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Abstract

Applications of Macdonald Ensembles

by

Shamil Shakirov

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Y. Reshetikhin, Chair

Multivariate orthogonal polynomials of Macdonald are an important tool
to study a variety of topics in modern mathematical physics, such as chiral
algebras, three-dimensional topological theories of Chern-Simons type, five-
dimensional supersymmetric Yang-Mills theories, and others. We describe
several recent applications of Macdonald polynomials, based on original re-
search contributions. Introduction gives an overview of Macdonald theory,
with a view towards applications. In Chapter 2, we discuss a Macdonald
deformation of three-dimensional Chern-Simons topological field theory and
construct it explicitly in the case of Heegaard splitting of genus one. The
resulting knot invariants turn out to be related to the recently developed
theory of knot homology. In Chapter 3, we show that Macdonald ensembles
are natural integral representations for the Nekrasov functions – important
special functions in the context of five-dimensional supersymmetric Yang-
Mills theories. This allows us to prove, in vast generality, a conjecture that
Nekrasov functions are equal to the chiral blocks of Wq,t(slN) chiral algebras.
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Chapter 1

Introduction

In quantitative sciences, particularly in mathematics and theoretical physics,
one often uses special functions to quantitatively describe complex qualitative
phenomena. These special functions typically possess a number of features,
that make them useful throughout a wide range of applications:

• Have several alternative representations that complement each other;

• Closely related to interesting groups of symmetries;

• Apply to multiple different fields of science, thus facilitating connections.

An archetypical example of such a special function is the Gauss hyperge-
ometric function 2F1(a, b, c|z). First, it can be represented in a variety of
equivalent, and complementary, ways: as a series

2F1(a, b, c|z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
, (1.1)

as an integral

2F1(a, b, c|z) =
Γ(b)Γ(c− b)

Γ(c)

1∫
0

xb−1 (1− x)c−b−1 (1− zx)−a dx, (1.2)
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or as a solution of a differential equation:

(
z(1− z)

d2

dz2
+ (c− az − bz − z)

d

dz
− ab

)
2F1(a, b, c|z) = 0. (1.3)

Second, it ties to representation theory of Lie algebras and groups of type
A1 – it describes the matrix elements of irreducible representations of the
SU(2) group [3], appears in representation theory of the affine SU(2) as
the solution to the Knizhnik-Zamolodchikov (KZ) equation [4], etc. Finally,
it has an overwhelming number of applications, from the theory of angular
momentum in quantum mechanics [3] to solutions of algebraic equations [5]
to population genetics [6] and many others. This universality of the Gauss
hypergeometric function makes 2F1 an important special function and justifies
why it should be studied in detail.

1.1 Random matrix ensembles

This thesis is devoted to the study of an important class of generalizations
of the Gauss hypergeometric function. One of the most important features
of this class of special functions is replacing one integration variable x with
many integration variables x1, . . . , xN . A specific subclass of integrals, that
becomes increasingly important in modern applications, is the one where the
integrand is a product of factors that depend on at most two variables:

Z =

∫
γ1

dx1 . . .

∫
γN

dxN
∏
i

V (xi)
∏
i̸=j

W (xi, xj), (1.4)

where γ1, . . . , γN are suitable contours in the complex plane. This integral
has a straightforward interpretation in statistical mechanics: it represents the
partition functions of an ensemble of N particles, subject to an overall poten-
tial log V (x) and interacting pairwise with interaction potential logW (xi, xj).
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While the choice of contours γ1, . . . , γN and the potential log V (x) varies very
much from application to application, the interaction potential logW (xi, xj)
is a more robust characteristic. As a result, it is natural to classify such
integrals by the form of the function W (xi, xj).

A particularly important and simple special case is when the two-particle
interaction function W is given by

W (xi, xj) = 1− xi
xj

. (1.5)

This case is important because it is especially closely related to classical sym-
metries: the multivariate integration measure, that results from this choice,
is exactly the Haar integration measure on the compact Lie group U(N),
expressed in terms of the eigenvalues x1, . . . , xN :

dµU(N) =
∏
i̸=j

(
1− xi

xj

)
dx1
x1

. . .
dxN
xN

.

Choosing the contours γ1, . . . , γN to be unit circles, the integral Z becomes a
partition function of a random matrix X ∈ U(N) with an invariant probabil-
ity distribution function detV (X). Not surprisingly, representation theory
of U(N) plays a crucial role in this problem: for example, the orthogonal
polynomials with respect to this integration measure

∫
|x1|=1

. . .

∫
|xN |=1

dµU(N) χλ(x1, . . . , xN) χµ(x
−1
1 , . . . , x−1

N ) = δλµ (1.6)

are non other than Schur polynomials χλ(x1, . . . , xN), i.e. the characters of
irreducible finite-dimensional representations Vλ of U(N) with highest weight
λ = (λ1 ≥ λ2 ≥ . . . ≥ λN), as a function of the conjugacy class (x1, . . . , xN).
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A few first Schur polynomials are given by

χ1(x1, . . . , xN) = p1, (1.7)

χ2(x1, . . . , xN) =
1

2
p21 +

1

2
p2, (1.8)

χ11(x1, . . . , xN) =
1

2
p21 −

1

2
p2, (1.9)

χ3(x1, . . . , xN) =
1

6
p31 +

1

2
p1p2 +

1

3
p3, (1.10)

χ21(x1, . . . , xN) =
1

3
p31 −

1

3
p3, (1.11)

χ111(x1, . . . , xN) =
1

6
p31 −

1

2
p1p2 +

1

3
p3, (1.12)

where pk = xk1 + . . . + xkN are the Newton power sums. The study of Z
and similar integrals, with two-particle logarithmic potential logW (xi, xj) =
log(xi−xj), is known under the name of theory of random matrix ensembles
[7] or, short, matrix models.

It is now widely realized that matrix models are natural candidates to
be called special functions [8], for the following reasons. First, they can be
represented not only as integrals, but also as series [9] and solutions to in-
teresting linear [10] and quadratic [11] differential equations. Second, they
are closely related to representation theory of ordinary and affine Lie alge-
bras [12]. Last but not the least, they tend to be quite universal, i.e. they
have applications in many seemingly different branches of mathematics and
physics, from combinatorics of two-dimensional surfaces [13] to geometry of
moduli spaces [14] Laplacian growth processes [15] quantum Hall effect [16]
conformal field theory [17] and many others. Many of these applications are
reviewed in the book [18].
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1.2 Macdonald ensembles and polynomials

An even more interesting class of special functions one obtains from more
general two-point interactions W (xi, xj) and hence more general integration
measures. This generalization can be summarized by the following chart:

Ensemble Two-particle interaction Exponential notation

Random U(N)
(
1− xi

xj

)
exp

(
−
∑
k≥1

(xi/xj)
k

k

)

Beta
(
1− xi

xj

)β
exp

(
−
∑
k≥1

β
(xi/xj)

k

k

)

Macdonald
β−1∏
m=0

(
1− qmxi

xj

)
exp

(
−
∑
k≥1

1− tk

1− qk
(xi/xj)

k

k

)

The first row here is occupied by the standard SU(N) random matrix ensem-
bles. To pass from the first to the second row, one performs a β-deformation,
raising the measure to an arbitrary power β, which is a new parameter. The
resulting models are known as β-ensembles [7, 19] and are close relatives of
matrix models. In some cases, they even reduce to matrix models: namely,
the cases of β = 1

2 , β = 1 and β = 2 describe orthogonal, unitary, and sym-
plectic matrix ensembles, respectively [7]. For general β, however, no random
matrix interpretation is available. Finally, to pass from the second to the
third row, one performs a q-deformation, splitting the β originally identical
factors in the measure by different powers of a new parameter q ̸= 1.

The result is a double deformation of random matrix ensembles, with two
deformation parameters q and t = qβ, such that one recovers beta ensembles
in the limit q → 1, and further matrix models in the limit β → 1. We will
call the resulting multivariate integrals Macdonald ensembles, since they have
been first introduced and studied in the seminal book [20] of Ian Macdonald.
These multivariate integrals, and their applications in modern mathematics
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and theoretical physics, constitute the main subject of this thesis. The mul-
tivariate symmetric polynomials, orthogonal w.r.t. the Macdonald measure,

∫
|x1|=1

dx1

x1
. . .

