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ARTICLE

Multi-parameter photon-by-photon hidden Markov
modeling
Paul David Harris 1✉, Alessandra Narducci 2, Christian Gebhardt2, Thorben Cordes2, Shimon Weiss 3,4 &

Eitan Lerner 1,5✉

Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical

approach for studying conformational dynamics in biomacromolecules. Photon-by-photon

hidden Markov modeling (H2MM) is an analysis tool that can quantify FRET dynamics of

single biomolecules, even if they occur on the sub-millisecond timescale. However, dye

photophysical transitions intertwined with FRET dynamics may cause artifacts. Here, we

introduce multi-parameter H2MM (mpH2MM), which assists in identifying FRET dynamics

based on simultaneous observation of multiple experimentally-derived parameters. We show

the importance of using mpH2MM to decouple FRET dynamics caused by conformational

changes from photophysical transitions in confocal-based smFRET measurements of a DNA

hairpin, the maltose binding protein, MalE, and the type-III secretion system effector, YopO,

from Yersinia species, all exhibiting conformational dynamics ranging from the sub-second to

microsecond timescales. Overall, we show that using mpH2MM facilitates the identification

and quantification of biomolecular sub-populations and their origin.
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The role of structural dynamics in biomolecular function has
come to the forefront of biophysical research1,2. Biomole-
cules in solution exhibit structural dynamics at a hierarchy

of timescales and modes, from bond rotations to movements of
entire globular domains, occurring at times from picoseconds to
seconds and longer3. In many cases, the stages in the biomole-
cular function are promoted by different sub-populations of
closely-related structures, or conformations. Examples include
coupling of catalytic activity to domain dynamics in some
enzymes4,5, the dynamics of the DNA bubble in transcription
initiation to support transcription start site selection6,7, DNA
mismatch repair8, protein translocation9, chaperone action10, the
allosteric regulation of the AAA+ disaggregase11, active mem-
brane transport12–17, and many other important biochemical
processes, in which structural dynamics is coupled to or influ-
ences biological function1,2. Thus, methods capable of identifying
and characterizing distinctly time-separated structural sub-
populations of biomolecules are of great interest in biomole-
cular sciences and structural biology.

NMR- and EPR-based methods18–21 as well as single molecule
methods22–26 have come to the forefront in the field of dynamic
structural biology, each with their own advantages and limita-
tions. Single molecule methods allow probing one biomolecule at
a time while tracking multiple experimental parameters simul-
taneously. This approach provides access to conformational
heterogeneity, real-time kinetics, and identification of rare con-
formational states otherwise masked due to ensemble averaging.

One of the most popular single molecule approaches relies on
the phenomenon of Förster resonance energy transfer (FRET),
single molecule FRET (smFRET)27, where the biomolecule of
interest is site-specifically labeled at two strategic residues with two
fluorescent dyes, which can exhibit transfer of excitation energy
from the donor dye to the acceptor dye with a probability (or
efficiency; E), which is inversely proportional to the sixth power of
the distance between the dyes, according to the Förster
relation28–30. The FRET efficiency can be determined either

ratiometrically, through the donor and acceptor fluorescence
intensities, or through the use of fluorescence lifetime-based
methods. Ratiometric methods yield an initial raw efficiency, Eraw
(see Supplementary Eq. 1), to which correction factors must be
applied, such as leakage of donor photons into the acceptor
channel, direct excitation of the acceptor by the donor light source,
differences in donor and acceptor fluorescence quantum yields and
detection efficiencies (better known as the γ -factor), in order to
yield accurate E31–33. Lifetime-based approaches do not require
such corrections, but rely on pulsed laser sources and time-
correlated single photon counting modules34. SmFRET has proven
to be a powerful tool to disentangle conformational sub-
populations of biomacromolecules undergoing dynamic transi-
tions over a range of timescales3. Nevertheless, smFRET remains
limited by the time resolution and observation time of the
apparatus3. A popular approach is the observation of individual
freely-diffusing molecules through the excitation volume of a
confocal microscope1,2. Here the observation time of a single
molecule is on the order of a few milliseconds, with possible time
resolution of dynamics as rapid as nanoseconds using advanced
analyses of photon statistics within single molecule photon bursts
(Fig. 1a, b). Some of the latter methods include photon distribution
analysis, or probability distribution analysis (PDA)35–40, burst
variance analysis (BVA)41, FRET two-kernel density estimator
(FRET-2CDE)42, analysis of two-dimensional histograms of donor
fluorescence lifetimes, and ratiometric FRET efficiencies of bursts,
also known as FRET lines34,43,44, fluorescence correlation spectro-
scopy (FCS)45,46 coupled to FRET47–49, maximum likelihood
approaches50–54, such as hidden Markov modeling4,7,55,56 (HMM),
and photon recoloring57,58. These have been summarized in recent
reviews of the field1,2.

Photon-by-photon hidden Markov modeling (H2MM)56 is a
maximum likelihood method57,59 that adopts the HMM
machinery, while working directly with the photon data without
binning into fluorescence intensity time traces, other than the
clock time of the acquisition card, e.g. 50 ns for nsALEX, 12.5 ns

Fig. 1 Cartoon representations of data acquisition, and biological systems examined in this work. a Confocal microscope setup with inset illustrating the
diffusive trajectory of a single molecule in and out of the confocal volume, undergoing conformational and photophysical changes, producing, b a photon
time trace; photons represented by vertical bars, and the most likely state path according to the Viterbi algorithm overlayed as horizontal colored line.
c–e Biological systems studied: c DNA hairpin, d maltose binding protein MalE with structure-guided conformational changes, and e type III secretion
effector YopO. See Supplementary Fig. 1 for a version of this figure with transition rates, Eraw and Sraw values included for the biological systems.
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for μsALEX. H2MM can extract the number of states involved in
the underlying FRET dynamics, their mean Eraw values and
transition rate constants. Nevertheless, while advanced smFRET
setups often detect multiple fluorescence parameters beyond the
intensities, such as in alternating laser excitation (ALEX)60,61 or
in multi-color smFRET-based measurements62–69, H2MM in its
current iteration only uses the raw FRET efficiency of a single
donor-acceptor pair of dyes.

