermi occupation of orbital φ j(r). For a small gap system, εLUMO− εHOMO

is particularly small, making that term in χS(r,r′) especially large. This means that small changes

in the KS potential can produce large changes in the density, which makes convergence in the KS

scheme difficult. We can visualize this property by performing a singular value decomposition on

χS(r,r′), as in Eq. (5.16). Equivalently, since χS(r,r′) is symmetric in r,r′, we can diagonalize

−χS(r,r′):

χS(r,r′) =−
∞

∑
β=1

aβ Mβ (r)Mβ (r′), (5.29)

where Mβ (r) (aβ ) are the eigenvectors (eigenvalues) of −χS(r,r′). Since χS(r,r′) is negative

definite, we can order aβ ≥ aβ+1 > 0. The breakdown in Eq. (5.29) physically means that a change

in the KS potential along the direction−Mβ (r) produces a change in the density along Mβ (r) with

a magnitude given by aβ , at least to first order. We therefore call Mβ (r) the density response

vectors and aβ the response amplitudes of χS(r,r′). The amplitudes depend on the normalization

of Mβ (r), and the standard squared (L2) norm is not the most natural choice. Because Mβ (r)

corresponds to a change in density, we choose
∫

d3r |Mβ (r)| = 2 so that Mβ (r) can be thought of

as moving an electron from one region (where Mβ (r)< 0) to another (where Mβ (r)> 0). Finally,

because aβ are ordered by importance, χS(r,r′) can be accurately and efficiently represented by

truncating the sum once aβ drops below some tolerance.

We can easily find the density response vectors Mβ (x) for the 1d H4 systems we have already

discussed at length, which allows us to diagnose our convergence difficulties. In Fig. 5.9, we plot

the first few most important Mβ (x). The first two (β = 1,2) look similar for the weakly correlated

and the strongly correlated systems, though the response amplitudes aβ are quite different. If the

potential changes in the direction−M1(x), it drives a strong density response in the direction M1(x)

due to the large response amplitude a1 = 4.75 at R = 2 and a2 = 27.4 at R = 4. Luckily, we can

assume reflection symmetry, so that in the iteration of the KS equations we do not have to worry

about contributions from these β = 1 terms. But now consider the symmetric β = 2 terms. If the
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Figure 5.9: The most important density response functions Mβ (x) from Eq. (5.29) and their re-
sponse amplitudes aβ , for the weakly correlated system (R = 2) in the top panel, and the strongly
correlated system (R = 4) in the bottom panel. The locations of the atoms are shown in solid grey
circles.

KS potential changes in the direction−M2(x), the density will respond by changing in the direction

M2(x), and the response amplitude is very strong for the R = 4 system (a2 = 16.3).

These (ground-state) response properties can be used to explain the problems that we have con-

verging the strongly correlated H4. If the initial KS potential puts most of the density around the

central two atoms, to compensate the next trial KS potential (5.10) will increase in the central

region and decrease for the edge atoms. In response, the new density will place too many elec-

trons on the edge atoms. We have already seen this in Figures 5.6 and 5.7 with the NI starting

densities. The reverse can also happen, where most of the input density is on the edge atoms, and

the output density is more centralized. For the strongly correlated H4, this “sloshing” back and

forth can be particularly strong because the response amplitude a2 is quite large – this problem

plagues densities even very close to the ground state, as seen in Fig. 5.8. As R→ ∞, a2 diverges,

making it more and more difficult to converge. To ameliorate these problems, some convergence

schemes artificially increase the gap [255] or populate otherwise unoccupied orbitals [272]. For

other discussions on this matter, see Ref. [273] and for implications for time-dependent DFT, Ref.
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[274].

5.5.4 Convergence as correlations grow stronger

In this section, we explore convergence within the simplest density functional approximation, the

local density approximation (LDA) [39], in order to understand some basic limits on convergence

as well as its dependence on the KS gap, i.e. the HOMO-LUMO gap. A simple expression for

the LDA is available for our model 1d systems [33, 35]. We expect the LDA to converge in a

similar way to the exact functional, especially when the KS gap of the system is close for both

self-consistent LDA and exact solutions [275]. We therefore use it to study more broadly the

convergence behavior of the KS scheme applied to H2 with variable bond length. As before,

changing the bond length allows us to tune the strength of the correlation: at small bond lengths

the system is weakly correlated and at large bond lengths strong static correlation arises [35]. To

aggravate convergence difficulties, we choose the initial density to be entirely centered on one

atom [37], and determine the λ values for which the KS scheme will converge, as well as how

quickly. Furthermore, we enforce spin-symmetry, so while the restricted LDA energy is wrong in

the R→ ∞ limit [35], we expect to see convergence behavior similar to the exact functional [37].

In Fig. 5.10, we plot the number of iterations required to converge an LDA calculation to η < 10−8

as a function of λ , for a variety of bond lengths R. Each curve ends at λc(R), the largest λ for which

the damped KS algorithm converges from this initial density. For a weakly correlated system (e.g.

R = 2), a very large λ will produce convergence, and the optimal λ to converge in the fewest

iterations is also fairly large (around 0.5 for R = 2). As the bond length is stretched, both the

critical λ , λc(R), as well as the optimal λO(R) decrease. In response, the minimum number of

iterations Nmin(R) to converge to a tolerance η < 10−8, increases. For example, Nmin(R = 2) = 12

for λO(R = 2)≈ 0.5. Considering the iterations it takes to converge as a function of λ , we see that

as λ decreases past the optimal λ , it begins to take longer to converge the calculation. For λ → 0,
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Figure 5.10: The number of iterations required to converge an LDA calculation to η < 10−8 (5.12),
as a function of λ , for various bond-lengths R of the H2 molecule, starting with an initial density
of H− on the left atom. The asymptotic form for small λ can be well-approximated by 7/λ for the
data shown.

we approach an asymptote that appears valid for all values of R, given this initial starting point in

the H2 system: Nasym(λ ) = 7/λ . While this is by no means a universal asymptote for all systems,

we recognize there is a fundamental limit to how quickly we can converge as λ → 0.

In Fig. 5.11, we plot the convergence-critical λ value as a function of the bond length R, as well

as the KS gap of both the LDA and exact systems. The LDA KS gap decays at about the same rate

as the critical λ , an observation that makes sense given that the KS gap has such an important role

in convergence – the smaller the gap the more difficult it is to converge the calculation [275]. For

bond lengths R . 4, the LDA KS gap is quite close to the exact KS gap, so that we expect similar

convergence behavior for the exact functional. However, as R increases, the true KS gap decays

more quickly than the LDA KS gap, so that the exact calculation has an even greater difficulty con-

verging [37]. It could be that some values of λ larger than λc allow for convergence if the density

fortuitously lands close enough to the ground state in some iteration, but there is no systematic

approach to find these λ .
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5.5.5 Classifying convergeability

In this section, we want to mathematically investigate the the space of densities that allow conver-

gence and how quickly that occurs. That is, given some initial density and a fixed value of λ , can

we determine whether the KS scheme will converge within some given number of iterations? With

λ too large, the KS scheme will be doomed to repeatedly overstep the ground-state density.

