
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Towards Live Programming Environments for Statically Verified JavaScript

Permalink
https://escholarship.org/uc/item/6x85w65n

Author
Schuster, Christopher

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x85w65n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

TOWARDS LIVE PROGRAMMING ENVIRONMENTS
FOR STATICALLY VERIFIED JAVASCRIPT

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Christopher Schuster

December 2018

The Dissertation of Christopher Schuster
is approved:

Professor Cormac Flanagan, Chair

Professor Charlie McDowell

Professor Robert Hirschfeld

Gilad Bracha, Ph.D.

Lori Kletzer
Vice Provost and Dean of Graduate Studies



Copyright © by

Christopher Schuster

2018



Table of Contents

List of Figures vi

List of Tables ix

List of Listings x

Abstract xii

Acknowledgments xiv

1 Introduction 1
1.1 Live Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Goal and Method . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Live Programming Environments for JavaScript 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Separating Rendering from Event Handling . . . . . . . . . . . . . . . . 20

2.2.1 Traditional/Imperative GUI Programming . . . . . . . . . . . . . 21
2.2.2 Model-View-Update Pattern . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 User Interactions in MVU Applications . . . . . . . . . . . . . . . 25

2.3 Live Programming Environment Integration . . . . . . . . . . . . . . . . 26
2.3.1 Code Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Navigating Execution History and Code Versions . . . . . . . . . . 28
2.3.3 Enforcing MVU Pattern . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Live Programming by Example . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Live Code Updates based on Output Examples . . . . . . . . . . . 35
2.4.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Live Programming by Direct Manipulation of the Output . . . . . . . . . 38

iii



2.5.1 Example Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Live Programming for MVU applications . . . . . . . . . . . . . . 46
2.6.2 Live Programming by Example . . . . . . . . . . . . . . . . . . . 48

3 Program Verification for JavaScript 50
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 ESVERIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Annotating JavaScript with Assertions . . . . . . . . . . . . . . . 52
3.2.2 max: A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Stateful Programs and Loop Invariants . . . . . . . . . . . . . . . 53
3.2.4 Higher-order Functions . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.5 Arrays and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.6 Dynamic Programming Idioms . . . . . . . . . . . . . . . . . . . 57

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Reversing an Ascending List . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 MergeSort Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Custom Generic List Class . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 Theorems and Proofs written in JavaScript . . . . . . . . . . . . . 72

3.5 Future Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Formal Development of Program Verification with 𝜆𝑆 76
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Logical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Quantifier Instantiation Algorithm and Decision Procedure . . . . . . . . 82
4.4 Syntax and Semantics of 𝜆𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7.1 Imperative Programs . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.2 Recursive Data types and Classes . . . . . . . . . . . . . . . . . . 96

4.8 Comparison with Refinement Types . . . . . . . . . . . . . . . . . . . . . 97

5 Automatic Test Generation with Counterexamples 101
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Verification Errors and Assertion Violations . . . . . . . . . . . . . . . . . 103
5.3 Dynamic Checking of Assertions . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Higher-order Functions . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Contract Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Synthesis of Counterexample Values . . . . . . . . . . . . . . . . . . . . 110
5.5 Generating Counterexample Function Calls . . . . . . . . . . . . . . . . . 112
5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 114

iv



6 Integrated Development and Verification Environments 116
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Environment Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Basic Line Markers . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Verification Condition Inspector . . . . . . . . . . . . . . . . . . . 122
6.2.3 Counterexample Popups . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.4 Debugger Integration . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Evaluation and User Study . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Future Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Related Work 134
7.1 Live Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Automatic Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 Integrated Verification Tools . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusions 143
8.1 Discussion of Research Method . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A Formal Definitions and Theorems in Lean 149
A.1 syntax.lean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 definitions1.lean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 definitions2.lean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.4 theorems.lean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B User Study Tutorial and Experiments 188
B.1 Tutorial 1: JavaScript Live Editing . . . . . . . . . . . . . . . . . . . . . 188
B.2 Tutorial 2: Program Verification With Pre- and Postconditions . . . . . . 189
B.3 Tutorial 3: Interactive Verification Condition Inspector . . . . . . . . . . 190
B.4 Tutorial 4: Verification and Debugger Integration . . . . . . . . . . . . . 192
B.5 Experiment 1: Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.6 Experiment 2: Dice Rolls . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.7 Experiment 3: Digital 24 Hour Clock . . . . . . . . . . . . . . . . . . . . 195

C User Study Survey Answers 197

Bibliography 205

v



List of Figures

1.1 The “Gulfs of execution and evaluation” [85] explain the difficulty of us-
ing tools to achieve goals. In the context of programming environments,
the user observes the program behavior in terms of output and feedback
by the programming environment, compares the actual behavior with the
intended goal (evaluation), modifies the program through code edits (ex-
ecution) and repeats this process. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The execution state of a running program is inherently linked to the source
code, so code updates have to resolve direct links (shown in brown) and
potential mismatches between declarations and runtime data (shown in
teal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 In the MVU pattern, interactions by the user are the basis for updates that
result in a new model thereby a new/changes output. . . . . . . . . . . . 25

2.3 Live code updates in MVU applications. . . . . . . . . . . . . . . . . . . . 28
a Changes to the view code will re-render the output immediately . 28
b Changes to the update code only affect subsequent events . . . . 28

2.4 Event handling and live code updates with the MVU pattern also enable
past states of the application and different versions of the code to be nav-
igated at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
a A trace of model states in MVU enables back-in-time debugging . 29
b Live code updates in MVU also enable runtime version control . . 29

2.5 Formal definition of a system for MVU applications. A system transition is
triggered by an interaction 𝑖 and produces output 𝑜. In particular, the sys-
tem processes regular input events 𝑞 and enables runtime updates of the
view and update code while providing continuous feedback. The concrete
syntax classes for values 𝑎, expressions 𝑒 and the evaluation semantics 𝑒 ↓ 𝑎
are left unspecified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 The live programming environment features an editor, a live view of the
output as well as controls for traveling to previous code versions/execution
states and for resetting the state to initial values. . . . . . . . . . . . . . 33

vi



2.7 With live programming by example, the view code can be changed based
on output example, e.g. by direct manipulation of the previous output.
The new view code should be inferred to closely match the user-supplied
output example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Formal definition of a system that supports live programming by example
as an extension to the syntax and semantics given in Figure 2.5. . . . . . 38

2.9 A live programming environment with support for live programming by
example. Stopping the normal execution 1 prevents event processing
but enables direct manipulation of the UI including editing the text dis-
played in the output 2 . Based on this UI manipulation, the correspond-
ing string literal in the source code 3 is changed automatically. . . . . . 41

3.1 The basic verification workflow: 12esverify generates and statically checks veri-
fication conditions by SMT solving. . . . . . . . . . . . . . . . . . . . . . 59

3.2 The code on the left is annotated with a postcondition in line 4. A simpli-
fied verification condition for this postcondition is shown on the right. . . 60

3.3 The proposition on the left has a universal quantifier. On the right, this
quantifier is instantiated with concrete values of 𝑎 and 𝑏, yielding an aug-
mented proposition that can be verified with simple arithmetic. . . . . . 61

4.1 Syntax of logical propositions used in the verifier. . . . . . . . . . . . . . 78
4.2 The decision procedure lifts, instantiates and finally eliminates quantifiers.

The number of iterations is bounded by the maximum level of quantifier
nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Syntax of 𝜆𝑆 programs. Function definitions have pre- and postconditions
written as simple logical propositions with the 𝑠𝑝𝑒𝑐 syntax for higher-order
functions. The syntax of operators and values follows the definition in
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Operational semantics of 𝜆𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Proposition and term contexts contain a hole • for the evaluation result. 90
4.6 The judgement 𝑃 ⊢ 𝑒 ∶ 𝑄 verifies the expression 𝑒 while assuming 𝑃,

yielding a marginal postcondition 𝑄 with a hole • for the evaluation result. 91
4.7 Extending the verification rules of 𝜆𝑆 with simple immutable classes with

class invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 Selected typing and subtyping rules of a statically typed language 𝜆𝑇 .

Functions are annotated with refined base types or dependent function
types where refinements 𝑅 are analogous to specifications in 𝜆𝑆. . . . . . 98

5.1 The basic verification workflow: 12esverify generates verification conditions to
be checked by SMT solving. In order to explain verification issues to the
programmer, 12esverify also generate tests for failed verification conditions that
serve as counterexamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vii



6.1 IDVE displays verification conditions for this annotated JavaScript pro-
gram as line markers. The assertion in line 12 can be statically verified
but a bug in line 7 causes a verification error for the postcondition in line
3, so IDVE shows -1 as counterexample for n. . . . . . . . . . . . . . . . 118

6.2 Verification conditions displayed as linemarkers with short errormessages
displayed as tooltips. Due to a missing precondition, the value of n may
be incompatible with the + operator. . . . . . . . . . . . . . . . . . . . . 121

6.3 Selecting the unverified verification condition in line 4 opens a verification
inspector on the right, showing assumptions, assertions and a debugger
for the counterexample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



List of Tables

6.1 Participants indicated which features were used in the experiments and
whether these features are seen as helpful. . . . . . . . . . . . . . . . . . 130

6.2 Usage and perception of verification environment features in relation to
self-proclaimed proficiency. . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



List of Listings

1.1 Three different approaches for describing and checking correctness prop-
erties: testing, type checking and program verification. . . . . . . . . . . 8
a The unit test testMax checks the behavior of max for concrete ex-

ample inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
b Type annotations for arguments and result expressed as Refine-

ment Types [117] . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
c Annotated pre- and postconditions for program verification with 12esverify 8

2.1 A simple counter implemented with jQuery DOM manipulation and im-
perative event handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Simple counter example in Listing 2.1 rewritten as MVU application with
JSX/React-style view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 JavaScript implementation of a simple interactive keyword replacer using
the MVU pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Simplified algorithm for synthesizing code updates when deleting charac-
ters in the UI as shown in Figure 2.9. In this example, "pard" is deleted
from "leopard". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 A JavaScript function max annotated with pre- and postconditions. . . . . 53
3.2 A JavaScript function that proves ∑𝑛

𝑖= 𝑖 =
(𝑛+)⋅𝑛

 . Loop invariants are not
inferred and need to be specified explicitly for all mutable variables in scope. 54

3.3 The higher-order function twice restricts its function argument f with a
maximum precondition and a minimum postcondition. The function inc
has its body as implicit postcondition and therefore satisfies this spec. . . 56

3.4 12esverify includes basic support for immutable arrays. The elements of an array
can be described with every. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 The standard Promise.resolve() function in JavaScript has complex poly-
morphic behavior. This simplified mock definition illustrates how 12esverify en-
ables such dynamic programming idioms. . . . . . . . . . . . . . . . . . 58

5.1 Verifier detects assertion violation due to missing loop invariant. . . . . . 104
5.2 Replacing while loop in Listing 5.1 with counterexample values for test

generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



5.3 12esverify example with a higher-order twice function. The pre- and postcon-
dition of its function argument f and of the returned function g are both
described with the spec syntax. Bugs in lines 10 and 14 cause verification
errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Transformed code for the twice function in Listing 5.3. The assignments
in lines 2 and 12 install wrappers according to the spec in lines 7 and 9
of Listing 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Generated tests for methods involve to synthesize this object. . . . . . . 111
a A simple class definition. The assertion in line 6 does not hold for

all instances of A. . . . . . . . . . . . . . . . . . . . . . . . . . . 111
b Generated test for the failed assertion in line 6 of Listing 5.5a. . . 111

5.6 Generated test for the precondition of f(null) in line 9 of Listing 5.3. . . 112
5.7 Generated test for the postcondition in line 9 of Listing 5.3. In addition to

synthesizing f and wrapping the returned function g, it also generated a
call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



Abstract

Towards Live Programming Environments for Statically Verified JavaScript

by

Christopher Schuster

This dissertation includes contributions to both live programming and program verifica-

tion and explores how programming environments can be designed to leverage benefits

of both concepts in an integrated way.

Programming environments assist users in both writing program code and un-

derstanding program behavior. A fast feedback loop can significantly improve this pro-

cess. In particular, live programming provides continuous feedback for live code updates

of running programs. This idea can also be applied to program verification. In general,

verifiers statically check programs based on source code annotations such as invariants,

pre- and postconditions. However, verification errors are often hard to understand, so

programming environment integration is crucial for supporting the development process.

The research for this dissertation involved the implementation of esverify, a

program verifier for JavaScript, as well as prototype implementations of multiple pro-

gramming environments. These implementations demonstrate potential benefits and

limitations of proposed solutions and enable empirical evaluation with case and user

studies. Additionally, the proposed designs were formally defined in order to explain

the core idea in a concise way and to prove properties independent of concrete specifics

of existing systems and programming languages.

xii



The resulting systems represent possible solutions in a vast design space with

various contributions. The research on live programming showed that a programming

model that separates event handling from output rendering enables not only live code

updates but also runtime version control and programming-by-example. For program

verification, esverify represents a novel approach for static verification of both higher-

order functional programs and dynamically-typed programming idioms. esverify can

verify nontrivial algorithms such as MergeSort and a formal proof in the Lean theorem

prover shows that its verification rules are sound. Finally, a programming environment

based on esverify supports inspection and live edits of verification conditions including

step-by-step debugging of automatically generated tests that serve as executable coun-

terexamples. As part of a user study, participants used these features effectively to solve

programming tasks and generally found them to be helpful or potentially helpful.

xiii



Acknowledgments

I owe my deepest gratitude to my advisor, Cormac Flanagan, for his ongoing support,

guidance, and for always being available for discussions. I am proud to be one of his

students.

I am also very thankful to my mentor, Charlie McDowell, and his helpful advice

– not only for my research but also for teaching – and I want to thank Robert Hirschfeld

and Gilad Bracha, for serving on my committee and providing useful feedback.

Additionally, I want to thank my lab mates at the Software and Languages

Research Group at UCSC. I will fondly remember our discussions about programming

languages, technology, games, politics and metaphysical topics. In particular, Thomas

Schmitz answered many of my questions about theorem proving, Dustin Rhodes of-

ten surprised me with his pragmatic and unconventional perspective, Sohum Banerjea

never shied away from debates on any topic, and Tim Disney is one of the reasons why

JavaScript became the basis for this dissertation.

Furthermore, I also want to thank important colleagues and mentors that sup-

ported me during internships, especially Marcelo Siero, Dan Ingalls and Robert Krahn.

During my years in Santa Cruz, I consider myself lucky to enjoy the friendship

of Josh Pang, Saein Park and many others on this long journey.

Lastly, this thesis would not have been possible without the support and under-

standing of my family.

xiv



The text of this dissertation includes passages of the following published articles:

• Chapter 2 contains material adapted from C. Schuster and C. Flanagan, “Live Pro-

gramming for Event-Based Languages”, Reactive and Event-based Languages and

Systems Workshop, REBLS 2015, Pittsburgh, PA, USA, as well as C. Schuster and

C. Flanagan, “Live Programming by Example: Using Direct Manipulation for Live

Program Synthesis”, LIVE Workshop on Live Programming Systems, LIVE 2016,

Rome, Italy.

• Chapters 3 and 4 contain material adapted from C. Schuster, S. Banerjea, and C.

Flanagan, “esverify: Verifying Dynamically-Typed Higher-Order Functional Pro-

grams by SMT Solving”, Symposium on Implementation and Application of Func-

tional Languages, IFL 2018, Lowell, MA, USA.

• Chapters 5 and 6 contain material submitted for publication at the International

Conference on the Art, Science, and Engineering of Programming, ‹Programming›

2019, Genova, Italy.

The dissertation author was the primary investigator and author of these papers. The

coauthors listed in these publication directed and supervised the research which forms

the basis for this dissertation.

xv



Chapter 1

Introduction

Nobody actually creates perfect code the first time around, except me.
But there’s only one of me.

— Linus Torvalds

A computer is a universal machine in the sense that anything that can be com-

puted at all can be implemented and executed by any Turing-complete system. The

sequence of steps taken by the computer are expressed by program code written in a

programming language. Different programming languages may have different formal

and mental models and abstractions but ultimately have the same power for expressing

computation. Due to being universal, there are infinite possible programs a computer can

execute. Therefore, selecting precisely the desired program behavior requires a very pre-

cise language. In that sense, programming languages fundamentally differ from natural

languages which rely on context, assumptions and cultural knowledge. This difference

causes programming to be extremely difficult. In particular, it is often relatively easy to

informally describe ideas about expected program behavior but tedious, frustrating and

error-prone to implement this behavior in a programming language. In the end, most

regular computer users do not program their computers and, instead, treat software

as incomprehensible opaque products that cannot be customized to expectations. Even

for professional software developers, programming has generally not become easier or

1



Code Edits

Feedback

Actual BehaviorIntended Behavior

Figure 1.1: The “Gulfs of execution and evaluation” [85] explain the difficulty of us-

ing tools to achieve goals. In the context of programming environments,

the user observes the program behavior in terms of output and feedback

by the programming environment, compares the actual behavior with

the intended goal (evaluation), modifies the program through code ed-

its (execution) and repeats this process.

more intuitive over the last decades. To manage complexity, professional software de-

velopment requires knowledge about a continuously evolving plethora of different tools,

language features and abstractions. In contrast, the way programmers interact with their

programming environment has changed relatively little over time and therefore offers a

high potential for improvement.

As a general model for thinking about tool interaction, Norman proposes the

“Gulfs of execution and evaluation” [85]. In that model, the tool user has intended goals

that are executed with actions and evaluated based on feedback. A tool is easier to use

if execution and feedback are more closely connected to the intended goals. Taking a

water faucet as example, the goal might be a certain temperature and pressure but if two

2



provided handles control the flow of warm and cold water independently, the user needs

to develop an intuition of the mixing process through repeated trial-and-error in order to

achieve the intended result. An alternative tool design with a handle for temperature and

a separate handle for pressure would make it easier for the user to achieve the desired

goals.

Figure 1.1 shows this model applied to programming environments. Here, the

programmer needs to understand the current behavior of a program and how it can

be changed through code edits to match the expected behavior. The design of the pro-

gramming environment should take this iterative process of execution and evaluation

into account to simplify the programming process (see also Lieberman and Fry [71]).

It is noteworthy that this inherent “tool problem” persists independent of progress in

machine learning and artificial intelligence because the intended behavior still needs to

be communicated and validated in a way that also allows the user to understand and

iteratively change the program behavior.

Programming environments can support the iterative process of execution and

evaluation by reducing the time gap between code edits and feedback. In particular,

live programming aims to provide immediate and continuous feedback for code edits to

running programs.

In addition to manual evaluation of the program behavior and whether it con-

forms with the goals and the mental model of the programmer, it is also possible to

automatically check whether the program code is consistent with a second formalized

description of the intended behavior. For example, by providing examples in the form

3



of executable tests, any discrepancy between expected test outcome and program code

can be detected. Besides tests, the code can also be checked against annotations such as

types, assertions and invariants. If these annotations are expressive enough to describe

functional properties, this enables an automatic static program verification.

This dissertation includes contributions to both live programming and program

verification and explores how future programming environments can be designed to

leverage benefits of both live programming and program verification in an integrated

way.

1.1 Live Programming

For any non-trivial application, it is unlikely that the intended behavior can be imple-

mented correctly without any feedback or experimentation. Rather, programming is an

iterative process involving trial-and-error. Programming environments can support this

process by

• providing detailed feedback about the program execution, e.g. allowing the pro-

grammer to observe the state of variables and sequence of steps with a debugger,

and by

• providing immediate or even continuous feedback for code edits, e.g. allowing the

programmer to edit the code and observe effects without having to re-compile and

restart the program.

These objectives are not only important for the concrete design of the program-

4



ming environment – the latter also affects the design and semantics of the program-

ming language. The ability to change the code of a running application would radically

change the common edit-compile-restart cycle and enable quick experimentation and ex-

ploration. As an analogy, it is significantly simpler to continuously adjust a water hose

than to aim and shoot with a bow and arrow.

As Figure 1.1 illustrates, interactions with programming environments involve

an iterative cycle of code edits by the programmer and feedback to evaluate how these

edits affect the program behavior. Live programming is particularly promising for im-

proving this process and supporting human understanding due to its emphasis on con-

tinuous feedback and learning by doing. The positive effects of practical experience and

experimentation on the learning process have been shown empirically [51, 91] and form

a core principle of computer science education [50, 54, 86]. The manual effort involved

in getting feedback to a change in the code and the time delay it takes for these changes

to become visible discourage quick experiments in this kind of trial-and-error setting. Es-

sentially, the programmer should not be required to mentally simulate mundane parts of

the program if the environment can do it as well. Therefore, live programming aims to

provide immediate and continuous feedback without the need to switch back and forth

between editing the code and running the program.

An unavoidable challenge of live programming is the inherent entanglement

between execution state and program code. Code updates in the presence of these de-

pendencies may require the programmer to specify data conversions which delays feed-

back and thereby hinders live programming. Possible solutions are often trade-offs that

5



restrict potential update points in the execution or compromise on consistency by leaving

references to outdated code in the new execution state.

1.2 Program Verification

For large and complex projects, any specification of the intended behavior is prone to

have errors, i.e. unintended differences with the expected behavior of the program. The

(executable) program code itself is the most complete specification of the behavior, so

bugs in the code often cause the program to stop working or misbehave. However, if the

intended behavior is described with multiple different specifications, the programming

environment can automatically check whether these specifications are consistent with

each other and thereby reduce the risk of errors going unnoticed. Besides the actual

program code, automatic tests, type annotations, and assertions are often used to specify

expected behavior.

Since tests are executable programs, any discrepancy between the program

code and the test assertions can be detected simply by running the tests. Therefore, failed

tests can be examined with the same debugging tools that enable stepping through the

code and inspecting the execution state. This integration enables programmers to obtain

detailed and concrete feedback and greatly contributed to the adoption of automatic

testing as a general practice in software development.

However, tests require concrete example inputs for their execution. Therefore,

automatic testing can only check the program behavior for a finite set of possible inputs.

6



This is also true for random testing approaches such as QuickCheck [23]. Depending

on the test coverage and the expectations about robustness, this limitation may be more

or less severe. For example, programs that receive input from untrusted sources may

need to guarantee certain security properties in the presence of adversarial inputs, while

programs for visualizing data sets might be checked adequately with a few manual tests.

Figure 1.1a shows an example of a max function and an accompanying unit test.

Here, the expected return value can be checked against a concrete result. Alternatively, it

is also possible to merely check whether the result is at least as big as the input arguments.

In addition to tests, types are a way to constrain the possible program behavior

such that variables, function arguments and function results can only be certain sets of

values. Simple types are often too imprecise to specify the functional correctness of a

program but type systems can still be used to ensure the absence of certain categories

of errors. For example, memory safety and the absence of segmentation faults can be

ensured by dynamic type checking (as in JavaScript and Python) or by a combination of

dynamic and static type checking (e.g. Java and C#). With explicit type annotation in

the code, the programming environment can also provide feedback about discrepancies

between the stated type and the runtime values. Especially static type checking can

be useful as it provides guarantees for all possible executions but, even if static type

checking fails, gradual typing and dynamically-enforced contracts can be used to obtain

helpful feedback for understanding and fixing potential bugs occurring at runtime.

The main drawback of type checking is the trade-off between expressiveness

and overhead for the programmer. Primitive type systems often have a simple type syn-

7



function max(a, b) {
return a > b ? a : b;

}
function testMax() {

const result = max(23, 42);
assert(result == 42); // or following examples below: result >= 23 && result >= 42

}

(a) The unit test testMax checks the behavior of max for concrete example inputs.

/*@ max :: (a: number, b: number) => { number | v >= a && v >= b } */
function max(a: number, b: number): number {

return a > b ? a : b;
}

(b) Type annotations for arguments and result expressed as Refinement Types [117]

function max(a, b) {
requires(typeof a === 'number' && typeof b === 'number');
ensures(result => result >= a && result >= b);
return a > b ? a : b;

}

(c) Annotated pre- and postconditions for program verification with esverify

Listing 1.1: Three different approaches for describing and checking correctness prop-

erties: testing, type checking and program verification.

tax, support subtyping and automatic type inference and provide helpful error messages

but are incapable of expressing functional correctness properties. Rich type systems with

dependent function types, type refinements and effects are expressive enough to more

precisely specify the intended program behavior but often require explicit annotations

and a mental model of the intricate type checking algorithm in order to comprehend the

error messages and the limitations of type inference and subtyping.

Figure 1.1b shows an example of a max function with type annotations. While

8



the annotation in lines 2 and 3 use basic types as common in TypeScript [12], the com-

ment in the first line specifies a more precise return type that establishes a minimum

bound for the result with a refined type [117].

As a third alternative, the intended program behavior can also be described

with assertions, i.e. logical propositions about values and variables in the code. Check-

ing of assertions is closely related to type checking. However, while type checking is

based on a separate syntactic class of types and typing rules that compare, infer and

manipulate these types, assertion checking is about determining the truth of a proposi-

tion in logic. Depending on the assertion language, different methods can be used to

check assertions statically or dynamically. If assertions are simple boolean expressions,

they can be checked at runtime by simply evaluating these expressions as part of the

execution of the main program. However, assertions involving higher-order functions

cannot be checked immediately for all possible values, so dynamic checking of function

arguments and results has to be deferred until these values are available (similarly to

contracts). Static checking of assertions, i.e. program verification, is comparable with

rich and expressive type systems, as it enables the programmer to express functional cor-

rectness properties and check whether the program code conforms to these properties

but it also has similar disadvantages in terms of overhead and complexity. In particular,

the program verifier requires annotations such as pre-, postconditions and invariants in

order to prove that an assertion is valid for all values, and the programmer has to know

the basic verification process in order to understand and fix verification issues.

Figure 1.1c shows an example of a max function with annotated pre- and post-

9



condition. By assuming the preconditions, a program verifier such as esverify can prove

that the postcondition holds for all possible values of a and b.

1.3 Research Goal and Method

Both live programming and program verification are well-known concepts that have been

studied and applied for decades. The idea of live programming can be traced back to

systems with self-contained development tools such as Smalltalk [40] but there is also

renewed interest with software projects such as Swift Playground and Elm [25] as well

as academic research conferences such as the LIVE workshop. Similarly, program veri-

fication and formal methods in general have been the topic of extensive prior research

with impressive achievements in the last years such as a verified C compiler [67] and

a verified microkernel [56]. Even for non-academic projects, verified programming lan-

guages such as Dafny [61] are increasingly adopted to verify correctness properties of

commercial software.

However, the integration of program verification into development environ-

ments is a relatively new topic with many open questions. The complexity of the ver-

ification process and the resulting usability issues for the programmer are still major

obstacles for program verification. While live programming is generally orthogonal to

static checking, the live programming perspective seems to provide an ideal approach

for exploring novel solutions with fast feedback cycles. The central question of this dis-

sertation research is therefore:

“How can live programming environments support verification to provide a

10



better programming experience?”

There is a vast design space of possible solutions to this question. A comprehen-

sive evaluation of a possible solution would require a stable and mature implementation

of both a program verifier and a live programming environment. Unfortunately, these

tools require immense engineering effort to create. For example, the projects mentioned

above generally have teams of full-time developers or active open source communities.

In order to explore and evaluate possible solutions as part of this dissertation research,

I followed an approach that instead relies on prototype implementations and simplified

formal models.

The prototype implementations created as part of this dissertation are not

ready for productive use on real-world projects. However, they allow experimentation

with smaller code examples, and, by using JavaScript as both source and object language,

they enable live online demos that can be used in a browser without local installation.

These demos illustrate with practical examples, the potential benefits and limitations of

solutions to a wider audience.

Furthermore, formal definitions summarize the core ideas of the proposed

solutions in a concise way. By omitting orthogonal concepts of actual programming

languages, the formalism clarifies how the approach can be applied to a wide range of

languages.

In addition to sketching potential solutions with prototype implementations

and formal definitions, the proposed design also has to be evaluated in order to determine

11



its properties and to compare it with other solutions. Here, prototypes can be used for

limited case studies such as implementations of well-known algorithms, as well as user

studies with participants who solve smaller programming tasks with the tool and provide

feedback about their experience. Additionally, a formal definition also enables formal

proofs of properties such as soundness.

1.4 Outline and Contributions

Chapter 2 presents an approach for live programming in the context of graphical user

interfaces (GUIs), and describes how this approach enables back-in-time debugging and

programming-by-example. As explained in Section 1.1, live code updates may cause is-

sues due to references and dependencies between execution state and code. While these

dependencies cannot be avoided completely, a programming environment can provide

a better support of live programming by restricting the programming model such that

event-handling is separated from output rendering. This approach allows live code up-

dates in-between events and back-in-time debugging while re-rendering the output at

each step to provide immediate and up-to-date feedback. Additionally, this approach

also enables a form of programming-by-example such that code edits are automatically

inferred from output examples or direct manipulation of the user interface. In addition to

a concrete prototype implementation, the chapter also presents a cursory formalization

of these concepts.