Here, we introduce multi-parameter H2MM (mpH2MM),
which enables incorporation of multiple parameters in the ana-
lysis, through additional photon streams. We demonstrate this
concept with two types of ALEX experiments: microsecond ALEX
(μsALEX) and nanosecond ALEX (nsALEX; known also as pulsed
interleaved excitation, PIE)60,61. We applied this approach to
different biomacromolecular complexes with dynamics ranging
from the sub-second to microsecond timescales: (i) a DNA
hairpin loop70, (ii) the maltose binding protein MalE from E. coli,
and (iii) YopO, a type-III-secretion system effector from patho-
genic Yersinia species71 (Fig. 1c–e, Supplementary Fig. 1). Our
results and analysis demonstrate that mpH2MM is able to
quantitatively report sub-populations based on both the ALEX-
relevant mean parameters, Eraw and the stoichiometry, Sraw (see
Supplementary Eq. 2), as well as their transition rate constants,
demonstrating FRET-relevant conformational transitions, as well
as FRET-irrelevant photophysical transitions. We also present the
H2MM_C python package72, with a backend written in C, for
data processing, which is approximately two orders of magnitude
faster than the previous implementation of H2MM in matlab56.

Importantly, throughout this work, we make the clear dis-
tinction between sub-populations and states, where the latter is
referred to the state models used to describe the dynamically
interconverting sub-populations resolved from the data. This
distinction is important, since thermodynamic states are single
potential wells, and it is possible that the identified sub-
populations are actually a group of states that interconvert
much faster than the time resolution of the measurements. It
should also be noted that we use the term parameter in multi-
parameter H2MM to refer to parameters derived from ratios of
sums of photons in different photon steams (e.g., E and S). These
are distinct from state model parameters (e.g., rate constants,
mean E).

Results
Verification of mpH2MM against simulated data. Analysis with
single parameter H2MM (spH2MM) and mpH2MM can be per-
formed using any given state model. Therefore, we must select the
most likely state model among several, differing in their number
of states and number of transition rate constants. Discriminating
over- and under-fitted state models from the most likely model
has proven difficult in the past7,73. Previously, we proposed the
modified Bayes information criterion (BIC’), which does not
provide an extremum-based decision on the most likely state
model7. In the current work, we implement the integrated com-
plete likelihood (ICL)74,75, which gets a minimum value for the
most likely state model, as the primary criterion for state model
selection.

Using simulated smFRET data, where the ground truth of the
number and properties of the states is known, we find that the
ICL is more reliable than the BIC’ at selecting the most reliable
state model (see Supplementary Fig. 2, and Jupyter notebooks in
supplementary dataset72). Yet, there are instances in the
simulated data, and in real data sets, we describe later, where
the selection of the most likely state model based on ICL is of a
model with too few states, relative to our prior knowledge of the
system. Therefore, we always consider the ICL first, then BIC’,

and take into account the prior knowledge of the system when
selecting the most likely state model (see Supplementary Note 2
for expanded discussion, Supplementary Fig. 2).

To verify the validity of the multi-parameter approach, we
perform a series of simple simulations (see supplementary Jupyter
notebook mpH2MMsimulations76). We compare results of
spH2MM and mpH2MM analyses of simulated data where the
acceptor excitation photon stream was either included or
excluded. Using this data, we find that selecting the most likely
state model based on the ICL parameter reliably identifies the
correct ground truth state model, and this model accurately
reproduces the transition rate constants, Eraw and Sraw values used
in the simulation (Supplementary Figs. 3 and 4, Eraw, Supple-
mentary Table 1, Sraw values defined in Supplementary Eqs. 6 and
7, respectively). In contrast, spH2MM is less reliable, and
depending on the circumstances, it is unable to distinguish states
with similar Eraw values, which are easily distinguished in
mpH2MM by their Sraw values. Further, without the information
about Sraw, interpretation of the models is more difficult, even if
the correct number of states and their accurate Eraw values are
recovered in spH2MM.

DNA hairpin exhibiting millisecond dynamics. As a first bio-
logical test system for mpH2MM, we used a DNA hairpin system
introduced by Tsukanov et al. with a loop containing 31 adenines
and a six base-pair stem70. The opening and closing rate con-
stants of the hairpin vary as a function of the GC content of the
stem as well as the sodium chloride (NaCl) concentration70.
When appropriately labeled with a FRET donor and acceptor pair
of dyes (ATTO 550 and ATTO 647N, respectively), the open and
closed hairpin sub-populations exhibit distinct low and high
mean Eraw values, respectively. The hairpin containing two GCs
out of the six stem bases, which we term HP3, exhibited opening
and closing rates of a few milliseconds, depending on the NaCl
concentration in the buffer. Such a DNA construct with well-
characterized and tunable transition rates serves as an ideal model
system to test and characterize the performance of mpH2MM.

We first perform nsALEX measurements61 with this construct
at a concentration of 300 mM NaCl, where a mix of both open
and closed states are expected to interchange dynamically70. As a
qualitative test for FRET dynamics occurring within bursts, we
use burst variance analysis (BVA)41, which compares the
expected variance in Eraw based on shot noise (the static FRET
semi-circle) against the actual variance in Eraw. BVA of the HP3
data shows clear deviation from the static FRET semi-circle,
suggesting that individual HP3 molecules are undergoing FRET
dynamics as they traverse the confocal volume, which we term
within-burst FRET dynamics (Fig. 2a). E-τD plots44 also indicate
within-burst dynamics (see Supplementary Fig. 5). However,
without the prior knowledge of the DNA hairpin behavior as a
two-state FRET system, and without knowing how many more
sub-populations unrelated to FRET may exist, it is not necessarily
clear how many distinct sub-populations are involved in within-
burst dynamics. In visual examination of the 2D E-S plot, three
sub-populations are apparent: (i) an open hairpin sub-population
with mean Eraw of 0.2, (ii) a closed hairpin sub-population, with a
Eraw of 0.65, both open and closed sub-populations have mean
Sraw of 0.5, and (iii) a third sub-population with a mean Eraw of 0,
and mean Sraw of 1, where the acceptor is either in a dark state, or
missing altogether (Fig. 2b). The 2D E-S plot also exhibits bursts
with intermediate Eraw values, bridging between the open and
closed hairpin sub-populations. As these bursts are particularly
dynamic in the BVA analysis, these are bursts where the hairpin
is undergoing opening and closing transitions while crossing the
confocal volume.
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Analyses of this data with spH2MM and mpH2MM show
different patterns in the ICL values of the state models. The ICL is
minimized for spH2MM models for a two-state model, while it is
minimized for a four-state model when using mpH2MM. Visual
inspection of the one-dimensional projection of burst data onto
the Eraw parameter immediately suggests an explanation for this
discrepancy, as it appears as only two sub-populations. The
donor-only or dark acceptor state, and the open hairpin state
exhibit similar low Eraw values and are difficult to distinguish as
sub-populations based solely on Eraw. This projection reflects the
data accessible to spH2MM, the donor excitation streams, and
thus the open hairpin and dark acceptor states are expected to
have nearly identical FRET signatures with regard to the streams
accessible to spH2MM, thus leading to the false inference of only
two states. The open hairpin FRET sub-population and the dark
acceptor states are, however, quite distinct with regard to the
acceptor excitation stream, which is accessible to mpH2MM.

