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ABSTRACT OF THE DISSERTATION 

 
 

Applications of Multi-Cycle Earthquake Simulations to Earthquake Hazard 
 

by 
 

Jacquelyn Joan Gilchrist 
 

Doctor of Philosophy, Graduate Program in Geological Sciences 
University of California, Riverside, December 2015 

Dr. James H. Dieterich, Chairperson 
 
 
 

 This dissertation seeks to contribute to earthquake hazard analyses and 

forecasting by conducting a detailed study of the processes controlling the 

occurrence, and particularly the clustering, of large earthquakes, the probabilities of 

these large events, and the dynamics of their ruptures. We use the multi-cycle 

earthquake simulator RSQSim to investigate several fundamental aspects of 

earthquake occurrence in order to improve the understanding of earthquake hazard. 

RSQSim, a 3D, boundary element code that incorporates rate- and state-friction to 

simulate earthquakes in fully interacting, complex fault systems has been successful 

at modeling several aspects of fault slip and earthquake occurrence. Multi-event 

earthquake models with time-dependent nucleation based on rate- and state-

dependent friction, such as RSQSim, provide a viable physics-based method for 

modeling earthquake processes. These models can provide a better understanding of 

earthquake hazard by improving our knowledge of earthquake processes and 

probabilities. RSQSim is fast and efficient, and therefore is able to simulate very 
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long sequences of earthquakes (from hundreds of thousands to millions of events). 

This makes RSQSim an ideal instrument for filling in the current gaps in earthquake 

data, from short and incomplete earthquake catalogs to unrealistic initial conditions 

used for dynamic rupture models. RSQSim catalogs include foreshocks, aftershocks, 

and occasional clusters of large earthquakes, the statistics of which are important for 

the estimation of earthquake probabilities. Additionally, RSQSim finds a near 

optimal nucleation location that enables ruptures to propagate at minimal stress 

conditions and thus can provide suites of heterogeneous initial conditions for 

dynamic rupture models that produce reduced ground motions compared to models 

with homogeneous initial stresses and arbitrary forced nucleation locations. 
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Chapter 1 
	  
	  

Introduction  
	  

1.1 Using Earthquake Simulations to Investigate Earthquake Hazard 
	  

This dissertation seeks to contribute to earthquake hazard analyses and forecasting 

by conducting a detailed study of the processes controlling the occurrence, and 

particularly the clustering of large earthquakes, the probabilities of these large events, and 

the dynamics of their ruptures. These studies use the multi-cycle earthquake simulator 

RSQSim to investigate several fundamental aspects of earthquake occurrence in order to 

improve the understanding of earthquake hazard. Major topics include: 1. The effect of 

heterogeneous initial stresses on ground motion models, 2. The effect of different 

detectability models for paleoseismic events used for probabilistic seismic hazard 

estimates, 3. The factors that control the timing, location, and rupture extent of large 

event-clusters, and 4. Whether there are indicators that additional sections of a fault 

system may rupture shortly after a large event occurs (producing a large event cluster). 

The remainder of this chapter explains the significance and advantages of 

earthquake simulators, as well as the important details about the earthquake simulator 

RSQSim and how it works. Chapter 2 discusses the characteristics of RSQSim events, 

and presents an application for generating realistic initial conditions for dynamic rupture 

models, which are used for ground motion estimates. Chapter 3 details the recently 
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updated California fault model that is based on the Unified California Earthquake 

Rupture Forecast Version Three (UCERF3) Fault Model, explains the tuning process for 

the simulated California catalogs, and explores different models of paleoseismic event 

detectability in an effort to explain the modern ‘hiatus’ in large California earthquakes. 

Chapter 4 focuses on the statistics of the simulated, long-term catalogs with particular 

emphasis on clusters of large earthquakes. Chapter 5 focuses on the foreshocks and 

aftershocks of large events in simulated catalogs and how those statistics can be used to 

estimate the probabilities of large-event clusters. Finally, Chapter 6 presents a brief 

synthesis of findings and suggests directions for future research. 

   

1.2 Earthquake Hazard and the Necessity of Simulations 
	  
	   Understanding earthquake occurrence, in terms of the timing or statistics of 

events, as well as the role of fault stresses on recurrence, triggering, and ground motions, 

is important for earthquake hazard estimation. However, there is not sufficient data on the 

occurrence of large earthquakes to effectively forecast the timing, location, and intensity 

of ground motions. Most of the large earthquakes that represent the greatest hazard have 

recurrence times on the order of hundreds or thousands of years. Instrumental catalogs 

span just over one hundred years, but the early data are sparse and inexact. Historical and 

paleoseismic records provide information about the long-term recurrence of events and 

sometimes the intensity of ground motions in some select locations; but, these records 

have large uncertainties and lack important details such as well constrained magnitudes 

of events and the statistics of aftershock sequences. The earthquake simulator RSQSim, 
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however has been successful in producing realistic earthquake catalogs that reproduce 

several aspects of earthquake occurrence, including several modes of earthquake slip, and 

empirical aftershock and magnitude-frequency relationships. The studies described in the 

following chapters use RSQSim with a California fault model to generate various long-

term, simulated catalogs to address many of the questions left unanswered by 

paleoseismic and instrumental catalogs, as well as simple earthquake rupture models. 

	  

1.3 Introduction to RSQSim 
	  

RSQSim is a 3D, quasi-dynamic, boundary element model that incorporates rate- 

and state-dependent friction to simulate earthquakes in fully interacting, complex fault 

systems. It is capable of simulating both small (single element, ~M3) and large (103 

elements, ~M9) seismogenic events, in simple and complex fault systems, in the form of 

foreshocks, aftershocks, and mainshocks (Richards-Dinger and Dieterich, 2012). 

Additionally, RSQSim is capable of simulating fault creep and slow-slip events (Colella 

et al., 2011), as well as injection-induced seismicity (Dieterich et al., 2015). 

 

1.3.1 RSQSim Computations 
	  
	   RSQSim uses the Ruina (1983) and Rice (1983) simplification of the Dieterich 

(1981) formulation of the rate- and state-constitutive law to calculate the sliding 

resistance between fault surfaces:  
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where  is the frictional shear stress that is resisting motion on the fault; σ is the 

normal stress; a is the rate coefficient; b is the state coefficient; V is the slip speed; is a 

reference slip speed; θ is the frictional state variable that evolves with time, slip, and 

normal stress history; is the characteristic slip distance over which θ evolves; and µ0 is 

the steady-state coefficient of friction (at the reference slip speed). Material parameters 

µ0, a, b, and  are all experimentally measured constants that are specified for each 

simulation. Unless otherwise specified, the following studies use typical values for the 

constants µ0=0.6, a=0.01, b=0.014, and =10−5m (Richards-Dinger and Dieterich, 

2012). The state variable has dimensions of time and it evolves with time, displacement, 

and normal stress as given by Linker and Dieterich (1992) and Dieterich (2007): 

   ,   (1.2) 

where α is a scale factor corresponding to the slope of the line representing the change in 

coefficient of friction during sliding versus the amplitude of a normal stress perturbation. 

θ evolves over a characteristic sliding distance Dc and at steady-state: 

 .     (1.3) 

Substituting Equation 1.3 into Equation 1.1 gives the steady-state friction as a function of 

slip speed: 
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 RSQSim employs a highly efficient computational approach based on Dieterich 

(1995) that allows it to generate synthetic catalogs on the order of 106 M3.5-M8 

earthquakes. This is made possible with use of event-driven computational steps of 

variable length rather than time stepping at closely spaced intervals (Dieterich & 

Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012). The cycle of stress 

accumulation and earthquake slip at each fault segment is separated into three distinct 

sliding states 0 (locked), 1 (nucleating), and 2 (sliding). Figure 1.1 is a snapshot of a 

single fault element during a large RSQSim event indicating when that element is either 

locked (red), nucleating (blue), or sliding (green). This figure also illustrates the 

evolution of slip, shear stress, normal stress, coefficient of friction, and sliding state for 

the same fault element and time period. The sequence of events leading up to a large 

earthquake in RSQSim simulations begins with stress accumulation due to tectonic 

stressing and stress transfer from slip of nearby fault elements. During this phase the fault 

is locked. A fault element is in state 0 if the shear stress is below the steady-state friction. 

The frictional state-variable increases over time (as given by Equation 1.2) and the fault 

strengthens until the applied shear stress exceeds the steady-state shear stress (Equation 

1.4) and the fault element transitions to state 1. During state 1 conditions have not been 

met for unstable slip, but the fault progressively weakens. The nucleation solutions of 

Dieterich (1992) modified to account for normal stress changes (Dieterich, 2007), 

together with stressing rate determine the event transition time to state 2. The time to 

instability is highly dependent on stressing rate and nucleation often takes years at 

tectonic stressing rates, but can drop to <1 s at high stressing rates during earthquakes. 
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Once unstable (seismic) slip begins, the fault element transitions to state 2 and the shear 

stress and coefficient of friction decrease until the applied shear stress drops below the 

steady state shear stress, and the element stops slipping (transitions back to state 0). It is 

not uncommon for individual elements to lock (as stress drops below steady state due to 

slip on that element) and re-nucleate (as more stress is transferred from slip of other 

elements nearby) multiple times during a large event as seen in Figure 1.1. Changes in 

normal stress during rupture are due to fault geometry and are greatest during ruptures on 

curved or dipping faults. In the case of the fault element in Figure 1.1, the normal stress 

decreases due to unclamping of the fault as the rupture propagates along the curved 

surface. In state 1, slip is accelerating but the total slip is negligible (a few times Dc) and 

therefore ignored. However, in state 2, a fault element has slipped sufficiently far to be 

transferring stress to every other element in the model.  

 The fault models employed in this study use either rectangular 3D boundary 

elements based on Okada (1992) or triangular elements based on Gimbutas (2012). 

Boundary element formulations for RSQSim are represented by 3D elastic dislocation 

arrays based on interactions between fault elements.  Shear and normal stresses acting on 

elements are: 

     (1.5) 

     (1.6) 

Where i and j are from 1 to N (the total number of fault elements), τi is the shear stress in 

the direction of slip on the ith element, and σi is the fault-normal stress on the same 

element. The two Kij are interaction matrices derived from either the Okada (1992) or 

τ i = Kij
τ δ j + τ i

tect

σ i = Kij
σδ j +σ i

tect
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Gimbutas (2012) dislocation solutions; slip on fault element j is represented by δj and 

tectonic stresses at fault element i are denoted by  and . The interaction 

(stiffness) matrices shown in Equations 1.5 and 1.6 give the stress change on the centers 

of each element due to unit slip on any other element. The stiffness matrices and the 

tectonic stressing rates are calculated once at the start of each simulation to save 

computation time. The long-term slip rate is specified for each element in the model and 

the back-slip loading method is used to set the tectonic stressing rates. With this method 

the fault elements are forced to slip backwards at their long-term rate and the stiffness 

matrix is used to solve for the rate of stress change on each element. These back-slip 

stressing rates are then used to load the fault and are exactly negated over the long-term 

when faults slide in the forward direction at their long-term rates.  

 
Figure 1.1: Evolution of slip (orange line), shear stress (blue line), normal stress (pink line) and the 
coefficient of friction (purple line) with time (upper panel) for a single fault element during a single 
large event (the full slip distribution of the event is shown below) from RSQSim. The sliding state for 
this element is indicated by the colored bar: red = State 0 = locked, blue = State 1 = nucleating, and 
green = State 2 = sliding. Colors on the fault image (lower panel) indicate total cumulative slip for all 
elements during this event. The red star indicates the hypocenter and the black patch indicates the 
fault element for which the history is plotted. 
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1.3.2 California Fault Models 
	  
	   The initial fault model used in this study is a California fault model based on the 

UCERF2 fault model (Figure 1.2). It is a version of the Allcal2 fault model described by 

Tullis et al. (2012), modified to run in RSQSim. It includes most of the mapped faults in 

California and a few that extend into Northern Mexico and run offshore of the Pacific 

coast. Back-slip tectonic stressing rates for each fault are based on the geologic fault slip 

rates from the UCERF2 report. RSQSim can accommodate any mode of faulting i.e. 

normal, reverse, strike-slip, and oblique, and modeled faults can be in any orientation. 

However, the rake angle for each element is set a priori and remains fixed. An 

approximation built into this fault model is that slip rate tapers to zero over a few patches 

both down-dip and at the ends of the faults in order to avoid sharp boundaries in stress 

during simulations. In total, the fault model contains 12,500 elements, at a 3x3 km 

resolution. Since earthquake moment, and therefore earthquake magnitude, depends on 

fault area this resolution corresponds to a minimum possible earthquake magnitude of 

M4.9 for an event on a single element. The simulated catalogs produced with this model 

each span tens of thousands of years and contain a few hundred thousand M4.9 to M8 

events. It should be noted that there is some ‘run-up’ time for each simulation that 

depends on the minimum slip-rate in the model. For this reason, the beginning of each 

simulated catalog (typically ~1,000 years) is thrown out to avoid irregularities in the first 

ruptures on each fault. 

 While preliminary results from the All California model provide insight into 

earthquake clustering, longer catalogs with a much wider magnitude range are required 
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for better clustering and aftershock statistics. An updated California fault model, based on 

the fault model and slip rates from the UCERF3 report was developed in 2014. This 

updated (UCERF3) fault model, which is discussed in more detail in Chapter 3, has more 

than a quarter of a million triangular elements at a resolution of 1 km2. This reduces the 

minimum magnitude to roughly magnitude 3.5, and greatly improves the aftershock 

statistics, as detailed in Chapter 5. 

 

	  

Figure 1.2: All California Fault Model. Element sizes are ~3km by ~3km with some variation to 
match mapped faults as well as possible. Color indicates the long-term slip-rate built into the model, 
based on observations reported by the UCERF2 report. 
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1.3.3 Evaluating RSQSim for Studying Long-Term Earthquake Behavior 
	  
	   Use of rate- and state-friction results in space-time clustering that follows the 

Omori aftershock decay law and permits investigation of earthquake clustering 

(Richards-Dinger and Dieterich, 2012). RSQSim allows large-scale simulations of fault 

system seismicity, which produce clustered seismicity in the form of foreshocks, 

aftershocks, and occasional large-event clusters.  As shown in Chapters 2 and 3, RSQSim 

generates realistic earthquake catalogs that are long enough to provide useful statistics. It 

creates synthetic catalogues that span hundreds of thousands of years, with hundreds of 

thousands to a million events. While the catalogs span up to a million years, we do not 

claim to make any predictions about fault slip rates or geometry in the future. The long 

catalogs are necessary for statistical analysis of events and long-term earthquake 

probability estimates, particularly for events on faults with slow slip rates 

Some basic catalog statistics from a representative simulation with the UCERF2 

fault model are shown in Figure 1.3. The fence plot of earthquake magnitudes with time 

(Figure 1.3a) shows great variation in the occurrence of large events, including periods of 

partial quiescence, as well as an increase in both the number and magnitude of smaller 

events surrounding the occurrence times of large events. The magnitude-frequency plot 

(Figure 1.3b) roughly follows Gutenberg-Richter scaling with a typical b-value around 1. 

The inter-event waiting time distribution (Figure 1.3c) shows the probability density of 

the times between events in the catalog. This plot has a power-law slope that rolls off to 

approximately follow an exponential distribution (shown by the blue curve). The 

exponential curve gives the probability density for a Poisson distribution. The 
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magnitude–rupture area plot (Figure 1.3d) approximately fits the Wells and Coppersmith 

(1994) scaling relationship. 

The aftershocks in the RSQSim catalogs show Omori-like decay. However, the 

widely observed strong dependence of aftershock productivity on earthquake magnitude 

(Shearer, 2012) is not seen because off-fault seismicity is not modeled. Earthquakes can 

only occur on faults that are explicitly modeled, and consequently the aftershocks are 

largely limited to ends of mainshock ruptures. Additionally, the minimum rupture area 

and thus magnitude of events is controlled by the element size of the model. 

Mid-scale simulations of ~105 events in a fault system with approximately 2x104 

fault elements, such as the one shown in Figure 1.2, can be run on desktop computers in a 

few hours. RSQSim has the ability to restart simulations with the ending conditions of 

previous simulations, allowing extensions to the timescale and number of events of any 

catalog. In this way multiple, continuous catalogs have been combined to create catalogs 

that span up to a million years with tens of millions of events. Midway through this study, 

RSQSim was parallelized, permitting larger simulations that run on supercomputers or 

local clusters. Longer and higher resolution simulations were run on the Linux cluster in 

the UCR Earthquake Physics Laboratory and the highest resolution models were run on 

the Stampede Supercomputer at the Texas Advanced Computing Center in Austin, Texas.  

 In summary, multi-event earthquake simulators with time-dependent nucleation 

based on rate-state friction, such as RSQSim, provide a viable physics-based method for 

modeling earthquake processes. RSQSim catalogs compare well to California catalogs 

for the magnitude ranges that are available for comparison. Richards-Dinger and 
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Dieterich (2012) participated in a simulator comparison project (Tullis et al., 2012b) that 

determined that RSQSim was in good agreement with California data, and performed as 

well or better than the other three simulators tested in the study. Additionally, Richards-

Dinger and Dieterich (2012) determined that RSQSim ruptures compare well to ruptures 

from fully dynamic rupture models in terms of total slip, rupture time history, and stress 

change. Overall, given the variety of fault models RSQSim can accept, the length of 

catalogs it can produce, and success of modeling different aspects of fault slip and 

earthquake occurrence, RSQSim is very well suited for studying both short- and long-

term earthquake processes and statistics. 
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Figure 1.3: a. Magnitude frequency distribution for a 1000 year period in the middle of a long-term 
catalog, b. Probability density of Inter-event waiting times with the exponential fit to the data shown 
in blue, c. Gutenberg-Richter plot with the fit line for the slope shown in red, and d. Scaling 
relationship for moment magnitude with rupture area, red line is the Wells and Coppersmith (1994) 
moment-area relationship for all rupture types. 
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Chapter 2 
 
Characteristics of RSQSim Events and 
the Importance of Evolved Stress States 

 

2.1 Abstract 
	  
Initial conditions used for dynamic rupture models, particularly the pattern of initial 

stresses, play a primary role in controlling rupture characteristics and resulting ground 

motions. The earthquake simulator RSQSim is able to simulate very long sequences of 

earthquakes (typically >100,000 events) and thus generate suites of heterogeneous initial 

conditions for large rupture events. In these simulations, earthquakes nucleate 

spontaneously — hence, each observed rupture has a set of initial stress conditions and an 

associated nucleation location that is not set a priori or forced. One important aspect of 

the simulations, and presumably of natural fault systems, is that repeated small events 

(prior to a large, through-going event) test the ability of a rupture to propagate through 

the system, and by this process the system finds a near optimal nucleation location that 

enables ruptures to propagate at a minimal stress condition. Forcing nucleation at non-

optimal locations for a given stress condition requires system-wide increases in shear 

stress to produce through-going ruptures. Compared to ruptures with homogeneous initial 

stresses and arbitrary forced nucleation locations, the spontaneous RSQSim events are 

able to propagate at lower average initial stresses and thus have lower stress drops (by 
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roughly 50%) and lower rupture propagation speeds, which produces significantly lower 

ground motions.  

