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ABSTRACT OF THE DISSERTATION

Space-Filling Designs and Big Data Subsampling

by

Lin Wang

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Hongquan Xu, Chair

Space-filling designs are commonly used in computer experiments and other scenarios for inves-

tigating complex systems, but the construction of such designs is challenging. In this thesis, we

construct a series of maximin-distance Latin hypercube designs via Williams transformations of

good lattice point designs. Some constructed designs are optimal under the maximin L1-distance

criterion, while others are asymptotically optimal. Moreover, these designs are also shown to have

small pairwise correlations between columns. The procedure is further extended to the construc-

tion of multi-level nonregular fractional factorial designs which have better properties than regular

designs. Existing research on the construction of nonregular designs focuses on two-level designs.

We construct a novel class of multilevel nonregular designs by permuting levels of regular designs

via the Williams transformation. The constructed designs can reduce aliasing among effects with-

out increasing the run size. They are more efficient than regular designs for studying quantitative

factors. In addition, we explore the application of experimental design strategies to data-driven

problems and develop a subsampling framework for big data linear regression. The subsampling

procedure inherits optimality from the design matrices and therefore minimizes the mean squared

error of coefficient estimations for sufficiently large data. It works especially well for the problem

of label-constrained regression where a large covariate dataset is available but only a small set of

labels are observable. The subsampling procedure can also be used for big data reduction where

computation and storage issues are the primary concern.
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CHAPTER 1

Introduction

Computer experiments are increasingly being used to investigate complex systems (Sacks et al.,

1989; Santner et al., 2003; Fang et al., 2005; Morris and Moore, 2015). A general design approach

to planning computer experiments is to seek design points that fill a design region as uniformly as

possible (Lin and Tang, 2015). Representative designs include Latin hypercube designs (LHDs)

and their modifications, maximin distance designs (Johnson et al., 1990) and uniform designs

(Fang and Wang, 1993). LHDs have uniform one-dimensional projections and orthogonal-array

based LHDs (Tang, 1993; He and Tang, 2012, 2014; He et al., 2018) have improved two- or

three-dimensional projections. Many researchers have constructed orthogonal or nearly orthog-

onal LHDs; see, among others, Ye (1998), Steinberg and Lin (2006), Cioppa and Lucas (2007),

Lin et al. (2009), Sun et al. (2009), Yang and Liu (2012), Georgiou and Efthimiou (2014), Lin and

Tang (2015), and Sun and Tang (2017). However, these LHDs are often not space-filling in high

dimensions (Joseph and Hung, 2008; Xiao and Xu, 2018).

Computer experiments are often modeled as Gaussian processes. When the correlations be-

tween observations rapidly decrease as the distances between design points increase, maximin

distance designs are asymptotically D-optimal in the sense that they maximize the determinant of

the correlation matrix (Johnson et al., 1990). A maximin distance design spreads design points

over the design space in such a way that the separation distance, i.e., the minimal distance between

pairs of points, is maximized. Some researchers proposed algorithms such as simulated annealing

(Morris and Mitchell, 1995; Joseph and Hung, 2008; Ba et al., 2015) and swarm optimization al-

gorithms (Moon et al., 2011; Chen et al., 2013) to construct maximin distance LHDs. However,

such methods are not efficient for constructing large designs due to their computational complex-

ity. Nevertheless, large designs are needed for computer experiments; for example, Morris (1991)
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considered many simulation models involving hundreds of factors. Therefore, efficient approaches

to the generation of large designs are in high demand.

Fractional factorial designs are also widely used in various scientific investigations and indus-

trial applications. These designs are classified into two broad types: regular designs and nonregular

designs. Designs that can be constructed through defining relations among factors are called reg-

ular designs, while all other designs are nonregular. There are many more nonregular designs

than regular designs. Good nonregular designs can either fill the gaps between regular designs

in terms of various run sizes or provide better estimation for factorial effects. The construction

of good nonregular designs is important and challenging. Constructions for two-level nonregular

designs include Plackett and Burman (1946), Deng and Tang (2002), Xu and Deng (2005), Fang

et al. (2007), Phoa and Xu (2009), among others. While numerous constructions are available for

two-level designs, constructions for designs of three or more levels rarely exist (Xu et al., 2009).

This is because the number of multilevel nonregular designs is huge so that providing an efficient

algorithm for searching the design space is super challenging.

Because data are now easier to gather, data-driven models, rooted in big data sets, are gaining

more ground as one of the best tools in decision-making processes. However, the analysis of big

data usually involves critical issues. First, the fast-growing computational powers are still far from

sufficient to handle the explosion of modern data sets. Also, while we are taking advantages of

big data, in many applications, however, labelling all data points is infeasible due to the limit of

time and budget. We are often encountered with the problem where we are given a large data set

of n data points but can only observe a small subset of k < n labels. These issues present a new

challenge of choosing a representative subdata set so that maximum information can be extracted.

The space-filling and fractional factorial design strategies can both be applied to subdata selection

so that the selected data achieve some optimality for particular statistical models.

In Chapter 2, we will propose a series of systematic methods to construct maximin L1-distance

LHDs. The L1-distance provides a lower bound for the L2-distance so that the constructed designs

also perform well regarding the L2-distance. The proposed method is based on the Williams trans-

formation and its modification. The Williams transformation was first used by Williams (1949) to

construct Latin square designs that are balanced for nearest neighbors. Bailey (1982) and Edmond-
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son (1993) used the transformation to construct designs orthogonal to polynomial trends. Butler

(2001) used the transformation to construct optimal and orthogonal LHDs under a second-order

cosine model. Our purpose is different from theirs. We apply the Williams transformation to good

lattice point (GLP) designs and construct a class of asymptotically optimal maximin LHDs. Apply-

ing the leave-one-out method we obtain another class of asymptotically optimal maximin LHDs.

By modifying the Williams transformation, we obtain a class of exactly optimal maximin LHDs.

Moreover, all resulting designs have small pairwise correlations between columns and the average

correlations converge to zero as the design sizes increase. This near orthogonality is desirable for

estimating potential linear trend efficiently in a Gaussian process.

In Chapter 3, we will provide a class of multilevel nonregular designs via the Williams transfor-

mation. We construct a class of nonregular designs by manipulating nonlinear level permutations

on regular designs via the Williams transformation. While linear level permutations have been

studied by Cheng and Wu (2001), Xu et al. (2004), Ye et al. (2007) for three-level designs, and

by Tang and Xu (2014) to improve properties of regular designs, as far as we know, nonlinear

level permutations have not been studied. Note that linearly permuted regular designs can be still

considered as regular because they are just cosets of regular designs and share the same defining

relationship.

In Chapter 4, we will develop a sequential addition-elimination algorithm for subdata selection.

The algorithm is inspired by the fact that an orthogonal array of two levels isD-,A-, andG-optimal

for linear regression. We define a discrepancy to measure how well a subdata set approximates an

orthogonal array. Based on this criterion, we develop an algorithm which sequentially selects

data points from the full data as well as eliminating points from the full data to reduce the num-

ber of candidate points and speed up the selecting process. Simulations show that the algorithm

outperforms existing methods in minimizing mean squared errors of parameter estimations and

maximizing D- and A-efficiencies of the design matrices.

3



CHAPTER 2

Optimal Maximin L1-Distance Latin Hypercube Designs Based

on Good Lattice Point Designs

This chapter proposes a series of systematic methods to construct maximin L1-distance LHDs.

The L1-distance provides a lower bound for the L2-distance so that the constructed designs also

perform well regarding the L2-distance. The proposed method is based on the Williams trans-

formation and its modification. The Williams transformation was first used by Williams (1949)

to construct Latin square designs that are balanced for nearest neighbors. Bailey (1982) and Ed-

mondson (1993) used the transformation to construct designs orthogonal to polynomial trends.

Butler (2001) used the transformation to construct optimal and orthogonal LHDs under a second-

order cosine model. Our purpose is different from theirs. We apply the Williams transformation to

GLP designs and construct a class of asymptotically optimal maximin LHDs. Applying the leave-

one-out method we obtain another class of asymptotically optimal maximin LHDs. By modifying

the Williams transformation, we obtain a class of exactly optimal maximin LHDs. Moreover, all

resulting designs have small pairwise correlations between columns and the average correlations

converge to zero as the design sizes increase. This near orthogonality is desirable for estimating

potential linear trend efficiently in a Gaussian process.

2.1 Construction methods

AnN×n LHD is anN×nmatrix where each column is a permutation ofN equally spaced lev-

els, denoted by 0, . . . , N−1 or 1, . . . , N . TheL1-distance between two vectors x1 = (x11, . . . , x1n)

and x2 = (x21, . . . , x2n) is d(x1, x2) =
∑n

j=1 |x1j − x2j|. For an N × n design matrix D, let xi

be the ith row, i = 1, . . . , N , and dik(D) be the L1-distance between the ith and kth rows of D,
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i.e., dik(D) = d(xi, xk). The L1-distance of D, denoted by d(D) = min{dik(D) : i 6= k, i, k =

1, . . . , N}, is the minimum L1-distance between any two distinct rows inD. The maximin distance

criterion (Johnson et al., 1990) is to maximize d(D) among all possible designs. For an N × n

LHD, the average pairwise L1-distance between rows is (N + 1)n/3 (Zhou and Xu, 2015). Be-

cause the minimum pairwise L1-distance cannot exceed the integer part of the average, we have

the following result.

Lemma 2.1. For any N × n LHD D, d(D) ≤ dupper = b(N + 1)n/3c, where bxc is the integer

part of x.

Let h = (h1, . . . , hn) be a set of positive integers smaller than and coprime to N . An N × n

GLP design D = (xij) is defined by xij = i × hj mod N for i = 1, . . . , N and j = 1, . . . , n.

The last row of D is a vector of zeros. Each column of D is a permutation of {0, . . . , N − 1}.

Thus a GLP design is an LHD. We can construct an N × n GLP design for any n ≤ φ(N), where

φ(N) is the Euler function, i.e., the number of positive integers smaller than and coprime toN . Let

Db = D+ b mod N for b = 0, . . . , N − 1, that is, Db is a linearly permuted GLP design. Then Db

is still an LHD. Zhou and Xu (2015) showed that d(Db) ≥ d(D) for any b and proposed to search

b that maximizes d(Db).

2.1.1 Williams transformation

Given an integer N , for x = 0, . . . , N − 1, the Williams transformation is defined by

W (x) =

 2x, for 0 ≤ x < N/2;

2(N − x)− 1, for N/2 ≤ x < N .
(2.1)

The Williams transformation is a permutation of {0, . . . , N − 1}. Hence, for an LHD D = (xij),

W (D) = (W (xij)) is also an LHD. The following example shows that the Williams transformation

can further increase the L1-distance of linearly permuted GLP designs.

Example 2.1. Consider N = 11 and h = (1, . . . , 10). The GLP design D = (xij) is an 11 × 10

LHD with xij = i× j (mod 11) and d(D) = 30. For each b = 0, . . . , 10, we obtain two designs via

linear permutation and Williams transformation, namely, Db = D+ b (mod 11) and Eb = W (Db).

5



Table 2.1: The L1-distances of Db and Eb in Example 2.1

b 0 1 2 3 4 5 6 7 8 9 10

d(Db) 30 34 30 32 31 30 31 32 30 34 30

d(Eb) 10 39 31 31 39 10 28 34 30 34 28

Table 2.1 shows the L1-distances ofDb andEb. The linearly permuted designsDb’s have distances

ranging from 30 to 34, while the distances for Eb’s vary from 10 to 39. The upper bound from

Lemma 2.1 is 40. The best design from Db’s is D1 or D9 with d(D1) = d(D9) = 34, while the best

design from Eb’s is E1 or E4 with d(E1) = d(E4) = 39.

Example 2.1 shows that the Williams transformation can generate designs with larger distances

than the linear permutation. Inspired by this, we propose a new construction for maximin LHDs:

Algorithm 2.1 (Williams transformation of linearly permuted GLP designs).

Step 1. Given a pair of integers N and n ≤ φ(N), generate an N × n GLP design D.

Step 2. For b = 0, . . . , N − 1, generate Db = D + b mod N and Eb = W (Db).

Step 3. Find the best Db and Eb which maximize d(Db) and d(Eb), respectively.

As an illustration, we apply Algorithm 2.1 for N = 7, . . . , 30 and n = φ(N). Table 2.2 com-

pares LHDs generated by the linear permutation, the Williams transformation, R package SLHD

provided by Ba et al. (2015), and the Gilbert and Golomb methods proposed by Xiao and Xu

(2017). For the SLHD method, the command maximinSLHD adopts L2-distance as the measure.

We ran the command with option t = 1 and default settings for 100 times, and chose the design

with the largest L1-distance. The Williams transformation always offers better designs than the

linear permuation except for N = 13, and consistently outperforms the Gilbert and Golomb meth-

ods, which only work for prime N . Compared to the SLHD package, the Williams transformation

performs better for designs with moderate to large sizes. The Williams transformation performs

specially well when N is a prime.

6



Table 2.2: Comparison of L1-distances of N × n LHDs

N n LP WT SLHD Gil Gol N n LP WT SLHD Gil Gol

7 6 13 16 15 14 14 19 18 106 115 108 102 106

8 4 8 10 11 20 8 32 42 43

9 6 15 16 18 21 12 66 76 73

10 4 8 11 11 22 10 60 68 61

11 10 34 39 36 34 34 23 22 154 168 160 154 158

12 4 8 10 13 24 8 32 36 50

13 12 54 52 52 46 48 25 20 147 162 153

14 6 22 24 23 26 12 84 98 87

15 8 29 36 35 27 18 135 156 145

16 8 32 36 37 28 12 72 94 92

17 16 84 94 86 86 80 29 28 250 274 254 250 244

18 6 18 28 28 30 8 40 62 57

Note: LP, linear permutation; WT, Williams transformation; SLHD, R package SLHD;

Gil, Gilbert method; Gol, Golomb method.
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Table 2.3: Comparison of L1-distances of (N − 1)× n LHDs

N n LP-1 WT-1 SLHD Gil Gol N n LP-1 WT-1 SLHD Gil Gol

7 6 12 14 14 14 14 19 18 104 112 103 102 106

8 4 8 9 9 20 8 37 40 41

9 6 14 14 16 21 12 64 74 71

10 4 10 10 11 22 10 56 64 60

11 10 34 36 34 34 34 23 22 152 166 152 154 158

12 4 8 10 12 24 8 32 36 47

13 12 52 50 47 46 48 25 20 146 156 146

14 6 19 23 22 26 12 80 93 85

15 8 28 34 34 27 18 134 152 139

16 8 32 34 36 28 12 81 91 89

17 16 82 88 82 86 80 29 28 244 268 247 250 244

18 6 18 27 26 30 8 40 60 56

Note: LP-1, leave-one-out linear permutation; WT-1, leave-one-out Williams

transformation.