In the ICL-based selected four-state model retrieved by
mpH2MM, two out of the four states match nicely with the states
in the ICL-based selected model from spH2MM model, having
similar Eraw values. Their Sraw values are ~ 0.5 (Fig. 2b red circles), as
expected for molecules undergoing FRET. The third and fourth
states in the model can be matched to dark acceptor and dark donor
sub-populations, respectively. The third state has a Eraw value ~ 0

and a Sraw value ~ 1 (Fig. 2b, top left red circle). This state has a clear
sub-population of bursts associated with it in the 2D E-S plot. The
fourth state has an intermediate Eraw value, and a very low Sraw value
of ~ 0.17 (Fig. 2b, bottom red circle, Supplementary Table 2). There
is no obvious sub-population visually observed in the E-S plots to
which this would correspond, but the Eraw and Sraw values are
consistent with this being a dark donor state. More importantly,
comparing the parameters of the state models retrieved by spH2MM
and mpH2MM, we find that the transition rate constants derived
using mpH2MM are closer to those found by Tsukanov et al.70 than
those extracted using spH2MM (Supplementary Table 3, and
supplementary .csv files of all state models found by H2MM
analysis72). The transition rate constants provide a clue as to why
the fourth state does not show up in the E-S plots as a distinct sub-
population, as the transition rates predict rare transitions to it, and
rapid transitions away from it. Thus, populating the fourth state
occurs only briefly and rarely in bursts undergoing rapid dynamics,
such that it does not appear as a clear sub-population in the E-S
plots (Supplementary Table 3, and supplementary .csv file72).

The Viterbi algorithm finds the most likely state path through
each burst, given a state model and its parameter values (Fig. 2d
and Supplementary Fig. 6a–e). We use this to classify bursts by
which states are present within each burst (Fig. 2d, Supplemen-
tary Fig. 6f), and separate photons into dwells, for which Eraw and

Fig. 2 mpH2MM results for DNA hairpin at 300 mM NaCl. a Burst variance analysis (BVA), the Eraw standard deviation of Eraw values of bursts is
displayed versus their Eraw values. Bursts with Eraw standard deviations higher than expected solely from shot noise (semi-circle), indicate dynamic
heterogeneity, such as within-burst FRET dynamics. Triangles indicate the average of standard deviation values per Eraw bin. b 2D histogram of Eraw and Sraw
(E-S plots, colloquially) of bursts. The Eraw and Sraw values of sub-populations derived from mpH2MM are marked by red circles, and the Eraw and Sraw
standard deviation of these values, derived from the Viterbi dwell time analysis, are marked by black crosses. c Comparison of values of the integrated
complete likelihood (ICL) of spH2MM (top panel) and mpH2MM (bottom panel) of optimized models with different state models. The most likely state
model is marked as a red star. d A sample burst trajectory, with photons represented as colored vertical bars, with donor excitation photons colored green
and red for donor and acceptor, respectively. Acceptor excitation photons are colored purple. Eraw (top panel) and Sraw (bottom panel) of sub-populations
determined from dwells using the Viterbi algorithm, are overlayed on the photon bars, and colored to indicate the state of the dwell. The border color also
represents the type of burst. e, f E-S scatter plots of data processed by the Viterbi algorithm. Consecutive photons with the same state are considered as a
single dwell, Eraw and Sraw values are then calculated as in Supplementary Eqs. 8 and 9, respectively. MpH2MM-derived sub-populations and Viterbi-derived
Eraw and Sraw standard deviations (SD) are overlayed as red circles and black crosses, respectively. e, f E-S scatter plot of bursts e or dwells within bursts f,
color coded by which states are present in the bursts (e) or according to the state of the dwell (dwell based Eraw and Sraw defined in Supplementary Eqs. 8
and 9, respectively) f, according to Viterbi algorithm. Color coding is the same throughout d, e, and f. Error bars (s.d.) in b, e, and f are the same, with
n= 1232, 466, 3033, and 1493 dwells for the closed, dark donor, open, and dark acceptor states, respectively. See E-τD analysis in Supplementary Fig. 5,
and more examples of bursts classified by the Viterbi algorithm in Supplementary Fig. 6.
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Sraw can be defined (Fig. 2d, Supplementary Eqs. 8 and 9 in
Supplementary Note 1.3). Additional analysis of dwells and their
durations is provided in Supplementary Fig. 7. Visual examina-
tion of the burst-based E-S plot (Fig. 2e) shows that the Viterbi
algorithm reasonably classifies most bursts that have Eraw and
Sraw values close to the predicted value of a given sub-population
as only having that state present, as well as bursts with
intermediate Eraw and Sraw that are predicted to include dwells
of multiple states. Notably, there are only a few bursts classified as
having dwells solely in the dark donor state (Fig. 2e), keeping with
what is predicted by the transition rates, and indeed, few dwells
are even found in this state (Fig. 2f, Supplementary Fig. 6g). The
scarcity of the donor dark state in the Viterbi analysis serves to
both confirm this observation and prove the sensitivity of
mpH2MM at the same time. In summary, using spH2MM, we do
not properly decouple the FRET-relevant information from the
FRET-irrelevant dye transitions to fluorophore dark states for the
DNA hairpin data, which influences the accuracy of the retrieved
values for the Eraw and rate constant parameters. On the other
hand, using mpH2MM assists in the proper decoupling of the
FRET-relevant information from the FRET-irrelevant ones and in
gaining accurate parameter values. See Supplementary Figs. 8–19
for additional hairpin data acquired at different concentrations of
NaCl. Now that we have verified mpH2MM with a well-defined
biomolecular system of the DNA hairpin, HP3, we move to
explore its usefulness in other biomacromolecular systems.