To quantify these ideas, define ηM[n](λ ) to be the value of η defined by Eq. (5.12) after M iter-

ations of the KS equations with a fixed mixing of λ , starting with the input density n(r). Then

define the density set:

SM
ζ
(λ )≡

{
n(r) s.t. η

M[n](λ )< ζ
}
. (5.30)

This set describes the densities n(r) which converge to η < ζ in a finite number of iterations (M),
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Figure 5.12: The first few steps (numbered) in the KS scheme from some arbitrary starting density
for H4 with R = 4 in the LDA approximation. Numerical precision makes the energy data noisy.
Metric distances are compared with the LDA ground state. Figure (a) plots the energy and (b) the
metric as a function of the accumulated λ step. The density nλ (x) with the lowest metric distance
is not the energetic minimum, but they are fairly close.

given a fixed-λ iteration of the KS equations. For example, S1
ζ
≡ S1

ζ
(λ = 1) is the set of input

densities nin(r) that are within η < ζ of their output densities. (For one step, λ does not matter.)

This set (5.30) allows us to quantify the different levels of convergence hell. S1
ζ

is the lowest level,

and includes the ground-state density. S2
ζ
(1) is the second level, and also includes the ground-state

density. As M becomes large (but remains finite), SM
ζ
(1) reaches out to the Mth level of hell: the

set of densities which converge to within η < ζ within a finite number of full-KS-step iterations.

All other densities belong to the λ = 1 limbo density set, densities which are doomed to wander

for (essentially) all eternity, never to converge. Similarly, there are less-strict convergence sets for

λ < 1, which describe a sort of density purgatory.

It might be hoped to connect these abstract convergence sets with some concrete measure, say some

metric between the ground-state density and the density inputted into the KS scheme, η [n,ng.s.].

Here we simply define the metric similarly to our η convergence quantifier:

η [n1,n2] =
∫

d3r
(
n1(r)−n2(r)

)2
/N2. (5.31)
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The idea of a metric on the set of densities is not new [276, 277]. Unfortunately, current metrics

are not guaranteed to correlate e.g. a given input density n(r) with a given convergence set SM
ζ
(λ ).

That is, there is likely no function gM
ζ
(λ ) for which η [n,ng.s.]< gM

ζ
(λ ) =⇒ n(r)∈ SM

ζ
(λ ). In Fig.

5.12 we show why. For λ+ the accumulated λ throughout the KS scheme, we see that the metric

η [nλ+
,ng.s.] tracks well with the how close the energy Ev[nλ+

] is to the ground state energy (at least

for this example, 1d H4 in LDA). Despite this nice relationship between the energy and the metric,

a small η [n,ng.s.] does not necessarily mean we can take a large step in λ each iteration. Therefore

we do not know how many steps it will take nor how small a λ is required based on the metric

alone. More physically motivated metrics might remedy this issue, but we must leave this question

open.

5.5.6 Spin DFT

In this section we extend the exact functional to include spin dependence. We test the exact spin-

dependent functional on the case of stretched H2, starting our KS scheme with a broken-spin-

symmetry solution, to determine whether or not the exact functional will find the correct spin-

singlet ground state [37].

Treating the up-spin and down-spin electrons separately leads to much improved density functional

approximations, as well as new challenges [278, 279]. If an unbalanced spin-state is provided as

input to the KS scheme, approximate spin-density functionals may find a broken spin symmetry

when the ground state should be a singlet. This is the case for many open-shell systems as bonds

are stretched. The simplest such system, and a paradigm of DFT failures, is stretched H2 [35,

96, 97, 280]. In this case, it is clear that the exact XC spin-density functional does not break

symmetry at the solution density, since the ground state of any two-electron system is a singlet (in

the absence of external magnetic fields) [97]. This is true of both the interacting wavefunction and

the KS Slater determinant, which is then just a doubly occupied molecular orbital.
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Figure 5.13: Starting an exact KS calculation of stretched H2 with a spin-polarized density still
converges to the correct spin-singlet density. Through the iterations i, we plot (a) the polarization
density n↑(x)− n↓(x) and (b) the up KS potentials vS,↑(x); the down potentials are the mirror
images.

To investigate these issues, we must first add spin-dependence to our functional, which is simple

enough in principle. The added challenge is needing the ability to solve an interacting system with

different potentials for spin-up and spin-down electrons, i.e. electrons in a collinear magnetic field.

Similar to (5.18), the HXC potential for spin-σ electrons is:

vHXC,σ [n↑,n↓](r) = vS[2nσ ](r)− vσ [n↑,n↓](r), (5.32)

where the KS potential for the up electrons can be inverted independently of the down electrons

by doubly occupying the up density [281] (and vice versa for down electrons), and vσ [n↑,n↓](r)

is the spin-σ potential necessary to produce spin densities n↑(r) and n↓(r) from an interacting

Hamiltonian. We now investigate the use of the exact spin-dependent functional in a system where

standard approximate functionals have multiple stationary points.

To test whether the exact functional can find the singlet solution for the stretched H2 case, we start
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the exact KS calculation with a spin-polarized initial density, with the up electron on the left atom

and the down electron on the right. With this input, the KS scheme using the local spin-density

approximation converges to a broken symmetry solution [35]. But as seen in Fig. 5.13, the exact

functional finds the correct spin-singlet density without much trouble. (For this system, a large

density mixing was used, namely λ = 50%.) So long as the spin-densities are v-representable, the

arguments of Ref. [260] apply, and there is only one stationary point of the exact functional – the

true ground-state density. This is true not only in 1d (as we have illustrated) but also in 3d.

5.5.7 Non v-representable densities

An important question that has haunted density functional theory since the proofs of Hohenberg

and Kohn is that of v-representability [251], i.e., for a given density n(r), does there exist a one-

body potential v[n](r) for which it is the ground-state density? The constrained-search formulation

of Levy [112] and of Lieb [219] bypasses this issue by defining the functional F [n] as an infimum

over a given class of wavefunctions. But our methodology of performing both interacting and

non-interacting inversions essentially requires v-representability in both the interacting and non-

interacting systems. (In fact, vHXC[n](r) is ill-defined if n(r) is not v-representable [219, 246? ].)

In all our calculations to date, we have had no difficulty with v-representability, but in the present

section, we use explore its meaning in more detail.

To be clear, we consider a density v-representable if it is ensemble v-representable. The general-

ization to mixed states (ensembles) is important for degenerate systems, where not every density

comes from a pure-state wavefunction [219, 245, 249, 282]; these practical details impact the

calculations for and the values of the functionals F [n] and TS[n] [37, 219, 283], but they are not

our primary concern. In addition, we focus on non-interacting v-representability; the challenges

for interacting v-representability are similar, though the sets of interacting and non-interacting v-

representable densities may in principle be different.
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Definitive work by Chayes et al. [284] proves that on a grid, certain simple restrictions on the den-

sity determine the set of ensemble v-representable densities (in both interacting and non-interacting

cases). This result explains why we were always able to find potentials for a given density on a grid

in 1d, where there is no degeneracy except for spin. The work of Chayes et al. is reassuring, but

not the final word on v-representability. On a grid, the kinetic energy operator (proportional to the

Laplacian) is always bounded, whereas in the continuum it is not. In such cases, inverting a den-

sity for the KS potential as in Eq. (5.13) may lead to unacceptable divergences, even for reasonable

densities. Proofs of v-representability on a grid [253] therefore do not guarantee v-representability

in the continuum. Complicating matters, properties which make for reasonable densities and po-

tentials differ based on the dimensionality of the problem [219]. In this section, we therefore move

away from our 1d grids and instead concentrate on real 3d systems in the continuum.

In principle, one can invert any density n(r) with N ≤ 2 for its KS potential vS[n](r), as in Eq.

