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ABSTRACT OF THE THESIS

Essential metabolic pathways in Trypanosoma cruzi

by

Isabel Souza Shiratsubaki

Master of Science in Bioengineering

University of California San Diego, 2019

Professor Jair Lage De Siqueira Neto, Chair
Professor Bernhard O. Palsson, Co-Chair

Chagas disease caused by a protozoan called Trypanosoma cruzi is a neglected tropical

disease and a leading cause of heart failure in Latin America where it is endemic. Due to migration

of asymptomatic infected population, it is now also present in North America, Europe, Japan

and Australia. Drugs currently available to treat Chagas disease are limited to benznidazole

and nifurtimox, both with severe side effects, and are more efficient when administered early

in the course of the infection. Thus, there is a need for the discovery of alternative and more

efficient drugs. In the identification process of potential drug targets, metabolic genes are good

candidates, since they are critical for cellular growth and survival [1]. In addition, genome-scale
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metabolic models (GEMs) [31] have been developed to accurately predict metabolic capabilities

from genome sequences. This work developed an extended GEM, hereafter referred to as

iIS312, of the published and validated T. cruzi CL Brener core metabolism model iSR215

[35]. The life cycle of the parasite is divided in three distinct stages: epimastigotes (replicative

and insect-specific), trypomastigotes or metacyclic epimastigote (infective and non-replicative)

and amastigotes (replicative and intracellular in humans). From iIS312, we built three stage-

specific models using transcriptomics data [3] integration. Such models for other organisms (e.g.

Plasmodium falciparum) have provided valuable insight of stage-specific changes in metabolism

[1]. The stage-specific models were able to predict metabolic differences among the three T.

cruzi stages, including essential genes and reactions, and flux distribution. The stage-specific

models showed that epimastigotes present the most active metabolism among the stages, with

least number of deactivated reactions. The trypomastigote model predicted the non-essentiality of

pathways responsible for nucleic acid synthesis as this stage is non-replicative, and presented

full metabolic activity in TCA for energy yield to move around. The amastigote model presented

low activity in Glycolysis, as observed in previous studies, suggesting that this pathway is not

essential in amastigotes. It also indicated that amastigotes take a shortcut in TCA, increasing

the metabolic flux in the malic enzyme, as described in previous studies. Moreover, the gene

essentiality predictions suggests potential drug targets, among which some have been proven

lethal previously, including glutamate dehydrogenase [12], glucokinase and hexokinase [38]. Our

results represents potentially a step forward towards the improvement of Chagas disease treatment.

To our knowledge, these stage-specific models are the first GEM built for the stages amastigote

and trypomastigote. This work is also the first to present an in silico GEM comparison among

different stages in T. cruzi life-cycle.
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Chapter 1

Introduction

Chagas disease is a neglected tropical disease affecting millions of people specially in

Latin America where it is endemic [42]. The transmission can occur vertically from infected

mother to baby during gestation, by blood transfusion or organ transplant, orally (by contaminated

food), in laboratory accidents and most commonly by an insect vector from the family Reduviidae

(genus Triatoma) popularly known as kissing bug that carries the parasite Trypanosoma cruzi, a

protozoan of the family Trypanosomatidae. T. cruzi life cycle is composed by vertebrate hosts and

invertebrate vectors, and three stage-specific forms: the epimastigote: axenic form that replicates

in the midgut of the insect vector; trypomastigote: infectious non-replicative form present in the

mammalian host blood circulation and in the proboscides of the insect vector (called metacyclic

epimastigote in the latter case); and amastigote: intracellular replicative stage found in the cell of

the mammalian host.

Although the stages were first defined by their morphological characteristics [8], they also

present differences at the cellular level, including the composition of their surface and their energy

metabolism [3]. Findings in the literature indicate that epimastigotes have an active metabolism

(catabolism and anabolism), and use different nutrients as energy source (lipids, proteins and

sugars) [5, 6]. In contrast, trypomastigotes present low levels of transcription and translation, and

since their main function in T. cruzi cycle is infection, they are specialized in attachment and

infection of the host cells [3]. Finally, very little information is available regarding amastigote

metabolism. It is known that amastigotes are metabolically more active than trypomastigotes
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but are not as responsive as epimastigotes to the change in the environment and use of different

nutrients [16].

In addition to the multi-stage aspect of T. cruzi cycle, the parasite can lead to two distinct

clinical phases in the infected individual: acute, and chronic. The acute phase is characterized by

the presence of parasites in the blood circulation. It is typically asymptomatic, but mild symptoms,

including fever, fatigue, body aches, headaches and rash can occur and last for 8 to 12 weeks, when

it is controlled by the hosts immune system. The chronic phase starts with an asymptomatic stage

(called indeterminate chronic phase) that can last as long as 2 or 3 decades and is characterized

by an undetectable parasitemia in the circulation. For reasons yet to be understood, about 30% of

the infected individuals will manifest cardiac and about 5%, digestive complications. When the

disease is clinically manifested in the chronic phase it is called determinate chronic phase. Current

drug options to treat Chagas patients are limited to benznidazole and nifurtimox. Both drugs can

cause severe gastrointestinal, dermatological, and neurological side effects, and are more efficient

when administered in the acute phase than in the chronic phase. In the chronic phase, the efficacy

of these drugs is questionable to prevent or treat the cardiac or digestive symptoms, regardless

if they are used in indeterminate or determinate chronic phases [13, 17]. Thus, there is a clear

unmet medical need and alternative and more efficient drugs must be discovered.

In the process of the identification of potential drug targets, metabolic genes are good

candidates, since they are critical for cellular growth and survival [1]. In addition, genome-scale

metabolic models (GEMs) [31] have been developed to accurately predict metabolic capabilities

from genome sequences. Genome-scale metabolic network reconstructions are knowledge bases

that map genotypes to phenotypes. Such reconstructions can then be converted to mathematical

models - GEMs to enable computation of metabolic functions of the organism on a systems level.