Quantifying the dynamics of a substrate-binding protein. In
the previous example, we examined a system that exhibits
intrinsic conformational dynamics, hence dynamics that is not
induced by binding of a ligand. Now, we test mpH2MM on a
system with conformational dynamics that is induced by sub-
strate binding. For this, we select the periplasmic maltose binding
protein, MalE from E. coli77, which is the extracellular compo-
nent of the maltose ABC importer MalFGK2-E77. MalE is a
bilobed protein with a structural core built from a periplasmic
binding protein (PBP)-like II domain. Two rigid domains, D1 and
D2, are separated by a two-segment β -strand hinge and are
complemented by a C-terminal embellishment that facilitates
structural dynamics between open and closed states17. This allows
for MalE to close upon substrate binding, similar to a venus fly-
trap. For our nsALEX smFRET measurements we produced a
MalE double-cysteine variant with labels at the outer sides of the
two lobes, specifically residues T36C and S352C. As shown pre-
viously, this enables tracking of the opening and closing dynamics
in single MalE molecules17,78. We test three concentrations of the
substrate maltose: none (apo), 1 μM (close to the KD value77) and
1 mM (holo). FRET histograms, using a dual channel burst search
(DCBS)36 filter exhibit three sub-populations: (i) a minor, low
Eraw sub-population at Eraw of 0.1, (ii) a major sub-population
with an intermediate Eraw of 0.5, and (iii) a major sub-population
with a high Eraw of 0.7. We use DCBS because the donor- and
acceptor-only sub-populations are very strong, and otherwise
overwhelm the nsALEX data. Since we apply DCBS, bursts of the
high Sraw and low Eraw values cannot represent molecules with
permanently dark acceptor, but could be the result of either a real
conformation, or of frequent acceptor blinking. With increasing
maltose concentration, the fraction of the ~ 0.5 Eraw sub-
population decreases, while the fraction of the ~ 0.7 Eraw sub-
population increases (Fig. 3).

The BVA plot exhibits evidence of within-burst dynamics,
so mpH2MM analysis of within-burst dynamics is warranted
(Fig. 3, top row).

In mpH2MM analysis, the ICL-based model selection identifies
the five-state model for 1 μM maltose, and the four-state model

for 1 mM maltose. Examining these models, we find that all
contain a single high Sraw state and a single low Sraw state, with
the high Sraw state also having an Eraw of 0, and importantly, no
bursts exist in these ranges due to the use of a DCBS filter
(Supplementary Tables 4 and 5). Therefore, we can conclude that
these states are the result of transition in the donor and acceptor
dyes for the low and high Sraw states, respectively. The transition
rates of the models and Viterbi analysis both show that these
states are appreciably populated (Fig. 3, bottom row, Supple-
mentary Figs. 20–22, Supplementary Table 7, and supplementary
.csv file72), thus the use of mpH2MM analysis is vital here.
Depending on the maltose concentration, the ICL of spH2MM
analysis predicts different numbers of states for each concentra-
tion, and the Eraw values of the states within these models are far
less consistent (Fig. 3, vertical bars). These states are often similar
to states found by mpH2MM, but their interpretation would be
ambiguous if we did not have mpH2MM for additional
information. In other cases, spH2MM-based states appear as a
fusion of two states found by mpH2MM.

As another example of how vital mpH2MM analysis is in this
case, consider the BVA signature of the apo form. Our analysis
shows that the FRET dynamics for Eraw is not due to the actual
dynamics between the open conformations of MalE. This is clear
since the ~ 0.7 Eraw sub-population is not identified if maltose is
not supplied. Such interpretation cannot be made from spH2MM
results, due to the less consistent prediction of the number of
states, and the parameters of those models. Therefore, we can
confirm that MalE undergoes large-scale conformational
dynamics linked to its function, mostly induced by the binding
of maltose, hence it follows an induced-fit binding mechanism.

Adapting to μsALEX: microsecond dynamics of YopO. Finally,
we demonstrate how to apply mpH2MM with μsALEX experi-
ments. For this, we use the type-III secretion effector from Yer-
sinia species, YopO71. We measure the conformational dynamics
of a double-cysteine variant of YopO, with dyes labeling residues
L113C and L497C. These labeling positions are expected to
change distances upon binding to actin. Burst selection is per-
formed using the DCBS filter, for the same reasons as in the MalE
data - there are strong blinking dynamics that overwhelm the
analysis otherwise. Interestingly, in the absence of actin there
appears to be a single FRET sub-population in E-S plots, with tails
towards dark donor and dark acceptor sub-populations. Never-
theless, BVA shows these bursts have a variance above the
expected static FRET semi-circle (Fig. 4a, top panel), and hence
within-burst dynamics. In the presence of bound actin (60 μM), a
main sub-population is present with a shift toward lower Eraw
values, and the BVA plot suggests no signature of within-burst
dynamics at that main sub-population (Fig. 4b, top panel).

Using this μsALEX data with mpH2MM, the alternation period
proves to be an obstacle, causing mpH2MM analysis to fail
without a key adjustment to the data. Unlike in nsALEX, multiple
photons can be detected during a given alternation period of the
donor or acceptor excitation lasers. This results in photons
originating from donor excitation that are temporally separated
from photons originating from acceptor excitation in a periodic
pattern, resulting in alternating periods where no photons
originating from donor excitation are detected, and alternatively
periods where no photons originating from acceptor excitation
are detected. When we first apply mpH2MM to μsALEX data, we
find that instead of detecting states with meaningful Sraw values,
all states have Sraw values of either 0 or 1, and transition rates are
all very similar to the alternation rate, meaning that mpH2MM
detects the alternation rate instead of actual conformational
dynamics (Supplementary Fig. 23a, b).
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In that respect, to enable meaningful μsALEX analysis via
mpH2MM that incorporates photons originating from acceptor
excitation, we introduce a shift so that the times of the acceptor
excitation photons overlap with the photons originating from
donor excitation (see Supplementary Note 1.1.1). By doing so, the
alternation period is no longer detected and meaningful dynamics
with Eraw and Sraw values can be recovered (Fig. 4, Supplementary
Fig. 23c). The usefulness of this analysis is evidenced by the
detection of dark donor and dark acceptor states. Thus
application of mpH2MM even to μsALEX data usually yields
better results than with spH2MM. However, caution must be
taken to avoid artefacts due to the alternation period. For
instance, if the timescale of a transition approaches that of the
alternation period, Sraw values may be biased or averaged together
due to the shift (for in-depth discussion on this topic, see
Supplementary Note 1.1.2).