∫
|xN |=1

dxN

xN

β−1∏
m=0

(
1− qm

xi

xj

)
Mλ(x1, . . . , xN ) Mµ(x

−1
1 , . . . , x−1

N ) = gλδλµ, (1.13)

are called Macdonald polynomials. They are two-parameter deformations of
the Schur polynomials and, just as them, are labeled by partitions λ = (λ1 ≥
. . . ≥ λN). A few first Macdonald polynomials are given by

M1(x1, . . . , xN ) = p1, (1.14)

M2(x1, . . . , xN ) =
(1 + q)(1− t)

2(1− qt)
p21 +

(1− q)(1 + t)

2(1− qt)
p2, (1.15)

M11(x1, . . . , xN ) =
1

2
p21 −

1

2
p2, (1.16)

M3(x1, . . . , xN ) =
(1− t)2(1 + q)(1 + q + q2)

6(1− qt)(1− q2t)
p31 +

(1− t2)(1− q3)

2(1− qt)(1− q2t)
p1p2 +

(1− q)(1− q2)(1 + t+ t2)

3(1− q2t)(1− qt)
p3, (1.17)

M21(x1, . . . , xN ) =
(1− t)(2qt+ q + t+ 2)

6(1− qt2)
p31 +

(1 + t)(t− q)

2(1− qt2)
p1p2 −

(1 + t+ t2)(1− q)

3(1− qt2)
p3, (1.18)

M111(x1, . . . , xN ) =
1

6
p31 −

1

6
p1p2 +

1

6
p3, (1.19)

where, again, pk = xk1 + . . . + xkN are the Newton power sums. Note that
Macdonald polynomials are orthogonal, but not orthonormal: the quadratic
norm of a Macdonald polynomial Mλ, denoted as gλ in the definition above.
Explicitly, gλ can be expressed in two equivalent forms.

The first one is combinatorial:

gλ = const
∏

(i,j)∈λ

1− tλ
T
j −iqλi−j+1

1− tλ
T
j −i+1qλi−j

1− (t/q)tN−iqj

1− tN−iqj
,
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where const is an inessential normalization constant, the product goes over all
boxes (i, j) of the Young diagram λ (namely, 1 ≤ j ≤ λi, 1 ≤ i ≤ length(λ))
and λT is the transposed diagram to λ (namely, (λT )j = the number of entries
≤ j in λ). The second one is rather Lie-theoretical:

gλ = N !

β−1∏
m=0

∏
α>0

q−
1
2 (α,λ

⋆)t−
1
2 (α,ρ)q−

m
2 − q

1
2 (α,λ

⋆)t
1
2 (α,ρ)q

m
2

q−
1
2 (α,λ

⋆)t−
1
2 (α,ρ)q

m
2 − q

1
2 (α,λ

⋆)t
1
2 (α,ρ)q−

m
2

,

where the product goes over all positive roots α of SU(N)1 (namely, over
N(N − 1)/2 vectors α = eI − eJ , I < J where eI are the basis vectors
(eI)j = δI,j), Weyl vector ρ is the sum of all positive roots (namely, ρj = (N+
1)/2− j) the bracket is just the simple Euclidean product (namely, (α, v) =
(eI − eJ , v) = vI − vJ) and λ⋆ is the highest weight vector in representation
λ of SU(N) (namely, λ⋆

j = λj − |λ|/N).
Each of the two forms has its own pros and cons: the first one is better

suited for actual calculations, especially with the use of computers (since it
is a finite product over the cells of the Young diagram, i.e. the range of
the product does not involve N) while the second one is somewhat more
conceptual and directly generalizable to arbitrary root systems (i.e. other
types of Lie groups). In addition, the second definition makes explicit the
property of gA being real: it remains invariant under substitution (q, t) 7→
(q−1, t−1) (which for roots of unity is the same as complex conjugation).

At this point let us note that, according to taste, some people might prefer
to normalize the Macdonald polynomials over the square root of the norm,
thus making them not only orthogonal, but actually orthonormal polynomi-
als. Both choices – to normalize or not to normalize – also have their pros
and cons. For normalized Macdonald polynomials, the structure of formulas
is often simpler, and various symmetry properties are often more transparent.
However, the normalized Macdonald polynomials themselves contain square
roots, and this makes them unfavorable for actual computer calculations. In
this paper we choose not to normalize Macdonald polynomials.

1From now on, we prefer to work with SU(N) rather than U(N). It goes without saying that
the second form straightforwardly generalizes to arbitrary root systems.
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1.3 Expansions

Various functions can be expanded in the basis of Macdonald polynomials.
One of the most basic such expansions is for the bilinear exponential2:

exp

( ∞∑
k=1

1

k

1− tk

1− qk
pkp̃k

)
=
∑
λ

mλ Mλ(p)Mλ(p̃), (1.20)

which is well-known as (generalized) Cauchy-Stanley identity. Here

mλ =
∏

(i,j)∈λ

1− tλ
T
j −i+1qλi−j

1− tλ
T
j −iqλi−j+1

= lim
N→∞

g−1
λ (1.21)

is a normalization factor. Another important expansion is that of a product
of two Macdonald polynomials: it gives rise to a set of ”structure constants”
N ν

λµ, the generalized Littlewood-Richardson coefficients:

Mλ(p) Mµ(p) =
∑
ν

N ν
λµ Mν(p). (1.22)

A few first of these coefficients are:

N , = 1, N , =
(1 + t)(1− q)

(1− tq)
,

N , = 1, N , =
(1− qt2)(1− q2)

(1− tq2)(1− tq)
, N , = 0,

N
,

= 0, N
,

= 1, N
,

=
(1 + t+ t2)(1− q)

1− qt2
.

2Note that we are viewing the Macdonald polynomials here as functions of the Newton power
sums p1, p2, p3, . . .; this point of view will be often convenient, and one can always substitute the
explicit formulas for the Newton power sums to obtain the actual symmetric polynomials.



CHAPTER 1. INTRODUCTION 9

1.4 Specializations

Macdonald polynomials generalize several previously known simpler bases of
orthogonal polynomials. If one puts t = qβ and then takes the limit q → 1,
one recovers the basis of Jack polynomials JR

lim
q→1

Mλ

∣∣∣
t=qβ

= Jλ associated with the measure
∏
i ̸=j

(
1− xi

xj

)β

. (1.23)

If, further, one takes β = 1, one recovers the Schur polynomials χR

lim
q→1

Mλ

∣∣∣
t=q

= χR associated with the measure
∏
i<j

(
1− xi

xj

)
. (1.24)

Notably, for Schur polynomials there is no need to take the q → 1 limit: in
fact, Mλ|t=q = χλ and does not depend on q. This is completely expectable,
as for t = q we have β = 1 and the Macdonald measure is indistinguishable
from the Schur one. Other, even simpler, classes of symmetric polynomi-
als can be also recovered as particular cases of the Macdonald ones: the
monomial symmetric polynomials (corresponding to the case t = 1) and the
Hall-Littlewood polynomials (corresponding to the case q = 0).

In certain points, Macdonald polynomials take simple values, such as

Mλ(t
ρ) =

β−1∏
m=0

∏
1≤i<j≤N

q
λj−λi

2 t
i−j
2 q−

m
2 − q

λi−λj
2 t

j−i
2 q

m
2

t
i−j
2 q−

m
2 − t

j−i
2 q

m
2

. (1.25)

This is a generalization (refinement) of the well-known quantum dimension
formula. A different formula for the same value is

Mλ(t
ρ) = t||λ

T ||/2−N |λ|/2
∏

(i,j)∈λ

1− (t/q)tN−iqj

1− tλ
T
j −i+1qλi−j

, (1.26)
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where the product goes over all boxes (i, j) of the Young diagram λ.
Finally, specialization N = 2 is exceptionally simple and for this reason

noteworthy. In this case, it is possible to give an explicit formula for a generic
Macdonald polynomial:

Mλ(z1, z2) = zλ1

1 zλ2

2

λ1+λ2∑
l=0

(
z2
z1

)l l−1∏
i=0

[λ1 + λ2 − i]q
[λ1 + λ2 − i+ β − 1]q

[i+ β]q
[i+ 1]q

, (1.27)

where

[x]q =
qx/2 − q−x/2

q1/2 − q−1/2
(1.28)

is a q-number. In general, for higher N , such explicit formulas get more
complicated (in particular, they become multiple sums instead of a single
sum) but any particular Macdonald polynomial can be always computed from
the first principles, by requiring orthogonality with respect to the Macdonald
measure and certain simple structure properties 3.