Chapter 3 introduces esverify, a program verifier for JavaScript based on SMT

12



solving. esverify is able to verify both higher-order functions and dynamically-typed

programming idioms in JavaScript and is designed with the goal of ensuring quick feed-

back and a comprehensible verification process. In particular, esverify explicitly avoids

automatic inference procedures and heuristics that are common in other program ver-

ifiers. For example, it uses a custom trigger-based quantifier instantiation algorithm

that is more robust, predictable and simpler than default instantiation heuristics in SMT

solvers. As a result, esverify requires more explicit annotations to verify some pro-

grams but verification errors are easier to understand and inspect with a programming

environment.

Chapter 4 includes a formal development of program verification that follows

the esverify approach. The formalism defines program verification for 𝜆𝑆, a pure func-

tional core language. The verification rules involve verification conditions (VCs). Quan-

tifiers in these VCs are instantiated according to a custom quantifier instantiation algo-

rithm and validity of the resulting propositions is based on an axiomatization of the SMT

solver. Based on this formalism, it can be shown that verification is decidable, i.e. ver-

ification terminates for all input programs, and sound, i.e. verified programs adhere to

their specification during evaluation without getting stuck.

Chapter 5 describes how verification errors in esverify can be turned into exe-

cutable tests that serve as concrete witnesses. Error messages based on the VC itself are

often not detailed enough to explain verification errors to the programmer. However, by

generating an executable counterexample based on the output of the SMT solver, the ver-

ification error can be inspected in terms of concrete variable values and its execution can

13



be debugged step-by-step. The test generation therefore represents a basis for further

integration into a programming environment. Additionally, some verification errors are

caused by limitations of the verifier and insufficient annotations rather than bugs in the

code. Automatically generated tests can assist the programmer in distinguishing these

errors and fixing annotations.

Chapter 6 presents IDVE, a prototype of a programming environment that in-

tegrates program verification with interactive tool support. In particular, IDVE shows

counterexamples with concrete values directly in the code editor and it features a ver-

ification inspector. The verification inspector displays detailed information about the

VC, such as assertions and assumptions, and it also enables step-by-step debugging of

the automatically generated test. Furthermore, the verification inspector also enables

the programmer to edit assertions and assumptions of a VC in order to support quick

feedback and experimentation similar to live programming. Thereby, the verification in-

spector allows programmers to explore the verifier state without manually adding assert

statements to the code, analogous to how interactive debuggers let programmers avoid

printf debugging. Additionally, this chapter also describes an evaluation of IDVE with

an online user study with 18 participants where participants solved small programming

and verification tasks and answered a survey about their experience.

Finally, Chapter 7 surveys related work and Chapter 8 concludes this thesis.

Appended to this thesis is the Lean source code of the formal development and

the proved theorems in Appendix A. Additionally, Appendix B lists the programming tasks

14



that were part of the user study1 and Appendix C includes a record of all survey answers

by participants in the user study.

To summarize, this dissertation research includes the following contributions:

• a live programming environment for event-based GUI applications based on a pro-

gramming model that separates event handling from output rendering,

• an integration of live programming with programming by example based on direct

manipulation of the string literals in the user interface,

• an approach for verifying dynamically-typed JavaScript programswith higher-order

functions,

• a bounded quantifier instantiation algorithm that enables trigger-based instantia-

tions without heuristics or matching loops,

• a prototype implementation called esverify,

• a formalization of the verification rules and a proof of soundness in the Lean theo-

rem prover,

• an extension for esverify that automatically generates test cases for failed verifi-

cation conditions with synthesis of function values and assertion-violating calls,

• an integrated development and verification environment (IDVE) with a novel in-

teractive verification inspector and debugging interface, and a

An archived version of the user study is available at https://esverify.org/userstudy-archived.

15

https://esverify.org/userstudy-archived


• user study to evaluate whether and how IDVE assists with simple programming

and verification tasks.

16



Chapter 2

Live Programming Environments for JavaScript

If there is any delay in that feedback loop between thinking of something and
building on it, then there is this whole world of ideas which will never be.

— Bret Victor

This chapter characterizes live programming as a feature of programming en-

vironments, distinguishes it from other related concepts, outlines challenges and de-

scribes a live programming approach for GUI applications. This approach restricts the

programming model such that event handling is separated from output rendering, and

thereby enables live code changes between events while continuously updating the ren-

dered output. Besides a concrete implementation of a live programming environment for

JavaScript and a language-independent formal definition, this chapter also presents live

programming by example as an extension to live programming that infers code updates

from output examples and by direct manipulation.

2.1 Introduction

The term live programming is used in different contexts with no clear consensus on its

definition. Live programming can denote the act of programming as part of a live art or

music performance in front of an audience. Another use of the term live programming

17



involves a programming environment that executes parts of a program while display-

ing intermediate results alongside the code similar to interactive workspaces/notebooks

or ‘playgrounds’. However, this research focusses on live programming as the ability

to change the code of a running application without restarting it (also known as hot-

swapping) and providing immediate feedback about these code changes.

Live programming is closely related to Dynamic Software Updating (DSU) [31,

47, 39, 98] but focusses on development tool support rather than patching of production

systems. Ambiguities and limitations of live code updates are not catastrophic failures

for live programming environments. Instead, live programming favors a ‘best effort’

approach that minimizes the overhead for the development process. In contrast, DSU

requires programmers to precisely specify datamigrations in order to resolve ambiguities

and ensure persistency of production data.

Furthermore, live programming goes beyond self-contained development envi-

ronments with live code updates, such as Smalltalk [40] and Lisp [93]. In live program-

ming environments, immediate and continuous feedback about code updates is not a side

effect but a primary goal. In particular, this often involves re-execution of the changed

code as well as dependent parts of the program to see the effects of the code update.

For amore comprehensive discussion and survey or existing work on live coding,

live programming and exploratory programming, see Rein et al. [88].

Using an arbitrary programming language with function values and heap ref-

erences as an example, Figure 2.1 shows the entanglement between source code and

execution state. Live programming involves runtime updates to the code while retaining

18



Code Execution State

Heap

Call Stack

Closures Output

PC

Figure 2.1: The execution state of a running program is inherently linked to the

source code, so code updates have to resolve direct links (shown in

brown) and potential mismatches between declarations and runtime

data (shown in teal).

parts of the execution state, so each of these dependencies poses a question:

• At which point does the execution, i.e. the program counter (PC), resume if the

currently executed statement or expression is changed?

• What happens to the current function call stack if the corresponding functions are

removed from the code?

• How are closures maintained if the surrounding code is modified?

• Can the currently visible output be updated to reflect the new version of the ren-

dering code?

• What happens if the format and shape of heap-allocated objects is changed in the

source code?

19



A programming system with support for live programming has to answer these

questions and address potential inconsistencies. This often involves trade-offs such as

restricting live programming to certain fragments of the source code, delimiting poten-

tial update points in the execution, or leaving references to outdated code in the new

execution state.

2.2 Separating Rendering from Event Handling

It has been shown that certain application architectures enable live programming for a

large range of program edits without manual data migration. A live programming system

with continuously updated feedback was first presented by Hancock [43] and further

explored by systems like SuperGlue, which uses dynamic inheritance and explicit FRP

signals [74].

Burckhardt et al. and McDirmid presented a solution to these challenges for

reactive event based systems [14, 75]. In contrast to DSU systems, which guarantee safe

updates with the cost of manual data conversions, a best effort approach better suits the

goals of live programming. To prevent outdated code in closures and avoid complicated

transformations of these closures, the global application state is restricted to not contain

any function values. Furthermore, if the code for rendering output is separated from

event handling code, it can be evaluated continuously to keep the displayed output up-

to-date.

More recent work outlined the possible design space between live programming

20



<span id="val">Count: 0</span>
<button id="incButton">+</button>
<script>

var count = 0;
$("#incButton").on("click", function () {
count++;
$("#val").html("Count: " + count);

});
</script>

Listing 2.1: A simple counter implemented with jQuery DOM manipulation and

imperative event handling.

systems that resume computation (with a possibly inconsistent state) and systems that

record and replay execution [75], as well as introducing managed time as a concept for

supporting both live programming and time travel [76].

This section exemplifies the obstacles for live programming, introduces a partic-

ular architecture pattern for stateful reactive GUI applications that supports continuous

feedback in a live programming environment, and briefly discusses ways to enforce this

programming model statically and dynamically.

2.2.1 Traditional/Imperative GUI Programming

To illustrate the approach, it is useful to first consider a ‘traditional’ programming style

for GUI applications.

Listing 2.1 shows a jQuery implementation of a graphical ‘click counter’ as a

minimal example of an interactive application. The user interface consists of a text span

to display the current value of the counter, as well as a button. Here, the jQuery function

21



‘$’ is used to select elements in the browser document object model (DOM) based on

their id attribute, attach event handlers and manipulate the DOM. The JavaScript code

uses a global variable count and registers an event handler for the button such that every

click increments the count and updates the display.

Independent of coding style, this imperative way of changing the user interface

and registering event handlers poses a significant obstacle for live programming.

As an example, renaming “Count:” to “Clicks:”, involves code changes to lines

1 and 7. In a live programming environment, these changes should ideally update the

registered event handlers, which are closures stored in the DOM state, and update the

visible output of the program without modifying the application state, i.e. the variable

“count” should remain unchanged. However, this essentially involves removing the ob-

solete event handlers from the DOM, registering the new event handlers (re-evaluating

line 5) and updating the output (re-evaluating line 7) without mutating the state (not

re-evaluating line 6). Due to the structure of the code, the only choice is to update the

event handlers without re-evaluating them, thereby displaying an inconsistent output

until the next click event, or to restart the whole application, thereby losing the current

value of count and losing the benefits of live programming.

2.2.2 Model-View-Update Pattern

In order to solve the problems outlined above, a program can be separated into three

parts: a model, a view and an update component. This architecture is similar to the

well-known and popular Model-View-Controller (MVC) pattern [58].

22



Since its origin in the context of Smalltalk, MVC has been adapted and applied

in different ways for building user interfaces for both desktop and web applications.

Following the usual object-oriented design methodology, the model, the view

and the controller in MVC are sets of objects that fulfil different roles of the application

and adhere to the principle of separation of concerns. Themodel is responsible for domain

logic and state, the view is the visible user interface and the controller reacts to user input

by changing the model, the current view, and its own state. It is noteworthy that model,

view and controller all have internal state which has to be kept consistent with imperative

updates due to the lack of declarative dependency definitions.

The Model-View-Update pattern (MVU) is an adaptation of MVC that incorpo-

rates ideas from functional and reactive programming in order to provide a more declar-

ative programming style [105]. In contrast to MVC, the update component only operates

on the model and cannot directly access the view while the view only generates a user

interface without maintaining internal state. Therefore, both the view and the update

component are stateless and can be understood as pure functions. Essentially,

• themodel encapsulated the entire application state (including the state of the UI),

• the view returns the output/user interface based on the current model, and

• the update component processes events, yielding a new model.

It is noteworthy that the separation of model, view and update also applies

to reuse of code as part of a library or larger application. While component-based UI

23



/* Model (in this case a simple global variable) */
let count = 0;

/* Update (functions that mutate the model) */
function inc() {
count++;

}

/* View (a pure function that generates and returns the user interface) */
function render() {

return (
<div>

<span>Count: {count}</span>
<button onclick={inc}>Inc!</button>

</div>
);

}

Listing 2.2: Simple counter example in Listing 2.1 rewritten as MVU application with

JSX/React-style view.

systems use a single component object or class as composable and reusable abstraction,

MVU requires the model, view and update to be composed separately.

There are variations of MVU and other patterns for UI architectures that advo-

cate unidirectional data flow [105] which have recently become popular for developing

web applications such as Redux, Ur/Web [16], the Elm Architecture1, and reactive pro-

gramming in general [13, 52, 89, 92]. However, the approach in this chapter focusses

on the MVU pattern outlined above due to its simplicity relative to more sophisticated

solutions.

Listing 2.2 illustrates how the example in Listing 2.1 can be rewritten with the

The Elm Architecture: https://guide.elm-lang.org/architecture/.

24

https://guide.elm-lang.org/architecture/


Output

Model

View

Update

Model

View

Update

Output

Figure 2.2: In the MVU pattern, interactions by the user are the basis for updates

that result in a new model thereby a new/changes output.

MVU pattern. Here, the model simply consists of a global variable containing the current

click count as integer. In more complex applications, the model would be defined in

terms of user-defined classes and data types. Updates to the model are initiated by

event handlers that are declaratively bound to elements of the UI. In this case, the inc

function is bound to the button in line 14 and simply mutates the model by incrementing

the count. Finally, the view is a top-level render() function that may invoke other view

functions and returns a tree structure of the output. The details of how this tree structure

is defined and constructed is application-specific and insignificant for live programming.

In Listing 2.2, inline XML/HTML tags are used to create the user interface (also known

as JSX syntax popularized by React).

2.2.3 User Interactions in MVU Applications

Conceptually, the MVU architecture style handles user interface interactions as input

event (see Figure 2.2). The output is generated by the view based on the current state

25



of the model. Any interaction by the user, such as clicking with the mouse or pressing

a button on the keyboard, represents an input event. This event, alongside the previous

state of the application, initiates an event handling procedure that results in a new and

potentially changed model. The view then renders the new model by generating a new

user interface. It is important to note that this re-rendering is initiated and managed

by the environment or framework and not invoked by user code. This avoids redundant

rendering of unchanged parts of the output and enables differential DOM updates.

2.3 Live Programming Environment Integration

The MVU architecture pattern described in the previous section has advantages for live

programming environments. In particular, it enables continuous feedback for live code

updates, back-in-time debugging and runtime version control.

2.3.1 Code Updates

As illustrated by Figure 2.1 in Section 2.1, any approach for live programming needs

to resolve the inherent entanglement between code and execution state, including the

current program counter, the function call stack and closures.

An event-based model of program execution and an MVU architecture style

(with additional restrictions) avoids some of these links and thereby facilitates live pro-

gramming.

First, the execution is assumed to be strictly single-threaded with a single main

event-loop, as common in JavaScript. In this model, the program code is not actively

26



executed by any thread while the system is waiting for the next event. Therefore, the

execution state between events does not contain a current program counter or active call

stack with regards to the application code. This greatly simplifies code updates at these

update points.

Second, the MVU architecture style summarizes the complete application state

in the model. Therefore, the view and update components can be swapped at runtime

while retaining most of the execution state.

Finally, the application state is restricted to not contain or reference function

values. In some cases, it might be feasible to swap an existing function value for a newer

version of the same function. However, if the original function was removed from the

code, the function value might become outdated. Additionally, code updates might move

or rename function definitions and thereby cause ambiguities if the identity of functions

is determined solely based on the previous and updated version of the code. As a possible

solution, the programming environment could model code updates as semantic actions

instead of plain text edits to resolve these ambiguities. Furthermore, if a function value

references variables in the surrounding scopes then even changes to the surrounding

code could affect values in the environment of the closure. Conceptually, these same

issues also apply to objects as instances of class definitions. However, the identity of

(named) classes is less prone to be confused and methods are not usually closing over

an environment. In conclusion, avoiding function values in the application state ensures

that code updates do not result in ambiguity or outdated references but alternative ap-

proaches might enable live updates even in the presence of closures.

27



Output

Model
View

Update

Model
View

Update

Output

(a) Changes to the view code will re-render

the output immediately

Model
View

Update

Model
View

Update

Output

(b) Changes to the update code only affect

subsequent events

Figure 2.3: Live code updates in MVU applications.

Figure 2.3 depicts how the code of the view and the update component in an

MVU application can be updated at runtime. It is important to note that changes to

the view code result in an re-rendered output. Thereby, the programmer is able to get

immediate feedback about code changes. Changes to the update component, on the

other hand, only take effect at the next event to be processed. As a potential alternative,

it would be possible to replay past events with the new update component.

2.3.2 Navigating Execution History and Code Versions

As described in the previous section, the MVU pattern allows the application state to be

rendered on-demand with a stateless view function. In addition to the current applica-

tion state, this also enables any previous state in the execution history to be displayed as

a simple form of time travel (“debugging back in time” [68]).

On a high level, each step in the execution history is an event and each event

handling procedure produced a corresponding model. Therefore, it is possible to use

28



Output

Model
View

Update

Model
View

Update

Output
Ex

ec
u
ti
on

H
is
to
ry

(a) A trace of model states in MVU enables

back-in-time debugging

Output

Model
View

Update

Model
View

Update

Output

Ve
rs
io
n
H
is
to
ry

(b) Live code updates in MVU also enable

runtime version control

Figure 2.4: Event handling and live code updates with the MVU pattern also enable

past states of the application and different versions of the code to be

navigated at runtime.

the current view to visualize past states of the application as shown in Figure 2.4a. The

implementation of this trace could either maintain snapshots for the model, an event log

to be replayed, or a combination of both.

Similarly, the concept of live code updates can be extended to runtime version

control. Instead of swapping the view and update code based on a source edit, the pro-

gramming environment loads a different version of the code while retaining most of

the execution state. Runtime version control is a common technique in self-supporting

systems. For example, Monticello enables programmers to load different versions of a

package into a live Squeak/Smalltalk environment [84]. In the context of MVU applica-

tions, navigating the version history has the additional benefit of continuous updates to

the output as depicted in Figure 2.4b.

29



2.3.3 Enforcing MVU Pattern

As mentioned in Section 2.2.2, the view should not be able to alter the state of the model.

In pure functional programming languages, this is trivially the case. In languages with

imperative updates, such as JavaScript, the view may accidentally change the model

when rendering the output. This may cause unintended effects with live code updates.

For example, automatic re-rendering after a code change might corrupt the model state

in an irreversible way. In that case, the programmer has to restart the application and

loses the benefits of live programming. However, it is possible to dynamically and stati-

cally detect and enforce that the view does not alter the model.

For example, a dynamic contract could check that the model before and after

each rendering is identical or, alternatively, an immutability proxymembrane could grant

read access but prohibit mutation [113].

Instead of detecting mutation at runtime, it would also be possible to statically

check the codewith a type and effect system. This avoids the performance overhead of dy-

namic checking but might reject valid programs. While mostly preferable for languages

with type annotations, static analysis methods can also check unannotated dynamically-

typed languages such as JavaScript [83, 95].

Similarly, it is possible to either statically or dynamically enforce that the model

does not contain or reference function values/closures as discussed in Section 2.3.1.

30



2.3.4 Formalism

The previous sections described a live programming approach for JavaScript. However,

this approach can also be generalized and applied to other languages that have an event-

based execution. This section gives a formal definition of a minimal language in order to

clarify the minimal requirements for the program structure and execution and to model

live code updates as system interactions alongside regular event processing.

Figure 2.5 formally defines the structure and transition relation for a generic

live programming system based on the MVU pattern.

The state of the system is summarized by the application state 𝑚 (model), ren-

dering code 𝑣 (view) and event handling code 𝑢 (update), and any system transition

⟨𝑚, 𝑣, 𝑢⟩ 𝑖
𝑜
⟨𝑚, 𝑣, 𝑢⟩ is triggered by a system interaction 𝑖 and produces output 𝑜. In

particular, the system processes both regular input events 𝑞 and runtime code updates

while providing continuous feedback.

In this formalism, the output of the application is not generated imperatively

(e.g. via printf statements); instead, it is summarized as a single value 𝑜 (e.g. the DOM

of a JavaScript application or the framebuffer of an OpenGL application). 𝑚, 𝑣, 𝑢 and the

output 𝑜 are assumed to be values in a language with lambda abstractions and function

application but the syntax definitions for values and expressions 𝑒 depend on the concrete

programming language implementation and are mostly left unspecified.

Regular input events such as mouse clicks are processed according to e-event

transition rule. The update function 𝑢 is invoked with the current application state 𝑚

31



𝑚 (Model) 𝑣 (View) 𝑢 (Update) 𝑜 (Output) ⟨𝑚, 𝑣, 𝑢⟩ (System Configuration)

𝑚, 𝑣, 𝑢, 𝑜, 𝑎 ∶∶= 𝑞 | 𝜆𝑥.𝑒 | ... (Values)

𝑒 ∶∶= 𝑎 | 𝑥 | 𝑒(𝑒) | ... (Expressions)

𝑞 ∶∶= [keypress 𝑎] | [click 𝑎 𝑎] | ... (Events)

𝑖 ∶∶= [event 𝑞] | [swap 𝑣 𝑢] (Interactions)

𝑒 ↓ 𝑎 (Evaluation) ⟨𝑚, 𝑣, 𝑢⟩ 𝑖
𝑜
⟨𝑚, 𝑣, 𝑢⟩ (System Transition)

𝑢(𝑚, 𝑞) ↓ 𝑚′ 𝑣(𝑚′) ↓ 𝑜
e-event

⟨𝑚, 𝑣, 𝑢⟩ [event 𝑞]
𝑜
⟨𝑚′, 𝑣, 𝑢⟩

𝑣′(𝑚) ↓ 𝑜
e-swap

⟨𝑚, 𝑣, 𝑢⟩ [swap 𝑣′ 𝑢′]
𝑜
⟨𝑚, 𝑣′, 𝑢′⟩

Figure 2.5: Formal definition of a system for MVU applications. A system transition

is triggered by an interaction 𝑖 and produces output 𝑜. In particular, the

system processes regular input events 𝑞 and enables runtime updates of

the view and update code while providing continuous feedback. The

concrete syntax classes for values 𝑎, expressions 𝑒 and the evaluation

semantics 𝑒 ↓ 𝑎 are left unspecified.

and the event data 𝑞, yielding a new model 𝑚′. This model is then used by the view 𝑣 to

render the new output 𝑜.

This system also supports live programming, i.e. hot swapping of code at run-

time with immediate feedback. The rule e-swap describes how new versions of the view

𝑣′ and the update 𝑢′ code are replacing the previous code 𝑣 and 𝑢. The new view 𝑣′

is used with the current application state 𝑚 to provide feedback 𝑜 about code changes.

32



1
2 3

4 5

6

Figure 2.6: The live programming environment features an editor, a live view of the

output as well as controls for traveling to previous code versions/execu-

tion states and for resetting the state to initial values.

Changes to the update code are not immediately visible but subsequent events will be

processed with 𝑢′ instead of 𝑢.

2.3.5 Implementation

The implementation of live programming approach as a web-based online programming

environment for JavaScript involved both user interface design as well as techniques for

checking conformance to the MVU programming model. Its source code2 and a live

demo3 are both publicly available.

The environment features a code editor with syntax highlighting and a side

panel for navigating the execution and version history and displaying the output. More

advanced features such as project management for programs with multiple files and

Source code at http://github.com/levjj/rde/
Online live demo at https://levjj.github.io/rde/

33

http://github.com/levjj/rde/
https://levjj.github.io/rde/


nested folders are not currently available.

A screenshot of the programming environment is shown in Figure 2.6. The code

editor 1 includes the complete source code of the application. Every change made in

this editor creates a new version that is appended to the version history. A slider in the

“Time Control” panel 2 allows the programmer to restore a previous version indexed

by its revision number, and also to load and save the current file 3 . Similarly, the

programmer can go go ‘back-in-time’ to a previous application state with slider controls

4 . Each state corresponds to an input event in the application trace. The application

is assumed to be continuously running but execution can also be manually restarted

5 . This is particularly important if changes made to the code are incompatible with

the current state or to ensure that changes to a global initializer takes effect. Finally, the

third panel 6 enables the programmer to see the current output, examine its underlying

HTML structure, and inspect the state of global variables. As discussed in Sections 2.3.1

and 2.3.2, editing the code or navigating the version and execution history causes the

output to be refreshed in order to provide continuous feedback.

In addition to the user interface of the programming environment, the imple-

mentation also involved management of the MVU programming model that enable event

processing and live code updates. In particular, the programming environment wraps

event handlers, such as the inc function in Figure 2.6, in a function that automatically

schedules a re-rendering of the output after each event.

Furthermore, the programming environment also ensures that there is a global

render function returning the output as JSX tree structure. The model is assumed to

34



encompass all global variables, so in order to guard the model against mutation during

rendering, global variable references in the program, such as count, are rewritten to

property accesses of a state object, such as state["count"]. Thereby, the render function

can be evaluated with a deep copy of the state that dynamically traps mutations with the

Object.freeze mechanism in JavaScript, applied recursively to the entire model. These

deep copies of the model are also appended to the trace of application states to enable

back-in-time debugging. Finally, the programming environment also checks that the

model does not contain or reference any functions by performing a recursive typeof test

on all global variables after each event handling process.

2.4 Live Programming by Example

This section describes an extension to live programming that infers live code updates

from examples provided by the user at runtime. It is based on the MVU programming

model introduced in Section 2.2.2. Instead of presenting a concrete implementation, this

section first describes the approach conceptually and presents a formalism. Section 2.5

then describes a live programming environment with direct manipulation of string con-

stants as a concrete instance of live programming by example.

2.4.1 Live Code Updates based on Output Examples

Live programming systems as described in the previous section enable program updates

at runtime for changes made to the source code. By separating rendering from event

handling with the MVU pattern, the application output can be updated in reaction to

35



code changes to provide visual feedback to the developer. Expanding on this idea, the

output of the program can also be used by the programmer to make changes to the

program. This is particularly beneficial for graphical user interface programs as editing

the visible output, e.g. by direct manipulation [101], is more convenient or intuitive than

edits to the generating source code.

As illustrated in Figure 2.7, instead of editing the source code directly, the vis-

ible output can serve as a basis for expressing intended changes to the program. On

the one hand, the programmer could provide an example of the intended output that

is used by an inference algorithm to synthesize a view implementation. On the other

hand, user interface interactions by the programmer such as direct manipulation of the

output could be applied directly to the generating view code. Depending on the domain

and programming language, there are various different programming-by-example tech-

niques [70, 41] to ‘repair’ or ‘synthesize’ a new program whose rendered output partially

or fully conforms to the provided output example.

2.4.2 Formal Definition

Live programming by example is applicable to a wide range of applications and program-

ming languages. The potential benefits and limitations depend on the concrete format of

the output, the available interactions by the user, and the inference algorithm. However,

it is possible to model live programming by example as an abstract system transition that

extends the formalism given in Figure 2.5

Figure 2.8 extends the formal definition given in Figure 2.5 with support for live

36



Output

Model

View

Update

Output

Output

Model

View

Update

≈

Figure 2.7: With live programming by example, the view code can be changed based

on output example, e.g. by direct manipulation of the previous output.

The new view code should be inferred to closely match the user-supplied

output example.

programming by example.

Given output 𝑜, the developer can initiate a live code update by changing the

output 𝑜 into a desired output example 𝑜′ that is then used for synthesis (e-example).

The judgement (𝑜, 𝑚, 𝑣) ▽ 𝑣′ infers a modified view function 𝑣′ from 𝑣 such that, ideally,

the output 𝑜″ generated by the synthesized render function 𝑣′ exactly matches the user

example (𝑜′ = 𝑜″). However, it may be advantageous to use a heuristic that prioritizes

smaller changes to the view 𝑣 and tolerates minor differences between new output and

the example (𝑜′ ≈ 𝑜″).

Apart from language details of the implementation and the concrete UI repre-

sentation of the output, this definition highlights the design space for live programming

37



𝑚 (Model) 𝑣 (View) 𝑢 (Update) 𝑜 (Output) ⟨𝑚, 𝑣, 𝑢⟩ (System Configuration)

𝑚, 𝑣, 𝑢, 𝑜, 𝑎 ∶∶= 𝑞 | 𝜆𝑥.𝑒 | ... (Values)

𝑒 ∶∶= 𝑎 | 𝑥 | 𝑒(𝑒) | ... (Expressions)

𝑞 ∶∶= [keypress 𝑎] | [click 𝑎 𝑎] | ... (Events)

𝑖 ∶∶= [event 𝑞] | [swap 𝑣 𝑢] | [example 𝑜] (Interactions)

𝑒 ↓ 𝑎 (Evaluation) ⟨𝑚, 𝑣, 𝑢⟩ 𝑖
𝑜
⟨𝑚, 𝑣, 𝑢⟩ (System Transition)

(𝑜, 𝑚, 𝑣) ▽ 𝑣 (View Inference)

(𝑜′, 𝑚, 𝑣) ▽ 𝑣′ 𝑣′(𝑚) ↓ 𝑜″ 𝑜′ ≈ 𝑜″
e-example

⟨𝑚, 𝑣, 𝑢⟩ [example 𝑜′]
𝑜″

⟨𝑚, 𝑣′, 𝑢⟩

Figure 2.8: Formal definition of a system that supports live programming by example

as an extension to the syntax and semantics given in Figure 2.5.

by example. Both the program synthesis technique (▽) as well as the user intent of

supplied examples (≈) enable a wide range of different approaches ranging from the

simple manipulation of string literals to sophisticated direct manipulation interactions

and end-user programming.