Applying mpH2MM to analyze the measured data of YopO in the
presence of actin, the most likely model is clearly a four-state model,
using an alternation period of 50 μs (20 kHz alternation rate). The
ICL-based model selection identifies four states, while the BIC’-based

selection shows the four-state model to be close to the 0.005
threshold, and the five-state model can be further disregarded based
on its reasonableness. Selection is more difficult for the apo results, as
the two criteria disagree with ICL-based model selection that
identifies three states and BIC’-based model selection that identifies
five. Therefore, the most likely model is either the three-, four-, or
five-state model, and examination of these models and prior
knowledge of the data is necessary. The three-state model predicts
states that appear as dark donor and acceptor, and a single FRET
state. This model can be ruled out because the BVA shows significant
dynamics around the single FRET population, and thus the single
FRET state is insufficient to explain the BVA signature. The five-state
model, on the other hand, suffers from the opposite problem - there
are two states with very low Sraw values, where it appears as though
the dark donor state has split into two. The four-state model,
however, is reasonable, showing two FRET states, dark donor and
dark acceptor states (Supplementary Tables 6 and 7). Transition rates
between the high and low FRET states are 12,400 s−1 and 6,000 s−1

for transitions from high Eraw to low Eraw states, and for transitions
from low Eraw to high Eraw states, respectively. These dynamics,

Fig. 3 Results for MalE. Top row: BVA of concatenated dataset. Upper middle row: Eraw histogram of bursts. Lower middle row: E-S plot of bursts, with ICL-
based selected results overlayed, red circles indicating the values derived from the ICL-based selected mpH2MM state model, and the black crosses the
standard deviation of the Viterbi-derived dwell Eraw and Sraw values. Vertical blue lines represent the Eraw values of the states from the ICL-based selected
spH2MM state model. Bottom row: Dwell based E-S plots as in Fig. 2, with transition rates (in units of s−1) between selected states indicated by arrows
added. a apo MalE, b 1 μMmaltose, c 1 mMmaltose. Error bars (s.d.) for a: n= 1556, 3925, 3042, 8665 dwells for dark donor, dark acceptor, low FRET, and
mid FRET states, respectively, for b n= 2505, 7753, 4793, 9083, 4010 dwells for dark donor, dark acceptor, low FRET, mid FRET, and high states FRET,
respectively, for (c) n= 1586, 5539, 4196, 7550 dwells for dark donor, dark acceptor, low FRET, and high FRET states, respectively.
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however, approach the timescale of the alternation rate (20 kHz; for
detailed discussion and examination, see Supplementary Note 1.1.2 as
well as Supplementary Figs. 24, 25). Based on the analyses of the
Viterbi-derived dwell times, error analysis of data sub-samples, and
comparison with the results of mpH2MM analysis employed on
other measurements using different alternation periods, we conclude
that these transition rates are not artifacts, and reflect true FRET
transitions in the data (see Supplementary Note 1.1.2, Supplementary
Figs. 26–28 for comparison of different alternation periods,
Supplementary Tables 8 and 9 for optimized model of different
alternation period).

The timescale of the FRET dynamics being faster than burst
duration by two orders of magnitude explains the appearance of
the data in the FRET histogram as a single FRET population, yet
with a signature of within-burst dynamics in the BVA plot.
Inspecting the results of the mpH2MM analysis, the meaning of

the within-burst FRET dynamics of YopO in the absence of actin
becomes clear - it exhibits transitions in the tens of microseconds
between two main FRET states intertwined with rapid transitions
to dark donor and dark acceptor states. Each burst that lasts a few
milliseconds contains multiple dwells in the underlying states and
transitions between them, and so the bursts are averaged-out as a
single main population. When comparing these results, with the
analysis results of YopO in the presence of bound actin, it
becomes clear that the lower Eraw state of the two FRET states in
the absence of actin is stabilized upon actin binding. Therefore,
we can conclude that YopO conformational dynamics relevant to
actin binding occurs intrinsically, regardless of the presence of
actin, and that actin stabilizes and locks one of the pre-existing
conformations.

Without using mpH2MM, it would have been difficult to
accurately report on this dynamics, as the FRET within-burst

Fig. 4 Results for YopO. a, b Top row: BVA analysis. Upper middle row: Eraw histogram of bursts, lower middle row: E-S plot of bursts. Red dots indicate
mpH2MM states. Bottom row: Dwell based E-S plots as in Fig. 2, with transition rates (in units of s−1) between selected states indicated by arrows added.
Vertical bars indicate the Eraw values of the states for the BIC'-based spHEraw model. a apo YopO exhibiting sub-millisecond dynamics. b YopO with 60 μM
actin exhibiting slower within-burst dynamics, and a shift toward the lower FRET conformation. Error bars (s.d.) for a n= 40,723, 89,613, 108,641, and
89,613 dwells for dark donor, dark acceptor, low FRET, and high FRET states respectively, for b n= 11,518, 9279, 31,100, and 3105 dwells for dark donor,
dark acceptor, low FRET, and high FRET states, respectively.
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dynamics is intertwined with FRET-irrelevant transitions to dark
states. It should be noted that we have successfully decoupled
conformational and photophysical dynamics in μsALEX data
without the use of fluorescence lifetimes.

Discussion
MpH2MM increases both the information content of the results
and the sensitivity of the H2MM algorithm to differences in the
photon streams that are too subtle when examining only a single
parameter. We have shown that mpH2MM is able to disentangle
dark acceptor states from low FRET states that have structural
meaning. We have exhibited the advantage of using mpH2MM to
elucidate an accurate quantitative picture on two proteins with
two types of conformational dynamics that serve their function:
(1) MalE with conformational dynamics induced by maltose
binding, and (2) YopO with conformational dynamics occurring
intrinsically, with actin binding stabilizing one of the states. In
both cases, the overall picture is complicated by having the FRET-
relevant transitions intertwined with the FRET-irrelevant dye
transition to dark states, and not taking these into account could
result in wrongly elucidated quantities and potentially wrong
interpretations. Of note is the rapid conformational dynamics on
the order of tens of microseconds in YopO when actin was
absent. The exact description of the dynamics was possible using
mpH2MM on μsALEX, and hence did not necessarily require
analysis of the correlation of donor fluorescence lifetimes with
ratiometric FRET values, as can be done using FRET lines fits to
E-τD 2D plots in lifetime-based smFRET44. As μsALEX and
nsALEX setups are now commonly used, the acceptor excitation
stream is usually available, therefore, mpH2MM maximizes the
use of available data for characterizing rapidly interconverting
sub-populations.

