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Unconventional superconducting phases on a two-dimensional extended Hubbard

model
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1Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA.

2Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.

(Dated: April 1, 2013)

We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice,
including on-site (U) and nearest-neighbor (V ) interactions, at weak couplings. We show that the
charge-density-wave phase that is known to occur at half-filling when 4V > U gives way to a dxy-wave
superconducting instability away from half-filling, when the Fermi surface is not perfectly nested,
and for sufficiently large repulsive V and a range of on-site repulsive interaction U . In addition, when
nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal
breaking (px + ipy)-wave pairing instability emerges, competing with the dx2+y2 pairing state that
is known to dominate at fillings just slightly away from half. At even smaller fillings, where the
Fermi surface no longer presents any nesting, the (px + ipy)-wave superconducting phase dominates
in the whole regime of on-site repulsions and nearest-neighbor attractions, while dxy-pairing occurs
in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can
be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic
atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor
attraction would be required, in addition to rotation of the system to create vortices. We discuss
possible ways of experimentally engineering the required interaction terms in a cold atom system.

PACS numbers: 74.20.-z, 64.60.ae, 05.30.Fk, 73.20.-r

I. INTRODUCTION

An extended Hubbard model is generally employed as
a theoretical framework of screened electronic interac-
tions and regarded as a prototypical scenario for rich
quantum phases in condensed matter physics1–3. In a
one-dimensional chain, for instance, an extended Hub-
bard model, including an on-site and nearest-neighbor
interactions, presents correlated phases associated with
the ratio of the two interactions4,5. Recent indentifi-
cation of the bond-charge-density-wave instability be-
tween charge and spin density-wave phases, at weak
and strong interactions, completes the phase diagram
of this model6–11. Meanwhile, in a two-leg ladder, a
checkerboard charge-ordered state has been proposed for
all fillings between quarter and half, with on-site and
nearest-neighbor repulsion12. Its application to the cou-
pled quarter-filled ladders with coupling to the lattice has
recently been studied13 to explain the spin gaps in the
NaV2O5 material14,15.

On a two-dimensional lattice, the extended Hub-
bard model has been considered a paradigmatic model
to search for possible unconventional superconducting
phases since the discovery of high-temperature supercon-
ductivity in the cuprates16. Although a nearest-neighbor
repulsion between electrons suppresses non-s-wave pair-
ings tendencies17, it is generally believed that the nesting
of the Fermi surface plays a key role in driving uncon-
ventional pairing under purely repulsive interactions at
weak couplings18. In the proximity of density-wave or-
der, for instance, a chiral d-wave state has been found for
an extended Hubbard model on both triangular and hon-
eycomb lattices19–21. Furthermore, following the recent

experimental realization of a two-dimensional Kagome
lattice for ultracold atoms22, the phase diagram of the
extended Hubbard model on a Kagome lattice has been
established in the vicinity of van Hove fillings23. It was
shown that a possible p-wave charge and spin bond order
can be triggered in the presence of a nearest-neighbor re-
pulsion for van Hove fillings, then giving way to a f -wave
superconducting phase when slightly doped away24.

It has recently been proposed that under a nearest-
neighbor attraction and on-site repulsion a singlet (p +
ip)-wave pairing emerges on a honeycomb lattice25.
Along with the result that Majorana fermions can be
generated as a zero-energy mode in the excitation spec-
trum of a half-quantum vortex in a (p + ip)-wave
superconductor26, this indicates the possibility of creat-
ing Majorana fermions in graphene in the presence of
a magnetic field. However, a functional renormalization
group study has shown that for a honeycomb structure,
the f -wave pairing is preferred and is stabilized by intro-
ducing a next-nearest-neighbor attraction19. Although
triplet p-wave superconductivity has been proposed for
an extended Hubbard model on a square lattice for purely
repulsive interactions27, the physics of long-range interac-
tions, with possibly terms leading to competing instabili-
ties, has been studied recently, leading that the existence
of p-wave pairing is still an open question28,29.