Having described the basic properties of the Macdonald measure and cor-
responding multivariate orthogonal polynomials, let us move on to the most
interesting part – applications of this general theory. As was explained above,
one of the most important properties of a good special function is its use-
fulness in many different applications. One of the aims of this thesis is to
demonstrate that, indeed, the Macdonald ensembles appear naturally in ap-
plications of very different nature. In Chapter 2, we will describe an applica-
tion to a three-dimensional topological quantum field theory. In Chapter 3,
we will consider an application to chiral vertex operator algebras and certain
special functions called Nekrasov functions. We believe that this is just a tip
of an iceberg, and more exciting applications are to come in the near future.

3To be precise, Macdonald polynomials are the unique basis of symmetric functions, orthogonal
w.r.t. the Macdonald measure and upper triangular in the standard monomial basis.
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Chapter 2

Macdonald ensembles and TQFT

The first application of Macdonald polynomials that we are going to consider
in this thesis is topological quantum field theory (TQFT). In exposition we
will follow Atiyah’s functorial approach [21]. Let BordS be a category of
oriented closed two-dimensional surfaces Σ, where morphisms from Σ to Σ′

are oriented compact three-dimensional manifolds with boundary (−Σ) ∪ Σ′

and several (possibly none) trivalent ribbon graphs inside, decorated by a
given set of objects S. A three-dimensional TQFT is a monoidal functor

Z : BordS → Vect(C), (2.1)

where the monoidal structure on the l.h.s. is given by the disjoint union of
surfaces ∪ and on the r.h.s. by the tensor product of vector spaces ⊗.

Much of the interest to TQFT’s is motivated by the fact that they provide
topological invariants. Indeed, since an empty surface ∅ is the unit in the
bordism category (∅ ∪ ∅ = ∅) it has to be that Z(∅) = C. Consequently,
since any closed 3-manifold with decorated trivalent graphs inside can be
regarded as a bordism between ∅ and ∅, the TQFT has to associate to
such manifold a complex number. By definition of TQFT, this number is an
ambient isotopy invariant of collections of graphs inside the 3-manifold.

To construct a TQFT means to specify a vector space for every oriented
closed two-dimensional surface and to give a linear map for every bordism, in
a way consistent with functoriality. A non-trivial example of such construc-
tion is the Reshetikhin-Turaev TQFT [22, 23, 24, 25, 26], which conjecturally
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provides a quantization of the classical Chern-Simons field theory. The topo-
logical invariants of knots, provided by this TQFT, coincide with the colored
HOMFLY polynomials of knots. In this chapter we first briefly remind the
construction of Reshetikhin-Turaev TQFT, focusing mainly on the genus one
sector, and then describe a two-parametric q,t-deformation of it, related to
Macdonald polynomials. We conjecture (and provide ample evidence) that
the deformed TQFT invariants of knots coincide with the colored knot su-
perpolynomials – Poincare polynomials of the triply graded knot homology
theory described by [27]. In this thesis we only formulate the deformation
in the genus 1 sector: generalization to higher genus will be considered else-
where.

2.1 Reshetikhin-Turaev TQFT

In this TQFT, the set of decorating objects S consists of two parts, as-
sociated to edges and vertices, respectively. The edges are decorated by
irreducible representations of the quantum group Uq(slN), where q is the
(K +N)-th primitive root of unity. Such representations are labeled by par-
titions λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . .) which fit into an N ×K box, i.e. height(λ)
= λ1 ≤ K and length(λ) = number of non-vanishing components < N . It is
customary to call this a rank N − 1, level K TQFT. The vertices are deco-

Figure 2.1: Basis vectors in the TQFT vector space.
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Figure 2.2: Decoration of graphs for the surface of generic genus g.

rated by intertwiners of the corresponding triple products of representations.
Labeling intertwiners is a complicated combinatorial problem that we will
not address explicitly: instead, we will only consider cases where there is a
single intertwiner associated to every vertex, so that there is no need to label.

Figure 2.3:
The case of
the torus.

The construction of Reshetikhin-Turaev TQFT has been
done in [22, 23, 24, 25] (see [26] for a comprehensive review);
let us briefly describe some of its main points. To construct the
vector spaces, associated by this TQFT to genus g surfaces, the
following argument is useful. Consider a genus g handlebody, i.e.
a solid filling of a genus g surface Σg, with any decorated triva-
lent ribbon graph inside. One can think of this 3-manifold as a
bordism between an empty surface ∅, and Σg. This bordism is
represented by a linear map from Z(∅) = C to Z(Σg), giving a

ray (one-dimensional subspace) in Z(Σg). This allows to completely describe
Z(Σg) as a span of these rays. Moreover, since in Reshetikhin-Turaev TQFT
Z(Σg) is finite-dimensional, we can choose finitely many decorated trivalent
ribbon graphs that will label basis vectors in Z(Σg). One possible choice of
such graphs is shown on Fig.(2.1).

The edges of these graphs have to be decorated by highest weights (par-
titions) and, in general, vertices have to be decorated by intertwiners, as
shown on Fig.(2.2). There are exactly two cases when this complication can
be avoided: first, the case of rank one (N = 2), second, the case of genus
one (g = 1). In the first case the vector space of intertwiners is always one-
dimensional. In the second case there are simply no trivalent vertices, and
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the vector space is simply spanned by decorated unknots, see Fig. (2.3).
In what follows we restrict ourselves to g = 1, so the only components

of boundary of 3-manifolds are tori. Despite being simple, this sector of
the theory is non-trivial because, as we will see below, one can use it to
compute quite a lot of knot and 3-manifold invariants. The central role in
this computation is played by two particular bordisms, denoted S and T ,
that correspond to the automorphisms of the torus as shown on Fig.(2.4).
The TQFT represents these bordisms by linear operators on the vector space
Z(Σ1), that satisfy the relations of the genus 1 mapping class group, (ST )3 =
1 and S4 = 1. By composing S and T , one can obtain an interesting class of
bordisms which, in particular, contains the S3 with arbitrary torus knots.

Figure 2.4: Two bordisms that come from automorphisms of the torus.

The explicit formulas for these linear operators are

⟨λ
∣∣S∣∣µ⟩ = S00 q

−|λ||µ|/N χλ(q
ρ) χµ(q

ρ+λ), (2.2)

⟨λ
∣∣T ∣∣µ⟩ = T00 (

√
q)|λ|

2/N−||λ|| (
√
q)||λ

T ||−N |λ| δλµ, (2.3)

where
∣∣λ⟩ denotes the basis vector on Fig. (2.3), ||λ|| =

∑
i λ

2
i , ρ is a vector

with components ρi = (N + 1)/2− i, and χλ are the Schur polynomials.
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The normalization constants S00 and T00 ensure that the relations between
S and T have the canonical SL(2,Z) form

(ST )3 = 1, S4 = 1. (2.4)

For generic choice of the normalization constants S00 and T00, these relations
are satisfied not literally, but only up to a scalar multiple, i.e.

(ST )3 ∝ 1, S4 ∝ 1, (2.5)

where ∝ means that the matrices are equal up to multiplication by a scalar
matrix. This is to be expected, as in general it is well-known [26] that the
TQFT representation is only projective. In the case of a torus, however,
there are exactly as many generators as relations – namely, two – so that it is
possible to eliminate the scalar multiples from the relations by rescaling the
generators. This would not be possible for higher genus.

2.2 Knot invariants

To compute the TQFT knot invariants, in addition to the representation of
the mapping class group one also needs the knot operators Oλ(K), that the
TQFT functor associates to the bordisms inserting K colored by represen-
tation j. Fig. (2.5) illustrates this in the case of the unknot operator, that
inserts the unknot along the A-cycle of the torus.

The explicit formula for this linear operator is

⟨ν
∣∣Oλ

∣∣µ⟩ = Cν
λµ, (2.6)

where Cν
λ,µ are the multiplication constants for the Schur polynomials,

χλ(p)χµ(p) =
∑
ν

Cν
λµ χν(p). (2.7)
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The operators that insert other torus knots can be obtained from the unknot
operator by conjugation with the mapping class group operators:

Oj(K) = UK Oj U
−1
K , (2.8)

where UK is a composition of operators S, T that transforms the A-cycle
unknot into the knot K. Such an operator exists for any torus knot K
because any torus knot can be obtained from the unknot by action of the
mapping class group, which is generated by S and T .

Figure 2.5: The operator that inserts an A-cycle unknot colored by λ.
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Figure 2.6: Heegaard splitting and associated contraction of TQFT operators.