MpH2MM is, therefore, a powerful tool for the quantification of
rapid conformational dynamics in a variety of systems, while also
extracting information that can be used to extract inter-dye dis-
tance distributions. The integration of the acceptor excitation
photon stream is critical in this process, as we have shown that
spH2MM often conflates photophysical and conformational states,
leading to incorrect Eraw and transition rate constants. Comparing
a given protein or other biomacromolecular system with different
ligands, or concentrations of ligands, it is possible to discriminate
when a system demonstrates intrinsic conformational dynamics or
conformational changes triggered by ligands. MpH2MM provides
accurate quantitative measures of both transition rates and mean
Eraw values, the latter of which can be converted into accurate
mean FRET efficiency values with the proper correction factors for
the system79. Such information can then be converted into mean
inter-dye distances, which provide invaluable information for
FRET-based integrative structural models7,33,79.

The success of integrating the acceptor excitation stream into
our analysis, suggests that a similar approach could also be
employed in camera-based smFRET applications. Alternating
laser excitation, and HMM algorithms are commonly employed
in analysis of data, although the information of the acceptor
excitation stream is discarded in these analyses, and only used for
truncating trajectories upon acceptor bleaching. The present
mpH2MM algorithm is inappropriate for such data as the
information is based on intensity and a constant frame rate,
instead of single photon arrivals with variable interphoton times.
Alternatively, the introduction of SPAD arrays80 should allow
analysis of immobilized molecules with single photon precision,
which would allow for analysis of such data directly using
mpH2MM.

mpH2MM is also not restricted to our demonstrated applica-
tion in two detector setups with nsALEX and μsALEX. The most

obvious application of mpH2MM beyond ALEX, is with the
multiple photon streams in multi-parameter fluorescence detec-
tion (MFD)34,43, or with multi-color smFRET-based
measurements62–69. Here, three or even four spectrally-distinct
dyes are attached to the biomolecule of interest, and each pro-
duces a distinct photon stream. This enables the simultaneous
observation of multiple inter-dye FRET efficiencies at once. If
qualitative tests indicate that such a system is undergoing within-
burst dynamics, mpH2MM is well-suited to extract the transfer
efficiencies relevant to the underlying dynamically interconvert-
ing sub-populations. Applying these methods is as simple as
assigning an index to each photon stream. We include a sup-
plementary Jupyter notebook using a developer version of
FRETBursts81 that accepts fluorescence anisotropy information
from multi-parameter fluorescence detection, or from MFD
coupled to pulsed interleaved excitation34,43, and demonstrate
mpH2MM’s ability to disentangle fluorescence anisotropies on
data kindly provided by Cao et al.82. Values within the emission
probability matrix can then be used as intensities to calculate all
relevant ratiometric values. Multiple conformational sub-
populations interconverting at sub-millisecond timescales could
be simultaneously measured and disentangled with such a setup.
Information on fluorescence anisotropy could also be incorpo-
rated, which, depending on the labeling scheme could report on
dye steric restriction or oligomeric state of the system in question.

In this work, we used two ratiometric parameters drawn from
ratios of photon counts of the photon streams available in ALEX-
based measurements within the mpH2MM framework. In some
smFRET measurements, such as in nsALEX, the photon nano-
times, which are the basis for fluorescence lifetime data, can also
be considered as a parameter within the mpH2MM framework.
However, unlike Eraw and Sraw, which are approximately bino-
mially distributed, photon nanotimes distribute exponentially or
sometimes according to a sum of exponentials. To transform
photon nanotime data into a parameter that is also centrally
distributed, and hence one that can be used within the mpH2MM
framework, we propose a method for mapping the non-
binomially distributed lifetime to a binomially distributed para-
meter amenable to mpH2MM (see Supplementary Note 3 for
further details).

The new H2MM_C python package makes H2MM analysis
much more practical, most analysis, for up to six states, take less
time than the data acquisition times, given our modest hardware
(a 2 year old middle-tier gaming laptop). See Supplementary
Note 4 and Supplementary Tables 10 and 11 for system
requirements and the duration of calculations in this paper. The
supplied Jupyter notebooks provide examples for how to execute
mpH2MM using FRETBursts. Experimenters using other plat-
forms must utilize their knowledge of the fine details of their data
to properly filter and cast their data into the simple and general
format that the H2MM_C package76 accepts. We also provide an
in-depth tutorial available on Zenodo83.

Methods
Production of YopO and MalE variants. The double-cysteine variant YopO
L113C/L497C is produced and purified as described in Peter et al.71 and kindly
provided by Gregor Hagelüken and Martin Peter, Institute of Structural Biology
(University of Bonn). The double-cysteine variant MalE T36C/S352C is generated
and purified according to methods reported previously17.

Labeling of MalE. The MalE variant T36C/352C is stochastically-labeled with
Alexa Flour™ 555 and Alexa Fluor™ 647 dye derivatives as described in Peter et al.
and deBoer et al.17,84. The His6-MalE double variant (200 μg) is incubated with
1 mM DTT and loaded immediately after on 200 μL (wet volume) Ni-Sepharose 6
Fast Flow resin, pre-equilibrated with labeling buffer 1 (50 mM Tris-HCl pH 7.4,
50 mM KCl). After a washing step with 50 column volumes labeling buffer 1, the
loaded resin is incubated overnight at 4 ∘C with 5-fold excess (25 nmol of each
fluorophore dissolved in 1 mL of labeling buffer 1. Next, the resin is further washed
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with 50 column volumes labeling buffer 1 to remove the excess unbound fluor-
ophores. Labeled protein is eluted with 800 μL elution buffer (50 mM Tris-HCl pH
8.0, 50 mM KCl, 500 mM imidazole) and further purified by size-exclusion chro-
matography (ÄKTA pure system, Superdex 75 Increase 10/300 GL column, GE
Healthcare). Protein concentration is determined using the protein extinction
coefficient and corrected for direct absorption of the fluorophores at 280 nm.
Labeling efficiencies are estimated to be at least 60% for each fluorophore indivi-
dually and donor-acceptor pairing at least 20%.