In this paper, we study the phase diagram of an ex-
tended Hubbard model via a functional renormaliza-
tion group (fRG) approach30,31, including on-site U and
nearest-neighbor V interactions, on a two-dimensional
square lattice. The total Hamiltonian can be written as,
H = H0 +Hint, with the noninteraciting and interacting
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FIG. 1: (Color online) Fermi surfaces of a square lattice with
nearest-neighbor hopping, at different chemical potentials µ

(in units of t). Below, the phase diagram versus µ for U = 1
and V = 0. The Fermi surface patches used in this study are
illustrated in the Fermi surface at µ = 0.

parts,

H0 = −t
∑

〈ij〉,α

(

c
†
iαcjα +H.c.

)

− µ
∑

i

ni, (1)

Hint = U
∑

i

ni↑ni↓ + V
∑

〈ij〉

ninj , (2)

respectively, where 〈ij〉 represents nearest-neighbor pairs

of sites, ni = ni↑+ni↓ =
∑

α c
†
iαciα and µ is the chemical

potential. Without the nearest-neighbor interaction, the
phase diagram in a fRG analysis is well developed in the
limit of weak couplings31. For on-site attraction, s-wave
superconductivity (s-SC) dominates at all fillings except
for half-filling. The phase diagram for on-site repulsion,
U = 1, versus µ is sketched in Fig. 1. In the vicinity
of half-filling, the spin-density wave (SDW) dominates
due to the strong nesting of the Fermi surface. With
slight doping, dx2+y2-SC emerges in a small regime of
µ just away from half-filling. When the magnitude of
µ is further increased, no instability develops up to the
point where we stop the RG flows, at energy cutoffs lower
than 10−6t. Kohn-Luttinger (KL) instability32, with ex-
tremely low critical temperatures, is expected to occur in
this regime.
In presence of a nearest-neighbor interaction V , the

phase diagram is much richer. We find that dxy- and
(px + ipy)-wave pairing superconducting states develop.
In the proximity of the charge-density-wave (CDW) or-
der, dxy-wave pairing emerges from the CDW instability
with U > 0 and V > 0. When the nesting of the Fermi
surface is decreased, a time-reversal symmetry breaking
(px + ipy)-SC arises from the dx2+y2 -SC with a suffi-
cient large nearest-neighbor attraction. When nesting
is completely suppressed, (px+ ipy)-SC dominates in the
whole regime of U ≥ 0 and V < 0, and the dxy-pairing
is only triggered with the help of an on-site attraction.
Using a symmetry argument, we show that appearance
of (px + ipy)-SC on a square lattice for V < 0 is generic
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FIG. 2: (Color online) The phase diagram (a) at half-filling
µ = 0, (b) at µ = −0.095, parameterized by on-site U and
nearest-neighbor interaction V . The interaction terms U and
V are in units of t throughout this paper.

and robust due to the underlaying lattice structure, and
can be used to create a zero mode Majorana fermion in
the presence of a magnetic field.
This paper is organized as follows. In Sec. II, we study

the phase diagrams at and near half-filling (µ = 0 and
−0.095). We will show that our fRG results are consistent
with the previous studies at the half-filling. In Sec. III,
we show the phase diagrams for chemical potential µ =
−0.5, −1 and −2 and study the possible unconventional
SC states driven by the nearest-neighbor interaction. We
discuss our results and conclusions in Sec. IV.

II. AT AND NEAR HALF FILLING

Starting with the bare Hamiltonian, Eq. (2), we fol-
low standard fRG procedure integrating out high-energy
modes, decreasing the energy cut-off Λ. The four-fermion
terms in the resulting effective Hamiltonian are written

in the form g(k1,k2,k3,Λ)ψ
†
α(k1)ψ

†
β(k2)ψβ(k3)ψα(k1 +

k2 − k3), in momentum space, with k = (kx, ky) and
spin indices α, β. In previous studies, the RG equa-
tions for models with SU(2) and U(1) symmetries have
been systematically studied by Fermi surface discrete
patch-approximation31. In this paper, to preserve the
particle-hole symmetry of the non-interacting Hamilto-
nian at half-filling, all phase diagrams are obtained by the
configuration of the Fermi surface patches illustrated in
Fig. 1. By integrating out high energy degrees of freedom
and neglecting self-energy corrections, the RG flows of all
couplings versus the decreasing running energy cutoff Λ
are computed. Before the system flows into the strong
couplings regime, we truncate the RG process when the
absolute magnitude of one of the couplings reaches∼ 30t.
To determine the dominant instability, we decompose