This study presents an extended genome-scale metabolic reconstruction model, hereafter referred

to as iIS312, of the published and validated T. cruzi CL Brener core metabolism model iSR215

[35]. From the extended model iIS312, we built three stage-specific models using transcriptomics
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data [3] integration (See Figure 2.1), as such models for other organisms (e.g. Plasmodium

falciparum) have provided valuable insight of stage-specific changes in metabolism [1]. The

resulting models of T. cruzi describe stage-specific differences in metabolism including essential

genes, and consequently potential drug targets.

In Chapter 2, we present the results, discussion, and material and methods involved in

building iIS312 (pan and the stage-specific models), and identifying essential genes in T. cruzi

and main metabolic flux differences among the three stages of the parasite.

In Chapter 3, we present the supplementary material of the work ”Essential metabolic

pathways in Trypanosoma cruzi”, presented in Chapter 2.

Lastly, Chapter 4 presents a conclusion of all the findings of this thesis. It also presents

the ongoing work and future directions related to this work.
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Chapter 2

Essential metabolic pathways in Trypanosoma cruzi

2.1 Results

2.1.1 Reconstructing and expanding the metabolic network of Trypanosoma cruzi, iIS312

The model reconstruction and curation of T. cruzi (Figure 2.1, Step 1) was developed

using the genome annotation of the strain Dm28c [19]. The curation was based on the two

pre-existing validated models: iSR215 (T. cruzi strain CL Brener) [35] and iAC560 (Leishmania

major strain Friedlin) [9]. iAC560 model was the first metabolic network reconstruction built for

a protozoan. In addition, L. major is a close-related organism to T. cruzi, as they both belong to

the same family Trypanosomatidae. The cross-reference between genes in T. cruzi Dm28c and T.

cruzi CL Brener and L. major Friedlin was done using the database TriTrypDB [2], which is a

specific database for pathogens of the family Trypanosomatidae (Leishmania and Trypanosoma

genera).

The expanded T. cruzi model iIS312 accounts for 519 reactions, 604 metabolites, 312

genes and 6 compartments (Figure 2.2), including the cytosol, mitochondria, glycosome, endo-

plasmic reticulum, nucleus, and the extracellular compartment. Among the 519 reactions, 328

(63%) are gene-association and 145 (27%) have no gene association (Figure 2.2a) due to lack

of genome annotation or exchanges reactions that simulate nutrient uptake. In comparison with

the old T. cruzi model iSR215, iIS312 significantly expanded the scope of the model (Figure

2.2c), including 83 new reactions in the lipid metabolism which is absent in iSR215. Figure 2.1c
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Figure 2.1: The workflow for the multi-stage reconstructions of T. cruzi. Step 1. The reconstruc-
tion of T. cruzi multi-stages used the genome annotation of the strain Dm28c [19], the models
iSR215 (T. cruzi strain CL Brener) [35] and iAC560 (L. major strain Friedlin) [9], the literature,
the genomic database for pathogens of the family Trypanosomatidae (TriTryDB) [2], and other
genomic databases. Step 2. The expanded model iIS312 was validated using experimental data.
Step 3. Stage-specific models (epimastigote, amastigote, and trypomastigote) were generated
through transcriptomics integration and validated using experimental data from the infectious
stage. Step 4. Analysis of metabolic functions and potential application in drug discovery.

indicated that the number of reactions increased for all subsystems in the updated model iIS312

(See Supplemental file shiratsubaki supplemental figure5 model expansion.pdf for more details).

iS312 was validated by comparing its simulated excreted metabolites and experimental

findings (See Figure 2.1 Step 2). Literature suggests that the byproducts of T. cruzi metabolism

include [37, 40, 18, 7], alanine [37, 18], CO2 [4], acetate [37, 40, 18], and glycine [11]. The

byproducts predicted by iIS312 pan model fit the expected spectrum of metabolite secretion

(Figure 2.2b), suggesting the validity of the model. We also compared the experimental observa-

tion with the predicted metabolite secretion by stage-specific models (details of stage-specific

models discussed in the next section). Succinate, acetate, alanine, H2O, and H+ showed up

as byproduct in all the iIS312 models. The trypomastigote model presented all the excreted

metabolites expected. The excreted metabolites changed according to the constraints applied in
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Figure 2.2: Content description, performance and validation of iIS312. (A) Properties of IS312,
including number of genes, reactions, metabolites and compartments. (B) Validation of iIS312
predicted byproducts. (C) Distribution of reactions across subsystems in iIS312 and iSR215.

each model (e.g. deactivation of reactions through transcriptomics integration).

2.1.2 Stage-specific models generated through integration of transcriptomics data

Stage-specific models were generated from the pan model iS312 and transcriptomics by

deactivating genes with low expression levels and their corresponding reactions. By integrating

gene expression data with the pan iIS312 model, we generated three stage-specific models:

amastigote, epimastigote, and trypomastigote (See Figure 2.1, Step 3). During the integration of

gene expression data, reactions were deactivated if all or some of their encoding genes (depending

on the gene rule; See methods section) presented an expression level below a predefined threshold

(See methods section). To validate the stage-specific models, we compared the deactivated

reactions in the infectious stage (trypomastigotes) with a list of kinases and phosphatases that were
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shown to be active during trypomastigote described by Mattos et al [27]. Among a list of 120 active

genes obtained from the gene description in Mattos et al study [27], only 3 were not expressed in

trypomastigote model after transcriptomics integration. Those genes are associated with reactions

that are encoded by more than one gene. Those genes were TCDM 00385 (6-phosphofructo-

2-kinase/fructose-2, also encoded by TCDM 00348 and TCDM 01740, both expressed in the

Trypomastigote model), TCDM 02136 and TCDM 06298 (mitogen-activated protein kinase,

also encoded by TCDM 02679, TCDM 07669, TCDM 09327, all of them expressed in the

Trypomastigote model). See Supplemental file shiratsubaki supplementary tables.xlsx Table S2

and S10 for more details.