 

2.2 Introduction 
	  
 Ground motion estimates are a key aspect of earthquake hazard maps and provide 

the primary information for designing earthquake resistant structures. Near-field ground 

motion estimates are essential for hazard estimation and disaster planning, including 

zoning, building codes, and post-earthquake relief efforts. However, there are limited 

data on near-field ground motions from large earthquakes. The largest events that 

represent the greatest hazard generally have longer recurrence intervals, so there are few 

in the instrumental record. Initial stress conditions and earthquake ground motions show 

great variability, possibly due to local factors such as geology and fault geometry, so the 

data available are not necessarily applicable to regions outside the area in which they 

were recorded. Many earthquake scientists have turned to dynamic rupture modeling to 

estimate ground motions in order to characterize the largest and rarest events. Most 

ground motion calculations so far have been performed with kinematic models; however, 

increases in computational efficiency and access to more powerful computers has led 

several earthquake scientists toward the use of physics-based dynamic rupture models for 

estimating ground motions, because they are now able to model the shaking frequencies 

(>1 Hz) necessary for the engineering of critical structures (Cui et al., 2010). Other 

studies have taken a hybrid approach by combining kinematic, stochastic, and dynamic 
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rupture models to produce broadband ground motions (Mai & Olsen, 2010; Mena et al. 

2010; and Lozos et al. 2015). 

 Initial conditions used for dynamic models, particularly the heterogeneity of 

initial stresses, play a fundamental role in determining rupture characteristics and 

resulting ground motions (Andrews, 1980; Day, 1982; Beroza and Mikumo, 1996; 

Oglesby and Day, 2002; Duan and Oglesby, 2006; Duan and Oglesby, 2007; Lapusta and 

Liu, 2009). In natural fault systems, initial stress conditions are a product of prior slip 

history and fault-system interactions. Large-scale fault geometry as well as small-scale 

roughness affects the stress patterns on faults (Okubo and Dieterich, 1984; Duan and 

Oglesby, 2007; Candella et al., 2009; Dieterich & Smith, 2009) and it has been 

established that faults are rough and that their geometry varies at all scales (Power et al., 

1987; Sagy and Brodsky, 2009). Furthermore, the degree of stress heterogeneity, for both 

shear and normal stress, and rupture complexity (i.e. fluctuations in speed, shape, and 

propagation direction) affects the magnitude and spectrum of ground motions 

(Madariaga, 1977; Hartzell and Archuleta, 1979; Olsen et al., 2008). 

 Current methods of specifying initial stresses for modeling dynamic rupture and 

estimating ground motions fall into 3 categories: homogeneous methods that use uniform 

initial stresses, stochastic methods that use random or idealized stress patterns (Andrews, 

1980; Day, 1982; Oglesby and Day, 2002; Andrews and Barall, 2011), and inversion 

methods that use waveform inversions to estimate the initial stress field of specific 

significant earthquakes (Beroza and Mikumo, 1996; Olsen et al., 1997). Some methods of 

specifying heterogeneous initial stresses have used discrete patches of high and low stress 
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(Day, 1982; Lapusta and Liu, 2009), but many heterogeneous stress patterns are 

represented by stochastic distributions of stresses (Andrews, 1980; Oglesby and Day, 

2002; Andrews and Barall, 2011). Day (1982) compared dynamic models with 

homogeneous initial stresses to models with heterogeneous initial stresses and found that 

even the simplest heterogeneous initial stress patterns (i.e. elements of high shear stress 

surrounded by lower shear stress) resulted in lower average rupture velocities (compared 

to models with homogeneous shear stress) with local supershear rupture velocities, where 

the rupture velocity is higher than the shear wave velocity, in areas with the highest shear 

stress. This indicates that stress heterogeneities can have an important effect on the 

dynamics of earthquake rupture, both in nature and in models, and thus on ground motion 

estimates as well. More complicated stochastic stress patterns attempt to parameterize 

small-scale heterogeneities in fault geometry that arise from fault roughness and small, 

nearby faults. The advantage of these stochastic stress patterns is that they account for the 

unknown and potentially unknowable small-scale structure of faults. However, it is 

impossible to determine whether these stress distributions are representative of natural 

stresses, and idealized stress distributions are not customized to any specific fault or 

system. Furthermore, these methods have no way of coupling the nucleation location to 

the stress distribution. Inversion methods for specifying heterogeneous initial stress from 

source inversions are arguably more realistic than stochastic models because they are 

based on real world data for a specific fault and event. However there is a small sample 

of ground motion data with which to perform these inversions, the results of which are 

often non-unique and highly variable because of the numerous, non-unique assumptions 
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that go into those inversions (Mai 2007; Mai et al. 2007) and the inversions cannot 

resolve fine-scale, heterogeneous stresses of interest for ground motion simulations. 

Additionally, these heterogeneous stresses only apply to a single, specific event and do 

not provide a general rule for assigning initial stresses. The earthquake simulator 

RSQSim has the ability to generate suites of heterogeneous initial stress conditions that 

spontaneously arise from long-term loading and fault interactions (Dieterich and 

Richards-Dinger, 2010) and, we argue, these evolved stresses provide more realistic 

representations of the stress states of faults immediately prior to large earthquakes, even 

for the idealized fault geometry used in this study.  

 

2.3 Methods and Models 
	  
 Two different, yet complementary physics-based methods were implemented to 

study the effect of initial stresses on earthquake ground motions. The following study, 

which uses the long-term earthquake simulator RSQSim, and the dynamic earthquake 

rupture code FaultMod (Barall, 2008), investigates both the evolution of fault stresses 

over many earthquake cycles and the resulting ground motions from earthquakes that 

occur under those evolved stress conditions. RSQSim is used to study the characteristics 

of earthquakes, specifically the magnitudes and variability of initial stresses prior to large 

events, while FaultMod is used to study the strength and variability of ground motions 

due to the variations in the evolved stress states from RSQSim events. 
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2.3.1 RSQSim 
	  
 As described in Chapter 1, RSQSim (Rate-State earthQuake Simulator) is a 3D 

boundary-element code developed by James Dieterich and Keith Richards-Dinger. 

RSQSim incorporates rate-state fault friction to simulate long sequences of earthquakes 

in complex, fully interacting fault systems (Dieterich and Richards-Dinger, 2010; 

Richards-Dinger and Dieterich, 2012). It creates synthetic catalogs that span tens of 

thousands of years, with hundreds of thousands of roughly magnitude 4 to magnitude 8 

events. RSQSim is able to handle fault models that are divided into thousands to half-a-

million fault elements. During seismic rupture, every fault element that slips transfers 

stress to the rest of the model; however, there are no dynamic (i.e. seismic wave) 

interactions. These fault interaction stresses are superimposed upon the long-term 

tectonic stressing rate that is applied to every fault element in the model. The nucleation 

location for each individual earthquake is not specified, as events nucleate spontaneously 

wherever the conditions for nucleation occur (as determined by the nucleation solutions 

of Dieterich, 1992). RSQSim is able to incorporate either rectangular or triangular fault 

elements, and it is possible to perform simulations with simple, single planar faults or 

complicated fault models with varying degrees of curvature and roughness, as well as 

multiple faults and different fault types.  

 RSQSim is capable of modeling a wide range of temporal and spatial scales 

because the code employs a highly efficient computational approach. Unlike dynamic 

models, which require time stepping at closely spaced intervals, RSQSim uses event-

driven computational steps, which make it significantly faster than dynamic models. As 
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explained in Chapter 1, the length of each time step is variable and determined by 

calculating the nearest time at which any element in the model will begin to nucleate. The 

simulator then jumps to that time and adjusts the stresses in the model accordingly. This 

is significantly faster than time stepping at small, even intervals. In fact, several hundred-

thousand RSQSim events can be simulated in the time it takes to perform one single-

event, dynamic model with FaultMod. 

 

2.3.2 FaultMod 
	  
 FaultMod is a 3D, dynamic, finite element code designed to model earthquake 

fault rupture, slip, wave-propagation, and ground motion. The code was developed by 

Michael Barall of Invisible Software (Barall, 2008) for physics-based modeling of 3D 

fault systems. It has been validated by the Southern California Earthquake Center’s Code 

Validation Project and accepted to be a fast, efficient, and most importantly, accurate 

code (Harris and Archuleta, 2004; Harris et al. 2009).  It allows for moderately complex 

fault geometry (i.e. several faults with bends, stepovers, etc., but nothing as large or 

complex as all of California, due to gridding limitations), heterogeneous initial 

parameters, as well as 3D variation of material properties throughout the model. It 

incorporates several fault constitutive models including linear slip weakening, rate- and 

state-dependent friction, and Coulomb friction (Barall, 2008). However this study only 

presents results from the rate- and state-dependent friction model to correspond with 

RSQSim simulations. Unlike RSQSim, FaultMod requires forced nucleation to initiate 

dynamic rupture and nucleation is achieved by either reducing the value of the state 
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variable or increasing the shear stress within an expanding, circular nucleation region 

such that the slip rates in this region increase to coseismic slip rates. This study nucleates 

events by reducing the state variable within the nucleation region, which essentially 

weakens the fault within that region. This ensures that nucleation does not generate 

excessive rupture speeds or additional slip in the regions of the fault near the nucleation 

location as is often observed in models nucleated by increasing the shear stress in the 

nucleation region. The minimum nucleation radius for unstable slip is determined by 

Equation 15 in Dieterich (1992). However, depending on the level and pattern of initial 

stresses, rupture will often stall when the minimum nucleation radius is used, therefore 

we use nucleation diameters that are 10-20% higher than the minimum to ensure that 

rupture continues to propagate. The diameter of these enlarged nucleation regions is 

usually between 2 km and 4 km. 

 Identical values of frictional parameters a, b, and µ0  (from Equation 1.1) were 

used in both codes. However, the codes require very different values (by ~3 orders of 

magnitude) for the rate- and state-dependent friction parameter DC . RSQSim assumes 

nucleation occurs within a single element and uses laboratory values of DC  (on the order 

of 10 µm) which are required to nucleate small earthquakes. However, FaultMod requires 

large (a few cm) values of DC  in order to properly resolve the evolution of the state 

parameter within computationally feasible limits on size of the finite element grid. This 

necessitates tuning the other input parameters to produce the same results for slip, stress 

drop, and rupture velocity from both RSQSim and FaultMod. This is achieved by 

adjusting the shear stress in order to modulate the stress drop.  
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2.4 Results 

2.4.1 Evolved Stress States from RSQSim 
	  
 RSQSim simulations begin with homogeneous initial shear stress, but during multi-

event simulations, the shear stress evolves through fault system interactions over many 

earthquake cycles. These initial stresses continuously evolve through the occurrence of 

many earthquakes of different sizes, slip distributions, and locations, which act to 

redistribute stresses. Hence, each rupture initiates at a different heterogeneous initial 

stress state. Stress heterogeneity is also affected by slip on non-planar faults, complex 

structure of fault systems, and by non-uniform loading, however the examples in this 

chapter are all taken from simulations with simple faults with uniform long-term stressing 

rates. Figure 2.1 shows examples of ten large events (M≥7) from a 200,000-event 

simulation with a single, planar, strike-slip fault, uniform normal stress, and uniform 

constitutive properties. The color and the contours represent the time at which each part 

of the fault first ruptured. The areas where several rupture front contours overlap indicate 

local pauses of rupture propagation for several seconds. There is great variation in the 

rupture-time patterns between events in the same simulation. Because model parameters 

and fault geometry are fixed, this variability is due to the continuing evolution of shear 

stresses within the simulation. Events that result from evolved, heterogeneous initial 

stresses in RSQSim are characteristically different from events initiated with 

homogeneous or composed stresses. Compared to ruptures with uniform initial stresses, 

RSQSim events that result from evolved initial stresses are able to propagate at lower 

average initial stresses. An example of this can be seen in Figure 2.2. This figure shows 
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the total slip, initial shear stress, normal stress, and rupture time contours of two events 

that were roughly 5,000 years apart in the same multi-event simulation with initially 

uniform shear stress and non-uniform normal stress (in the form of ‘strong’ patches of 

high normal stress). The first event was artificially nucleated by increasing the shear 

stress by 5 MPa on one element on the right end of the fault. This was done to avoid 

nucleating near one of the patches of higher normal stress, which requires greater changes 

in shear stress or fault strength. The evolved event has a lower initial shear stress (by 

several MPa), as well as a slower (by a factor of 3) and more variable rupture propagation 

speed, resulting in a maximum slip that is nearly 3m less than that of first event.  Overall, 

this produces more complex ruptures, such as those in Figure 2.1.  There is variation in 

all of these characteristics throughout the simulations, but the greatest difference is 

evident between the first event of each simulation and the subsequent events. This is 

illustrated in Figure 2.3, which shows the initial shear stress, stress drop, rupture duration, 

and rupture velocity for roughly one hundred full fault rupturing (M≥7) events (plotted 

against the nucleation time of each event) in an RSQSim simulation (the same one that 

the events illustrated in Figure 2.2 came from) that was initiated with homogeneous shear 

stress at 75MPa. The initial shear stresses and stress drops are averaged over all fault 

elements, and the rupture velocity is calculated from the distance between the nucleation 

point and the last element that began to slip, and the time between nucleation and the 

time at which the last element began slipping. While the average initial stresses of these 

evolved events vary by a 1-2 MPa, they never reach the magnitude of the initial shear 

stress prescribed for the first event.  



	  
	  

26	  

 
Figure 2.1: Rupture front contours of several events from a 200,000-event RSQSim simulation, with 
a single, planar, strike-slip fault showing the variation in rupture patterns and velocities of evolved 
RSQSim events. Black lines show contours of the rupture front as a function of time and color 
indicates the time at which each section of the fault ruptured. Starred events were selected to test 
nucleation locations (Figure 2.4, 2.5, &2.6).  
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Figure 2.2: Slip, Normal Stress, Shear Stress and Rupture Time Contours of the first event (top) and 
an evolved event (bottom) of a 200,000-event simulation from RSQSim, with a single, planar, strike-
slip fault to illustrate the difference between the first event in RSQSim simulations and the later 
evolved events. The first event, which was nucleated artificially, was initiated with homogeneous 
shear stress and heterogeneous normal stress. The evolved event initiated spontaneously with the 
same non-homogeneous normal stress as the first event (normal stress is constant temporally 
throughout this simulation), and a heterogeneous shear stress pattern that resulted from fault system 
interactions over roughly 5,000 years. Note the difference in color scale for the rupture contours. 
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Figure 2.3: Effect of the evolution of shear stress for large (M≥7) events throughout an RSQSim 
simulation. A) Mean initial shear stress, B) Stress drop, Rupture duration, and D) Rupture velocity. 
These plots indicate the significant difference in initial shear stress, stress drop, rupture duration, 
and rupture velocity between the first event in RSQSim simulations and the evolved events. 
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locations. As such, the simulations are effective in finding a low initial shear stress state 

and preferred nucleation location to produce a through-going rupture. Additionally, there 

is no lasting evidence of initial heterogeneities in the rupture patterns due to the 

redistribution of shear stresses over many earthquake cycles. This characteristic is 

especially evident in simulations with non-uniform normal stress as shown in Figure 2.2. 

The strong patches are clearly evident in the slip and rupture time patterns of the first 

event in the simulation but have almost disappeared from the later event even though the 

non-uniform normal stress remains unchanged.  Lapusta and Liu (2009), found a similar 

result and showed that a small patch of 20% higher normal stress significantly affected 

dynamic rupture in the first modeled event, but became “invisible” to dynamic rupture in 

subsequent events. These results demonstrate the importance of multi-event simulations 

in understanding the evolution and heterogeneity of fault stresses and consequent effects 

of added rupture complexity, where rupture propagation slows and sometimes pauses, 

which will affect ground motions.  

 

2.4.2 Optimal Nucleation Locations 
	  
 Fault system interactions within RSQSim simulations are also quite efficient in 

finding the optimal nucleation location, which enables ruptures to propagate at a minimal 

fault-wide stress condition. RSQSim events nucleate in areas of higher shear stress 

relative to the steady-state friction (Equation 1.1), but the size of the rupture area, and 

thus the magnitude of each event, is highly dependent on the stress pattern near the 

nucleation point. Each RSQSim event nucleates spontaneously with a unique nucleation 
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location and pattern of heterogeneous initial shear stress that is a function of position on 

the fault. 

 To examine the effect of nucleating events in non-optimal locations, the initial 

stress conditions of three representative events from a long-term RSQSim simulation 

(those with starred rupture contour plots in Figure 2.1) were used in single-event 

RSQSim simulations in which nucleation was forced (by reducing the state variable in 

Equation 1.1 to immediately initiate slip) at different locations along the fault (one 

simulation for each fault element as the nucleation point – roughly 200,000 simulations in 

total). These events were selected because their ruptures have a range of patterns 

representative of different complexities - a simple event (Figure 2.4) with nearly constant 

rupture speed, a moderately complicated event (Figure 2.5) in which rupture propagation, 

but not slip, paused for a few seconds near the end of the fault before continuing, and a 

very complicated event (Figure 2.6) in which the deeper half of the fault ruptured 

bilaterally before the upper half of the fault ruptured upwards.  

For the first set of simulations, nucleation was forced at each fault element in turn, 

but the initial conditions (the initial shear stress shown in Figures 2.4b, 2.5b and 2.5b) 

from the original RSQSim event were unchanged. The color contours in Figures 2.4c, 

2.5c and 2.6c show the resulting earthquake moment magnitudes resulting from forced 

nucleation at each element (12,800 simulations each). The vast majority of these 

simulations failed to propagate across the entire fault and produced events with 

magnitude 3.4 - 4 (primarily rupturing only the elements where nucleation was forced) 
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and fewer than 100 nucleation locations (indicated by the deepest red) resulted in 

magnitude 6.7 - 6.8, end-to-end rupturing events.  

For the second set of simulations (Figures 2.4d/e, 2.5d/e, and 2.6d/e) the original 

pattern of shear stress was preserved, but for each simulation a spatially uniform 

increment of shear stress (at every fault element) was added until an end-to-end 

rupture occurred. The new shear stress, across the entire fault is given by: 

 τ New = τ RSQsim +δτ ,     (2.2) 

where δτ is a constant increment of shear stress. This test involved running at least one 

and often several incremental simulations (until enough shear stress was added that an 

end-to-end rupture occurred) for nucleation at each of the 12,800 fault elements.  