Given the explicit formulas for the bordisms S, T and Oλ, one can compute
the TQFT invariants of any torus knots in S3 using the formula

Zλ(K) = ⟨∅| SOλ(K) |∅⟩, (2.9)

that represents the geometric operation of gluing an S3 from two solid tori.
One first takes a vector |∅⟩ – the state corresponding to a solid torus with
no knots inserted – then acts on it by the knot operator to insert a knot into
it, and finally takes a scalar product with another vector S|∅⟩ to glue in the
second solid torus. Note that the boudaries of the solid tori are not glued
identically, as this would not result in an S3; instead, they are glued with
the help of the S-transformation. This way to obtain S3 is called Heegaard
splitting [28], see Fig.(2.6).

The number Zλ(K) is interesting primarily because it is a topological
invariant of framed knots, i.e. for a pair of topologically equivalent knots
K,K ′ the values of Z agree up to a framing factor:

K ≡ K ′ =⇒ ∃α s.t. Zλ(K) = T α
λλ Zλ(K). (2.10)

It is known that the TQFT invariant coincides with the (unreduced, λ-

colored) HOMFLY polynomial Pλ(a, q;K), evaluated at q = e
2πi
k+N , a = qN .
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2.3 Macdonald deformation

As one can see, there is a wide class of bordisms (including, in particular, the
three-sphere with arbitrary torus knots inside) whose values in Reshetikhin-
Turaev TQFT are completely determined by the values of three bordisms
S, T and Oλ. The matrix elements of these three linear operators are given
above in terms of the values of Schur polynomials at special points.

It is natural to ask – is there any deformation of these three operators,
preserving their essential properties? This question was studied in [1], where
we approached the problem from the statistical ensemble perspective, using
the integral representation for the TST operator:

⟨λ
∣∣TST ∣∣µ⟩ =

=

∞∫
−∞

dx1 . . . dxN
∏
i̸=j

(
exi − exj

)
χλ(e

x1 , . . . , exN ) χµ(e
x1 , . . . , exN ) exp

(
−

N∑
i=1

x2i
2g

)
, (2.11)

where q = eg. We then suggested, along the lines described in the Introduc-
tion, to deform/generalize this integral to the Macdonald ensemble,

⟨λ
∣∣TST ∣∣µ⟩ =

=

∞∫
−∞

dx1 . . . dxN
∏
i̸=j

β−1∏
m=0

(
exi − qmexj

)
Mλ(e

x1 , . . . , exN ) Mµ(e
x1 , . . . , exN ) exp

(
−

N∑
i=1

x2i
2g

)
, (2.12)

where q = eg and t = eβg. Evaluating the integral, we arrived at the following
suggestion for deformation of the three TQFT linear operators:
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⟨λ
∣∣S∣∣µ⟩ = S00 q

−|λ||µ|/N Mλ(t
ρ) Mµ(t

ρqλ), (2.13)

⟨λ
∣∣T ∣∣µ⟩ = T00 (

√
q)|λ|

2/N−||λ||(
√
t)||λ

T ||−N |λ| δλµ, (2.14)

⟨ν
∣∣Oλ

∣∣µ⟩ = N ν
λµ, (2.15)

where N ν
λ,µ are the multiplication constants for the Macdonald polynomials,

as described in the Introduction, and

q = e
2πi

K+βN , t = e
2πiβ

K+βN , ∀β ∈ C⋆, (2.16)

is the analogue of the fact that q in the undeformed TQFT is a root of unity.
These operators share all essential properties of the original TQFT operators:
for example, the deformed S and T matrices provide a representation of the
mapping class group of the torus,

(ST )3 = 1, S4 = 1, (2.17)

and the deformed knot operator Oλ is still diagonalized by S

SOλS
−1 = diagonal, (2.18)

in complete analogy with the known relation for the usual Oλ, originally
described by Verlinde [29] and known as the Verlinde formula.
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It is important to emphasize that eqs. (2.17), (2.18) have been known
prior to [1]: in fact, eq. (2.17) has been proved by A.Kirillov-Jr. in [30], while
the proof of eq. (2.18) is essentially unchanged from Verlinde’s original proof,
following directly from the fact that N ν

λµ are the multiplication constants
for the Macdonald polynomials. The new step in [1] was not the identities
theirselves, but a new interpretation of these known identities, namely, as
morphisms in some, yet unknown, q,t-deformed TQFT, which we suggested
to call refined Chern-Simons theory.

In particular, in [1] we first suggested that the contraction

Zλ(K) = ⟨∅| SOλ(K) |∅⟩, (2.19)

defined with the help of the deformed linear operators, represents some knot
invariant. Moreover, direct computation and comparison to the literature
allowed us to identify precisely which invariant it is, leading us to the following

Conjecture. For any torus knot K and any rectangular partition λ, the
complex number Zλ(K)/Zλ(⃝), defined with the help of the deformed linear
operators, where ⃝ is the unknot, is equal to the reduced λ-colored super-
polynomial Pλ(a,q, t;K), defined in [27] as a Poincare polynomial of the
triply graded HOMFLY homology, evaluated at a specific point

q =
√
t, t = −

√
q/t, a2 = tN

√
t/q, (2.20)

up to an overall constant factor that does not depend on a.

The conjecture we proposed is based upon many checks, and in the next
section we give several examples of these.
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2.4 Examples

One of the simplest examples is the trefoil K2,3, which is a torus knot with
winding numbers (2, 3). In this case, the matrix U can be taken as U =
S−1T−2S−1T−2 since it is easy to check that U matrix takes the (1, 0)-cycle
to the (2, 3)-cycle, as it should. The refined invariant is

Z�(K2,3) = ⟨∅|SO�(K2,3)|∅⟩ = ⟨∅|S−1T−2O�T
2ST 2S|∅⟩, (2.21)

where � = [1] is the simplest non-empty partition, i.e. the highest weight of
the fundamental representation. This is a finite sum of Macdonald polyno-
mials, which can be efficiently evaluated with any computer algebra system.
Using the refined S and T matrices, it is easy to compute that

Z�(K2,3)

Z�(⃝)
= t2−2Nq−3+3/N + t3−2Nq−2+3/N − t2−Nq−2+3/N . (2.22)

Making here a change of variables from N, t, q to

q =
√
t, t = −

√
q/t, a2 = tN

√
t/q, (2.23)

we find

Z�(K2,3)

Z�(⃝)
=

(
t

q

)5/2
q3/N

t3N
P�(a,q, t;K2,3), (2.24)

where

P�(a,q, t;K2,3) = a2q−2 + a2q2t2 + a4t3 (2.25)
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is the uncolored superpolynomial of the trefoil, see [27]. The prefactor here
is easily related to framing: recall that

T� =

√
tN+1

q1/N+1
, (2.26)

so the prefactor corresponds to -6 units of framing

(
t

q

)5/2
q3/N

t3N
=

√
q

t
T−6
� , (2.27)

modulo a
√

q/t factor, which vanishes in the unrefined case. This example is,
of course, very simple; let us proceed to the more interesting cases, concen-
trating on the simplest non-empty partition λ = � 1. Since the rezults will
soon become lengthy, from now on we switch to a more structured form of
presenting the answers, by grouping the different terms w.r.t. their a-degree.
The trefoil case (n,m) = (2, 3) then takes form

a− degree coefficient

a0 1 + q4t2

a2 q2t3

Note that from now on, for reader’s convenience, we will normalize all poly-
nomials to contain only non-negative monomials, and start with 1.