specific four-fermion interaction terms in the Hamilto-

nian as
∑

k,p Vop(k,p,Λ)Ô
†
kÔp, with Ôk a bi-fermion

operator for the order parameter (op) of SC, CDW, SDW
or Pomeranchuk instability. Then, for a given order pa-
rameter channel, we further decompose, Vop(k,p,Λ) =
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FIG. 3: (Color online) Phase diagrams for (a) µ = −0.5, (b) µ = −1 and (c) µ = −2, parameterized by U and V . The
transparent regime means no instability is found before we stop the RG process, at which point the energy cutoff is lower than
10−6t. Form factors obtained from decoupling of pairing channels into bi-fermions during the fRG flows are illustrated for (d)
dxy-wave (e) (px + ipy)-wave pairings.

∑

iw
i
op(Λ)f

i∗
op(k,Λ)f

i
op(p,Λ), in normal modes, with i

a symmetry decomposition index. The leading insta-
bility can be determined by the most minimum eigen-
value wmin

op (Λ) (largest magnitude), and the correspond-
ing symmetry of the instability is given by the form factor
fmin
op (k)33,34.
At half-filling, the phase diagram has been studied ex-

tensively by several methods9,35,36. In our fRG analy-
sis, we include the regime of negative interactions and
obtain the phase diagram in Fig. 2a, parameterized by
on-site interaction U and nearest-neighbor interaction V
(in unit of t). The phase boundary between SDW and
CDW is at U ≃ 4V for U, V > 0, consistent with known
results from previous studies. For the line of V = 0 and
U < 0, we find that CDW and s-SC are degenerate, also
in agreement with results in the literature37. However,
the degeneracy is delicate and broken by introduction of
a nearest-neighbor interaction: a slight nearest-neighbor
attraction drives the system to a s-SC instability, instead
of a CDW instability.
We also find that for a sufficiently large nearest-

neighbor attraction, a dx2+y2-SC is triggered, even dom-
inant over the s-SC in the regime of U < 0. This d-wave
pairing is linked with the nesting of the Fermi surface. In
other words, if the nesting effect is suppressed, the s-SC
is the dominant instability for a generic Fermi surface
in the regime of U < 0. Furthermore, without nesting
effects, a p-wave, with lower angular momenta than d-
wave, will eventually dominate in the regime of V < 0
and U > 0. However, negative V combined with nesting,
leads to dx2+y2-SC.

By slightly doping away the half-filling, the dx2+y2-SC
overcomes the spin-density-wave instability that domi-
nates for on-site repulsion. The phase diagram parame-
terized by U and V is illustrated in Fig. 2b. The SDW
is suppressed to the small regime between CDW and
dx2+y2-SC in the phase diagram. The degenerate line,
U < 0 and V = 0, mentioned above, is dominated by
s-SC instability since the Fermi surface is not perfectly
nested. However, the CDW is still dominant in the over-
all regime of V > 0.

III. DOPED SYSTEMS

Here, we increase doping, decreasing nesting of the un-
til the density-wave instability no longer occurs. Then,
as shown as Fig. 3a, the dxy-wave SC arises from the
CDW instability in the regime of V > 0 and U ≥ 0.
The form factors of the dxy-SC in our fRG analysis is
plotted in Fig. 3d. Although the dxy-SC phase has been
proposed for the purely repulsive models27–29, the dxy-
SC instability we find develops only with an appropriate
nearest-neighbor repulsion and also tied with the prox-
imity to nesting of the Fermi surface. It is only when
nesting is barely suppressed so that CDW is no longer
dominant, but CDW fluctuations are still expected to be
strong, that this dxy-SC phase emerges.

As compared with the phase diagram at µ = −0.5
in Fig. 3a, the dxy-SC instability moves to the region
of larger positive V or negative U when doping is in-
creased, for µ = −1, as shown in Fig. 3b. By looking
at the RG flows of different couplings, we notice that
the different behavior for the two fillings, µ = −0.5
and µ = −1, are mainly coming from the effect of the
nesting vertices, that is, couplings g(k1,k2,k3,k4) with
k1 + k2 − k3 − k4 = (0, 2π) or (2π, 0) or (2π, 2π). For
µ = −1, there are fewer nesting vertices flowing into large
values as compared with the µ = −0.5 case. Without
the benefit of nesting vertices, the instability of dxy- and
dx2+y2-SC are suppressed and eventually do not develop
by the time we stop the RG flow. As a consequence, when
the nesting is completely destroyed, in heavily doped
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cases, there is no instability found for purely repulsive
interactions (U > 0 and V > 0), as shown in Fig. 3c.
The triplet p-SC phase tells an opposite story. In the