Figure 2.3: Venn diagram of deactivated reactions for each stage-specific iIS312 model (See
Supplemental file shiratsubaki supplementary tables.xlsx Table S6 for more details).

The number of deactivated reactions differ for stage-specific models (Figure 2.3), showing

consistency with literature finding regarding stage-specific metabolism activity. Out of all

deactivated reactions, only 1 reaction overlaps between amastigote and trypomastigote models,

suggesting substantial variation in metabolism between stages. The highest number of deactivated

reactions was observed in the trypomastigote model (70 reactions), followed by amastigote (42

reactions) and epimastigote (7 reactions) models. The results are consistent with the findings in

the literature regarding the metabolism of each stage: trypomastigote is the stage with the least
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active metabolism, followed by amastigotes and epimastigotes.

2.1.3 Stage-specific models present differences among metabolic pathways

Variation in deactivated reactions across stages suggest stage-specific metabolic pheno-

types. Most of the reactions deactivated in amastigotes (intracellular replicative stage) were

involved in TCA cycle, Pentose Phosphate Pathway (PPP), Purine and Pyrimidine Metabolism.

Literature [3] suggests that the carbohydrate catabolism is down-regulated in amastigotes, while

the transmembrane transport, macromolecule metabolism and DNA replication are up-regulated.

The weak simulated metabolic flux through some TCA cycle reactions in the amastigote model

(See Figure 2.4) might suggest that amastigotes optimize their growth by using alternative short-

cuts in TCA (e.g. through amino acid metabolic pathways as suggested by a previous studies)

[39, 26]. In addition, the deactivations in Purine, and Pyrimidine Metabolism were mostly associ-

ated with lyases, which might be associated with the downregulation of nucleotide breakdown

to favor DNA replication. In trypomastigotes (non-replicative and infective stage), the deactiva-

tions occurred in various subsystems, including Fatty Acid Biosynthesis, Glutamate metabolism,

Glycerophospholipid metabolism, Glycolysis/Gluconeogenesis, Purine Metabolism, PPP, and

Steroid Biosynthesis. Literature suggests that the nucleic acid metabolism is down-regulated in

trypomastigotes, which is consistent with the deactivated reactions from Purine Metabolism and

PPP in our model. In epimastigotes (replicative and insect-specific stage), the literature presented

the downregulation of cell adhesion and none of any specific metabolic pathway. Our model

does not show any prevalent subsystem deactivation, as it only includes reactions associated with

metabolic functions but not cell adhesion.

In particular, we also observed that various essential genes (genes encoding enzymes that

are required for growth) identified in the pan model were deactivated in stage-specific models,

highlighting the significant changes in central metabolism across stages (See Figure 2.4). For

amastigote, the 10 deactivated essential reactions are enriched in Glycolysis/Gluconeogenesis
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(See Supplemental file shiratsubaki supplementary tables.xlsx Table S5), which is intriguing

as the result suggest glycolysis is not essential for amastigote stage. This finding is consistent

with a previous finding that glucose transporter activity was not detected in amastigote stage

[39]. Therefore, it is likely that T. cruzi might have transporters for intermediate glycolytic

metabolites, which explains the deactivation of reactions in Glycolysis in amastigotes. Con-

firmation of such transporters still needs further investigation in the future. Since our model

simulates the parasite cell growth under steady-state, we kept the glycolytic genes active in the

amastigote model. For trypomastigote, the deactivated reactions are mostly involved in Pentose

Phosphate Pathway (PPP), which is responsible for nucleic acid synthesis and the production of

NAHPH. This result is consistent with literature, since trypomastigotes are a non-replicative stage,

which does not require nucleic acids for DNA synthesis. Therefore, we calibrate our biomass

reaction for the trypomastigote model by removing metabolites involved in DNA synthesis (see

Methods). For epimastigote, the only deactivated reaction is L-threonine dehydrogenase that is

responsible for threonine metabolism, suggesting that threonine may not be essential for parasite

growth, or alternative pathways that is missing in the genome annotation (See Supplemental file

shiratsubaki supplementary tables.xlsx Table S5).

In addition to deactivated reaction analysis, the flux distribution map for each stage-

specific model was generated (see methods section) to compare the metabolic differences among

stages (See Supplemental files shiratsubaki supplemental figure2 FBA epimastigote.pdf, shirat-

subaki supplemental figure3 FBA amastigote.pdf, and shiratsubaki supplemental figure4 FBA

trypomastigote.pdf for more details). Flux distribution map was generated using FBA with the

objective set as optimal growth. As shown in Figure 2.4, the flux distribution in the central

metabolism among the stages changed considerably. The reactions in gray are not necessarily

inactive in the model, but they indicate weak simulated metabolic flux. While in the amastigote

model the flux in TCA cycle takes a shortcut through proline and glutamate pathway (entering in

TCA cycle through alpha-ketoglutarate), in the trypomastigote model we have opposite behavior,
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Figure 2.4: Flux distribution representation of each T. cruzi stage model in cen-
tral metabolism (Glycolysis, Pentose Phosphate Pathway, TCA, and others). See
Supplemental files shiratsubaki supplemental figure2 FBA epimastigote.pdf, shiratsub-
aki supplemental figure3 FBA amastigote.pdf, and shiratsubaki supplemental figure4 FBA
trypomastigote.pdf.

having almost all the TCA reactions being utilized. The metabolic flux through the malic enzyme

is only present in the amastigote model to optimize the pyruvate flux outwards the TCA cycle and

produce alanine. Trypomastigotes are the stage specialized in cell invasion and are not replicative.