2.1.2 Leave-one-out method

Since the last row of a GLP designD is (0, . . . , 0), then the last rows ofDb andEb are (b, . . . , b)

and (W (b), . . . ,W (b)), respectively. The leave-one-out method is to delete the constant row of a

design and rearrange the levels so that the resulting design is still an LHD. Specifically, starting

from Db, we delete the last row and reduce the levels b + 1, . . . , N − 1 by one, which gives

us an (N − 1) × n LHD, denoted by D∗b . Similarly, from Eb, we obtain another (N − 1) × n

LHD, denoted by E∗b . Table 2.3 compares the L1-distances of D∗b and E∗b for N = 7, . . . , 30,

as well as the (N − 1) × n designs generated by R package SLHD and the Gilbert and Golomb

methods. From Table 2.3, the leave-one-out Williams transformation generates designs with larger

L1-distance than other methods in most cases. It performs specially well when N is a prime.
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Table 2.4: The design matrices of D and w(D)/2 in Example 2.2

D w(D)/2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 5 4 3 2 1

2 4 6 8 10 1 3 5 7 9 2 4 5 3 1 1 3 5 4 2

3 6 9 1 4 7 10 2 5 8 3 5 2 1 4 4 1 2 5 3

4 8 1 5 9 2 6 10 3 7 4 3 1 5 2 2 5 1 3 4

5 10 4 9 3 8 2 7 1 6 5 1 4 2 3 3 2 4 1 5

6 1 7 2 8 3 9 4 10 5 5 1 4 2 3 3 2 4 1 5

7 3 10 6 2 9 5 1 8 4 4 3 1 5 2 2 5 1 3 4

8 5 2 10 7 4 1 9 6 3 3 5 2 1 4 4 1 2 5 3

9 7 5 3 1 10 8 6 4 2 2 4 5 3 1 1 3 5 4 2

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.1.3 Modified Williams transformation

To construct other maximin LHDs, we propose a modified Williams transformation. For x =

0, . . . , N − 1, define

w(x) =

 2x, for 0 ≤ x < N/2;

2(N − x), for N/2 ≤x < N .
(2.2)

The following lemma shows an important connection between the original and modified Williams

transformations.

Lemma 2.2. Let N be an odd prime, D be an N × (N − 1) GLP design, and Db = D+ b mod N

for b = 0, . . . , N − 1. Then dik(w(Db)) = dik(W (Db)) for i+ k 6= N and i, k = 1, . . . , N − 1.

The w(x) is always an even number, so w(Db) is not an LHD. We can construct LHDs by

selecting some submatrices of w(D)/2. Let us see an illustrating example.

Example 2.2. Consider N = 11 and the 11 × 10 GLP design D. The design matrices of D and

w(D)/2 are shown in Table 2.4. If we divide the design matrix of w(D)/2 into four blocks as

shown in Table 2.4, then each block is an LHD. Denote H1 and H2 as the top two blocks, and

9



Table 2.5: Comparison of L1-distances of m×m LHDs

m MWT SLHD Wel Gil Gol m MWT SLHD Wel Gil Gol

5 10 10 10 10 8 23 184 167 166 164

6 14 14 12 14 14 26 234 212

8 24 22 29 290 263 264 266 270

9 30 28 26 30 310 281 240 276 292

11 44 40 40 40 40 33 374 340

14 70 64 35 420 383 386

15 80 72 72 36 444 402 342 408 404

18 114 103 90 102 106 39 520 473 482

20 140 126 41 574 523 524 534 520

21 154 141 140 44 660 604

Note: MWT, modified Williams transformation; Wel, Welch.

H3 and H4 as the bottom two blocks, respectively. It can be verified that H1 and H2 are 5 × 5

LHDs with d(H1) = d(H2) = 10, which attains the upper bound of L1-distance in Lemma 2.1. In

fact, H1 and H2 are the same design up to column permutations; in addition, H3 and H4 can be

obtained by adding a row of zeros to H1 and H2, respectively.

Generally, suppose that N is an odd prime with N = 2m+1 and D = (xij) is the N× (N−1)

GLP design. Since xij + x(N−i)j = N and xij + xi(N−j) = N for any i, j = 1, . . . , N − 1, then

D =


A1 N − A2

N − A3 A4

0m 0m

 and w(D) =


w(A1) w(A2)

w(A3) w(A4)

0m 0m

 , (2.3)

where A1 is the m×m leading principal submatrix of D, and A2, A3, and A4 can be obtained from

A1 by reversing the order of columns, rows, and both, respectively. In fact, w(A1), . . . , w(A4) are

the same design up to row and column permutations, each column of which is a permutation of

{2, 4, . . . , 2m}. Let

H = w(A1)/2 (2.4)

10



Figure 2.1: The three possible values of pairwise L1-distance of Eb for N = 11 or 17.
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be an m×m LHD from the modified Williams transformation. Table 2.5 compares LHDs gener-

ated by the modified Williams transformation, the R package SLHD, and the Welch, Gilbert and

Golomb methods from Xiao and Xu (2017). The modified Williams transformation always pro-

vides better designs than any other methods. In fact, the L1-distance of each design generated by

the modified Williams transformation in Table 2.5 attains the upper bound given in Lemma 2.1.

2.2 Theoretical results

The Williams transformation leads to a remarkably simple design structure in terms of the

L1-distance when N is an odd prime.

Theorem 2.1. Let N be an odd prime, D be an N × (N − 1) GLP design, Db = D + b mod N

and Eb = W (Db) for b = 0, . . . , N − 1. Then for i 6= k,

dik(Eb) =


(N2 − 1)/3 + f(b), for i = N or k = N ,

(N2 − 1)/3− 2f(b), for i = N − k,

(N2 − 1)/3, otherwise,

and d(Eb) = (N2−1)/3+min{f(b),−2f(b)}, where f(b) = (W (b)−(N−1)/2)2−(N2−1)/12.

The pairwise L1-distance between any two distinct rows of Eb takes on only three possible

values. One attains dupper = (N2 − 1)/3 given in Lemma 2.1, and the other two vary around

dupper. Figure 2.1 shows the three values for N = 11 and N = 17 for each b = 0, . . . , N − 1.

11



To maximize d(Eb), we need to maximize min{f(b),−2f(b)}. Let c0 = b
√

(N2 − 1)/12c,

c =

 c0, if c20 + 2(c0 + 1)2 ≥ (N2 − 1)/4;

c0 + 1, otherwise,

and

b = W−1
(
N − 1

2
± c
)

(2.5)

It can be verified that either choice of b defined in (2.5) maximizes min{f(b), −2f(b)} and leads

to the best Eb.

Example 2.3. Consider N = 11. Then c0 = b
√

(112 − 1)/12c = 3. Since c20 + 2(c0 + 1)2 ≥

(N2 − 1)/4, set c = 3. By (2.5), b = 1 or 4. For either b = 1 or b = 4, by Theorem 2.1, for i 6= k,

dik(Eb) =


39, for i = 11 or k = 11,

42, for i = 11− k,

40, otherwise.

Hence, d(E1) = d(E4) = 39.

Based on the upper bound in Lemma 2.1, we define the distance efficiency as

deff (D) = d(D)/dupper = d(D)/b(N + 1)n/3c. (2.6)

When N is a prime, n = φ(N) = N − 1 and (N + 1)n/3 = (N2 − 1)/3 is an integer. In this

case, deff (D) = d(D)/((N + 1)n/3). For example, for the designs E1 and E4 in Example 2.3,

deff (E1) = deff (E4) = 39/40 = 0.975. Generally, we have the following result.

Theorem 2.2. For an odd prime N and b defined in (2.5),

d(Eb) ≥
N2 − 1

3
− 2

3

√
N2 − 1

3
and deff (Eb) ≥ 1− 2√

3(N2 − 1)
.

As N → ∞, deff (Eb) → 1; so Eb is asymptotically optimal under the maximin distance

criterion. For the leave-one-out design E∗b defined in Section 2.1.2, we have the following result.

Theorem 2.3. For an odd prime N and b defined in (2.5),

d(E∗b ) ≥
N2 − 7

3
+

1

3

√
N2 − 1

3
− (N − 1).

When N ≥ 7, deff (E
∗
b ) ≥ 1− (3− 1/

√
3)/N > 1− 2.43/N.
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For an odd primeN = 2m+1 and them×m designH constructed in (2.4), we have even better

results. By Lemma 2.2 and Theorem 2.1, dik(w(D)) = (N2 − 1)/3 for i 6= k, i, k = 1, . . . ,m.

By the structure of w(D) shown in (2.3), dik(w(A1)) = dik(w(D))/2 = (N2 − 1)/6; so H is an

equidistant LHD and d(H) = (N2 − 1)/12 = (m+ 1)m/3.

Theorem 2.4. Let N = 2m+ 1 be an odd prime, D = (xij) be an N × (N − 1) GLP design, and

A1 be the m×m leading principal submatrix of D, that is, A1 = (xij) with i, j = 1, . . . ,m. Then

H = w(A1)/2 is a maximin distance LHD with d(H) = (m+ 1)m/3.

The modified Williams transformation generates exact maximin LHDs when N is an odd

prime. The constructed H is a cyclic Latin square, with each level occurring once in each row

and once in each column. We can add a row of zeros to H to obtain an (m+ 1)×m LHD, denoted

by H∗. It is easy to see that d(H∗) = d(H) = (m+ 1)m/3 and deff (H
∗) = (m+ 1)/(m+ 2)→ 1

as m→∞.

The proposed methods are also useful in the construction of maximin L2-distance designs. An

upper bound for the L2-distance of an N × n LHD is d(2)upper =
√
N(N + 1)n/6 (Zhou and Xu,

2015). Because ‖x‖2 ≥ ‖x‖1/
√
n for any n-vector x, we have d(2)eff >

√
2/3 deff , where d(2)eff is

the L2-distance efficiency. Therefore, for an (asymptotically) optimal design under the maximin

L1-distance criterion, its L2-distance efficiency will tend to be greater than
√

2/3 > 0.816. This

is a loose lower bound, and yet it illustrates the good performance of our constructed designs

regarding the L2-distance. Numerical calculation shows that our proposed methods are able to

produce designs with L2-distance efficiencies greater than 0.95 for large N .

2.3 Additional results on correlations

We now consider the pairwise correlation between columns for the constructed designs. For

any N × n design D = (xij), define

ρave(D) =

∑
j 6=k |ρjk|

n(n− 1)
, (2.7)

where ρjk is the correlation between columns j and k of D. The ρave in (2.7) is a performance

measure on the overall pairwise column correlations for design D. A good design should have
13



Table 2.6: Comparison of the ρave values for N × (N − 1) LHDs

N LP WT Gil Gol N LP WT Gil Gol

7 .25 .086 .25 .25 47 .09 .015 .09 .11

11 .16 .054 .19 .17 53 .08 .014 .07 .07

13 .07 .065 .16 .18 59 .08 .013 .08 .07

17 .17 .043 .13 .15 61 .07 .012 .07 .07

19 .16 .027 .18 .13 67 .06 .011 .08 .06

23 .14 .022 .12 .09 71 .06 .010 .07 .07

29 .12 .023 .11 .12 73 .06 .011 .06 .08

31 .10 .024 .09 .09 79 .06 .010 .06 .08

37 .11 .017 .10 .10 83 .06 .010 .06 .07

41 .11 .019 .11 .09 89 .06 .009 .07 .06

43 .09 .017 .09 .11 97 .06 .008 .07 .06

a low ρave value to reduce correlations between factors and reduce the variance of coefficients

estimates.

Consider the ρave values for the designs from the Williams transformation. For each prime N ,

Table 2.6 compares the ρave values of designs from the linear permutation, Williams transformation

(with b chosen by (2.5)), Gilbert, and Golomb methods. The Williams transformation always

generates designs with the smallest ρave values. In fact, we have a general result on the average

correlation ρave(Eb) for any b = 0, . . . , N − 1, not restricted to the b defined in (2.5).

Theorem 2.5. Let N be an odd prime and D be an N × (N −1) GLP design, Db = D+ b mod N ,

and Eb = W (Db) for b = 0, . . . , N − 1. Then ρave(Eb) < 2/(N − 2).

For a prime N , ρave(Eb) → 0 as N → ∞ for any b = 0, . . . , N − 1. This property makes

it possible to generate large LHDs with tiny pairwise column correlations without any computer

search. For the leave-one-out Williams transformation, we have the following result.

Theorem 2.6. Let N be an odd prime, D be an N × (N − 1) GLP design, Db = D + b mod N ,

Eb = W (Db), and E∗b be the leave-one-out design obtained from Eb for b = 0, . . . , N − 1. Then
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Table 2.7: Comparison of the ρave values for (N − 1)× (N − 1) LHDs

N LP-1 WT-1 Gil Gol N LP-1 WT-1 Gil Gol

7 .35 .211 .21 .20 47 .09 .029 .08 .10

11 .18 .121 .15 .16 53 .07 .027 .06 .06

13 .09 .140 .17 .18 59 .08 .026 .07 .07

17 .14 .095 .11 .14 61 .07 .023 .06 .07

19 .12 .063 .15 .10 67 .06 .022 .08 .06

23 .12 .050 .11 .07 71 .06 .020 .07 .06

29 .11 .046 .09 .13 73 .06 .021 .06 .08

31 .11 .049 .11 .07 79 .07 .020 .06 .08

37 .10 .034 .08 .10 83 .07 .019 .05 .07

41 .09 .038 .09 .09 89 .07 .018 .06 .06

43 .09 .032 .09 .11 97 .06 .016 .07 .06

ρave(E
∗
b ) < 5(N + 1)/(N − 2)2 for any b = 0, . . . , N − 1.

Table 2.7 compares designs obtained from the leave-one-out linear permutation, leave-one-out

Williams transformation, Gilbert, and Golomb methods. The leave-one-out Williams transforma-

tion generates designs with the smallest ρave values except for N = 13.

For the modified Williams transformation, we have the following result.

Theorem 2.7. Let N = 2m + 1 be an odd prime, D = (xij) be an N × (N − 1) GLP design,

A1 be the m ×m leading principal submatrix of D, that is, A1 = (xij) with i, j = 1, . . . ,m, and

H = w(A1)/2. Then ρave(H) < 2/(m− 1).

Table 2.8 compares the ρave values of designs generated by the modified Williams transforma-

tion and some other available methods. The modified Williams transformation always provides

designs with the smallest ρave values.
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Table 2.8: Comparison of the ρave values for m×m LHDs

m MWT Wel Gil Gol m MWT Wel Gil Gol

5 .250 .25 .25 .45 23 .055 .12 .14

6 .200 .29 .21 .20 26 .049

8 .143 29 .045 .11 .09 .08

9 .125 .20 30 .044 .11 .11 .07

11 .100 .17 .14 .15 33 .040

14 .080 35 .038 .09

15 .077 .17 36 .037 .13 .08 .10

18 .067 .17 .15 .10 39 .035 .09

20 .061 41 .033 .11 .11 .11

21 .059 .11 44 .031

2.4 Extension

We consider extending the results to a general case where N = kp with k and p being prime

numbers. Let

b = bN(1 + 1/
√

3)/4c, (2.8)

andEb be theN×φ(N) design constructed by the Williams transformation. Figure 2.2 (top) shows

the values of deff (Eb) for N = 2p, 3p, 5p and 7p and p ≤ 200. The deff (Eb) increases quickly

as N increases and reaches 0.9 when N is around 30. When N > 100, the deff (Eb) values are

typically greater than 0.95 and converge to 1 for N = 2p and N = 7p. The deff (Eb) values do not

converge to 1 for N = 3p and N = 5p, possibly due to the looseness of the upper bound dupper. In

addition, Figure 2.2 (bottom) shows that ρave(Eb) goes to 0 quickly as N increases.