regime of V < 0, under the influence of Fermi surface
nesting, dx2+y2 -SC is dominant, as shown as Fig. 3a.
However, decreasing nesting suppresses the d-wave pair-
ing and the p-SC emerges for large nearest-neighbor at-
traction, as shown in Fig. 3b. When the nesting is no
longer present at all, p-SC dominates the regime of V < 0
and U ≥ 0, as illustrated as Fig. 3c. The emergence of
a triplet p-SC has a clear physical picture in a square
lattice. In the presence of a nearest-neighbor attraction
V < 0, electronic pairings are triggered. To lower energy,
a s-wave pairing with the lowest angular momenta would
be favored. However, an on-site repulsion suppresses the
s-wave pairing so that p-wave, with the second lowest
angular momenta, is preferred.
Furthermore, the four-fold symmetry on a square lat-

tice also indicates that the px- and py-wave instability
channels must be degenerate. The degeneracy of two p-
wave superconducting instabilities is indeed found in our
fRG results and the associated form factors are plotted
in Fig. 3e. Since the px- and py-wave superconducting
states are degenerate, the gap functions will be given
as a linear combination of the two order parameters. By
constructing the gap function as ∆k = ∆px

(k)+v∆py
(k)

with the complex coefficient v containing a possible rela-
tive phase, the condensation energy in the standard BCS
equation is obtained by the difference in energy between
the superconducting and normal states, and is given by

∆E = ESC − EN = 2
∑

|k|>kF

[

ǫk −
2ǫ2k + |∆k|

2

2
√

ǫ2k + |∆k|2

]

, (3)

where ǫk is the dispersion relation of the non-interacting
Hamiltonian. The second term of Eq. (3) is maxi-
mized when v is purely imaginary, hence the time-reversal
breaking pairing symmetry px + ipy is the energetically
favored one20,21,38,39. Physically this is reasonable, since
this choice of the phase guarantees that a gap forms ev-
erywhere along the Fermi surface, lowering the ground-
state energy.

IV. DISCUSSION AND CONCLUSION

In atomic Bose-Fermi mixtures, an effective attraction
between fermions can be mediated by fluctuations of the
Bose-Einstein condensate of the bosons40–42. In the pres-
ence of the mediated long-range attraction, the px + ipy

wave superconducting state has been proposed in these
systems41. However, the mechanism discussed here puts
some constraint for the emergence of the px + ipy-SC
phase: in order to develop the px + ipy-SC, long-range
attraction and on-site repulsion is needed, as well as low
density of fermions to avoid nesting of the Fermi sur-
face, while large enough densities such that the Fermi
energy is a large scale (t > U, V ) to justify the validity of
fRG results. Another possible way to manifest a medi-
ated attraction is through another species of fermions in
a Fermi-Fermi atom mixture43. By introducing an inter-
species interaction in Fermi-Fermi mixtures, an effective
interaction for one species of fermions can be obtained
by tracing out the other species. This can be justified,
for example, if the one of the species has a much smaller
effective mass than the other. In this case44, the me-
diated long-range interaction is found to decay rather
rapidly and can be approximated by an effective on-site
and nearest-neighbor interactions. By tracing out one
species with low electronic density, an effective nearest-
neighbor attraction can be obtained. Together with a
bare hard-core on-site repulsion, it may provide the re-
quired conditions for the creation of the time-reversal
breaking px + ipy-wave pairing.
In conclusion, we study the phase diagram of an

extended Hubbard model, including a on-site U and
nearest-neighbor V interactions, on a two-dimensional
square lattice. In the proximity of charge-density-wave
order, the dxy-SC overcomes the CDW, dominating in
the regime of U > 0 and V > 0, from our fRG analysis.
Accompanying the destruction of Fermi surface nesting,
a time-reversal breaking (px + ipy)-wave superconduct-
ing state arises in the regime of V < 0. Our results
indicates that, without nesting, the (px + ipy)-SC on a
square lattice under a nearest-neighbor attraction is the
generic behavior due to the underlaying lattice structure,
and can be used to create a zero mode Majorana fermion
in the presence of a magnetic field.
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