As a consequence, their PPP reactions are low-expressed and they require an active TCA for

energy yield to move around. The epimastigote model presented an intermediate behavior for

the flux distribution, showing a TCA less utilized than trypomastigote but more active than

amastigote.
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2.1.4 Stage-specific differences in essential genes and metabolic flux suggest potential

drug targets

Through growth simulation of stage-specific models, we identified essential genes and

reactions that could potentially be drug targets. Single reaction and gene deletion simulations

were performed (See details in the methods section) for the pan and stage-specific models built

from transcriptomics integration . We generated a list of potential essential genes and reactions for

T. cruzi growth at different stages (See Supplemental file shiratsubaki supplementary tables.xlsx

Tables S7, S8, and S9), which can be useful for drug discovery for Chagas disease. In this

section, we show the stage-specific essential genes identified, and their corresponding essen-

tial reactions can be found in the Chapter 3 - Supplementary material (See Supplemental file

shiratsubaki supplementary tables.xlsx Table S8 for more details).

Figure 2.5: Venn diagram of essential single genes for each stage-specific iIS312 model
(Supplemental file shiratsubaki supplementary tables.xlsx Table S8 for more details).

Genes that are essential for parasite survival differ for each stage, as the environment and

objective change across stages. Stage-specific models predict that 10 genes were essential for

all T. cruzi stages, among which 2 belong to the Glutamate Metabolism, 2 to Glycine, Serine,

and Threonine Metabolism, and 6 to Glycolysis/Gluconeogenesis. We also found that 9 essential
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genes were unique to epimastigote and amastigote (both replicative stages of T. cruzi). Mostly of

these genes (7) belong to Pentose Phosphate Pathway, a pathway related to nucleic acid synthesis.

Finally, 4 essential genes were unique to amastigote and only 2 for trypomastigote.

We also performed double gene deletions to get the list of lethal genes pairs that may

potentially hinder cell survival if both deleted. This result provides additional drug targets that

could be considered for Chagas disease treatment. (See Chapter 3 - Supplementary material and

Supplemental file shiratsubaki supplementary tables.xlsx Table S9 for more details).

2.1.5 Potential drug targets and experiments

The single and double deletions of genes in the models provided us a list with potential

essential genes and consequently potential drug targets. For single targets, all the stages showed

more vulnerability in genes associated with Glutamate Metabolism, Glycine, Serine, and Thre-

onine Metabolism, and Glycolysis/Gluconeogenesis. Some of the genes were also been found

as lethal for other studies in T. cruzi, e.g. glutamate dehydrogenase (GLUDy) [12], glucokinase

(GLUKg) and hexokinase (HEX) [38]. For hexokinase and other glycolytic enzymes, they can

both be tricky targets for the amastigote stage. As it was discussed in previous section, findings in

the literature showed that amastigotes can uptake glucose from host cytosol pools. However, it

is still unknown if they present transporters for intermediate the glycolytic metabolites such as

glucose-6-phosphate. Finally, the double deletion results can be also interesting for the simulation

of double target experiments. We found 2603 cases of double gene deletions that might be lethal

for all T. cruzi stages.

2.2 Discussion and conclusions

The development of drugs capable of targeting essential genes in multiple stages of T.

cruzi might be the key for the improvement of Chagas disease treatment. In this work, we

reconstructed the updated GEM of T. cruzi, iIS312, to incorporate the expansion of recent genome
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annotation [19] of T. cruzi. Through integration of transcriptomics data, we generated three

stage-specific models (epimastigote, amastigote, and trypomastigote) and validated them against

experimental observations in previous studies. The reconstruction of the stage-specific GEM

allowed us to investigate the variation in metabolic functions across stages, predict stage-specific

essential genes and reactions, which can be experimentally validated through the disruption of

gene or gene products (e.g. drugs for enzyme inhibition and gene knockouts).

Our model is significantly expanded and improved comparing to the existing T. cruzi

model. The expanded iIS312 accounts for 516 reactions and 312 genes, as opposed to 162 and

215 in iSR215. Moreover, iIS312 includes more compartments and 83 new reactions in the lipid

metabolism, which is absent in iSR215. Our GEM was validated by comparing its secretion

predictions to findings in the literature, which fit the expected spectrum. In addition, we compared

the essential reactions predicted by the pan model iIS312 with the experimental data used in

iSR215 work [35] (See Supplementary material). Even though most of these experiments (more

than 80%) were run in related organisms (Trypanosoma brucei and Leishmania donovanni, both

pathogens belong to the family Trypanosomatidae), iIS312 predictions were able to reproduce

79% of the experimental data results (See Supplementary material). The use of experimental data

in related organisms to validate T. cruzi GEMs is a common practice due to the lack of a specific

CRISPR-Cas9 machinery for this pathogen.

Most importantly, the stage-specific models allowed us to predict and compare the dif-

ferences in metabolic flux distribution and gene deactivation across stages. Interestingly, the

deactivated reactions in the amastigote model suggested that glycolysis might not be essential for

this stage. This result is consistent with a previous finding that glucose transporter activity was

not detected in amastigotes [39]. A separate study [24] showed that the gene expression data in

glycolytic genes drastically oscillated over time (0-72 hpi) - gene expression level of glycolysis

reactions decreased when the infection of amastigotes in mammalian cells starts until reaching 6

hpi (0-6 hpi), and then increased between 6 to 72 hpi, possibly due to the inability of host to pro-
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vide intermediate metabolites as it is being invaded by the parasite. These findings also reinforce

the non-essentiality of glycolysis in amastigotes and might suggest the existence of transporters

for intermediate glycolytic metabolites from the host cell, which explains the deactivation of

some reactions in Glycolysis in our amastigote model. Confirmation of such transporters still

needs further investigation in the future. In addition, the metabolic flux distribution predicted

by our model revealed that amastigotes take a shortcut through proline and glutamate pathway,

which enhances the flux metabolic activity in the malic enzyme. This behavior is also described in

Marchese et al (2018) [26]. For trypomastigotes, our model predictions also resulted in expected

behavior. The deactivated reactions were enriched in PPP pathway, which is consistent with

findings in the literature as trypomastigotes are the stage specialized in cell invasion and are not

replicative. Trypomastigotes also require an active TCA for energy yield to move around, and this

behavior is observed in our prediction of metabolic flux distribution. For the epimastigote model,

we found the least amount of gene deactivation, and the flux distribution revealed an intermediate

TCA activity, as it utilizes Glycolysis and PPP, which align with findings in the literature [3].