(5.13). Such an inversion, however, may lead to a potential which is singular and which does not

have a well-defined ground state. In order to avoid these problems, the potential should satisfy

two key properties: (1) the KS Hamiltonian (5.5) being bounded from below, and (2) the KS

Hamiltonian being self adjoint 2. Properties which make the potential reasonable translate into

properties that the density should satisfy. In three dimensions, our reasonable potentials are in the

set L3/2 + L∞, which describes potentials of atoms, molecules, and solids 3. The density space

whose dual is L3/2 +L∞ is L1∩L3, and this space is a good start for the set of reasonable densities

[219]. The Lp space consists of functions whose p norm is finite:

Lp ≡
{

f (r) :
(∫

d3r | f (r)|p
)1/p

< ∞

}
, (5.33)

where the integral is taken in the Lebesgue sense [? ]. Thus our densities n(r) should at least be

2Self-adjointness can be proven for certain sets of potentials. For example, if the KS potential is in the L2 +L∞

space, the KS Hamiltonian is self-adjoint [? ].
3One may argue that there are many reasonable 3d potentials not in L3/2 +L∞, such as the 3D isotropic harmonic

oscillator: v(r) = 1
2 kr2. Such potentials do not describe real atoms, molecules, and solids, however, so we consider

them unrealistic. For a more tolerant viewpoint and in-depth mathematical discussion, see Ref. [? ].
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in L1 ∩L3, and our potentials in L3/2 +L∞. (This set includes Coulomb potentials [219].) For a

density whose inverted potential is not in L3/2 +L∞ we say this density is non-v-representable.

To avoid unphysical densities, one should impose non-negativity and finite kinetic energy on the

density, as articulated first by Lieb [219, 246, 284]:

∫
d3r n(r) = N < ∞, n(r)≥ 0 ∀ r, T vW

S [n]< ∞, (5.34)

where the von Weizsäcker kinetic energy is

T vW
S [n]≡

∫
d3r
|∇n(r)|2

8n(r)
, (5.35)

which is a lower-bound to the true kinetic energy T [n] of the system. We refer to such Lieb-

allowed densities (which satisfy Eq. (5.34)) as reasonable. Reasonable densities comprise a subset

of L1∩L3 (by Sobolev’s inequality, Ref. [219]), so they have many useful properties. For example,

for a reasonable density n(r) in a reasonable potential v(r) (i.e. v(r) is in L∞ +L3/2), the potential

energy |V [n]|< ∞ [219]. A density n(r) which fails to satisfy Eq. (5.34) can safely be regarded as

having an infinite F [n] (or TS[n] for non-interacting systems) [219], and thus will be avoided in any

iteration of the Kohn–Sham equations. Reasonable densities are not always v-representable, how-

ever: the inverted potential may not be in L∞ +L3/2. But in these instances, there always exists a

v-representable density ñ(r) that approximates the reasonable density n(r) to any desired accuracy,

and which allows the energies F [ñ] and TS[ñ] to be calculated [219, 246]. In the remainder of this

section, we will explore such an example within the realm of non-interacting v-representability, or

vS-representability for short.

We consider a density which satisfies Eq. (5.34) but which is not vS-representable. Inspired by the

fourth example of Englisch and Englisch [244], we choose:

nP(r) = A
(
1+ |r−1|3/4)2e−2r, (5.36)
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where we normalize to two electrons with

A =
256e2

π (596e2 +273B+506C)
(5.37)

≈ 0.196521 (5.38)

with

B =
√

2π

(
1+

2√
π

∫ √2

0
dt exp(t2)

)
(5.39)

C =
3

2
3
4

(
Γ

[
3
4

]
−
∫ 2

0
dt

exp(t)

t
1
4

)
. (5.40)

This pathological density nP(r) is not vS-representable due to the kink encountered at r = 1, which

would require an inadmissible infinite-discontinuity in the KS potential. To see this, we attempt to

invert nP(r) for its KS potential via Eq. (5.13):

vS[nP](r)
?
=

1
2
− 1

r
+

3
4
(
1+ |r−1|3/4

) [− 1
8|r−1|5/4

+
δ (r−1)
|r−1|1/4 −

sgn(r−1)
|r−1|1/4

(
1− 1

r

)]
, (5.41)

where we have used ∂x|x| = sgn(x), ∂ 2
x |x| = 2δ (x), and sgn(x) is the sign function. The worst

offender is the term proportional to δ (r− 1)/|r− 1|1/4 which fails to be in the set L3/2 + L∞.

This makes nP(r) non-vS-representable, since it may not even be the ground state of Eq. (5.41).

Furthermore, calculating TS[n] using the second-derivative formula of Eq. (5.8) is ill-defined, due

to this discontinuity. Nevertheless, nP(r) is reasonable: its T vW
S [nP] is finite, as we will soon show.

So, despite the density being reasonable, it is non-vS-representable. And while we are focusing on
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non-interacting electrons, it is clear that nP(r) would be troublesome for interacting electrons as

well.

We obtain T vW
S [nP] by first calculating its kinetic energy density. Due to spherical symmetry, we

have:

tvW
S [nP](r) =

1
2

(
d
dr

√
nP(r)

)2

=
A
2

(
−1−|r−1|3/4 +

3sgn(r−1)
4 |r−1|1/4

)2

e−2r, (5.42)

so that

T vW
S [nP] = 4π

∫
∞

0
dr r2 tvW

S [nP](r) =
Aπ

128e2

(
40e2 +93B−13C

)
(5.43)

≈ 0.996519. (5.44)

Calculating TS[nP] via the second-derivative formula (5.8) seems like a simple integration by parts:

TS[n] = −1
2

∫
d3r
√

n(r)∇2
√

n(r)

= −
∫

d3r n(r)vS[n](r)


(N ≤ 2), (5.45)

but due to the discontinuities in vS[nP](r) (5.41), this integral is ill-defined for nP(r).

We now illustrate how to obtain a vS-representable density that is arbitrarily close to our reasonable

density nP(r). As a bonus, this procedure will also give a well-defined kinetic energy using the

second-derivative formula. Consider a function fγ(x) that smooths out the |r−1| in Eq. (5.36), but

which has a parameter which can be continuously adjusted so that limγ→0 fγ(r−1) = |r−1|. We
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choose

fγ(x) =
√

x2 + γ2, (5.46)

setting

nγ(r) = Aγ

(
1+ f 3/4

γ (r−1)
)2e−2r. (5.47)

(Note that the density must be renormalized for each value of γ .) For small γ , the metric distance

between nP(r) and nγ(r), η [nP,nγ ] (5.31), is proportional to γ2.5; and nγ(r) remains v-representable

for all γ > 0. In the iterations of the Kohn–Sham scheme, tolerances between densities are already

built into the method—namely as in Eq. (5.12)—so we need no greater accuracy than that when

finding a v-representable density close enough to the target density.

As already mentioned, even though T vW
S [nP] is finite, TS[nP] via Eq. (5.45) is ill-defined. But by

using the smoothed density of Eq. (5.47), we can calculate TS[nγ ] and take the limit γ→ 0 (see Fig.

5.15). The result is the the same as T vW
S [nP], and this must be so based on simple mathematical
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considerations [284]. Two conjectures might be made after consider the foregoing:

1. A density being v-representable requires some bounds on the Laplacian (or second deriva-

tive) of the density. On a grid, this is not an issue because the Laplacian is always bounded.