The case (n,m) = (2, 5)

a− degree coefficient

a0 1 + q4t2 + q8t4

a2 q2t3 + q6t5

1Similar checks can be done for bigger partitions λ, we do not include them here.
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The case (n,m) = (2, 7)

a− degree coefficient

a0 1 + q4t2 + q8t4 + q12t6

a2 q2t3 + q6t5 + q10t7

The case (n,m) = (3, 4)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q12t6

a2 q2t3 + q4t5 + q6t5 + q8t7 + q10t7

a4 t8q6

The case (n,m) = (3, 5)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q10t6 + q12t6 + q16t8

a2 q2t3 + q4t5 + q6t5 + 2q8t7 + q10t7 + q12t9 + q14t9

a4 q6t8 + q10t10
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The case (n,m) = (3, 7)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q10t6 + q12t6 + q12t8 + q14t8+

+q16t8 + q18t10 + q20t10 + q24t12

a2 q2t3 + q4t5 + q6t5 + 2q8t7 + q10t7 + q10t9 + 2q12t9+

+q14t9 + q14t11 + 2q16t11 + q18t11 + q20t13 + q22t13

a4 q6t8 + q10t10 + q12t12 + q14t12 + q18t14

The case (n,m) = (3, 8)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q10t6 + q12t6 + q12t8 + q14t8+

+q16t8 + q16t10 + q18t10 + q20t10 + q22t12 + q24t12 + q28t14

a2 q2t3 + q4t5 + q6t5 + 2q8t7 + q10t7 + q10t9 + 2q12t9 + q14t9 + 2q14t11+

+2q16t11 + q18t11 + q18t13 + 2q20t13 + q22t13 + q24t15 + q26t15

a4 q6t8 + q10t10 + q12t12 + q14t12 + q16t14 + q18t14 + q22t16

The case (n,m) = (3, 10)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q10t6 + q12t6 + q12t8 + q14t8+

+q16t8 + q16t10 + q18t10 + q18t12 + q20t10 + q20t12 + q22t12+

+q24t12 + q24t14 + q26t14 + q28t14 + q30t16 + q32t16 + q36t18

a2 q2t3 + q4t5 + q6t5 + 2q8t7 + q10t7 + q10t9 + 2q12t9 + q14t9 + 2q14t11+

+2q16t11 + q16t13 + q18t11 + 2q18t13 + 2q20t13 + q20t15 + q22t13+

+2q22t15 + 2q24t15 + q26t15 + q26t17 + 2q28t17 + q30t17 + q32t19 + q34t19

a4 q6t8 + q10t10 + q12t12 + q14t12 + q16t14 + q18t14 + q18t16+

+q20t16 + q22t16 + q24t18 + q26t18 + q30t20
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The case (n,m) = (3, 11)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q10t6 + q12t6 + q12t8 + q14t8 + q16t8 + q16t10+

+q18t10 + q18t12 + q20t10 + q20t12 + q22t12 + q22t14 + q24t12 + q24t14+

+q26t14 + q28t14 + q28t16 + q30t16 + q32t16 + q34t18 + q36t18 + q40t20

a2 q2t3 + q4t5 + q6t5 + 2q8t7 + q10t7 + q10t9 + 2q12t9 + q14t9 + 2q14t11+

+2q16t11 + q16t13 + q18t11 + 2q18t13 + 2q20t13 + 2q20t15 + q22t13+

+2q22t15 + 2q24t15 + q24t17 + q26t15 + 2q26t17 + 2q28t17 + q30t17+

+q30t19 + 2q32t19 + q34t19 + q36t21 + q38t21

a4 q6t8 + q10t10 + q12t12 + q14t12 + q16t14 + q18t14 + q18t16 + q20t16+

+q22t16 + q22t18 + q24t18 + q26t18 + q28t20 + q30t20 + q34t22

The case (n,m) = (4, 5)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q8t6 + q10t6 + q12t6 + q12t8+

+q14t8 + q16t8 + q16t10 + q18t10 + q20t10 + q24t12

a2 q2t3 + q4t5 + q6t5 + q6t7 + 2q8t7 + q10t7 + 2q10t9 + 2q12t9 + q12t11+

+q14t9 + 2q14t11 + 2q16t11 + q18t11 + q18t13 + q20t13 + q22t13

a4 q6t8 + q8t10 + q10t10 + q10t12 + q12t12 + q14t12 + q14t14 + q16t14 + q18t14

a6 t15q12
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The case (n,m) = (4, 7)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q8t6 + q10t6 + q12t6 + 2q12t8 + q14t8 + q14t10 + q16t8+

+2q16t10 + q18t10 + q18t12 + q20t10 + 2q20t12 + q22t12 + q22t14 + q24t12+

+2q24t14 + q26t14 + q28t14 + q28t16 + q30t16 + q32t16 + q36t18

a2 q2t3 + q4t5 + q6t5 + q6t7 + 2q8t7 + q10t7 + 3q10t9 + 2q12t9 + 2q12t11 + q14t9+

+4q14t11 + 2q16t11 + 3q16t13 + q18t11 + 4q18t13 + q18t15 + 2q20t13 + 3q20t15+

+q22t13 + 4q22t15 + 2q24t15 + 2q24t17 + q26t15 + 3q26t17 + 2q28t17 + q30t17+

+q30t19 + q32t19 + q34t19

a4 q6t8 + q8t10 + q10t10 + q10t12 + 2q12t12 + q14t12 + 3q14t14 + 2q16t14 + q16t16+

+q18t14 + 3q18t16 + 2q20t16 + q20t18 + q22t16 + 3q22t18 + 2q24t18 + q26t18+

+q26t20 + q28t20 + q30t20

a6 q12t15 + q16t17 + q18t19 + q20t19 + q24t21
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The case (n,m) = (4, 9)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q8t6 + q10t6 + q12t6 + 2q12t8 + q14t8 + q14t10+

+q16t8 + 2q16t10 + q16t12 + q18t10 + 2q18t12 + q20t10 + 2q20t12 + q20t14+

+q22t12 + 2q22t14 + q24t12 + 2q24t14 + 2q24t16 + q26t14 + 2q26t16 + q28t14+

+2q28t16 + q28t18 + q30t16 + 2q30t18 + q32t16 + 2q32t18 + q32t20 + q34t18+

+q34t20 + q36t18 + 2q36t20 + q38t20 + q40t20 + q40t22 + q42t22 + q44t22 + q48t24

a2 q2t3 + q4t5 + q6t5 + q6t7 + 2q8t7 + q10t7 + 3q10t9 + 2q12t9 + 2q12t11 + q14t9+

+4q14t11 + q14t13 + 2q16t11 + 4q16t13 + q18t11 + 4q18t13 + 3q18t15 + 2q20t13+

+5q20t15 + q22t13 + q20t17 + 4q22t15 + 4q22t17 + 2q24t15 + 5q24t17 + q26t15+

+q24t19 + 4q26t17 + 4q26t19 + 2q28t17 + 5q28t19 + q30t17 + q28t21 + 4q30t19+

+3q30t21 + 2q32t19 + 4q32t21 + q34t19 + 4q34t21 + q34t23 + 2q36t21 + 2q36t23+

+q38t21 + 3q38t23 + 2q40t23 + q42t23 + q42t25 + q44t25 + q46t25

a4 q6t8 + q8t10 + q10t10 + q10t12 + 2q12t12 + q14t12 + 3q14t14 + 2q16t14 + 2q16t16+

+q18t14 + 4q18t16 + q18t18 + 2q20t16 + 3q20t18 + q22t16 + 4q22t18 + 2q22t20+

+2q24t18 + 4q24t20 + q26t18 + 4q26t20 + 2q26t22 + 2q28t20 + 3q28t22 + q30t20+

+4q30t22 + q30t24 + 2q32t22 + 2q32t24 + q34t22 + 3q34t24 + 2q36t24 + q38t24+

+q38t26 + q40t26 + q42t26

a6 q12t15 + q16t17 + q18t19 + q20t19 + q20t21 + q22t21 + q24t21 + q24t23 + q26t23+

+q28t23 + q28t25 + q30t25 + q32t25 + q36t27
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The case (n,m) = (4, 11)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q8t6 + q10t6 + q12t6 + 2q12t8 + q14t8 + q14t10+

+q16t8 + 2q16t10 + q16t12 + q18t10 + 2q18t12 + q20t10 + 2q20t12 + 2q20t14+

+q22t12 + 2q22t14 + q24t12 + q22t16 + 2q24t14 + 3q24t16 + q26t14 + 2q26t16+

+q28t14 + q26t18 + 2q28t16 + 3q28t18 + q30t16 + 2q30t18 + q32t16 + 2q30t20+

+2q32t18 + 3q32t20 + q34t18 + 2q34t20 + q36t18 + q34t22 + 2q36t20 + 3q36t22+

+q38t20 + 2q38t22 + q40t20 + q38t24 + 2q40t22 + 2q40t24 + q42t22 + 2q42t24+

+q44t22 + 2q44t24 + q44t26 + q46t24 + q46t26 + q48t24 + 2q48t26 + q50t26+

+q52t26 + q52t28 + q54t28 + q56t28 + q60t30

a2 q2t3 + q4t5 + q6t5 + q6t7 + 2q8t7 + q10t7 + 3q10t9 + 2q12t9 + 2q12t11 + q14t9+