Our findings suggest glycolytic enzymes may not be the best drug targets for Chagas

disease due to its non-essentially in amastigote stage. In addition, our predictions in gene and

reaction essentiality, as well as metabolic flux distribution among the different stages might be a

step forward towards the improvement of Chagas disease treatment. From what we know so far,

these stage-specific models are the first GEM built for the stages amastigote and trypomastigote.

This work is also the first to present an in silico GEM comparison among different stages in T.

cruzi life-cycle.

Future work comprises the refinement of iIS312 through adjustments in the biomass

reaction and better genome annotation. Our eukaryote cell GEM presents 519 reactions, and the

published 2009 model iSR215, 162 reactions, while most recent prokaryotic cell GEMs present

more than one thousand reactions [28]. The difference in the amount of reactions highlights

the limitation in T. cruzi genome annotation and how little we still know about this pathogen.
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Additional future work also comprises the construction of strain-specific T. cruzi models for a

more accurate prediction of drug targets for different strains. It is important to note that the

current GEM only delineates the metabolic capability, but can be expanded to a metabolic and

gene expression model [25] and include structural information of metabolic enzymes [29] in the

future.

2.3 Materials and methods

2.3.1 iIS312 metabolic network reconstruction

Multiple steps are involved in building expanding the metabolic network reconstruction of

T. cruzi. The first step is curation of metabolic knowledge(Figure 2.1, Step 1), which consists of

data collection from genome annotation and gene-protein-reaction databases, metabolic reaction

list generation, and determination of gene-protein-reaction relations. To curate our model, we

used the genome annotation of the strain Dm28c [19], TritrypDB [2], Uniprot [10], and the

models iSR215 (core metabolism model reconstruction of T. cruzi) and iAC560 (genome-scale

model reconstruction of L. major). Once the curation was accomplished (See Supplemental file

shiratsubaki supplementary tables.xlsx Table S1 for more details), the list of metabolic reactions

was translated into a stoichiometric matrix (S), which is the mathematical representation of

the stoichiometric coefficients of all substrates and products of all the reactions. Palsson and

collaborators [31] describe in their work how GEM can be useful to predict biological capabilities.

Model reconstruction is performed using the toolbox COBRApy [14].

The model is named then following the rules introduced by Reed and colleagues [32]:

model name starts with i to denote in silico, followed by the first authors first and last initials (IS),

and by the number of genes in the model (312).
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2.3.2 Biomass reaction

The biomass reactions for T. cruzi were built based on the cellular composition of L.

major, a related protozoan parasite. The function of the biomass equation is to provide a drain of

essential metabolites that are needed to support the growth of the metabolic system [9, 41, 15].

Since the cellular composition is likely to vary according to the physiological conditions, the

biomass equation is an approximation [41]. On the other hand, findings in the literature have

shown that perturbations in the coefficients of metabolites in the biomass should not affect the

overall biomass yield significantly [41]. Biomass reaction is modified for trypomastigote model

as it is the only non-replicative stage. Check Chapter 3 - Supplementary Material for a detailed

explanation on the biomass equation derivation and stage-specific differences.

2.3.3 Growth simulation by flux balance analysis (FBA)

After the curation step and the construction of the stoichiometric matrix, the flux balance

analysis (FBA) is applied in the model to simulate T. cruzi metabolism. FBA is a mathematical

optimization problem whose goal is identifying a specific flux distribution that optimizes a

given metabolic objective (in our case, the biomass reaction of the model). Palsson et al [30]

discuss in their work what FBA is and its application in biochemical networks. Since our

model is simulating cell growth, the quasi-steady state (S.v = 0) can be considered, as the time

constants for this case are long (hours to days), which is different from the time constants for

metabolic transients (< tens of seconds) [35, 22]. The medium used for growth simulation

for iIS312 was developed based on the ones used in L. major model iAC560 [9] and T. cruzi

model iSR215 [35]. To define in silico growth conditions, we changed the lower bound of

exchange reactions. For our FBA analysis, we allowed the intake and outtake of the following

metabolites: glucose, H+, phosphate, acetate, cysteine, alanine, arginine, asparagine, choline,

citrate, aspartate, oxygen, succinate, glutamate, glycine, glycerol, threonine, carbon dioxide,

proline, ammonium, deoxyribose, ergosterol, glutathione, guanine, hydrogen sulfide, histidine,
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hypoxanthine, isoleucine, methionine, nicotinamide, nicotinic acid, ammonia, phenylalanine,

serine, thymine, uracil, and valine.

2.3.4 Validation of the model expansion

The validation step (Figure 2.1, Step 2) consisted of comparing findings in the literature

and our model predictions. The findings we used to validate the model were the byproducts

secreted by T. cruzi. We also compared our pan model predictions to experiments involving

targeted disruption of genes or gene products (gene knockouts, RNAi, and drugs for enzyme

inhibition) in T. cruzi or related organisms (See supplementary material for details).

2.3.5 Identification of essential genes

The essential gene-reactions list was generated by using the single gene deletion function

in COBRApy [14], a python-based tool to build metabolic network reconstruction. The function

was applied in the pan iIS312 model to identify essential genes in the pan model. Essential

genes were also identified in stage-specific models. Specifically, for the amastigote model, we

included the genes TCDM 04067 (ENO enolase, subsystem Glycolysis/Gluconeogenesis) and

TCDM 05454 (PPCKg glycosomal phosphoenolpyruvate carboxykinase, subsystem Glycoly-

sis/Gluconeogenesis) into the list of essential genes to maintain a non-nul growth.

2.3.6 Transcriptomics integration and life cycle stage-specific models

We integrated transcriptomics data (Figure 2.1, Step 3) to build stage-specific models from

the pan iIS312 model followed the method presented by Richelle et al [33]. The gene expression

data used came from the work of Berná et al [3], where the authors generated transcriptomics for

all the stages in T. cruzi life cycle (epimastigotes, amastigotes, and trypomastigotes).