2. Finite energies F [n] and TS[n] may be extracted from reasonable but non-v-representable

densities. This can be done by suitably smoothing (or discretizing) the density and carefully

taking limits, so as to remove divergent terms. For N ≤ 2, T vW
S [n] should give the limit of

TS[n] properly, and for N > 2 one should be able to use

TS[n] =
N/2

∑
j=1

∫
d3r |∇φ j(r)|2, (5.48)

to avoid any singular divergences from second derivatives.

For some concluding remarks, recall that the exact EHXC[n] is defined using both interacting and

non-interacting systems. This means that we need n(r) to be vS and v-representable to calculate
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EHXC[n]. While in principle vS-representable densities comprise a different set than v-representable

densities, we can use the methods of this section to calculate EHXC[n] for any reasonable density.

The prescription is to find a vS-representable density ñS(r) and a v-representable density ñ(r) which

are within some small tolerance of n(r) and each other. With the inverted potentials ṽS(r) and ṽ(r),

self-consistent KS calculations are possible, given vHXC[n](r) = ṽS(r)− ṽ(r) as in Eq. (5.18). We

hope to further explore the connections between interacting and non-interacting v-representability

in future work.

As a final note, all of our numerical inversions have used pure-state wavefunctions. This is justified

for spin-singlet 1d systems and for this simple spin-singlet example in 3d. In systems with degen-

eracy, however, the ensemble formulation of DFT should be used, not only because the ensemble

Ev[n] is convex [37], but also because the class of pure-state v-representable densities is smaller

than the class of ensemble v-representable densities [219, 246, 249]. Outside of this section, we

always worked on a grid, which means that v-representability difficulties were not an issue [284].

We found no cases where, as the grid spacing goes to zero, the potential diverged as in the example

here.

5.6 Conclusions

Our investigations into the exact functional demonstrate that it is possible to solve the Kohn–Sham

equations with the exact XC functional for simple model systems at great computational cost. Our

calculations involve mapping the functional landscape for more than just the ground-state density,

enabling us to address questions of convergence within the KS scheme. We tested many systems,

and found that strongly correlated systems pose a greater challenge, not only from a theoretical

standpoint in finding accurate approximations, but also practically within the KS scheme, where

smaller steps must be taken (or more sophisticated methods used) to converge the calculation. In

a word, the exact functional landscape for strongly correlated systems is more treacherous, but not

127



impossible, for a simple KS algorithm to navigate.

Despite the surmountable convergence difficulties for strongly correlated systems, the only sta-

tionary point of the KS equations is the ground-state density of the original problem, given v-

representable densities as inputs. This is simply a reaffirmation of the HK theorem, that there is a

one-to-one correspondence between ground state densities and potentials. This is the case even for

stretched systems, where approximate functionals would prefer to break spin symmetry; the exact

spin-density functional has only one stationary point, at the correct ground-state spin densities. All

changes in density away from that point cause the energy to rise. Thus the lowest energy stationary

point with an approximate functional has the same energy landscape as the true functional, and

should be treated as the prediction for the energy with that approximation, regardless of how many

symmetries have been broken. This reaffirms the conclusions of Ref. [97].

The density mixing algorithm used to prove convergence of the KS scheme is one of the simplest

ways to explore the infinite-dimensional set of possible densities, and it provides insight into the

gradient-descent nature of the KS scheme. While this algorithm is too primitive for modern practi-

cal implementations, its main purpose here is to provide a definite framework in which convergence

questions can be studied.

There is another avenue of research, but which cannot be pursued in these model 1d systems: the

effects of orbital degeneracy within exact KS theory, especially due to angular momentum. An

ensemble of degenerate densities may easily not be pure-state v-representable [219, 246], and the

extent of the challenges for exact DFT warrants investigation. Unfortunately, this avenue cannot be

explored for these 1d systems, in which there is no angular momentum. Exploring these concepts

in 3d would shed light on how DFT handles strong correlation effects due to exact degeneracies, in

contrast to the near degeneracies [285] we have investigated (e.g. in stretched H2) for which exact

DFT performs well in 1d [37].

Finally, we discuss the consequences of our example of a non v-representable density. The example
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we give is a reasonable density, meaning it is in the domain on with the Levy–Lieb density func-

tional is defined: it is normalized, non-negative, and has finite kinetic energy. Consistent with the

proof of Chayes et. al. [284], on any finite grid, it has a well-behaved Kohn–Sham potential. But

as the grid-spacing is brought to zero, divergences appear in that potential, so that it is ill-defined

in the continuum limit. So this is an example of a density that is v-representable on a lattice, but is

not v-representable in the continuum. Similarly, one can remain in the continuum and introduce a

small parameter (γ) which rounds off the cusp in the density. For any finite value of γ , no matter

how small, the potential is finite and well-behaved. Thus our cuspy density is arbitrarily close to a

v-representable density. These are the standard arguments given in the physics literature for why

v-representability is not an issue in DFT.

But our example shows that there is still something to worry about. Either regularization procedure

(finite grid spacing or finite γ) fails in the limit, and anyone doing an inversion on such a density

should check their KS potential converges to a well-defined limit. Our example density fails this

test.

The important question is not whether some artificially created density is v-representable or not.

The real question is, given the densities of atoms, molecules, and solids, i.e., densities generated

by solving the Schrödinger equation with Coulomb interactions, are there features like that of our

example that produce ill-behaved KS potentials? This is all that matters, and practical experience

suggests that such situations are rare, if they occur at all.
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Chapter 6

Conclusion

A theoretical program has been developed to investigate the behaviors of the exact functional. This

was accomplished by using the density matrix renormalization group and a one dimensional Hub-

bard model, whose interaction is related to the spherically averaged Coulomb interaction. The one

dimensional system was shown to reproduce the same qualitative behaviors as in real chemical

systems and benchmarked. The one dimensional system was used to find exact results in den-

sity functional theory, such as exact Kohn-Sham potentials. Exact data was then used to machine

learn the exact functional with kernel ridge regression and implement a self-consistent solver to

use the exact functional. This was completely orbital free and obtained answers to chemical ac-

curacy, showing that machine learning methods are sufficient to learn the functional. A study of

the convergence of the exact functional was undertaken with the one dimensional system including

searches for non-v-representable systems, none of which were found. The final chapter used a

class of transformations called wavelets to renormalize a system represented on a fine lattice to a

coarsened basis set. The basis set was shown to reproduce the answer on the fine lattice to chemical

accuracy with 2-3 functions per electron.

Together, this comprises a complete deduction of the properties and ability to compute with the
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exact functional, albeit only demonstrating this in one dimension. We have provided a thorough

understanding of how such a computation would converge, the methods to construct the exact func-

tional with machine learning methods that is orbital free and available for self-consistent computa-

tion, and an optimized basis to represent the function with as few degrees of freedom as possible.
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[139] P.-O. Löwdin, Physical Review 97, 1474 (1955).
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Appendix A

The Quantum N-body problem

A.1 Overview

We discuss some basic properties of the Schrödinger equation. The discussion covers the role of

self-adjointness and some spectral properties of the many-body Hamiltonian.

This paper was authored with and given permission to be printed here by Carlos Garcia-Cervera.

It was submitted as part of the Institute for Pure and Applied Mathematics summer school Putting

the theory back in density functional theory.

A.2 Mathematical preliminaries

Before we discuss the quantum N-body problem, we introduce some basic mathematical concepts.

We assume that the reader has some basic knowledge of linear algebra and analysis [286].

We begin with the definition of metric and metric space: Given a nonempty set X , a metric d(·, ·)

on X is a function d : X×X → R with the following properties:
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1. d(x,y)≥ 0 for all x,y ∈ X , and d(x,y) = 0 if and only if x = y.