We present the asymptotic optimality of Eb for N = 2p based on the theoretical results in

Section 2.2. It is possible to establish similar results for other cases with more elaborate arguments,

which we do not pursue here.

Theorem 2.8. Let p be an odd prime,N = 2p,D be anN×φ(N) GLP design,Db = D+bmodN ,

and Eb = W (Db). For b defined in (2.8), deff (Eb) = 1−O(1/N). As N →∞, deff (Eb)→ 1.

16



Now we consider an extension of the leave-one-out procedure. We can generate many asymp-

totically optimal LHDs by applying the following leave-out-one procedure for rows or columns.

When we delete any row from an N × n LHD D and rearrange the levels as in the leave-one-out

method in Section 2.1.2, the distance of the resulting design will reduce at most by n. When we

delete any column from an N × n LHD D, the distance will reduce at most by N − 1. Delet-

ing multiple columns and rows together is equivalent to repeating the leave-one-out procedure for

multiple times. The following result can be derived.

Theorem 2.9. Let D be an N ×n LHD. Deleting any kr rows and kc columns and rearranging the

levels yields an (N − kr)× (n− kc) LHD, denoted by D∗. Then deff (D
∗) ≥ deff (D)− 3kr/(N −

kr)− 3kc/(n− kc).

For N = kp and n = φ(N), n → ∞ as N → ∞. If kr and kc are fixed constants not

increasing with N , deff (D
∗)→ 1 as N →∞. This multiple leave-one-out procedure yields many

asymptotically optimal LHDs with different sizes. For example, let k = 3 and p = 41, we obtain

a 123 × 80 LHD with deff = 0.956. Delete the last 22 rows and rearrange the levels; we obtain

a 101 × 80 LHD with deff = 0.948. Let k = 2 and p = 61, we obtain a 122 × 60 LHD with

deff = 0.980. Delete the last 21 rows and rearrange the levels; we obtain a 101 × 60 LHD with

deff = 0.961. Let k = 5 and p = 103, we obtain a 515 × 408 LHD with deff = 0.962. Delete

the last 3 rows and the last 8 columns, and rearrange the levels, we obtain a 512 × 400 LHD with

deff = 0.953. A distinctive feature of our method is the excellent performance for moderate and

large designs. Many other methods slow down quickly as the design size increases and usually

give designs with poor distance efficiencies. In contrast, our method generates moderate and large

designs with guaranteed high distance efficiencies without search, as long as the ratios of kr/N

and kc/φ(N) are small. When the ratios are relatively large, this simple procedure may not work

well and further research is needed.

2.5 Summary

We have proposed a series of systematic methods for the construction of maximin LHDs via

the Williams transformation and its modification. The Williams transformation and leave-one-
17



Figure 2.2: The values of deff (Eb) (top) and ρave(Eb) (bottom) with b defined in (2.8).
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out method produce asymptotically optimal LHDs under the maximin distance criterion, and the

modified Williams transformation generates equidistant LHDs under the L1-distance. Xu (1999)

showed that equidistant LHDs are universally optimal for computer experiments. The average cor-

relations between columns of the constructed designs converge to zero as the design sizes increase.

Moreover, the constructed designs often have larger L1-distance and smaller average correlation

than existing designs even for designs with small sizes. The proposed methods are also useful in

the construction of maximin L2-distance designs.

The Williams transformation can be applied to other designs as well. We have found that when

applied to fractional factorial designs, the Williams transformation can substantially improve their

efficiencies for estimating polynomial models. We will show this result in Chapter 3.

2.6 Appendix: Proofs

We need to distinguish two addition operations. For clarify, let⊕ be the addition operation over

the Galois field {0, . . . , N − 1}. Let D = (xij) be the N × φ(N) GLP design and Db = (xij ⊕ b).

When N is a prime, xi = (xi1, . . . , xi(N−1)) and xi ⊕ b = (xi1 ⊕ b, . . . , xi(N−1) ⊕ b) are the ith

row of D and Db, respectively, xi is a permutation of {1, . . . , N − 1} for i = 2, . . . , N − 1; and

x1 = (1, . . . , N − 1). The designs D and Db have some important properties which are crucial for

the proofs of all theoretical results. We first summarize these properties in the following lemma.

Lemma 2.3. Let N be an odd prime.

(i) For i 6= k and i, k = 1, . . . , N − 1, there exists a unique q ∈ {2, . . . , N − 1} such that

k = iq mod N . For any given b, the two matrices xi ⊕ b

xk ⊕ b

 and

 x1 ⊕ b

xq ⊕ b


are the same up to column permutations. In addition, q = N − 1 if and only if i+ k = N .

(ii) For any b = 0, . . . , N − 1 and i = 2, . . . , N − 2, denote a = (1 − i)b mod N . The two
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matrices  x1 ⊕ b b

xi ⊕ b b

 and

 x1 0

xi ⊕ a a


are the same up to column permutations.

Proof. Part (i) is obvious from the definition of D and Db. For (ii), denote x̃i = (xi, 0) for

i = 1, . . . , N . Then x̃i ⊕ b = i(x̃1 ⊕ b) ⊕ a. The result follows by noting that x̃1 ⊕ b is a

permutation of x̃1 and ix̃1 ⊕ a = x̃i ⊕ a = (xi ⊕ a, a). �

Proof of Lemma 2.2. We divide the proof in four steps.

Step 1. For i + k 6= N , i 6= k, and i, k = 1, . . . , N − 1, by Lemma 2.3(i), there exists a

unique q ∈ {2, . . . , N − 2} such that dik(W (Db)) = d1q(W (Db)) and dik(w(Db)) = d1q(w(Db)).

Therefore, it suffices to show that d1i(W (Db)) = d1i(w(Db)) for any b = 0, . . . , N − 1 and

i = 2, . . . , N − 2.

Step 2. By Lemma 2.3(ii), to prove d1i(W (Db)) = d1i(w(Db)), we only need to show that

d(W (x1),W (xi⊕ a)) +W (a) = d(w(x1), w(xi⊕ a)) +w(a) for any a = 0, . . . , N − 1. Note that

W (a) = w(a) if a < N/2, and W (a) = w(a)− 1 if a > N/2. It suffices to show that

d(W (x1),W (xi ⊕ a)) =

 d(w(x1), w(xi ⊕ a)), if a < N/2;

d(w(x1), w(xi ⊕ a)) + 1, if a > N/2.
(2.9)

Step 3. Recall that x1 = (1, . . . , N − 1) and xi ⊕ a = (xi1 ⊕ a, . . . , xi(N−1) ⊕ a). Then

d(W (x1),W (xi ⊕ a)) =
∑N−1

j=1 |W (j)−W (xij ⊕ a)| and d(w(x1), w(xi ⊕ a)) =
∑N−1

j=1 |w(j)−

w(xij ⊕ a)|. It can be shown that

|W (j)−W (xij ⊕ a)| =


|w(j)− w(xij ⊕ a)|, for j ∈ I ∪ J ;

|w(j)− w(xij ⊕ a)| − 1, for j ∈ U\I;

|w(j)− w(xij ⊕ a)|+ 1, for j ∈ V \J ,

where

I = {j : j < N/2, (xij ⊕ a) < N/2}, J = {j : j > N/2, (xij ⊕ a) > N/2},

U = {j : j + (xij ⊕ a) < N}, and V = {j : j + (xij ⊕ a) ≥ N}.
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Therefore, to prove (2.9), we need to show that if a < N/2, U\I and V \J contain the same number

of elements; and if a > N/2, U\I contains one less element than V \J .

Step 4. Denote #S as the number of elements in a set S. Since #(U\I) = #U − #I and

#(V \J) = #V −#J , we want to show that

#U = #V and

 #I = #J, if a < N/2;

#I = #J + 1, if a > N/2.

Since

x(i+1)j ⊕ a =

 j + (xij ⊕ a), for j ∈ U ;

j + (xij ⊕ a)−N, for j ∈ V ,

then
∑N−1

j=1 (x(i+1)j ⊕ a) =
∑N−1

j=1 (xij ⊕ a) +
∑N−1

j=1 j − (#V )N. Because both xi and xi+1 are

permutations of {1, . . . , N − 1},
∑N−1

j=1 (x(i+1)j ⊕ a) =
∑N−1

j=1 (xij ⊕ a), which leads to #V =∑N−1
j=1 j/N = (N − 1)/2. Because #U + #V = N − 1, #U = #V = (N − 1)/2. Denote

I1 = {j : j > N/2, (xij ⊕ a) < N/2}. If a < N/2, #I + #I1 = #J + #I1 = (N − 1)/2 so

#I = #J . If a > N/2, #I + #I1 = (N + 1)/2 and #J + #I1 = (N − 1)/2 so #I = #J + 1.

This completes the proof. �

To prove Theorem 2.1, we need the following lemma.

Lemma 2.4. For all i = 2, . . . , N − 2 and b = 0, . . . , N − 1, d(x1 ⊕ b, xi ⊕ b) + d(N − (x1 ⊕

b), xi ⊕ b) = (2N2 + 1)/3− |N − 2b|.

Proof. We divide the proofs in three steps.

Step 1. By Lemma 2.3(ii),

d(x1 ⊕ b, xi ⊕ b) = d(x1, xi ⊕ a) + a, and

d(N − (x1 ⊕ b), xi ⊕ b) + |N − 2b| = d(N − x1, xi ⊕ a) +N − a,

where a = (1− i)b mod N . Then,

d(x1 ⊕ b, xi ⊕ b) + d(N − (x1 ⊕ b), xi ⊕ b) = d(x1, xi ⊕ a) + d(N − x1, xi ⊕ a) +N − |N − 2b|.

Hence, it suffices to show that d(x1, xi ⊕ a) + d(N − x1, xi ⊕ a) = (2N2 + 1)/3 − N = (N −

1)(2N − 1)/3 for any a = 0, . . . , N − 1.
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Step 2. Let gi(a) = d(x1, xi ⊕ a) + d(N − x1, xi ⊕ a). If we can prove gi(0) = gi(1) = · · · =

gi(N − 1), we will have

gi(a) =
1

N

N−1∑
c=0

gi(c) =
1

N

N−1∑
c=0

(d(x1, xi ⊕ c) + d(N − x1, xi ⊕ c)) .

Because
∑N−1

c=0 d(N − x1, xi ⊕ c) =
∑N−1

c=0 d(x1, xi ⊕ c), then

gi(a) =
2

N

N−1∑
c=0

d(x1, xi ⊕ c) =
2

N

N−1∑
c=0

N−1∑
j=1

|j − (xij ⊕ c)|

=
2

N

N−1∑
j=1

N−1∑
k=0

|j − k| = (N − 1)(2N − 1)/3.

Step 3. Now we prove that gi(0) = gi(1) = · · · = gi(N − 1). It suffices to show that

gi(a+1) = gi(a) for any a = 0, . . . , N−2. Recall that gi(a) = d(x1, xi⊕a)+d(N−x1, xi⊕a) =∑N−1
j=1 (|j − (xij ⊕ a)|+ |N − j − (xij ⊕ a)|). Since

|j − (xij ⊕ (a+ 1))|+ |N − j − (xij ⊕ (a+ 1))|

=


|j − (xij ⊕ a)|+ |N − j − (xij ⊕ a)|, for j ∈ S1 ∪ S2;

|j − (xij ⊕ a)|+ |N − j − (xij ⊕ a)|+ 2, for j ∈ S3;

|j − (xij ⊕ a)|+ |N − j − (xij ⊕ a)| − 2, for j ∈ S4,

where

S1 = {j : j ≤ xij ⊕ a < N − j}, S2 = {j : N − j ≤ xij ⊕ a < j},

S3 = {j : xij ⊕ a ≥ j, xij ⊕ a ≥ N − j}, S4 = {j : xij ⊕ a < j, xij ⊕ a < N − j},

we only need to show that #S3 = #S4. Note that

x(i−1)j ⊕ a = xij ⊕ a− j and x(i+1)j ⊕ a = xij ⊕ a+ j, for j ∈ S1;

x(i−1)j ⊕ a = xij ⊕ a− j +N and x(i+1)j ⊕ a = xij ⊕ a+ j −N, for j ∈ S2;

x(i−1)j ⊕ a = xij ⊕ a− j and x(i+1)j ⊕ a = xij ⊕ a+ j −N, for j ∈ S3;

x(i−1)j ⊕ a = xij ⊕ a− j +N and x(i+1)j ⊕ a = xij ⊕ a+ j, for j ∈ S4.

Then
N−1∑
j=1

((x(i−1)j ⊕ a) + (x(i+1)j ⊕ a)) = 2
N−1∑
j=1

(xij ⊕ a)−N(#S3 −#S4). (2.10)
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Because xi⊕a is a permutation of {0, . . . , a−1, a+1, . . . , N−1} for any i < N ,
∑N−1

j=1 (x(i−1)j⊕

a) =
∑N−1

j=1 (xij ⊕ a) =
∑N−1

j=1 (x(i+1)j ⊕ a). By (2.10), N(#S3−#S4) = 0 so #S3 = #S4. This

completes the proof. �

Proof of Theorem 2.1. For the first case, note that W (xi ⊕ b) is a permutation of {0, . . . ,W (b) −

1,W (b)+1, . . . , N −1}, and W (xN ⊕ b) is a constant vector with each component equal to W (b),

so diN(Eb) = dNi(Eb) =
∑N−1

j=0 |j −W (b)| = (N2 − 1)/3 + f(b).

To prove the result for the second case, i = N − k, it suffices to prove the result for the

third case. This is because the total pairwise L1-distance between distinct rows of W (Db) is

t = (N − 1)
∑N−1

j1=0

∑N−1
j2=0 |j1 − j2| = N(N − 1)2(N + 1)/6. Out of all the pairs of distinct

rows, N − 1 pairs belong to the first case with a total distance t1 = (N − 1)[(N2 − 1)/3 + f(b)],

(N−1)(N−3)/2 pairs belong to the third case with a total distance t2 = (N2−1)(N−1)(N−3)/6,

and (N − 1)/2 pairs belong to the second case. By Lemma 2.3(i), di(N−i)(Eb) = d1(N−1)(Eb) for

any i. Therefore, di(N−i)(Eb) = (t− t1 − t2)/[(N − 1)/2] = (N2 − 1)/3− 2f(b).