We then used model extraction method (MEM) [34, 33] to generate stage-specific models

through integration of transcriptomics data. For our models, we used the MBA-like MEM
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[33, 34, 21], an algorithm that uses a set of core reactions that should not be removed, while

removing other reactions with low gene expression. We defined the set of essential gene-reactions

obtained from the pan model as the set of core reactions that should not be removed.

For the preprocessing of gene expression data, we attributed a gene activity score for each

gene and defined a threshold to determine which genes are active in each T. cruzi stage. The

gene threshold is usually defined by the mean of each gene expression level over all the sample

stages coming from the same dataset. In addition, the threshold should to be higher or equal to

the 25th percentile of the overall gene expression value distribution and lower or equal to the 75th

percentile [33]. The gene score is given by:

GeneScore = 5.log
(

1+
ExpressionLevel

T hreshold

)
(2.1)

The gene scores are integrated into the model by parsing the Gene-protein-reaction

association (GPR) rules (See Supplemental file shiratsubaki supplementary tables.xlsx Table S1

for more details) associated with each reaction. Since the GPR is a logical expression (i.e. AND

and OR logical operators), the gene score for each reaction is defined by taking the minimum

expression value among all the genes associated to an enzyme complex (AND rule) and the

maximum expression value among all the genes associated to an isozyme (OR rule) [33, 20].

As stated previously, our MEM considers a set of essential gene-reactions that should

not be deactivated. The gene scored of each gene was calculated using the given formula above.

The choice of the threshold in the gene score formula was defined first as the 25th percentile of

the overall gene expression value distribution, given the variability in the transcriptomics data

of T. cruzi stages. The gene scores were then compared to another threshold equals to 5log2, as

recommended in the literature [33]. For each gene, we evaluated if the gene score was lower than

5log2 and if it belonged to the essential gene-reactions list. If these two conditions were satisfied,

the gene was knockout in the model.

For refinements and validation of the MEM applied, we used experimental findings by
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Mattos et al [27] regarding protein activation in T. cruzi cellular infection. Trypomastigote is

the stage responsible for cellular infection. From the list of proteins that were activated in the

infectious stage, we checked if the associated genes were also active in our trypomastigote model.

This allowed us to refine the threshold of our MEM as the 22th percentile of the overall gene

expression value distribution (See Supplemental file shiratsubaki supplementary tables.xlsx Table

S2 for more details) to minimize the inconsistency between our method and experimental findings.

2.3.7 Flux distribution maps, metabolic network and gene-expression maps and venn di-

agrams

The flux distribution maps were generated by Escher-FBA [36]. This tool is a web

application for interactive flux balance analysis (FBA) simulations within a pathway visualization.

We uploaded our metabolic network maps and models to generate the output. In addition, all

metabolic network and gene-expression maps were generated by Escher [23]. This tool is also a

web application for building and generating data-rich visualizations for biological pathways. We

also integrated transcriptomics into Escher map to facilitate the identification of trends in gene

expression data. Finally, all the Venn diagrams were generated by a Venn diagram tool available

at http://bioinformatics.psb.ugent.be/webtools/Venn/.

2.4 Acknowledgments

Chapter 2 (”Essential metabolic pathways in Trypanosoma cruzi”) and Chapter 3 (”Sup-

plementary material”) are currently being prepared for publication by Shiratsubaki, Isabel S.;

Fang, Xin; Siqueira-Neto, Jair L.; and Palsson, Bernhard . The thesis author was the primary

investigator and one of the two primary authors of this paper.
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Chapter 3

Supplementary material

3.1 Biomass calculations for Trypanosoma cruzi

The biomass reaction for T. cruzi was built using the similar cellular composition of

Leishmania major, a close related organism belonging to the same family Trypanosomatidae [9].

The final biomass equation for T. cruzi iIS312 model is presented below:

(0.4281) ala-L + (0.2557) arg-L + (0.0932) asn-L + (0.1728) asp-L + (0.0672) cys-L + (0.1458)

gln-L + (0.2134) glu-L + (0.2297) gly + (0.0960) his-L + (0.1060) ile-L + (0.3271) leu-L +

(0.1184) lys-L + (0.0804) met-L + (0.1049) phe-L + (0.2059) pro-L + (0.3193) ser-L + (0.2134)

thr-L + (0.2550) val-L + (0.1023) gmp + (0.0593) ump + (0.0565) ergst + (35.115) atp + (33.475)

h2o + (14.405) nadph + (1.241) 3pg + (8.066) nh4 + (0.428) g3p + (0.397) e4p + (1.236) akg +

(0.445) r5p + (1.785) oaa + (2.097) accoa + (0.642) pep + (0.712) g6p B + (2.994) pyr + (3.015)

nad → (35.115) adp + (33.475) h + (33.475) pi + (3.015) nadh + (2.852) co2 + (14.405) nadp +

(2.097) coa

The changes made in the biomass reaction were supported by gap-filling for some metabo-

lites. To check the gap-filling of the biomass metabolites, we used a package in COBRApy [14]

called gapfilling. This tool compares two models with respect to a specific biomass metabolite

and predicts which reactions are missing to enable growth. In our case, we compared our model

iIS312 with iAC560, a larger reconstruction model. After getting the list of missing reactions for
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each metabolite, we checked if the reactions are presented in T. cruzi by accessing TritrypDB

[2] and Uniprot [10] databases. If we could not find strong evidences for the presence of those

reactions, we set the metabolite coefficient in the biomass reaction as zero. We also added to this

biomass formula the metabolites of the iSR215 biomass reaction. The overlapped metabolites

that had their coefficient adjusted to the values in iSR215 biomass reaction are represented in blue.

The metabolites in red represent the metabolites of iSR215 biomass reaction that were added into

the iIS312 biomass formula.