2.5 Live Programming by Direct Manipulation of the Output

As a concrete instance of live programming by example, this section presents an approach

for editing string literals in JavaScript applications through UI manipulation. The imple-

mentation is an extension to the programming environment discussed in Section 2.3.5.

38



var str = "";

function keyup(evt) {
str = evt.target.value;

}

function render() {
return (<div>
<input value={str} onkeyup={keyup} />
<p>{str.replace(/keyboard/g,"leopard")}</p>

</div>);
}

Listing 2.3: JavaScript implementation of a simple interactive keyword replacer

using the MVU pattern.

The approach uses a dynamic string taint analysis [118] to tracks the source location of

string constants in the view code. Thereby, the environment enables the programmer to

change string constants appearing in the HTML output and infer changes to the original

source code. This programming environment serves as a precursor for future systems

that allow synthesis of more complex live code modifications by direct manipulation. The

source code4 and a live demo5 are integrated into the live programming environment

described above.

2.5.1 Example Interaction

In order to illustrate how a programmer might use a live programming example to

change the view code, this section uses a simple interactive application as an example.

Source code at http://github.com/levjj/rde/
Online live demo at http://levjj.github.io/rde/

39

http://github.com/levjj/rde/
http://levjj.github.io/rde/


The GUI of this application consists of an input field and a label. The label shows

the entered text but replaces keywords in the input text according to a fixed rule. This

example is inspired by https://xkcd.com/1031/ and has been implemented by several

browser extensions. Listing 2.3 shows an implementation. The ‘model’ is simply the

string entered by the user: str. The render function returns the user interface and also

binds an event handler that changes the model as the user types into the input field.

Since this implementation follows the MVU pattern (see Section 2.2.2), the

string constant "leopard" in the source code can be changed to "butterfly" and the

programming environment immediately re-renders the output accordingly.

However, instead of editing the source code directly, this code change can also

be performed by direct manipulation of the output such that the generating string literal

in the source code will be modified to match the intended output example.

Figure 2.9 shows how the programming environment can be used to achieve

this change. First, the programming environment provides a way to halt normal execu-

tion 1 and enable a special interaction mode for the application’s user interface. This

ensures that interactions with the UI are not handled by the application itself but by the

programming environment. As an alternative to introducing a special interaction mode,

it may be possible to reserve certain controls for this purpose, e.g. with a special meta

key for direct manipulation or by using halo controls [73].

Different forms of direct manipulation may be available (e.g. resizing or re-

ordering via drag and drop). In this example, the text of the static label (<p>) becomes

editable by the user/programmer 2 .

40

https://xkcd.com/1031/


1

2

3

Figure 2.9: A live programming environment with support for live programming by

example. Stopping the normal execution 1 prevents event processing

but enables direct manipulation of the UI including editing the text dis-

played in the output 2 . Based on this UI manipulation, the correspond-

ing string literal in the source code 3 is changed automatically.

Parts of the label text "leopard" originate from a string literal in the program

source code. Therefore, the string literal is highlighted in the editor 3 and changes in

the user interface will also be applied to the source code. Text parts that do not originate

from source code literals cannot be modified. Any change to the source code causes the

output to be re-rendered, so if the word “keyboard” would appear more than once in the

input text, all of its occurrences would be replaced according to the new render function

thereby ensuring consistency between code and output.

41



2.5.1.1 Dynamic String-Origin Tracking

In order to support the interaction outlined in the previous section, the environment

needs a mapping of strings in the output to their generating string literals in the source

code. This mapping can be obtained by instrumenting the execution such that string val-

ues are replaced by custom string objects with origin information. These string objects

include a custom implementation of concatenation, substring extraction, replacement

and other common string operators (e.g. str.toLowerCase()), such that origin informa-

tion is retained but otherwise behave like regular string values. This form of dynamic

analysis is closely related to taint analysis for information flow security.

As a first step of the source code instrumentation process, all string literals/con-

stants in the code are replaced by expressions that create custom tagged string objects

with both the original string value as well as a unique identifier to track the source code

location.

var x = "ab";
-> var x = stringlit("ab", 23);

Additionally, built-in unary and binary operations are replaced by function calls

implementing these operators.

var y = x + "c";
-> var y = addop(x, stringlit("c", 42));

While concatenation with the regular + operator behaves as expected, this in-

strumentation is necessary to retain the origin information. Due to concatenation (and

42



other operators) different parts of a string can originate from different string literals in

the code. The origin information therefore includes all subparts of a string alongside the

identifier of the generating string literal and offset.

var x = "ab"; // [["ab",23,0]]
var y = x + "c"; // [["ab",23,0],["c",42,0]]
var z = y[1]; // [["b", 23,1]]

JavaScript code that is not part of the program, especially built-in/native code,

is not subject to source code rewriting. To ensure correct behavior for applications pass-

ing tagged strings to uninstrumented functions, JavaScript’s metaprogramming facilities

such as Proxy and property definitions for Symbol.iterator, etc. are used to ensure that

these tagged string objects are mostly indistinguishable from regular strings. In par-

ticular, tagged string values are wrapped in a proxy [113] that automatically converts

tagged strings to primitive strings when no instrumentation is possible or necessary (e.g.

for parsing strings as integers), and input events from the DOM passed to event handlers

are wrapped in a proxy membrane that transparently converts primitive strings to tagged

strings. While this approach preserves program behavior, it is possible for a string to lose

its origin information due to built-in JavaScript functions.

2.5.1.2 Programming Environment Integration

The kinds of supported UI interactions depend on the domain and concrete representa-

tion of the output. In the context of the live programming environment for JavaScript,

the output is a tree of HTML/DOM elements and attributes. With string origin tracking,

43



plain text content, attributes and element names can potentially contain origin informa-

tion.

The programming environment shown in Figure 2.9 supports two ways of ma-

nipulating the output for the purpose of live program synthesis. The developer can either

edit the raw HTML code or manipulate text in the graphical user interface. The HTML

representation has the advantage that all parts of the output, including element names

and attribute keys and values, can easily be modified on a textual level. Manipulation of

the visible UI is limited to the plain text content of HTML elements but allows program-

mers to perform changes in an intuitive way on the level of the actual output.

Given a modified DOM tree, the program synthesis generally follows the follow-

ing informal algorithm:

1. Determine the previous output based on the current rendering code and application

state.

2. Compute the difference between the provided example and the previous output.

(The modified DOM tree either has new characters inserted, existing characters

removed or both6.)

3. Check origin information of the modified characters. Modifications to string parts

that do not have origin information cannot be handled and will be suppressed.

4. Determine source code location of the generating string literals using string origin

information and a mapping from string literals to AST nodes.

Changes to the tree structure of the DOM output are not currently supported and remain future work.

44



5. Use the source code location and computed offsets to insert or delete characters in

the program source code.

6. Evaluate/recompile code and obtain a new rendering method.

7. Render the updated output using the modified rendering code and the current

program state.

Listing 2.4 shows a simplified JavaScript implementation of the algorithm above

when deleting characters. In this case, "pard" is deleted from "leopard" in the UI, so the

example contains the modified UI that differs from the previous output as rendered with

the current program view and application state. This difference (diff) is used to deter-

mine the originating string literal in the AST of the program and, thereby, the location

in the original source code. According to the difference in the outputs, four characters

were deleted, so this change is also applied to the program source code. Finally, the

program gets re-compiled, yielding a new view function and the output is re-rendered.

2.6 Discussion and Future Work

This chapter outlined an approach for live programming of event-based GUI applications.

In addition to live code updates, this technique also enables back-in-time debugging,

runtime version control and live programming-by-example as a way to change the code

of a running program including a prototype implementation for direct manipulation of

string constants in the user interface.

45



// Global state of the programming environment
var source; // "var str = ''; ... str.replace(/keyboard/g, "leopard") ... "
var program; // {render: function(s) { ... }, astnodes: ...}
var state; // {str: "Weird, my keyboard just ..."}

// Given an example as a tree representation of the output,
// modify the original source code and update the environment
function updateByExample(example) { // {.. "Weird, my leo just.." }

var output = program.render(state); // {.. "Weird, my leopard just.." }
var diff = outputdiff(output, example); // {delete: 4, offset: 23, idx: 42}
var origin = output.find(diff.idx).origin; // {strlit: 3, offset: 3}
var astnode = program.ast.find(origin.strlit); // {srcloc: {start: 23, .. }, ..}
var offset = astnode.srcloc.start + origin.offset;
source = source.substr(0, offset) // ... replace(/keyboard/g, "leo

+ source.substr(offset + diff.delete); // ") ... "
program = compile(source);
show(program.render(state));

}

Listing 2.4: Simplified algorithm for synthesizing code updates when deleting

characters in the UI as shown in Figure 2.9. In this example, "pard"

is deleted from "leopard".

2.6.1 Live Programming for MVU applications

The approach relies on the MVU programming pattern with a stateless view and update

component and a model that encompasses the entire application state.

Live code updates may involve added, modified or removed function defini-

tions. Unfortunately, function values/closures in the application state cannot always be

automatically transformed to match the new code, therefore closures are currently not

allowed in the application state. Restricting the global state in this way limits expres-

46



siveness but avoid ambiguity and ensures that code updates do not result in outdated

references (as discussed in Section 2.3.1). More research is necessary to evaluate the de-

sign decisions and study how programmers can benefit from live programming for other

architecture patterns.

Moreover, live programmingmay lead to inconsistencies in the application state.

If the event handling code is updated and execution resumed, input events in the exe-

cution history will have been processed by different versions of the same event handler.

Therefore, the resulting application state may be inconsistent, i.e. it may differ from the

application states produced by either version of the event handler for a restarted and re-

played execution. As long as the application state is internally consistent, inconsistencies

with past input events are mostly benign and insignificant for the programming experi-

ence. However, there could be situations in which resuming execution and replaying

events is more desirable for development or debugging.

Finally, changes to the initialization code of the program are not re-evaluated

and do not provide feedback to the programmer. If this change also alters the data type

of the application state, the current runtime state may become incompatible with the

code and require either manual data migration or a restart of the execution.

Future work might also involve common programming language techniques to

improve the performance overhead, such as proxy membranes for enforcing immutability

and first-order states, copy-on-write for optimizing back-in-time debugging, and incre-

mental computation for the new output [1].

47



2.6.2 Live Programming by Example

The programming environment presented in this chapter supports a simple form of live

programming by example butmainly serves as a precursor for future systems that support

more sophisticated program synthesis guided by more flexible forms of direct manipula-

tion.

With the presented approach for live programming by example, code updates to

the rendering code can be synthesized and applied immediately. However, updates to the

event handling code will only affect subsequent events and therefore live programming

by example as presented in this chapter is not directly applicable to the event handling

code. A possible solution is to replay past events instead of resuming execution with the

existing state. It is not always clear how many events have to be replayed as replaying

all events may not be practical or desirable for long-running applications and replaying

just the last event may not suffice but future work may expand the live programming

environment to enable inference for rendering code as well as event-handling code.

Changing string literals in the program by manipulating text in the output is

a relatively simple implementation of live programming by example and thereby avoids

ambiguities that are common in program synthesis applications7. However, more com-

plex live programming by example solutions have to address potential ambiguities with

heuristics or manual user intervention. For example, the programming environment

might present multiple ranked synthesis candidates for the programmer to choose from.

The string synthesis technique is still ambiguous as inserted characters between two different generating
string literals can be inserted either at the end of the first string literal or the start of the next one. This
ambiguity is currently resolved by always prioritizing the first string literal.

48



Finally, the approach still needs to be evaluated for larger applications and

development tasks — potentially as part of a user study8.

See e.g. Campusano, Bergel, and Fabry [15] and Lieber, Brandt, and Miller [69]

49



Chapter 3

Program Verification for JavaScript

In JavaScript, there is a beautiful, elegant, highly expressive language
that is buried under a steaming pile of good intentions and blunders.

— Douglas Crockford

This chapter describes the design and implementation of esverify, a program

verifier for JavaScript. The goal of esverify is to ensure a comprehensible verification

process with quick feedback as part of an integrated programming environment as well

as support for dynamically-typed programming idioms in JavaScript that are not well sup-

ported by type systems. esverify is based on SMT solving but instead of using heuristics

for quantifier instantiation, it uses a custom trigger-based quantifier instantiation algo-

rithm. As a result, esverify requires more explicit annotations to verify some programs

but its verification errors are easier to understand and inspect. Finally, this section also

presents case studies to illustrate and evaluate how smaller JavaScript program can be

verified with esverify.

50



3.1 Overview

The goal of program verification is to statically check programs for properties such as

robustness, security and functional correctness across all possible inputs. For example, a

program verifier might statically verify that the result of a sorting routine is sorted and

is a permutation of the input.

This chapter introduces esverify, a program verification system for JavaScript.

JavaScript, a dynamically-typed scripting language, was chosen as target because its

broad user base suggests many beneficial use cases for static analysis, and because its

availability in browsers enables accessible online demos without local installation.

JavaScript programs often include idioms and patterns that do not adhere to

standard typing rules. For instance, the latest edition of the JavaScript/ECMAScript stan-

dard [28] introduces promises such that a promise can be composed with other promises

andwith arbitrary objects, as long as these objects have a "then"method. Since esverify

does not rely on static types, it can easily accommodate these idioms.

JavaScript programs also often use higher-order functions. In order to support

verification of these functions, esverify introduces a new syntax to constrain function

values in terms of their pre- and postconditions. Similarly, other JavaScript values such

as numbers, strings, arrays and classes can be used in assertions, including invariants on

array contents and class instances.

The implementation of esverify, including its source code1 and a live demo2

Implementation Source Code: https://github.com/levjj/esverify/
Online live demo of esverify: https://esverify.org/try

51

https://github.com/levjj/esverify/
https://esverify.org/try


are available online. In summary, if a JavaScript program uses features unsupported by

esverify, it will be rejected early; otherwise, verification conditions are generated based

on annotations, and each verification condition is transformed according to a quantifier

instantiation algorithm and then checked by an SMT solver.

3.2 ESVERIFY

By supporting a subset of ECMAScript/JavaScript, a dynamically-typed scripting lan-

guage, esverify is unlike existing verifiers for statically-typed programming languages.

The goal of esverify is not to support complex and advanced JavaScript features such

as prototypical inheritance and metaprogramming, leaving these extensions for future

work. Instead, the goal is to support both functional as well as object-oriented program-

ming paradigms with an emphasis on functional JavaScript programs with higher-order

functions.

3.2.1 Annotating JavaScript with Assertions

esverify extends JavaScript with source code annotations such as functions pre- and

postconditions, loop invariants and statically-checked assertions. These are written as

pseudo function calls with standard Javascript syntax. While some program verification

systems specify these in comments such as ESC/Java [32], this approach enables a bet-

ter integration with existing tooling support such as refactoring tools and syntax high-

lighters.

The assertion language is a subset of JavaScript. It does not support all of

52



function max(a, b) {
requires(typeof(a) === 'number');
requires(typeof(b) === 'number');
ensures(res => res >= a);
ensures(res => res >= b); // failing postcondition
if (a >= b) {

return a;
} else {

return a; // bug
}

}

Listing 3.1: A JavaScript function max annotated with pre- and postconditions.

JavaScript’s semantics. In particular, it is restricted to pure expressions that do not con-

tain function definitions.

3.2.2 max: A Simple Example

Listing 3.1 shows an example of an annotated JavaScript program. The calls

to requires and ensures in lines 2–5 are only used for verification purposes and ex-

cluded from evaluation. Instead of introducing custom type annotations, the standard

JavaScript typeof operator is used to constrain the possible values passed as function

arguments. Due to a bug in line 9, the max function does not return the maximum of the

arguments if b is greater than a, violating the postcondition in line 5.

3.2.3 Stateful Programs and Loop Invariants

For programs without loops or recursion, static analysis can check various correctness

properties precisely. However, the potential behavior of programs with loops or recur-

53



function sumTo (n) {
requires(Number.isInteger(n) && n >= 0);
ensures(res => res === (n + 1) * n / 2);
let i = 0;
let s = 0;
while (i < n) {

invariant(Number.isInteger(i) && i <= n);
invariant(Number.isInteger(s));
invariant(s === (i + 1) * i / 2);
i++;
s = s + i;

}
return s;

}

Listing 3.2: A JavaScript function that proves ∑𝑛
𝑖= 𝑖 =

(𝑛+)⋅𝑛
 . Loop invariants are

not inferred and need to be specified explicitly for all mutable variables

in scope.

sion cannot be determined statically. esverify “overapproximated” the behavior of the

program, i.e. correct programs may be rejected if the program lacks a sufficiently strong

loop invariant or pre- or postcondition, but verified programs are guaranteed to not vio-

late an assertion regardless of the number of iterations or recursive function calls.

Listing 3.2 shows a JavaScript function that computes the sum of the first n

natural numbers with a while loop. The loop requires annotated invariants for mutable

variables including their types and bounds3. Without these loop invariants, the state of i

and swould be unknown in line 13 except for the fact that i < n is false. However, when

combined with the loop invariants, the equality 𝑖 == 𝑛 can be inferred after the loop and

Here, Number.isInteger(i) ensures that i is an actual integer, while typeof(i)=== 'number' is also
true for floating point numbers.

54



thereby the postcondition in line 3 can be verified. esverify internally uses standard

SMT theorems for integer arithmetic to establish that the invariants are maintained for

each iteration of the loop.

There is extensive prior work on automatically inferring loop invariants [35].

Recent research suggest that automatic inference can also be extended to program in-

variants [30] and specifications [45]. However, this topic is orthogonal to the program

verification approach presented in this thesis.

3.2.4 Higher-order Functions

In order to support function values as arguments and results, esverify introduces a spec

construct in pre-, postconditions and assertions. Listing 3.3 illustrates this syntax in lines

7 and 8 of the higher-order twice function. The argument f needs to be a function that

satisfies the given constraints, and therefore the callsite twice(inc, n) in line 16 requires

esverify to compare the pre- and postconditions of inc with pre- and postconditions in

lines 7 and 8. It is important to note that esverify implicitly strengthens the stated

postcondition of inc by inlining its function body x + 1. Recursive functions are only

inlined by one level, so these need to be explicitly annotated with adequate pre- and

postconditions for verification purposes, similarly to loop invariants.

3.2.5 Arrays and Objects

In addition to floating point numbers and integers, esverify also supports other stan-

dard JavaScript values such as boolean values, strings, functions, arrays and objects.

55



function inc (x) {
requires(Number.isInteger(x));
ensures(y => Number.isInteger(y) && y > x);
return x + 1; // implicit: ensures(y => y === x + 1);

}
function twice (f, n) {

requires(spec(f, (x) => Number.isInteger(x),
(x,y) => Number.isInteger(y) && y > x));

requires(Number.isInteger(n));
ensures(res => res >= n + 2);
return f(f(n));

}
const n = 3;
const m = twice(inc, n); // 'inc' satisfies spec in line 8
assert(m > 4); // statically verified assertion

Listing 3.3: The higher-order function twice restricts its function argument f with a

maximum precondition and a minimum postcondition. The function inc

has its body as implicit postcondition and therefore satisfies this spec.

However, esverify restricts how objects and arrays can be used. Specifically, mutation

of arrays and objects is not currently supported and objects have to be either immutable

dictionaries that map string keys to values or instances of user-defined classes with a

fixed set of fields without inheritance.

The elements of an array can be described with a quantified proposition, corre-

sponding to the standard array method every. This is illustrated in Listing 3.4.

Despite these restrictions, it is possible to express complex recursive data struc-

tures. Section 3.4 presents examples of such data structures, including user-defined list

classes containing sorted integers.

56



function f (a) {
requires(a instanceof Array);
requires(a.every(e => e > 3));
requires(a.length >= 2);
assert(a[0] > 2); // holds
assert(a[1] > 4); // does not hold (a[1] might be 4)
assert(a[2] > 1); // does not hold (a might have only 2 elements)

}

Listing 3.4: esverify includes basic support for immutable arrays. The elements of

an array can be described with every.

3.2.6 Dynamic Programming Idioms

JavaScript programs often include functions that have polymorphic calling conventions.

A common example is the jQuery library which provides a function “$” whose behavior

varies greatly depending on the arguments: given a function argument, the function is

scheduled for deferred execution, while other argument types select and return portions

of the current webpage.

Even standard JavaScript objects use dynamic programming idioms to provide

a more convenient programming interface. As mentioned in Section 3.1, the latest edi-

tion of the ECMAScript standard [28] includes Promises [72] and specifies a polymorphic

Promise.resolve() function. This function behaves differently depending on whether it

is called with a promise, an arbitrary non-promise object with a method called "then",

or a non-promise object without such a method. esverify can accurately express these

kinds of specifications in pre- and postconditions as shown in Listing 3.5, while standard

type systems need to resort to code changes, such as sum types and injections.

57



class Promise {
constructor (value) { this.value = value; }

}
function resolve (fulfill) {
// "fulfill" is promise, a then-able or a value without a "then" property
requires(fulfill instanceof Promise ||

spec(fulfill.then, () => true, () => true) ||
!('then' in fulfill));

ensures(res => res instanceof Promise);

if (fulfill instanceof Promise) {
return fulfill;

} else if ('then' in fulfill) {
return new Promise(fulfill.then());

} else {
return new Promise(fulfill);

}
}

Listing 3.5: The standard Promise.resolve() function in JavaScript has complex

polymorphic behavior. This simplified mock definition illustrates how

esverify enables such dynamic programming idioms.

3.3 Implementation

The esverify prototype implementation4 is available online. Because the implementa-

tion itself is written in TypeScript, a dialect of JavaScript, it can be used in a browser.

Indeed, there is a browser-based editor with esverify checking5. Alternative integra-

tions such as extensions for Vim and Emacs also exist.

The basic verification process and overall design of esverify is depicted in

Implementation Source Code: https://github.com/levjj/esverify/
Online live demo of esverify: https://esverify.org/try

58

https://github.com/levjj/esverify/
https://esverify.org/try


Verification Condition
Generation

Quantifier Instantiation
and Elimination

JavaScript
Source

SMT Input

Verification Conditions

Parsing and
Scope Analysis SMT Solving

Verification Result

Figure 3.1: The basic verification workflow: esverify generates and statically

checks verification conditions by SMT solving.

Figure 3.1.

The first step of the process involves parsing the source code and restricting

the input language to a subset of JavaScript supported by esverify. Some of these

restrictions may be lifted in future versions of esverify, such as support for regular

expressions or functions with a variable number of arguments. However, other JavaScript

features would involve immense complexity for accurate verification due to their dynamic

character and their interactions with the rest of the program, such as metaprogramming

with eval or new Function(). Additionally, esverify does not support features that have

been deprecated in newer versions of strict mode JavaScript such as arguments.callee,

this outside of functions or the with statement. The parser also differentiates between

59



function max(a, b) {
requires(typeof(a) === 'number');
requires(typeof(b) === 'number');
ensures(result => result >= a);
if (a > b) {

return a;
} else {

return b;
}

}

∀𝑎∀𝑏.

typeof(𝑎) =‶ 𝑛𝑢𝑚𝑏𝑒𝑟″

∧ typeof(𝑏) =‶ 𝑛𝑢𝑚𝑏𝑒𝑟"

∧ 𝑎 > 𝑏 ⇒ 𝑟𝑒𝑠𝑢𝑙𝑡=𝑎

∧ ¬(𝑎 > 𝑏) ⇒ 𝑟𝑒𝑠𝑢𝑙𝑡=𝑏

⟹ 𝑟𝑒𝑠𝑢𝑙𝑡 ≥ 𝑎

Figure 3.2: The code on the left is annotated with a postcondition in line 4. A sim-

plified verification condition for this postcondition is shown on the right.

expressions and assertions. For example, spec can only used in assertions while function

definitions can only appear in the actual program implementation.

During the second step, scope analysis determines variable scopes and rejects

programs with scoping errors and references to unsupported global objects. In addition

to user-provided definitions, it includes a whitelist of globals supported by esverify,

such as Array, Math and console. The analysis also takes mutability into account. For ex-

ample, mutable variables cannot be referenced in class invariants, and the old(x) syntax

in a postcondition requires x to be a mutable variable.

The main verification step is implemented as a traversal of the source program

that generates verification conditions and maintains a verification context. Most notably,

the verification context includes a logical proposition that acts as precondition and a set of

variables with unknown values. Generated verification conditions combine this context

with an assertion, such as a function postcondition. Figure 3.2 illustrates this process

60



(∀𝑎, 𝑏.max(𝑎, 𝑏) ≥ 𝑎)

⟹ max(3, 5) > 0

(∀𝑎, 𝑏.max(𝑎, 𝑏) ≥ 𝑎)

∧ max(3, 5) ≥ 3

⟹ max(3, 5) > 0

Figure 3.3: The proposition on the left has a universal quantifier. On the right, this

quantifier is instantiated with concrete values of 𝑎 and 𝑏, yielding an

augmented proposition that can be verified with simple arithmetic.

for a simple example. The verification condition shown on the right checks whether

the preconditions and the translated function body imply the postcondition in line 4.

Section 4.5 describes the verification rules in more detail.

The verification condition is then transformed with a quantifier instantiation

procedure. As illustrated by Figure 3.3, quantified propositions in verification conditions

need to be instantiated with concrete values in order to determine satisfiability of the

formula. Quantifiers are instantiated based on matching triggers and remaining quanti-

fiers are then erased from the proposition6. The resulting quantifier-free proposition can

be checked by SMT solving, ensuring that the verification process remains predicable.

However, this approach to quantifier instantiation requires the programmer to provide

explicit triggers as function calls. Alternatively, the trigger-based quantifier instantiation

can be skipped and the proposition passed directly to the SMT solver, which internally

performs instantiations based on heuristics.

The final step of the verification process involves checking the verification con-

dition with an SMT solver such as z3 [77] or CVC4 [7, 8]. If the solver cannot find a

solution for the negated verification condition, i.e. if the solver cannot refute the propo-

The formal definition of the quantifier instantiation algorithm is given in Section 4.3.

61



sition, verification succeeded. Otherwise, the returned model includes an assignment of

free variables that acts as a counterexample.

3.4 Evaluation

A comprehensive evaluation of esverify for real-world projects would require a stable

and mature implementation and immense engineering effort. However, it is also pos-

sible to illustrate potential benefits and limitations with limited case studies such as

verified implementations of well-known algorithms. Therefore, this section presents and

discusses a series of non-trivial programs and verifies their functional correctness.

3.4.1 Reversing an Ascending List

This example involves a class definition for lists of integers and a reverse function. By

adding annotations about pre- and postconditions, esverify can statically verify that

reversing an ascending list yields a descending list.

First, the program defines the class IntList as a linked list with head and tail.

class IntList {
constructor (head, tail) {

this.head = head;
this.tail = tail;

}
invariant () {

return typeof(this.head) === 'number' &&
(this.tail === null || this.tail instanceof IntList);

}
}

62



The class invariant of IntList ensures that the current element (head) is a num-

ber and that the linked list (tail) is also an IntList. Instead of introducing a second

class for empty lists, this program uses null to represent empty lists.

In order to verify the reverse function, is is necessary to define what it means

for a list to be ascending. In esverify, these definitions, so-called predicates, are written

as standard JavaScript functions despite being used solely for verification purposes.

function isAscending (list) {
requires(list === null || list instanceof IntList);
ensures(res => typeof(res) === 'boolean');
ensures(pure());

return list === null || list.tail === null ||
list.head <= list.tail.head && isAscending(list.tail);

}

The body of this function determines whether a given list contains ascending

integers. The precondition in line 12 ensures that arguments are either integer lists or

null, which represents the empty list, and the postconditions in lines 13 and 14 restrict

the function to return boolean values and not invoke side effects. These annotations are

primarily for checking the recursive call of isAscending in line 17. The remainder of the

programwill use the isAscending predicate function as a definition for ascending integer

lists. In other verified languages, such as Dafny [62], isAscending would correspond to

a “ghost function” but esverify does not currently differentiate between predicates and

regular functions.

The definition of isDescending follows accordingly.