2. d(x,y) = d(y,x) for all x,y ∈ X .

3. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

We denote by (X ,d) a space X endowed with a metric d, and call it metric space. Note that one

can typically define many different metrics on the same space X . The notion of metric generalizes

the intuitive notion of distance between objects, and gives us a natural concept of limit and con-

vergence: Let (X ,d) be a metric space. Consider a sequence {xn}n∈N ⊂ X , and x ∈ X . We say that

{xn}n∈N converges to x (denoted xn→ x) as n tends to infinity (n→ ∞), if

∀ε > 0, ∃n0 ∈ N such that d(xn,x)< ε ∀n≥ n0.

We usually represent this by limn→∞ xn = x. Given a sequence {xn}n∈N in a metric space (X ,d),

we often want to decide whether the sequence converges. The definition of limit that we just saw

requires knowing what the limit of the sequence is, i.e., we need to know what x is, so that we

cam measure the distance from the elements in the sequence to x. What we need is a condition

that can guarantee that a limit exists, rather than a condition to verify that a certain given element

is the limit. This is provided by the Cauchy criterion Let (X ,d) be a metric space, and consider a

sequence {xn}n∈N ⊂ X . We say that {xn}n∈N satisfies the Cauchy criterion (or Cauchy condition)

if

∀ε > 0, ∃n0 ∈ N such that d(xn,xm)< ε ∀n,m≥ n0.

In such case we say that the sequence is a Cauchy sequence. Notice that this condition only

involves knowledge of the sequence itself. It is clear that every convergence sequence satisfies the

Cauchy criterion. The converse, however, is not true in general: We say that a metric space (X ,d)

is complete if every Cauchy sequence is convergent (in X). As an example, consider the space of
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all rational numbers, Q, and all real numbers, R, with the usual metric given by the absolute value:

d(p,q) = |p−q| for all p,q∈Q. We know that every real number can be approximated by rational

numbers, that is, for all r ∈ R, there exists a sequence {qn}n∈N ⊂ Q such that limn→∞ qn = r.

Therefore we see that (Q,d) is not complete. One can prove, however, that (R,d) is indeed

complete [286].

A metric space does not necessarily have a liner structure, that is, we cannot add elements. From a

physical point of view, this is important, given the principle of superposition [287]. Therefore we

will consider vector spaces from now on. In this case, we can define the notion of norm: Given

a vector space V over the complex numbers, C, we define a norm, usually denoted by ‖ · ‖, as a

function ‖ · ‖ : V → R with the following properties:

1. ‖v‖ ≥ 0 for all v ∈V , and ‖v‖= 0 if and only if v = 0.

2. ‖αv‖= |α|‖v‖ for all α ∈ C and all v ∈V .

3. ‖u+ v‖ ≤ ‖u‖+‖v‖ for all u,v ∈V .

We denoted by (V,‖·‖) the pair of a vector space and its norm, and we call it a normed space. Give

a norm ‖ · ‖ on V , we can define the metric d(u,v) = ‖u− v‖ for all u,v ∈V . Thus, every normed

space is a metric space, and we can define convergence. A Banach space is defined as a complete

normed space.

Another important concept is that of an inner product. On a normed space we can measure dis-

tances, but not angles and other geometric properties, such as orthogonality. An inner product

allows us to do this: Given a complex vector space V , an inner product (·, ·) on V is a map

(·, ·) : V ×V → R with the following properties:

1. (u,u)≥ 0 for all u ∈V .

2. (αu+βv,w) = α(u,w)+β (v,w) for all u,v,w ∈V and all α,β ∈ C.
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3. (u,v) = (v,u) for all u,v ∈V .

It follows from the last two condition that

(w,αu+βv) = α(w,u)+β (w,v) ∀u,v,w ∈V and ∀α,β ∈ C.

Every inner product satisfies the Cauchy-Schwarz inequality: Let V be a vector space and (·, ·)

an inner product on V . Then

|(u,v)| ≤ (u,u)1/2(v,v)1/2 ∀u,v ∈V.

It follows easily from this that the function ‖u‖ = (u,u)1/2 defines a norm on V . Another conse-

quence of the Cauchy-Schwarz inequality is that we can define the angle θ ∈ [0,π], between to

(nonzero) elements u,v ∈V by the relation

cos(θ) =
(u,v)
‖u‖‖v‖

.

We say that two vectors u,v ∈V are orthogonal if (u,v) = 0, i.e. if θ = π/2.

We have seen that an inner product defines a norm; if with this norm, the space is complete, we say

that it is a Hilbert space. An example of a Hilbert space that we will be using is L2(R3;C), that is,

the space of all complex-valued Lebesgue measurable functions on R3 that are square integrable.

Operators

Let H be a Hilbert space. An operator T on H is a linear map T : D(T )→H , where D(T ),

called the domain ot T , is a subspace of H . We say that an operator T : D(T )→H is bounded if

∃M > 0 : ‖Tu‖H ≤M‖u‖H ∀u ∈D(T ). We denote by B(H ) the space of all bounded operators
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defined on H . Given T ∈ B(H ), we can define

‖T‖= inf{M > 0 | ‖Tu‖ ≤M‖u‖ ∀u ∈H } .

One can prove that this defines a norm on B(H ), and that with this norm B(H ) is a Banach space.

We say that T is densely defined if D(T ) is dense in H , i.e., if D(T ) = H , where we denote by

E the closure of a set E [286]: Given a metric space (X ,d), and a nonempty subset E ⊂ X , we

denote by E ′ the set of all limit points of E in X . Then, the closure of E is the set E = E ∪E ′.

It T is densely defined, then any element in H can be approximated by a elements in D(T ):

∀u∈H ,∃ψn ∈D(T ) s.t. ‖ψn−u‖H
n→∞→ 0. For example, the set of smooth, compactly supported

complex-valued functions on Rd , denoted C∞
0 (Rd;C), is dense in L2(Rd;C): Given ψ ∈ L2(Rd;C)

and ε > 0, we can find φ ∈C∞
0 (Rd;C) such that ‖ψ−φ‖2 < ε , where

‖ψ−φ‖2
2 =

∫
Rd
|ψ−φ |2.

An operator T on H that is bounded and densely defined can be extended it from D(T ) to H in

a unique way. Therefore, unbounded operators (that is, those that are not bounded), are typically

defined on a proper subspace of H .

If an operator T is densely defined, we can define the adjoint T ∗ as the maximal operator such that

(Tu,v) = (u,T ∗v), ∀u ∈D(T ), ∀v ∈D(T ∗). (A.1)

The adjoint is defined on

D(T ∗) = {u ∈H |the map from D(T )→ C given by v→ (T v,u) is continuous}. (A.2)
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This definition involves quite a bit of mathematics. The idea is the following: If T is densely

defined, the domain D(T ) is dense. Therefore the linear map l(v) = (T v,u) can be extended from

D(T ) to H . We will continue to denote it by l. Given such a linear, continuous, functional, we

can use the Riesz representation theorem, which says that in a Hilbert space, any linear functional

is an inner product. This means that ∃!y ∈H such that

l(v) = (v,y) ∀v ∈H . (A.3)

We therefore define T ∗(u) = y.

We say that a densely defined operator T is symmetric if its adjoint T ∗ is an extension of T , i.e.,

D(T )⊂D(T ∗) and

(Tu,v) = (u,T v) ∀u,v ∈D(T ) (A.4)

This is often denoted as T ⊆ T ∗. We say that T is self-adjoint if T = T ∗, that is, if D(T ) =D(T ∗),

and

(Tu,v) = (u,T v) ∀u,v ∈D(T ). (A.5)

We denote by S (H ) the set of bounded, self-adjoint operators defined on H .