 For most forced nucleation locations, (representing nearly 98% of the fault areas), 

moving the nucleation location away from the point of spontaneous nucleation required 

increasing the shear stress (often by several MPa) to enable rupture to propagate across 

the entire fault. These models required added shear stresses (𝛿𝜏),  of 0.5-3.7 MPa. Figures 

2.4d/e, 2.5/e, and 2.6d/e show the amount of added shear stress for each simulation and 

the resulting stress drop respectively, followed by histograms of each (2.4f, 2.5f, and 

2.6f). The additional shear stress lead to stress drops of up to 12 MPa for some of the 

nucleation locations, which is several times higher than the stress drops of the three 

original, spontaneous events (~3-4 MPa). Interestingly, the highest stress drops did not 

always correspond with the highest added shear stresses, but were often related to the 

pattern of shear stresses and their proximity to the edges of areas with abrupt spatial 

changes in shear stress. Of the three cases examined, the most complicated RSQSim 

δτ
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event had the fewest locations from which through-going ruptures could nucleate without 

additional shear stress (Figure 2.6c). On average, the stress drops of these through-going 

events with non-optimal nucleation locations were 30% to 60% higher than the stress 

drops of the original RSQSim events, depending on the complexity of the event. The 

average stress drops of these events vary by a factor of three depending on the nucleation 

location. Overall, arbitrary nucleation points that are not associated with the pattern of 

stresses on the fault generate exaggeratedly high stress drops. Stress drop plays a 

significant role in the magnitude of ground motions (Day, 1982; Oglesby & Day, 2002), 

therefore variations in stress drop would be expected to result in comparable variations in 

ground motions.  
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Figure 2.4: Nucleation Test: Simple RSQSim Event. Details from a representative simple RSQSim 
event from a long-term simulation. Red star indicates the spontaneous nucleation location from 
RSQSim and color indicates (a) maximum slip and (b) shear stress. Figures c, d, and e represent 
individual, single-event models for each of the 12,800 fault elements. (c) Magnitude of each event 
from forced nucleation at that location with original RSQSim shear stress. (d) Amount of added 
shear stress required for an end-to-end rupture at each location, (e) resulting stress drop for each of 
those end-to-end events, and (f) histograms of the data from d and e. Nucleating event at non-optimal 
nucleation locations often requires increasing the shear stress to produce an end-to-end rupture, 
which results in higher stress drops. 
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Figure 2.5: Nucleation Test: Moderate RSQSim Event. Details from a representative moderately 
complicated RSQSim event from a long-term simulation. Red star indicates the spontaneous 
nucleation location from RSQSim and color indicates (a) maximum slip and (b) shear stress. Figures 
c, d, and e represent individual, single-event models for each of the 12,800 fault elements. (c) 
Magnitude of each event from forced nucleation at that location with original RSQSim shear stress. 
(d) Amount of added shear stress required for an end-to-end rupture at each location, (e) resulting 
stress drop for each of those end-to-end events, and (f) histograms of the data from d and e. 
Nucleating event at non-optimal nucleation locations often requires increasing the shear stress to 
produce an end-to-end rupture, which results in higher stress drops. 
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Figure 2.6: Nucleation Test: Complicated RSQSim Event. Details from a representative complicated 
RSQSim event from a long-term simulation. Red star indicates the spontaneous nucleation location 
from RSQSim and color indicates (a) maximum slip and (b) shear stress. Figures c, d, and e 
represent individual, single-event models for each of the 12,800 fault elements. (c) Magnitude of each 
event from forced nucleation at that location with original RSQSim shear stress. (d) Amount of 
added shear stress required for an end-to-end rupture at each location, (e) resulting stress drop for 
each of those end-to-end events, and (f) histograms of the data from d and e. Nucleating event at non-
optimal nucleation locations often requires increasing the shear stress to produce an end-to-end 
rupture, which results in higher stress drops. 
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 This effect is illustrated in Figure 2.7, which gives results from two dynamic 

rupture simulations. The upper panel in Figure 2.7 gives the peak particle velocity for the 

rupture simulations with the optimal nucleation location for RSQSim Event #297196 

(Figure 2.4a/b), which had an average initial shear stress of 75.4 MPa and a stress drop of 

4.1 MPa; and the lower panel gives the results for the non-optimal nucleation location, 

which required an average initial shear stress of 78.9 MPa which resulted in a stress drop 

of 6.6MPa. The figures are in map view, with the faults at the centers. Black stars 

indicate the nucleation points. Ground motions are shown as peak horizontal particle 

velocity on the surface of the earth for 10km around the fault. With the element size of 

200 m near the fault and 400 m away from the fault these models have a minimum 

frequency of 1.73 Hz – 0.865 Hz, with the assumption that shear waves are well resolved 

over ten elements (Duan, 2009). The maximum peak particle velocity for the event 

nucleated at the optimal location was 1.78 m/s, while the event nucleated at the non-

optimal location generated a maximum horizontal peak particle velocity of 2 m/s, and 

velocities in excess of 1.78 m/s over a larger area than the model with the optimal 

nucleation location. At 5 km from the fault, beyond the areas with the most extreme 

accelerations, the model with the optimal nucleation location had an average peak 

particle velocity of 0.60 m/s, while the model with the non-optimal nucleation location 

had an average peak particle velocity of 0.73 m/s. Additionally, moving the nucleation 

location greatly changes the directivity pattern of the ground motions. For long, strike-

slip faults especially, rupture directivity can cause significantly higher ground motions at 

the far end of the fault, away from the nucleation location. Moving the nucleation 
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location changes which areas of the model experience this effect. This becomes 

particularly important when modeling real world faults, as it could greatly affect the 

ground motion estimates for communities near major faults. Additionally, models with 

non-optimal nucleation locations often have higher rupture propagation speeds. Overall, 

nucleating events at non-optimal locations, and thus at higher initial shear stresses, results 

in significantly stronger ruptures and higher ground motions over greater areas around the 

fault, and potentially alters the pattern of these ground motions and which areas of the 

model which experience the greatest shaking. 

	  

Figure 2.7: Ground motion comparison for optimal and non-optimal nucleation points. Each model is 
shown in map. Black stars indicate the epicenters. Color indicates the maximum horizontal peak 
particle velocity for each point on the surface. The shear stresses for the optimal nucleation location 
(top) are the shear stresses immediately prior to RSQSim Event # 297196 (Figure 2.3) and the shear 
stresses for the non-optimal nucleation location (bottom) are for the maximum added shear stress 
(3.5MPa) model from 2.3d. Nucleating events in non-optimal nucleation locations requires increasing 
the shear stress to produce an end-to-end rupture, which results in higher ground motions. 
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2.4.3 Effect of Heterogeneous Stresses on Ground Motions 
	  
 Another series of dynamic fault rupture model tests were performed with FaultMod 

in order to compare the ground motions of models initiated with heterogeneous stresses 

to models initiated with homogeneous stresses. These dynamic simulations were 

performed with a single, planar, strike-slip fault, as before. The results of these 

simulations indicate that the heterogeneity of initial stresses may significantly affect 

ground motions. Figure 2.8 shows the peak horizontal particle velocity of four different 

dynamic models initiated with varying degrees of stress heterogeneity. Measurements of 

the average peak particle velocity are taken along a parallel profile, 5 km from the fault 

(PPV5 – listed below each image along with the average stress drop for each model). 

Model A was initiated with both uniform shear stress (75MPa) and uniform normal stress 

(123MPa). Model B was initiated with heterogeneous shear stress, in the form of an 

evolved stress state from a multi-event RSQSim simulation (similar to the shear stress 

patterns shown in Figures 2.4, 2.5, and 2.6), and with uniform normal stress (123MPa).  

The ground motions and stress drop that resulted from Model B are weaker than those 

from Model A. Model C was initiated with uniform shear stress and heterogeneous 

normal stress in the form of “strong” patches of high normal stress (shown in Figure 2.2). 

Finally, Model D was initiated with another heterogeneous, evolved shear stress (similar 

to that of Model B, but from a different multi-event simulation) and the same 

heterogeneous normal stress as Model C. The ground motions and stress drop of Model C 

are higher than those of Model D, which has a higher degree of heterogeneity. Models C 

and D have the same average normal stress and shear stress, suggesting that the 
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difference in ground motion is due to rupture incoherence, in which the velocity and 

direction of rupture changes during an event. This coincides with observations that 

evolved RSQSim events tend to pause or slow down and wrap around barriers on the 

fault such as the patches of high normal stress shown in Figure 2.2, or in the form of 

bends, branches, or step-overs in more complex fault systems, such as the UCERF fault 

models discussed in Chapter 1. Overall, ground motions that result from models with 

complex, heterogeneous initial stresses from evolved RSQSim events are lower than 

those from models with simple, homogeneous initial stresses. 
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Figure 2.7: Peak horizontal particle motions of four models with different combinations of 
homogeneous and heterogeneous normal and/or shear stress. Each model is shown in map view with 
the fault centered horizontally. Black stars indicate the epicenters. Color indicates the peak particle 
velocity for each point on the surface. The average peak particle velocities along a line at a distance 
of 5 km from the fault (PPV5) are listed below each figure. Evolved heterogeneous stresses prior to 
RSQSim events result in weaker ground motions than homogeneous stresses. 
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2.5 Conclusions 
 
 This study explored the characteristics of ruptures in RSQSim simulations with a 

particular emphasis on how those characteristics might influence ground motions. Fault 

system interactions within RSQSim simulations produce heterogeneous, evolved stress 

states that result in a variety of rupture patterns. These fault system interactions are 

efficient in finding a nucleation location that enables ruptures to propagate at minimal 

average stress states. Additionally, the evolved stress states that precede large 

earthquakes in RSQSim result in earthquakes that have weaker ground motions than 

earthquakes nucleated artificially on faults with homogeneous or prescribed stresses. This 

is due to the lower stress drops, lower rupture propagation speeds, and less coherent 

ruptures. On the other hand, forced nucleation at non-optimal locations requires 

additional shear stress to produce through-going ruptures, which results in higher rupture 

propagation speeds and ground motions. Although dynamic rupture simulations can be 

very powerful tools, these results suggest that current methods may not be adequately 

estimating ground motions. Better initial stress distributions for dynamic models may 

improve seismic hazard estimates.  

 Because RSQSim is able to simulate hundreds of thousands to millions of events in 

large, complicated fault systems, it is feasible to define sets of initial stress conditions for 

use in generating suites of synthetic seismograms and source models for both kinematic 

and dynamic rupture simulations. Hence, initial conditions can be generated and used to 

estimate ground motions for any modeled region or fault system. Specifically, models can 

be tailored to significant faults in California using long-term simulations with the UCERF 
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fault models detailed in Chapter 1 and discussed in Chapters 3-5.  Synthetic seismograms 

produced from dynamic rupture simulations are instrumental in the design of earthquake-

resilient, critical structures such as bridges and power plants in addition to schools, office 

buildings, and residences. Better initial stress distributions for dynamic models will 

improve seismic hazard estimates and allow earthquake scientists, engineers, 

stakeholders, and policy makers to better evaluate the risk posed by earthquakes that 

occur in or near populated areas.   
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Chapter 3 
	  

How do Models of Paleoseismic Rupture 
Detectability Affect Estimates of 
Earthquake Probabilities? 
 
 

3.1 Abstract 
	  
One application of RSQSim for gaining a better understanding of earthquake hazard is 

the estimation of earthquake probabilities. Estimation of earthquake probabilities relies 

heavily on estimates of mean recurrence intervals from paleoseismicity. However, 

paleoseismic records are often considered incomplete due to the difficulty of detecting 

ruptures in trenches.  Alternatively, misinterpretation of paleoseismic features could 

result in over-counting, which may be a more significant problem for computing long-

term mean recurrence intervals and earthquake probabilities. To test the effects of event 

detectability in paleoseismic studies on the probabilities of large earthquakes in 

California, several simulated catalogs were tuned to match the reported recurrence 

intervals at the paleoseismic sites in the UCERF3 report assuming under-, complete-, and 

over-detection. The time-dependent probabilities of large earthquakes in California were 

computed for all of these simulated catalogs at each of the paleoseismic sites. 

Comparisons between the different catalogs suggest that the mean recurrence intervals 

from paleoseismic trenches may be too short, possibly due to over-counting of events, 

resulting in over-estimation of probabilities.  
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3.2 Introduction 

3.2.1 Earthquake Probability Calculations 
	  
 One application of earthquake simulators for gaining a better understanding 

earthquake hazard is the estimation of earthquake probabilities. There are two types of 

earthquake probability calculations: time-independent probabilities, which are based on 

estimates of long-term earthquake rates; and time-dependent probabilities, which take 

into account the time since the last rupture, and thus how much time stress has been 

accumulating (Cornell, 1968). The latter method requires estimates of the mean 

recurrence interval (MRI), the coefficient of variation of the recurrence times (COV), and 

the elapsed time (Tmre) since the most recent earthquake (Field et al. 2013). The COV is 

calculated from the standard deviation of the recurrence times divided by the mean 

recurrence time. The main datasets for MRI and COV come from paleoseismic 

investigations, which involve trenching across faults to observe the effects of past 

ruptures, and dating the material to get an estimate of the timing of those ruptures. 

Probability estimates are used to generate earthquake rupture forecasts. Figure 3.1 shows 

the four main components of an earthquake rupture forecast as used in the Unified 

California Earthquake Rupture Forecasts Versions Two (UCERF2) and Three (UCERF3) 

from Field et al. (2008, 2013). The first step consists of assembling the fault model for 

California, which comprises the known major, active faults thought to be capable of 

generating damaging earthquakes. The second step entails assigning long-term slip rates 

to each of the faults in the model.  The third step involves calculating the long-term rates 

of all potentially damaging earthquakes using fault models, which specify the size, 
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locations, and geometry of the faults, and deformation models, which specify the slip 

rates of the faults in the model. For the UCERF2 and UCERF3 studies, this step involved 

a “Grand Inversion” that is constrained by the fault and deformation models together with 

various empirical scaling relations. Finally, the probability that each possible earthquake 

will occur during some specified time span is calculated from the long-term rate models.  

In the present study, the fault and deformation models from the UCERF3 report 

(Field et al., 2013) were used as inputs to RSQSim. Then the models were tuned to the 

UCERF3 mean recurrence interval to directly generate RSQSim earthquake-rate models, 

which can be used to calculate time-dependent earthquake probabilities. 

	  
Figure 3.1: UCERF3 Earthquake Rupture Forecast Components (Field et al., 2013, Figure 2, p. 7). 
Fault and Deformation models are used as inputs to RSQSim, and long-term earthquake rate models 
are produced from RSQSim simulation. 
 
 
 The standard method for determining conditional earthquake probabilities is to 

calculate the probability for an event (in some specific magnitude or moment range) at a 

specific location conditional on the elapsed time (Tmre) since the last event in that 

magnitude range (McCalpin, 2009). This is the probability that the next rupture at that 

site will occur in some given amount of time in the future (typically ∆t = 30 years) 

conditional on the elapsed time since the prior event at that site. To compute a 

probability, this method requires specification of the probability density for recurrence of 

the defined events as a function of the elapsed time since the last event. This is typically 
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done with a probability density function (PDF), such as log normal or Brownian passage 

time, with a specific mean recurrence interval and a measure of the aperiodicity such as 

the COV. Rather than using a functional representation for the recurrence-time 

probability density distributions, this study uses empirical PDFs derived from RSQSim 

catalogs (Dieterich and Richards-Dinger, 2010). This probability can be illustrated 

graphically from an empirical PDF of the recurrence intervals of events at a paleoseismic 

site (McCalpin, 2009). An example is shown in Figure 3.2.  

 The conditional probability can be calculated from the recurrence interval PDF by 

the following: 

Pc = A/(A+B),     (3.1) 

where A is the probability of an event in the interval, Tmre to Tmre + ∆t, and B is the 

probability of an event in the open interval Tmre + ∆t to T∞.  

	  
Figure 3.2: Cartoon of a probability density function of the recurrence intervals for events at a 
paleoseismic site used to calculate long-term conditional probabilities. The red line indicates the time 
since the most recent event at that site (Tmre) and the blue line indicates the amount of time in the 
future (30 years in this example) for which the conditional probability (Pc) is to be calculated. A is 
equal to the area under the curve from Tmre to Tmre + ∆t, and B is equal to the entire remaining 
area under the curve after Tmre. 
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The first step requires tuning the RSQSim catalogs to the mean recurrence 

intervals of the paleoseismic sites in California. The UCERF3 report gives the location, 

long-term MRI and the uncertainties in those calculations, the Tmre, and the mean long-

term rate for the thirty-two paleoseismic sites across California. The MRI is estimated at 

each site using paleoseismic records, including the number of events that ruptured each 

site and the estimated dates for each event. Once the RSQSim catalogs were tuned to this 

dataset (the method for which is described below in section 3.3), 30-year conditional 

probabilities were calculated based on the empirical PDFs for each UCERF3 

paleoseismic site. 

 

3.2.2 Paleoseismic Recurrence Intervals in California and the Modern Earthquake 
Hiatus  

	  
Paleoseismic records are often considered likely to be incomplete due to the 

difficulty of detecting ruptures in trenches. Events become increasingly difficult to detect 

at smaller amounts of slip, large earthquakes may be missed if the rupture bypassed the 

portion of the fault that was trenched, or the sedimentation rate could have been low at 

the time of an event, and therefore not conducive to constraining ruptures. It is also 

difficult to differentiate between events that occur very close in time. One might assume 

that these difficulties would result in missing or fewer events. Alternatively, 

misinterpretation of features in paleoseismic trenches could result in over-counting. This 

may be a more significant problem for computing long-term mean recurrence intervals 
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and earthquake probabilities. For example, using UCERF3 data, David Jackson (SCEC 

2015, Abstract #081) estimated that the probability of a 100-year or longer earthquake 

hiatus, such as the one that may be occurring now, is 1% or less. This very low 

probability may indicate a problem with the reported paleoseismic site MRIs. At the time 

of publication, eleven of the thirty-two UCERF3 paleoseismic sites are ‘overdue’, i.e. the 

time since the most recent event at those sites was past the mean recurrence interval for 

those sites, and two others (Burro Flats and Plunge Creek) were within a few years (~5) 

of passing their mean recurrence intervals. If the reported MRIs are correct, the 

probability of an impending large Southern San Andreas Fault earthquake would be quite 

high. An alternative possibility is that the earthquake rates in California are not, at least 

not currently, as high as the paleoseismic data suggest.  

 There are several possible explanations for this apparent hiatus in modern 

earthquakes. The first, but least preferred explanation is simply coincidence that there has 

not been an earthquake at any of those sites. The second explanation is that the modern 

large-event rates are lower than that implied by paleo-event rates, possibly due to stress 

shadowing from the last major Northern and Southern San Andreas events, the M7.8 San 

Francisco Earthquake in 1906 and the M7.9 Fort Tejon Earthquake in 1957 (Simpson and 

Reasenberg, 1994; Harris and Simpson, 1998). The third possible explanation is that 

interpretation of event rates from some of the paleoseismic sites are too high, perhaps due 

to over-counting of events in paleoseismic trenches. This could arise from 

misinterpretation of geologic features in paleoseismic trenches, such as triggered surface 

slip from a distant earthquake, landslides, or multiple rupture splays being interpreted as 
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individual events, and could inflate paleo-event rates compared to modern-event rates 

that are based on instrumentation and/or direct observation and thus should not include 

such errors. In order to test these hypotheses we investigated the effect of paleoseismic 

event detectability on the recurrence intervals of simulated events using several tuned 

RSQSim catalogs. Conditional probabilities for large events in these catalogs are then 

compared to determine the effect that different levels of paleoseismic detectability might 

have on estimates of earthquake probabilities. 