Now we prove the result for the last case where i 6= N−k, i 6= N , and k 6= N . By Lemmas 2.2

and 2.3(i), it suffices to consider d1i(Eb) = d(W (x1 ⊕ b),W (xi ⊕ b)) = d(w(x1 ⊕ b), w(xi ⊕ b))

for i = 2, . . . , N − 2. Denote

B =
(
B1 B2 B3 B4

)
=

 w(x1 ⊕ b) w(x1 ⊕ b) 2N − w(x1 ⊕ b) 2N − w(x1 ⊕ b)

w(xi ⊕ b) 2N − w(xi ⊕ b) w(xi ⊕ b) 2N − w(xi ⊕ b)

 ,

then d1i(Eb) = d(B1). By column permutations, B can be rearranged as

C =

 2(x1 ⊕ b) 2(x1 ⊕ b) 2N − 2(x1 ⊕ b) 2N − 2(x1 ⊕ b)

2(xi ⊕ b) 2N − 2(xi ⊕ b) 2(xi ⊕ b) 2N − 2(xi ⊕ b)

 .

By Lemma 2.4, d(B) = d(C) = 4((2N2 + 1)/3 − |N − 2b|). Note that d(B1) = d(B4) and

d(B2) = d(B3). For B2, in both w(x1 ⊕ b) and w(xi ⊕ b), 0 and w(b) appear once and all other

even numbers smaller thanN appear twice. Then d(B2) =
∑N−1

j=1 (N−w(x1j⊕b)−w(xij⊕b)) =

(N2 + 1)− 2|N − 2b|. Therefore, d1i(Eb) = d(B1) = (d(B)− 2d(B2))/2 = (N2 − 1)/3. �
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Proof of Theorem 2.2. If c20 + 2(c0 + 1)2 ≥ (N2 − 1)/4, then c0 ≥
√

(N2 − 1)/12− 2/9 − 2/3

and c20 ≥ (N2− 1)/12− (4/3)
√

(N2 − 1)/12. Hence, d(Eb) = (N2− 1)/4 + c20 ≥ (N2− 1)/3−

(4/3)
√

(N2 − 1)/12. Similarly, if c20+2(c0+1)2 < (N2−1)/4, c0+1 ≤
√

(N2 − 1)/12− 2/9+

1/3, and (c0+1)2 ≤ (N2−1)/12+(2/3)
√

(N2 − 1)/12. Then d(Eb) = (N2−1)/2−2(c0+1)2 ≥

(N2 − 1)/3− (4/3)
√

(N2 − 1)/12. Therefore,

d(Eb) ≥
N2 − 1

3
− 4

3

√
N2 − 1

12
=
N2 − 1

3
− 2

3

√
N2 − 1

3
.

By the definition in (2.6), deff (Eb) = d(Eb)/((N
2 − 1)/3) ≥ 1− 2/

√
3(N2 − 1). �

Proof of Theorem 2.3. Let ei = (ei1, . . . , ei(N−1)) and ek = (ek1, . . ., ek(N−1)) be two distinct rows

of Eb for i, k = 1, . . . , N − 1, and e∗i = (e∗i1, . . . , e
∗
i(N−1)) and e∗k = (e∗k1, . . . , e

∗
k(N−1)) be the

corresponding rows of E∗b . For j = 1, . . . , N − 1, if eij > W (b) > ekj or ekj > W (b) > eij ,

|e∗ij − e∗kj| = |eij − ekj| − 1; otherwise, |e∗ij − e∗kj| = |eij − ekj|. Since the number of j’s such that

eij > W (b) > ekj (or ekj > W (b) > eij) cannot exceed min{W (b), N−1−W (b)}, then d(E∗b ) ≥

d(Eb)− 2 min{W (b), N − 1−W (b)}. For the b defined in (2.5), min{W (b), N − 1−W (b)} =

(N −1)/2− c. Then d(E∗b ) ≥ d(Eb)− (N −1) + 2c ≥ d(Eb)− (N −1) + 2(
√

(N2 − 1)/12−1).

By Theorem 2.2, d(E∗b ) ≥ (N2 − 7)/3 +
√

(N2 − 1)/3/3 − (N − 1). When N ≥ 7, we have

deff (E
∗
b ) = d(E∗b )/bN(N−1)/3c ≥ d(E∗b )/(N(N−1)/3) ≥ 1+1/(

√
3N)−3/N > 1−2.43/N.

�

Proof of Theorem 2.5. Let ρjk be the correlation between the jth and kth columns of Eb. Denote

the jth column of Db as z̃j ⊕ b for j = 1, . . . , N − 1, then z̃j ⊕ b = (xj ⊕ b, b)T. By Lemma 2.3(i),

there exists a unique q ∈ {2, . . . , N − 1} such that ρjk = ρ1q. Thus,

ρave(Eb) =

∑N−1
j=2 |ρ1j|
N − 2

, (2.11)

where

ρ1j = cor(W (z̃1 ⊕ b),W (z̃j ⊕ b))

=

∑N
i=1

(
W (xi1 ⊕ b)− N−1

2

) (
W (xij ⊕ b)− N−1

2

)
(N3 −N)/12

. (2.12)
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For x ∈ [0, N ], the Fourier cosine expansion of x−N/2 is given by

x− N

2
=
∞∑
u=1

au cos
(uπx
N

)
, (2.13)

with

au =
2

N

∫ N

0

(
x− N

2

)
cos
(uπx
N

)
dx =

 0, if u is even;

−4N/(u2π2), if u is odd.

By (2.13), for any x+ 0.5 ∈ [0, N ],

x− N − 1

2
= (x+ 0.5)− N

2
=
∞∑
u=1

au cos

(
uπ(x+ 0.5)

N

)
.

Then the numerator of (2.12) is
N∑
i=1

(
W (xi1 ⊕ b)−

N − 1

2

)(
W (xij ⊕ b)−

N − 1

2

)
(2.14)

=
∞∑
u=1

∞∑
v=1

auavs(u, v) =
16N2

π4

∑
odd u

∑
odd v

1

u2v2
s(u, v),

where

s(u, v) =
N∑
i=1

cos

(
uπ(W (xi1 ⊕ b) + 0.5)

N

)
cos

(
vπ(W (xij ⊕ b) + 0.5)

N

)
.

By (2.1), for any x = 0, . . . , N − 1, cos (uπ(W (x) + 0.5)/N) = cos(uπ(2x+ 0.5)/N). Then

s(u, v) =
N∑
i=1

cos

(
uπ(2xi1 + 2b+ 0.5)

N

)
cos

(
vπ(2xij + 2b+ 0.5)

N

)
(2.15)

=
1

2

N∑
i=1

cos

(
2π((jv + u)i+ c1)

N

)
+

1

2

N∑
i=1

cos

(
2π((jv − u)i+ c2)

N

)
,

where c1 = (b + 0.25)(u + v) and c2 = (b + 0.25)(v − u). For positive odd numbers u and v,

let I1 = {(u, v) : u = jv or − jv, v 6= 0 mod N} and I2 = {(u, v) : u = 0 and v = 0 mod N}.

For (u, v) ∈ I1, |s(u, v)| ≤ N/2 because only one of the two items in (2.15) can be nonzero. For

(u, v) ∈ I2, |s(u, v)| ≤ N ; for (u, v) /∈ I1 ∪ I2, s(u, v) = 0. Then by (2.11), (2.12), and (2.14),

ρave(Eb) =

∑N−1
j=2

∣∣∣∑N
i=1

(
W (xi1 ⊕ b)− N−1

2

) (
W (xij ⊕ b)− N−1

2

)∣∣∣
(N − 2)(N3 −N)/12

≤ 192N2

π4(N3 −N)(N − 2)

N−1∑
j=2

(∑
I1

N

2

1

u2v2
+
∑
I2

N
1

u2v2

)

=
192N2

π4(N2 − 1)(N − 2)

N−1∑
j=2

(∑
I1

1

2u2v2
+
∑
I2

1

u2v2

)
. (2.16)
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Since
N−1∑
j=2

(∑
I1

1

2u2v2
+
∑
I2

1

u2v2

)

≤ 1

2

∑
odd v

1

v2

(
2
∑
odd u

1

u2
−
∞∑
k=0

1

(v + 2kN)2
− 2

∑
odd k

1

k2N2

)
≤

∑
odd v

1

v2

∑
odd u

1

u2
− 1

2

∑
odd v

1

v4
− 1

N2

∑
odd v

1

v2

∑
odd k

1

k2

=
N2 − 1

N2

(
π4

82

)
− π4

192
,

where we used the fact that
∑

odd v 1/v2 = π2/8 and
∑

odd v 1/v4 = π4/96. Then by (2.16),

ρave(Eb) ≤
1

N − 2

192N2

π4(N2 − 1)

(
N2 − 1

N2

(
π4

82

)
− π4

192

)
=

1

N − 2

(
3− N2

N2 − 1

)
<

2

N − 2
.

�

Proof of Theorem 2.6. For any b = 0, . . . , N−1, letEb = (eij). Because
∑N

i=1(eij−(N−1)/2)2 =

N(N2 − 1)/12 for any j = 1, . . . , N − 1, by Theorem 2.5, we have
N−1∑
j=2

∣∣∣∣∣
N∑
i=1

(
ei1 −

N − 1

2

)(
eij −

N − 1

2

)∣∣∣∣∣ < N(N2 − 1)

6
. (2.17)

Let ρ∗jk be the correlation between the jth and kth columns of E∗b . Similar to (2.11),

ρave(E
∗
b ) =

∑N−1
j=2 |ρ∗1j|
N − 2

. (2.18)

Note that

ρ∗1j =
12C0

N(N − 1)(N − 2)
(2.19)

with

C0 =
∑

ei1<W (b)
eij<W (b)

(ei1 − µ) (eij − µ) +
∑

ei1>W (b)
eij<W (b)

(ei1 − 1− µ) (eij − µ)

+
∑

ei1<W (b)
eij>W (b)

(ei1 − µ) (eij − 1− µ) +
∑

ei1>W (b)
eij>W (b)

(ei1 − 1− µ) (eij − 1− µ)

=
N∑
i=1

(
ei1 −

N − 1

2

)(
eij −

N − 1

2

)
+ C1 + C2,
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where µ = (N − 2)/2,

C1 =
1

2

 ∑
ei1<W (b)

eij −
∑

ei1>W (b)

eij +
∑

eij<W (b)

ei1 −
∑

eij>W (b)

ei1


+

(N − 1)2

4
− (W (b))2

and

C2 =
1

4

 ∑
ei1<W (b)
eij<W (b)

1 +
∑

ei1>W (b)
eij>W (b)

1−
∑

ei1>W (b)
eij<W (b)

1−
∑

ei1<W (b)
eij>W (b)

1

 .

It is easy to see that |C1| ≤ (N2 − 1)/4 and |C2| ≤ (N − 1)/4. Hence, by (2.17), (2.18), and

(2.19),

ρave(E
∗
b )

<
12

N(N − 1)(N − 2)2

(
N(N2 − 1)

6
+

(N − 2)(N2 − 1)

4
+

(N − 2)(N − 1)

4

)
<

5(N + 1)

(N − 2)2
.

�

Proof of Theorem 2.7. The proof is similar to that of Theorem 2.5. By (2.13), for j = 1, . . . , (N −

1)/2,
N∑
i=1

(
w(xi1)−

N

2

)(
w(xij)−

N

2

)
=

16N2

π4

∑
odd v

1

u2v2
s(u, v),

where

s(u, v) =
N∑
i=1

cos

(
uπw(xi1)

N

)
cos

(
vπw(xij)

N

)
.

Similar to (2.16), we can prove that

(N−1)/2∑
j=2

∣∣∣∣∣
N∑
i=1

(
w(xi1)−

N

2

)(
w(xij)−

N

2

)∣∣∣∣∣ ≤ N3

24
.

Since
N−1∑
i=1

(
w(xi1)−

N + 1

2

)(
w(xij)−

N + 1

2

)

=
N∑
i=1

(
w(xi1)−

N

2

)(
w(xij)−

N

2

)
− (N − 1) +

(N + 1)2 + 1

4
,
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then

(N−1)/2∑
j=2

∣∣∣∣∣
N−1∑
i=1

(
w(xi1)−

N + 1

2

)(
w(xij)−

N + 1

2

)∣∣∣∣∣
≤ N3

24
+

(
N − 1

2
− 1

)(
(N + 1)2 + 1

4
− (N − 1)

)
=

N3

6
− 5N2 − 12N + 18

8

≤ (N + 1)(N − 1)(N − 3)

6
.

Hence,

ρave(H) = ρave(w(A1))

=

∑(N−1)/2
j=2

∣∣∣∑N−1
i=1

(
w(xi1)− N+1

2

) (
w(xij)− N+1

2

)∣∣∣
(m− 1)(N + 1)(N − 1)(N − 3)/12

≤ 2

m− 1
.

�

Proof of Theorem 2.8. To save space, we sketch only the main steps.

Step 1. ForN = 2p, φ(N) = p−1 andD = (xij) with xij = i(2j−1) modN for i = 1, . . . , 2p

and j = 1, . . . , p− 1. With proper row and column permutations, D is equivalent to 2C

2C + p

 mod N, (2.20)

where C = (yij) is an p × (p − 1) GLP design with yij = i · j mod p for i = 1, . . . , p and

j = 1, . . . , p− 1. Then Eb = W (Db) is equivalent to

Ẽb =

 W (2C ⊕ b)

W (2C ⊕ (b+ p))

 .

Step 2. Consider W (2C ⊕ b). If b is even, 2C ⊕ b = 2(C + b/2 mod p). Then w(2C ⊕ b) =

2wp(C + b/2 mod p) where w is the modified Williams transformation defined in (2.2) and wp is

the modified Williams with N replaced by p. By Lemma 2.2 and Theorem 2.1, dik(w(2C ⊕ b)) =
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2[dik(wp(C + b/2 mod p))] = 2(N2 − 1)/3 for i 6= k, i 6= p, k 6= p, and i+ k 6= p. Following the

lines of Lemma 2.2 will result dik(W (2C ⊕ b)) = dik(w(2C ⊕ b)). Then

dik(W (2C ⊕ b)) = (N2 − 4)/6 for i 6= k, i 6= p, k 6= p, and i+ k 6= p. (2.21)

If b is odd, W (2C ⊕ b) = N − 1−W (2C ⊕ (b+ p)) and (2.21) also holds.

Step 3. If b is even, the last row ofW (2C⊕b) is (2b, . . . , 2b) and each other row is a permutation

of {0, 3, 4, . . . , 2(p− 1)− 1, 2(p− 1)}\{2b}. Based on this structure, we get

dip (W (2C ⊕ b)) =
N2

6
− N + 2

4
+
W (b)

2
+
g(b)

2
, (2.22)

di(p−i) (W (2C ⊕ b)) =
N2

6
+
N

2
− 1−W (b)− g(b), (2.23)

where

g(b) =

(
W (b)− 1

2

(
1 +

1√
3

)
N

)(
W (b)− 1

2

(
1− 1√

3

)
N

)
.

Similarly, if b is odd, (2.22) and (2.23) also hold .

Step 4. Because W (2C ⊕ b) = N − 1 −W (2C ⊕ (b + p)), W (2C ⊕ (b + p)) has the same

distance structure as W (2C ⊕ b).