As an example, consider the operators T1 = i d
dx on L2(R3), defined on D(T1) = C∞

0 (R) having at

most a finite number of derivatives, and T2 = i d
dx , defined on D(T2)=H1(R)=

{
f ∈ L2(R) | d f

dx ∈ L2(R)
}

having a not infinite number of derivatives. The Sobolev space H1(Rd) will appear later on

when we discuss the many-body Hamiltonian. There are several ways to define it formally, see

[288], for example. It is easy to check that T1 is symmetric. Its adjoint is T ∗1 = i d
dx , defined on

D(T ∗1 ) = H1(R), that it, it is precisely T2. Therefore T1 is symmetric, but not self-adjoint. the

operator T2, on the other hand, is self-adjoint.
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One encounters this type of situation frequently, in which an operator can be seen formally to be

symmetric by simple manipulations, such as integration by parts. The key to self-adjointness in

such situations is whether the domain in which we have defined the operator and that of its adjoint

are the same. Under some conditions, a symmetric operator can have a self-adjoint extension [289].

Self-adjointness is fundamental for the correct statistical interpretation of quantum mechanics, as

shown by Von Neumann [290]. Furthermore, when discussing time-depending quantum systems,

it is important to be able to define the quantum propagator eitĤ ; it is precisely for self-adjoint

operators that this can be defined and it forms a continuous group of unitary transformations. The

equivalence of these two statements is precisely the content of Stone’s theorem: Let H be a

Hilbert space, and {U(t)}t∈R a family of unitary transformations on H , i.e., U(t) : H →H for

all t ∈ R such that ‖U(t)x‖ = ‖x‖ for all x ∈H . The family of unitary operators has the group

property (i.e., U(t)U(s) = U(t + s) for all t,s ∈ R) and is strongly continuous (i.e., U(t)→U(s)

when t → s), if and only if, there exists a self-adjoint operator Ĥ on H such that U(t) = eitĤ .

Note that if an operator T on H is bounded, the operator eitT can be defined as a Taylor series.

However, if T is unbounded this is no longer the case. If the operator is self-adjoint, eitT can be

defined via the spectral theorem [289].

A.3 The many-body Hamiltonian and Schrödinger’s equation

We consider an isolated system of N-electrons and K-nuclei in the spinless, non-relativistic, Born-

Oppenheimer approximation. Mathematically, such a quantum system is described by a state space

H , which is a complex Hilbert space, and a Hamiltonian Ĥ, which is a self-adjoint operator on

H [290, 291].
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Our Hilbert space will be

H = L2(R3N). (A.6)

The state of the system is therefore represented by a wave function Ψ ∈ L2(R3N). Since electrons

are fermions, we require that Ψ be anti-symmetric, i.e.,

Ψ(rσ(1), . . . ,rσ(N)) = (−1)εσ Ψ(r1, . . . ,rN),

for all permutations σ of {1, . . . ,N}, where εσ denotes its parity. We will denote by A the set of

antisymmetric wave-functions:

A =
{

Ψ ∈ L2(R3N) | Ψ is antisymmetric
}
.

The Hamiltonian is given by

Ĥ =−1
2 ∑

i
∆i +∑

i
v(ri)+∑

i< j

1
|ri− r j|

, (A.7)

where the external potential is defined as

v(r) =−
K

∑
α=1

Zα

|Rα − r|
, (A.8)

for K nuclei with atomic charges {Zα}K
α=1 and positions {R}K

α=1. However, much of what is

presented applies to more general potentials.

Based on our previous discussion, we need to ask where we should define this operator, and

whether it is self-adjoint. To understand this, we define the operator

Ĥ0 =−
1
2 ∑

i
∆i +∑

i< j

1
|ri− r j|

. (A.9)
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Kato [292] proved that Ĥ0 is self-adjoint in the space

D(Ĥ0) = H2(R3N)∩A =
{

Ψ ∈A | ∆Ψ ∈ L2(R3N)
}
.

The Kato-Rellich theorem states the following: Let H be a Hilbert space, and let H0 be a self-

adjoint operator on H with domain D(H0). Let V be a symmetric operator on H that is small

relative to H0, in the sense that D(V )⊂D(H0) and ∃a,b > 0 with a < 1 such that

‖Vu‖ ≤ a‖H0u‖+b‖u‖ ∀u ∈D(V ).

Then H = H0 +V is self-adjoint on D(H0). If, in addition, H0 is bounded below, so is H. As

a consequence, since the Coulomb-type potential v(r) = −∑α
Zα

|Rα−r| belogs to L2 + L∞ (i.e., if

∃v1 ∈ L2,v2 ∈ L∞ such that v = v1 + v2), one can prove that Ĥ is self-adjoint on D(Ĥ0) = H2∩A

[292].

The ground state energy of the system, Eg.s. , is

Eg.s. = inf
ψ∈D(H)

‖ψ‖=1

(ψ,Hψ). (A.10)

Note that since

−
∫
R3N

Ψ∆Ψ =
∫
R3N
|∇Ψ|2 ∀Ψ ∈ H2(R3N),

the expression (A.10) makes sense in a larger domain, what is called the form domain Q(H). In

this case, Q(H) = H1(R3N)∩A , which is often denoted as ∧N
i=1H1(R3. One can show that

Eg.s. = inf
ψ∈Q(H)

‖ψ‖=1

(ψ, Ĥψ). (A.11)

Note that, for a general potential even if Eg.s. >−∞, there might not be a ground state; for example,
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take the case v = 0, in which case Ĥ reduces to Ĥ0. If there is a ground state, though, then it

satisfies the equation

Ĥψ = Eg.s.ψ, ψ ∈D(Ĥ), ‖ψ‖= 1. (A.12)

A.4 Spectrum and Spectral Properties

Given an operator T on a Hilbert space H , defined on D(T ), we define its range as R(T ) =

{Tu | u ∈ D(T )}. The resolvent set of an operator T on the Hilbert space H is the set ρ(T ) =

{ξ ∈ C|(T − ξ 1̂) : D(T )→ R(T − ξ 1̂) has an inverse, (T − ξ 1̂)−1 is continuous, and R(T −

ξ 1̂) is dense in H }. Therefore, if ξ ∈ ρ(T ), the inverse (T −ξ 1̂)−1 can be extended continuously

to H . The spectrum of T is the complement of the resolvent set: σ(T ) = C\ρ(T ).

If the operator T is self-adjoint and bounded below by Egs, then σ(T )⊆ [Eg.s.,+∞).

There are several decompositions of the spectrum and the nomenclature is not always consistent in

the literature. We define the point spectrum,

σp(T ) = {ξ ∈ C|∃ψ 6= 0, ψ ∈D(T ) such that (T −ξ 1̂)ψ = 0}. (A.13)

These are the eigenfunctions, or in short, e-functions.

We define the continuous spectrum as

σc(T )= {ξ ∈C|∃(T−ξ 1̂)−1 : R(T−ξ 1̂)→H ,R(T−ξ 1̂) is dense, but (T−ξ 1̂)−1 is not continuous}.

(A.14)
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And we define the residual spectrum

σr(T ) = {ξ ∈ C|∃(T −ξ 1̂)−1 but its domain R(T −ξ 1̂) is not dense}. (A.15)

For self-adjoint operators, σr(T ) = { /0}.