 

3.2.3 California Fault Model and Paleoseismic Sites 
	  

The RSQSim-UCERF3 fault model includes all of the UCERF3 faults, discretized 

with roughly 260,000, 1 km2, triangular fault elements. The shear stressing rates for this 

model were set using the backslip method (described in Ch. 1, Section 1.3) to match the 

long-term geologic slip rates from the UCERF3 report. The UCERF3 fault model, 

colored by the long-term slip rate, is shown in Figure 3.3. This new California fault 

model was updated to include all of the faults added to the UCERF2 model in the 

UCERF3 report and any changes in long-term slip rates. Additionally, the fault elements 

are significantly smaller at 1 km2 than the UCERF2 fault model, which was discretized 

with roughly 12,500, 9 km2 rectangular elements. This not only reduced the minimum 

magnitude to roughly magnitude 4 from magnitude 4.9, but the triangular elements fit the 

curved and dipping faults better than the rectangular elements.  
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Figure 3.3: Entire UCERF3 Fault Model used to simulate RSQSim catalogs colored by the long-term 
slip rate. Roughly 260,000, 1-km2, triangular elements. 
 
 
 

The surface traces of the faults are shown in Figure 3.4 with the locations of all of 

the UCERF3 paleoseismic sites. Each site is assigned to the single fault element that is 

nearest to the coordinates of the paleoseismic site (UCERF3 Appendix H, Table H3). 

Although all of the sites are shown in Figure 3.4, no fault element and no recurrence data 

were assigned to site #17, which is indicated as an offshore core locality interpreted as 

containing turbidite evidence for multiple past earthquakes. Furthermore, because this 

study focuses on event detectability at the specific UCERF3 paleoseismic sites, for tuning 
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purposes, only events that rupture at least one of those thirty-one fault elements are 

considered. An example of a simulated event used for tuning is shown in Figure 3.5. In 

this example, a Magnitude 7.4 occurred on the Mojave Section of the Southern San 

Andreas Fault, rupturing the Pallett Creek, Wrightwood, and Pitman Canyon 

paleoseismic sites (indicated by black hexagons). The fault elements that ruptured in this 

event are colored by the total slip at each element. It is not uncommon for several 

concurrent sites to rupture in the same event, particularly for this long section of the 

Southern San Andreas Fault. Additionally, Figure 3.5 shows a close-up of several 

Southern California faults in which the geometric complexity of the fault system and 

small size of individual fault elements is evident.  
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Figure 3.4: Locations of all 32 UCERF3 Paleoseismic Sites (red triangles) mapped onto the surface 
traces of the UCERF3 Faults. These sites were used to sort RSQSim events and tune the UCERF3 
catalogs to the reported mean recurrence interval for each site. 
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Figure 3.5: Example of an event that ruptured a paleoseismic site (in this case three sites). This event 
was a M7.4 on the Mojave Section of the Southern San Andreas. Fault elements are colored by the 
total amount of slip for that event. A red star indicates the hypocenter and the paleoseismic sites that 
the event ruptured through are indicated by black hexagons with the site number in white. 
 
 
 

3.3 Tuning RSQSim California Catalogs 
	  

Four different catalogs were tuned to different models of paleoseismic 

detectability. These catalogs are 1. Under-Detection ‘Paleoseismic’ catalog, 2. Under-

Detection ‘Instrumental’ catalog, 3. Complete-Detection catalog, and 4. Over-Detection 

catalog. Each catalog was thinned of events according to the detection model used, prior 

to tuning, but the specific thinning process was slightly different for each catalog. 

Descriptions of these catalogs and their differences are detailed in Section 3.3.2 and the 

general tuning process is described below. 
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3.3.1 Catalog Thinning and Tuning Steps 
	  

During the tuning process, the catalogs were thinned, i.e. events were removed 

from the catalog if they were not ‘detected’, based on the specified detectability of each 

catalog. A flow chart of the tuning steps is shown in Figure 3.6. The first step of the 

tuning process was to run a moderate length RSQSim simulation (roughly 100,000 years) 

using the UCERF3 faults, geologic slip rates, and uniform normal stress (100 MPa) on all 

elements. Second, events in the catalog were sorted by paleoseismic site and thinned 

based on several requirements. All events that ruptured ≤10 fault elements were thinned 

from the catalogs, as these RSQSim events of M≤4	   tend to have excessive slip for their 

rupture area. This is in order to avoid over-counting events because in nature, slip in 

those events is highly unlikely to rupture to the surface. Next, pairs or clusters of events 

that occurred too close in time to be distinguished as separate events in a paleoseismic 

trench, i.e. 15 years or less (UCERF3 Appendix I), were combined into single events and 

assigned the event time of the first event in the series. Then, events were thinned-out 

based on their probability of detection as a function of slip (Figure 3.7). The UCERF3 

probability of detection model assigns an increasing probability of detection for events 

with greater slip because larger slip events are more likely to be detected in a trench. 

Note that not all of the thinning requirements were applied to each catalog. The details 

and explanations for the specific thinning process for each catalog are outlined in Section 

3.3.2. Third, once the catalog was thinned to only include events that would have been 

‘detected’ based on the specified model of detectability, the mean recurrence intervals of 
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the thinned catalogs were compared to the UCERF3 paleoseismic recurrence intervals 

(UCERF3 Appendix H, Table H3). Fourth, if the simulated mean was not within the 68% 

confidence intervals of the paleoseismic mean (however, most were adjusted to be well 

within this interval, usually within a few years of the paleoseismic mean recurrence 

interval), the normal stress in the RSQSim model was adjusted accordingly in order to 

shift the simulated recurrence intervals for events at each paleoseismic site towards the 

mean recurrence interval goal for that catalog. This was done in terms of a Stress 

Adjustment Factor (F) that is a function of the Mean Recurrence Interval Ratio (R) and a 

Spatial Weighting Factor (S). The ratio R tells us how much the simulated MRI needs to 

change to match the paleoseismic MRI and is determined by 

𝑅 =   !"#!"#$%    
!"#!"#

,     (3.2) 

where MRIpaleo is the reported paleoseismic mean recurrence interval and the MRIsim is 

the RSQSim mean recurrence interval for each paleoseismic site. The spatial weighting 

factor S varies for each fault element and assigns a greater weight to patches that slipped 

more in the events that ruptured the paleoseismic sites. It is determined by 

𝑆! =
!"#$!

!"#$!"#
,     (3.3) 

where Si is the sum of the slip on the ith fault element (slipi) in all events that ruptured 

that element, normalized by the maximum slip (slipmax) in all events that ruptured that 

element. The stress adjustment factor is then determined by 

𝐹! =   1+ !!×  (!!!)
!!"!#$

,    (3.4) 
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where Fi  is the stress adjustment factor on each fault element i, Si is the spatial weighting 

factor for fault element i, R is the mean recurrence interval ratio for that paleoseismic 

site, and Stotal is the sum of the slip for all events that ruptured that fault element. We then 

define an adjusted normal stress 

𝜎!
!"# = 𝐹!×  𝜎! ,    (3.5) 

where 𝜎!
!"#is the adjusted normal stress on each fault element in the model for the next 

simulation, σ0 is the normal stress on each fault element in the model from the previous 

simulation, and Fi is the Stress Adjustment Factor.  

Adjusting the normal stress in the model is a very effective way to shift the MRIs 

of events in the simulations. Increasing the normal stress on a fault effectively increases 

the frictional strength of the fault, which results in less frequent ruptures, thus increasing 

the recurrence interval for events on that fault. The reverse is also true. The area of the 

fault over which these normal stress adjustments were made was determined by the 

extent of the ruptures of events that were detected at each paleoseismic site. The spatial 

weighting factor (S) was used to taper the normal stress adjustments and avoid sharp 

boundaries in fault strength. The spatial weighting factor was set to 1 at each 

paleoseismic site. Some events ruptured more than one paleoseismic site, resulting in 

elements that had normal stress adjustments from more than one paleoseismic site. If this 

was the case, a weighted average was used to give more weight to the adjustments from 

the nearest paleoseismic site to that element. Next, a new RSQSim simulation was run 

with the adjusted normal stresses and the tuning process was repeated. Finally, once the 

RSQSim mean recurrence intervals matched those of the current goal (after roughly 3 to 
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4 tuning iterations) a long (>500,000 years) simulation was run with the tuned 

parameters. Figure 3.8 illustrates the change in mean recurrence interval for the 

paleoseismic sites in the Under-Detection ‘Paleoseismic’ catalog over four tuning 

iterations. Due to variation in recurrence times in the shorter catalogs used for tuning, 

later tuning iterations would sometimes slightly over- then under-shoot the exact 

paleoseismic MRI, but all final MRIs were within the 68% confidence bounds of the 

UCERF3 paleoseismic MRIs (Field, et al., 2014). 

	  
Figure 3.6: Flow chart showing the steps in the tuning process for the simulated California catalogs. 
The tuning process involves a short initial simulation, several tuning iterations (for which the normal 
stress is adjusted to change the recurrence intervals), and a final long simulation with the tuned 
parameters. 
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Figure 3.7: The two different probability of detection functions used in the thinning steps 
of both Tuning and Processing of the UCERF3 catalogs. Both functions specify a 
probability of detection for events at the paleoseismic sites based on the amount of slip at 
that site. The UCERF3 Detection Function (Appendix I), shown in blue, assumes that 
events with greater amounts of slip are more likely to be detected, while the Complete 
Detection Function (shown in black) assumes 100% detection for all amounts of slip. 
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Figure 3.8: The change in the mean recurrence intervals for all sites over 4 tuning iterations are 
shown for the Under-Detection ‘Paleoseismic’ Catalog. The heads of the arrows point to the mean 
recurrence interval for each tuning iteration, while the tails of the arrows show the overall change 
from the last iteration. The 68% confidence intervals for the UCERF3 mean recurrence intervals are 
shown in grey. Note that these sites are in alphabetical order, not N-S or along-strike. 
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3.3.2 The Four Differently Tuned Catalogs 
	  

The four different catalogs were tuned based on different probabilities of 

detection and estimates of the mean recurrence intervals at the paleoseismic sites. The 

catalogs were designed to cover the full spectrum of event detectability (Under-, 

Complete-, and Over-detection) in order to investigate the strength of each of the possible 

explanations for the apparent hiatus in modern earthquakes. The effects of these different 

models of event detectability on both the distributions of events and the conditional 

probabilities are explored for each paleoseismic site in Section 3.4. 

Catalogs were thinned during the tuning stage, as well as during the final 

processing stage (on the final, long catalog) according to the different probability of 

detection functions plotted in Figure 3.7. All catalogs were thinned during tuning based 

on the minimum rupture area requirement, but only two of them (the Under-detection 

catalogs) had events thinned out based on the minimum time between events or 

probability of detection because the model of detectability model assumed 100% 

detectability for the other two catalogs. Table 3.1 indicates the differences between these 

4 catalogs for both the tuning and processing stages. It should be noted that some sites 

were more difficult to tune than others. It was particularly difficult to match the mean 

recurrence intervals for sites whose along-strike neighbors had significantly different 

mean recurrence intervals. Ironically, the Wrightwood Site on the Southern San Andreas 

Fault, which is considered to be one of the best-studied paleoseismic sites in California, 

could not be fit as well as many other sites. This is due to the fact that its mean recurrence 

interval is 41% - 64% lower than the Pallett Creek and Pitman Canyon sites on either side 
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of it. Even with large changes in the normal stress, it was difficult to get the site to 

rupture less often than the nearby sites along the same fault. However, the Wrightwood 

Site is still within the 68% confidence interval. The Alder Creek Site, on the Northern 

San Andreas Fault, has a reported mean recurrence interval that is 184% higher than the 

next site along strike. This could not be fit without imparting very large normal stresses 

(in excess of 200 MPa, over 100 MPa higher than the mean of the model), so it was not 

used in this study. Additionally, the Green Valley site turned out to be very difficult to fit, 

likely because that fault should have aseismic creep (which can be modeled with 

RSQSim but is not yet built into this fault model), so that site was also not used in this 

study. Overall, the remaining 29 sites are essentially over-fit, as the mean recurrence 

intervals are matched to well within the 68% confidence intervals.  

The Under-Detection ‘Paleoseismic’ Catalog was thinned based on the minimum 

rupture area and time between events, as well as the UCERF3 probability of detection 

shown in blue on Figure 3.7 (UCERF3, Appendix I). For this model, the probability of 

detection increased with the amount of slip at a paleoseismic site. After thinning, it was 

tuned to match the UCERF3 paleoseismic recurrence intervals. The final, long catalog 

that was run with the tuned parameters was thinned once again, based on the same model 

of detectability. This thinned catalog represents a paleoseismically observable catalog 

(assuming the UCERF3 recurrence intervals are correct) as it contains only the events 

that would have been detected in paleoseismic trenches according to the UCERF3 

paleoseismic detectability model. The Under-Detection ‘Instrumental’ catalog is the full 

version of the Under-Detection ‘Paleoseismic’ catalog. It was only thinned based on the 
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minimum event area (to avoid potential modeling biases) and all of the events that were 

‘not detected’ based on the probability of detection or combined because they occurred 

too close in time in the ‘Paleoseismic’ version were kept in this ‘Instrumental’ version. 

This catalog represents the UCERF3 ‘Historic’ or ‘Instrumental’ catalog, and all events 

that would have been detected by modern seismic instrumentation are present in the 

catalog. The Complete Detectability catalog was only thinned based on the minimum 

rupture area and a 100% probability of detection as a function of slip (i.e. events with any 

amount of slip were ‘detected’ and kept in the catalog) and tuned to match the UCERF3 

paleoseismic recurrence intervals. This catalog assumed that the UCERF3 paleoseismic 

recurrence intervals were acurate and that the detectability was perfect. The last catalog 

was only thinned based on the minimum rupture area, and tuned to mean recurrence 

intervals that are 25% longer than the UCERF3 paleoseismic recurrence intervals. This 

‘Over-Detection’ catalog assumed that a quarter of the events at the UCERF3 

paleoseismic sites were spurious (i.e. 25% of trench events were not caused by 

earthquakes) and that event detectability was perfect. The increase in mean recurrence 

interval of 25% was chosen somewhat arbitrarily to investigate the effects of a significant 

increase in mean recurrence interval. 
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 Tuning Tuning Tuning Processing Processing 

RSQSim 
Catalog 

Mean  
Recurrence 

Interval 
Goal 

Combined  
Events with 
Minimum 

∆t 

Thinned Using  
UCERF3 

Probability  
of Detection 

Combined 
Events with 
Minimum 

∆t 

Thinned using 
UCERF3 

Probability of 
Detection 

Under-
detection 

‘Paleoseismic’ 
UCERF3 Yes Yes Yes Yes 

Under-
detection 

‘Instrumental’ 
UCERF3 Yes Yes No No 

Complete 
Detection UCERF3 No No No No 

Over- 
detection 

125% 
UCERF3 No No No No 

 
Table 3.1: Details for the four simulated California catalogs to specify the differences between them 
in the tuning and processing steps. The catalogs tuned to the UCERF3 Mean Recurrence Interval 
Goal were tuned the match the UCERF3 mean recurrence intervals from Appendix H, while the 
catalog tuned to 125% of the UCERF3 Mean Recurrence Interval Goal, was tuned to mean 
recurrence intervals that were 25% longer than those from Appendix H. Combined Events with 
Minimum ∆t are events that were too close in time (15 years or less) to be distinguished as separate 
events in a paleoseismic trench. Catalogs Thinned Using UCERF3 Probability of Detection were 
thinned using the blue UCERF3 Probability of Detection Function shown in Fig. 3.6, and the others 
were thinned using the black Complete Detection Function from Fig. 3.6. 
 
 

3.4 Effect of Different Models of Detectability 

3.4.1 Recurrence Interval and Magnitude Distributions 
	  
 The different models of detectability had significant effects on the recurrence 

interval distributions and event probabilities, especially for the sites that were already 

past or near their mean recurrence intervals. The conditional probabilities of sites with 

mean recurrence intervals near the time since the most recent event are particularly 

sensitive to changes in both the modeled mean recurrence interval and Coefficient of 

Variation (COV) because the end time (Telapsed + 30 years) used for the conditional 

probabilities extends well into the tail of the empirical recurrence distribution. When this 
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is the case A (from Equation 3.1) is very similar to B and the conditional probability is 

large.  

 Recurrence interval and magnitude distributions at the Rodgers Creek 

paleoseismic site are shown in Figure 3.9 for all four catalogs. This site was identified as 

a representative example of sites whose recurrence interval distributions and probabilities 

were most affected by the changes in detectability. The recurrence interval distributions 

are shown in red on the left side of Figure 3.9, with dt being the time (in years) between 

events. The UCERF3 mean recurrence interval (the tuning goal for the first three 

catalogs) is marked in blue at 325.3 years, the time since the most recent event detected 

in a trench at that site (303 years) is marked in green, and the RSQSim mean recurrence 

interval (calculated for each simulated catalog) is marked by a black dotted line. All three 

lines are very close together for the ‘Paleoseismic’ and Complete-detection catalogs 

because the UCERF3 MRI and Telapsed are only 22 years apart, and those catalogs were 

both tuned to the UCERF3 mean recurrence interval and processed with the same 

probability of detection that they were tuned with. The thinning step in the processing 

stage shifted the recurrence distributions toward longer mean recurrence intervals and 

reduced the mean magnitudes of events. This was most apparent in comparisons between 

the ‘Paleoseismic’ and ‘Instrumental’ catalogs because they were tuned to the same mean 

recurrence interval, but the ‘Paleoseismic’ catalog was thinned substantially (based on 

slip) during the processing stage. The differences were primarily due to the removal 

(during thinning) of many of the small events in the ‘Paleoseismic’ catalog being 

combined because they often occurred closer in time than large events, or not being 
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‘detected’ because they had small amounts of slip. The difference in detectability 

between the ‘Paleoseismic’ catalog and the ‘Instrumental’ and Complete-Detection 

catalogs lengthened the simulated mean recurrence interval for the paleoseismic sites by 

almost twenty years. Additionally, there is a small but noticeable peak in the recurrence 

interval distribution of the ‘Paleoseismic’ catalog at ~650 years, which is roughly twice 

the mean recurrence interval for that site. This is due to some of the larger events with 

longer recurrence intervals being thinned out and leaving a much longer (in some cases 

doubled) recurrence interval between remaining events. These catalogs also tended to 

have smaller conditional probabilities. Ratios of the 30-year conditional probabilities for 

all sites from the ‘Paleoseismic’ catalog (which was thinned during processing of the 

long, tuned catalog prior to computation of probabilities) compared to the ‘Instrumental’ 

catalog (which was not thinned during processing) are shown in Figure 3.10. This ratio 

was less than one for most sites, indicating that the conditional probabilities were higher 

for the thinned sites. This is mainly because the recurrence times were longer and the 

COVs were larger for most of the thinned catalogs. The few sites that had probability 

ratios that were less than one were sites that already had very low conditional 

probabilities (<1%) and small COVs (0.15-0.25). In these cases, the change in COV due 

to thinning was very small (<0.04), so much of the variation is likely due to the 

randomness associated with thinning based on a probability that some events are not 

detected. 
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Figure 3.9: Recurrence interval (left) and magnitude (right) distributions from a representative 
paleoseismic site (Rodgers Creek) of all 4 catalogs for comparison of the affects of different 
probabilities of detection on the mean recurrence interval at this site. The elapsed time since the most 
recent event (Telapsed) is indicated by a green line, the UCERF3 reported mean recurrence interval 
(UCERF3 MRI) is indicated by a blue line, and the modeled mean recurrence interval (RSQSim 
MRI) is indicated by a black, dashed line. The coefficient of variation of the recurrence intervals is 
listed for each catalog, as well at the mean magnitude of events.  