63



function isDescending (list) {
requires(list === null || list instanceof IntList);
ensures(res => typeof(res) === 'boolean');
ensures(pure());

return list === null || list.tail === null ||
list.head >= list.tail.head && isDescending(list.tail);

}

esverify does not currently support mutation of class instances. Therefore,

the main algorithm for reversing the list is purely functional. Instead of modifying the

list supplied as argument, it uses a recursive helper function reverseHelper to traverse

the list and build up a reversed list. The implementation of the reverse function is shown

below. Most importantly, it requires the argument to be an ascending integer list and it

ensures that the result is a descending integer list.

function reverse (list) {
requires(list === null || list instanceof IntList);
requires(isAscending(list));
ensures(res => res === null || res instanceof IntList);
ensures(res => isDescending(res));
ensures(pure());

if (list === null) {
isDescending(null); // trigger instantiation
return null;

} else {
isAscending(list); // trigger instantiation
isAscending(list.tail); // ..
isDescending(null); // ..
return reverseHelper(null, list.head, list.tail);

}
}

64



As shown in lines 34–36, an empty list as input argument results in an empty

list as return value. While it seems obvious that an empty list is descending, esverify

requires an explicit hint as shown in line 35 to unfold the definition of isDescending for

the argument null. This function call does not contribute to the result, it is merely a

trigger for the underlying SMT solver and the quantifier instantiation algorithm.

Similarly, the preconditions of reverseHelper require that list.tail is ascend-

ing which necessitates triggers that expand the definition of isAscending in lines 38–40.

Finally, the recursive helper function reverseHelper implements the actual re-

verse algorithm. A reversed list is accumulated in revList (initially just null) and the

pivot is the current number, not smaller than the descending numbers in revList and

not greater than the ascending numbers in the remaining list list.

Again, pre- and postconditions are used to specify these constraints and trig-

gers are used to unfold the definitions of isAscending and isDescending for concrete

arguments.

function reverseHelper (revList, pivot, list) {
requires(revList === null || revList instanceof IntList && revList.head <= pivot);
requires(isDescending(revList));
requires(typeof pivot === 'number');
requires(list === null || list instanceof IntList && pivot <= list.head);
requires(isAscending(list));
ensures(res => res === null || res instanceof IntList);
ensures(res => isDescending(res));
ensures(pure());

const newRevList = new IntList(pivot, revList);
isDescending(newRevList); // trigger instantiation
if (list === null) {

65



return newRevList;
} else {
isAscending(list); // trigger instantiation
isAscending(list.tail); // ..
return reverseHelper(newRevList, list.head, list.tail);

}

The overall program can be verified with esverify and thereby the functional

correctness of the reverse function statically checked. Out of 64 total lines in the source

code, 40 are primarily for verification purposes. This includes the class invariant, an-

notated pre- and postconditions, the definitions of isAscending and isDescending, and

function calls in the code that serve as triggers.

3.4.2 MergeSort Algorithm

As a slightly more complex example, this section includes an implementation of Merge-

Sort and verifies that returned lists are sorted.

The algorithm is based on linked lists of integers, analogous to the class defini-

tion used for the reverse algorithm in Section 3.4.1.

class IntList {
constructor (head, tail) {

this.head = head;
this.tail = tail;

}
invariant () {

return typeof(this.head) === 'number' &&
(this.tail === null || this.tail instanceof IntList);

}
}

66



Additionally, the MergeSort algorithm defines a predicate isSorted as a func-

tion that is identical to the isAscending definition in Section 3.4.1.

function isSorted (list) {
requires(list === null || list instanceof IntList);
ensures(res => typeof(res) === 'boolean');
ensures(pure());

return list === null || list.tail === null ||
list.head <= list.tail.head && isSorted(list.tail);

}

The MergeSort algorithm divides the input list into two partitions that are

sorted independently and then merged. In order to split and return an integer list with

two partitions as a single value, the program introduces a second class definition that

represents a pair of two integer lists.

class IntListPartition {
constructor (left, right) {

this.left = left;
this.right = right;

}
invariant () {

return (this.left === null || this.left instanceof IntList) &&
(this.right === null || this.right instanceof IntList);

}
}

The partition function takes the original list as first argument and then accu-

mulates two lists recursively while alternating between appending to the first or second

list.

67



function partition (lst, fst, snd, alternate) {
requires(lst === null || lst instanceof IntList);
requires(fst === null || fst instanceof IntList);
requires(snd === null || snd instanceof IntList);
requires(typeof(alternate) === 'boolean');
ensures(res => res instanceof IntListPartition);
ensures(pure());

if (lst === null) {
return new IntListPartition(fst, snd);

} else if (alternate) {
return partition(lst.tail, new IntList(lst.head, fst), snd, false);

} else {
return partition(lst.tail, fst, new IntList(lst.head, snd), true);

}
}

The merge routine is the most complex part of the algorithm. Given two lists, if

neither of them is empty, the method will compare the head elements and then select the

lesser element. All remaining elements will be recursively merged such that prepending

the selected elements results in a sorted list. The postconditions explain this behavior

and triggers are used to unfold the definition of isSorted.

68



function merge (left, right) {
requires(left === null || left instanceof IntList);
requires(isSorted(left));
requires(right === null || right instanceof IntList);
requires(isSorted(right));
ensures(res => res === null || res instanceof IntList);
ensures(res => isSorted(res));
ensures(res => (left === null && right === null) === (res === null));
ensures(res => !(left !== null && (right === null || right.head >= left.head))

|| (res !== null && res.head === left.head));
ensures(res => !(right !== null && (left === null || right.head < left.head))

|| (res !== null && res.head === right.head));
ensures(pure());

if (left === null) {
return right;

} else if (right === null) {
return left;

} else if (left.head <= right.head) {
isSorted(left); // trigger instantiation
isSorted(left.tail); // ..
const merged = merge(left.tail, right);
const res = new IntList(left.head, merged);
isSorted(res); // trigger instantiation
return res;

} else {
isSorted(right); // trigger instantiation
isSorted(right.tail); // ..
const merged = merge(left, right.tail);
const res = new IntList(right.head, merged);
isSorted(res); // trigger instantiation
return res;

}
}

Finally, the main function simply returns the given list if it is empty or has just

69



a single element and otherwise uses partition, recursion and merge to implement the

MergeSort algorithm.

function sort (list) {
requires(list === null || list instanceof IntList);
ensures(res => res === null || res instanceof IntList);
ensures(res => isSorted(res));
ensures(pure());

if (list === null || list.tail === null) {
isSorted(list);
assert(isSorted(list));
return list;

}
const part = partition(list, null, null, false);
return merge(sort(part.left), sort(part.right));

}

In summary, about 48 out of a total 96 lines are verification annotations, in-

cluding invariants, pre- and postconditions and the predicate function isSorted.

3.4.3 Custom Generic List Class

While the previous two examples use a custom class specifically for lists of numbers, it is

also possible to define a list class that can be parameterized by a generic invariant that

holds for each element.

Here, the field each is a function value that acts as a predicate, i.e. it is a pure

boolean-valued function that is used for verification returns true for all elements in the

list.

70



class List {
constructor (head, tail, each) {

this.head = head; this.tail = tail; this.each = each;
}
invariant () {

return spec(this.each, (x) => true, (x, y) => pure() && typeof(y) === 'boolean')
&& (true && this.each)(this.head) // same as 'this.each(this.head)'

// but avoids binding 'this'
&& (this.tail === null || (this.tail instanceof List &&

this.each === this.tail.each));
}

}

Mapping a function f over a list results in a new list where each element cor-

responds to the result of f. In this example, the current list predicate lst.each has to

satisfy the precondition of f. Additionally, there is a third argument newEach that repre-

sents the new predicate of the list after mapping. Therefore, the postcondition of f needs

to be at least as strong as newEach. To simplify reasoning, the pseudo call pure() in the

postcondition ensures the absence of side effects. It is important to note that function

calls in an assertion context are uninterpreted, so the call newEach(y) in line 21 only

refers to the function return value but does not actually invoke the function.

function map (f, lst, newEach) {
requires(spec(newEach, (x) => true, (x, y) => pure() && typeof(y) === 'boolean'));
requires(lst === null || spec(f, (x) => (true && lst.each)(x),

(x, y) => pure() && newEach(y)));
requires(lst === null || lst instanceof List);
ensures(res => res === null || (res instanceof List && res.each === newEach));
ensures(pure()); // necessary for recursive calls

return lst === null ? null
: new List(f(lst.head), map(f, lst.tail, newEach), newEach);

}

71



It would be possible to rewrite the previous two examples using this parame-

terized list class. This demonstrates how generic data structures can be expressed with

esverify analogous to parameterized type systems.

3.4.4 Theorems and Proofs written in JavaScript

Despite being a program verifier, esverify can also be used to write general theorems

and proofs.

As previously shown in Listing 3.2, while loops with loop invariants are analo-

gous to simple induction proofs over natural numbers.

More generally, spec can be used to reify propositions instead of describing

computation results. In particular, the postcondition need not only describe the return

value; it can also state a proposition such that a value that satisfies the function specifi-

cation acts as proof of this proposition – analogous to the Curry-Howard isomorphism.

Such a function value can then be supplied as argument to higher-order functions to

build up longer proofs.

It is important to note that esverify does not currently check whether recursive

functions and loops terminate. Therefore, esverify can only prove partial correctness

and not total correctness. If an annotated function is evaluated to completion, its post-

condition holds but theorems proved with esverify do not apply to non-terminating

programs. Future work or external termination checkers could enable esverify to also

prove total correctness.

For an example, the following Listing includes a proof written in JavaScript

72



showing that any locally increasing integer-ranged function is globally increasing. This

example was previously used to illustrate refinement reflection in LiquidHaskell [115].

function proof_f_mono (f, proof_f_inc, n, m) {
requires(spec(f,

(x) => Number.isInteger(x) && x >= 0,
(x, y) => Number.isInteger(y) && pure()));

requires(spec(proof_f_inc,
x => Number.isInteger(x) && x >= 0,
x => f(x) <= f(x + 1) && pure()));

requires(Number.isInteger(n) && n >= 0);
requires(Number.isInteger(m) && m >= 0);
requires(n < m);
ensures(f(n) <= f(m));
ensures(pure()); // no side effects

proof_f_inc(n); // instantiate proof for n
if (n + 1 < m) {
// invoke induction hypothesis (I.H.)
proof_f_mono(f, proof_f_inc, n + 1, m);

}
}

Here, f is an arbitrary function from non-negative integers to integers and

proof_f_inc is a function argument that is not used for computation. Instead, a func-

tion value that satisfies the spec in lines 5–7 is a proof that f is monotonous for any

non-negative x. Additionally, the arguments n and m are integers with n < m. The over-

all function proof_f_mono establishes f(n)<= f(m) with an induction proof (written as

recursion) with proof_f_inc invoked at each step.

The function proof_f_mono can now be used to show f(n)<= f(m) for a concrete

function f. The example below shows a definition of the Fibonacci function fib and a

73



proof that fib is increasing. It is now possible to show fib(n)<= fib(m) for arbitrary n

and m with n < m by passing fib and proof_fib_inc into proof_f_mono.

function fib (n) {
requires(Number.isInteger(n) && n >= 0);
ensures(res => Number.isInteger(res));
ensures(pure());
if (n <= 1) {

return 1;
} else {

return fib(n - 1) + fib(n - 2);
}

}
function proof_fib_inc (n) {

requires(Number.isInteger(n) && n >= 0);
ensures(fib(n) <= fib(n + 1));
ensures(pure());
fib(n); // unfolds fib at n
fib(n + 1);
if (n > 0) {
fib(n - 1);
proof_fib_inc(n - 1); // I.H.

}
if (n > 1) {
fib(n - 2);
proof_fib_inc(n - 2); // I.H.

}
}
function proof_fib_mono (n, m) {

requires(Number.isInteger(n) && n >= 0);
requires(Number.isInteger(m) && m >= 0);
requires(n < m);
ensures(fib(n) <= fib(m));
ensures(pure());
proof_f_mono(fib, proof_fib_inc, n, m);

}

74



3.5 Future Work and Conclusions

This chapter described an approach for static verification of dynamically-typed JavaScript

programs. The implementation, esverify, supports both dynamic programming idioms

as well as higher-order functions. Internally, the verifier relies on a bounded quantifier

instantiation algorithm and SMT solving, yielding concrete counterexamples for verifica-

tion errors. While esverify enables verification of non-trivial programs such as Merge-

Sort, it lacks termination checking and support for object-oriented programming. How-

ever, it would be possible to combine it with an external termination checker for total

correctness [100], and to extend it with reasoning about the heap, such as regions or dy-

namic frames [103]. Finally, while the approach presented in this chapter is purely static,

future work might use runtime checks to enable sound execution of programs that are

not fully verified. This idea is also used for hybrid and gradual type checking [102, 57, 2]

and has recently been adapted to “soft verification” [82] and “gradual verification” [6].

75



Chapter 4

Formal Development of Program Verification with 𝜆𝑆

Beware of bugs in the above code; I have only proved it correct, not tried it.

— Donald Knuth

In order to clarify the approach of esverify and reason about its properties,

this chapter introduces a formal development of an idealized JavaScript-inspired, stati-

cally verified but dynamically typed language (𝜆𝑆).

The verification rules of 𝜆𝑆 are defined in terms of verification conditions whose

validity is checked with a custom decision procedure. Therefore, this chapter first defines

the class of logical propositions and axiomatizes their validity, then describes the decision

procedure including quantifier instantiation, and finally gives the syntax and semantics

of 𝜆𝑆 and shows that its verification rules are sound.

The definitions, axioms and theorems in this section are also formalized in the

Lean theorem prover [78]. The source code of the formal development including defini-

tions, axioms and theorems can be found in Appendix A and the full proof is available

online at https://github.com/levjj/esverify-theory/.

Additionally, this chapter also includes a brief comparison with static refine-

ment types [116]. Refined base type and dependent function types can be translated to

76

https://github.com/levjj/esverify-theory/


𝜆𝑆 annotations and, while a full proof is beyond the scope of this thesis, the translated

𝜆𝑆 program is presumably verifiable if the original program is well-typed. This suggests

that esverify is at least as expressive as a language with refinement types.

4.1 Overview

This chapter formally defines𝜆𝑆, a JavaScript-inspired dynamically typed language. Func-

tions in 𝜆𝑆 are annotated with pre- and postconditions, rendered as logical propositions.

These propositions can include unary and binary operators, refer to variables in scope,

denote function results with uninterpreted function calls, and constrain the pre- and post-

conditions of function values. The verification rules for 𝜆𝑆 involve checking verification

conditions for validity. This checking is performed by an SMT solver augmented with

decidable theories for linear integer arithmetic, equality, data types and uninterpreted

functions. The key difficulty is that verification conditions can include quantifiers, as

function definitions in the source program correspond to universally quantified formulas

in verification conditions. Unfortunately, SMT solvers may not perform the right instan-

tiations, and therefore quantifiers imperil the decidability of the verification process [38,

90]. In order to ensure a decidable and predictable verification process, 𝜆𝑆 employs a

bounded quantifier instantiation algorithm such that function calls in the source pro-

gram act as hints (“triggers”) that instantiate universal quantifiers. The algorithm only

performs a bounded number of trigger-based instantiations and thereby avoids both brit-

tle instantiation heuristics and infinite matching loops. Using this decision procedure for

77



𝜙 ∈ Propositions ∶∶= 𝜏 | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝑝𝑟𝑒(⊗, 𝜏) |

𝑝𝑟𝑒(⊕, 𝜏, 𝜏) | 𝑝𝑟𝑒(𝜏, 𝜏) | 𝑝𝑜𝑠𝑡(𝜏, 𝜏) | ∀𝑥.𝜙

𝜏 ∈ Terms ∶∶= 𝑣 | 𝑥 | ⊗ 𝜏 | 𝜏 ⊕ 𝜏 | 𝜏(𝜏)

⊗ ∈ UnaryOperators ∶∶= ¬ | 𝑖𝑠𝐼𝑛𝑡 | 𝑖𝑠𝐵𝑜𝑜𝑙 | 𝑖𝑠𝐹𝑢𝑛𝑐

⊕ ∈ BinaryOperators ∶∶= + | − | × | / | ∧ | ∨ | = | <

𝑣 ∈ Values ∶∶= true | false | 𝑛 | ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩

𝜎 ∈ Environments ∶∶= ∅ | 𝜎[𝑥 ↦ 𝑣]

𝑛 ∈ ℕ 𝑓, 𝑥, 𝑦, 𝑧 ∈ Variables

Figure 4.1: Syntax of logical propositions used in the verifier.

verification conditions, it can be shown that verification of 𝜆𝑆 is sound, i.e. verifiable 𝜆𝑆

programs do not get stuck.

4.2 Logical Foundation

Figure 4.1 formally defines the syntax of propositions, terms, values and environments.

Propositions𝜙 can use terms, connectives¬, ∧ and∨, symbols 𝑝𝑟𝑒, 𝑝𝑟𝑒, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 and uni-

versal quantifiers. Here, terms 𝜏 are either values, variables, unary or binary operations

or uninterpreted function calls. Finally, values 𝑣 include boolean and integer constants

as well as closures which are opaque values that will be explained in Section 4.4.

Instead of defining validity of propositions in terms of an algorithm such as

SMT solving, this formal development uses an axiomatization of the validity judgement

78



⊢ 𝜙. These axioms are mostly standard but are listed here explicitly because they form

the foundation for both the mechanized Lean proof as well as the subsequent definitions

and theorems in this chapter.

The term “true” is trivially valid.

⊢ 𝜙Axiom 1. ⊢ true.

Validity of conjunctions and disjunctions follows standard inference rules.

Axiom 2. Iff both ⊢ 𝜙 and ⊢ 𝜙 then ⊢ 𝜙 ∧ 𝜙.

Axiom 3. If ⊢ 𝜙 then ⊢ 𝜙 ∨ 𝜙.

Axiom 4. If ⊢ 𝜙 then ⊢ 𝜙 ∨ 𝜙.

Axiom 5. If ⊢ 𝜙 ∨ 𝜙 then ⊢ 𝜙 or ⊢ 𝜙.

The following axioms for negation assume that valid propositions do not include

contradictions and that the law of the excluded middle holds.

Axiom 6. ⊢ 𝜙 ∧ ¬𝜙 is not true.

Axiom 7. ⊢ 𝜙 ∨ ¬𝜙 is true.

For convenience, a notation for implication can be defined in terms of disjunc-

tion and negation.

Notation 1 (Implication). (𝜙 ⇒ 𝜙)
def== (¬𝜙 ∨ 𝜙).

There is no evaluation relation for terms. Instead, equality of terms is defined

with a selection of axioms. For example, a standalone term is considered valid if it equals

“true”.

79



Axiom 8. Iff ⊢ 𝜏 then ⊢ 𝜏 = 𝑡𝑟𝑢𝑒.

Equalities involving unary and binary operators are axiomatized in terms of a

partial function 𝛿, e.g. 𝛿(+, 2, 3) = 5.

Axiom 9. Iff 𝛿(⊗, 𝑣𝑥) = 𝑣 then ⊢ 𝑣 = ⊗𝑣𝑥.

Axiom 10. Iff 𝛿(⊕, 𝑣𝑥, 𝑣𝑦) = 𝑣 then ⊢ 𝑣 = 𝑣𝑥 ⊕ 𝑣𝑦.

The propositions 𝑝𝑟𝑒(⊗, 𝑣𝑥) and 𝑝𝑟𝑒(⊕, 𝑣𝑥, 𝑣𝑦) can be used to reason about the

domain of 𝛿, i.e. the values for which the operators ⊗ and ⊕ are defined.

Axiom 11. If ⊢ 𝑝𝑟𝑒(⊗, 𝑣𝑥) then (⊗, 𝑣𝑥) ∈ 𝑑𝑜𝑚(𝛿).

Axiom 12. If ⊢ 𝑝𝑟𝑒(⊕, 𝑣𝑥, 𝑣𝑦) then (⊕, 𝑣𝑥, 𝑣𝑦) ∈ 𝑑𝑜𝑚(𝛿).

Similarly, the constructs 𝑝𝑟𝑒(𝑓, 𝑥) and 𝑝𝑜𝑠𝑡(𝑓, 𝑥) in propositions denote the pre-

and postcondition of a function 𝑓 when applied to a given argument 𝑥. However, in

contrast to 𝑝𝑟𝑒 and 𝑝𝑟𝑒, the logical foundations do not contain axioms for 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡.

The interpretation of 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 is instead determined by their use in the generated

verification condition.

Definition 1 (Substitution). 𝜙[𝑥 ↦ 𝑣] denotes the proposition in which free occurrences

of 𝑥 in 𝜙 are replaced by 𝑣.

A universally quantified proposition is true for all values and can be instantiated

with any term.

Axiom 13. If ⊢ 𝜙[𝑥 ↦ 𝑣] for all values 𝑣, then ⊢ ∀𝑥. 𝜙.

80



Axiom 14. If ⊢ ∀𝑥. 𝜙 then ⊢ 𝜙[𝑥 ↦ 𝜏] for all terms 𝜏.

A valid proposition is not necessarily closed. In fact, free variables occurring in

a proposition are assumed to be implicitly universally quantified.

Axiom 15. If 𝑥 is free in 𝜙 and ⊢ 𝜙 then ⊢ ∀𝑥. 𝜙.

Substitution in terms and propositions can also be expressed in terms of an

environment 𝜎 mapping variables to values.

Definition 2 (Lookup). 𝜎(𝑥) looks up the value associated with 𝑥 in the environment 𝜎.

Definition 3 (Substitution with Environment). 𝜎(𝜏) and 𝜎(𝜙) substitute free variables in

𝜏 and 𝜙 with values according to 𝜎.

An environment 𝜎 is a model for a proposition if the substituted proposition is

valid. This definition of models is unconventional but it facilitates the subsequent formal

development.

Notation 2 (Model). 𝜎 ⊧ 𝜙 def== ⊢ 𝜎(𝜙) 𝜎 ⊧ 𝜙

It is important to note that this validity judgement may not be decidable for all

propositions due to the use of quantifiers, so in addition to this (undecidable) validity

judgement, this formalism also introduces a notion of satisfiability by an SMT solver.

Definition 4 (Satisfiability). The notation 𝑆𝑎𝑡(𝜙) indicates that the SMT solver found a

model that satisfies 𝜙. 𝑆𝑎𝑡(𝜙)

Theorem 1. If 𝜙 is quantifier-free, then SMT solving terminates and 𝑆𝑎𝑡(𝜙) holds iff

𝜎 ⊧ 𝜙 for some model 𝜎.

81



Proof. SMT solving is not decidable for arbitrary propositions but the QF-UFLIA fragment

of quantifier-free formulas with equality, uninterpreted function symbols and linear in-

teger arithmetic is known to be decidable [79, 17]. Therefore, SMT solving terminates

for all inputs and its result can be assumed to be consistent with the axioms above.

4.3 Quantifier Instantiation Algorithm andDecision Procedure

As described above, verification of 𝜆𝑆 involves checking the validity of verification con-

ditions that include quantifiers. Quantifier instantiation in SMT solvers is an active re-

search topic [38, 90] and often requires heuristics or explicit matching triggers. However,

heuristics can cause unpredictable results and trigger-based instantiation might lead to

infinite matching loops. This section describes a bounded quantifier instantiation al-

gorithm that avoids matching loops and brittle heuristics, thus enabling a predictable

decision procedure for verification conditions.

𝑃 ∈ VerificationConditions ∶∶= 𝜏 | ¬𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | 𝑝𝑟𝑒(⊗, 𝜏) | 𝑝𝑟𝑒(⊕, 𝜏, 𝜏) |

𝑝𝑟𝑒(𝜏, 𝜏) | 𝑝𝑜𝑠𝑡(𝜏, 𝜏) | 𝑐𝑎𝑙𝑙(𝜏) | ∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃 | ∃𝑥.𝑃

The syntax of verification conditions 𝑃 used in verification rules is similar to

the syntax for propositions but universal quantifiers in verification conditions (VCs) have

explicit matching patterns to indicate that instantiation requires a trigger. Accordingly,

the construct 𝑐𝑎𝑙𝑙(𝑥) is introduced to act as an instantiation trigger that does not otherwise

affect validity of propositions, i.e. 𝑐𝑎𝑙𝑙(𝑥) can always assumed to be true. Intuitively, 𝑐𝑎𝑙𝑙(𝑥)

represents a function call or an asserted function specification while ∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃

corresponds to a function definition or an assumed function specification. For the trigger

82



𝑐𝑎𝑙𝑙(𝑥), 𝑥 denotes the argument of the call; the callee is omitted as triggers are matched

irrespective of their callees by the instantiation algorithm.

The complete decision procedure for VCs including quantifier instantiation is

shown in Figure 4.2.

To make the definition more concise, it is helpful to first define contexts 𝑃+[∘]

and 𝑃−[∘] for fragments of a VC with positive and negative polarity regarding negation.

Using this definition, the set of call triggers in negative positions can be defined as the

set of triggers for which there exists a context with negative polarity.

The procedure 𝑙𝑖𝑓𝑡+ matches universal quantifiers in positive and existential

quantifiers in negative positions. In both cases, an equivalent VC without the quantifier

can be obtained by renaming the quantified variable to a fresh variable that is implicitly

universally quantified. It is important to note that the matching pattern 𝑐𝑎𝑙𝑙(𝑦) of a uni-

versal quantifier now becomes a part of an implication thereby available to instantiate

further quantifiers. The lifting is repeated until no more such quantifiers can be found.

The procedure 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑂𝑛𝑐𝑒− performs one round of trigger-based instanti-

ation such that each universal quantifier with negative polarity is instantiated with all

available triggers in negative position. All such instantiations are conjoined with the

original quantifier.

Both lifting and instantiation are repeated for multiple iterations by the recur-

sive 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒− procedure. As a final step, 𝑒𝑟𝑎𝑠𝑒− removes all remaining triggers and

quantifiers in negative positions.

The overall decision procedure ⟨𝑃⟩ performs 𝑛 rounds of instantiations where 𝑛

83



𝑃+[∘] ∶∶= ∘ | ¬𝑃−[∘] | 𝑃+[∘] ∧ 𝑃 | 𝑃 ∧ 𝑃+[∘] | 𝑃+[∘] ∨ 𝑃 | 𝑃 ∨ 𝑃+[∘]

𝑃−[∘] ∶∶= ¬𝑃+[∘] | 𝑃−[∘] ∧ 𝑃 | 𝑃 ∧ 𝑃−[∘] | 𝑃−[∘] ∨ 𝑃 | 𝑃 ∨ 𝑃−[∘]

𝑐𝑎𝑙𝑙𝑠− (𝑃) def== { 𝑐𝑎𝑙𝑙(𝜏) | ∃𝑃−. 𝑃 = 𝑃−[𝑐𝑎𝑙𝑙(𝜏)] }

𝑙𝑖𝑓𝑡+ (𝑃) def== match 𝑃 with

𝑃+[∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃′] → 𝑙𝑖𝑓𝑡+ 𝑃+[𝑐𝑎𝑙𝑙(𝑦) ⇒ 𝑃′[𝑥 ↦ 𝑦]] (𝑦 fresh)

𝑃−[∃𝑥.𝑃′] → 𝑙𝑖𝑓𝑡+ 𝑃−[𝑃′[𝑥 ↦ 𝑦]] (𝑦 fresh)

otherwise → 𝑃

𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑂𝑛𝑐𝑒− (𝑃) def== 𝑃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑃−(∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃′) ↦ 𝑃−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃′) ∧

∧
𝑐𝑎𝑙𝑙(𝜏) ∈ 𝑐𝑎𝑙𝑙𝑠−(𝑃)

𝑃′[𝑥 ↦ 𝜏]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑒𝑟𝑎𝑠𝑒− (𝑃) def== 𝑃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑃−(∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑃″) ↦ 𝑃−true

𝑃+𝑐𝑎𝑙𝑙(𝜏) ↦ 𝑃+true

𝑃−𝑐𝑎𝑙𝑙(𝜏) ↦ 𝑃−true

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒− (𝑃, 𝑛) def== if 𝑛 = 0

then 𝑒𝑟𝑎𝑠𝑒−(𝑙𝑖𝑓𝑡+(𝑃))

else 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒−(𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑂𝑛𝑐𝑒− 𝑙𝑖𝑓𝑡+(𝑃) , 𝑛 − 1)

⟨𝑃⟩ def== let 𝑛 = maximum level of quantifier nesting of 𝑃

in ¬𝑆𝑎𝑡 (¬𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒− (𝑃, 𝑛))

⟨𝑃⟩

Figure 4.2: The decision procedure lifts, instantiates and finally eliminates quanti-

fiers. The number of iterations is bounded by the maximum level of

quantifier nesting.