3.2 Changes in the stage-specific trypomastigote model biomass reaction

As discussed in the main text, the results for deactivated genes and reactions and the fact

that this stage is non-replicative suggest that nucleic acids are not important for trypomastigotes

growth. For these reasons, we setted up the coefficients of Pentose Phosphate Pathway (PPP)

intermediate metabolites and nucleotides as zero (damp, dcmp, dgmp, dtmp, amp, cmp, gmp,

ump, g3p, e4p, and r5p). The metabolites in blue had their coefficients adjusted.

(0.4281) ala-L + (0.2557) arg-L + (0.0932) asn-L + (0.1728) asp-L + (0.0672) cys-L + (0.1458)

gln-L + (0.2134) glu-L + (0.2297) gly + (0.0960) his-L + (0.1060) ile-L + (0.3271) leu-L +

(0.1184) lys-L + (0.0804) met-L + (0.1049) phe-L + (0.2059) pro-L + (0.3193) ser-L + (0.2134)

thr-L + (0.2550) val-L + (0.0565) ergst + (35.115) atp + (32.205) h2o + (13.135) nadph + (1.241)

3pg + (8.066) nh4 + (1.236) akg + (1.785) oaa + (2.097) accoa + (0.642) pep + (0.712) g6p B +

(2.994) pyr + (3.015) nad → (35.115) adp + (32.205) h + (33.475) pi + (3.015) nadh + (2.852)

co2 + (13.135) nadp + (2.097) coa

3.3 Single reaction deletions

From the results (See Supplemental file shiratsubaki supplementary tables.xlsx Table

S7), 42 reactions were essential for all the stage-specific models. Among them, 13 are exchange
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Figure 3.1: Venn diagram of essential reactions for each stage-specific iIS312 model (See
Supplemental file shiratsubaki supplementary tables.xlsx Table S7 for more details).

reactions and are potentially related to essential nutrients for the parasite; 18 are transport

reactions and no gene-associated; and 11 are metabolic gene-associated reactions and potential

drug targets for Chagas disease. Among the 11 gene-associated essential reactions, they belong to

Glutamate Metabolism (1 reaction), Glycine, Serine, and Threonine Metabolism (2 reactions) and

Glycolysis/Gluconeogenesis (8 reactions). In addition, 17 reactions were unique for amastigote

and epimastigote, both replicative stage of T. cruzi. Among these reactions, 12 are gene-associated

and mostly belong to Pentose Phosphate Pathway (8 reactions). Two of them belong to Purine

Metabolism. Both subsystems are associated with nucleic acid synthesis. Finally, 10 essential

reactions were unique for amastigote and 8 for trypomastigote. Among the unique essential

reactions for amastigote, 5 reactions are gene-associated metabolic reactions. For trypomastigote,

only 2 reactions are gene-associated metabolic reactions.

3.4 Double gene deletions

We also did double gene deletions to get the list of double essential genes for each

model. The results are described in Figure 3.2. From the results (See Supplemental file shi-

ratsubaki supplementary tables.xlsx, Table S9 for more details). The results indicate that the
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Figure 3.2: Venn diagram of essential reactions for each stage-specific iIS312 model (See
Supplemental file shiratsubaki supplementary tables.xlsx, Table S7 for more details).

amastigotes are the most susceptible stage, presenting more lethal double deletions than the other

stages.

3.5 Comparison with experiment findings

The comparison of iIS312 predictions with experimental data is shown in Supplemental

file shiratsubaki supplementary tables.xlsx, Table S4. Our model simulations for the pan model

were able to correctly reproduce respectively 79%, comparing to 79% for the full iSR215 model.

Therefore, iIS312 kept prediction accuracy compared to iSR215.

3.6 Supplemental files

In the Supplemental Files for ”Essential metabolic pathways in Trypanosoma cruzi”, we

present an excel file with all important tables generated from this work (Please see shiratsub-

aki supplementary tables.xlsx). The tabs in this file are: Table S1: iIS312 content description,

Table S2: Transcriptomics data and integration, Table S3: Excreted metabolites prediction, Ta-

ble S4: Comparison of model predictions and experimental data for lethal reactions in T. cruzi

and related organisms, Table S5: List of low-expressed essential genes among T. cruzi stages,
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Tabl S6: List of deactivated reactions after transcriptomics integration, Table S7: List of essential

reactions after single reaction deletion, Table S8: List of essential genes after single gene deletion,

Table S9: List of essential pairs of genes after double gene deletion, and Table S10: Comparison

between transcriptomics results and list of kinases and phosphatases that were shown to be active

during trypomastigote described by Mattos et al [27].

We also present in the Supplemental Files some figures representing metabolic maps.

Those files are: shiratsubaki supplemental figure1 metabolic network map.pdf (Figure S1: Try-

panosoma cruzi Metabolic Network), shiratsubaki supplemental figure2 FBA epimastigote.pdf

(Figure S2: FBA in Epimastigote), shiratsubaki supplemental figure3 FBA amastigote.pdf (Fig-

ure S3: FBA in Amastigote), shiratsubaki supplemental figure4 FBA trypomastigote.pdf (Figure

S4: FBA in Trypomastigote), and shiratsubaki supplemental figure5 model expansion.pdf (Fig-

ure S5: Trypanosoma cruzi Metabolic Network Expansion).

3.7 Acknowledgments

Chapter 2 (”Essential metabolic pathways in Trypanosoma cruzi”) and Chapter 3 (”Sup-

plementary material”) are currently being prepared for publication by Shiratsubaki, Isabel S.;

Fang, Xin; Siqueira-Neto, Jair L.; and Palsson, Bernhard . The thesis author was the primary

investigator and one of the two primary authors of this paper.
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Chapter 4

Conclusions and Future Work

The development of drugs capable of targeting essential genes in multiple stages of T.

cruzi might be the key for the improvement of Chagas disease treatment. In this work, we

reconstructed the updated GEM of T. cruzi, iIS312, to incorporate the expansion of recent

genome annotation of T. cruzi. Through integration of transcriptomics data, we generated three

stage-specific models (epimastigote, amastigote, and trypomastigote) and validated them against

experimental observations in previous studies. The reconstruction of the stage-specific GEM

allowed us to investigate the variation in metabolic functions across stages, predict stage-specific

essential genes and reactions, which can be experimentally validated through the disruption of

gene or gene products (e.g. drugs for enzyme inhibition and gene knockouts).