 

Under-detection ‘Paleoseismic’ Catalog

COV =  0.26

dt (years)

F
re

q
u
e
n
c
y

0 200 400 600 800

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0 RSQSim MRI

UCERF3 MRI

T elapsed

Mean M =  6.99

F
re

q
u
e
n
c
y

Rodgers Creek Paleoseismic Site

4 5 6 7 8

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Under-detection ‘Instrumental’ Catalog

COV =  0.27

dt (years)

F
re

q
u
e
n
c
y

0 200 400 600 800

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

RSQSim MRI

UCERF3 MRI

T elapsed

Mean M =  6.98
F

re
q
u
e
n
c
y

4 5 6 7 8

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Complete-detection Catalog

COV =  0.28

dt (years)

F
re

q
u
e
n
c
y

0 200 400 600 800

0
1
0
0

2
0
0

3
0
0

4
0
0

RSQSim MRI

UCERF3 MRI

T elapsed

Mean M =  7.00

F
re

q
u
e
n
c
y

4 5 6 7 8

0
2
0
0

4
0
0

6
0
0

8
0
0

Over−detection Catalog

COV =  0.26

dt (years)

F
re

q
u
e
n
c
y

0 200 400 600 800

0
5
0

1
0
0

1
5
0

RSQSim MRI

UCERF3 MRI

T elapsed

Mean M =  7.07

F
re

q
u
e
n
c
y

4 5 6 7 8

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Magnitude

Magnitude

Magnitude

Magnitude



	  
	  

70	  

	  
Figure 3.10: Ratios of the 30-year conditional probabilities of M6.7+ events for the Under-detection 
‘Paleoseismic’ catalog (which is thinned based on which events would be paleoseismically detectable) 
vs. the Under-detection ‘Instrumental’ catalog (which is not thinned under the assumption that all 
events would be instrumentally detectable). Note that thinning the catalog primarily reduced the 
conditional probabilities. 
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3.4.2 Conditional Probabilities 
	  
 Many paleoseismic sites are past or very close to their MRI, which yields 

exceptionally high conditional probabilities from RSQSim catalogs. This is due to both 

the short recurrence intervals at these sites and the relatively small coefficients of 

variation that the simulations generate. The 30-year conditional probabilities for large 

events (M6.7+) at each paleoseismic site are shown in Figure 3.11 and the coefficients of 

variation for the recurrence times at each site are shown in Figure 3.12. The probabilities 

at the Southern San Andreas sites, as well as several Northern California sites, are 

particularly high because many of these sites are past their mean recurrence intervals. 

However, valid conditional probabilities could not be calculated for three Southern San 

Andreas sites (Carizo, Indio, and Coachella) because so few events had recurrence 

intervals between the time since the most recent event and the end of the recurrence 

distribution (i.e. there were only a few events used to calculate the value B from 

conditional probability Equation 3.1). The Over-detection model, which had the longest 

recurrence intervals (25% longer), generated what seem to be the most reasonable 

conditional probabilities (i.e. the lowest). This model could explain why we don’t see as 

many earthquakes now as would be inferred from paleoseismology. The conditional 

probabilities for the ‘Paleoseismic’ catalog tended to be the next lowest, followed by the 

Complete-detection and ‘Instrumental’ catalogs. The ‘Paleoseismic’ catalog has 

consistently lower probabilities than the ‘Instrumental’ catalog, implying that reduced 

detectability, or at least additional thinning, may reduce probability estimates. 
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The coefficients of variation of the recurrence distributions in the current model 

are at the lower limit thought to exist in nature of 0.4 to 0.7 for events occurring at a point 

on a fault, such as a paleoseismic site (Field et al., 2014). Overall, the catalogs with the 

worst detectability, i.e. the ones that were thinned the most, had the largest COVs. 

Excluding the Over-detection catalog (because it was tuned to longer recurrence 

intervals) the catalogs with the lowest conditional probabilities also tended to have the 

highest COVs, suggesting that greater variation in the recurrence times for events at each 

site (and thus larger COVs) would result in decreased conditional probabilities overall.  
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Figure 3.11: 30-year Conditional Probabilities of magnitude 6.7+ events for all four of the differently 
tuned, simulated catalogs. Overall, the probabilities are extremely high, except for the Over-
detection catalog, which was tuned to 25% longer mean recurrence intervals, suggesting that the 
reported paleoseismic mean recurrence interval are too high. 
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Figure 3.12: Coefficients of variation of the recurrence intervals for each of the paleoseismic sites, 
with the means marked by the vertical dashed lines. Many of the COVs are very small compared to 
the values thought to exist in nature of 0.4 to 0.7 for events occurring at a point on a fault, such as a 
paleoseismic site (Field et al., 2014). 
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<1%. This strongly suggests that there is a misfit between the inferred paleo- and 

modern-event rates. However, this metric is not directly comparable to the observation 

that more than one-third of the sites are past their mean recurrence time. The RSQSim 

catalogs are long and detailed enough to investigate the number of paleoseismic sites that 

are past the UCERF3 mean recurrence intervals at any given time. Figure 3.13 is a 

representative 10,000-year snapshot from the Under-detection ‘Paleoseismic’ catalog 

(which was tuned to be the closest match to the UCERF3 data) showing the variation in 

time of the number of paleoseismic sites that are past their UCERF3 mean recurrence 

interval in a given year. This data was compiled by performing a yearly count of how 

many sites had a Tmre that was longer than their reported MRI. There are usually only a 

few sites past the UCERF3 mean recurrence interval and there are never more than 

fourteen sites past the UCERF3 mean recurrence interval during the entire 500,000-year 

catalog. In fact, the average number of sites past the UCERF3 mean recurrence intervals 

over time, for the catalogs that were tuned to the UCERF3 mean recurrence intervals, is 

3.2. 

 Figure 3.14 illustrates the probabilities of any number of paleoseismic sites being 

past the UCERF3 mean recurrence intervals at any time (top), as well as at times after 

there had been both an 1857- and 1906-like event in a 50-year period (bottom) based on 

the counts performed for Figure 3.13. The probabilities of eleven sites being past their 

UCERF3 mean recurrence intervals in the RSQSim catalogs that were tuned to the 

UCERF3 mean recurrence intervals (Under-detection ‘Paleoseismic’, Under-detection 

‘Instrumental’, and Complete Detection) are all under 0.1% (0.07%, 0.003%, and 0.06% 
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respectively). However, the Over-detection catalog, which was tuned to 25% higher mean 

recurrence intervals than the reported paleoseismic means, yields a more reasonable 

17.5% probability of eleven sites being past the UCERF3 mean recurrence intervals.  

While one might expect that the occurrence of two large events within a short 

period of time (as in the case of the 1857 and 1906 earthquakes) would reduce event rates 

for a while and thus allow more sites to reach their mean recurrence intervals, this metric 

actually makes the problem seem worse. The probabilities for all numbers of sites being 

past their recurrence intervals are decreased, simply because nine of the paleoseismic 

sites had (by definition of 1857- and 1906-like events) recently ruptured and thus 

couldn’t be near their mean recurrence intervals. 

 

	  
Figure 3.13: 10,000 year snapshot from the Under-detection ‘Paleoseismic’ catalog, showing the 
number (N) of paleoseismic sites that are past their UCERF3 mean recurrence interval in a given 
year. N is quite variable, but at or below 2 sites 85% of the time and never reaches 11 (the current 
number for California, at least during this time period indicating that such an occurrence rare. 
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Figure 3.14: The probability that N sites will be past the UCERF3 mean recurrence interval at any 
given time is shown above for all events in all four simulated catalogs (left), as well as after the 
occurrence of 1857 + 1906 type events have occurred (right). The probability of the current N=11 is 
<0.1% for all catalogs, excluding the Over-detection catalog, suggesting that the current situation is 
highly unlikely for the reported mean recurrence times. 
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3.5 Conclusions and Future Model Improvements 
	  

Currently in California, the number of paleoseismic sites that are at or past their 

UCERF3 mean recurrence interval is very high and it is extremely unlikely (<0.1% in our 

simulations) that it can be attributed to coincidence or good luck. It is possible that 

California is in a period of lower event rates due to stress shadowing from the 1857 and 

1906 events, but the current simulator data does not support this. Given the importance of 

resolving the possible discrepancies between expected and observed rates of damaging 

earthquakes since 1906, further in-depth study of this topic is warranted. There are 

several possibilities that can be explored. Reducing some of the long-term slip rates in the 

model may yield more reasonable probabilities and make it easier to tune the model to 

some of the difficult paleoseismic sites such as the Wrightwood paleoseismic site. Based 

on the results shown in Figure 3.13, some of the recurrence intervals from paleoseismic 

trenches may be too short, by as much as 25% or more. This could be because they 

include some small events, as there is a small probability that they would be detected in 

trenches, or some features in the trenches could be due to causes other than primary 

earthquake ruptures. Over-detection at paleoseismic sites could add spurious events to the 

catalogs, thus reducing the long-term mean recurrence intervals. If our models are 

correct, and the paleoseismic mean recurrence intervals are artificially elevated, this 

would suggest that the seismic hazard near some of these site is lower than previously 

thought. Overall, the conditional probabilities for large events at paleoseismic sites in our 

RSQSim catalogs are suspiciously high however. This may be a modeling issue related to 

the narrow recurrence interval distributions (and thus small COVs). Adding off-fault 
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seismicity and deep creeping sections that undergo afterslip following large earthquakes 

may add more variation to the event times and increase the COVs. However, the most 

reasonable conditional probabilities that are closer to those from the UCERF3 report 

came from the catalog that was tuned to longer recurrence intervals than those reported 

by UCERF3. Results also show that it is extremely unlikely that we could be in an 

interval with so many sites past their UCERF3 mean recurrence interval, so the problem 

cannot be explained entirely by potential modeling issues.  
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Chapter 4 
 
Earthquake Clustering in Simulated 
Catalogs 
	  

4.1 Abstract 
 
Clusters of large earthquakes, such as the Joshua Tree–Landers–Hector Mine sequence in 

California in the 1990s indicate that the occurrence of one large earthquake may increase 

the probability of additional large earthquakes nearby. However, the California 

earthquake catalog spans too short of a duration to define the statistics of large-event 

clusters.  The 3D boundary element code RSQSim generates simulated California 

earthquake catalogs with millions of M≥4 events, spanning from tens of thousands up to 

a million years, which allows for the investigation of both the statistics and physical 

characteristics of large-event clusters. We use RSQSim to investigate the characteristics 

and probabilities of large-event clusters in California catalogs, as well as catalogs from 

simpler, idealized fault systems. The RSQSim simulations incorporate rate-state fault 

constitutive properties, and the simulated catalogs include foreshocks, aftershocks, and 

occasional large-event clusters. The vast majority of large-event clusters are event pairs 

consisting of only two events with occasional three- and four-event clusters. For the 

primary purposes of this study a large-event cluster is defined as two or more M≥7 events 

that occur within four years and one rupture length apart. Rates of large-event clusters 

observed in RSQSim catalogs are higher than the expected rates for a truly random 
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process, suggesting that secondary events in large-event clusters are triggered by the 

primary events. Additionally, rates of clustering are affected by several factors including 

rate- and state-dependent constitutive parameters, fault complexity, mainshock 

magnitude, and the inter-event time of the clustered events. Overall, large-event 

clustering, which is typically not considered in long-term earthquake forecasts, represents 

a significant probability gain for large earthquakes. 

 

4.2 Introduction 
	  
 It is well known that large earthquakes occasionally occur in space-time clusters, 

in which two or more large events occur within a small area, i.e. tens of kilometers, and a 

short period of time, i.e. a few years (Kagan & Jackson, 1991; Dieterich, 1994). Some 

notable large-event clusters include: recurring event pairs along the Nankai Trough off 

the coast of Japan (M8.4, Dec. 23, 1854; M8.4, Dec. 24, 1854; M8.1, Dec. 7, 1944; M8.1, 

Dec. 24, 1946), the New Madrid Sequence of M≥7.5 events in the Central United States 

(Dec. 16, 1811; Jan. 23, 1812; Feb. 7, 1812), and the series of events in Southern 

California including the Joshua Tree (M6.1, Apr. 23, 1992), Landers (M7.3, Jun. 28, 

1992), Big Bear (M6.5, Jun. 28, 1992), and Hector Mine (M7.1, Oct. 16, 1999) 

earthquakes. Studies have shown that the short-term probability of an additional 

earthquake with a significant moment release, i.e. M≥7, increases in the general area of a 

mainshock (Kagan and Jackson, 1999; Wang et al., 2010). Although clusters of large 

events are relatively rare, understanding these large-event clusters has important 

implications for estimating earthquake hazard. This is especially important for disaster 
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planning and relief efforts where a second or third event striking already damaged and 

unstable structures can be devastating, and interrupt rescue and recovery efforts. 

However, current methods for producing long-term earthquake forecasts do not consider 

clustering and thus systematically underestimate earthquake hazard (UCERF3, Field et 

al., 2014). 

 Although clusters of large events occur throughout the world, instrumental 

earthquake catalogs are too short in duration to define the statistics of large-event clusters 

in specific regions. Historical records give information about the timing and intensity of 

large earthquakes for some regions, but the details of these events are limited. Japanese 

records, for example, indicate that large-event clusters have been occurring along the 

Nankai Trough for at least a thousand years (Ando, 1975) but only one of these, a large 

event pair in 1944 and 1946, has occurred since modern seismological instruments were 

developed. Most instrumental earthquake catalogues span just over a hundred years, and 

although paleoseismic studies extend this time scale for some fault systems, such studies 

generally lack the temporal resolution to distinguish short-term clustering (Scharer et al., 

2011). While paleoseismic and dating techniques for estimating earthquake recurrence 

are improving, errors on age estimates are still on the order of 20+ years and these studies 

depend heavily on the preservation of ruptures and availability of datable material 

(Scharer et al., 2011). Furthermore, paleoseismic records do not have well-constrained, 

detailed information about magnitude, location, rupture extent, or aftershock and 

foreshock sequences.  The limitations on observing earthquake occurrence leave many 

unanswered questions. For example, are the recurring earthquake pairs along the Nankai 
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Trough (the data for which are further limited by the impossibility of paleoseismic 

studies offshore) due to random chance, or consistent physical features of the fault 

system? What controls the timing, location, and extent of these ruptures and are there 

indicators that another section of the fault system is going to rupture shortly? There are 

simply not enough combined temporal and spatial data within a specific region to address 

these questions on a purely statistical basis. Stacking worldwide catalogs has revealed 

global statistical characteristics of space-time clusters (Kagan and Jackson, 1999), but is 

insufficient to reveal the properties that may act as local controls of clustering. These 

properties may include the fault geometry, long-term slip rate, and fault constitutive 

properties.  

 Refining earthquake hazard analyses and forecasting models has been one of the 

main goals of the earthquake physics community for decades. Previous studies have 

focused primarily on statistical analysis of catalog data and stochastic models to calculate 

earthquake probabilities. Physical models based on Coulomb stress analysis and rate- and 

state-friction have also been used to determine earthquake probabilities (King et al., 

1994; Stein et al., 1997). The earliest characterizations of earthquake occurrence and 

clustering were based on statistical models of relatively limited catalogs. Omori (1894) 

described the short-term clustering of earthquakes based on the rate of occurrence of 

aftershocks. Later studies (Reasenberg, 1985; Ogata 1988; Kagan & Knopoff, 1987) have 

focused extensively on models of Poisson processes to identify random, independent 

events and thus separate the clustered events. Kagan and Jackson (1991,1999) 

demonstrated that large as well as small earthquakes cluster in both time and space. All of 
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these studies however, are based on less than one hundred years of instrumental seismic 

data (much less in most cases), which is not enough time to get a reliable measure of the 

recurrence rates of large earthquakes. This time scale is particularly problematic if the 

recurrence rates vary with time. 

 Stochastic earthquake clustering models have been used to estimate short-term 

earthquake probabilities. Ogata (1988) first introduced the Epidemic-Type Aftershock 

Sequence Model (ETAS) and it has been used to model the time, space, and magnitude 

dependence of seismicity throughout the world. The Short-Term Earthquake Probability 

Model (STEP), a one-generational ETAS model in which aftershocks do not produce 

their own aftershock sequences, has been used by the USGS to estimate short-term 

earthquake probabilities. While these methods are based on empirical aftershock and 

magnitude frequency relations and have done well to replicate some aspects of 

seismicity, they do not explain the physical processes behind space-time clustering nor 

are they capable of characterizing space-time clustering on specific faults.  

 Physical models based on rate- and state-dependent friction have become 

increasingly prevalent for studying earthquake clustering (Dieterich, 1994; Dieterich & 

Kilgore, 1996; Toda and Stein, 2002; Hainzl et al., 2003; Dieterich & Richards-Dinger, 

2010). Dieterich and Richards-Dinger (2010) used RSQSim to study the effect of fault 

complexity on temporal clustering of large events in simple fault systems consisting of 

planar faults, fractally-rough faults, and fractally-segmented faults. That study 

highlighted the effects of rate- and state–dependent friction on earthquake recurrence, but 

only for highly simplified fault systems. Richards-Dinger and Dieterich (2012) studied 
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the spatial and temporal clustering of earthquakes in a much more realistic fault system 

(the UCERF2 fault model described in Chapter 1) and found that events that are close in 

time are close in space as well, indicating a causal relationship between clustered events.   

 This study implements the 3D boundary element code RSQSim with California 

fault models, to investigate clusters of large events. RSQSim has been successful in 

producing realistic earthquake catalogs that compare well to California catalogs and are 

long enough to provide useful clustering statistics (Richards-Dinger and Dieterich, 2012). 

It allows large-scale simulations of fault system seismicity, which produce clustered 

seismicity in the form of foreshocks, aftershocks, and occasional large-event clusters. 