+4q14t11 + q14t13 + 2q16t11 + 4q16t13 + q18t11 + 4q18t13 + 4q18t15 + 2q20t13+

+5q20t15 + q22t13 + 2q20t17 + 4q22t15 + 6q22t17 + 2q24t15 + 5q24t17 + q26t15+

+4q24t19 + 4q26t17 + 7q26t19 + 2q28t17 + q26t21 + 5q28t19 + q30t17 + 5q28t21+

+4q30t19 + 7q30t21 + 2q32t19 + q30t23 + 5q32t21 + q34t19 + 5q32t23 + 4q34t21+

+7q34t23 + 2q36t21 + q34t25 + 5q36t23 + q38t21 + 4q36t25 + 4q38t23 + 6q38t25+

+2q40t23 + 5q40t25 + q42t23 + 2q40t27 + 4q42t25 + 4q42t27 + 2q44t25 + 4q44t27+

+q46t25 + 4q46t27 + q46t29 + 2q48t27 + 2q48t29 + q50t27 + 3q50t29 + 2q52t29+

+q54t29 + q54t31 + q56t31 + q58t31

a4 q6t8 + q8t10 + q10t10 + q10t12 + 2q12t12 + q14t12 + 3q14t14 + 2q16t14 + 2q16t16+

+q18t14 + 4q18t16 + q18t18 + 2q20t16 + 4q20t18 + q22t16 + 4q22t18 + 4q22t20+

+2q24t18 + 5q24t20 + q26t18 + q24t22 + 4q26t20 + 5q26t22 + 2q28t20 + 5q28t22+

+q30t20 + 2q28t24 + 4q30t22 + 6q30t24 + 2q32t22 + 5q32t24 + q34t22 + 2q32t26+

+4q34t24 + 5q34t26 + 2q36t24 + 5q36t26 + q38t24 + q36t28 + 4q38t26 + 4q38t28+

+2q40t26 + 4q40t28 + q42t26 + 4q42t28 + q42t30 + 2q44t28 + 2q44t30 + q46t28+

+3q46t30 + 2q48t30 + q50t30 + q50t32 + q52t32 + q54t32

a6 q12t15 + q16t17 + q18t19 + q20t19 + q20t21 + q22t21 + q24t21 + 2q24t23+

+q26t23 + q26t25 + q28t23 + 2q28t25 + q30t25 + q30t27 + q32t25+

+2q32t27 + q34t27 + q34t29 + q36t27 + 2q36t29 + q38t29 + q40t29+

+q40t31 + q42t31 + q44t31 + q48t33
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The case (n,m) = (5, 6)

a− degree coefficient

a0 1 + q4t2 + q6t4 + q8t4 + q8t6 + q10t6 + q10t8 + q12t6 + 2q12t8 + q14t8+

+q14t10 + q16t8 + 2q16t10 + q16t12 + q18t10 + 2q18t12 + q20t10 + 2q20t12+

+q20t14 + q22t12 + 2q22t14 + q24t12 + 2q24t14 + q24t16 + q26t14 + q26t16+

+q28t14 + 2q28t16 + q30t16 + q30t18 + q32t16 + q32t18+

+q34t18 + q36t18 + q40t20

a2 q2t3 + q4t5 + q6t5 + q6t7 + 2q8t7 + q8t9 + q10t7 + 3q10t9 + 2q12t9 + 3q12t11+

+q14t9 + 4q14t11 + 2q14t13 + 2q16t11 + 4q16t13 + q18t11 + q16t15 + 4q18t13+

+3q18t15 + 2q20t13 + 5q20t15 + q22t13 + q20t17 + 4q22t15 + 3q22t17+

+2q24t15 + 4q24t17 + q26t15 + q24t19 + 4q26t17 + 2q26t19 + 2q28t17+

+3q28t19 + q30t17 + 3q30t19 + 2q32t19 + q32t21 + q34t19+

+q34t21 + q36t21 + q38t21

a4 q6t8 + q8t10 + q10t10 + 2q10t12 + 2q12t12 + q12t14 + q14t12 + 3q14t14+

+q14t16 + 2q16t14 + 3q16t16 + q18t14 + 4q18t16 + 2q18t18 + 2q20t16+

+3q20t18 + q22t16 + q20t20 + 4q22t18 + 2q22t20 + 2q24t18 + 3q24t20+

+q26t18 + 3q26t20 + q26t22 + 2q28t20 + q28t22 + q30t20+

+2q30t22 + q32t22 + q34t22

a6 q12t15 + q14t17 + q16t17 + q16t19 + q18t19 + q18t21 + q20t19 + q20t21+

+q22t21 + q22t23 + q24t21 + q24t23 + q26t23 + q28t23

a8 t24q20
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All of these results match the corresponding uncolored (i.e. colored by the
partition λ = � = [1]) superpolynomials of torus knots, that can be found in
[27]. For example, the triply graded knot homology of the trefoil, according
to [27], is given by the following diagram:

Figure 2.7: Triply graded homology for the (2, 3) torus knot.
Picture courtesy of [27], see also notations therein.

Note how all the coefficients of the above polynomials are positive integers.
This is to be expected from a Poincare polynomial of any knot homology
theory – its coefficients are the graded Betti numbers, i.e. the dimensions of
graded components of the knot homology groups, and hence positive integers.

To conclude, in this chapter we showed that Macdonald ensembles give a
non-trivial deformation of TQFT invariants of torus knots, connected to knot
homology. It would be interesting to generalize this to higher genus, to see if
refined Chern-Simons theory actually exists as a full TQFT in the sence of
Atiyah [21].
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Figure 2.8: Triply graded homology for the (3, 4) torus knot.
Picture courtesy of [27], see also notations therein.
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Figure 2.9: Triply graded homology for the (3, 5) torus knot.
Picture courtesy of [27], see also notations therein.
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Figure 2.10: Several first torus knots. Picture courtesy of the Knot Atlas.
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Chapter 3

Macdonald ensembles and W-algebras
The second application of Macdonald polynomials that we are going to con-
sider in this thesis is chiral vertex operator algebras. These are the algebras
generated by operators that naturally appear in two-dimensional conformal
field theories and their generalizations. In this thesis we will consider a spe-
cific algebra, the quantum W-algebra of type gln, denoted Wq,t(gln). This
algebra has been constructed by Reshetikhin and Frenkel in [31], and can
be described as the algebra of operators that commute with the given set of
screening current operators given by, for a = 1, . . . , n− 1,

Sa(z) = : exp
(
−
∑
k>0

1− tk

1− qk
ha
k

z−k

k
+
∑
k>0

ha
−k

zk

k

)
:

× : exp
(∑
k>0

1− tk

1− qk
vk ha+1

k

z−k

k
−
∑
k>0

vk ha+1
−k

zk

k

)
:, (3.1)

where ha
k are the standard generators of n Heisenberg algebras1,

[ha
k, h

b
m] = k δa,b δk,−m, (3.2)

with a, b = 1, . . . , n; k,m ∈ Z and : (. . .) : is the Heisenberg normal ordering.
1Note a difference in conventions between this thesis and [31]: we choose to work with the n

Heiseberg generators hak corresponding to simple roots of gln, while [31] works with n−1 generators
corresponding to simple roots of sln. The two are related by a linear transformation.
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3.1 Macdonald ensembles from W-algebras

In this thesis we will not use the explicit form of the generators of Wq,t(gln),
only the screening charges. One reason for this is that explicit form of the
generators of Wq,t(gln) is not necessary to establish a relation to Macdonald
ensembles. To see this relation it suffices to compute the two-point function

⟨ Sa(u), Sa(v) ⟩ =
φ(u/v)

φ(tu/v)

φ(v/u)

φ(tv/u)
, (3.3)

where

φ(x) =
∞∏

m=0

(1− qmx) (3.4)

is a special function called quantum dilogarithm. If t = qβ with positive
integer β, then the two-point function can be rewritten as

⟨ Sa(u), Sa(v) ⟩ =
β−1∏
m=0

(
1− qm

u

v

)(
1− qm

v

u

)
, (3.5)

and is precisely the Macdonald measure with two variables u, v. To promote
these variables into a statistical ensemble, one can introduce screening charge
operators, which are integrals of the screening currents

Qa =

∮
dz Sa(z), (3.6)

where the integral is taken over an appropriate integration contour in the
complex plane. With this definition, a two-point function of two screening
charges is a simple Macdonald ensemble – with two variables and no potential.
Let us now describe, how to obtain general Macdonald ensembles.
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3.2 Conformal blocks