84



is the maximum level of quantifier nesting. The original VC 𝑃 is considered valid if SMT

solving cannot refute the resulting proposition.

VCs 𝑃 can syntactically include both existential and universal quantifiers in both

positive and negative positions. However, VCs generated by the verifier have existential

quantifiers only in negative positions.

Theorem 2 (Decision Procedure Termination). If 𝑃 does not contain existential quanti-

fiers in negative positions, the decision procedure ⟨𝑃⟩ terminates.

Proof. The 𝑙𝑖𝑓𝑡+ function eliminates a quantifier during each recursive call and therefore

terminates when there are no more matching quantifiers in the formula. 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑂𝑛𝑐𝑒−

and 𝑒𝑟𝑎𝑠𝑒− are both non-recursive and trivially terminate. Since the maximum level of

nesting is finite, ⟨𝑃⟩ performs only a finite number of instantiation rounds. With existen-

tial quantifiers only in negative positions, the erased and lifted result is quantifier-free,

so according to Theorem1, the final SMT solving step also terminates.

It is now possible to compare the axiomatized validity judgement for proposi-

tions ⊢ 𝜙 with the decision procedure for verification conditions ⟨𝑃⟩ by translating the

VC 𝑃 to a proposition 𝜙 without triggers or matching patterns.

Definition 5 (Proposition Translation). 𝑝𝑟𝑜𝑝(𝑃) denotes a proposition such that triggers

and matching patterns in 𝑃 are removed and existential quantifiers ∃𝑥. 𝑃 translated to

¬∀𝑥. ¬𝑝𝑟𝑜𝑝(𝑃).

Theorem 3 (Quantifier Instantiation Soundness). If 𝑃 has no existential quantifiers in

negative positions, then ⟨𝑃⟩ implies ⊢ 𝑝𝑟𝑜𝑝(𝑃).

85



Proof. With Axiom15, it can be shown that 𝑙𝑖𝑓𝑡+ preserves equisatisfiability. Addition-

ally, conjuncts inserted by 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑂𝑛𝑐𝑒− could also be obtained via classical (not

trigger-based) instantiation using Axiom14. Furthermore, since 𝑒𝑟𝑎𝑠𝑒− only removes

quantifiers in negative positions and triggers that are inconsequential for validy, the

resulting propositions are implied by the original non-erased VC. Finally, with existen-

tial quantifiers only in negative positions, the erased and lifted result is quantifier-free.

Therefore, Theorem1 can be used to show that a valid VC according to the decision

procedure is also valid without trigger-based instantiation1.

4.4 Syntax and Semantics of 𝜆𝑆

Figure 4.3 defines the syntax of 𝜆𝑆. Values 𝑣 are either integer or boolean constants, or

closures consisting of a function definition and an environment 𝜎 (as previously defined

in Figure 4.1). Expressions 𝑒 are assumed to be in A-normal form [33] such that each

step of the computation looks up values in the environment and augments the environ-

ment with the result. Function calls are processed with a call stack configuration 𝜅 that

resumes once the callee finished its computation with a value. This formalism avoids

substitution in expressions and assertions in order to simplify subsequent proofs.

Function definitions in 𝜆𝑆 are written as let 𝑓(𝑥) req 𝑅 ens 𝑆 = 𝑒 in 𝑒 with

an annotated precondition 𝑅 and postcondition 𝑆. These annotations can include terms

such as constants, variables and uninterpreted function application 𝜏(𝜏), as well as logical

connectives and function specifications “spec 𝜏(𝑥) req 𝑅 ens 𝑆”.
A complete proof is available at: https://github.com/levjj/esverify-theory/

86

https://github.com/levjj/esverify-theory/


⊗ ∈ UnaryOperators ∶∶= ¬ | 𝑖𝑠𝐼𝑛𝑡 | 𝑖𝑠𝐵𝑜𝑜𝑙 | 𝑖𝑠𝐹𝑢𝑛𝑐

⊕ ∈ BinaryOperators ∶∶= + | − | × | / | ∧ | ∨ | = | <

𝑣 ∈ Values ∶∶= true | false | 𝑛 | ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩

𝑒 ∈ Expressions ∶∶= let 𝑥 = true in 𝑒 | let 𝑥 = false in 𝑒 | let 𝑥 = 𝑛 in 𝑒 |

let 𝑓(𝑥) req 𝑅 ens 𝑆 = 𝑒 in 𝑒 | let 𝑦 = ⊗𝑥 in 𝑒 |

let 𝑧 = 𝑥 ⊕ 𝑦 in 𝑒 | let 𝑦 = 𝑓(𝑥) in 𝑒 | if (𝑥) 𝑒 else 𝑒 | return 𝑥

𝑅, 𝑆 ∈ Specs ∶∶= 𝜏 | ¬𝑅 | 𝑅 ∧ 𝑅 | 𝑅 ∨ 𝑅 | spec 𝜏(𝑥) req 𝑅 ens 𝑆

𝜅 ∈ Stacks ∶∶= (𝜎, 𝑒) | 𝜅 ⋅ (𝜎, let 𝑦 = 𝑓(𝑥) in 𝑒)

Figure 4.3: Syntax of 𝜆𝑆 programs. Function definitions have pre- and postcon-

ditions written as simple logical propositions with the 𝑠𝑝𝑒𝑐 syntax for

higher-order functions. The syntax of operators and values follows the

definition in Figure 4.1.

As an example, the following JavaScript function uses esverify annotations to

specify its pre- and postcondition:

function inc (x) {
requires(Number.isInteger(x));
ensures(result => Number.isInteger(y) && result > x);
return x + 1;

}
...

The same annotated function could be expressed in 𝜆𝑆 as follows:

let 𝑖𝑛𝑐(𝑥) req (𝑖𝑠𝐼𝑛𝑡(𝑥)) ens (𝑖𝑠𝐼𝑛𝑡(𝑖𝑛𝑐(𝑥)) ∧ 𝑖𝑛𝑐(𝑥) > 𝑥) =

let 𝑦 = 𝑥 + 1

in return 𝑦

in ...

87



Since 𝜆𝑆 is a pure functional language, the postcondition can refer to the func-

tion result with an uninterpreted invocation such as 𝑖𝑛𝑐(𝑥) instead of introducing a vari-

able binding such as result above.

The operational semantics of 𝜆𝑆 is specified by a small-step evaluation relation

over stack configurations 𝜅, as shown in Figure 4.4. Most noteworthily, the callee func-

tion name is added to the environment at each call to enable recursion, and function pre-

and postconditions are not checked or enforced during evaluation.

The evaluation of a stack configuration terminates either by getting stuck or by

reaching a successful completion configuration.

Definition 6 (Evaluation Finished). A stack 𝜅 has terminated successfully, abbreviated

with 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝜅), if there exists 𝜎 and 𝑥 such that 𝜅 = (𝜎, return 𝑥) and 𝑥 ∈ 𝜎.

4.5 Program Verification

The verification rules of 𝜆𝑆 are inductively defined in terms of a verification judgement

𝑃 ⊢ 𝑒 ∶ 𝑄 as shown in Figure 4.6. Given a known precondition 𝑃 and an expression 𝑒, a

verification rule checks potential verification conditions and generates a postcondition𝑄.

This postcondition contains a hole • for the evaluation result of 𝑒 as shown in Figure 4.5.

Since 𝜆𝑆 is purely functional, 𝑃 still holds after evaluating 𝑒, so 𝑄 corresponds to the

marginal postcondition and 𝑃 ∧ 𝑄[•] corresponds to the strongest postcondition.

For simplicity, the formalism follows the convention that the free variables of 𝑃,

denoted 𝐹𝑉(𝑃), must be exactly the set of variables in scope at 𝑒.

88



𝜅 ↪ 𝜅

(𝜎, let 𝑥 = 𝑣 in 𝑒) ↪ (𝜎[𝑥 ↦ 𝑣], 𝑒) [e-val]

where 𝑣 ∈ {true, false, 𝑛}

(𝜎, let 𝑓(𝑥) req 𝑅 ens 𝑆 = 𝑒 in 𝑒) ↪ (𝜎[𝑓 ↦ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩], 𝑒) [e-closure]

(𝜎, let 𝑦 = ⊗𝑥 in 𝑒) ↪ (𝜎[𝑦 ↦ 𝑣], 𝑒) [e-unop]

where 𝑣 = 𝛿(⊗, 𝜎(𝑥))

(𝜎, let 𝑧 = 𝑥 ⊕ 𝑦 in 𝑒) ↪ (𝜎[𝑧 ↦ 𝑣], 𝑒) [e-binop]

where 𝑣 = 𝛿(⊕, 𝜎(𝑥), 𝜎(𝑦))

(𝜎, let 𝑧 = 𝑓(𝑦) in 𝑒) ↪ (𝜎𝑓[𝑔 ↦ 𝜎(𝑓), 𝑥 ↦ 𝜎(𝑦)], 𝑒𝑓) ⋅ (𝜎, let 𝑧 = 𝑓(𝑦) in 𝑒)

where 𝜎(𝑓) = ⟨𝑔(𝑥) req 𝑅 ens 𝑆 {𝑒𝑓}, 𝜎𝑓⟩ [e-call]

(𝜎, return 𝑧) ⋅ (𝜎, let 𝑦 = 𝑓(𝑥) in 𝑒) ↪ (𝜎[𝑦 ↦ 𝜎(𝑧)], 𝑒) [e-return]

(𝜎, if (𝑥) 𝑒 else 𝑒) ↪ (𝜎, 𝑒) [e-if-true]

if 𝜎(𝑥) = true

(𝜎, if (𝑥) 𝑒 else 𝑒) ↪ (𝜎, 𝑒) [e-if-false]

if 𝜎(𝑥) = false

𝜅 ⋅ (𝜎, let 𝑦 = 𝑓(𝑥) in 𝑒) ↪ 𝜅′ ⋅ (𝜎, let 𝑦 = 𝑓(𝑥) in 𝑒) [e-context]

if 𝜅 ↪ 𝜅′

Figure 4.4: Operational semantics of 𝜆𝑆

89



𝑄[•] ∈ PropositionContexts ∶∶= 𝑃 | 𝜂[•] | ¬𝑄[•] | 𝑄[•] ∧ 𝑄[•] | 𝑄[•] ∨ 𝑄[•] |

𝑝𝑟𝑒(⊗, 𝜂[•]) | 𝑝𝑟𝑒(⊕, 𝜂[•], 𝜂[•]) |

𝑝𝑟𝑒(𝜂[•], 𝜂[•]) | 𝑝𝑜𝑠𝑡(𝜂[•], 𝜂[•]) | 𝑐𝑎𝑙𝑙(𝜂[•]) |

∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ 𝑄[•] | ∃𝑥. 𝑄[•]

𝜂[•] ∈ TermContexts ∶∶= • | 𝜏 | ⊗ 𝜂[•] | 𝜂[•] ⊕ 𝜂[•] | 𝜂[•](𝜂[•])

Figure 4.5: Proposition and term contexts contain a hole • for the evaluation result.

As an example, a unary operation such as let 𝑦 = ⊗𝑥 in 𝑒 is verified with the

rule vc-unop. It requires 𝑥 to be a variable in scope, i.e. a variable that is free in the

precondition 𝑃. To avoid name clashes, the result 𝑦 should not be free. Additionally, the

VC ⟨𝑃 ⇒ 𝑝𝑟𝑒(⊗, 𝑥)⟩ needs to be valid for all assignments of free variables (such as 𝑥). This

check ensures that the value of 𝑥 is in the domain of the operator ⊗. The rules vc-binop,

vc-if, etc. follow analogously.

For function applications 𝑓(𝑥), an additional 𝑐𝑎𝑙𝑙(𝑥) trigger is assumed to instan-

tiate quantified formulas that correspond to the function definition or specification of the

callee.

The most complex rule concerns the verification of function definitions, such

as let 𝑓(𝑥) req 𝑅 ens 𝑆 = 𝑒 in 𝑒. Here, the annotated precondition 𝑅, the specifica-

tion of 𝑓 and the marginal postcondition 𝑄[𝑓(𝑥)] together have to imply the annotated

postcondition 𝑆. Any recursive calls of 𝑓 appearing in its function body will instantiate

its (non-recursive) specification, while subsequent calls of 𝑓 in 𝑒 will use a postcondi-

90



𝑃 ⊢ 𝑒 ∶ 𝑄𝑥 ∉ 𝐹𝑉(𝑃) 𝑣 ∈ {true, false, 𝑛} 𝑃 ∧ 𝑥 = v ⊢ 𝑒 ∶ 𝑄
vc-val𝑃 ⊢ let 𝑥 = 𝑣 in 𝑒 ∶ ∃𝑥. 𝑥 = 𝑣 ∧ 𝑄

𝑥 ∈ 𝐹𝑉(𝑃) 𝑦 ∉ 𝐹𝑉(𝑃) 𝑃 ⇒ 𝑝𝑟𝑒(⊗, 𝑥) 𝑃 ∧ 𝑦 = ⊗𝑥 ⊢ 𝑒 ∶ 𝑄
vc-unop𝑃 ⊢ let 𝑦 = ⊗𝑥 in 𝑒 ∶ ∃𝑦. 𝑦 = ⊗𝑥 ∧ 𝑄

𝑥 ∈ 𝐹𝑉(𝑃) 𝑦 ∈ 𝐹𝑉(𝑃) 𝑧 ∉ 𝐹𝑉(𝑃)
⟨𝑃 ⇒ 𝑝𝑟𝑒(⊕, 𝑥, 𝑦)⟩ 𝑃 ∧ 𝑧 = 𝑥 ⊕ 𝑦 ⊢ 𝑒 ∶ 𝑄

vc-binop𝑃 ⊢ let 𝑧 = 𝑥 ⊕ 𝑦 in 𝑒 ∶ ∃𝑧. 𝑧 = 𝑥 ⊕ 𝑦 ∧ 𝑄

𝑓 ∉ 𝐹𝑉(𝑃) 𝑥 ∉ 𝐹𝑉(𝑃) 𝑓 ≠ 𝑥 𝑥 ∈ 𝐹𝑉(𝑅) 𝐹𝑉(𝑅) ⊆ 𝐹𝑉(𝑃) ∪ {𝑓, 𝑥}
𝐹𝑉(𝑆) ⊆ 𝐹𝑉(𝑃) ∪ {𝑓, 𝑥} 𝑃 ∧ spec 𝑓(𝑥) req 𝑅 ens 𝑆 ∧ 𝑅 ⊢ 𝑒 ∶ 𝑄

𝑃 ∧ spec 𝑓(𝑥) req 𝑅 ens 𝑆 ∧ 𝑅 ∧ 𝑄[𝑓(𝑥)] ⇒ 𝑆
𝑃 ∧ spec 𝑓(𝑥) req 𝑅 ens (𝑄[𝑓(𝑥)] ∧ 𝑆) ⊢ 𝑒 ∶ 𝑄 vc-fn𝑃 ⊢ let 𝑓(𝑥) req 𝑅 ens 𝑆 = 𝑒 in 𝑒 ∶ ∃𝑓. spec 𝑓(𝑥) req 𝑅 ens (𝑄[𝑓(𝑥)] ∧ 𝑆) ∧ 𝑄

𝑓 ∈ 𝐹𝑉(𝑃) 𝑥 ∈ 𝐹𝑉(𝑃) ⟨𝑃 ∧ 𝑐𝑎𝑙𝑙(𝑥) ⇒ 𝑖𝑠𝐹𝑢𝑛𝑐(𝑓) ∧ 𝑝𝑟𝑒(𝑓, 𝑥)⟩
𝑦 ∉ 𝐹𝑉(𝑃) 𝑃 ∧ 𝑐𝑎𝑙𝑙(𝑥) ∧ 𝑝𝑜𝑠𝑡(𝑥) ∧ 𝑦 = 𝑓(𝑥) ⊢ 𝑒 ∶ 𝑄

vc-app𝑃 ⊢ let 𝑦 = 𝑓(𝑥) in 𝑒 ∶ ∃𝑦. 𝑐𝑎𝑙𝑙(𝑥) ∧ 𝑝𝑜𝑠𝑡(𝑓, 𝑥) ∧ 𝑦 = 𝑓(𝑥) ∧ 𝑄

𝑥 ∈ 𝐹𝑉(𝑃) ⟨𝑃 ⇒ 𝑖𝑠𝐵𝑜𝑜𝑙(𝑓)⟩
𝑃 ∧ 𝑥 ⊢ 𝑒 ∶ 𝑄 𝑃 ∧ ¬𝑥 ⊢ 𝑒 ∶ 𝑄 vc-ite𝑃 ⊢ if (𝑥) 𝑒 else 𝑒 ∶ (𝑥 ⇒ 𝑄) ∧ (¬𝑥 ⇒ 𝑄)

𝑥 ∈ 𝐹𝑉(𝑃)
vc-return𝑃 ⊢ return 𝑥 ∶ 𝑥 = •

Figure 4.6: The judgement 𝑃 ⊢ 𝑒 ∶ 𝑄 verifies the expression 𝑒 while assuming 𝑃,
yielding a marginal postcondition 𝑄 with a hole • for the evaluation re-

sult.

91



tion that is strengthened by the generated marginal postcondition. This corresponds to

expanding or inlining the function definition by one level at each non-recursive callsite.

The special syntax spec 𝜏(𝑥) req 𝑅 ens 𝑆, as used in verification rules, user-

provided pre- and postconditions, is a notation that desugars to a universal quantifier

when appearing in a verification condition.

Notation 3 (Function Specifications).

spec 𝜏(𝑥) req 𝑅 ens 𝑆 def== 𝑖𝑠𝐹𝑢𝑛𝑐(𝜏) ∧ ∀𝑥.{𝑐𝑎𝑙𝑙(𝑥)} ⇒ ((𝑅 ⇒ 𝑝𝑟𝑒(𝜏, 𝑥)) ∧ (𝑝𝑜𝑠𝑡(𝜏, 𝑥) ⇒ 𝑆))

That is, if a function call instantiates this quantifier, the precondition 𝑅 of the

𝑠𝑝𝑒𝑐 satisfies the precondition of 𝑓 and the postcondition 𝑆 of the 𝑠𝑝𝑒𝑐 is implied by the

postcondition of 𝑓. For a concrete function call, this means that 𝑅 needs to be asserted

by the calling context and 𝑆 can be assumed at the callsite.

4.6 Soundness

Based on the decision procedure and the verification rules described in the previous sec-

tions, it is possible to show that verified programs evaluate to completion without getting

stuck. While annotated assertions are not directly enforced by the operational seman-

tics, the preconditions of operators have to be satisfied and can be arbitrarily complex.

Therefore, this soundness property also ensures that annotated assertions, such as post-

conditions, hold during evaluation for concrete values of free variables.

First, it is important to note that quantifiers in generated VCs only appear in

certain positions.

92



Lemma 1. If 𝑃 is a proposition with existential quantifiers only in positive positions,

then each VC used in the derivation tree of 𝑃 ⊢ 𝑒 ∶ 𝑄 has existential quantifiers only in

negative positions.

Proof. All VCs in the verification rules shown in Figure 4.6 are implications of the form

⟨𝑃″ ⇒ 𝑄″⟩. In each of these implications, there are no existential quantifiers in 𝑄″, as

user-supplied postconditions 𝑆 have no existential quantifiers. Additionally, all proposi-

tions 𝑃″ on the left-hand side have existential quantifiers only in positive positions, since

existential quantifiers in marginal postconditions are always in positive positions.

From Lemma1 and Theorem2, it follows that verification always terminates,

ensuring a predictable verification process.

As mentioned in Section 4.2, the axiomatization of logical propositions does not

include evaluation and treats terms 𝜏(𝜏) as uninterpreted symbols rather than function

calls. However, for a proof of verification soundness it is necessary to establish equalities

about function application for a given closure and argument value.

Axiom 16. If (𝜎[𝑓 ↦ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑥 ↦ 𝑣𝑥], 𝑒) ⟶∗ (𝜎′, 𝑦) and 𝜎′(𝑦) = 𝑣

then ⊢ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩(𝑣𝑥) = 𝑣.

Similarly, axioms about 𝑝𝑟𝑒(𝑓, 𝑥) and 𝑝𝑜𝑠𝑡(𝑓, 𝑥) can be added for concrete values

of 𝑓 and 𝑥.

Axiom 17. Iff 𝜎[𝑓 ↦ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑥 ↦ 𝑣𝑥] ⊧ 𝑅

then ⊢ 𝑝𝑟𝑒(⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑣𝑥).

93



Axiom 18. If ⊢ 𝜎 ∶ 𝑄 and 𝑄 ∧ spec 𝑓(𝑥) req 𝑅 ens 𝑆 ∧ 𝑅 ⊢ 𝑒 ∶ 𝑄[•]

and 𝜎[𝑓 ↦ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑥 ↦ 𝑣𝑥] ⊧ 𝑄[𝑓(𝑥)] ∧ 𝑆

then ⊢ 𝑝𝑜𝑠𝑡(⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑣𝑥).

Axiom 19. If ⊢ 𝜎 ∶ 𝑄 and 𝑄 ∧ spec 𝑓(𝑥) req 𝑅 ens 𝑆 ∧ 𝑅 ⊢ 𝑒 ∶ 𝑄[•]

and ⊢ 𝑝𝑜𝑠𝑡(⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑣𝑥)

then 𝜎[𝑓 ↦ ⟨𝑓(𝑥) req 𝑅 ens 𝑆 {𝑒}, 𝜎⟩, 𝑥 ↦ 𝑣𝑥] ⊧ 𝑄[𝑓(𝑥)] ∧ 𝑆

Based on these axioms, definitions and verification rules, it can now be shown

that verifiable expressions evaluate to completion without getting stuck, i.e. all reachable

configurations either terminate normally or can be further evaluated.

Theorem 4 (Verification Safety). If 𝑡𝑟𝑢𝑒 ⊢ 𝑒 ∶ 𝑄 and (∅, 𝑒) ↪∗ 𝜅 then 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝜅) or

𝜅 ↪ 𝜅′ for some 𝜅′.

Proof. Due to the complex quantifier instantiation of the decision procedure, verification

safety is first proven for a verification judgement that is similar to the one in Figure 4.6

but uses the undecidable validity ⊢ 𝑝𝑟𝑜𝑝(𝑃) without quantifier instantiation rather than

the decision procedure ⟨𝑃⟩. The verification safety proof for this alternate judgement

uses a standard progress/preservation proof strategy, where the notion of verifiability

is extended to stack configurations such that a given runtime stack is considered ver-

ifiable if, at each stack frame, the expression is verifiable with the translation of 𝜎 as

precondition. With Theorem3, it follows that soundness of this verification judgement

also implies soundness with trigger-based quantifier instantiation. A complete proof is

available at: https://github.com/levjj/esverify-theory/.

94

https://github.com/levjj/esverify-theory/


4.7 Extensions

The language 𝜆𝑆 includes higher-order functions but does not address other language

features supported by esverify, such as imperative programs and complex recursive

data types.

4.7.1 Imperative Programs

Extending 𝜆𝑆 for imperative programs would entail syntax, semantics and verification

rules for allocating, mutating and referencing values stored in the heap. Most noteworthy,

loops and recursion invalidate previous facts about heap contents and therefore require

precise invariants.

To simplify reasoning, it is useful to distinguish heap-manipulating functions

from pure functions. In esverify, the pseudo call pure() appearing in a postcondition

indicates that the function is prohibited from manipulating the heap. A formal develop-

ment might introduce separate syntactical classes for these types of functions.

In order to express invariants for heap manipulating code such as functions and

loops, esverify additionally introduces a syntax old(x) that denotes the previous value

of a variable. This enables annotations such as x === old(x) to confine the effects of

heap-manipulating code to certain mutable variables. This issue can also be addressed

with segmentation logic, effect systems, regions and dynamic frames [103].

95



𝑐 ∈ ClassNames 𝑓𝑑 ∈ FieldNames 𝑓, 𝑥, 𝑦, 𝑧, 𝑡ℎ𝑖𝑠 ∈ Variables

𝑣 ∈ Values ∶∶= ... | 𝐶(𝑣)

𝑒 ∈ Expressions ∶∶= ... | let 𝑦 = new 𝐶(𝑥) in 𝑒 | let 𝑦 = 𝑥.𝑓𝑑 in 𝑒

𝜏 ∈ Terms ∶∶= ... | 𝜏.𝑓𝑑 | 𝐶(𝜏)

𝑃 ∈ VCs ∶∶= ... | 𝑓𝑑 in 𝜏 | 𝜏 instanceof 𝐶 | 𝑎𝑐𝑐𝑒𝑠𝑠(𝜏) | ∀𝑥.{𝑎𝑐𝑐𝑒𝑠𝑠(𝑥)} ⇒ 𝑃

𝐷 ∈ ClassDefs ∶∶= class 𝐶(𝑓𝑑) inv 𝑆

𝑥 ∈ 𝐹𝑉(𝑃) 𝑦 ∉ 𝐹𝑉(𝑃) ⟨𝑃 ⇒ 𝑓𝑑 in 𝑥⟩ 𝑃 ∧ 𝑦 = 𝑥.𝑓𝑑 ⊢ 𝑒 ∶ 𝑄
𝑃 ⊢ let 𝑦 = 𝑥.𝑓𝑑 in 𝑒 ∶ ∃𝑦. 𝑦 = 𝑥.𝑓𝑑 ∧ 𝑄

𝑥 ∈ 𝐹𝑉(𝑃) 𝑦 ∉ 𝐹𝑉(𝑃) class 𝐶(𝑓𝑑) inv 𝑆 ∈ 𝐷
⟨𝑃 ∧ 𝑡ℎ𝑖𝑠 = 𝐶(𝑥) ∧ 𝑡ℎ𝑖𝑠 instanceof 𝐶 ⇒ 𝑆⟩ 𝑃 ∧ 𝑦 = 𝐶(𝑥) ∧ 𝑦 instanceof 𝐶 ⊢ 𝑒 ∶ 𝑄

𝑃 ⊢ let 𝑦 = new 𝐶(𝑥) in 𝑒 ∶ ∃𝑦. 𝑦 = 𝐶(𝑥) ∧ 𝑦 instanceof 𝐶 ∧ 𝑄

Figure 4.7: Extending the verification rules of 𝜆𝑆 with simple immutable classes with

class invariants.

4.7.2 Recursive Data types and Classes

The core language 𝜆𝑆 can be extended to support “classes” as shown in Figure 4.7. These

classes are immutable and more akin to recursive data types as they do not support inher-

itance. Each class definition consists of an ordered sequence of fields and an invariant

𝑆 that is specified in terms of a free variable 𝑡ℎ𝑖𝑠. The class invariant can be used to

express complex recursive data structures such as the parameterized linked list shown

in Section 3.4.3.

The class invariant has to be instantiated for concrete instances of the class, so

96



a trigger 𝑎𝑐𝑐𝑒𝑠𝑠(𝑥) is inserted into verification conditions at each field access, similarly to

𝑐𝑎𝑙𝑙(𝑥) trigger for function calls. However, unlike function definitions, class definitions

𝐷 are global. Therefore, VCs need to be augmented with a preamble such that for each

class 𝐶(𝑓𝑑) inv 𝑆 the following quantifier is assumed:

∀𝑥.{𝑎𝑐𝑐𝑒𝑠𝑠(𝑥)} ⇒ 𝑥 instanceof 𝐶 ⇒ 𝑥 has 𝑓𝑑 ∧ 𝑆[𝑡ℎ𝑖𝑠 ↦ 𝑥]

Instantiating this quantifier with an 𝑎𝑐𝑐𝑒𝑠𝑠(𝑥) trigger yields a class invariant 𝑆

with 𝑡ℎ𝑖𝑠 replaced by the accessed object, as well as a description of the fields 𝑓𝑑.

4.8 Comparison with Refinement Types

The verification rules shown in Figure 4.6 resemble static typing rules. This section pro-

vides a brief comparison of the program verification approach with static type checking

by defining an automatic translation of types to 𝜆𝑆 annotations and examining concrete

examples. The results suggest that esverify is at least as expressive as systems such as

LiquidHaskell [116] but a comprehensive formalization of dependent type systems and

a formal proof to determine their expressiveness is beyond the scope of this thesis.

The language 𝜆𝑇 is similar to 𝜆𝑆 but with type annotations instead of pre- and

postconditions. Figure 4.8 sketches an excerpt of such a language. Here, a type is either

a dependent function type or a refined base type where refinements 𝑅 are consistent

with specifications in 𝜆𝑆.