Our model is significantly expanded and improved comparing to the existing T. cruzi

model. The expanded iIS312 accounts for 516 reactions and 312 genes, as opposed to 162

and 215 in iSR215. Moreover, iIS312 includes more compartments and 83 new reactions in

the lipid metabolism, which is absent in iSR215. Our GEM was validated by comparing its

secretion predictions to findings in the literature, which fit the expected spectrum. In addition, we

compared the essential reactions predicted by the pan model iIS312 with the experimental data

used in iSR215 work [35] (See Supplementary material). Even though most of these experiments

(more than 80%) were run in related organisms (Trypanosoma brucei and Leishmania donovanni,

both pathogens belong to the family Trypanosomatidae), iIS312 model predictions were able

to reproduce 79% of the experimental data results (See Supplementary material). The use of
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experimental data in related organisms to validate T. cruzi GEMs is a common practice due to the

lack of a specific CRISPR-Cas9 machinery for this pathogen.

Most importantly, the stage-specific models allowed us to predict and compare the dif-

ferences in metabolic flux distribution and gene deactivation across stages. Interestingly, the

deactivated reactions in the amastigote model suggested that glycolysis might not be essential for

this stage. This result is consistent with a previous finding that glucose transporter activity was

not detected in amastigotes [39]. A separate study [24] showed that the gene expression data in

glycolytic genes drastically oscillated over time (0-72 hpi) - gene expression level of glycolysis

reactions decreased when the infection of amastigotes in mammalian cells starts until reaching 6

hpi (0-6 hpi), and then increased between 6 to 72 hpi, possibly due to the inability of host to pro-

vide intermediate metabolites as it is being invaded by the parasite. These findings also reinforce

the non-essentiality of glycolysis in amastigotes and might suggest the existence of transporters

for intermediate glycolytic metabolites from the host cell, which explains the deactivation of

some reactions in Glycolysis in our amastigote model. Confirmation of such transporters still

needs further investigation in the future. In addition, the metabolic flux distribution predicted

by our model revealed that amastigotes take a shortcut through proline and glutamate pathway,

which enhances the flux metabolic activity in the malic enzyme. This behavior is also described in

Marchese et al (2018) [26]. For trypomastigotes, our model predictions also resulted in expected

behavior. The deactivated reactions were enriched in PPP pathway, which is consistent with

findings in the literature as trypomastigotes are the stage specialized in cell invasion and are not

replicative. Trypomastigotes also require an active TCA for energy yield to move around, and this

behavior is observed in our prediction of metabolic flux distribution. For the epimastigote model,

we found the least amount of gene deactivation, and the flux distribution revealed an intermediate

TCA activity, as it utilizes Glycolysis and PPP, which align with findings in the literature [3].

Our findings suggest glycolytic enzymes may not be the best drug targets for Chagas

disease due to its non-essentially in amastigote stage. In addition, our predictions in gene and
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reaction essentiality, as well as metabolic flux distribution among the different stages might be a

step forward towards the improvement of Chagas disease treatment. From what we know so far,

these stage-specific models are the first GEM built for the stages amastigote and trypomastigote.

This work is also the first to present an in silico GEM comparison among different stages in T.

cruzi life-cycle.

Future work comprises the refinement of iIS312 through adjustments in the biomass

reaction and better genome annotation. Our eukaryote cell GEM presents 519 reactions, and the

published 2009 model iSR215, 162 reactions, while most recent prokaryotic cell GEMs present

more than one thousand reactions [28]. The difference in the amount of reactions highlights

the limitation in T. cruzi genome annotation and how little we still know about this pathogen.

Additional future work also comprises the construction of strain-specific T. cruzi models for a

more accurate prediction of drug targets for different strains. It is important to note that the

current GEM only delineates the metabolic capability, but can be expanded to a metabolic and

gene expression model [25] and include structural information of metabolic enzymes [29] in the

future.
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attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS
neglected tropical diseases, 4(8):e804, 2010.

[13] A. L. S. S. de Andrade, F. Zicker, R. M. de Oliveira, S. A. e Silva, A. Luquetti, L. R. Travas-
sos, I. C. Almeida, S. S. de Andrade, J. G. de Andrade, and C. M. Martelli. Randomised
trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. The
Lancet, 348(9039):1407–1413, 1996.

[14] A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke. Cobrapy: constraints-based
reconstruction and analysis for python. BMC systems biology, 7(1):74, 2013.

[15] J. Edwards and B. Palsson. The escherichia coli mg1655 in silico metabolic genotype:
its definition, characteristics, and capabilities. Proceedings of the National Academy of
Sciences, 97(10):5528–5533, 2000.

[16] J. C. Engel, B. M. F. de Cazzulo, A. O. Stoppani, J. J. Cannata, and J. J. Cazzulo. Aerobic
glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during
growth and differentiation to epimastigotes. Molecular and biochemical parasitology,
26(1-2):1–10, 1987.

[17] S. S. Estani, E. L. Segura, A. M. Ruiz, E. Velazquez, B. M. Porcel, and C. Yampotis. Efficacy
of chemotherapy with benznidazole in children in the indeterminate phase of chagas’ disease.
The American journal of tropical medicine and hygiene, 59(4):526–529, 1998.

[18] B. FRYDMAN, C. de los SANTOS, J. J. CANNATA, and J. J. CAZZULO. Carbon-13
nuclear magnetic resonance analysis of [1-13c] glucose metabolism in trypanosoma cruzi:
Evidence of the presence of two alanine pools and of two co2 fixation reactions. European
journal of biochemistry, 192(2):363–368, 1990.

[19] E. C. Grisard, S. M. R. Teixeira, L. G. P. de Almeida, P. H. Stoco, A. L. Gerber, C. Talavera-
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