The example from the previous section can be generalized to general Mac-
donald ensembles. To increase the number of variables, one should consider
multi-point functions of several screening charges. To include potential fac-
tors, one should include more general operators called vertex operators. The
resulting ensemble is known as the conformal (or chiral) block of Wq,t(gln).
Following [2], we will employ the following main

Definition. The conformal block of Wq,t(gln) is an expectation value

B(z1, . . . , zk) =
⟨
Vα1

(z1) . . . Vαk
(zk) Q

N1

(1) . . . Q
Nn

(n)

⟩
, (3.7)

where Vα(z) are the vertex operators, in the form

Vα(z) =: exp
(∑
k>0

n∑
a=1

1

1− qk
ha
k qkαa

z−k

k
+
∑
k>0

n+1∑
a=1

qk

1− tk
ha
−k q−kαa

zk

k

)
:, (3.8)

with α = (α1, . . . , αn)
2. Evaluating the block using the Wick theorem for the

Heisenberg algebra, we find that the result is only non-zero3, if

α1,a + . . .+ αk,a + βNa = 0, a = 1, . . . , n (3.9)

2Note a difference in conventions between this thesis and [31]: the vertex operators we consider
are labeled by an arbitrary highest weight α of gln, while the vertex operators of [31] are labeled
by a single index i = 1, . . . , n. As explained in [31], the vertex operators we consider agree with
the vertex operators of [31] for the case of i-th fundamental weight α = (1i, 0n−i). More general
weights α can be obtained by fusion of these elementary operators.

3To simplify the presentation, here we omit the zero-mode Heisenberg generators p̂, q̂ that enter
the vertex operator as a prefactor exp(q̂ + p̂ log z). We do not need to keep detailed track of these
generators here, since they are only responsible for the conservation condition below, and have
essentially no effect on the two-point functions.
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what is known as the charge conservation condition. If this condition is
satisfied, then the block is non-vanishing and is given by a multiple integral,

B(z1, . . . , zk) =

∫
dX1 . . .

∫
dXn−1 J

(
X1, . . . , Xn−1

)
, (3.10)

where each of the xa is a group of Na variables,

Xa =
{
xa,1, . . . , xa,Na

}
, (3.11)

and the integrand is given by the product of two-point functions4,

J
(
X1, . . . , Xn−1

)
= const

n−1∏
a=1

k∏
i=1

Ja
(
Xa; zi, αi

) ∏
1≤a≤b<n

Ja,b
(
Xa, Xb

)
, (3.12)

with

Ja,b
(
Xa, Xb

)
=

Na∏
i=1

Nb∏
j=1

⟨
Sa

(
xa,i
)
Sb

(
xb,j
) ⟩

, (3.13)

Ja
(
Xa; z, α

)
=

Na∏
i=1

⟨
Vα(z) Sa

(
xa,i
) ⟩

. (3.14)

The non-vanishing two-point functions that enter the above formulas are
4The normalization factor const is a product of two-point functions of the vertex operators

with themselves, ⟨Vαi(z) Vαj (w)⟩. It does not depend on the integration variables X and is just a
normalization constant, that we will not need in what follows.
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⟨
Sa

(
xa,i
)
Sa

(
xa,j
) ⟩

=
φ
(
xa,ix

−1
a,j

)
φ
(
txa,ix

−1
a,j

) φ
(
xa,jx

−1
a,i

)
φ
(
txa,jx

−1
a,i

) , (3.15)

⟨
Sa

(
xa,i
)
Sa+1

(
xa+1,j

) ⟩
=

φ
(
tvxa+1,jx

−1
a,i

)
φ
(
vxa+1,jx

−1
a,i

) , (3.16)

⟨
Vα(z) Sa

(
xa,i
) ⟩

=
φ
(
vqαa+1xa,iz

−1
)

φ
(
qαaxa,iz−1

) , (3.17)

where v = (q/t)1/2. In what follows we will need to put the first and the last
z-coordinates to 0 and ∞, respectively; more precisely, to consider a limit

B(0, z1, . . . , zℓ,∞) ≡

≡ lim
z0→0

lim
z∞→∞

zα0

0

⟨
Vα0

(z0) Vα1
(z1) . . . Vαk

(zℓ) Vα∞(z∞) QN1

(1) . . . Q
Nn

(n)

⟩
. (3.18)

Because of the charge conservation condition, the vector α∞ is fixed to be

α∞,a = βNa − α0,a − . . .− αℓ,a, a = 1, . . . , n (3.19)

and one can find that

B(0, z1, . . . , zℓ,∞) =

∫
dX1 . . .

∫
dXn−1

n−1∏
a=1

Xζa
a J

(
X1, . . . , Xn−1

)
, (3.20)

where ζa = α0,a − α0,a+1 +
1−β
2 and
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J
(
X1, . . . , Xn−1

)
= const

n−1∏
a=1

ℓ∏
i=1

Ja
(
Xa; zi, αi

) ∏
1≤a≤b<n

Ja,b
(
Xa, Xb

)
, (3.21)

with Ja,b and Ja defined above. This is the final form of the integral that we
will be working with. One can see that it is a Macdonald ensemble, where
t = qβ. If β is a positive integer, the ratios of quantum dilogarithms can
be written in the polynomial form as finite products, as described in the
Introduction. For generic t, the ratios of dilogarithms are the only way to
define the Macdonald measure.

In addition to being more general, this form of notation has a fundamen-
tally important consequence: it is no longer a polynomial, but a ratio of two
infinite products and, in particular, it has poles and hence Cauchy theorem
can be used to evaluate it as a sum of residues. This has been first done in [2],
where we proved that the resulting sum agrees with the so-called Nekrasov
partition function – an infinite series that appears in five-dimensional super-
symmetric gauge theory. This provides a new proof of the relation between
conformal blocks of W -algebras and Nekrasov partition functions, known as
the AGT conjecture [32]. Let us now describe this proof.

3.3 Nekrasov partition functions

Definition. The Nekrasov partition function is a formal series

Z =
∑
{λ}

I{λ}
∏
a,i

Λ|λa,i|
a ,

in the variables Λ1, . . . ,Λn−1, given as a sum over n(n− 1)ℓ/2 partitions

λa,i, i = 1, . . . , (n− a)ℓ, a = 1, . . . , n− 1, (3.22)
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where the summand is given by

I{λ} =
n∏

a=1

ℓ∏
i=1

d1∏
j=1

N∅,λ1,j

(
va−1fi,a
e1,j

)
(3.23)

n−2∏
a=1

da∏
i=1

da+1∏
j=1

Nλa,i,λa+1,j

(
ea,i
ea+1,j

)
(3.24)

n−1∏
a=1

da∏
i,j=1

Nλa,i,λa,j

(
ea,i
ea,j

)−1

(3.25)

n−1∏
a=1

da∏
i=1

(
Tλa,i

)ℓ
, (3.26)

with notations da = (n − a)ℓ, factors Tλ = (−1)|λ|q||λ||/2t−||λT ||/2 and elemen-
tary building blocks given by the following infinite products

Nλµ(Q) =
∞∏
i=1

∞∏
j=1

φ
(
Qqλi−µjtj−i+1

)
φ
(
Qqλi−µjtj−i

) φ
(
Qtj−i

)
φ
(
Qtj−i+1

) . (3.27)

Physical meaning. Let us very briefly remark on the physical meaning of
this special function. It appears in five - dimensional supersymmetric gauge
theory with the gauge group U(d1) × U(d2) × . . . U(dn−1), as a generating
function for integrals over the moduli space of instanton field configurations
[33]. The first, second, third lines represent, respectively, the contributions
of the fundamental, bifundamental, and gauge vector fields to the generating
function, and the last line is the contribution of the five-dimensional Chern-
Simons fields. Partitions λ label fixed points of the torus action in the moduli
space of instantons. Parameters e are the Coulomb parameters of the respec-
tive gauge groups and Λ are the instanton parameters. Finally, parameters f
are the masses of nℓ matter fields, charged fundamentally under the leftmost
gauge group U(ℓ(n− 1)) and neutral w.r.t. all the other gauge groups.
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3.4 The equality between the two

We will outline, following [2], the proof of the following theorem.