Fault system simulations generate Gutenberg-Richter type magnitude frequency 

distributions and Omori-like aftershock distributions (Dieterich and Richards-Dinger, 

2010). RSQSim generates synthetic catalogs with hundreds of thousands to millions of 

M≥4 events, spanning from tens of thousands, up to a million years, which allows for the 

investigation of the characteristics of long-term earthquake probabilities. Additionally, 

the space-time statistics of simulated California catalogs can be used to identify clustered 

and non-clustered populations of events and indicate the presence of seismicity rate 

changes, which are discussed in Section 4.4. 

Dieterich (1994) proposed that rate- and state-dependent friction is the underlying 

cause for earthquake clustering. Unlike simple Coulomb friction, which involves 

effectively instantaneous nucleation of unstable slip at a fixed stress threshold, rate- and 

state-dependent friction involves time-dependent nucleation over a range of stress 

conditions.  The time delay associated with the nucleation phase depends on the 
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magnitude of the stress perturbation. Consequently, aftershocks as well as the secondary 

events in large-event clusters are due to delayed failure from the stress perturbation 

applied at the time of the first event in large-event clusters. 

 

4.3 Fault Models and Simulated California Catalogs 
	  
 Data from two different California fault models are presented both here and in 

Chapter 5. The primary fault model used to test the effects of various fault properties on 

clustering statistics is the UCERF2 fault model described in Chapter 1 (Figure 1.2). 

Several catalogs were generated with this fault model in order to compare the effects of 

varying the rate- and state-dependent constitutive parameter a, from Equation 1.1 

(Section 4.5.1). These catalogs span tens of thousands of years and contain a few hundred 

thousand M4.9-M7.9 events. Data from the UCERF3 ‘Paleoseismic’ Catalog described in 

Chapter 3, which was produced using the UCERF3 fault model (also described in 

Chapter 3) is presented as well. This catalog spans over 500,000 years with over 74 

million ~M4 to M7.9 events.  

 The original California fault model (UCERF2) had larger (3x3 km vs. 1x1 km) 

and fewer (12,500 vs. 126,000) fault elements. Those simulations were designed to be 

significantly less computationally expensive than the later, UCERF3-based models, so 

they could be run on computers in the UCR Earth Sciences Department. This enabled 

testing the effects of system-wide parameters such as the rate- and state-dependent 

friction constitutive parameter a, which required running several simulations. The new 

UCERF3 fault model was preferred for studying foreshock and aftershock statistics 
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because the smaller elements reduced the minimum earthquake magnitude to roughly M4 

from nearly M5, which greatly increased the numbers of small events, and thus the 

number of foreshocks and aftershocks. The magnitude difference is due to the fact that 

the minimum magnitude in RSQSim simulations is limited by the size of fault elements 

because the smallest event that can occur is a single element event. However, decreasing 

the element size to 1-km2, and thus increasing the number of elements by more than a 

factor of ten, necessitated running the simulations on a supercomputer.  

 Data from six different RSQSim catalogs are presented in this chapter. The two 

main catalogs are the million-year UCERF2 catalog and the half-million-year UCERF3 

catalog. The main difference between these catalogs is the number and minimum size of 

the small earthquakes related to the different element sizes used. The rate- and state-

constitutive parameters in both cases were kept the same as those presented in Chapter 1 

(µ0=0.6,	   a=0.01,	   b=0.014,	   and	   =10−5m). Data from four shorter duration catalogs 

(~50,000 years) from the UCERF2 fault model are also presented in Section 4.5, in which 

the rate- and state- constitutive parameter a was varied. Additionally, several completely 

synthetic Poisson catalogs, based entirely on empirical earthquake statistics without 

clustering, are presented in Section 4.4 for comparison with the physics-based RSQSim 

catalogs and the instrumental California catalog. The instrumental catalog used in this 

study is the ANSS Catalog for California from 1911 to 2015. 

 

 

DC
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4.4 Space-Time Statistics 
	  
 Figures 4.1 and 4.2 illustrate the inter-event time probability density distributions 

and inter-event distance vs. inter-event time distributions respectively, from the 

instrumental California catalog (ANSS, 1911-2015) and the simulated California catalog 

(UCERF2) for three different magnitude ranges. In these plots the inter-event time of two 

earthquakes is defined as the elapsed time between the occurrences of pairs of successive 

events within a specified magnitude range in a catalog, regardless of where they occur in 

the fault system. The inter-event distance is simply the spatial distance between the 

events forming each pair.  

 For comparative purposes, Figure 4.3 similarly shows inter-event time and inter-

event distance plots from four synthetic Poisson catalogs that have neither spatial nor 

temporal clustering.  The Poisson catalogs were created by randomly drawing event times 

and locations from uniform distributions, and event magnitudes from a Gutenberg-

Richter distribution.  To simulate a non-stationary Poisson process (colored curves in 

Figure 4.3), Poisson catalogs with different event rates and durations were produced and 

these catalogs were spliced together to create longer catalogs with non-stationary event 

rates. 

The inter-event times for a stationary Poisson process have an exponential density 

distribution: 

𝜌!"#$"% = 𝜆𝑒!!",     (4.1) 

where λ is the event rate, and t is the inter-event time. The gray line in Figure 4.3 is the 

probability density distribution for a stationary Poisson catalog, which follows the 
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exponential distribution given by Equation 4.1. The colored lines give the density 

distributions for the combined non-stationary Poisson distributions. The inter-event time 

statistics of the simulated California catalogs can be fit by a combination of two different 

functions: the exponential function of Equation 4.1 (shown in blue in Figure 4.1), which 

is characteristic of a stationary Poisson process, and a power-law function (shown in red 

in Figure 4.1): 

𝜌!"#$% = 𝐴𝜏!!,    (4.2) 

where τ is the inter-event time, A is a constant, and q is the slope of the inter-event time 

distribution. On a log-log plot the slope of this distribution, given by q, is closely related 

to the power law slope in the Omori aftershock decay law. The modified Omori’s law 

(Equation 4.3, from Utsu, 1961) gives the rate of aftershocks with time after a 

mainshock: 

𝑛 𝑡 =    !
(!!!)!

 ,    (4.3) 

Where k and c are constants that vary for different aftershock sequences, t is the time, and 

p is the slope or decay rate, which is typically about -1 but varies between -0.7 and -1.5. 

The relationship between p and q is: 

𝑞 = 2− (1 𝑝) ,     (4.4) 

where q is the slope of the inter-event time distribution and p is the aftershock decay rate  

(Ustu, 1995 – from Shenshu, 1959 in Japanese). The events that fit a power-law are the 

clustered events and those that fit an exponential distribution are the random, unrelated 

events.  The truly unrelated events tend to have longer inter-event times and distances 

than the clustered events. 
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 The ‘tails’ of the inter-event time distributions (i.e. the ends of the distributions at 

longer inter-event times – circled in red on Figure 4.1) deviate from the expected Poisson 

curves (blue curves in Figure 4.1).  These tails can be explained by a non-stationary 

Poisson process where the rates vary with time as shown in Figure 4.3. The ‘tails’ move 

outward, away from the expected curve (that of a stationary Poisson process) as the event 

rate varies and the difference increases for greater changes in event rate. This is observed 

in both the simulated California catalogs and the instrumental California catalog. The rate 

variation in these catalogs, which are not primarily random and therefore not purely 

Poissonian, is likely due to periods of partial quiescence after the occurrence of large 

events. 

The distinction between the power-law and exponential distributions becomes 

more apparent for larger magnitude earthquakes, as illustrated in Figure 4.1. 

Additionally, the transition between the power-law and Poisson distributions of large 

events (M≥7) occurs at inter-event times of a few to several years, indicating that the time 

between large events in large-event clusters is likely to be similar because inter-event 

times that are longer than this fall into the Poissonian part of the inter-event time 

distribution. According to Stein et al. (1997) successive M≥7 events on the North 

Anatolian fault have inter-event times that range from 3 months to 30 years, indicating 

that the time periods between clustered events in nature (at least in this location) are 

similar to those of simulated catalogs.  

 The space-time statistics of the California catalog and the simulated California 

catalogs are separated into different magnitude ranges (Figures 4.2 and 4.3). While there 
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are many fewer events in the instrumental California catalog compared to the RSQSim 

California catalog, the two catalogs show the same general characteristics for the smaller 

events, where there are enough data for a true comparison. There are not enough large 

events in the instrumental California catalog to study the statistics of large-event clusters 

because the catalog spans just over one hundred years and contains only nine M≥7 

events. However, the broad agreement of the simulations with observations at lower 

magnitudes suggests that the simulations can provide a physics-based extrapolation of 

clustering statistics to large magnitudes where data are not available. 
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Figure 4.1: Inter-event time probability distributions for the ANSS California catalog from 1911-
2010 (left) and the RSQSim UCERF2 catalog (right) for magnitude ranges M5-M6 (top), M6-M7 
(middle), and M7+ (bottom). Red lines indicate a power law fit to the data (representing the clustered 
events) and blue lines indicate an exponential (Poisson) fit to the data (representing the random, 
unrelated events). Where there are enough data, the California catalogs show the same general 
trends as the simulated All California catalog. The red circle indicates where the ‘tail’ of the inter-
event time distribution deviates from the expected exponential fit. This is due to variation in the 
event rate within the catalog as shown in Figure 4.2. 
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Figure 4.2: Inter-event distance probability distributions for the ANSS California catalog from 1911-
2010  (left) and RSQSim UCERF2 catalog (right) for magnitude ranges M5-M6 (top), M6-M7 
(middle) and M7+ (bottom).  The inter-event times from the California M5-M6 catalog that fit an 
exponential (Poisson) distribution are circled in red to indicate the non-clustered events. The same 
pattern can be seen in the other catalogs as well. The striping of the RSQSim catalogs is due to the 
element size of the model. The distances between events are usually a multiple of the element size. 
Where there is enough data, the California catalogs show the same general trend as the UCERF2 
catalog. 
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Figure 4.3: Inter-event time probability distribution (left) and inter-event distance distribution 
(right) for Poissonian catalogs. These catalogs were created by randomly drawing event times and 
locations, then combining catalogs with different event rates to simulate non-stationary Poisson event 
rates. In the left panel the dashed grey line gives the probability density for the stationary Poisson 
catalog. Increasing the amount of variation of the event rate within a catalog causes the ‘tail’ of the 
distribution (i.e. the end of the distribution at the longest inter-event times) to move outward, away 
from the stationary Poisson curve (grey dashed line). The colored lines (blue, green and red) are the 
inter-event time probability distributions of catalogs in order of increasing rate variation. 
	  

4.5 Clustering Probabilities of Large Events 
	  
 For the primary purposes of this study, a large-event cluster has been defined 

simply as two or more earthquakes of M≥7 that occur within 4 years and one rupture 

length of apart. In simulations these large-event clusters usually consist of event pairs, 

but occasionally consist of three or more large events. The M≥7 threshold was chosen to 

study the events that present the greatest hazard, but statistics for M≥6 clusters are also 

presented in some sections. Several damaging earthquakes including the M6.9 Loma 

Prieta earthquake on October 17, 1989 and the M6.7 Northridge earthquake on January 

17, 1994 fall below this M7 cut-off but caused a significant damage and loss of life. This 
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demonstrates the need to examine clustering over a wider magnitude range, as these 

slightly lower magnitude earthquakes still present a significant hazard. 

 A representative example of one such large-event cluster is shown in Figure 4.4. 

This example is from the UCERF3 ‘Paleoseismic’ Catalog detailed in Chapter 3. In this 

example, the primary event in this large-event cluster is a M7.1 earthquake that nucleates 

on the ‘Big Bend’ section of the San Andreas Fault. A red star marks the nucleation point 

and the fault elements are colored by the total amount of slip in the event. Some elements 

are colored grey to indicate the locations of the aftershocks of the primary event. The 

secondary event in the cluster is a M7.4 earthquake that occurred on the Mojave Section 

of the San Andreas Fault just three years later. The rupture area of the primary clustered 

event is outlined in black to distinguish it from that of the secondary event, which re-

ruptured several square kilometers of the rupture area of the primary event. The green 

elements to the left of the right-hand edge of the primary rupture zone mark the area that 

was re-ruptured. This area had less than one meter of slip before the secondary event 

occurred, which caused those elements to slip an additional two to three meters. Many of 

the secondary events in large-event clusters tend to rupture an adjacent section of the 

same fault that ruptured in the primary event. While the entire rupture of a primary event 

does not re-rupture in a secondary event, it is common for the secondary rupture to 

penetrate a few kilometers into the primary rupture area when secondary events occur 

along the same fault. Additionally, many of the secondary events in large-event clusters 

tend to rupture an adjacent section of the same fault that ruptured in the primary event, as 

illustrated in Figure 4.3. 
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Figure 4.4: Large-event cluster example. Color indicates maximum slip on each element,  dark grey 
elements indicate aftershock locations of Event #1, and red stars indicate hypocentral locations of 
each event. The rupture area of the first event in the cluster is outlined in black. The secondary event 
nucleates near the location of many of the aftershocks of the primary event. 

 
 

 
Clustering statistics of the California catalogs, both simulated and instrumental, 

are parameterized in terms of the probability gain of large events (M≥Mmin) following 

previous large events (M≥Mmin) within some time period (∆t) due to the occurrence of 

large-event clusters. The probability gain (𝐺!"#$%&')   is defined as the ratio of the 

probability of a large-event cluster occurring (𝑃!"#$%&$')  over the probability of random 

large events occurring (𝑃!"#$$"%)  within the same ∆t. The equation for the probability 

gain is as follows: 
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𝐺!"#$%&' =   𝑃!"#$%&$' 𝑃!"#$$"% =
!!"#$%&$'
!!"#$%

/ !!"#$$"%
!!"#$%

,  (4.2) 

where, Nobserved is the total number of large events (M≥Mmin) after which at least one other 

large event (M≥Mmin) was observed in some time period (∆t) and within a radius of one 

rupture length (L) from the hypocenter of the primary M≥Mmin event and NPoisson is the 

expected number of occurrences assuming a random (Poisson) distribution of events 

M≥Mmin within the same primary event radius, and NTotal is the total number of M≥Mmin 

events occurring within ∆𝑇, the time span between the first and last event M≥Mmin used 

for the analysis. Nobserved is determined by simply counting the number of observed 

intervals (Δt) that contain at least one additional event of M≥Mmin with the distance L. 

The rupture lengths (L), and thus the search radius, ranged from 20 km to 400 km for the 

largest events but was 119 km on average. These probabilities are estimates that improve 

in accuracy as NTotal increases. For a stationary Poisson process, the expected occurrence 

of one or more additional events M≥Mmin is given by the probability of one or more 

events in the interval Δt:  

𝑃 = 1− 𝑒!!!×∆! ,    (4.3) 

where Ri is the long term rate of events M≥Mmin within the specific radius (L) of each 

primary event i given by: 

𝑅! =   
𝑁!

∆𝑇  ,    (4.4) 

where Ni is the number of M≥Mmin events within the search radius. NPoisson is then simply 

the sum of the individual rates: 

𝑁!"#$$"% = Σ(1− 𝑒!!!×∆!) .    (4.5) 
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For most calculations Mmin = 7; however, statistics for M≥6 events are presented for 

comparison to the instrumental California catalog, which has only nine events above M7. 

In general, the probability gain indicates the increased probability of large events that 

occur in space-time clusters above what you would expect from a Poisson process. For 

example, 𝐺!"#$%&'   of 1.50 for M≥7 events in 4 years, indicates that it is 150% more likely 

that another large event (M≥7) will occur within 4 years after a previous M≥7 event, 

compared to a Poisson process. 

 

4.5.1 Effect of Constitutive Parameters on Clustering Probabilities 
	  
 Several simulations were performed to test the effect of the rate-state friction 

parameter a on large-event clustering. In general, the rate of large events increases with 

increasing a-value. Clustering data for M≥7 events from four different simulated 

California catalogs with a-values ranging from 0.008 to 0.012 are shown in Table 4.1. All 

four of these catalogs have relatively high probability gains for large event clustering, 

indicating that there is a significant amount of clustering occurring. However, increasing 

the a-value by 50% decreases the probability of large-event clusters by almost 50%.  

 
Model Total # 

of events 
Total #Mx 
of events 

PObserved 
 

M≥7 
PPoisson 

 

M≥7 
GCluster 

 

M≥7 
a = 0.008 85,000 4,077 0.077 0.034 2.257 
a = 0.009 120,000 4,551 0.086 0.042 2.031 
a = 0.010 225,000 5,512 0.100 0.049 2.026 
a = 0.012 1,300,000 6,314 0.094 0.053 1.767 

Table 4.1: Clustering statistics of simulations from the UCERF2 fault model with varying a-values 
(the rate coefficient from the rate- and state- friction formulation) shown in Equation (1.1). Gcluster is 
probability gain due to large-event clusters. Mx events in this case are M≥7 events. Increasing the a-
value decreases the probability gain due to clustering of large events. 
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4.5.2 Clustering Probabilities for Different Magnitude Ranges 
  
  Dieterich and Richards-Dinger (2010) showed that RSQSim events display 

characteristic Omori (1894) aftershock decay, in which the rate of aftershock decay with 

time after a mainshock follows a power-law. Aftershocks from RSQSim catalogs 

typically have Omori slopes between p = -0.75 to p = -1.2 and are usually close to -0.9, 

depending on the fault model (Richards-Dinger and Dieterich, 2010). Additionally, the 

frequency distributions of the times between events in large-event clusters in RSQSim 

catalogs have similar power-law decay. Figure 4.5 shows the rate of M≥7 events with 

time after M≥7 mainshocks. The slope is -1.1, indicating that large-event clusters follow 

Omori’s law with a decay rate that is similar to normal aftershock sequences. 

	  
Figure 4.5: Seismicity rate decay for M7 events following M7 events, indicating that large-event 
clusters follow the Omori aftershock decay law. 
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 The effect of event magnitude on the rate of large-event clustering seems to be 

significantly stronger than that of the rate-and state-dependent friction a-value. The 

clustering rate for M≥6 events is significantly higher than the rate for M≥7 events in the 

simulated catalogs. Clustering statistics for both UCERF catalogs and the ANSS 

California catalog from 1911-2015, for both magnitude ranges, are listed in Table 4.2. 

Overall, the probability gain for M≥6 events is nearly twice as high as that of M≥7 events. 

This is likely due to the fact that the occurrence rates of M≥6 events are significantly 

higher as well. The probability gains for M≥7 and M≥6 clustered events in the California 

catalog are surprisingly low compared to both simulated catalogs. However, the 

calculations for the instrumental catalog, particularly for the M≥7 events, were performed 

with so few events that these probabilities may not be valid. It was also necessary to 

make additional assumptions about the rupture lengths of the instrumental events in order 

to determine the clustering search radii. The rupture lengths (L), which were used as the 

search radius for the secondary events in large event clusters, were estimated from the 

magnitudes using the Wells and Coppersmith (1994) relationship for all slip types. 