Step 5. By the structure of W (2C ⊕ (b+ p)) and W (2C ⊕ b), by computation, we can get

di(p+k)(Ẽ(b)) =



N2/4− l1(b), for i = k 6= p;

(N/2− 1)l1(b), for i = k = p;

N2/6− l1(b) + 1/3, for (i, k) ∈ I1;

N2/6− (N − 2)/4 + l2(b)/2− l1(b), for (i, k) ∈ I2;

−N2/12 + (N/2− 1)l1(b) +N/2− l2(b), for (i, k) ∈ I3.

(2.24)

where l1(b) = |N − 2W (b) − 1|, l2(b) = W (b) + g(b), I1 = {(i, k) : i 6= p, k 6= p, i + k 6= p},

I2 = {(i, k) : i 6= p, k = p, or i = p, k 6= p}, and I3 = {(i, k) : i 6= p, k 6= p, i+ k = p}.

Step 6. For b = bN(1+1/
√

3)/4c, W (b) = 2b = bN(1+1/
√

3)/2c or bN(1+1/
√

3)/2c+1,

so −N/
√

3 ≤ g(b) ≤ 0. Then l1(b) = O(N) and l2(b) = O(N). Since for any N × (N/2 − 1)

LHD, dupper = (N + 1)(N − 2)/6, by (2.21)–(2.24), it can be verified that deff (Eb) = deff (Ẽb) =

1−O(1/N).

�
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CHAPTER 3

A Class of Multilevel Nonregular Fractional Factorial Designs

for Studying Quantitative Factors

This chapter provides a class of multilevel nonregular designs via the Williams transformation.

We have applied the Williams transformation to good lattice point sets in Chapter 2 for construct-

ing maximin Latin hypercube designs. In this chapter, we will use the transformation to manipulate

nonlinear level permutations and construct a class of nonregular designs. While linear level permu-

tations have been studied by Cheng and Wu (2001), Xu et al. (2004), Ye et al. (2007) for three-level

designs, and by Tang and Xu (2014) to improve properties of regular designs, as far as we know,

nonlinear level permutations have not been studied. Note that linearly permuted regular designs

can be still considered as regular because they are just cosets of regular designs and share the same

defining relationship.

Multilevel designs are often used for studying quantitative factors by fitting response surface

models such as polynomial models. A commonly accepted principle for polynomial models is

that effects of a lower polynomial order are more important than effects of a higher polynomial

order, while effects of the same polynomial order are regarded as equally important. Based on

this principle, Cheng and Ye (2004) proposed the minimum β-aberration criterion for selecting

multilevel designs. For an N × n design D = (xij), define

βk(D) = N−2
∑
‖u‖1=k

∣∣∣∣∣
N∑
i=1

n∏
j=1

puj(xij)

∣∣∣∣∣
2

for k = 1, . . . , K, (3.1)

where u = (u1, . . . , un) is a vector in {0, . . . , q − 1}, ‖u‖1 = u1 + · · · + un, {p0(x), p1(x),

. . . , pq−1(x)} is a set of orthonormal polynomials, and K = n(q− 1). The βk measures the overall

aliasing between jth- and (k−j)th-order effects for all j with 0 ≤ j ≤ k. Specifically, β1 measures

the aliasing between the intercept and linear effects, β2 the aliasing between linear effects, β3
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the aliasing between linear and second-order effects, and β4 the aliasing between second-order

effects. The minimum β-aberration criterion is to find a design D which sequentially minimizes

βk(D) for k = 1, . . . , K. Because linear and second-order effects are more important than higher-

order effects, the sequential minimization of β1, . . . , β4 would be adequate for choosing designs in

practice.

We show that the proposed construction via the Williams transformation can provide better

designs than regular designs and linearly permuted regular designs in terms of the minimum β-

aberration criterion. We develop a general theory on the construction and apply the theory to

construct nonregular designs with five and seven levels.

3.1 Construction via Williams transformation

A design with N runs, n factors and q levels is denoted by an N × n matrix over Zq =

{0, 1, . . . , q − 1}, where each row represents a run, and each column represents a factor. For

x ∈ Zq, the Williams transformation is defined by

W (x) =

 2x, for 0 ≤ x < q/2;

2(q − x)− 1, for q/2 ≤ x < q.
(3.2)

The Williams transformation is a permutation of Zq. For a design D = (xij), let W (D) =

(W (xij)). The following example shows that we can get better designs from the Williams trans-

formation.

Example 3.1. Consider a 5-level regular designD with three columns x1, x2 and x3 = x1+x2. By

(3.1), β1(D) = β2(D) = 0, β3(D) = 0.125, and β4(D) = 0.525. For each b = 0, . . . , 4, we obtain

two designs via linear permutations and the Williams transformation, namely, Db with columns

x1, x2 and x3 = x1 + x2 + b mod 5 and Eb = W (Db). It can be verified that all Db’s and Eb’s

have β1 = β2 = 0. Table 3.1 shows their β3 and β4. The best design from Db’s is D3 with β3 = 0

and β4 = 0.686, while the best design from Eb’s is E4 with β3 = 0 and β4 = 0.027. Design E4

performs much better than D3 under the minimum β-aberration criterion, although they are both

better than the original design D.
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Table 3.1: The β-wordlength pattern of Db and Eb in Example 3.1

b β3(Db) β4(Db) β3(Eb) β4(Eb)

0 0.125 0.525 0.442 0.004

1 0.125 0.525 0.168 0.021

2 0.125 0.096 0.168 0.021

3 0.000 0.686 0.442 0.004

4 0.125 0.096 0.000 0.027

Remark 3.1. In the computation of βk defined in (3.1), p0(x) ≡ 1 and pj(x) for j = 1, . . . , q − 1

is a polynomial of order j defined on Zq satisfying

q−1∑
x=0

pi(x)pj(x) =

 0, i 6= j;

q, i = j.

For example, the orthonormal polynomials for a 5-level factor are p0(x) = 1, p1(x) = (x−2)/
√

2,

p2(x) =
√

10/7{p1(x)2 − 1}, p3(x) = {10p1(x)3 − 17p1(x)}/6, and p4(x) = {70p1(x)4 −

155p1(x)2 + 36}/
√

14.

Example 3.1 shows that from a regular design, we can obtain a series of nonregular designs

via linear permutations and the Williams transformation. This series of designs can provide better

designs than the original regular design and linearly permuted designs. Generally, for a prime

number q, a regular qn−m design has n −m independent columns, denoted as x1, . . . , xn−m, and

m dependent columns, denoted as xn−m+1, . . . , xn, which can be specified by m generators as

xn−m+i = ci1x1 + · · ·+ ci(n−m)xn−m mod q, for i = 1, . . . ,m, (3.3)

where each vector (ci1, . . . , ci(n−m)) is a generator whose entries are constants in Zq. For each

regular qn−m design, denoted by D, let

Db = (x1, . . . , xn−m, xn−m+1 + b1, . . . , xn + bm) mod q, (3.4)

and

Eb = W (Db), (3.5)
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for b = (b1, . . . , bm) ∈ Zm
q . Note that we only consider permutations for dependent columns

in (3.4) because linearly permuting one or more independent columns is equivalent to linearly

permuting some dependent columns, which can be seen from (3.3). From each regular qn−m

design D, we can derive qm Db’s and qm Eb’s. To find the best design, we search over all possible

regular qn−m designs defined by different generators and all possible permutations b ∈ Zm
q for each

design. Tang and Xu (2014) proposed to find the best design among the class of all Db’s whereas

we consider searching over the class of Eb’s and develop theoretical results to accelerate the search

in Section 3.2.

For three-level designs, the class of designs Eb’s are geometrically isomorphic to the class of

designs Db’s, because any three-level design obtained from any nonlinear level permutations is

geometrically isomorphic to a regular design or its coset (Tang and Xu, 2014). Two designs are

said to be geometrically isomorphic if one can be obtained from the other by row and column

exchanges and possibly reversing the level order of some columns. Geometrically isomorphic

designs have the same βk values for all k (Cheng and Ye, 2004). However, with more than three

levels, we will see that the class of Eb’s can provide many better designs than the class of Db’s.

3.2 Theoretical results

We study properties of Eb in this section. It is well known that a regular design D is an orthog-

onal array of strength t ≥ 2. An orthogonal array is a design in which all qt level combinations

appear equally often in every submatrix formed by t columns. The t is called the strength of the

orthogonal array, which is often omitted when t = 2. Because the Williams transformation is a

permutation of {0, . . . , q − 1}, if D = (xij) is a q-level orthogonal array, then W (D) = (W (xij))

is still an orthogonal array. The following result is from Tang and Xu (2014).

Lemma 3.1. For an orthogonal array of strength t, βk = 0 for k = 1, . . . , t.

From the construction in (3.5), Eb is an orthogonal array of the same strength as D and Db.

While we use designs of strength 2 in practice, Lemma 3.1 guarantees β1(Eb) = β2(Eb) = 0 so

that linear effects are not aliased with the intercept, nor with each other. Then we want to minimize
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β3(Eb) in order to minimize the aliasing between linear and second-order effects. The following

theorem gives a permutation b theoretically to ensure β3(Eb) = 0 so that no aliasing exists between

any linear and second-order effects.

Theorem 3.1. For an odd prime q, let

γ = W−1((q − 1)/2) =

 (q − 1)/4, if q = 1 mod 4;

(3q − 1)/4, if q = 3 mod 4.
(3.6)

Let D be a regular qn−m design generated by (3.3), and Eb be defined by (3.5). Then β3(Eb∗) = 0

with b∗ = (b∗1, . . . , b
∗
m), where

b∗i =

(
1−

n−m∑
j=1

cij

)
γ (i = 1, . . . ,m). (3.7)

Example 3.2. Consider a 73−1 design D with x3 = x1 + x2. Then γ = (3 × 7 − 1)/4 = 5, and

equation (3.7) gives b∗1 = 2. It can be verified that β3(E2) = 0 and β4(E2) = 0.003. Consider

another 73−1 design D with x3 = 2x1 + 2x2. Then γ = 5, and equation (3.7) gives b∗1 = 6. It can

be verified that β3(E6) = 0 and β4(E6) = 0.0196.

Theorem 3.1 states that given a regular designD, we can always find anEb∗ such that β3(Eb∗) =

0. In the following, we give a sufficient condition for the Eb∗ to be the unique design with β3 = 0

among all possible qm Eb’s.

Definition 3.1. Let D be a regular qn−m design. If there exist n −m independent columns of D,

z1, . . . , zn−m, and a series of s+ 1 sets of columns, T0 ⊂ · · · ⊂ Ts, such that T0 = {z1, . . . , zn−m},

Tk+1 = Tk ∪ {w ∈ D : w = c1w1 + c2w2 mod q, w1, w2 ∈ Tk, c1, c2 ∈ Zq} (3.8)

for k = 0, . . . , s − 1, and Ts = D, then D is called recursive. Furthermore, if c1 or c2 is 1 or −1

for all k, then D is called ordinary-recursive; if both c1 and c2 are either 1 or −1 for all k, then D

is called simple-recursive.

Example 3.3. Consider the 73−1 designD defined by x3 = 2x1+2x2 in Example 3.2. Clearly,D is

recursive. Because x3 = 2x1 + 2x2, we have 2x1 + 2x2 + 6x3 = 0 mod 7, x1 +x2 + 3x3 = 0 mod 7

and x2 = −x1 + 4x3 mod 7. Then D is also ordinary-recursive, if we take T0 = {x1, x3} and

T1 = {x1, x2, x3} = D. However, D is not simple-recursive.

34



Example 3.4. Consider a 55−2 design D with x4 = x1 + x2 and x5 = x1 + x2 + x3. Take

T0 = {x1, x2, x3}, T1 = {x1, x2, x3, x4} and T2 = {x1, x2, x3, x4, x5} = D, then D is simple-

recursive. If x5 = x1 + x2 + 2x3 instead, then D is ordinary-recursive but not simple-recursive.

Consider another 55−2 design D with x4 = x1 + x2 and x5 = x1 + 2x2 + 2x3. This design is not

recursive because x5 is not involved in any word of length three. However, when one more column

x6 = x1 + 2x2 is added, it is ordinary-recursive.

Regular designs with q2 runs are commonly used in practice because they are economical

and guarantee that linear effects are uncorrelated. Those designs accommodate two independent

columns and up to q− 1 dependent columns. By Definition 3.1, they are all recursive by letting T0

include the two independent columns and T1 = D.

Lemma 3.2. Let q be an odd prime and D be a regular design of q2 runs. Then D is recursive.

Clearly, recursive designs include ordinary-recursive designs, which in turn include simple-

recursive designs. For three-level designs, the three types of designs are equivalent, while for

designs with more than three levels, they are dramatically different. Table 3.2 compares the num-

bers of the three types of designs with 25 and 49 runs. The numbers of simple-recursive designs

are much smaller than the numbers of the other two types of designs. Although there is a difference

between the numbers of ordinary-recursive and recursive designs, the difference is small. As the

number of columns increases, all designs tend to be ordinary-recursive.

The next theorem gives a sufficient condition for the Eb∗ to be the unique design with β3 = 0

among all possible qm Eb’s.

Theorem 3.2. For an odd prime q, let D be a regular qn−m design defined by (3.3), and Eb be

defined as (3.5). If D is ordinary-recursive, then Eb∗ with b∗ defined in (3.7) is the only design with

β3 = 0 among all qm Eb’s derived from D.

Remark 3.2. We can show that if the number of levels is less than 13, Theorem 3.2 also holds for

recursive designs. That is, for a recursive qn−m designD, if q ≤ 13, theEb∗ with b∗ defined in (3.7)

is the only design with β3 = 0 among all Eb’s. However, this is not the case for q ≥ 17. A counter

example for q = 17 comes with a 173−1 design with x3 = 2x1 + 4x2. By (3.7), b∗ = 14. Then
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Table 3.2: The numbers of the three types of recursive designs with 25 and 49 runs

25-run designs 49-run designs

n simple ordinary recursive simple ordinary recursive

3 2 6 8 2 10 18

4 6 22 24 6 99 135

5 20 32 32 20 517 540

6 16 16 16 70 1214 1215

7 252 1458 1458

8 267 729 729

E14 has β3 = 0, while the design E4 with columns x1, x2, and x3 + 4 also has zero β3. That being

said, as the number of columns increases, the number of non-ordinary-recursive regular designs

decreases dramatically.

Example 3.5. Consider a 78−6 design D with x3 = x1 + x2, x4 = x1 + 2x2, x5 = x1 + 4x2, x6 =

x1 + 5x2, x7 = 2x1 + 5x2, and x8 = 2x1 + 6x2. There are 76 = 117, 649 Eb’s derived from D,

which makes it cumbersome, if not impossible, to do an exhaustive search for the bestEb. Note that

x7 = x1+x6, x8 = x3+x6. SoD is ordinary-recursive by taking T0 = {x1, x2}, T1 = {x1, . . . , x6}

and T2 = {x1, . . . , x8} = D. Equation (3.7) gives b∗1 = 2, b∗2 = 4, b∗3 = 1, b∗4 = 3, b∗5 = 5, and

b∗6 = 0. It can be verified that β3(Eb∗) = 0 and β4(Eb∗) = 9.677. By Theorem 3.2, Eb∗ is the best

design among all Eb’s derived from D under the minimum β-aberration criterion.