Labeled MalE is stored in 50 mM Tris-HCl pH7.4, 50 mM KCl and 1 mgmL−1

bovine serum albumin (BSA) at 4 ∘C for no more than 3 days. Concentrations
ranged between 10 to 100 nM.

Labeling of YopO. The protein variant YopO L113C/L497C is stochastically-
labeled with fluorophore-linked maleimide derivatives, as described previously84.
Briefly, 200 μg of protein is incubated with 5 mM DTT at 4 ∘C for 30 min, to
prevent oxidation of the cysteine thiol groups. The protein is loaded onto a PD
Mini-Trap G-25 column (GE Healthcare) pre-equilibrated with Buffer A (50 mM
Tris-HCl pH 7.4, 50 mM KCl) and subsequently eluted with 1 mL of Buffer A by
gravity gel filtration, in order to eliminate the excess of DTT. The eluted protein is
incubated overnight at 4 ∘C with 50 nmol, respectively, of Alexa Fluor™ 555- and
Alexa Fluor™ 647- C2 maleimide (ThermoFisher Scientific). Excess dyes are
removed again by gravity gel filtration using a PD Min-Trap G-25 column, as
described above. The labeled protein is further purified from residual dyes and
soluble aggregates by size-exclusion chromatography (SEC), with a Superdex™ 75
Increase 10/300 GL column, on an ÄKTA pure system (GE Healthcare). Protein
concentration is determined using the protein extinction coefficient and corrected
for direct absorption of the fluorophores at 280 nm.

Labeling efficiencies are estimated to be at least 60% for each fluorophore
individually and donor-acceptor pairing at least 20%.

Experimental setup
Experimental setup for studies of HP3. We performed the nsALEX smFRET mea-
surements of the doubly-labeled DNA hairpin construct70 in the presence of 50,
100, 200, 250, 300, and 350 mM sodium chloride, using a confocal-based setup
(ISSTM, USA) assembled on top of an Olympus IX73 inverted microscope stand.
We use a pulsed picosecond fiber laser (λ= 532 nm, pulse width of 100 ps FWHM,
operating at 20 MHz repetition rate and 100 μW measured at the back aperture of
the objective lens) for exciting the Cy3B donor dye (FL-532-PICO, CNI, China),
and a pulsed picosecond diode laser (λ= 642 nm, pulse width of 100 ps FWHM,
operating at 20MHz repetition rate and 60 μW measured at the back aperture of
the objective lens) for exciting the ATTO 647N acceptor dye (QuixX® 642-140 PS,
Omicron, GmbH), delayed by 25 ns. The laser beams pass through a polarization
maintaining optical fiber and then further shaped by a linear polarizer and a
halfwave plate. A dichroic beam splitter with high reflectivity at 532 and 640 nm
(ZT532/640rpc, Chroma, USA) reflects the light through the optical path to a high
numerical aperture (NA) super apochromatic objective (60X, NA= 1.2, water
immersion, Olympus, Japan), which focuses the light onto a small confocal volume.
The microscope collects the fluorescence from the excited molecules through the
same objective, and focuses it with an achromatic lens (f= 100 mm) onto a 100 μm
diameter pinhole (variable pinhole, motorized, tunable from 20 μm to 1mm), and
then re-collimates it with an achromatic lens (f= 100 mm). Then, donor and
acceptor fluorescence are split between two detection channels using a dichroic
mirror with a cutoff wavelength at λ= 652 nm (FF652-Di01-25x36, Semrock
Rochester NY, USA). We further filter the donor and acceptor fluorescence from
other light sources 585/40 nm (FF01-585/40-25, Semrock Rochester NY, USA) and
698/70 nm (FF01-698/70-25, Semrock Rochester NY, USA) band-pass filters,
respectively, and detect the donor and acceptor fluorescence signals using two
hybrid photomultipliers (Model R10467U-40, Hamamatsu, Japan), routed through
a 4-to-1 router to a time-correlated single photon counting (TCSPC) module (SPC-
150, Becker & Hickl, GmbH) as its START signal (the STOP signal is routed from
the laser controller). We perform data acquisition using the VistaVision software
(version 4.2.095, 64-bit, ISSTM, USA) in the time-tagged time-resolved (TTTR) file
format. After acquiring the data, we transform it into the photon HDF5 file
format85 for easy dissemination of raw data to the public, and easy input in the
FRETBursts analysis software.

Experimental setup for studies of MalE. The nsALEX measurements on MalE are
performed using a home-built setup, assembled around an Olympus IX73 inverted
microscope stand. We use a picosecond pulsed diode laser (λ= 532 nm, pulse
width of 100 ps FWHM, operating at 20MHz repetition rate and 32 μW at the back
aperture of the objective) for exciting the Alexa Fluor™ 555 donor (LDH-P-FA-
530B, Picoquant GmbH), and a picosecond pulsed diode laser (λ= 640 nm, pulse
width of 90 ps FWHM, operating at 20MHz repetition rate, and 20 μW at the back
aperture of the objective) to excite the Alexa Fluor™ 647 acceptor (LDH-D-C-640,
Picoquant, GmbH), driven by the same PDL828 “Sepia II” (Picoquant, GmbH)
controller. The laser light is guided into the microscope by a dual-edge beamsplitter
(ZT532/640rpc Chroma/AHF, GmbH) and focused to a diffraction-limited exci-
tation spot by an oil immersion objective (UPLSAPO 60XO, Olypus). The emitted
light is collected through the same objective, spatially filtered through a 50 μm
pinhole, and spectrally split into donor and acceptor channels by a single-edge

dichroic mirror (H643 LPXR, AHF). The emission is filtered (donor: BrightLine
HC 582/75, Semrock/AHF, acceptor: Longpass 647 LP Edge Basic, Semrock/AHF)
and the signal is recorded with avalanche photodiodes (SPCM-AQRH-34, Exce-
litas) and a TCSPC module (HydraHarp400, Picoquant, GmbH). Data was
acquired with Picoquant SymPhoTime 64 v2.7.

Coverslips are passivated with 1 mgmL−1 BSA in PBS buffer before adding
around 100 μL of sample. MalE stock solution is diluted to ~ 50 pM concentration
in 50 mM Tris-HCl pH 7.4, 50 mM KCl, and either, none, 1 μM or 1mM of the
ligand maltose.