Additionally, some of the M≥6 events in the California catalog may have occurred on 

faults that are not yet included in the UCERF fault models. 
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Catalog # of Mx 
events 

PObserved 
 

 

PPoisson 
 

 

GCluster 
 

 
California M6+ 68 0.221 0.128 1.724 
RSQSim UCERF2 M6+ 599,739 0.276 0.076 3.641 
RSQSim UCERF3 M6+ 169,774 0.194 0.068 2.850 
California M7+ 9 0.111 0.095 1.171 
RSQSim UCERF2 M7+ 95,600 0.097 0.058 1.661 
RSQSim UCERF3 M7+ 49,935 0.074 0.053 1.416 

Table 4.2: Clustering statistics of the RSQSim UCERF3 catalog for clusters of magnitude Mx events, 
where x is either M≥7 or M≥6, compared to those of the ANSS California catalog from 1911-2015 
years. Probability gains due to clustering of large events increase for smaller magnitude clusters. 
While the probability gains for the instrumental California catalog shows a similar trend for 
increases gains with magnitude, the calculation was performed with too few events to be considered 
significant. 
 
 

4.5.3 Effect of Inter-Event Time on Clustering Probabilities 
	  
 The inter-event time, the time between events for which they are considered 

clustered, is perhaps the most significant factor for clustering probabilities. Table 4.3 lists 

the clustering statistics for M≥7 and M≥6 events at 4 different inter-event times (∆t): 4 

years, 1 year, 1 month, and 1 week. The probability gains due to shorter-term clustering 

increase dramatically for both magnitude ranges. Inter-event times of only 1 week reveal 

probability gains that are 54 and 110 times those of the longer-term clustering of 4 years 

for the M≥7 and M≥6 ranges respectively, indicating very strong short-term clustering 

probabilities of large events compared with random chance. This short-term clustering is 

primarily do to triggering by stress transfer and the time delay of nucleation inherent in 

rate- and state-dependent friction. This effect is especially pronounced when compared to 

clustered pairs with longer (up to 4 year) inter-event times because, while the shorter 

inter-event time clusters get counted with the 4-year clusters, the Poissonian probability 

is significantly decreased for the short inter-event times. 
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Catalog ∆t # of Mx 

events 
PObserved

 

 
PPoisson

 

 
GCluster

 

 
UCERF3 M6+ 4 years 169,774 0.194 0.068 2.850 
UCERF3 M6+ 1 year 169,774 0.156 0.019 8.266 
UCERF3 M6+ 1 month 169,774 0.128 0.002 78.419 
UCERF3 M6+ 1 week 169,774 0.117 0.0004 312.222 
UCERF3 M7+ 4 years 49,935 0.074 0.053 1.416 
UCERF3 M7+ 1 year 49,935 0.040 0.014 2.947 
UCERF3 M7+ 1 month 49,935 0.024 0.001 20.435 
UCERF3 M7+ 1 week 49,935 0.020 0.0003 75.986 

Table 4.3: Clustering statistics of the UCERF3 catalog for Mx = M≥7 or M≥6, at 4 different inter-
event times (∆t), the time between events in large-event clusters, of 4 years, 1 year, 1 month, and 1 
week. Probability gains increase dramatically when the inter-event time between clustered events is 
decreased, indicating very strong short-term clustering and potential triggering. 
	  

4.5.4 Effect of Fault Geometry on Clustering Probabilities 
	  
 Fault geometry also acts as a control on clustering rates. Dieterich & Richards-

Dinger (2010) showed that varying the small-scale complexity of fault models produces 

different clustering probabilities.  They found that models of smooth faults, faults with 

fractal roughness, and faults with fractal segmentation all have different clustering 

probabilities and that the amplitude of segmentation was the strongest influence on the 

rate of large-event clusters. The data from Dieterich and Richards-Dinger (2010) has 

been modified to show the clustering probabilities and the probability gain due to that 

clustering, and the results are listed in Table 4.4. The amplitude of the roughness (β) of 

the fractally-rough and fractally-segmented models is the RMS slope of the deviations 

from a planar surface. The UCERF2 and UCERF3 fault models have much more 

complicated geometry on a large scale than the models presented in Dieterich and 

Richards Dinger (2010), including curved and dipping faults, and fault zones with bends 

and step-overs. However, the clustering probability data from those cannot be directly 
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compared to this study because the simulations have too many differences, including 

fault slip rates and values of the rate- and state-dependent friction constitutive 

parameters.  The models with more complex fault geometry display the highest clustering 

probabilities. Fault segmentation, either fractal or in the form of fault branches and 

stepovers, acts as a barrier to thoroughgoing ruptures which results in delayed rupture 

propagation. This delayed rupture propagation is the cause of many large event clusters, 

as two events occur in place of one continuous event. 

 

Model Total #Mx 
of events 

PObserved 
 

M≥7 
PPoisson 

 

M≥7 
GCluster 

 

M≥7 
Smooth Faults 196 0.177 0.075 2.360 
Fractal Roughness (β=0.10) 237 0.190 0.090 2.108 
Fractal Segmentation (β=0.02) 221 0.180 0.084 2.133 
Fractal Segmentation (β=0.04) 274 0.395 0.103 3.814 

Table 4.4: Clustering statistics for Mx = M≥7 event from the RSQSim California fault model 
compared to those of several different models of idealized fault systems. Table modified from 
Dieterich and Richards-Dinger (2010) to include data from the California fault models. Models with 
greater fault complexity tend to exhibit greater probability gains from large-event clustering. 
	  
	  
 
 Within the California fault models there is also a spatial variation to the clustering 

of large events. The large-event clusters often develop spontaneously on continuous fault 

segments, but clustering rates are higher in areas of structural complexity. Large-event 

clustering increases with separation distance between discontinuous elements as well as 

geometric complexity. Figures 4.6 and 4.7 illustrate the variation in probability gain due 

to large-event clustering in space for M≥7 and M≥6 events respectively. It is colored by 

the ratio of the probability of clustered large events (counted in 100x100 km boxes) to the 

probability of expected large events from a Poisson distribution with the same rate. Both 
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figures have the same color scale for comparison. The dark blue colors are the areas 

where there were fewer than expected large-event clusters (for a Poisson process) and the 

green to red boxes are the areas with higher than expected numbers of clustered events.  

The dark blue areas (where the probability gain is less than one) are areas with events that 

are more periodic, rather than clustered. The bright red boxes have nearly one hundred 

times as many clustered events than expected from the Poisson model of occurrence. The 

overall probability gains are higher for M≥6 events primarily because the rate of 

clustering is higher for those smaller magnitude events. This higher rate of triggering may 

be due, in part, to the difference in aspect ratio between M≥7 and 7<M≥6 events. This 

results in greater stress transfer, averaged over the potential areas of secondary 7<M≥6 

events, than for secondary M≥7 events. The width to length ratio for the 7<M≥6 events in 

RSQSim catalogs is close to one and these nearly square ruptures cover a much smaller 

area of the fault than the long, M≥7 events. Since secondary clustered events tend to 

occur off the ends of the primary event ruptures, the potential clustering area is smaller 

for larger events.   

 Additionally, lower slip rate faults have larger clustering probability gains than 

higher slip rate faults. The variation in clustering probability gain for faults with different 

slip rates is plotted in Figure 4.8 for the UCERF3 catalog, for M≥6 (blue) and M≥7 (red) 

events. The probability gains are sorted into 5mm/year bins and the solid lines indicate 

the total probability gains for both magnitude ranges. Not only are the probability gains 

higher for M≥6 events than the M≥7 events for each slip rate bin, but the variation in and 

range of probability gains is much higher as well (0.4-5.1 for M≥6 events and 0.6 to 2.5 
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for M≥7 events). The total probability gain for M≥6 events however seems to be 

dominated by the high probability gain (5.1) at slip rates less than 5mm/year. This 

dependence on fault slip rate is expected because higher slip rates will tend to have 

proportionally higher earthquake rates, which increases the Poisson probability for 

random event clusters and decreases the probability gain. 

 Overall, the probability gains appear to be higher for all magnitudes in the areas 

where faults have lower slip rates and where faults have significant bends, branches, and 

stepovers. This indicates that there is more clustering in areas of greater fault complexity, 

where there are significant barriers to through-going ruptures. These geometric barriers 

tend to increase clustering because ruptures are forced to stop and re-nucleate on another 

section of the fault, producing two (or more) earthquakes instead of one. 



	  
	  

107	  

 
Figure 4.6: Spatial variation in clustering rates of M≥7 events, indicated by the ratio of clustered 
events to Poissonian events in each 30km by 30km box. Clustered events on these maps are defined as 
being within 4 years time and 30 km hypocentral distance. Clustering of M≥7 events tends to occur in 
areas of greater fault complexity such as branches or step-overs, however large-event clusters also 
occur on long, simpler fault sections. 
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Figure 4.7: Spatial variation in clustering rates of M6 to M7 events, indicated by the ratio of 
clustered events to Poissonian events in each 30km by 30km box. Clustered events on these maps are 
defined as being within 4 years time and 30 km hypocentral distance. Clustering of M6 to M7 events 
tends to occur much more often than for M≥7 events, but is still greatest in areas of greater fault 
complexity such as branches or step-overs, however large-event clusters also occur on long, simpler 
fault sections. 
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Figure 4.8: Probability gain due to clustering of large events (M≥7 in red and M≥6  in blue) for faults 
with different slip rates. The probability gains are sorted in 5mm/year bins as indicated by the 
horizontal bars, and the solid lines indicate the total probability gains for both magnitude ranges. 
The probability gains are higher (for both magnitude ranges) for clustered events on faults with 
lower slip rates. 
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4.6 Conclusions 
 
	   Instrumental earthquake catalogs are much too short to directly characterize 

clustering statistics of potentially damaging earthquakes in specific regions like Southern 

California. However, earthquake simulators show a great deal of promise for this 

objective. Simulated catalogs have aftershocks with realistic Omori trends and the inter-

event time and space-time statistics of smaller earthquakes in the RSQSim catalogs are in 

good agreement with the California catalogs.  We therefore conclude that the RSQSim 

catalogs can provide an appropriate basis for investigation of large-event clustering. 

Probabilities of large-event clusters observed in RSQSim catalogs are significantly higher 

than the probabilities for a truly random process, establishing that many secondary events 

in large-event clustered are not only related to, but are actually triggered by the primary 

events. 

 Clustering probabilities vary depending on several factors including fault 

complexity, rate- and state-dependent friction constitutive parameters, slip rate, and 

clustered event magnitude. Geometrically complex fault systems show more clustering 

behavior than simple systems. Increasing the value of the rate variable a in the rate- and 

state-friction equation yields higher probability gains due to clustering. Finally, clustering 

probabilities are much higher for smaller events (M6 vs. M7). Overall, these results could 

provide valuable information related to forecasting large events. Large-event clusters like 

the one shown in Figure 4.4 would be devastating for Southern California, especially for 

highly populated cities like Los Angeles, which would likely experience strong ground 

shaking from both events. 
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Chapter 5 
 
Earthquake Probabilities from 
Aftershock Sequences in Simulated 
Catalogs 
	  

5.1 Abstract 
	  
The occurrence of large-event clusters, in which a second event of similar magnitude 

follows one large event within a few years or less, indicates that the probability of 

additional large events is temporarily increased after a large event occurs.  While 

understanding of this increased probability lends valuable information about changes in 

earthquake hazard, stress changes and aftershock rates may give additional predictive 

information. The earthquake simulator RSQSim generates simulated catalogs that include 

foreshocks, aftershocks, and occasional large-event clusters.  In the simulations, we 

observe several potential indicators of impending large, secondary events comparable in 

magnitude to the prior mainshocks in the simulated catalogs. When a large-event cluster 

occurs, the primary event has an especially productive aftershock sequence, which on 

average is roughly double the aftershock rates for non-clustered mainshocks. 

Additionally, the aftershock locations of the first event in a cluster appear to correlate 

with the hypocentral location of the next large event in the cluster. We find that 

aftershock rate is a proxy for the stress state of the faults. Also, in large event clusters 

aftershock sequences transition into foreshock sequences, wherein the average event rate 
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increases prior to the impending large event in the cluster. These increased event rates 

prior to the second event in a cluster follow an inverse Omori’s law, which is 

characteristic of foreshock sequences in nature. Finally, the aftershock/foreshock 

locations migrate toward the point of nucleation of the next large event in the cluster. 

Clustering probabilities based on aftershock rates have better predictive power than those 

obtained from Omori aftershock and Gutenberg-Richter magnitude frequency laws, 

which suggests that the high aftershock rates indicate near-critical stresses for failure in a 

large earthquake. 

 
 

5.2 Introduction 
 
 Various possible earthquake precursors have been studied including seismic 

velocity changes, earthquake swarms or micro-earthquakes, uplift, preslip, tilt-strain 

anomalies, and ground water changes (Geller, 1997). Triggering and prediction studies 

have attempted to isolate precursors and quantify earthquake probabilities by studying 

seismicity, ground deformation, and Coulomb stress changes (Freed, 2005). No reliable 

prediction schemes have been developed however, because patterns of possible 

precursors vary so greatly between events (Geller, 1997).  One problem in the search for 

possible precursors is the lack of data, especially for very large events.  Earthquake 

simulations in RSQSim may be able to fill this gap and provide valuable statistics on 

earthquake occurrence.  

 Several studies have incorporated stress transfer calculations into seismic hazard 

assessments (Dieterich, 1988; King et al., 1994; Stein et al., 1997; Hardebeck et al., 1998; 
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Parsons et al., 1999). Some studies have explored cases of progressive earthquake failure 

in which successive events rupture a nearby section of the same fault (Richter, 1958; 

Dewey, 1976; Jackson & McKenzie, 1988; Scholz, 1990). Calculations based on 

Coulomb failure stress changes due to earthquakes on the North Anatolian fault were 

used by Stein et al. (1997) to estimate long-term earthquake probabilities in Turkey. 

Other studies have used Coulomb stress changes to determine whether certain faults were 

brought closer to failure by slip on nearby faults.  King et al. (1994) showed that the M7.4 

Landers earthquake raised the stress at the location of the M6.5 Big Bear earthquake 

which occurred just three hours later, and that both of these events raised the stress on a 

section of the southern San Andreas Fault enough to advance the tectonic stressing clock 

on the next event by a decade. While Coulomb stress transfer provides valuable insights 

for understanding the factors that control the clustering of large earthquakes, there are 

still only a few examples of Coulomb stress changes being used to forecast the 

occurrence of future large earthquakes.  Furthermore, Coulomb stress calculations do not 

explain the statistics of clustering, nor their temporal characteristics (such as Omori-type 

time dependence).  

 
 

5.3 Aftershock Sequences of Large-Event clusters 

5.3.1 Highly Productive Aftershock Sequences 
	  
 As demonstrated in Chapter 4, RSQSim simulations produce clusters of large 

events in California at rates consistent with naturally occurring clusters in California. In 

simulations with a highly idealized fault system, Dieterich and Richards-Dinger (2010) 
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report that large event clusters appear to correlate with highly productive aftershock 

sequences following the first event in the cluster. This chapter examines that possibility 

in greater detail by compiling aftershock statistics for clustered and non-clustered events 

from long simulations with California fault models. Figure 5.1 illustrates the slip 

distributions and aftershock locations of a large-event cluster consisting of two 

earthquakes M7.2 and M7.6 on a section of the San Andreas Fault and, for comparison, 

an independent M7.2 earthquake on the same fault section. This particular independent 

event was chosen for comparison because the slip distribution, i.e. the amount of slip on 

each individual element, was 99% similar to the primary event in the large-event cluster. 

This similarity was determined by comparing the normalized dot products of the vector 

of slip at each element for each event. The primary event in the cluster, an M7.2 on the 

Southern San Andreas Fault, was followed by 32 M≥4.9 aftershocks in the 29.9 days 

prior the occurrence of the M7.6 secondary event. Not only was this aftershock sequence 

highly productive (with over 30 large aftershocks in less than a month) but also 97% of 

the aftershocks occurred to the south of the rupture area of the primary event near the 

location of the nucleation point of the secondary event (indicated by a red star on Figure 

5.1). A similar sequence was observed for the Elmore Ranch and Superstition Hills 

earthquake sequence in 1987, in which the M6.2 Elmore Ranch earthquake (November 

23rd) triggered the M6.6 Superstition Hills earthquake (November 24th) on an intersecting 

fault. The Elmore Ranch earthquake had a particularly energetic aftershock sequence and 

the aftershocks were primarily located near the intersection of the faults, which was also 

the nucleation location of the Superstition Hills earthquake 11.4 hours later (Hudnut et 
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al., 1989). Conversely, the independent RSQSim event only had three aftershocks in the 

same time period. In general, the aftershocks of independent events are relatively evenly 

distributed around the ends of the ruptures. While Figure 5.1 is a rather extreme example 

of the difference in aftershock productivity for a clustered and an independent event, a 

compilation of aftershock data shows that clustered events have, on average, twice as 

many aftershocks as independent events. Figure 5.2 illustrates the aftershock decay for all 

M≥7 independent events (blue) and M≥7 primary clustered events (red) for the half-

million year UCERF3 catalog. Aftershock data for the entire state are stacked in time 

bins based on the amount of time between each aftershock and the mainshock for over 

9000 large-event clusters and over 80,000 independent M≥7 events. Not only do the 

clustered events produce more aftershocks, but also the decay rate of those aftershocks is 

also somewhat lower than that of the aftershocks of independent events. The difference in 

aftershock productivity between clustered and independent events is apparent within just 

a few minutes after a mainshock. Figure 5.3 shows the average cumulative number of 

aftershocks per mainshock with time after the mainshock for both the primary clustered 

events (red) and independent M≥7 events (blue), from the same set of stacked events in 

Figure 5.2. Aftershocks are only counted within one rupture length from the ends of the 

rupture area for each mainshock. The number of aftershocks between the two 

distributions of events diverges within 2-3 minutes after mainshock occurrence. In 

general, events that become part of a large-event cluster have higher aftershock rates than 

independent events. Results show that simulated California events of M≥7 that are 

followed by another M≥7 event within 4 years have more productive aftershock 



	  
	  

118	  

sequences than other M≥7 events that occur independently. The differences in 

productivity suggest that aftershock sequences of large events may provide useful 

information about the likelihood of additional large events occurring within a few years, 

as well as the general locations of those additional events.  
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Figure 5.1: Large-event cluster on the Southern San Andreas Fault (top – black outline) and non-
clustered or independent event - not followed by another large event within 4 years (bottom – red 
outline) that is nearly identical (99% similar slip on individual elements) to the first event in the 
large-event cluster. Colors represent maximum slip on each fault element and black elements 
indicate the locations of aftershocks. Not only does the clustered event have significantly more 
aftershocks, but also those aftershocks are located near the hypocenter of the secondary event in the 
cluster. 
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Figure 5.2: Aftershock productivity of Clustered Events (red) and Non-Clustered Events (blue) with 
time after the mainshock. Includes stacked data, binned by the amount of time between each 
aftershock and the mainshock, for over 9000 large-event clusters and over 80,000 independent M≥7 
events. The aftershock rate is higher for clustered events and the decay rate is lower. This difference 
in productivity with time could provide additional information about the short-term probabilities of 
large events. 
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5.3.2 Aftershock Migration and Foreshock Evolution 
	  

In addition to elevated aftershock rates following the primary events of large-

event clusters, the aftershocks also transition to foreshocks with accelerating rates prior to 

the impending secondary large event of the cluster. In other words, following a normal 

Figure 5.3: Cumulative number of aftershocks with time from mainshock. The blue line 
represents the aftershocks of non-clustered events and the red line represents the aftershocks of 
clustered events. Includes stacked data for over 9000 large-event clusters and over 80,000 
independent M≥7 events. The difference in aftershock productivity is apparent within a few 
minutes after the mainshock, suggesting that increases in short-term earthquake probability  
could be recognized based on real-time aftershock data. 
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aftershock sequence in which the rate of smaller events increases dramatically after a 

mainshock and decays over time to the background seismicity level, following Omori’s 

law (Equation 4.4), the average event rate (of aftershocks of the primary clustered events) 

increases prior to the secondary event in the large-event cluster. Figure 5.4 shows the 

cumulative number of aftershocks (counted only within one rupture length from the 

rupture ends of the mainshock) per mainshock with time until the secondary event, for 

clustered events that had 3 to 4 years between them in the half-a-million year UCERF3 

catalog. For this plot, in order to stack the aftershock data during the variable 3 to 4 year 

intervals, the time between the primary and secondary events is normalized by the inter-

event time of each clustered pair for which aftershocks were counted. The aftershock 

rates of the primary events in large-event clusters show typical Omori decay before the 

seismicity rate accelerates. These increased event rates follow an inverse Omori’s law, 

which is characteristic of foreshocks.  
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Figure 5.4: Cumulative aftershocks per mainshock (the primary event in each large-event cluster) 
with time leading up to the time of the secondary event in each large-event cluster. Time is 
normalized by the amount of time between the primary and secondary events in each large-event 
cluster. Data has been stacked for large-event clusters with 3-4 years between them. Aftershock rates 
show typical Omori decay (like Figure 4.3) and start to level off before increasing in an inverse 
Omori trend, characteristic of foreshocks, shortly before the secondary event occurs. 
  