The typing rule for function definitions (t-fn) is shown in Figure 4.8. This anno-

tated return type 𝑇 might refer to the function argument in order to support dependent

97



Γ ⊢ 𝑡 ∶ 𝑇

𝑅, 𝑆 ∈ Specs ∶∶= 𝜏 | ¬𝑅 | 𝑅 ∧ 𝑅 | 𝑅 ∨ 𝑅

𝑡 ∈ TypedExpressions ∶∶= ... | let 𝑓(𝑥 ∶ 𝑇) ∶ 𝑇 = 𝑡 in 𝑡

𝑇 ∈ Types ∶∶= { 𝑥 ∶ 𝐵 | 𝑅 } | 𝑥∶𝑇 → 𝑇

𝐵 ∈ BaseTypes ∶∶= Bool | Int

Γ ∈ TypeEnvironments ∶∶= ∅ | Γ, 𝑥 ∶ 𝑇

Γ ⊢ 𝑇 <∶ 𝑇

𝑥, 𝑓 ∉ 𝑑𝑜𝑚(Γ) 𝐹𝑉(𝑇𝑥) ⊆ 𝑑𝑜𝑚(Γ) 𝐹𝑉(𝑇) ⊆ 𝑑𝑜𝑚(Γ) ∪ {𝑥}
Γ, 𝑥 ∶ 𝑇𝑥, 𝑓 ∶ (𝑥 ∶ 𝑇𝑥 → 𝑇) ⊢ 𝑡 ∶ 𝑇 Γ, 𝑥 ∶ 𝑇𝑥 ⊢ 𝑇 <∶ 𝑇

Γ, 𝑓 ∶ (𝑥 ∶ 𝑇𝑥 → 𝑇) ⊢ 𝑡 ∶ 𝑇 t-fnΓ ⊢ let 𝑓(𝑥 ∶ 𝑇𝑥) ∶ 𝑇 = 𝑡 in 𝑡 ∶ 𝑇

𝐵 = 𝐵 JΓK ∧ 𝑅 ⇒ 𝑆 𝑥 ∉ 𝑑𝑜𝑚(Γ)
st-refΓ ⊢ { 𝑥 ∶ 𝐵 | 𝑅 } <∶ { 𝑥 ∶ 𝐵 | 𝑆 }

Γ ⊢ 𝑇 ′𝑥 <∶ 𝑇𝑥 Γ, 𝑥 ∶ 𝑇 ′𝑥 ⊢ 𝑇 <∶ 𝑇 ′
st-funΓ ⊢ (𝑥 ∶ 𝑇𝑥 → 𝑇) <∶ (𝑥 ∶ 𝑇 ′𝑥 → 𝑇 ′)

JΓKJ∅K def== true

JΓ, 𝑥 ∶ 𝑇K def== JΓK ∧ J𝑥 ∶ 𝑇K
J𝜏 ∶ {𝑥 ∶ Bool | 𝑅}K def== 𝑖𝑠𝐵𝑜𝑜𝑙(𝜏) ∧ 𝑅[𝑥 ↦ 𝜏]

J𝜏 ∶ {𝑥 ∶ Int | 𝑅}K def== 𝑖𝑠𝐼𝑛𝑡(𝜏) ∧ 𝑅[𝑥 ↦ 𝜏]

J𝜏 ∶ (𝑥 ∶ 𝑇𝑥 → 𝑇)K def== spec 𝜏(𝑥) req J𝑥 ∶ 𝑇𝑥K ens J𝜏(𝑥) ∶ 𝑇K
J𝜏 ∶ 𝑇K

Figure 4.8: Selected typing and subtyping rules of a statically typed language 𝜆𝑇 .
Functions are annotated with refined base types or dependent function

types where refinements 𝑅 are analogous to specifications in 𝜆𝑆.

98



types but other free variables in refinements can break hygiene, so t-fn restricts free

variables in user-provided types 𝑇𝑥 and 𝑇 accordingly and also prevents name clashes

with previously defined symbols 𝑓 and 𝑥. For checking the function body 𝑡, the type

environment Γ is augmented with types for 𝑥 and the function 𝑓 itself to enable recur-

sion. Instead of checking the postcondition with a verification conditions as in 𝜆𝑆, the

computed type 𝑇 for the function body is compared with the annotated return type 𝑇

by checking subtyping. Type checking then proceeds with the expression 𝑡.

The subtyping relation is also shown in Figure 4.8. Most importantly, subtyping

of refined base types requires checking an implication between the refinements and it

requires translating the type environment Γ to a logical formula JΓK, where function

types translate to the function specifications with the 𝑠𝑝𝑒𝑐 syntax.

Intuitively, the logical implication used for refinements also extends to trans-

lated function types, so if Γ ⊢ 𝑇 <∶ 𝑇 ′ then for all terms 𝜏, JΓK ∧ J𝜏 ∶ 𝑇K implies J𝜏 ∶ 𝑇 ′K.
As an example, the following higher-order function in 𝜆𝑇 is well-typed as the

return function type is a subtype of the argument function type:

let 𝑓 𝑔 ∶ 𝑥 ∶ {𝑥 ∶ Int | 𝑥 > 3} → {𝑦 ∶ Int | 𝑦 > 8} ∶

𝑥 ∶ {𝑥 ∶ Int | 𝑥 > 4} → {𝑦 ∶ Int | 𝑦 > 7} = 𝑔 in ...

This expression translates to an esverify program with spec in pre- and postcondition:

function f (g) {
requires( spec(g, x => x > 3, (x,y) => y > 8));
ensures(g => spec(g, x => x > 4, (x,y) => y > 7));
return g;

}

99



This program is verifiable with the quantifier instantiation algorithm described in Sec-

tion 4.3. The second spec is translated to a universal quantifier in positive position that

will be lifted, introducing a free global variable 𝑥. This also exposes a 𝑐𝑎𝑙𝑙(𝑥) trigger in

negative position that now instantiates the quantifier in the antecedent. The resulting

proposition can now be checked without further instantiations by comparing the argu-

ment and return propositions of both functions for all possible values of 𝑥.

This suggests that the translation of 𝜆𝑇 to 𝜆𝑆 programs preserves verifiability,

i.e. well-typed 𝜆𝑇 programs translate to verifiable 𝜆𝑆 programs.

Conjecture 1 (Translated well-typed expressions are verifiable). If J𝑡K is the translation

of a 𝜆𝑇 expression 𝑡 to 𝜆𝑆, then Γ ⊢ 𝑡 ∶ 𝑇 implies JΓK ⊢ J𝑡K ∶ 𝑄 for some 𝑄.

A formal proof of this conjecture needs to take quantifier instantiation and the

quantifier nesting bound into account. This introduces immense complexity for the proof

and goes beyond the scope of this thesis but might be addressed in future work.

Coincidentally, a sound translation of types to annotations also enables seam-

less interweaving of statically-typed 𝜆𝑇 expressions with dynamically-typed 𝜆𝑆 programs

in a sound way. This might be a step towards a full spectrum type system that bridges

the gap between verification and type checking.

100



Chapter 5

Automatic Test Generation with Counterexamples

Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.

— Edsger W. Dijkstra

The esverify program verifier and its formalization 𝜆𝑆 were presented and dis-

cussed in Chapters 3 and 4 respectively. However, in order to use verification as part of

an iterative development process, the verifier also needs to provide useful and compre-

hensible feedback to the programmer.

Simple error messages are often not sufficient to explain verification errors to

the programmer but counterexamples in the form of executable tests can serve as an

explicit witness and enable step-by-step debugging of the relevant parts of the code with

concrete variable values. This chapter describes how the esverify program verifier can

be extended with a test generation algorithm and it discusses how these generated tests

assist the programmer in determining whether a verification issue corresponds to a bug

in the code or an insufficient annotation or invariant.

The implementation of the test generator is already merged into esverify itself

and serves as a basis for an integrated development and verification environment that

will be discussed in Chapter 6.

101



Verification Condition
and Test Generator

JavaScript
Source

SMT Input Test Code
Verification Conditions

Counterexample

Successfully
Verified Model

SMT Solver

Test Runner

Figure 5.1: The basic verification workflow: esverify generates verification condi-

tions to be checked by SMT solving. In order to explain verification issues

to the programmer, esverify also generate tests for failed verification

conditions that serve as counterexamples.

5.1 Overview

Figure 5.1 illustrates the basic verification process. The generation of verification condi-

tions and the SMT solving procedure are described in more detail in Section 3.3 but this

chapter extends this process with automatic counterexample generation and testing.

In summary, the verification step traverses the entire source program. At each

statement and expression, the current verification context is used to generate verification

conditions and augment the context for subsequent statements and expressions. Specif-

ically, the verification context includes

• a logical proposition that acts as precondition,

• a set of free variables with unknown values, and

102



• a synthesized test with holes.

Each returned verification conditions consists of such a context and an assertion to check,

such as a function postcondition.

The next step of the verification process involves checking the verification con-

dition with an SMT solver. If the solver cannot refute the proposition, the verification

succeeded. Otherwise, the returned model includes an assignment of free variables that

acts as a counterexample.

Such a model can then be combined with the synthesized partial test. Inserting

concrete values into the holes of the test yields an executable counterexample that can be

evaluated by a test runner. The test result provides useful feedback such as a dynamic

assertion violation and enables inspection with interactive step-by-step debuggers and

other tools.

5.2 Verification Errors and Assertion Violations

The purpose of the automatic test generation is to provide better feedback about failed

verification conditions. To that end, the generated test should reflect both the specifics

of the verification process as well as the actual behavior of the source code. In the case

of loops and recursion, these two goals come into conflict because the static verifier

overapproximates program behavior and thereby detects potential assertion violations

that are not encountered by the actual evaluation of the program.

As an example, Listing 5.1 shows a program with an assertion in line 11 that

103



let safe = true;
let i = 0;
while (i < 3) {

invariant(Number.isInteger(i) && i <= 3);
if (i === 42) {

safe = false;
}
i++;

}
assert(i === 3); // verifiable
assert(safe); // cannot be verified

Listing 5.1: Verifier detects assertion violation due to missing loop invariant.

cannot be verified. For any statements below the while loop, the loop invariants can be

assumed to hold and the loop condition will be false but, apart from these assumptions,

all mutable variables in the code could have changed in an arbitrary way. Therefore,

the assertion in line 11 cannot be verified despite safe remaining unchanged by the

loop when executing the program. Adding invariant(safe); to the loop would let its

verification succeed.

There are two possible options for generating a counterexample test in these

situations. One option is to reuse large fragments of the original program for the test.

If the test leads to an error or assertion violation, it can serve as a witness of an ‘actual’

error that would also occur during normal execution and that can be fixed using the stan-

dard debugging process. However, for the example shown in Listing 5.1, running such

a test would not result in an assertion violation because the original program execution

satisfies the assertion in line 11. This indicates that the static analysis did not accurately

104



let safe = true;
let i = 0;
// while loop omitted; variables assigned according to SMT model:
safe = 0;
i = 3;
// statements after the while loop:
assert(i === 3);
assert(safe);

Listing 5.2: Replacing while loop in Listing 5.1 with counterexample values for test

generation.

model the actual program behavior. Instead, the verification error is caused by an in-

sufficiently strong loop invariant or precondition/postcondition. Unfortunately, there is

no feedback about which annotation might be missing or what the internal verification

state is regarding mutable variables after the loop.

As a second option, the generated test for the failed assertion in Listing 5.1

can omit the original while loop and instead insert assignments to mutable variables

according to the values in the SMT model. Listing 5.2 shows an example of such a test.

Clearly, the generated test reliably causes an assertion violation. Also, by using values

from the SMT model for mutable variables after the loop, the generated test might help

the programmer better understand the verification process and its shortcomings, and

how the loop invariants can be improved to satisfy the assertions below the loop. In

this case, the loop invariants constrain the mutable variable i but the possibles values of

safe are left unrestricted, so the SMT model may assign it false or even 0 after the loop.

This is theoretically consistent with the specified invariants but different from the actual

105



program behavior of the loop.

As outlined in this section, both the test case with the original source code as

well as the model-based generated test case yield useful feedback to the programmer,

serving the two competing goals of inspecting both the actual program behavior and

static verification process.

To provide the benefits of both approaches, the esverify test generator retains

the original loops but also enable programmers to query the variables in the verifier state

with an integrated debugger.

5.3 Dynamic Checking of Assertions

The generated test for a verification condition consists of a transformed fragment of the

relevant source code and a dynamically-checked assertion.

Assertions such as pre-, postconditions and invariants are specified as JavaScript

boolean expressions. Therefore, dynamically checking these assertions as part of a test

can be performed by evaluating these boolean expressions and throwing an exception if

the evaluation result is different from true. If the source programs use exceptions han-

dling, a potential assertion violation should be reported even if the exception is caught.

However, esverify does not currently support exception handling and rejects programs

with try/catch blocks.

106



5.3.1 Higher-order Functions

In order to support verification of higher-order functions, esverify introduces a special

spec syntax to describe the minimum pre- and postcondition of a function value.

As an example, Figure 5.3 shows a function twice that expects a function argu-

ment f. Here, f should accept any integer value x as argument and any result y returned

by f needs to be an integer greater than the argument x. The return value of twice is it-

self a function that applies f twice. However, due to an error in line 10, the postcondition

of twice cannot be verified and, additionally, a bug in line 14 violates the precondition

of f. Section 5.3 describes how generated tests serve as counterexamples for these two

errors.

In contrast to simple boolean expressions, function specifications expressed

with the spec syntax, as used by the twice function in Listing 5.3, cannot be checked

dynamically for all values at the point of the assertion. Instead, the function argument

is wrapped in a contract that enforces the specified pre- and postcondition for each sub-

sequent call in the scope of this spec.

5.3.2 Contract Checking

Listing 5.4 illustrates how the twice function can be transformed to enable dy-

namic checking of function specifications. The code shown here is slightly simplified.

In particular, it does not collapse wrappers to avoid repeated and redundant wrapping.

It is important to note that assuming and asserting a function specification result in a

107



function inc (x) {
requires(Number.isInteger(x));
ensures(y => Number.isInteger(y) && y > x);
return x + 1;

}
function twice (f) {

requires(spec(f, (x) => Number.isInteger(x),
(x, y) => Number.isInteger(y) && y > x));

ensures(g => spec(g, (x) => Number.isInteger(x),
(x, y) => Number.isInteger(y) && y > 0)); // should be y > x

return function (x) {
requires(Number.isInteger(x));
ensures(y => Number.isInteger(y) && y > x);
return f(f(null)); // should be f(f(x))

};
}
const incTwice = twice(inc);
const y = incTwice(3);
assert(y > 3);

Listing 5.3: esverify example with a higher-order twice function. The pre- and

postcondition of its function argument f and of the returned function g

are both described with the spec syntax. Bugs in lines 10 and 14 cause

verification errors.

different transformation. In this example, the twice function and its returned inner func-

tion are assumed to adhere to their function specifications but the function argument f

is not trusted to behave correctly when invoked with correct arguments. Therefore, the

postcondition of f is dynamically checked but its precondition assumed, and conversely,

the preconditions of g and the spec in the postcondition of twice are enforced but their

postconditions are not. Incidentally, this mechanism is similar to blame assignment [2,

53].

108



function twice (f) {
f = function (x) { // spec(f, ...) in line 7

const y = f(x);
assert(Number.isInteger(y) && y > x);
return y;

};
const g = function (x) { // inner function in lines 11-15

assert(Number.isInteger(x)); // need to check precondition
const y = f(f(null)); // but can assume postcondition
return y;

};
g = function (x) { // spec(g, ...) in line 9

assert(Number.isInteger(x));
const y = g(x);
return y;

};
return g; // return the wrapped inner function

}

Listing 5.4: Transformed code for the twice function in Listing 5.3. The assignments

in lines 2 and 12 install wrappers according to the spec in lines 7 and 9

of Listing 5.3.

The example in Listing 5.3 only includes first and second-order functions but it

is also possible for a function specification with spec to occur within another spec. In

that case, the transformation of function specifications is applied recursively, i.e. the

inner wrapping code gets executed as part of the dynamic checks of the outer wrapper.

This technique of dynamically checking assertions is only used in generated

counterexample test but it could also be adapted to support sound execution of partially

109



verified programs, similar to “soft verification” [82] and “gradual verification” [6].

5.4 Synthesis of Counterexample Values

As shown in Figure 5.1, if the SMT solver refutes a verification condition, it returns a

model that assigns values to free variables in the verification condition. In order to gen-

erate executable tests, these values have to translated from an SMT internal format to

valid JavaScript expressions that can be inserted into the testing code.

For opaque JavaScript values such as undefined, null, true and false this trans-

lation is trivial. Numeric values in JavaScript conflate integers and floating point num-

bers and therefore are represented as either integers or real numbers in the SMT format

in order to support both integer semantics for array indexing as well as floating point se-

mantics for arithmetic operators1. Modern SMT solvers such as z3 [77] and CVC4 [7, 8]

contain theories for strings with support for indexing and substrings2. Therefore, these

JavaScript strings can be directly represented as SMT strings.

esverify provides limited support for object-oriented programming by means

of immutable “classes” without inheritance and only trivial constructors. As an example,

Listing 5.5a shows a class definition with a method m containing an incorrect assertion.

Adding a sufficiently strong class invariant to A would let verification succeed. In the

generated test shown in Listing 5.5b, this is renamed and initialized with a constructor

invocation according to the SMT model.

The SMTLIB standard also includes floating point values which, in contrast to real numbers, have limited
precision. Unfortunately, current SMT solver implement these as bitvectors which negatively affects solving
performance.

Theories for strings have been added relatively recently and are still prone to errors such as SMT solver
timeouts when converting strings with str.to.int.

110



class A {
constructor (x) {

this.x = x;
}
m () {

assert(this.x > 0);
}

}

(a) A simple class definition. The assertion in

line 6 does not hold for all instances of A.

const this_0 = new A(false);
assert(this_0.x > 0);

(b) Generated test for the failed assertion in

line 6 of Listing 5.5a.

Listing 5.5: Generated tests for methods involve to synthesize this object.

For plain JavaScript objects/records and arrays, the test generation follows a

similar strategy. Due to the modeling of data structures as immutable values instead

of heap references, the generated counterexamples deviate from standard JavaScript

semantics with regards to aliasing. Similarly, counterexamples with cyclic references in

data structures are not currently supported.

In order to generate counterexamples for higher-order functions, the test gen-

erator has to synthesize function values. Program synthesis is an active research topic

with various different approaches and techniques [36, 3, 119] but esverify only sup-

ports a limited synthesis for the purpose of test generation. In particular, the synthesis

of function values is limited to pure functions that map primitive argument values to

return values. Thereby, the function can be expressed as a series of conditionals.

Listing 5.6 shows a generated test for the violated precondition of f(null) in

line 9 of Listing 5.3. Here, a synthesized function value is assigned to f and then wrapped

111



let f = function (x) { // synthesized function as counterexample
if (x === 3) {

return 9174;
}
return false;

};
f = function (x) { // spec(f, ...) in line 7

assert(Number.isInteger(x)); // need to check precondition
return f(x); // but can assume postcondition

};
let x = 3; // x is a variable in scope but unused
f(null);

Listing 5.6: Generated test for the precondition of f(null) in line 9 of Listing 5.3.

according to the specification in line 7 of Listing 5.3, resulting in an assertion violation

when invoked with null. The synthesized function is based on a partial mapping and

might include constants picked nondeterministically by the SMT solver. Therefore, the

synthesized function may not adhere to the function specification when invoked with

other arguments not included in the SMT mapping. This is why the synthesized function

f returns a seemingly randomnumber such as 9174 for the argument 3 but does not return

“correct” values for other arguments.

5.5 Generating Counterexample Function Calls

When asserting function specifications, the specification is transformed to a

wrapper in the generated test. However, without subsequent calls, the test would simply

end without triggering an assertion violation. Therefore, the test generator also needs

112



let f = function (x) { // synthesized function as part of counterexample
if (x === -2) {

return -1;
}
if (x === -1) {

return 0;
}
return false;

};
const g = function (n) { // original function body of twice (line 9)

return f(f(n)); // use f(f(n)) here instead of f(f(null))
}
g = function (x) { // spec(g, ... ) in line 12

const y = g(x);
assert(Number.isInteger(y) && y > 0);
return y;

};
g(-2); // synthesized function call

Listing 5.7: Generated test for the postcondition in line 9 of Listing 5.3. In addition

to synthesizing f and wrapping the returned function g, it also generated

a call.

to synthesize a violation-provoking call after installing the wrapper for the asserted spec-

ification.

As an example, the postcondition of the twice function in Listing 5.3 does not

hold because the inner postcondition in line 12 is not satisfied by the returned function.

Listing 5.7 shows a simplified generated test with a synthesized function value for f, the

original function body of twice (assuming f(f(null)) is replaced by f(f(n))), and a

wrapper for the function specification in the postcondition of twice. Additionally, the

generated test also includes a synthesized function call g(-2) that causes an assertion

113



violation in line 15. The argument values for this violation-provoking function call are

determined based on the SMT model.

5.6 Conclusion and Future Work

Program verifiers enable expressing and checking various correctness properties but un-

derstanding and debugging resulting verification errors can be difficult. Therefore, this

chapter outlined an approach for automatically generating executable counterexamples.

Program verification with esverify is based on SMT solving. This has the ad-

vantage that the SMT solver also provides a concrete model for invalid verification con-

ditions, i.e. it finds an assignment of free variables to values that serves as a counterex-

ample. The raw output of the SMT solver includes low level verification details, so it

needs to be translated to the level of the original source program to be useable by the

programmer.

Testing can be a very effective way to present and explain these counterexam-

ples as it directly concerns the execution of the code and it also enables the use of existing

development tools such as step-by-step debuggers. Therefore, the esverify program ver-

ifier was extended to generate tests as executable counterexamples for invalid verification

conditions. In generated tests, annotations such as invariants, pre- and postconditions

are converted to dynamically-checked assertions and contracts. Additionally, functions,

arrays and complex objects in the SMT model are translated to JavaScript expressions.

This chapter presents a solution for synthesizing functions as part of counterex-

amples such that synthesized functions always return the same result for the same argu-

114



ment values. Support for imperative programs is limited as this simple synthesis method

does not generate functions that manipulate global state or object graphs with cyclic

references. Related work on program synthesis already investigated these issues, so fu-

ture extensions to the test generator could incorporate a more sophisticated program

synthesis technique.

As explained in Section 5.2, not all failed verification conditions are caused by

actual bugs in the code. It is possible for a correct program to be rejected by the program

verifier due to a lacking annotation such as a loop invariant or postcondition. This poses a

question to test generation as it could either result in a non-failing test that runs without

assertion violations or a failing test that uses values from the verification logic instead of

fragments from the actual source code. Both of these approaches offer different benefits,

so esverify implements a compromise solution. Future research might help to guide

the design of automatic test generators in the presence of this trade-off.

Finally, the design of the test generator has to take into account whether and

how generated tests are presented to the user. One option is to manage generated tests

like regular unit tests. Thereby, these tests could be debugged with existing development

tools and even added to an existing test suite but it would also expose automatically

generated code to the programmer that may not be very readable. Instead of displaying

generated test code directly, the test generator described in this chapter is used internally

as part of an integrated development and verification environment that is described in

the following chapter.

115



Chapter 6

Integrated Development/Verification Environments

So much of the way we work with systems today is derived from pencil and paper.
Even whilst we are at the computer we are still thinking in pencil and paper.

There is an incredible opportunity now to rethink how we think, about systems.

— Bret Victor

This chapter describes a programming environment for verification that enables

interactive inspection and experimentation with live feedback. Based on the program ver-

ifier described in Chapter 3 and the automatic test generation in Chapter 5, the program-

ming environment integrates the code editing, verification and debugging. In particular,

it explains verification errors with concrete values that serve as counterexample, it lets

programmers step through the relevant parts of the code leading up to the verification

error with these values, and it enables live edits to assertions and assumptions of verifica-

tion conditions. Thereby, the programmer can determine the cause of verification issues

and narrow down their scope without having to manually add assert statements to the

code. This kind of environment integration is analogous to step-by-step debuggers that

let programmers explore the execution state of a program without having to resort to

“printf debugging”.

Additionally, this chapter also describes an online user study where participants

116



solved small programming and verification tasks and answered survey questions to eval-

uate how the development and verification features of the environment were used and

perceived.

6.1 Overview

Program verifiers such as esverify enable the programmer to express correctness prop-

erties in an expressive assertion language, often based on first-order logic. However,

the verification process for these assertions is relatively complicated and verification is-

sues can become difficult to understand. In these cases, simple feedback mechanisms in

the form of error messages may not be sufficient to help the programmer resolve these

verification issues. In order to improve the programmer experience for verified program-

ming, this chapter presents IDVE, an integrated development and verification environ-

ment that lets users interactively inspect and debug verification issues. The goal of IDVE

is to support programmers with an interactive interface for understanding and interac-

tively manipulating verification conditions. An essential component of this integration

is the automatic generation of counterexamples for verification errors as described in

Chapter 5.

As a brief overview, it is useful to illustrate the scope and goals of the proposed

programming environment with an example, shown in Figure 6.1. Here, a JavaScript

function abs is annotated to indicate that its result is always non-negative. However, due

to a bug in the abs function, the result might be negative, violating the postcondition in

117



Figure 6.1: IDVE displays verification conditions for this annotated JavaScript pro-

gram as line markers. The assertion in line 12 can be statically verified

but a bug in line 7 causes a verification error for the postcondition in line

3, so IDVE shows -1 as counterexample for n.

line 3.

The prototype implementation of the integrated development and verification

environment, abbreviated as IDVE, helps the programmer identify verification conditions

and inspect potential verification errors. Figure 6.1 does not show the full programming

environment, but it illustrates how symbols next to the line numbers are used to indi-

cate verification conditions. Hovering over these marks with the mouse cursor display

additional details – similar to type errors. For failed verification conditions, IDVE also

displays counterexample values as editor popups. For example, it displays -1 as a value

for the function argument n that causes a violation of the postcondition.

Additionally, IDVE also enables programmers to inspect specific verification con-

118



ditions by opening an interactive inspector panel (not shown in Figure 6.1) that lets users

inspect, add and remove assumptions and assertions – similar to “watch expressions” in

an interactive debugger. Thereby, the verification inspector allows programmers to ex-

plore the verifier state without manually adding assert statements to the code, analo-

gous to how interactive debuggers let programmers avoid printf debugging. The envi-

ronment also includes an integrated debugger for the automatically generated test cases

that lists variables in scope, shows the current call stack and allows step-by-step debug-

ging.

Finally, the environment and its usability for developing verified programs was

evaluated with a user study with 18 participants that have at least basic knowledge of

JavaScript. The test subjects were given a brief introduction to the features of IDVE, had

to solve a series of simple programming tasks with the environment1, and answered a

brief survey about their experience2. Results indicate that more than half of the partic-

ipants were able to use the features of IDVE effectively to solve the programming and

verification tasks. All participants reported that they found the tools either helpful or

potentially helpful. However, an improved user interface design might enable more pro-

grammers to successfully use these features.

 The tutorial steps as well as the experiments are listed in Appendix B and an archived version of the
user study is available online at https://esverify.org/userstudy-archived.

 Survey results are included in Appendix C.

119

https://esverify.org/userstudy-archived


6.2 Environment Integration

In order to be useful in practice, program verification has to be integrated into the devel-

opment process. Ideally, feedback provided by the verifier should be instantaneous, con-

tinuous, informative, comprehensible and actionable. Instantaneous feedback requires

the verification procedure to be fast enough to avert noticeable delays. This also enables

continuous feedback by implicitly invoking the verifier after each code change. Most

program verifiers, including esverify, can check small to medium source files in less

than a second and thereby enable sufficiently fast feedback. Providing comprehensible

and actionable feedback, in contrast, is still a major challenge for program verification

because the complexity of the verification procedure can result in errors that are hard

to understand. IDVE is an integrated development and verification environment that in-

tegrates an interactive verification inspector and a counterexample debugger to address

this issue. The implementation of IDVE is open source3 and a live demo is available

online4.

6.2.1 Basic Line Markers

Each verification condition identified by the verifier corresponds to a location in the

source code, such as a postcondition of a function definition, a function call that has

to satisfy a precondition, or the arguments of a binary operator which have to adhere to

a certain type.

Implementation source code: https://github.com/levjj/esverify-web
Live demo of IDVE: https://esverify.org/idve

120

https://github.com/levjj/esverify-web
https://esverify.org/idve


Figure 6.2: Verification conditions displayed as line markers with short error mes-

sages displayed as tooltips. Due to a missing precondition, the value of

n may be incompatible with the + operator.