Experimental setup for studies of YopO. The μsALEX measurements of YopO are
performed using the setup in Gebhardt et al.86. These are conducted on the same
home-built microscope as the MalE experiments, built around an Olympus IX71
base, although the lasers and dichroics are replaced as described below. We use a
continuous wave λ= 532 nm diode laser (OBIS 532-10-LS, Coherent, USA) laser
with 60 μW power measured at the back aperture of the objective to excite the
donor Alexa Fluor™ 555 dye, and a continuous wave λ= 640 nm diode laser (OBIS
640-100-LX, Coherent, USA) with 25 μW power measured at the back aperture of
the objective. The lasers are distally modulated by TTL pulses with an alternating
frequency of 10 kHz, 20 kHz, and 100 kHz, for an alternation period of 100 μs
50 μs, and 10 μs, respectively. The lasers are combined and coupled into a polar-
ization maintaining single-mode patch cable (P-3-488PM-FC2, Thorelabs, USA).
The laser light is reflected into the objective by a dual-edge dichroic mirror (ZT532/
640rpc, Chroma/AHF) and focused by a water immersion objective (UPlanSApo
60/1.2w, Olympus, GmbH). The dichroic mirrors, fluorescent filters and avalanche
photodiodes are identical to those used for acquisiton of MalE data.

Coverlips are passivated with BSA as in MalE measurements. 100 μL of YopO
solution, diluted to between 50 pM and 80 pM is used for each measurement in
50 mM Tris-HCl pH 7.4, 50 mM KCl. For measurements with actin, the buffer also
contained 50 μM non-muscle human actin protein (Cytoskeleton, Inc) and 0.2 mM
ATP and 0.2 mM CaCl2.

Data is acquired using labVIEW v7.1 software as presented in Ingargiola et al.87.

Burst selection. All data processing and analysis is performed using Jupyter
Notebooks available in supplementary dataset, along with the accompanying
photon-HDF5 files containing the raw data72. We perform burst search and
selection using the FRETBursts analysis software88. The background is assessed per
each 30 s of acquisition, and bursts are identified as time periods were the
instantaneous photon count rate of a sliding window of m= 10 consecutive
photons is at least F= 6 times higher than the background rate. Bursts in the
normal selection are selected if they include at least 30 photons in total between all
streams. Visualizations are performed using FRETBursts’ dplot function, or mat-
plotlib when greater customization is desired.

Single and multi-parameter H2MM analysis. Bursts identified by FRETBursts are
then converted into a format readable by the H2MM_C software76, by a simple
function supplied in the Jupyter notebooks available in supplementary dataset72,
this function is also responsible for applying the shift to acceptor excitation pho-
tons in μsALEX experiments (Supplementary Note 1.1.1). In spH2MM, only
photons arising from donor excitation are considered, assigned to either donor or
acceptor streams, identified by index 0 or 1, respectively, depending on at which
detector they arrived. MpH2MM also considers photons arriving during acceptor
excitation, assigning these photons an index of 2. All H2MM calculations are
performed within the Jupyter notebooks, available in supplementary dataset72,
using the Python package by Paul David Harris76. We use the H2MM algorithm
(both single- and multi-parameter) to test how well different state models describe
the data.

Model selection. To choose the best model, we primarily use the ICL74,75, where the
state model reaching a minimal ICL is generally considered the one that describes
the data best, with minimal free parameters. We always calculate sufficient num-
bers of state models to ensure ICL is minimized. The ICL parameter is defined in
Eq. (1):

ICLðmÞ ¼ �2 lnðpðy; ŝjm; λ̂mÞÞ þ K lnðnÞ ð1Þ

where lnðpðy; ŝjm; λ̂mÞÞ is the posterior probability of the most likely state path, as
determined by the Viterbi algorithm, K is the number of free parameters in the
model, and n is the number of photons in all bursts in the data set. K is calculated
as in Eq. (2):

K ¼ q2 þ ðr � 1Þq� 1 ð2Þ

where q is the number of states the state model represents, and r is the number of
photon streams used for the calculation of all of the parameters that are assessed.
For spH2MM, r= 2, while for nsALEX mpH2MM, r= 3. The ICL is preferable as
an extremum-based criterion over the previously proposed threshold based on the
modified Bayes Information Criterion (BIC’)7. See supplementary dataset72 for
Jupyter notebooks testing the reliability of ICL with simulated data sets generated
using PyBroMo89 (https://github.com/OpenSMFS/PyBroMo/releases/tag/0.8.1; was
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utilized in previous works7,85,90). We use the Viterbi algorithm to find the most
likely state path based on the posterior probability.

Viterbi analysis. From the state path, photons are separated into dwells, each of
which can be assigned a duration, a mean Eraw, and for mpH2MM, a mean Sraw.
This also allows bursts to be classified by which and how many states are present.
As one measure of error, we use the weighted standard deviation and the weighted
standard error of the Eraw and Sraw as a proxy for the standard error of the H2MM
model (see Supplementary Note 1.3 for full derivation).

Error analysis by variance of subsets. Analysis of the variance of subsets is another
method to assess the error of parameters (see Supplementary Note 1.4 for detailed
description). This is implemented as a function in the Jupyter notebooks in the
supplementary dataset72. This is an attractive approach, as it does not depend on
any most likely state path like in the Vieterbi based approach. This method,
however, is significantly more computationally expensive than the Viterbi
approach.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The photon-HDF5 data, Jupyter notebooks, .csv data and H2MM_C code that support
the findings of this study are available in the Zenodo and github repositories with the
identifiers at: https://doi.org/10.5281/zenodo.5566809, and https://doi.org/10.5281/
zenodo.553530272,76.

Code availability
The H2MM_C library used in this study is available on github https://github.com/
harripd/H2MMpythonlib (commit 1f3d0a84f149d21a740161372526eb3742027602). The
FRETbursts used in this study is available on github https://github.com/harripd/
FRETBursts (commit 315c60d3791aa93cf2ec6e880003174c8192fc88). The phconvert
code used n this study is available on github https://github.com/Photon-HDF5/phconvert
v0.9 (commit 3a86e58f11f77e21c2a02a1d9453060db6811c9c). The PyBroMo code used
in this study is available on github: https://github.com/tritemio/PyBroMo v0.8.1 (commit
8403ae750ff68796ef4118dd497478cf54355382). labVIEW code is available on github:
https://github.com/multispot-software/MultichannelTimestamper.
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