By Theorem 3.2 and Remark 3.2, for an ordinary-recursive design or a recursive design with no

more than 13 levels, Eb∗ is the best design among all Eb’s, which is obtained without any computer

search. To study the property of Db’s defined in (3.4), Tang and Xu (2014) showed that if D is

simple-recursive, the design Db̃ given by

b̃i =

(
1−

n−m∑
j=1

cij

)
(q − 1)/2 (i = 1, . . . ,m) (3.9)

is the unique design with β3 = 0 among all Db’s. As we have shown above, only a small amount

of regular designs are simple-recursive. Therefore, results on simple-recursive designs are usually
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not applicable for designs with more than three levels. In contrast, Theorem 3.2 is more general

and applies to the broader classes of ordinary-recursive and recursive designs.

Theorem 3.2 does not apply to the class of linearly permuted designsDb’s even ifD is ordinary-

recursive. Here is a counter example.

Example 3.6. Consider the design 73−1 design D defined by x3 = 2x1 + 2x2 in Example 3.2.

Example 3.3 shows that it is ordinary-recursive, so by Theorem 3.2, Eb∗ is the unique design with

β3 = 0 among all Eb’s. In contrast, there are three Db’s with zero β3. Equation (3.9) gives b̃ = 5,

which leads to Db̃ with β3 = 0 and β4 = 0.0625. Other than this, both b = 0 and b = 3 lead to

Db with β3 = 0 and β4 = 0.0417. All Db’s are worse than Eb∗ under the minimum β-aberration

criterion.

Theorem 3.2, together with Lemma 3.2 and Remark 3.2, indicates the following result.

Corollary 3.1. For an odd prime q ≤ 13, let D be a regular design of q2 runs. Then Eb∗ with b∗

defined as (3.7) is the unique design with β3 = 0 among all Eb’s derived from D.

Now we show another useful property of Eb∗ . A design D over Zq is called mirror-symmetric

if (q − 1)J −D is the same design as D, where J is a matrix of unity. Mirror-symmetric designs

include two-level foldover designs as special cases.

Theorem 3.3. For an odd prime q, let D be a regular qn−m design defined by (3.3), and Eb be

defined as (3.5). Then Eb∗ with b∗ defined in (3.7) is mirror-symmetric.

Tang and Xu (2014) showed that a design is mirror-symmetric if and only if it has βk = 0 for all

odd k. By Theorem 3.3, the Eb∗ has βk(Eb∗) = 0 for all odd k. This guarantees that all odd-order

effects are not aliased with all even-order effects. Specifically, linear effects are not aliased with

second-order or fourth-order effects.

3.3 Comparisons and application

We apply our theoretical results to construct nonregular designs with q2 runs and compare

our designs with regular designs and linearly permuted regular designs. Designs with q2 runs are
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Table 3.3: Comparison of β-wordlength patterns for 25-run designs

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4

3 0.125 0.525 (1,2) 0 0.271 (1,1) 0 0.027

4 0.375 1.361 (1,2) (2,1) 0 1.336 (1,1) (1,2) 0 1.037

5 0.750 3.029 (1,1) (1,3) (2,3) 0 3.793 (1,1) (1,2) (1,3) 0 3.768

6 1.250 6.786 (1,1) (1,2) (1,3) (2,3) 0 8.250 (1,1) (1,2) (1,3) (2,3) 0 8.250

widely used in practice due to their run size economy. A regular design with q2 runs can study up

to (q + 1) columns given by

x1, x2, x1 + x2, x1 + 2x2, x1 + 3x2, . . . , x1 + (q − 1)x2. (3.10)

The common choice of a design with q2 runs and n columns is to use the first n columns of (3.10);

see Wu and Hamada (2009) and Mukerjee and Wu (2006). Denote such a design as D. We search

over all qn−m regular designs with n − m = 2 to get the best Db̃ and the best Eb∗ , where b̃ and

b∗ are defined in (3.9) and (3.7), respectively. To do this, we search over generators (c1, c2) for

the m = n − 2 dependent columns such that each column can be generated by c1x1 + c2x2.

Because (q − c1)x1 + c2x2 is a reflection of c1x1 + (q − c2)x2, which leads to geometrically

isomorphic designs, we only consider c1 = 1, . . . , (q − 1)/2 and c2 = 1, . . . , q − 1. This leads to(
q−1
n−2

)
·{(q−1)/2}n−2 regular designs with strength t ≥ 2. Tables 3.3 and 3.4 show the comparisons

of the standard regular design D, the bestDb̃, and the best Eb∗ with 25 and 49 runs, respectively, as

well as the corresponding generators for the Db̃ and Eb∗ . We can see that the Eb∗ always performs

the best for any design size. The Eb∗ given in Tables 3.3 and 3.4 is optimal under the minimum

β-aberration criterion within the class of Eb’s.

Consider applying the three 25-run designs with 3 columns in Table 3.3 to study three five-level

quantitative factors. A traditional method for fitting the data is to use the following second-order

polynomial model

yi = α0+
3∑
j=1

p1(xij)αj+
3∑
j=1

p2(xij)αjj+
2∑
j=1

3∑
k=j+1

p1(xij)p1(xik)αjk+ε, i = 1, . . . , 25, (3.11)
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Table 3.4: Comparison of β-wordlength patterns for 49-run designs

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4

3 0.063 0.563 (1,3) 0 0.063 (1,1) 0 0.003

4 0.188 1.354 (1,3) (3,1) 0 0.250 (1,1) (2,4) 0 0.055

5 0.375 2.440 (1,2) (3,1) (3,5) 0 1.135 (1,1) (1,3) (2,4) 0 0.836

6 0.625 4.313 (1,2) (1,4) (2,3) (2,5) 0 3.094 (1,1) (1,3) (1,4) (2,4) 0 2.368

7 0.938 7.401 (1,1) (1,3) (1,4) (3,1) 0 6.438 (1,1) (1,3) (1,4) (2,3) 0 4.928

(3,4) (2,4)

8 1.312 12.78 (1,1) (1,3) (1,4) (3,1) 0 11.23 (1,1) (1,2) (1,4) (1,5) 0 9.677

(3,4) (3,6) (2,5) (2,6)

where p1(x) =
√

2(x− 2)/2, p2(x) =
√

5/14{(x− 2)2 − 2}, xi1, xi2, xi3 ∈ Z5 are levels for the

three factors, α0, αj, αjj , and αjk are the intercept, linear, quadratic and bilinear terms, respectively,

and ε ∼ N(0, σ2). Because β3(D) 6= 0, linear terms are aliased or correlated with bilinear terms

for D. While both Db̃ and Eb∗ have β1 = β2 = β3 = 0, the intercept and all the linear terms are

not correlated with the quadratic and bilinear terms and so they can be estimated independently.

For any design, let M denote the model matrix. Table 3.5 shows part of the information matrix

MTM/25 corresponding to the 3 quadratic and 3 bilinear terms: α11, α22, α33, α12, α13 and α23

for Db̃ and Eb∗ . It is easy to see that the terms for Eb∗ are less correlated than that for Db̃. The

variance-covariance matrix of the estimates of parameters for these terms is σ2(MTM)−1. For

Db̃, the variances of the estimates for quadratic terms α11, α22 and α33 are 0.047σ2, 0.041σ2, and

0.047σ2, respectively, and for bilinear terms α12, α13 and α23 are 0.051σ2, 0.050σ2, and 0.051σ2,

respectively. For Eb∗ , the variance of the estimate for each quadratic term is 0.040σ2, and for each

bilinear term is 0.041σ2. Furthermore, the correlations between the estimates are smaller for Eb∗

than Db̃. Therefore, Eb∗ is better than both D and Db̃ for fitting the model in (3.11). Further, if

there are nonnegligible third- or fourth-order effects, the aliasing between linear and third-order

effects is smaller for E∗b than Db̃ because β4(E∗b ) < β4(Db̃), and there is no aliasing between linear

and fourth-order effects or between second- and third-order effects for E∗b because β5(E∗b ) = 0.
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Table 3.5: Part of information matrices MTM/25 corresponding to quadratic and bilinear terms

for designs Db̃ and Eb∗

Db̃ Eb∗

1 0 0 0 0 0.36 1 0 0 0 0 0.096

0 1 0 0 −0.12 0 0 1 0 0 0.096 0

0 0 1 −0.36 0 0 0 0 1 −0.096 0 0

0 0 −0.36 1 0.3 −0.1 0 0 −0.096 1 0.08 0.08

0 −0.12 0 0.3 1 −0.3 0 0.096 0 0.08 1 −0.08

0.36 0 0 −0.1 −0.3 1 0.096 0 0 0.08 −0.08 1

3.4 Summary

We provide a new class of nonregular designs via the Williams transformation. While two-

level nonregular designs have been catalogued by some researchers, the construction of multilevel

nonregular designs was rarely studied. The approach in this chapter is a pioneer work in this

field. The constructed designs are easily obtained, and shown to have better properties than regular

designs.

The Williams transformation is pairwise linear, which is probably the simplest nonlinear trans-

formation, yet it leads to some remarkable results such as Theorems 3.2 and 3.3. It would be of

interest to identify and characterize other nonlinear transformations that have similar properties.

The newly obtained designs can be used to generate orthogonal Latin hypercube designs which

are commonly used in computer experiments. Orthogonal Latin hypercube designs have been

widely studied; see, e.g., Steinberg and Lin (2006), Pang et al. (2009), Lin et al. (2009), Sun et al.

(2009), Sun et al. (2010), Lin et al. (2010), Georgiou and Stylianou (2011), Yang and Liu (2012),

Wang et al. (2018b), among others. These designs have β1 = β2 = 0 therefore guarantee the

orthogonality between linear main effects. A popular construction, proposed by Steinberg and Lin

(2006) and Pang et al. (2009), is to rotate a regular design to obtain a Latin hypercube design which

inherits the orthogonality from both the rotation matrix and the regular design. Wang et al. (2018b)

improved the method by rotating a linearly permuted regular design, that is, theDb̃ with b̃ defined in
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(3.9). Such generated Latin hypercube designs have β3 = 0 thus can guarantee that nonnegligible

quadratic and bilinear effects do not contaminate the estimation of linear main effects. With the

results in this chapter, rotating the Eb∗ will lead to better Latin hypercube designs which have zero

β3 and smaller β4. When nonnegligible third-degree polynomial effects exist, these designs will

provide better estimation for linear terms.

3.5 Appendix: Proofs

We need the following lemmas for the proofs.

Lemma 3.3. The Db is the same design as (De + γ) mod q, where e = b− b∗, γ is defined as (3.6),

and b∗ is defined as (3.7).

Proof. For Db, permuting all columns xj to xj − γ for j = 1, . . . , n is equivalent to keeping the

independent columns unchanged while permuting the dependent columns xn−m+i+bi to xn−m+i+

bi − b∗i for i = 1, . . . ,m. Hence, Db − γ is the same design as De with e = b − b∗. Equivalently,

Db is the same design as De + γ mod q. �

Lemma 3.4. If x is a real number which is not an integer, then
∞∑

n=−∞

(−1)n−1

(n+ x)2
=
π2 cosπx

(sinπx)2
.

Proof. It is known that
∑∞

n=−∞ 1/(n+ x)2 = π2/(sin πx)2. Then
∞∑

n=−∞

(−1)n−1

(n+ x)2
=

∞∑
n=−∞

1

(n+ x)2
−2

∑
even n

1

(n+ x)2
=

π2

(sinπx)2
− 1

2

π2

(sin(πx/2))2
=
π2 cosπx

(sinπx)2
.

�

Lemma 3.5. Let p1(x) = ρ[x − (q − 1)/2] be the linear orthogonal polynomial, where ρ =√
12/[(q + 1)(q − 1)]. Then for x = 0, . . . , q − 1,

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

where

g(v) =
cos(π(v + 0.5)/q)

{sin(π(v + 0.5)/q)}2
. (3.12)
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Proof. For x ∈ (0, q), the Fourier-cosine expansion of x− q/2 is given by

x− q

2
=
∞∑
v=1

av cos

(
vπx

q

)
,

with

av =
2

q

∫ q

0

(
x− q

2

)
cos

(
vπx

q

)
dx =

 0, if v is even;

−4q/(v2π2), if v is odd.

Then

p1(x) = −4ρq

π2

∑
odd v>0

1

v2
cos

(
vπ(x+ 0.5)

q

)

= −2ρq

π2

∞∑
v=−∞

1

(2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}

= −2ρq

π2

∞∑
k=−∞

q−1∑
v=0

1

(2kq + 2v + 1)2
cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
.

Since for any integers k and x,

cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
= (−1)k cos

{
(2v + 1)π(x+ 0.5)

q

}
,

we have

p1(x) = −2ρq

π2

q−1∑
v=0

∞∑
k=−∞

(−1)k

(2kq + 2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}
.

By Lemma 3.4 and (3.12), we have

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

�

Proof of Theorem 3.1. Denote e = b − b∗ and De = (yij). By Lemma 3.3, Db is the same design

as (De + γ) mod q, so Eb = W (Db) = W (De + γ). By Lemma 3.5,

p1 (W (x)) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(W (x) + 0.5)

q

}

= − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(2x+ 0.5)

q

}
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because cos {(2v + 1)π(W (x) + 0.5)/q} = cos {(2v + 1)π(2x+ 0.5)/q} for any integer v. Then

we have

β3(Eb) = β3(W (De + γ))

= N−2
∑

y1,y2,y3

∣∣∣∣∣
N∑
i=1

p1(W (yi1 + γ))p1(W (yi2 + γ))p1(W (yi3 + γ))

∣∣∣∣∣
2

= N−2
(
ρ

2q

)6 ∑
y1,y2,y3

∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

g(v1)g(v2)g(v3)S(y, v)

∣∣∣∣∣
2

, (3.13)

where
∑

y1,y2,y3
sums over all three different columns y1, y2, y3 in De, yj = (y1j, . . . , yNj) for

j = 1, 2, 3, and

S(y, v) =
N∑
i=1

3∏
j=1

cos

{
(2vj + 1)π(2yij + 2γ + 0.5)

q

}

=
N∑
i=1

3∏
j=1

(−1)(q+1)/2+vj sin

{
2(2vj + 1)πyij

q

}

= (−1)(q+1)/2+v1+v2+v3

N∑
i=1

3∏
j=1

sin

{
2(2vj + 1)πyij

q

}
.