Note that the spectrum is the disjoint union of these sets:

σ(T ) = σp(T )
.
∪σc(T )

.
∪σr(T ) (A.16)

We can also distinguish the discrete spectrum,

σd(T ) = {ξ ∈ C|ξ ∈ σp(T ) where ξ is isolated with finite multiplicity} (A.17)

The complement of the discrete spectrum is called the essential spectrum:

σess(T ) = σ(T )\σd(T ) (A.18)

A result due to Kato [292] shows that if H = H0 +V , H0 is self-adjoint and V is compact and

symmetric, then H is self-adjoint and has the same essential spectrum as H0.

What is the physical meaning of the spectrum? This can be made precise as follows. Consider

HB the closure of the subspace spanned by all eigenvectors of H and HC = H ⊥
B its orthogonal

complement; this means that H = HB⊕HC. We can define σp(T ) = σ(T |HB) and σcont(T ) =

σ(T |HC). The first set is the point spectrum; the second set is a different notion of continuous

spectrum often found in textbooks, and it differs from the previous one. Note that these sets may

not be disjoint.

The following theorem, often referred to as the RAGE Theorem due to its contributors Ruelle [293],

Amrein and Georgescu [294] and Enss [295], provides a precise statement about what eah subspace
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represents: Let T be a self-adjoint operator on L2(Rd) with the local compactness properties, that

is,

(∀ f ⊂ L∞, f (r)→ 0, |r| → ∞ then f (r).(H−ξ 1̂)−1 compact ∀ξ ∈ ρ(H). (A.19)

Let χR be the characteristic function of a ball of radius R > 0, i.e.,

χR(r) =


1 if ‖r‖< R,

0 otherwise.

Then:

ϕ ∈HB⇔ lim
R→∞
‖(1−χR)e−itH

ϕ‖= 0 (A.20)

uniformly in the range 0≤ t < ∞.

Furthermore,

ϕ ∈Hc⇔ lim
t→∞

1
t

∫ t

0
‖χRe−isH

ψ‖2ds = 0 ∀R⊂+∞ (A.21)

Therefore, the space HB corresponds to what we intuitively call bound states, and the space HC

corresponds to the scattering states.

A.4.1 The spectrum of Ĥ

An important result is what is called the HVZ Theorem, due to Hunziker [296], van Winter [297],

and Zhislin [298], and it describes the structure of the spectrum of the many-body Hamiltonian. We

will denote the Hamiltonian in the following by ĤN , in order to indicate the number of electrons in
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Figure A.1: A diagram of spectra as formalized in the HVZ theorem. A discrete set of eigenvalues
in σd turns into a continuum past Σ in the σess domain.

the system. The HVZ theorem states that if N ≤ Z = ∑
K
α=1 Zα ,

σd(ĤN) =
{

E0
N ≤ E1

N ≤ ·· · ≤ Ek
N ≤ . . .

}
,

and

σess(ĤN) = [ΣN ,∞),

for some constant ΣN ≥ supk{Ek
N}. Schematically, the spectrum of ĤN looks like Fig. A.1, and it

means, for example, that the many-body Hamiltonian captures the physical picture of a molecule

with infinitely many energy levels.

Furthermore, one can prove that the eigenvalues {Ek
N}∞

k=1 accumulate only at ΣN , and if N ≥ 2,

then

ΣN = E0
N−1.

A.5 Conclusion

Quantum mechanics is based on operators which produce observables. In order to properly define

sufficient operators to give observables that give finite values, we have introduced the concept
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of self-adjointness. Physics texts introduce Hermitian operators but do not define the difference

between symmetric and self-adjoint operators, the former being defined on the same domain as its

adjoint and the latter being also onto. Self-adjoint operators are sufficient for defining a spectral

theory and ensuring quantum mechanics is well defined.
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Appendix B

History of the Generalized Gradient

Approximation

B.1 Overview

Up to this point, we have explicitly avoided constructing arguments for better approximate func-

tionals. Part of this is practical: for the case of our one dimensional model, the class of functionals

beyond the LDA special consideration beyond what is derived in the three dimensional case. Con-

sider the Becke-88 functional which relies on an asymptotic behavior of the high Z atoms [299].

This is not available for the exponential interaction since it does not bind all neutral atoms. How-

ever, it is important to understand where approximations fit in the context of the exact functional,

since a thorough understanding of them will provide a context for us to use the knowledge gleaned

from the investigation in the previous chapters.

In the construction of approximate density functionals, the natural next ingredient beyond the lo-

cal density and local spin polarization is the density gradient. The second-order density gradient

expansion of the exchange-correlation energy is the leading correction to the local density approxi-
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mation (LDA) for a density that varies slowly over space, and might have been expected to provide

a systematic improvement for real systems. Instead it was systematically worse for the correlation

energy. This was explained by the fact that the gradient expansion of the exchange-correlation

hole density can violate exact constraints that LDA satisfies, being better than LDA for the hole

density close to an electron but seriously worse far away. Cutting off the spurious long-range parts

of the gradient-expansion hole to recover the exact constraints led to the first generalized gradient

approximations (GGAs). Later GGAs were fitted to appropriate norms like atoms, or to exact con-

straints on the energy functional. But the GGA form was still too limited to avoid a dilemma: A

single GGA cannot simultaneously yield accurate bond lengths and accurate binding energies.

This retrospective offers some insight into how GGAs were developed for real systems.

This paper was authored with and given permission to be used here by John Perdew. It was submit-

ted as part of the Institute for Pure and Applied Mathematics summer school on Putting the theory

back in density functional theory.

B.2 Background

At the beginning of electronic structure theory, before the 1970s, calculations were severely lim-

ited by the computational power available then. They often started from the simplified Hartree

approximation where EXC = 0. This approximation is cheap to calculate. It produces poor results,

however. Typically, atoms are underbound to one another and lattice constants are too long.

The local spin density approximation (LSDA) can be summarized as an approximation to the

exchange-correlation energy,

ELSDA
XC =

∫
dr n(r)εunif

XC (n↑(r),n↓(r)). (B.1)
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Note that
∫

dr n(r) is the number of electrons N and εunif
XC is the energy density per particle for the

uniform gas. This approximation produces better results over the Hartree approximation. LSDA

does much better at binding one atom to another. Typical errors are a few percent including lattice

constants and binding energies. LSDA overbinds slightly in a wide variety of cases.

The key difference between the Hartree and LSDA approximations lies in the conditional proba-

bility [300, 301]. The Hartree approximation assumes that the probability of finding an electron at

a second location is independent of the first location at which an electron was found immediately

before, but the LSDA takes such a dependence into account.

So, LSDA is a good starting point–albeit not perfect.

B.3 Moving from local approximations to gradient approxima-

tions

Most chemists did not like the LSDA. More accurate functionals were needed. They wanted ac-

curate results to better than 1%, though condensed matter physicists used it widely. Chemists

are typically interested in precise measurements, so their wavefunction theories tended to beat the

accuracy of LSDA.

A natural next step beyond LSDA is to add another local ingredient: the gradient of the local

density.

B.3.1 Guiding principles of generalized gradient approximations

Three golden rules were needed to construct better density functionals non-empirically.
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1. Get the uniform gas limit correct

This doesn’t go beyond the LSDA, but it is a good starting point (beyond the Hartree ap-

proximation in particular).

2. Satisfy more exact constraints

Many were introduced by Mel Levy [302]. Other considerations are hidden constraints (see

LDA lecture [303]).