As a basic form of environment integration, the source location of a verification

condition can be displayed as an annotation or line marker in the code editor. Figure 6.2

shows an example of an editor with line markers to indicate verification conditions, using

different icons for verified, unverified and incorrect results. Here, a result is considered

incorrect if the generated test causes an assertion violation while an unverified result

might have failed verification due to a missing loop invariant rather than an actual bug

in the code. In addition to the icon, these line markers also include a short message that

can be displayed by hovering the mouse cursor over the icon.

In addition to verification errors, this type of feedback is also common for type

errors. Indeed, the line markers in IDVE are also used for other errors such as parsing

and scoping issues.

While this integration is relatively simple, non-intrusive and self-explanatory,

the provided feedback is limited and may not be sufficiently detailed to help the pro-

grammer understand and fix potential verification issues.

121



1

2

3

4

5

6

7

Figure 6.3: Selecting the unverified verification condition in line 4 opens a verifica-

tion inspector on the right, showing assumptions, assertions and a de-

bugger for the counterexample.

6.2.2 Verification Condition Inspector

By selecting one of the line markers discussed in the previous section, an additional panel

can be opened with an interactive “inspector” for verification conditions.

Figure 6.3 shows an example with an active verification inspector. Here, the

verification condition in line 4 cannot be verified and is selected in the editor on the left.

The panel on the right then allows interactive inspection of the verification condition.

In particular, the inspector lists assumptions 1 such as preconditions and in-

variants. While there are no relevant assumptions in this example, the user can enter

122



an assumption in the form of boolean expressions and add it to the verification context

for the selected verification condition. For example, by entering the JavaScript expres-

sion typeof n === 'number', the verification condition will be re-examined with the new

assumption, causing the verification of res >= 0 to succeed.

Similarly, the inspector displays the asserted proposition 2 but also allows ad-

ditional assertions to be entered by the user and tested for the same assumptions and

context. This feature of the verification inspector can be useful for interactive exploration

and experimentation with the verification context without having to change the origi-

nal source code (analogous to how interactive debuggers supersede “printf debugging”).

This feature is novel in verified programming environments as existing environments

such as Dafny IDE only display information about verification conditions without provid-

ing ways to interactively alter assumptions and assertions with a verification inspector.

6.2.3 Counterexample Popups

For each failed verification condition, a counterexample is synthesized based on the SMT

solver output. This counterexample includes concrete JavaScript values for free variables

such as function arguments and mutable variables in the surrounding scope. IDVE dis-

plays these counterexample values for the currently selected verification condition as

popups 3 in the editor. These popups are directly connected to the relevant variable

or parameter definition but they are also obscure the source code below and they only

display short summaries that may be inadequate for complex values such as nested ob-

jects and arrays. Visualizations of nested data structures is also an important challenge

123



for regular debuggers and development tools [42].

6.2.4 Debugger Integration

Even with information about values of free variables such as those displayed with editor

popups, it may not be obvious why a postcondition may not hold — especially for longer

functions and methods.

In these cases, it might be helpful to inspect the current values of variables

at different points in the function body. In general, this can be achieved by using an

interactive step-by-step debugger. In the context of a failed verification condition, a

counterexample test can be automatically generated for the purpose of debugging (see

Chapter 5). Running this test will either result in an assertion violation, which serves as

a concrete witness for a bug in the code or annotations, or a successful test execution

without error, which indicates that a false positive was caused by the conservative static

analysis of loops and recursion. In both cases, stepping through the code can help with

understanding the verification issue and locating the root cause of the bug.

There are two possible approaches for debugging the counterexample test. On

the one hand, the generated test could be “exported” and debugged with a traditional

debugger in a separate tab or window. This would ensure a traditional debugging expe-

rience and could even enable the generated test to be added to an existing unit test suite.

However, this approach requires the user to switch contexts between the original code

and the test. Moreover, this approach exposes the automatically generated test code

which may not be human readable and whose mapping to the original source code may

124



not be obvious.

On the other hand, it is possible to hide the automatically generated test code

and debug the counterexample directly on the level of the original source program. Es-

sentially, the debugger internally steps through the generated test while highlighting

expressions and statements in the original source code that correspond to the current

code fragment in the test. This approach avoids context switches but it might cause

an unexpected order of execution steps in the visible source code if the control flow in

the generated test differs from the control flow in the original program due to inserted

dynamic checks or contract wrappers.

Figure 6.3 shows an integration using the latter approach. Here, the debugger

is halted at the assertion res >= 0, and IDVE shows watched expressions 4 , variables

in scope 5 , and the call stack 6 . The user can add additional watch expressions and

display their evaluation results. For example, entering res in 4 will show false as the

returned value for this counterexample. Additionally, the execution can be stepped using

standard debugger controls 7 .

In contrast to debugging regular executions, the integrated debugger of the

verification environment includes both a dynamic context from the actual test execution

as well as a static context representing the verifier state at different points in the code.

For example, for abs, the scope panel 5 contains both the function value used by the

test execution in black and a synthesized function value in brown below. Only a single

value is displayed if the value from the dynamic and static contexts agree. While this

information is not relevant in this example, comparing the dynamic and static value of a

125



mutable variable after a loop may help to understand missing or incorrect loop invariants

(see Section 5.2).

Internally, the debugger is implemented as an interpreter that operates directly

on the JavaScript AST of the test code. This incurs a high performance penalty over stan-

dard debuggers and techniques such as source-to-source compilation [9] but it provides

greater flexibility for incorporating additional features. For example, the IDVE debugger

maintains both a dynamic execution and a static verifier context and it provides a better

debugging experience for stepping through function wrappers.

6.3 Evaluation and User Study

IDVE was evaluated with a user study with 18 participants. This section describes the

relevant research questions, the design of the user study, its results, and potential threats

to validity.

6.3.1 Research Questions

In contrast to the program verifier itself, the design of the integrated development and

verification environment is difficult to evaluate due to the subjective experience of pro-

grammers and the large solution space. This user study aims to provide insight into

answering the following three research questions in order to inform future designs of

such environments.

126



RQ1: Can IDVE assist in the development process? Do programmers use features

such as line markers, interactive manipulation of assumptions and assertions, counterex-

ample editor popups and integrated debugging if these features are available for solving

a given task?

RQ2: Is the proposed user interface helpful and intuitive? Careful consideration

is required for the design of user interfaces of development environments in order to

balance the amount of information and interactive controls. Therefore, this user study

should determine whether the proposed design is generally perceived as intuitive or as

overwhelming and cumbersome.

RQ3: How does programming proficiency and prior experience with program veri-

fication affect utility? The proposed environment should ideally be accessible and us-

able by both novices and experienced programmers. However, programming expertise

and experience with program verification might be a prerequisite for effectively using

the proposed features of the environment.

6.3.2 Methodology

IDVE is still an early prototype and not yet ready for productive software development.

Therefore, the user study focuses on how proposed features can be used for smaller

programming and verification tasks. Test subjects had no prior experience with IDVE

itself but indicated to have at least basic knowledge of JavaScript and might have used

other program verifiers before.

127



The user study was conducted entirely online. Subjects were recruited with

an invitation sent to a public mailing list and remained anonymous. 18 adults entered

the study and were presented with a brief introduction of IDVE, followed by a series of

programming and verification tasks, and finally surveyed about their experience using

the tool.

Appendix B lists both the tutorial steps as well as instructions, provided code

and hints for the experiments. Additionally, an archived version of these tasks is available

online at https://esverify.org/userstudy-archived.

For the first step, a guided tutorial introduced

• the source code editor itself,

• a simple verification example similar to the one in Figure 6.1,

• an interaction with the verification inspector as described in Section 6.2.2, and

• an interaction involving stepping through a generated test with the integrated de-

bugger discussed in Section 6.2.4.

After the tutorial, participants solved three short tasks:

1. The first experiment involves an incorrect factorial function that causes an infi-

nite recursion for negative arguments. This task can either be solved by changing

the precondition or by changing the implementation of the function. Participants

could use the verification inspector and the integrated counterexample debugger

but editor popups were disabled.

128

https://esverify.org/userstudy-archived


2. For the second experiment, a correct implementation of six-sided dice rolling func-

tion was given. However, the function was missing postconditions necessary for

verification of the subsequent code. Editor popups and the verification inspector

were both disabled, so only basic line markers were available for this experiment.

3. The third and final experiment involved a function for converting the number of

minutes since midnight into a 24-hour digital clock format. The provided code

included bugs in both the annotations as well as the implementation. Both the

verification inspector and editor popups were available but the integrated debugger

was disabled.

All experiments could be skipped at any time and did not measure time or success. In-

stead, test subjects proceeded to the next experiment at their own discretion and filled

out a survey form about their experience at the end.

6.3.3 Results

A full record of survey answers for all 18 participants including written comments can

be found in Appendix C. These answers provided empirical evidence towards answering

the research questions above.

RQ1: Can IDVE assist in the development process? According to the survey results

shown in Table 6.1, the usage and the perceived benefits vary for the three main features

of IDVE. While half of the participants made use of counterexample popups, the verifica-

tion inspector was only used by 39 percent of participants, and the integrated debugger

129



Verification Environment Feature

Response (%)
Verification

Inspector

Counterexample

Popups

Integrated

Debugger

Used this feature in experiments 39 50 28

Unsuccessfully tried using it 33 33 22

Did not use it 27 17 50

The feature is helpful 33 55 44

It could be helpful with different UI 50 39 44

It is not useful for development 6 6 6

It impairs the development process 11 0 6

Table 6.1: Participants indicated which features were used in the experiments and

whether these features are seen as helpful.

by 28 percent. In total, 15 participants reported using at least one of the tools. When

features were used, they are generally seen as helpful or at least potentially helpful. This

indicates that IDVE can effectively assist programmers.

RQ2: Is the proposed user interface helpful and intuitive? As shown in Table 6.1,

the verification inspector, the counterexample editor popups and the integrated debug-

ger were considered helpful by 33/55/44 percent of the subjects. Another 50/39/44

percent reported that these features could be helpful with an improved user interface.

Additionally, a third of the subjects tried to use the verification inspector and the coun-

terexample popups but reported being unsuccessful. Overall, the results suggest that the

130



user interface is an important factor for using verification in practice.

Incidentally, half of the participants did not try to use the integrated debugger

despite considering it helpful or potentially helpful. This might be a result of the ex-

perimental setup with programming tasks that were too trivial to require debugging but

it might also indicate that the debugger integration might benefit the most from user

interface improvements.

RQ3: How does programming proficiency and prior experience with program ver-

ification affect utility? As part of the user study, participants ranked their JavaScript

proficiency on a scale from 1 (novice) to 5 (expert) and indicated whether they had prior

experience with program verification. Table 6.2 shows how this related to usage and per-

ceived benefits of IDVE. Here, it is most noteworthy that all participants, including those

without JavaScript expertise or prior verification experience, found at least one of the

the features helpful. Also, no significant differences were reported on the actual usage

of these features in the experiments. While these results suggest that IDVE is accessible

for both beginner and experienced programmers, the number of test subjects may be

too low to fully support these conclusions. In fact, three of the participants remarked in

written feedback that a more comprehensive tutorial about program verification would

have been helpful.

131



Experience with JavaScript Verification

1 2 3 4 5 no yes

# Participants 1 2 3 6 6 8 10

Successfully used features 1 2 3 5 4 6 9

Sees features as potentially helpful 1 2 3 6 6 8 10

Table 6.2: Usage and perception of verification environment features in relation to

self-proclaimed proficiency.

6.3.4 Threats to Validity

The user study had a limited scope with only three short programming tasks and 18

participants. Therefore, it is possible that a broader user study with larger programming

projects and more participants would yield different results. However, while scalability

could be a concern for the runtime performance of the verifier, it can be expected that

the responses of this user study regarding usability are at least indicative of a general

trend that would also be observed by a larger user study.

Additionally, the results of this user study might be specific to JavaScript. It is

possible that this approach for an integrated development and verification environment

would be inadequate or unpractical for a different programming language or a different

domain. For example, the integrated debugger for automatically generated tests may not

be applicable to programs involving concurrency or input/output to external services or

components.

132



6.4 Future Work and Conclusions

Program verifiers enable expressing and checking various correctness properties but un-

derstanding and debugging resulting verification errors can be difficult. To assist pro-

grammers, this chapter proposed an integrated development and verification environ-

ment and discussed its features.

The environment enables inspection of verification conditions including the op-

tion to interactively add or remove assumptions and assertions. Additionally, the en-

vironment provides executable counterexamples and step-by-step debugging for failed

verification conditions based on automatically-generated tests.

To evaluate this approach, a user study with 18 participants was conducted.

The proposed development and verification environment is generally seen as helpful, es-

pecially its feature for displaying counterexample values as editor popups. However, the

user study also found that interface design is an important factor that could be improved

to ensure that the proposed environment integration is useful in practice.

There are still open questions that could be addressed by future work such as

whether this approach scales to larger applications with multiple developers and how it

can be applied to other domains and programming paradigms.

133



Chapter 7

Related Work

In a way, ideas only count for a little in computing,
because you kind of have to implement the stuff.

This is the part of the story that really makes me clutch at my throat, because every
time you implement something, five years go away – and you do learn something.

— Alan Kay

This chapter outlines and briefly discusses relevant publications and important

related research projects in the areas of live programming, program verification, auto-

matic test generation and integrated verification tools.

7.1 Live Programming

The term live programming is used in different contexts and can denote the act of pro-

gramming as part of a live art or music performance but it can also refer to programming

environments that continuously evaluate expressions and display the results alongside

the code. In the context of this thesis, live programming is the ability to change the

code of a running stateful application without restarting it, also known as hot-swapping

or dynamic software update [47], while providing immediate and continuous feedback

about these code changes. Such live programming systems were described and moti-

vated by Hancock [43] and further explored by systems like Subtext [29], which uses a

134



tree representation of constantly executing expressions, SuperGlue, which uses dynamic

inheritance and functional reactive programming [74], and Elm, which demonstrates live

programming and time traveling with first-order functional reactive programming [25].

The solution described in Chapter 2 is based on earlier work that requires UI

rendering and stateful computation to be separated and that prohibits function values

(closures) in the application state to allow the state and the code to be updated indepen-

dently. A paper by Burckhardt et al. describes this idea for TouchDevelop [14]. More

recent work outlined the possible design space between live programming systems that

resume computation (with a possibly inconsistent state) and systems that record and

replay execution [75], as well as introducing managed time as concept for supporting

both live programming and time travel [76] and approaches that combine the language

design with the design of the programming environment [66].

The main contribution of the live programming research for this thesis is the

design of a simple programming model based on the Model-View-Update pattern and an

environment integration for JavaScript that offers similar live programming capabilities

as Elm and TouchDevelop [14] without requiring special syntax, type annotations or

library integration. Additionally, the proposed approach can also be easily extended to

support back-in-time debugging and runtime version control, i.e. the ability to navigate

to past execution states and past code versions while providing continuous feedback.

Programming-by-example allows users to create and modify programs by pro-

viding examples instead of editing the source code. Prior work on programming-by-

example and programming-by-demonstration ranges from domain-specific macro sys-

135



tems, visual programming systems and automatically inferred string processing rules [70,

41] to depth-limited generate-and-test approaches for general-purpose programming

languages. Most noteworthy, CodeHint [36] synthesizes short Java code snippets at run-

time based on user-provided queries. In order to synthesize larger code snippets, SMT

solver-aided approaches may be a promising alternative [111, 3]. In the end, the use of

SMT solvers for program synthesis is closely related to their use for program verification.

Indeed, program synthesis can be seen as generalized program verification where the

output is not an error message or counterexample but an inferred code candidate that

repair the input program to satisfy the specification [104, 80].

Chapter 2 also presented an approach for live programming by direct manipu-

lation. Direct manipulation of the graphical user interface is a well-known form of user

interaction [101] with popular applications in Smalltalk [40], Morphic [73] and others.

However, direct manipulation usually only affects the current state of visible objects. Re-

cent work on prodirect manipulation [22] shows how direct manipulation of SVG vector

graphics can be used to automatically modify the SVG rendering code. The same idea has

also been applied to the manipulation of string constants in PHP web applications [118].

These two projects are most closely related but, in contrast to the approach in Chap-

ter 2, they do not support live code updates of stateful applications without restarting

the execution.

136



7.2 Program Verification

There have been decades of prior work on software verification. In particular, static verifi-

cation of general purpose programming languages based on pre- and postconditions has

previously been explored in verifiers such as ESC/Java [32, 63], JaVerT [34], Dafny [61,

62, 60] and LiquidHaskell [116, 114, 115].

ESC/Java [32] proposed the idea of using undecidable but SMT-solvable logic

to provide more powerful static checking than traditional type systems. Their proposed

extended static checking gave up on soundness to do so and instead focused on the utility

of tools to find bugs.

JaVert [34] is a more recent program verifier for JavaScript. It supports object-

oriented programs but, in contrast to esverify, does not support higher-order functions.

Other related work on static analysis of JavaScript programs include Loop-Sensitive Anal-

ysis [87], the TAJS Type analyzer for JavaScript [4], as well as type systems such as Type-

Script, Flow and Dependent JavaScript [21]. esverify follows as different approach as

it relies on manually annotated assertions that are generally more expressive than types.

Dafny [61] seeks to provide a full verification language, with support for both

functional and imperative programming. Dafny offers programmers advanced constructs

for verified programming, such as ghost functions and parameters, termination check-

ing, quantifiers in user-supplied annotations, and reasoning about the heap. However,

in contrast to esverify and LiquidHaskell, Dafny requires function calls in an asser-

tion context to satisfy the precondition instead of treating these as uninterpreted calls.

137



Therefore, Dafny does not support higher-order proof functions such as those shown in

Section 3.4.4. Additionally, quantifier instantiation in Dafny is often implicit and based

on heuristics, which often results in a brittle and unpredictable verification process.

In trying to find a compromise, with predictable checking but also a larger

scope than traditional type systems, LiquidHaskell is most closely related to esverify.

In fact, the refinement type system discussed in Section 4.8 loosely resembles its for-

malization by Vazou et. al. [116]. More recently, LiquidHaskell introduced refinement

reflection [115], which enables external proofs in a similar way as the spec construct

in esverify, and proof by logical evaluation which is a close cousin to the quantifier in-

stantiation algorithm in Section 4.3 but is not based on triggering matching patterns. In

contrast to LiquidHaskell, esverify is not based on static type checking and thus also

supports dynamically-typed programming idioms such as dynamic type checks instead

of injections.

Finally, trigger-based quantifier instantiation, as used by the decision procedure

described in Section 4.3, has been studied by extensive prior work [38, 90, 27, 64]. The

instantiation in esverify is specifically bounded in order to prevent matching loops, but

further research could provide this kind of instantiation as a built-in feature of off-the-

shelf SMT solvers.

138



7.3 Automatic Test Generation

While the goal of this thesis is focused more on programming environments, Chapter 5

described the automatic test generation of verification counterexamples as a basis for

further environment integration. Counterexample generation is an essential concept for

both SMT solving and theorem proving [24]. Automatic test generation, i.e. generation

of executable counterexamples, extends this idea and is a common technique for both

program analysis and verification.

For program analysis, techniques such as symbolic execution, “whitebox testing”

and parameterized testing [37, 110, 109, 18, 99] use path conditions to reason about

control flow and generate random inputs in order to explore more program paths and

thereby achieve higher test coverage. The approach in this thesis, however, is based

on formal verification rather than symbolic execution. Here, the main difference is the

reasoning about loops and recursion. While verification requires manual annotations to

avoid false positives, symbolic execution approximates the program behavior and may

produce false negatives.

On a side note, Chapter 3 targets JavaScript, a dynamically-typed language,

but automatic generation of error witnesses has also been explored for type errors in

OCaml [97].

Furthermore, Heidegger and Thiemann previously presented a system for an-

notating JavaScript code with contracts that are used for guided random testing [44].

However, instead of using a static analysis such as program verification, the contracts

139



have to be labelled explicitly by the programmer to guide the random testing.

Similarly, Klein, Flatt, and Findler proposed a system in which test inputs are

generated for stateful programs by randomly creating primitive values and objects, call-

ing random functions and methods available in the current context and synthesizing

function bodies [55]. This approach is similar to the test generation presented in Chap-

ter 5. However, it provides better support for object-oriented programs (see also Thum-

malapenta et al. [108]) and it might not be able to explore deeper issues due to the black

box generation of test inputs.

Automatic test generation has also been previously explored in the context of

program verification in systems such as KeY [11], for techniques such as abstract inter-

pretation [120], and for runtime verification [106].

For partially verified code, Christakis, Müller, and Wüstholz proposed to use

residual assumptions for complementary checking and dynamic testing in order to find

more errors [19, 18].

Alternatively, conditional model checking is based on a condition that models

control flow for properties that cannot be verified. This condition can either be translated

back into a program that represents the unverified parts, or, alternatively, the unverified

assertions can be used as slicing criterion for the original program. The residual program

is then used for dynamic testing [26]. While conceptually similar, the automatic test

generation presented in this paper targets higher-order functional programs and requires

explicit invariants for loops.

More recently, Nguyen and Van Horn presented an approach for generating

140



counterexamples for high-order functional programs. The paper uses a restrictive core

language similar to simply-typed lambda calculus and finds counterexamples by SMT

solving with an approximation relation for stateful programs [81].

Finally, for partially verified programs, verified assertions and invariants that

depend on unverified verification conditions are vulnerable, so robustness testing might

be applicable in these cases [49].

7.4 Integrated Verification Tools

There has also been prior work on debugging tools in the context of program verification.

Even without static analysis, annotations such as function contracts may benefit

from tool support such as dynamic activation/deactivation [48] and dedicating debug-

ging features [5].

Tymchuk, Ghafari, and Nierstrasz recently investigated the integration of static

analysis in a development environment by conducting interviews and concluded that this

integration is essential for adoption [112].

For program analysis with symbolic execution, Hentschel, Bubel, and Hähnle

recently presented a Symbolic Execution Debugger that is integrated into Eclipse and

offers a similar user experience to traditional debuggers [46].

In the context of program verification, work on dedicated debugging tools over-

laps with research on interactive theorem provers. For example, the Proof Script Debug-

ger for the KeY System [10] offers step-by-step debugging for proof scripts and inspection

141



of the verifier state as assistance for theorem proving.

The most closely related research in the context of integrated development and

verification environments is the work on tools for Boogie, Dafny and Viper [107]. In

particular, Le Goues, Leino, and Moskal presented a verification debugger for Boogie,

a low-level verification language [59] used internally by verifiers such as Dafny. At the

same time, Dafny programs can also be debugged with an integrated development en-

vironment called Dafny IDE [65, 20] that addresses feedback about verification issues

similar to the environment presented in Chapter 6. The Dafny IDE also allows inspection

of counterexamples, including the state of variables at different stages in the verification

of a function body. However, in contrast to the environment presented in Chapter 6, it

does not enable the user to interactively modify assumptions and assertions of a verifica-

tion condition.

142



Chapter 8

Conclusions

Computers are useless. They can only give you answers.

— Pablo Picasso

Computer programming is the act of specifying the intended behavior of soft-

ware. The translation of the mental model into executable program code is challenging.

Moreover, discrepancies between intentions and actual program behavior can be diffi-

cult to understand and to fix. This is an inherent problem of programming that persists

despite future advances in artificial intelligence.

However, it is possible to assist programmers with programming environments

and programming language features. For example, live programming enables a faster

feedback cycle by allowing live code edits to running programs and program verifica-

tion lets programmers specify the expected behavior with logical propositions that will

be checked against the executable code to automatically detect errors. Neither of these

two techniques is new but both are currently gaining renewed interest by both academic

researchers and professional programmers. While these concepts are to some extent

orthogonal, a live programming perspective could inform the design of a programming

environment for verification with an emphasis on interactive experimentation and con-

143



tinuous feedback. This poses the following question:

“How can live programming environments support verification to provide a
better programming experience?”

8.1 Discussion of Research Method

In order to answer the question above, the research for this dissertation involved design

proposals, implementations, formal developments, and empirical evaluations.

More concretely, the research was primarily guided by prototype implemen-

tations that demonstrate how certain features would affect programming for smaller

programming problems and example applications. Building simple programming envi-

ronments from the ground up has both advantages and disadvantages over adopting

and extending existing solutions. On the one hand, it enables quick experimentation in

a large design space with minimal constraints about the language or the user interface.

Also, small online live demos might reach a wider non-academic audience and thereby

illustrate the idea and feasibility without the need to install local software. On the other

hand, the custom programming environments implemented for this thesis research have

no existing users and are generally not mature enough for productive use on real-world

projects. This makes usability aspects difficult to evaluate, especially with regards to

scalability for larger programs, coordination within programming teams and long term

benefits and costs for the software development process.

In addition to prototype implementations, the proposed designs were also for-

mally defined. These formal definitions describe the core idea in a minimal and concise

144



way, and they enable proofs of properties independent of concrete specifics of existing

systems or programming languages. However, these definitions may not perfectly model

the actual system and are also relatively dense and hard to understand especially for non-

academic readers.

The author of this dissertation also used this method for other topics in pro-

gramming language research that is not included in this thesis, such as

• work on a light-weight static effect system for JavaScript based on SMT solving [95],

• a project involving declarative definitions of time-varying values and their depen-

dencies with reactive variables [96], and

• a refactoring method for replacing code with macro invocations by running macro

expansion in reverse [94].

8.2 Summary of Results

The live programming system presented in Chapter 2 is based on ideas from functional

and reactive programming, and ensures continuous feedback for live code updates sim-

ilar to prior work by Burckhardt et al. and others [14]. However, the proposed system

is based on event-based UI programming in JavaScript and the Model-View-Update pat-

tern to separate rendering from event-handling. Thereby, the programming environment

can support back-in-time debugging, runtime version control and live programming-by-

example. The latter enables live code edits based on direct manipulation of the output

by the user.

145



Thework on program verification is partly inspired by existing program verifiers

such as Dafny [61]. However, heuristics and inference techniques in program verifiers

can result in a brittle verification process without means to inspect and understand po-

tential verification issues. Furthermore, Dafny requires type annotations in addition to

preconditions and thereby introduces complex interactions between type checking and

verification. Based on a novel approach for verification, the program verifier described in

Chapter 3 enables verification of JavaScript programs, including higher-order functions,

without traditional type annotations or typing rules. The underlying quantifier instan-

tiation algorithm ensures that the verification process remains predictable and avoids

timeouts. Finally, a formal development given in Chapter 4 proves that evaluation of

verified programs adheres to the annotations.

This program verifier forms the basis for an integrated development and verifi-

cation environment described in Chapter 6. By integrating directly into the verification

process, the environment can support features that may not be easy to implement for

existing program verifiers or environments. While the original goal was to create a live

programming environment for verification, live code updates are equivalent to regular

code updates for the purpose of static verification, so live programming does not directly

interact with program verification. Nevertheless, the design of the environment is in-

formed by live programming in the sense that experimentation and immediate feedback

are primary objectives for its integrated debugging features. In particular, the environ-

ment displays details about verification conditions (similar to the Dafny Verification De-

bugger [65]) and it also enables live updates to assumptions and assertions of verification

146



conditions. Thereby, programmers do not have to add assert statements to the code,

re-verify the program and switch contexts away from the verification inspector to obtain

feedback. Any failed verification condition can also be examined by the means of an

executable counterexample that enables step-by-step debugging through an automati-

cally generated test case (see Chapter 5). Finally, a user study with 18 participants with

and without prior program verification experience found that a majority of participants

were able to effectively solve small programming and verification tasks with the environ-

ment. The environment was generally seen as helpful or potentially helpful with the

user interface design as an essential factor for utility.

8.3 Future Work

The theoretic work on formalizing the program verifier in the Lean theorem prover en-

ables both a soundness theorem for verified programs as well as a comparison with re-

finement type systems. In particular, it is possible to define a translation from types to

annotations and both cursory paper proofs and experimental evidence suggest that any

well-typed program translates into a verifiable program (see Section 4.8). However, a

full formal proof of this conjecture in an automated theorem prover remains open for fu-

ture work. The main difficulty encountered while working on this proof is the quantifier

instantiation algorithm and the quantifier nesting bound. It is possible that an alternative

algorithm without reference to the quantifier nesting bound would simplify a potential

proof in a way that its result could be extended to the algorithm presented in this thesis.