Theorem. The poles of the conformal block B(0, z1, . . . , zℓ,∞) are in one-
to-one correspondence with collections of partitions {λ} and the residues,
corresponding to these poles, satisfy

I{λ} =
resX=X{λ}J(X1, . . . , Xn)

resX=X{∅}J(X1, . . . , Xn)
, (3.28)

under the following identification of parameters:

tNa,i = v2a−1ea,i/f̃i,ã, ĩ = i÷ (n− a), ã = i mod (n− a), (3.29)

X{λ}
a = { vaea,iq

λa,jtρj , j ≥ 1, i = 1, . . . , da }, (3.30)

X{∅}
a = { vaea,it

ρj , j ≥ 1, i = 1, . . . , da }, (3.31)

qαa−1z−1
i = va−1fi,a. (3.32)

Proof. The fact that the poles of the conformal block are located at po-
sitions (3.30) and, in particular, are labeled by tuples of partitions was dis-
cussed in detail in [2] and we do not elaborate on this point. Here we concen-
trate on proving the residue formula (3.28). The starting step of the proof is
the observation, that Nekrasov factor Nλµ

(
v2t−N

)
with two indices λ, µ and

a non-negative integer N vanishes, unless l(µ) ≤ l(λ) + N . This property
is a simple algebraic corollary of the explicit formulas for Nekrasov factors,
and we take it for granted. It is easy to see that this property implies, if the
Coloumb parameters ea,i are chosen according to (3.29), that each partition
λa,i has no more than Na,i rows, i.e.,
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l(λa,i) ≤ Na,i.

The next step of the proof is to rewrite the Nekrasov functions, which are a
priori defined as infinite double products over all i and j

Nλ,µ(Q) =
∞∏
i=1

∞∏
j=1

φ
(
Qqλi−µjtρi−ρj+1

)
φ
(
Qqλi−µjtρi−ρj

) φ
(
Qtρi−ρj

)
φ
(
Qtρi−ρj+1

) ,
in terms of finite products, bounded by l(λ) and l(µ). Since all the partitions
now have finite length, this is possible to do: one just needs to break down
the above infinite product over (i, j) into three parts: the product over 0 ≤
i ≤ l(λ), 0 ≤ j ≤ l(µ); the product over 0 ≤ i ≤ l(λ), j ≥ l(µ); the product
over i ≥ l(λ), 0 ≤ j ≤ l(µ). The latter two products are formally infinite, but
enjoy telescoping and hence are, in fact, finite products. Applying this for the
Nekrasov factor Nλ,µ(Q) where partitions λ, µ have corresponding Coloumb
parameters e1, e2 and lengths N1, N2, we obtain

Nλµ

(e1
e2

)
=

N1∏
i=1

N2∏
j=1

φ
(
e1
e2
qλi−µjtρi−ρj+1

)
φ
(
e1
e2
qλi−µjtρi−ρj

) φ
(
e1
e2
tρi−ρj

)
φ
(
e1
e2
tρi−ρj+1

)
Nλ,∅

(
tN2

e1
e2

)
N∅,µ

(
t−N1

e1
e2

)
,

Note that the right hand side, being a ratio of products of quantum diloga-
rithms taken at values shifted by t, is very much reminiscent of the integration
measure of the conformal blocks. This observation was the main motivation
of our work in [2]. It hints that the summands in the Nekrasov series Z are
the residues of the conformal block B, so that the Nekrasov sum is just a
residue expansion of B.
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To make this observation precise, let us apply this formula to rewrite the
contribution of the 5d vector multiplets as

n−1∏
a=1

da∏
i,j=1

Nλa,i,λa,j

(
ea,i
ea,j

)−1

=
n−1∏
a=1

Ja,a(X
{λ}
a , X

{λ}
a )

Ja,a(X
{∅}
a , X

{∅}
a )

· Vvect, (3.33)

where Ja,a is the contribution of the two-point functions of the screening
charges of the same index, evaluated5 at

X{λ}
a = { vaea,iq

λa,jtρj , j ≥ 1, i = 1, . . . , da }, (3.34)

and X∅
a is the specialization of Xa to empty partitions,

X{∅}
a = Xa

∣∣∣
λ=∅

, (3.35)

or, more explicitly,

X{∅}
a = { vaea,it

ρj , j ≥ 1, i = 1, . . . , da }. (3.36)

The quantity Vvect stands for all the remaining factors, which we leave un-
touched for now and will use in the last step of the proof:

Vvect =
n−1∏
a=1

da∏
i,j=1

Nλa,i,∅

(
tNa,j

ea,i
ea,j

)−1

N∅,λa,j

(
t−Na,i

ea,i
ea,j

)−1

. (3.37)

5Note that the numerator and denominator have poles at Xa = X
{λ}
a resp. X

{∅}
a . However,

the ratio – understood as a limit at Xa approaching the poles – is regular. For the sake of brevity,
throughout the proof we will simply write a ratio, not a limit, and restore full notation in the end.
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In complete analogy, the contribution of 5d bifundamentals takes form

n−2∏
a=1

da∏
i=1

da+1∏
j=1

Nλa,i,λa+1,j

(
ea,i
ea+1,j

)
=

n−2∏
a=1

Ja,a+1(X
{λ}
a , X

{λ}
a+1)

Ja,a+1(X
{∅}
a , X

{∅}
a+1)

· Vbifund, (3.38)

where Ja,a+1 is the contribution of the two-point functions of the screening
charges with neighbouring indices, and Vbifund stands for all the remaining
factors, which we similarly leave for now:

Vbifund =
n−2∏
a=1

da∏
i=1

da+1∏
j=1

Nλa,i,∅

(
tNa+1,j

ea,i
ea+1,j

)
N∅,λa+1,j

(
t−Na,i

ea,i
ea+1,j

)
. (3.39)

At this point, putting all expressions together, we find

I{λ} =
∏

1≤a≤b<n

Ja,b
(
X

{λ}
a , X

{λ}
b

)
Ja,b
(
X

{∅}
a , X

{∅}
b

) · VvectVbifundVfundVCS, (3.40)

where Vfund stands for the contribution of fundamentals

Vfund =
n∏

a=1

ℓ∏
i=1

nℓ∏
j=1

N∅,R1,j

(
va−1fi,a
e1,j

)
, (3.41)

and VCS =
∏

a,i T
ℓ
λa,i

is the 5d Chern-Simons contribution.
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The remaining product VvectVbifundVfundVCS may appear to have a lot
of factors, however, there are many cancellations, implied by the identifica-
tions (3.29). After the cancellations are fully accounted for, this product
matches manifestly the conformal block,

VvectVbifundVfundVCS =
n−1∏
a=1

ℓ∏
i=1

Ja
(
X

{λ}
a ; zi, αi

)
Ja
(
X

{∅}
a ; zi, αi

) , (3.42)

where

qαa−1z−1
i = va−1fi,a (3.43)

is the identification between the vertex operator parameters of the conformal
blocks and the mass parameters of the Nekrasov series. This finally gives

I{λ} =
n−1∏
a=1

ℓ∏
i=1

Ja
(
X

{λ}
a ; zi, αi

)
Ja
(
X

{∅}
a ; zi, αi

) ∏
1≤a≤b<n

Ja,b
(
X

{λ}
a , X

{λ}
b

)
Ja,b
(
X

{∅}
a , X

{∅}
b

) . (3.44)

Recall that thoughout this proof we employed a concise notation: both the
numerator and the denominator in the formula above have a pole at Xa given
by (3.30) resp. (3.31), and what we write as their ratio is a concise notation
for the limit, as Xa approaches (3.30) resp. (3.31). What is important, such
a limit coincides with the ratio of the residues at the corresponding poles:

I{λ} =

resXa=X{λ}

n−1∏
a=1

ℓ∏
i=1

Ja
(
Xa; zi, αi

)∏
1≤a≤b<n Ja,b

(
Xa, Xb

)
resXa=X{∅}

n−1∏
a=1

ℓ∏
i=1

Ja
(
Xa; zi, αi

)∏
1≤a≤b<n Ja,b

(
Xa, Xb

) . (3.45)

This completes the proof. �
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Corollary. The Nekrasov partition function is the power series expansion
of the conformal block in the variables

Λa = vqα0,a−α0,a+1, (3.46)

up to an overall normalization constant, independent of these variables.

To conclude, in this chapter we used the residue properties of Macdonald
ensembles at t = qβ with generic non-integer β to prove the equivalence
between conformal blocks ofWq,t(glN) and Nekrasov series, what is sometimes
called the AGT conjecture. It would be interesting to generalize this proof
to the Wq,t-algebras corresponding to other root systems.
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