3. Add more ingredients that provide more information

For example, moving from LDA to LSDA, one implements n→ n↑,n↓ This gives the func-

tional more information and therefore more accuracy in calculating, for example, binding

energies.

This list is not meant to be exhaustive. It simply presents some guiding principles that were used

to move on from LSDA.

B.3.2 Density gradient approximation

Going back to Hohenberg-Kohn [1], we can attempt to construct the density functional as the result

of a power series, with a small parameter proportional to |∇n|/n. For a density that varies slightly

over space, a density-gradient-dependent functional may be found

EGE2
XC [n] =

∫
dr
{

nε
unif
XC (n)+BXC(n)

|∇n|2

n4/3

}
(B.2)

where GE2 refers to the gradient expansion to second order in perturbation theory. Spin indices

and the density dependence on r have been suppressed until needed, and BXC(n) = BX+B(̧n). Note

that the coefficient for exchange, BX, is not density dependent based on scaling relations (see Levy

lecture [302]) while the coefficient for B̧ is since it has no equivalent scaling equality. The form of
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this expression was given by Ma and Bruckner [304] originally, with later understanding provided

by Langreth and Perdew [305, 306]. The general strategy to determine these coefficients is to start

from the uniform gas and apply a slowly varying potential. From second-order perturbation theory,

the potential can be eliminated in terms of the density which produces the result. For B̧, one must

start from the random phase approximation (RPA).

But the correlation energy of a real system is positive when this procedure is used. This is not

physical. It is known that the exchange hole should be negative everywhere while the correlation

hole can be positive or negative and both possess a damped and constrained long-range behavior.

The exchange hole density should integrate to -1, and the correlation hole density to 0. When the

two coordinates of the hole r and r′ are far apart, this expansion worsens since it does not capture

these features.

Langreth and Perdew [305, 306] explained this as follows. Gradient expansions of the exchange-

correlation energy also correspond to expansions of the hole density. The second-order gradient

expansion of nXC(r,r′) is not the XC hole of any possible physical configuration. This loses the

exact constraints on nXC that LDA satisfied. The second-order gradient expansion improves the

hole over LDA only in the region close to the electron that the hole surrounds.

For the generalized gradient approximation (GGA), [307]

EGGA
XC [n] =

∫
drnε

GGA
XC (n,∇n) (B.3)

where εGGA
XC has all the higher orders of ∇n like |∇n|4, |∇n|6, |∇n|8, . . .. An enhancement factor,

FXC, over the local exchange can be defined by

EGGA
XC [n] =

∫
drFXC(n, |∇n|)nε

unif
X (n). (B.4)

The first attempt to find a suitable form for FXC was by Langreth and Mehl [307]. It recovers
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the GE2 only when |∇n|/n is small enough. Another GGA was constructed by Perdew and Wang

[308]. These early GGAs were based on starting from the gradient expansion of the hole, nXC(r,r′),

by cutting off the spurious long range parts and satisfying the sum rules for nX and ņ. On integration

we would then find numerically εGGA
XC (n, |∇n|) and parameterize the result as an analytic function

of n and |∇n|.

B.3.3 Results

Compared to LSDA, the spin-density GGA:

1. reduces overbinding energies, but not enough

2. increases bond lengths but by too much

There is some difference between GGAs, some are better for binding energies by being worse for

bond lengths or vice versa. This dilemma seems to be a consequence of the overly-limited GGA

form of Eq. B.3.

Chemists moved to DFT largely based on seeing how effective and quick a computation with a

GGA is compared to Hartree Fock. In fact, at a meeting in 1983 in Menton, Mel Levy and Axel

Becke spoke with John Pople, who led the field in wavefunction methods and shared the Nobel

prize with Walter Kohn in 1998 [309, 310]. Pople was convinced to try DFT methods and was

pleased by the GGA results [311]. The floodgates opened, and DFT became as widely used in

chemistry as in condensed matter physics.
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B.3.4 Current Approach

A slew of exact constraints is available. Many exist for the functional itself instead of the hole.

This made a new path. We satisfy exact constraints on EXC[n], not on nXC necessarily. The Perdew-

Burke-Ernzerhof (PBE) [222, 312] was a transitional functional in that regard. Two derivations

gave the same result in that case:

1. Cutoffs in real space of the second-order gradient expansions for the hole densities, including

correlation as well as exchange.

2. Satisfaction of exact conditions

• Recovery of the uniform density limit

• Negativity of exchange and correlation energies

• Recovery of the gradient expansion for correlation

• Correct static linear response of the density at long wavelength

• Uniform scaling equality for exchange and inequality for correlation

• High density limit of the correlation energy

• Lieb-Oxford lower bound [313] on the exchange-correlation energy

All hole cutoffs were done consistently in real space.

Other GGAs can be constructed by fitting to the energies of atoms, e.g. B88 [299], or of molecules

(e.g., Ref. [314]). GGAs can be compared by comparing their enhancement factors FXC(n, |∇n|)

over local exchange.

Note that to satisfy the uniform scaling conditions,

FX(n, |∇n|) = FX(s) (B.5)
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Figure B.1: Sketch of the exchange enhancement factor Fx(s) for the PBE GGA. Note that the
range 0 < s≤ 3 contributes significantly to important energy differences.

where

s =
|∇n|
2k f n

=
|∇n|

2(3π2)1/3n4/3 (B.6)

which is the reduced or dimensionless density gradient, with k f = (3π2n)1/3.

LDA and GGA are computationally efficient and useful, but of limited accuracy. GGAs cannot

simultaneously recover GE2 for exchange and the linear response of the uniform gas.

GGAs cannot simultaneously recover the second-order gradient expansion for exchange and accu-

rate binding curves. PBE96 is a remarkable compromise. PBEsol is good for lattice constants but

not for binding energies [315].

B.3.5 Jacob’s ladder of density functional approximations

A trade-off appears when considering functionals that contain more ingredients. Simpler function-

als cost less to evaluate, but they offer less accuracy than functionals containing more ingredients.

This can be summarized by examining Jacob’s ladder of density functional approximations [316],
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Figure B.2: Jacob’s ladder represents the levels of approximation for the density functional. Going
up the ladder adds more ingredients, giving more accuracy, but also increases the cost. LDA
includes only the value of the local density while GGAs include gradients as well. Meta-GGAs
includes kinetic energy densities τ =∑i |∇φi|2/2. Functionals not in the semilocal category include
hybrids which mix exact exchange into the functional. RPA-like functionals can be used but at
great cost. If one could go one step higher, then the exact functional would be achieved. The step
below LDA is the very inaccurate Hartree approximation.

shown in Fig. B.2. At the lowest rung, LDA includes only the local density n to construct the XC

energy density at r. The next rung is occupied by GGAs which use both n and ∇n. This comes at

a far greater accuracy than LDA.

Including kinetic energy densities gives the meta-GGA [317]. The next rung includes hybrid func-

tionals, but these require the evaluation of exact exchange and thus an increased cost. The last rung

comprises methods related to the random phase approximation (RPA) which include unoccupied

orbitals. These come at an even larger cost but improved accuracy.

B.4 Conclusion

Density functionals have a long history of steady improvement. Each time more information from

exact constraints and appropriate norms is used, the functionals become better approximations.
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The move from the overly crude Hartree approximation to using the local density approximation

improved results, but not to chemical accuracy. The move from the local density approximation to

include gradients–and in particular generalized gradient approximations based on satisfying exact

sum rules–made functionals accurate enough for comparison with chemical experiments. Hence,

they are widely used.
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