If b = b∗, e = 0 and De = D. Because D is a regular design, it is a linear space over Zq. Thus,

(q− yi1, . . . , q− yin) ∈ D whenever (yi1, . . . , yin) ∈ D. Then S(y, v) = 0 for any y = (y1, y2, y3)

and v = (v1, v2, v3). By (3.13), β3(Eb∗) = 0. �

Proof of Theorem 3.2. Following the proof of Theorem 1, if b 6= b∗, then e = b − b∗ has nonzero

components. Since D is ordinary-recursive, there exist three columns, say z1, z2, z3, in D such that

z3 = c1z1 +c2z2, c1 = 1 or−1, c2 ∈ Zq, and z1, z2 and z3 +e0 are three columns inDe, where e0 is

a nonzero component of e. We only consider c1 = 1 below as the proof for c1 = −1 is similar. Let

d be the design formed by z1, z2, and z3 + e0. By (3.13), we only need to show that β3(W (d)) 6= 0.

Note that

β3(W (d)) = N−2
(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

(−1)v1+v2+v3g(v1)g(v2)g(v3)S(z, v)

∣∣∣∣∣
2

, (3.14)

where g(v) is defined in (3.12), and

S(z, v) =
N∑
i=1

sin

(
2(2v1 + 1)πzi1

q

)
sin

(
2(2v2 + 1)πzi2

q

)
sin

(
2(2v3 + 1)π(zi3 + e0)

q

)
.
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By applying the product-to-sum identities twice, we have

S(z, v) =
1

4

{
N∑
i=1

sin

(
2π(t1zi1 − t4zi2 + (2v3 + 1)e0)

q

)

+
N∑
i=1

sin

(
2π(t2zi1 + t4zi2 − (2v3 + 1)e0)

q

)

−
N∑
i=1

sin

(
2π(t1zi1 + t3zi2 + (2v3 + 1)e0)

q

)

−
N∑
i=1

sin

(
2π(t2zi1 − t3zi2 − (2v3 + 1)e0)

q

)}
, (3.15)

where t1 = 2(v1+v3)+2, t2 = 2(v1−v3), t3 = 2(v2+v3c2)+c2+1, and t4 = 2(v2−v3c2)−c2+1.

Let

v10 = q − 1− v3 and v20 = v3c2 + (c2 − 1)(q + 1)/2 mod q. (3.16)

When v1 = v10 and v2 = v20, t1 = t4 = 0 mod q and the first item in the right hand side of (3.15),∑N
i=1 sin (2π(t1zi1 − t4zi2 + (2v3 + 1)e0)/q), equals N sin(2π(2v3 + 1)e0/q). When v1 6= v10 or

v2 6= v20, the item is zero. By similar analysis to other items in (3.15), we have

S(z, v) =


N
4

sin
{

2π(2v3+1)e0
q

}
, if (v1, v2) = (v10, v20) or (q − 1− v10, q − 1− v20);

−N
4

sin
{

2π(2v3+1)e0
q

}
, if (v1, v2) = (v10, q − 1− v20) or (q − 1− v10, v20);

0, otherwise.

Note that g(q − 1− v) = −g(v) for any v. Then by (3.14),

β3(W (d)) =

(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣
2

, (3.17)

where v20 is defined in (3.16). Applying g(q − 1− v) = −g(v) again, we can simply (3.17) as

β3(W (d)) =
ρ6

16q6

∣∣∣∣∣∣
(q−1)/2∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣∣
2

. (3.18)

By considering the Taylor expansion of g(v), we can see that the sum in (3.18) is dominated by the

first two items with v3 = 0 and v3 = 1. It can be verified that (3.18) is nonzero for e0 = 1, . . . , q−1.

This completes the proof. �
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Proof of Theorem 3.3. We need to show that for any runW (x1, . . . , xn) inEb∗ , (q−1)−W (x1, . . . , xn)

also belongs to Eb∗ . This is equivalent to show that for each run (x1, . . . , xn) in Db∗ , W−1(q −

1 −W (x1, . . . , xn)) also belongs to Db∗ . Since the design D contains the zero point (0, . . . , 0),

by Lemma 3.3, Db∗ contains the point (γ, . . . , γ). Because all design points of D form a linear

space and Db is a coset of D, then γ − (x1, . . . , xn) belongs to the null space of Db∗ . Hence,

γ − (x1, . . . , xn) + γ = 2γ − (x1, . . . , xn) belongs to Db∗ . For x = 0, . . . , q − 1,

W−1(x) =

 x/2, for even x;

q − (x+ 1)/2, for odd x,

and

W−1(q − 1− x) =

 (q − 1)/2−W−1(x), for even x;

(3q − 1)/2−W−1(x), for odd x,

= 2γ −W−1(x).

Then W−1(q − 1 −W (x1, . . . , xn)) = 2γ − (x1, . . . , xn). Hence, W−1(q − 1 −W (x1, . . . , xn))

belongs to Db∗ . This completes the proof. �
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CHAPTER 4

Orthogonal Array-Based Subdata Selection for Big Data

Regression

The dramatic growth of large datasets has enabled the study of many scientific problems. While

we are taking advantages of big data, in many applications, however, labelling all data points is

infeasible due to the limit of time and budget. We are often encountered with the problem where

we are given a large data set of n data points but can only observe a small subset of k < n

labels. Wang et al. (2017) considered three application examples which cover material synthesis,

CPU benchmarking, and wind speed prediction. In all examples, collecting labels for data points is

either time-consuming or costly, so only a subset of data points can be labeled. An intuitive solution

is to randomly select k points to label, while this may end up with a big loss of information of the

full big data. The selection of an informative subdata set is crucial.

In this chapter, we develop an orthogonal array (OA)-based method for subdata selection. The

method is inspired by the fact that an OA of two levels is D-, A-, and G-optimal for linear regres-

sion. We define a discrepancy to measure how well a subdata set approximates an OA. Based on

the discrepancy, we develop an algorithm which sequentially selects data points as well as elimi-

nating points from the full data to reduce the number of candidate points and speed up the selecting

process. Simulation results show that the algorithm outperforms existing methods in minimizing

mean squared errors of parameter estimations and maximizing D- and A-efficiencies of the design

matrices.
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4.1 The framework

We consider the linear regression problem

y = X̃β + ε, (4.1)

where y = (y1, . . . , yn)T is a vector of all observations, X̃ = (1, X) is the design matrix, and

β = (β0, β1, . . . , βp)
T is a vector of parameters. When using the full data (X, y), the least-squares

(LS) estimator of β is

β̂ = (X̃T X̃)−1(X̃Ty).

Now consider taking a subdata set of size k from the full data. Denote the subdata as (Xs, ys).

Then the LS estimator based on the subdata is given by

β̂s = (X̃T
s X̃s)

−1(X̃T
s ys),

where X̃s = (1, Xs). The covariance matrix of β̂s is σ2M−1 with

Ms = X̃T
s X̃s.

To minimize the variance of β̂s, we seek the subdataXs which, in some sense, maximizesMs. This

is typically done, in optimal experimental design strategy, by minimizing an optimality function of

the matrix M−1
s . Denote ψ as the optimality function, then we want to find the Xs that minimizes

ψ(M−1
s ). Denote ξ = (ξ1, . . . , ξn) as the indicator vector that signifies whether the data points in

X are included in Xs or not, that is, ξi = 1 if the ith data point in X is included in Xs and ξi = 0

otherwise, then
∑n

i=1 ξi = k where k is the number of data points in Xs. With the help of ξ, Ms

can be rewritten as

Ms = Ms(ξ) = X̃Tdiag(ξ)X̃.

Then the problem can be presented as the following optimization problem:

ξ∗ = arg min
ξ
ψ
{
M−1

s

}
= arg min

ξ
ψ

{(
X̃Tdiag(ξ)X̃

)−1}
,

s.t.

n∑
i=1

ξi = k. (4.2)
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Popular optimality criteria include the D-optimality criterion that minimizes the determinant

of M−1
s , A-optimality criterion that minimizes the trace of M−1

s , and G-optimality criterion that

minimizes the maximum entry in the diagonal of the hat matrix X̃sM
−1
s X̃T

s . Wang et al. (2017)

considers the A-optimality and proposes a computationally tractable stochastic subsampling algo-

rithm. They consider a continuous relaxation of the combinatorial optimization problem in (4.2) to

get an optimal probability following which a stochastic sample is then drawn. Wang et al. (2018a)

considers the D-optimality and proposes an information-based optimal subdata selection (IBOSS)

method. They approximate the optimality by only including data points with extreme (largest and

smallest) covariate values into Xs to maximize the diagonal entries of Ms without any consid-

eration of the off-diagonal entries (that is, correlation between variables). Both methods try to

approximate the combinatorial optimality in some sense.

4.2 Orthogonal arrays

Recall that a two-level orthogonal array (OA) with strength t is an n× p matrix in which all 2t

level combinations appear equally often in every n × t submatrix. In this chapter, the two levels

are denoted by−1 and 1. The following theorem shows that ideally, a subdata set Xs is D-optimal

if and only if Xs forms a two-level orthogonal array.

Theorem 4.1. Suppose all covariates are scaled to [−1, 1]. For a subdata set Xs of size k,

det(M−1
s ) ≥ 1

kp+1
,

and the equality holds if and only if Xs forms a two-level OA with levels from {−1, 1} and strength

t ≥ 2.

The following theorem shows that ideally, a subdata setXs isA-optimal if and only ifXs forms

a two-level orthogonal array.

Theorem 4.2. Suppose all covariates are scalled to [−1, 1]. For a subdata set Xs of size k, denote

the eigenvalues of M−1
s as λ0(M−1

s ), λ1(M
−1
s ), . . . , λp(M

−1
s ), then

p∑
j=0

λj(M
−1
s ) ≥ p+ 1

k
,
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and the equality holds if and only if Xs forms a two-level OA with levels from {−1, 1} and strength

t ≥ 2.

Kiefer and Wolfowitz (1959, 1960) showed the equivalence theorem betweenD- andG-optimality.

Thus, we can have the following result regarding the G-optimality.

Theorem 4.3. Suppose all covariates are scalled to [−1, 1]. For a subdata set Xs of size k and

any point x ∈ [−1, 1]p, denote x̃ = (1, xT )T and

d(x, ξ) = x̃TM−1
s x̃,

then

max
x

d(ξ) ≥ p+ 1,

and the equality holds if and only if Xs forms a two-level OA with levels from {−1, 1} and strength

t ≥ 2.

Theorems 4.1–4.3 show that subdata forming OAs are universally optimal in all of the criteria.

Often the full data do not contain any subset of k points forming an OA, so that the lower bounds

in Theorems 4.1–4.3 would not be attained. However, we can always find a subset approximating

an OA. We will introduce an algorithm in the next section.

4.3 A sequential addition-elimination algorithm

To select subdata Xs following an OA, we need to define a discrepancy function that measures

the similarity betweenXs and an OA. Considering that data points selected following an OA should

have two features: (i) they are at the corners of the data region, and (ii) their signs are as dissimilar

as possible. Therefore, the discrepancy function should contain two parts corresponding to the

two features. For Feature (i), it is intuitive to maximize ‖xi‖ for any point xi = (xi1, . . . , xip)

included in Xs, where ‖ · ‖ is the Euclidean norm. For Feature (ii), denote s(x) as the sign of x

and s(xi) = (s(xi1), . . . , s(xip)). Define

δ(x, y) =

 1, if x = y;

0, otherwise,
(4.3)
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and let δ(s(xi), s(xj)) =
∑p

l=1 δ(s(xil), s(xjl)) for any two points xi and xj . Then δ(s(xi), s(xj))

is the number of components in xi and xj that have the same signs. We want to minimize a function

of δ(s(xi), s(xj)). Based on these considerations, we define a D2-discrepancy criterion as

D2(Xs) =
∑

1≤i<j≤k

[δ(s(xi), s(xj)) + p− ‖xi‖2/2− ‖xj‖2/2]2. (4.4)

The following result shows an important lower bound of D2(Xs).

Theorem 4.4. For a subdata set Xs,

D2(Xs) ≥
k2p(p+ 1)− 4kp2

8
,

with equality if and only if Xs forms a two-level OA with levels from {−1, 1} and strength t ≥ 2.

Now the subdata selection based on OAs can be presented as the following optimality problem:

X∗s = arg min
Xs

D2(Xs),

s.t. Xs contains k points.

This optimality problem is combinatorial in nature and the optimal subset X∗s is difficult to get. An

exhaustive search over all possible Xs of size k requires O(nkk2p) operations, which is infeasible

for even moderate X and Xs. We propose a sequential addition-elimination algorithm that approx-

imately achieves the optimality. The algorithm selects data points iteratively as well as eliminating

candidate points from X to speed up the search.

Now suppose we are at the ith iteration where X i
s is the new matrix obtained by adding x∗i to

X i−1
s , i = 1, . . . , k − 1. Then by (4.4),

D2(X
i
s) =

i−1∑
j=1

D2(x
∗
i , x
∗
j) +D2(X

i−1
s )

where

D2(x
∗
i , x
∗
j) = [δ(s(x∗i ), s(x

∗
j)) + p− ‖x∗i ‖2/2− ‖x∗j‖2/2]2

is the D2-score of x∗i relative to x∗j . To minimize D2(X
i
s), select x∗i which minimizes the sum of

the scores, that is,

x∗i = arg min
x∈X

i−1∑
j=1

D2(x, x
∗
j). (4.5)
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The computational complexity for choosing the x∗i following (4.5) is O(nip). However, note that

D2(x, x
∗
j) for j = 1, . . . , i − 2 was already calculated in the (i − 1)th iteration when searching

for x∗i−1. Thus, for the current iteration, only the computation of D2(x, x
∗
i−1) is required so the

computational complexity is reduced toO(np) in each iteration. To further reduce the computation,

we can delete some data points in X with large values of
∑i−1

j=1D2(x, x
∗
j) so that these points will

not be considered in the (i + 1)th iteration. The algorithm proceeds as follows. Suppose each

variable of X is scaled to [−1, 1].

Algorithm 4.1. [Sequential addition-elimination]

Step 1. [Initiation] Let i = 1. Find the point in X with the largest Euclidean norm, denoted as x∗1.

Include x∗1 in Xs and remove it from X . Let D = (0, . . . , 0) being an (n − 1)-vector with

each component corresponding to each data point in X .

Step 2. [Addition] Increase i by 1. For each x ∈ X , add the D2-score

D2(x, x
∗
i−1) = [δ(s(x), s(x∗i−1)) + p− ‖x‖2/2− ‖x∗i−1‖2/2]2 (4.6)

to the corresponding component in D . Find x∗i with the smallest component in D and add it

to Xs.

Step 3. [Elimination] Keep t = bn/ic points in X with t smallest components in D . Remove x∗i and

other points from X as well as their corresponding components from D .

Step 4. [End] Iterate Steps 2 and 3 until Xs contains k points.

By Theorem 4.2, Xs minimizes the average eigenvalue of M−1
s , that is, the average variance

of coefficient estimations, if it forms an OA. Therefore, it is easy to see that Algorithm 4.1 tends

to generate subdata Xs which minimize the sum of the variances of coefficient estimations when

n is large. Note that in the Addition step, X consists t = bn/ic points so the computational

complexity for finding x∗i is O(np/i). Therefore, the complexity for selecting k data points is

O(np/1) + · · ·+O(np/k) = O(np log k).
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To examine the performance of the proposed algorithm, simulations are conducted and empir-

ical mean squared errors (MSE) for the slope parameters are calculated using

MSE = S−1
S∑
s=1

‖β̂s − β‖2, (4.7)

where S is the number of times a simulation is repeated and β̂s is the estimate of slope parameters

in the sth repetition. Other than that, we also calculate the D- and A-efficiencies using

Deff = {(1/kp+1)/[det(Ms)]
−1}1/(p+1) = det(Ms)

1/(p+1)/k (4.8)

and

Aeff = [(p+ 1)/k]/

p∑
j=0

λj(M
−1
s ) = (p+ 1)/[k

p∑
j=0

λj(M
−1
s )] (4.9)

by noting the lower bounds shown in Theorems 4.1 and 4.2.