Furthermore, as the seismicity transitions from an aftershock to a foreshock 

sequence, it localizes near the point of nucleation of the secondary event in a large-event 

cluster. As illustrated in the example in Figure 5.1, the aftershocks of the primary event in 

a large-event cluster tend to correlate with the location of the next large event in the 

cluster. Not only do most secondary clustered events nucleate at the outer edge of the 
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aftershock zone of the primary clustered events, but the aftershocks also migrate in space 

towards the secondary nucleation location with time. Figure 5.5 shows the mean distance 

between the aftershocks of primary clustered events and the nucleation location of the 

secondary clustered event with time leading up to the nucleation time of the secondary 

clustered event. Once again, this was calculated for stacked clustered events that had 3 to 

4 years between them, and the time is normalized by the specific inter-event time for each 

clustered pair. Aftershocks are counted within 50 km of the end of the primary rupture 

that is nearest to the nucleation point of the secondary event. On average the aftershocks 

that occur closer in time to the second event are also closer in space and these aftershocks 

clearly localize toward the point of nucleation of the next event in a large-event cluster.  
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Figure 5.5: Distance between the aftershocks of the primary events in large-event clusters and the 
location of the secondary event in the cluster with time leading up to the time of the secondary event. 
Aftershocks are counted within 50 km of the end of the primary rupture that is nearest to the 
nucleation point of the secondary event. As the aftershocks transition into foreshocks approaching 
the time of occurrence of the secondary event, the foreshocks occur closer in space to the hypocentral 
location of that event as well. 
	  

5.3.3 Effect of Initial Stresses on Clustering 
	  
 As illustrated by the large-event cluster in Figure 5.1, it is fairly common for 

large-event clusters to progressively rupture the next section of the fault. The existence of 

these large-event clusters, as well as the progressive rupture of adjacent sections, suggests 

that stress transfer from the primary event triggers the secondary event in the cluster. As 

previously mentioned, Stein et al. (1997) report 3-month to 30-year periods between 

stress transfer and progressive triggering of events along the North Anatolian Fault, 
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indicating not only that the time periods between clustered events nature are roughly 

consistent with those of simulated catalogs, but that static stress transfer may be a 

reasonable mechanism for the triggering of secondary events in large-event clusters. 

Figure 5.6 illustrates the change in the inter-event time between clustered events based on 

the magnitude of the Coulomb stress change on the rupture area of the secondary 

clustered event due to the occurrence of the primary clustered event. The Coulomb stress 

change reflects changes in both shear stress and normal stress and takes into account fault 

geometry, as well as the sense of slip. This absolute Coulomb stress was calculated based 

on Equation 1 from King et al. (1994), but we use a modified form of the equation that 

ignores pore fluid pressures, which is as follows: 

𝑆 =   𝜏 − 𝜇! ∗ 𝜎,     (5.1) 

where S is the Coulomb stress on the fault or fault element in question, τ is the shear 

stress, µ0 is the steady state coefficient of friction (0.6 for all simulations discussed in this 

study), and σ is the normal stress. The change in Coulomb stress is calculated as follows: 

Δ𝑆 =   Δ𝜏 − 𝜇! ∗ Δ𝜎,      (5.2) 

Where Δτ is the change in shear stress, and Δσ is the change in normal stress. This is 

calculated for each fault element, then averaged over the entire rupture area of the 

secondary event. The inter-event times of clustered pairs correspond with the magnitude 

of the stress perturbations from primary clustered events. On average, secondary events 

that experience greater Coulomb stress increases occur much closer in time to the 

primary event in the cluster, indicating that the secondary events are likely triggered by 

static stress changes from the primary events. 
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Figure 5.6: Coulomb stress change imparted on the rupture area of the secondary event in large-
event clusters with the inter-event time between the primary and secondary events in the clusters. 
Data averaged over more than 9000 large-event clusters. In large event-clusters, when primary 
events transfer more stress onto the rupture area of the future secondary events, the secondary 
events occur closer in time to the primary events. 
 

 However, the stress transfer from primary clustered events to secondary events is 

not the only factor in the occurrence of large-event clusters. In addition to stress transfer, 

we also examined the role of prestress as a likely factor controlling the occurrence of 

large-event clusters. Specifically, as seen in Chapter 4, the elevated aftershock 

productivity in the interval between large earthquakes in large-event clusters suggests 

high pre-stresses on the rupture areas of the secondary event in the cluster.  

 This effect is illustrated by the example in Figure 5.1, where the primary event of 

the cluster and the independent event are nearly identical. The independent event 
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nucleated in nearly the same place (on the fault element immediately adjacent to the 

nucleation point of the primary clustered event) and the average slip in both mainshocks 

was nearly identical, but the independent event clearly did not trigger another large event. 

The independent event also ruptured in the same direction as the primary clustered event 

and stopped in the same location. More importantly, the independent event transferred the 

same amount of stress onto the next section of the fault as the primary clustered event, 

but that section of the fault did not experience another M≥7 event within 4 years. As the 

stress perturbation is the same for these clustered and non-clustered events, this highly 

productive aftershock sequence must also be related to the prestress on the nearby faults. 

 Figure 5.7 shows the prestress on the rupture area of the secondary event shown 

in Figure 5.1, for both the large-event cluster and the independent event. The color 

represents the absolute Coulomb stress on the rupture area of the secondary event in that 

large-event cluster, immediately prior to the primary event in the cluster (top) and 

immediately prior to the independent event (bottom and outlined in black). This is not the 

stress change, but the prestress on the section of the fault where the secondary event 

occurred. Over this area the absolute prestress is at least 2 MPa higher for nearly every 

fault element that ruptured in the secondary event and the average Coulomb stress over 

this area is also more than 2 MPa higher than before the independent event. Therefore, 

the stress states of faults is likely a determining factor for the aftershock productivity of 

the clustered events, as well as the occurrence of large-event clusters. More analysis is 

required to establish the prevalence of higher prestresses prior to secondary clustered 

events and the importance of these prestresses on the occurrence of large-event clusters. 
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Figure 5.7: Comparison of the Coulomb stress on the rupture area of the secondary event in the 
large-event cluster shown in Figure 5.1 prior to the primary event of that cluster and that of the same 
fault elements prior to the independent (non-clustered) event shown in Figure 5.1, that was not 
followed by another event within 4 years. Even when the change in Coulomb stress is the same after a 
large event, the prestress on the rupture area of the secondary event is an important factor in the 
timing of that secondary event. 
 

5.3.4 Clustering Probabilities Based on Aftershock Productivity 
	  
 Chapter 4 presented clustering probabilities based solely on the number of 

clustered and independent events in the catalog. While such large-event probabilities can 

give valuable information about the earthquake hazard in an area, aftershock data appear 

to give significantly more predictive information. Figure 5.8 shows the probability of 

large-event clustering, i.e., the probability that an M≥7 event will be followed by another 

M≥7 event within 4 years, based on the number of aftershocks observed in one day 

following the mainshock. Observed clustering probabilities (𝑃!"#$%&$') were calculated 
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for primary events with different numbers of aftershocks within one day of the primary 

mainshock. All remaining probabilities are from the UCERF3 ‘Paleoseismic’ Catalog, 

which had a rate- and state- a-value of 0.01. Dieterich (1994) demonstrated that the rate-

state friction parameter a controls aftershock duration and hence aftershock productivity. 

In general, the rate of all events, and thus aftershocks, increases with increasing a-value. 

An a-value of 0.01 is in the middle of the range tested in this study (Table 4.1) of 0.08 to 

0.12. These clustering probabilities for different numbers of aftershocks are fit by an 

exponential function for smoothing, which is plotted in Figure 5.8. For comparison, the 

red line in Figure 5.8 indicates the observed probability of clustering based solely on the 

general statistics of large-event clusters in the catalog. For example, from Figure 5.8, the 

overall probability of M≥7 clusters is on average just below 10%. However, the 

probability of additional M≥7 events is doubled if one were to observe ten M≥4 

aftershocks within the first day following a mainshock.  

 Simulation results suggest that there is additional predictive information about 

impending large events beyond what current statistical methods for forecasting 

probabilities of large-event clusters provide. Figure 5.9 shows the probability that an 

additional M≥7 event will occur within 4 years after an M≥7 event for any given number 

of aftershocks with time from the mainshock.  Similar to the probabilities in Figure 5.8, 

RSQSim probabilities (top) are calculated based on the observed number of large-event 

clusters with some number of aftershocks that occur after the first event of each large-

event cluster. This is done for all inter-event times of the clustered events, and once 

again, an exponential function is fit to the data for smoothing. Reasenberg-Jones 
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probabilities (Figure 5.8, bottom) are based on the empirical Omori aftershock and 

Gutenberg-Richter magnitude frequency laws (Reasenberg and Jones, 1989). For 

example, if a simulated event has 10 aftershocks in 9 hours, there is a 40% to 50% chance 

that that event will be followed by another M≥7 event within 4 years, but if one were to 

only consider probabilities implied by empirical earthquake statistics, the probability 

would be assumed to be significantly lower, i.e. only 10% to 20%. The larger RSQSim 

probabilities suggest that high aftershock rates before large-event clusters seen in 

RSQSim indicate near-critical stresses for failure in large earthquakes. Although the 

stresses are known for every fault element in the RSQSim model at all times, this is 

impossible to know in the real world. As shown above, aftershocks occurring on the 

modeled faults, which might fail in another large earthquake, might serve as a proxy for 

the stress state on the fault and can be observed in real time. However, this cannot yet be 

applied to real-world earthquakes because we are only considering the aftershocks that 

occur on the explicitly modeled faults, which is only a subset of the aftershocks expected 

in nature because many of those events occur on smaller faults that are not built into our 

model. 
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Figure 5.8: Probability of additional M≥7 event within 4 years, given the number of aftershocks in 1 
day following a prior M≥ 7 event. Red line indicates the probability of additional M≥7 events based 
only on clustering statistics without considering the aftershock productivity. This indicates that 
recognizing highly productive aftershock sequences could improve short-term earthquake 
probabilities. 
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Figure 5.9: Colored contours indicate the probability that a second M≥7 event will occur within 4 
years after an M≥7 event. RSQSim probabilities (left) are based on the number of aftershocks that 
occur after the first event of each large-event cluster. Reasenberg-Jones probabilities (right) are 
based on the empirical Omori aftershock and Gutenberg-Richter magnitude frequency laws. This 
indicates that aftershock statistics can give more predictive information about the occurrence of 
large event-clusters than probabilities based solely on empirical earthquake statistics. 
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5.4 Discussion and Conclusions 
 

 Earthquake scientists have searched for precursory signals for decades without 

any conclusive success. However, long-term simulated catalogs from RSQSim display 

several potential indicators that additional large earthquakes may shortly follow previous 

large earthquakes. Simulated events that become part of a large-event cluster have more 

productive aftershock sequences than large, independent events. Aftershocks of the 

primary events in large-event clusters correlate with the locations of secondary 

mainshocks, and migrate towards the secondary mainshock location with time leading up 

to nucleation of that event. RSQSim simulations also demonstrate accelerating aftershock 

sequences, in which aftershocks transition into foreshocks, and foreshocks of the 

secondary events tend to localize in the area of secondary mainshock hypocenters. The 

prestress on the faults where large-event clusters occur is also an important factor in the 

occurrence of large-event clusters and the aftershock productivity seems to indicate the 

areas that are already critically stressed and capable of producing additional large (M≥7) 

earthquakes. Additionally, simulation results suggest that there is additional predictive 

information about impending large events beyond what current statistical methods for 

forecasting probabilities of large-event clusters provide. The probability that a secondary 

large event will occur in RSQSim simulations, thus creating a large-event cluster, is 

significantly higher for mainshocks that have highly productive aftershocks sequences. 

This suggests that highly productive aftershock sequences could be used to forecast the 

occurrence of secondary events that become part of large-event clusters.  
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 However, there are limitations to direct implementation for earthquake forecasts. 

The relatively small number of foreshocks observed for natural earthquakes may limit 

direct applicability of our observations of accelerating seismicity and localization of 

foreshocks. This study was able to identify patterns and associations with foreshocks and 

aftershocks because we had the ability to stack the foreshock/aftershock data for 

thousands of large events. The increased number of natural events at magnitudes smaller 

than we are able to simulate with a fault system this size may offset this problem, but that 

analysis is beyond the scope of this study. Additionally, our results for earthquake 

probability based on aftershocks are for the modeled faults only, which include only the 

major mapped faults. The vast majority of aftershocks in nature occur in the material 

surrounding those faults. We have the ability to add ‘off-fault’ seismicity to RSQSim 

catalogs, in which the stress changes due to large events are used to produce seismicity 

off of the modeled faults in areas with randomly oriented fault planes. However, this is 

only done after a long RSQSim simulation has completed and the ‘off-fault’ events do 

not feed back into the long RSQSim simulation. Future work will involve testing the 

addition of  ‘off-fault’ seismicity and comparing the statistics to natural aftershock 

sequences and background seismicity rates. 
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Chapter 6  
 

Conclusions and Future Work 
 

RSQSim has been successful at modeling several aspects of fault slip and 

earthquake occurrence and we believe that multi-event earthquake models with time-

dependent nucleation based on rate-state friction, such as RSQSim, provide a viable 

physics-based method for modeling earthquake and fault system processes. These models 

not only provide a better understanding of earthquake hazard by improving our general 

knowledge of earthquake processes and statistics, but they can directly contribute to 

region-specific evaluation of long-term earthquake probabilities, which currently do not 

account for earthquake clustering. These models may also have an application for short-

term operational earthquake forecasting which is, at present, primarily based on empirical 

earthquake statistics as a whole rather than the statistics of earthquakes in specific areas. 

The first priority for continued work with RSQSim is to improve the California 

fault model and generate a California catalog that is both long enough to contribute 

relevant earthquake probabilities and statistics, as well as detailed enough to accurately 

describe all aspects of California seismicity. While the RSQSim California catalogs have 

already been shown to reproduce several aspects of known California seismicity 

including the statistics of foreshocks, aftershocks, and large-event clusters, as well as the 

statistics of inter-event times of smaller events, other aspects have not yet been included 

in a full California catalog. These include adding off-fault seismicity to improve the 

statistics and background rates for smaller events, specifically foreshocks and aftershocks 
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that occur off the large, mapped faults that are explicitly modeled. Some work has been 

done in an effort to compute off-fault seismicity for a completed RSQSim simulation, 

however the work is, as yet, incomplete and there is no computationally feasible way to 

have the off-fault seismicity interact with the long-term simulations. Additionally, 

including creeping sections in this fault model will also be completed as soon as possible. 

Viscoelasticity, in the form of deep creeping fault sections beneath the currently modeled 

faults is a top priority, as we believe it will increase the coefficient of variation of 

recurrence distributions and improve conditional probability calculations. Shallow 

creeping sections will also be added to the fault segments that are known to creep near 

the surface, such as part of the San Andreas Fault in Parkfield and the Hayward and 

Calaveras Faults further north. Furthermore, relaxing the segmentation of the UCERF 

fault models and modeling the major California faults with fully continuous faults may 

reduce any artificial boundaries or barriers to rupture that may artificially elevate 

clustering probabilities. Finally, the range of uncertain model parameters capable of 

satisfying the observation should be fully explored. 

Results from this study can lso contribute directly to seismic hazard analysis and 

earthquake engineering efforts by providing source models for dynamic rupture 

simulations. Although dynamic rupture simulations can be very powerful tools, our 

results suggest that current methods may not be adequately estimating ground motions. 

Better initial stress distributions for dynamic models, in the form of evolved stresses from 

RSQSim simulations, will improve seismic hazard estimates and allow earthquake 

scientists to better evaluate the risk posed by earthquakes that occur in or near highly 
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populated areas. One application of the results of this project is to develop physics-based 

methods to define sets of initial stress conditions for use in generating suites of synthetic 

seismograms. These synthetic seismograms are instrumental in the design of critical 

structures such as bridges and power plants, in addition to schools, office buildings, and 

residences. 

Suites of initial conditions for dynamic rupture models, as well as slip and stress 

drop values for kinematic ground motion calculations can be computed for any fault or 

fault system using RSQSim. Efforts are already underway to utilize CUBIT, a geometry 

and mesh generation toolkit from Sandia National Laboratories, to produce large, multi-

fault meshes for FaultMod. RSQSim is able to simulate hundreds of thousands of events 

in large, complicated fault systems, so initial conditions can be generated and used to 

estimate ground motions for any modeled region or fault system. Specifically, models 

will be tailored to significant faults in California using long-term simulations with 

California fault models. Furthermore, the modeling process is not restricted to California 

fault systems. Any mapped fault system can be modeled for use in RSQSim simulations 

to generate earthquake probabilities and source models that will ultimately lead to the 

construction of safer, more stable structures. Additionally, long-term, multi-event 

RSQSim simulations can be used to calculate not just the fault conditions prior to large 

events but also the likelihood that specific large events will occur. These earthquake 

probabilities can be combined with source models to compute ground motion estimates 

for high probability events in fault system models.  