The following toy example illustrates the subdata selected by the algorithm.

Example 4.1. Consider selecting k = 100 data points from a full data set with n = 1000 points.

Let p = 2 and each point xi ∼ Unif[−1, 1]2 where Unif[−1, 1]2 is a uniform distribution on

[−1, 1]2. The response y is generated through the model

yi = 1 + xi1 + xi2 + ε

where ε ∼ N(0, 1). Figure 4.1 shows the subdata selected by the IBOSS (Wang et al., 2018a) and

the Sequential addition-elimination algorithm (OA-based). The IBOSS chooses boundary points

while the proposed algorithm chooses data points at the corners. Figure 4.2 shows the MSE,

D-efficiency, and A-efficiency for the subdata selected by Uniform subsampling, IBOSS, and the

proposed algorithm (OA-based). The proposed algorithm outperforms the other two methods in

each of the criteria. This is because corner points selected by the proposed algorithm are more

informative for linear models thus form more efficient subdata and provide better estimation for

parameters.

Example 4.1 is a toy example with p = 2 from which we can tell some outperformance of

the proposed method than available methods. We will see from more numerical results that the
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Figure 4.1: The subdata selected by IBOSS and OA-based methods.
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Figure 4.2: The MSE, D- and A-efficiencies for the subdata selected by different methods
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proposed algorithm performs much better for larger p. Note that Figure 4.1 may raise questions

about potential outliers because it seems that the selected subdata by the proposed algorithm only

capture extreme covariate values. However, as we will see in more numerical results, this is not

the case for moderate and large p. As p increases, the selected subdata are spreading out over the

data region, so the issue of potential outliers does not really exist with the proposed algorithm.

4.4 Model with interactions

Consider the linear regression

y = X̃β̃1 +X interβ̃2 + ε, (4.10)

where y = (y1, . . . , yn)T is a vector of all observations, X̃ = (1, X), X inter contains all inter-

action terms, that is, each column of X inter is an element-wise product of two columns in X ,

β̃1 = (β0, β1, . . . , βp)
T is a vector of linear effects, and β̃2 = (β12, . . . , β(p−1)p)

T is a vector of

interactions effects. The information matrix for the model in (4.10) is given by

M = (X̃,X inter)T (X̃,X inter),

and the information matrix with a subdata set Xs is given by

Ms = (X̃s, X
inter
s )T (X̃s, X

inter
s ), (4.11)

where X̃s = (1, Xs) and X inter
s contains all columns which are element-wise product between

columns of Xs. A similar result to Theorem 4.1 applies here.

Theorem 4.5. Suppose all covariates are scaled to [−1, 1] and Ms is defined in (4.11). For a

subdata set Xs of size k,

det(M−1
s ) ≥ 1

kp(p+1)/2+1
,

and the equality holds if and only if Xs forms a two-level OA with levels from {−1, 1} and strength

t ≥ 4.

Theorem 4.5 shows that a two-level OA with strength t ≥ 4 is D-optimal for models with

interactions. We can establish similar results for A- and G-optimality as in Theorems 4.2 and
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4.3, which is tedious thus omitted here. Theorem 4.5 indicates that we should follow an OA with

strength t ≥ 4 to select subdata for models with interactions. To do this, define

D4(Xs) =
∑

1≤i<j≤k

[δ(s(xi), s(xj)) + p− ‖xi‖2/2− ‖xj‖2/2]4. (4.12)

The difference between D2 in (4.4) and D4 in (4.12) is only at the power taken for the discrep-

ancy, while the following result shows that D4 is able to measure the similarity between a subdata

set Xs and an OA with strength t ≥ 4.

Theorem 4.6. For a subdata set Xs,

D4(Xs) ≥
k2p(p3 + 6p2 + 3p− 2)− 16kp4

16
,

with equality if and only if Xs forms a two-level OA with levels from {−1, 1} and strength t ≥ 4.

Theorem 4.6 shows that D4 is powerful as a criterion for selecting subdata for models with

interactions. Therefore, Algorithm 4.1 can be applied to the subdata selection by replacing the D2

with D4, that is, replacing the criterion in (4.6) with

D4(x, x
∗
i−1) = [δ(s(x), s(x∗i−1)) + p− ‖x‖2/2− ‖x∗i−1‖2/2]4.

4.5 Numerical results

We show simulation results in this section. We consider 7 scenarios. For Case 1–6, data are

generated from the linear model in (4.1) with true value of β being a vector of unity and σ2 = 9.

An intercept is included so β is a (p+ 1)-dimensional vector. For Case 7, data are generated from

the model with interactions, that is, the model in (4.10), with true values of (β̃T1 , β̃
T
2 )T being a

[1 + p(p + 1)/2]-dimensional vector of unity and σ2 = 9. Covariates are generated according to

the following scenarios.

Case 1. n = 10000, p = 10, k = 100, and xi’s have a multivariate uniform distribution with all

covariates independent.

Case 2. n = 100000, p = 50, k = 1000, and xi’s have a multivariate uniform distribution with all

covariates independent.
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Figure 4.3: MSE, D- and A-efficiencies of Xs selected from different methods for Case 1.

Case 3. n = 10000, p = 10, k = 100, and xi’s have a multivariate normal distribution with all

covariates independent.

Case 4. n = 100000, p = 50, k = 1000, and xi’s have a multivariate normal distribution with all

covariates independent.

Case 5. n = 10000, p = 10, k = 100, and xi’s have a multivariate normal distribution with covari-

ance matrix Σ = 0.5I(i 6=j), where I() is the indicator function.

Case 6. n = 100000, p = 50, k = 1000, and xi’s have a multivariate normal distribution with

covariance matrix Σ = 0.5I(i 6=j).

Case 7. n = 10000, p = 10, k = 100, and xi’s have a multivariate uniform distribution with all

covariates independent.

The simulation is repeated S = 100 times. We consider three approaches: Uniform subsam-

pling (Unif), IBOSS algorithm, and the proposed algorithm (OA-based). Empirical mean squared

errors (MSE) for the slope parameters, D- and A-efficiencies of Xs are calculated using (4.7),

(4.8), and (4.9). Figures 4.3–4.9 show the comparison of the subdata Xs selected from the three

different approaches. We can see that the OA-based method outperforms the other two methods

for all scenarios. Specifically, the OA-based method performs especially well when the covariates

follow a multivariate uniform distribution, which is a common case in many applications. The D-

and A-efficiencies of the proposed method are always much larger than the other two methods,
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Figure 4.4: MSE, D- and A-efficiencies of Xs selected from different methods for Case 2.

Unif IBOSS OA−based

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

MSE

Unif IBOSS OA−based

0
.0

6
0
.0

8
0
.1

0
0
.1

2

D−eff

Unif IBOSS OA−based

0
.0

5
0
.0

6
0
.0

7
0
.0

8
0
.0

9
0
.1

0
0
.1

1

A−eff

Figure 4.5: MSE, D- and A-efficiencies of Xs selected from different methods for Case 3.
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Figure 4.6: MSE, D- and A-efficiencies of Xs selected from different methods for Case 4.
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Figure 4.7: MSE, D- and A-efficiencies of Xs selected from different methods for Case 5.
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Figure 4.8: MSE, D- and A-efficiencies of Xs selected from different methods for Case 6.
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Figure 4.9: MSE, D- and A-efficiencies of Xs selected from different methods for Case 7.
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Figure 4.10: Two dimensional projection plot of the subdata selected by the proposed algorithm

for Cases 1 and 2.

making the subsdata obtained from the proposed method robust to different settings of the error

σ2.

Figure 4.10 shows the two dimensional projection plot of the subdata selected by the proposed

algorithm for Cases 1 and 2. Without loss of generality, we only show the projection onto the

first two covariates. As we can see, the selected points are not concentrating on the corners of

the region, which is different from the case shown in Example 4.1 for p = 2. As p increases, the

selected subdata are spreading out over the region, so the issue of potential outliers does not really

exist with the proposed algorithm.

4.6 Discussion

We develop a sequential addition-elimination algorithm for subdata selection. The algorithm

inherits optimality from OAs and gives approximately optimal subdata for linear regression with

or without interactions.

For linear regression with both interactions and quadratic terms, the proposed algorithm also

performs better than available methods. To further increase the efficiency of the subdata, following

the central composite design strategy (Box and Wilson, 1951), we can add some center and axial
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points into the subdata. To make the subdata still containing k points, we only select k0 < k

data points from the algorithm and select k − k0 data points close to the center or axes. In our

simulation, this modification increases the efficiency of the subdata for small p, say, for p ≤ 4,

while for moderate and large p, the addition of those points usually ends up with a big reduction

on the efficiency. This is because, as was shown in the Figure 4.10, the subdata already cover the

center and axes for larger p. So the addition of those points would bring a waste of data points

instead of new information.

4.7 Appendix: Proofs

Proof of Theorem 4.1. Denote Xs = (x∗ij), then we have

Ms =


k

∑k
i=1 x

∗
i1 · · ·

∑k
i=1 x

∗
ip∑k

i=1 x
∗
i1

∑k
i=1(x

∗
i1)

2 · · ·
∑k

i=1 x
∗
i1x
∗
ip

...
... . . . ...∑k

i=1 x
∗
ip

∑k
i=1 x

∗
i1x
∗
ip · · ·

∑k
i=1(x

∗
ip)

2

 (4.13)

Because −1 ≤ x∗ij ≤ 1 for all i = 1, . . . , k and j = 1, . . . , p,
∑k

i=1(x
∗
ij)

2 ≤ k for all j. Thus,

det(Ms) =

p∏
j=0

λj(Ms)

≤

(∑p
j=0 λj(Ms)

p+ 1

)p+1

(4.14)

=

(
k +

∑p
j=1

∑k
i=1(x

∗
ij)

2

p+ 1

)p+1

≤ kp+1, (4.15)

where λj(Ms)’s for j = 0, 1, . . . , p are eigenvalues of Ms, the equality in (4.14) holds if and only

if λ0(Ms) = λ1(Ms) = · · · = λp(Ms), and the equality in (4.15) holds if and only if x∗ij is either 1

or −1 for all i and j. Therefore, det(Ms) = kp+1 if and only if Xs forms an OA. This completes

the proof. �
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Proof of Theorem 4.2. Because λj(M−1
s ) = 1/λj(Ms),

p∑
j=0

λj(M
−1
s ) ≥ (p+ 1)2∑p

j=0 λj(Ms)
. (4.16)

From (4.14) and (4.15), we have
∑p

j=0 λj(Ms) ≤ k(p+ 1). Then by (4.16),
p∑
j=0

λj(M
−1
s ) ≥ (p+ 1)2

k(p+ 1)
=
p+ 1

k
.

�

Proof of Theorem 4.4. For a two-level k×p design matrixX with entries from {−1, 1}, Xu (2003)

defined the tth power moment as

Kt(X) =

(
k(k − 1)

2

)−1 ∑
1≤i<j≤k

[δ(di, dj)]
t, (4.17)

where di for i = 1, . . . , k is the kth row of X and δ is defined in (4.3). For the second power

moment K2, Xu (2003) showed that

K2(X) ≥
(
k(k − 1)

2

)−1
k2p(p+ 1)− 4kp2

8
,

and the equality holds if and only if X is an OA of two levels with strength t ≥ 2. Note that

δ(s(xi), s(xj)) + p− ‖xi‖2/2− ‖xj‖2/2 ≥ δ(s(xi), s(xj)), then

D2(Xs) ≥
k(k − 1)

2
K2(s(Xs)) ≥

k2p(p+ 1)− 4kp2

8
,

where s(Xs) is the sign matrix of Xs, and the equality holds if and only if Xs is an OA of two

levels with strength t ≥ 2. �

Proof of Theorem 4.6. For the fourth power moment defined in (4.17), Xu (2003) showed that

K4(X) ≥
(
k(k − 1)

2

)−1
k2p(p3 + 6p2 + 3p− 2)− 16kp4

16
,

and the equality holds if and only if X is an OA of two levels with strength t ≥ 4. Note that

δ(s(xi), s(xj)) + p− ‖xi‖2/2− ‖xj‖2/2 ≥ δ(s(xi), s(xj)), then

D4(Xs) ≥
k(k − 1)

2
K4(s(Xs)) ≥

k2p(p3 + 6p2 + 3p− 2)− 16kp4

16
,

where s(Xs) is the sign matrix of Xs, and the equality holds if and only if Xs is an OA of two

levels with strength t ≥ 4. �
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CHAPTER 5

Conclusion

Space-filling designs and fractional factorial designs are two crucial tools in planning exper-

iments. Space-filling designs spread design points evenly and uniformly in the design domain,

so they are suitable for multiple modeling techniques and are model robust. Fractional factorial

designs aim at linear models with or without interactions to screen important factorial effects.

Both types of designs are commonly used in practical applications depending on different aims of

experimenters.

Chapter 2 proposes a series of systematic methods for the construction of space-filling designs

via the Williams transformation and its modification. The methods efficiently generate large and

high-dimensional designs without any computer search. The generated designs are shown to be

optimal under the maximin distance criterion and have small pairwise correlations between vari-

ables. Chapter 3 further explores the application of Williams transformation to the construction

of nonregular fractional factorial designs. We provide a class of multilevel nonregular designs

by manipulating nonlinear level permutations on regular designs via the Williams transformation.

While two-level nonregular designs have been catalogued by some researchers, the construction

of multilevel nonregular designs was rarely studied. The approach in Chapter 3 is a pioneer work

in this field. The constructed designs are easily obtained, and shown to have better properties than

regular designs.

In viewing that data-driven modeling is gaining more ground as one of the best tools in decision-

making processes, we explore the extension of experimental design strategies into data-driven

problems. The analysis of big data usually involves critical issues in computation and storage, and

an intuitive way to solve the issues is to only store and analyse an informative subsample instead of

the full data. There are a couple of pioneer works in this field, while further exploration is still in
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high demand. Chapter 4 studies the subdata selection problem in big-data scenarios. We develop

a sequential addition-elimination algorithm for subdata selection. The algorithm is inspired by the

fact that an orthogonal array of two levels is D-, A-, and G-optimal for linear regression. We de-

fine a discrepancy to measure how well a subdata set approximates an orthogonal array. Based on

this discrepancy, we develop an algorithm which sequentially selects data points as well as elim-

inating data points from the full data to reduce the number of candidate points and speed up the

selecting process. Compared with available methods, the proposed algorithm works much better

in minimizing the sum of variances of coefficient estimations.
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