147



A second area for future research is an integrated approach for using examples

alongside verification annotations as a basis for synthesis and program repair. It is note-

worthy that both the live programming-by-example mechanism in Section 2.4 and the

test generation in Section 5.4 synthesize program code for different purposes. Ideally,

program verification could be extended such that the output is not just an error mes-

sage or a counterexample but a code candidate that repairs the program according to

examples and specifications. Essentially, formal specifications can be used to restrict the

search space for program synthesis analogous to examples in programming-by-example

systems. Particularly GUI applications might benefit from such an approach as concrete

examples are better suited for specifying the intended look and behavior of the GUI while

verification annotations are more appropriate for documenting and specifying applica-

tion logic. Therefore, an integrated approach for program synthesis and repair based on

example and verification would combine both advantages.

Finally, the program verifier and the programming environments developed as

part of this dissertation research are lacking some functionality that would be essential

for productive use, such as termination checking, module imports and exports, and a

preamble with verification definitions for all global objects, methods and functions in

JavaScript. Continuedwork on these implementations wouldmake it possible to evaluate

the approach for developing larger applications. Similarly, a larger user study with teams

of programmers might yield more insights about the potential benefits and limitations

about live programming, program verification and their integration in a programming

environment.

148



Appendix A

Formal Definitions and Theorems in Lean

This appendix contains formal definitions and theorems for verification of 𝜆𝑆. The defi-

nitions and theorems are given in Lean, an open source theorem prover based on depen-

dent type theory [78].

This appendix does not list all proof steps and auxillary lemmas due to the

limited space. However, the full proof is available online at

https://github.com/levjj/esverify-theory/.

A.1 syntax.lean

This file includes inductive definitions of syntactical objects such as values, expressions,

terms and propositions.

-- syntax for values. expressions, terms, propositions, etc.

-- x ∈ VariableNames
@[reducible]
def var := ℕ

149

https://github.com/levjj/esverify-theory/


-- ⊗ ∈ UnaryOperators
inductive unop
| not : unop
| isInt : unop
| isBool : unop
| isFunc : unop

-- ⊕ ∈ BinaryOperators
inductive binop
| plus : binop
| minus : binop
| times : binop
| div : binop
| and : binop
| or : binop
| eq : binop
| lt : binop

mutual inductive value, exp, term, spec, env

-- v ∈ Values := true | false | n | <func f(x) R S {e}, 𝜎>
with value: Type
| true : value
| false : value
| num : ℤ → value
| func : var → var → spec → spec → exp → env → value

-- e ∈ Expressions := ...
with exp: Type
| true : var → exp → exp -- let x = true in e
| false : var → exp → exp -- let x = false in e
| num : var → ℤ → exp → exp -- let x = n in e
| func : var → var → spec → spec → exp → exp → exp -- let f(x) R S = e in e
| unop : var → unop → var → exp → exp -- let y = op x in e
| binop : var → binop → var → var → exp → exp -- let z = x op y in e
| app : var → var → var → exp → exp -- let z = x(y) in e
| ite : var → exp → exp → exp -- if x then e else e
| return : var → exp -- return x

150



-- A ∈ LogicalTerms := v | x | ⊗A | A ⊕ A | A(A)
with term: Type
| value : value → term
| var : var → term
| unop : unop → term → term
| binop : binop → term → term → term
| app : term → term → term

-- R,S ∈ Specs := A | ¬ R | R ∧ S | R ∨ S | spec A(x) req R ens S
with spec: Type
| term : term → spec
| not : spec → spec
| and : spec → spec → spec
| or : spec → spec → spec
| func : term → var → spec → spec → spec

-- 𝜎 ∈ Environments := ∘ | 𝜎[x↦ v]
with env: Type
| empty : env
| cons : env → var → value → env

-- s ∈ Stacks := (𝜎, e) | s ⋅ (𝜎, let y = f(x) in e)
inductive stack
| top : env → exp → stack
| cons : stack → env → var → var → var → exp → stack

-- P,Q ∈ Propositions := A | ¬ P | P ∧ Q | P ∨ Q | pre(A, A) | pre(⊗, A) |
-- pre(⊕, A, A) | post(A, A) | call(A) |
-- ∀x. {call(x)}⇒ P | ∃x. P
inductive prop
| term : term → prop
| not : prop → prop
| and : prop → prop → prop
| or : prop → prop → prop
| pre : term → term → prop
| pre1 : unop → term → prop
| pre2 : binop → term → term → prop
| post : term → term → prop

151



| call : term → prop
| forallc : var → prop → prop
| exis : var → prop → prop

-- A[∘] ∈ TermContexts := ∘ | v | x | ⊗ A[∘] | A[∘] ⊕ A[∘] | A[∘] (A[∘])
inductive termctx
| hole : termctx
| value : value → termctx
| var : var → termctx
| unop : unop → termctx → termctx
| binop : binop → termctx → termctx → termctx
| app : termctx → termctx → termctx

-- P[∘], Q[∘] ∈ PropositionsContexts := A[∘] | ¬ P[∘] | P[∘] ∧ Q[∘] |
-- P[∘] ∨ Q[∘] | pre(A[∘], A[∘]) | pre(⊗, A[∘]) | pre(⊕, A[∘], A[∘]) |
-- post(A[∘], A[∘]) | call(A[∘]) | ∀x. {call(x)}⇒ P[∘] | ∃x. P[∘]
inductive propctx
| term : termctx → propctx
| not : propctx → propctx
| and : propctx → propctx → propctx
| or : propctx → propctx → propctx
| pre : termctx → termctx → propctx
| pre1 : unop → termctx → propctx
| pre2 : binop → termctx → termctx → propctx
| post : termctx → termctx → propctx
| call : termctx → propctx
| forallc : var → propctx → propctx
| exis : var → propctx → propctx

-- call(x) ∈ CallTriggers
structure calltrigger := (x: term)

-- P,Q ∈ VerificationCondition := ...
inductive vc: Type
| term : term → vc
| not : vc → vc
| and : vc → vc → vc
| or : vc → vc → vc

152



| pre : term → term → vc
| pre1 : unop → term → vc
| pre2 : binop → term → term → vc
| post : term → term → vc
| univ : var → vc → vc

A.2 definitions1.lean

This files includes the definition of variable substitution in terms and propositions as well

as lifting of quantifiers as part of the quantifier instantiation algorithm.

-- first part of definitions

import .syntax .sizeof .eqdec

-- #######################################
-- ### MINOR DEFINITIONS AND NOTATIONS ###
-- #######################################

-- P → Q

@[reducible]
def spec.implies(P Q: spec): spec := spec.or (spec.not P) Q

@[reducible]
def prop.implies(P Q: prop): prop := prop.or (prop.not P) Q

@[reducible]
def propctx.implies(P Q: propctx): propctx := propctx.or (propctx.not P) Q

@[reducible]
def vc.implies(P Q: vc): vc := vc.or (vc.not P) Q

153



-- P↔ Q

@[reducible]
def spec.iff(P Q: spec): spec := spec.and (spec.implies P Q) (spec.implies Q P)

@[reducible]
def prop.iff(P Q: prop): prop := prop.and (prop.implies P Q) (prop.implies Q P)

@[reducible]
def propctx.iff(P Q: propctx): propctx := propctx.and (propctx.implies P Q)

(propctx.implies Q P)

@[reducible]
def vc.iff(P Q: vc): vc := vc.and (vc.implies P Q) (vc.implies Q P)

-- P ∧ Q
class has_and (𝛼 : Type) := (and : 𝛼 → 𝛼 → 𝛼)
instance : has_and spec := ⟨spec.and⟩
instance : has_and prop := ⟨prop.and⟩
instance : has_and propctx := ⟨propctx.and⟩
instance : has_and vc := ⟨vc.and⟩
infixr ∧̀̀ :35 := has_and.and

-- P ∨ Q

class has_or (𝛼 : Type) := (or : 𝛼 → 𝛼 → 𝛼)
instance : has_or spec := ⟨spec.or⟩
instance : has_or prop := ⟨prop.or⟩
instance : has_or propctx := ⟨propctx.or⟩
instance : has_or vc := ⟨vc.or⟩
infixr ∨̀̀ :30 := has_or.or

-- use ∘ as hole
notation ` ∘ ` := termctx.hole

-- simple coercions
instance value_to_term : has_coe value term := ⟨term.value⟩
instance var_to_term : has_coe var term := ⟨term.var⟩

154



instance term_to_prop : has_coe term prop := ⟨prop.term⟩
instance termctx_to_propctx : has_coe termctx propctx := ⟨propctx.term⟩
instance term_to_vc : has_coe term vc := ⟨vc.term⟩

-- use (t ≡ t)/(t ≣ t) to construct equality comparison
infix ≡ := term.binop binop.eq
infix ` ≣ `:50 := termctx.binop binop.eq

-- syntax for let expressions
notation `lett` x `=`:1 `true` `in` e := exp.true x e
notation `letf` x `=`:1 `false` `in` e := exp.false x e
notation `letn` x `=`:1 n`in` e := exp.num x n e
notation `letf` f `[`:1 x `]` `req` R `ens` S `{`:1 e `}`:1 `in` e'

:= exp.func f x R S e e'
notation `letop` y `=`:1 op `[`:1 x `]`:1 `in` e := exp.unop y op x e
notation `letop2` z `=`:1 op `[`:1 x `,` y `]`:1 `in` e := exp.binop z op x y e
notation `letapp` y `=`:1 f `[`:1 x `]`:1 `in` e := exp.app y f x e

-- 𝜎[x↦ v]
notation e `[` x `↦ ` v `]` := env.cons e x v

-- (𝜎, e) : stack
instance : has_coe (env × exp) stack := ⟨𝜆e, stack.top e.1 e.2⟩

-- κ ⋅ [𝜎, let y = f [ x ] in e]
notation st ` ⋅` `[` env `,` `letapp` y `=`:1 f `[` x `]` `in` e `]`

:= stack.cons st env y f x e

-- env lookup as function application
def env.apply: env → var → option value
| env.empty _ := none
| (𝜎[x↦ v]) y :=

have 𝜎.sizeof < (𝜎[x↦ v]).sizeof, from sizeof_env_rest,
if x = y ∧ option.is_none (𝜎.apply y) then v else 𝜎.apply y

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.1.sizeof)⟩],
dec_tac := tactic.assumption

}

155



instance : has_coe_to_fun env := ⟨𝜆 _, var → option value, env.apply⟩

def env.rest: env → env
| env.empty := env.empty
| (𝜎[x↦ v]) := 𝜎

-- x ∈ 𝜎

inductive env.contains: env → var → Prop
| same {e: env} {x: var} {v: value} : env.contains (e[x↦ v]) x
| rest {e: env} {x y: var} {v: value} : env.contains e x → env.contains (e[y↦ v]) x

instance : has_mem var env := ⟨𝜆x 𝜎, 𝜎.contains x⟩

-- dom( 𝜎 )

def env.dom (𝜎: env): set var := 𝜆x, x ∈ 𝜎

-- spec to prop coercion

@[reducible]
def prop.func (f: term) (x: var) (P: prop) (Q: prop): prop :=
term.unop unop.isFunc f ∧
prop.forallc x (prop.implies P (prop.pre f x) ∧

prop.implies (prop.post f x) Q)

def spec.to_prop : spec → prop
| (spec.term t) := prop.term t
| (spec.not S) :=

have S.sizeof < S.not.sizeof, from sizeof_spec_not,
prop.not S.to_prop

| (spec.and R S) :=
have R.sizeof < (R ∧ S).sizeof, from sizeof_spec_and1,
have S.sizeof < (R ∧ S).sizeof, from sizeof_spec_and2,
R.to_prop ∧ S.to_prop

| (spec.or R S) :=
have R.sizeof < (R ∨ S).sizeof, from sizeof_spec_or1,
have S.sizeof < (R ∨ S).sizeof, from sizeof_spec_or2,

156



R.to_prop ∨ S.to_prop
| (spec.func f x R S) :=

have R.sizeof < (spec.func f x R S).sizeof, from sizeof_spec_func_R,
have S.sizeof < (spec.func f x R S).sizeof, from sizeof_spec_func_S,
prop.func f x R.to_prop S.to_prop

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.sizeof)⟩],
dec_tac := tactic.assumption

}

instance spec_to_prop : has_coe spec prop := ⟨spec.to_prop⟩

-- term to termctx coercion

def term.to_termctx : term → termctx
| (term.value v) := termctx.value v
| (term.var x) := termctx.var x
| (term.unop op t) := termctx.unop op t.to_termctx
| (term.binop op t1 t2) := termctx.binop op t1.to_termctx t2.to_termctx
| (term.app t1 t2) := termctx.app t1.to_termctx t2.to_termctx

instance term_to_termctx : has_coe term termctx := ⟨term.to_termctx⟩

-- term to termctx coercion

def prop.to_propctx : prop → propctx
| (prop.term t) := propctx.term t
| (prop.not P) := propctx.not P.to_propctx
| (prop.and P1 P2) := P1.to_propctx ∧ P2.to_propctx
| (prop.or P1 P2) := P1.to_propctx ∨ P2.to_propctx
| (prop.pre t1 t2) := propctx.pre t1 t2
| (prop.pre1 op t) := propctx.pre1 op t
| (prop.pre2 op t1 t2) := propctx.pre2 op t1 t2
| (prop.post t1 t2) := propctx.post t1 t2
| (prop.call t) := propctx.call t
| (prop.forallc x P) := propctx.forallc x P.to_propctx
| (prop.exis x P) := propctx.exis x P.to_propctx

157



instance prop_to_propctx : has_coe prop propctx := ⟨prop.to_propctx⟩

-- termctx substituttion as function application

def termctx.apply: termctx → term → term
| ∘ t := t
| (termctx.value v) _ := term.value v
| (termctx.var x) _ := term.var x
| (termctx.unop op t1) t := term.unop op (t1.apply t)
| (termctx.binop op t1 t2) t := term.binop op (t1.apply t) (t2.apply t)
| (termctx.app t1 t2) t := term.app (t1.apply t) (t2.apply t)

instance : has_coe_to_fun termctx := ⟨𝜆 _, term → term, termctx.apply⟩

-- propctx substituttion as function application

def propctx.apply: propctx → term → prop
| (propctx.term t1) t := t1 t
| (propctx.not P) t := prop.not (P.apply t)
| (propctx.and P1 P2) t := P1.apply t ∧ P2.apply t
| (propctx.or P1 P2) t := P1.apply t ∨ P2.apply t
| (propctx.pre t1 t2) t := prop.pre (t1 t) (t2 t)
| (propctx.pre1 op t1) t := prop.pre1 op (t1 t)
| (propctx.pre2 op t1 t2) t := prop.pre2 op (t1 t) (t2 t)
| (propctx.post t1 t2) t := prop.post (t1 t) (t2 t)
| (propctx.call t1) t := prop.call (t1 t)
| (propctx.forallc x P) t := prop.forallc x (P.apply t)
| (propctx.exis x P) t := prop.exis x (P.apply t)

instance : has_coe_to_fun propctx := ⟨𝜆 _, term → prop, propctx.apply⟩

-- #############################
-- ### VARIABLE SUBSTITUTION ###
-- #############################

-- free variables in terms, propositions and vcs

158



inductive free_in_term (x: var) : term → Prop
| var : free_in_term x
| unop {t: term} {op: unop} : free_in_term t

→ free_in_term (term.unop op t)
| binop1 {t1 t2: term} {op: binop} : free_in_term t1

→ free_in_term (term.binop op t1 t2)
| binop2 {t1 t2: term} {op: binop} : free_in_term t2

→ free_in_term (term.binop op t1 t2)
| app1 {t1 t2: term} : free_in_term t1

→ free_in_term (term.app t1 t2)
| app2 {t1 t2: term} : free_in_term t2

→ free_in_term (term.app t1 t2)

inductive free_in_prop (x: var) : prop → Prop
| term {t: term} : free_in_term x t

→ free_in_prop t
| not {p: prop} : free_in_prop p

→ free_in_prop (prop.not p)
| and1 {p1 p2: prop} : free_in_prop p1

→ free_in_prop (prop.and p1 p2)
| and2 {p1 p2: prop} : free_in_prop p2

→ free_in_prop (prop.and p1 p2)
| or1 {p1 p2: prop} : free_in_prop p1

→ free_in_prop (prop.or p1 p2)
| or2 {p1 p2: prop} : free_in_prop p2

→ free_in_prop (prop.or p1 p2)
| pre1 {t1 t2: term} : free_in_term x t1

→ free_in_prop (prop.pre t1 t2)
| pre2 {t1 t2: term} : free_in_term x t2

→ free_in_prop (prop.pre t1 t2)
| preop {t: term} {op: unop} : free_in_term x t

→ free_in_prop (prop.pre1 op t)
| preop1 {t1 t2: term} {op: binop} : free_in_term x t1

→ free_in_prop (prop.pre2 op t1 t2)
| preop2 {t1 t2: term} {op: binop} : free_in_term x t2

→ free_in_prop (prop.pre2 op t1 t2)
| post1 {t1 t2: term} : free_in_term x t1

→ free_in_prop (prop.post t1 t2)

159



| post2 {t1 t2: term} : free_in_term x t2
→ free_in_prop (prop.post t1 t2)

| call {t: term} : free_in_term x t
→ free_in_prop (prop.call t)

| forallc {y: var} {p: prop} : (x ≠ y) → free_in_prop p
→ free_in_prop (prop.forallc y p)

| exis {y: var} {p: prop} : (x ≠ y) → free_in_prop p
→ free_in_prop (prop.exis y p)

inductive free_in_vc (x: var) : vc → Prop
| term {t: term} : free_in_term x t

→ free_in_vc t
| not {P: vc} : free_in_vc P

→ free_in_vc (vc.not P)
| and1 {P1 P2: vc} : free_in_vc P1

→ free_in_vc (vc.and P1 P2)
| and2 {P1 P2: vc} : free_in_vc P2

→ free_in_vc (vc.and P1 P2)
| or1 {P1 P2: vc} : free_in_vc P1

→ free_in_vc (vc.or P1 P2)
| or2 {P1 P2: vc} : free_in_vc P2

→ free_in_vc (vc.or P1 P2)
| pre1 {t1 t2: term} : free_in_term x t1

→ free_in_vc (vc.pre t1 t2)
| pre2 {t1 t2: term} : free_in_term x t2

→ free_in_vc (vc.pre t1 t2)
| preop {t: term} {op: unop} : free_in_term x t

→ free_in_vc (vc.pre1 op t)
| preop1 {t1 t2: term} {op: binop} : free_in_term x t1

→ free_in_vc (vc.pre2 op t1 t2)
| preop2 {t1 t2: term} {op: binop} : free_in_term x t2

→ free_in_vc (vc.pre2 op t1 t2)
| post1 {t1 t2: term} : free_in_term x t1

→ free_in_vc (vc.post t1 t2)
| post2 {t1 t2: term} : free_in_term x t2

→ free_in_vc (vc.post t1 t2)
| univ {y: var} {P: vc} : (x ≠ y) → free_in_vc P

→ free_in_vc (vc.univ y P)

160



-- notation x ∈ FV t/P

inductive freevars
| term: term → freevars
| prop: prop → freevars
| vc: vc → freevars

class has_fv (𝛼: Type) := (fv : 𝛼 → freevars)
instance : has_fv term := ⟨freevars.term⟩
instance : has_fv prop := ⟨freevars.prop⟩
instance : has_fv vc := ⟨freevars.vc⟩

def freevars.to_set: freevars → set var
| (freevars.term t) := 𝜆x, free_in_term x t
| (freevars.prop P) := 𝜆x, free_in_prop x P
| (freevars.vc P) := 𝜆x, free_in_vc x P

@[reducible]
def FV {𝛼: Type} [h: has_fv 𝛼] (a: 𝛼): set var := (has_fv.fv a).to_set

@[reducible]
def closed {𝛼: Type} [h: has_fv 𝛼] (a: 𝛼): Prop := ∀x, x ∉ FV a

-- fresh variables (not used in the provided term/prop)

def term.fresh_var : term → var
| (term.value v) := 0
| (term.var x) := x + 1
| (term.unop op t) := t.fresh_var
| (term.binop op t1 t2) := max t1.fresh_var t2.fresh_var
| (term.app t1 t2) := max t1.fresh_var t2.fresh_var

def prop.fresh_var : prop → var
| (prop.term t) := t.fresh_var
| (prop.not P) := P.fresh_var
| (prop.and P1 P2) := max P1.fresh_var P2.fresh_var
| (prop.or P1 P2) := max P1.fresh_var P2.fresh_var

161



| (prop.pre t1 t2) := max t1.fresh_var t2.fresh_var
| (prop.pre1 op t) := t.fresh_var
| (prop.pre2 op t1 t2) := max t1.fresh_var t2.fresh_var
| (prop.post t1 t2) := max t1.fresh_var t2.fresh_var
| (prop.call t) := t.fresh_var
| (prop.forallc x P) := max (x + 1) P.fresh_var
| (prop.exis x P) := max (x + 1) P.fresh_var

-- substituation in terms, propositions and vcs

def term.subst (x: var) (v: value): term → term
| (term.value v') := v'
| (term.var y) := if x = y then v else y
| (term.unop op t) := term.unop op t.subst
| (term.binop op t1 t2) := term.binop op t1.subst t2.subst
| (term.app t1 t2) := term.app t1.subst t2.subst

def term.subst_env: env → term → term
| env.empty t := t
| (𝜎[x↦ v]) t :=

have 𝜎.sizeof < (𝜎[x↦ v]).sizeof, from sizeof_env_rest,
term.subst x v (term.subst_env 𝜎 t)

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.1.sizeof)⟩],
dec_tac := tactic.assumption

}

def prop.subst (x: var) (v: value): prop → prop
| (prop.term t) := term.subst x v t
| (prop.not P) := P.subst.not
| (prop.and P Q) := P.subst ∧ Q.subst
| (prop.or P Q) := P.subst ∨ Q.subst
| (prop.pre t1 t2) := prop.pre (term.subst x v t1) (term.subst x v t2)
| (prop.pre1 op t) := prop.pre1 op (term.subst x v t)
| (prop.pre2 op t1 t2) := prop.pre2 op (term.subst x v t1) (term.subst x v t2)
| (prop.call t) := prop.call (term.subst x v t)
| (prop.post t1 t2) := prop.post (term.subst x v t1) (term.subst x v t2)

162



| (prop.forallc y P) := prop.forallc y (if x = y then P else P.subst)
| (prop.exis y P) := prop.exis y (if x = y then P else P.subst)

def prop.subst_env: env → prop → prop
| env.empty P := P
| (𝜎[x↦ v]) P :=

have 𝜎.sizeof < (𝜎[x↦ v]).sizeof, from sizeof_env_rest,
prop.subst x v (prop.subst_env 𝜎 P)

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.1.sizeof)⟩],
dec_tac := tactic.assumption

}

def vc.subst (x: var) (v: value): vc → vc
| (vc.term t) := term.subst x v t
| (vc.not P) := vc.not P.subst
| (vc.and P Q) := P.subst ∧ Q.subst
| (vc.or P Q) := P.subst ∨ Q.subst
| (vc.pre t1 t2) := vc.pre (term.subst x v t1) (term.subst x v t2)
| (vc.pre1 op t) := vc.pre1 op (term.subst x v t)
| (vc.pre2 op t1 t2) := vc.pre2 op (term.subst x v t1) (term.subst x v t2)
| (vc.post t1 t2) := vc.post (term.subst x v t1) (term.subst x v t2)
| (vc.univ y P) := vc.univ y (if x = y then P else P.subst)

def vc.subst_env: env → vc → vc
| env.empty P := P
| (𝜎[x↦ v]) P :=

have 𝜎.sizeof < (𝜎[x↦ v]).sizeof, from sizeof_env_rest,
vc.subst x v (vc.subst_env 𝜎 P)

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.1.sizeof)⟩],
dec_tac := tactic.assumption

}

163



-- 𝜎 \ { x }
def env.without: env → var → env
| env.empty y := env.empty
| (𝜎[x↦ v]) y := have 𝜎.sizeof < (𝜎[x↦ v]).sizeof, from sizeof_env_rest,

if x = y then env.without 𝜎 y else ((env.without 𝜎 y)[x↦ v])

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf (𝜆 e, e.1.sizeof)⟩],
dec_tac := tactic.assumption

}

-- closed under substitution

@[reducible]
def closed_subst {𝛼: Type} [h: has_fv 𝛼] (𝜎: env) (a: 𝛼): Prop := FV a ⊆ 𝜎.dom

-- subst term

def term.substt (x: var) (t: term): term → term
| (term.value v') := v'
| (term.var y) := if x = y then t else y
| (term.unop op t1) := term.unop op t1.substt
| (term.binop op t1 t2) := term.binop op t1.substt t2.substt
| (term.app t1 t2) := term.app t1.substt t2.substt

def prop.substt (x: var) (t: term): prop → prop
| (prop.term t1) := term.substt x t t1
| (prop.not P) := P.substt.not
| (prop.and P Q) := P.substt ∧ Q.substt
| (prop.or P Q) := P.substt ∨ Q.substt
| (prop.pre t1 t2) := prop.pre (term.substt x t t1) (term.substt x t t2)
| (prop.pre1 op t1) := prop.pre1 op (term.substt x t t1)
| (prop.pre2 op t1 t2) := prop.pre2 op (term.substt x t t1) (term.substt x t t2)
| (prop.call t1) := prop.call (term.substt x t t1)
| (prop.post t1 t2) := prop.post (term.substt x t t1) (term.substt x t t2)
| (prop.forallc y P) := prop.forallc y (if x = y then P else P.substt)
| (prop.exis y P) := prop.exis y (if x = y then P else P.substt)

164



def vc.substt (x: var) (t: term): vc → vc
| (vc.term t1) := term.substt x t t1
| (vc.not P) := P.substt.not
| (vc.and P Q) := P.substt ∧ Q.substt
| (vc.or P Q) := P.substt ∨ Q.substt
| (vc.pre t1 t2) := vc.pre (term.substt x t t1) (term.substt x t t2)
| (vc.pre1 op t1) := vc.pre1 op (term.substt x t t1)
| (vc.pre2 op t1 t2) := vc.pre2 op (term.substt x t t1) (term.substt x t t2)
| (vc.post t1 t2) := vc.post (term.substt x t t1) (term.substt x t t2)
| (vc.univ y P) := vc.univ y (if x = y then P else P.substt)

-- ################################
-- ### QUANTIFIER INSTANTIATION ###
-- ################################

-- simple conversion of propositions to verification conditions
-- (no quantifier instantiation)

def prop.to_vc: prop → vc
| (prop.term t) := vc.term t
| (prop.not P) := vc.not P.to_vc
| (prop.and P1 P2) := P1.to_vc ∧ P2.to_vc
| (prop.or P1 P2) := P1.to_vc ∨ P2.to_vc
| (prop.pre t1 t2) := vc.pre t1 t2
| (prop.pre1 op t) := vc.pre1 op t
| (prop.pre2 op t1 t2) := vc.pre2 op t1 t2
| (prop.post t1 t2) := vc.post t1 t2
| (prop.call _) := vc.term value.true
| (prop.forallc x P) := vc.univ x P.to_vc
| (prop.exis x P) := have P.sizeof < (prop.exis x P).sizeof,

from sizeof_prop_exis,
vc.not (vc.univ x (vc.not P.to_vc))

-- lift_p(P) / lift_n(P) lifts quantifiers in either positive or negative position
-- to become a top-level quantifier by using a fresh (unbound) variable

mutual def prop.lift_p, prop.lift_n

165



with prop.lift_p: prop → var → option prop
| (prop.term t) y := none
| (prop.not P) y := have P.sizeof < P.not.sizeof,

from sizeof_prop_not,
prop.not <$> P.lift_n y

| (prop.and P1 P2) y := have P1.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and1,
have P2.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and2,
match P1.lift_p y with
| some P1' := some (P1' ∧ P2)
| none := (𝜆P2', P1 ∧ P2') <$> P2.lift_p y
end

| (prop.or P1 P2) y := have P1.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or2,
match P1.lift_p y with
| some P1' := some (P1' ∨ P2)
| none := (𝜆P2', P1 ∨ P2') <$> P2.lift_p y
end

| (prop.pre t1 t2) y := none
| (prop.pre1 op t) y := none
| (prop.pre2 op t1 t2) y := none
| (prop.post t1 t2) y := none
| (prop.call t) y := none
| (prop.forallc x P) y := some (prop.implies (prop.call y) (P.substt x y))
| (prop.exis x P) y := none

with prop.lift_n: prop → var → option prop
| (prop.term t) y := none
| (prop.not P) y := have P.sizeof < P.not.sizeof,

from sizeof_prop_not,
prop.not <$> P.lift_p y

| (prop.and P1 P2) y := have P1.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and1,
have P2.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and2,

166



match P1.lift_n y with
| some P1' := some (P1' ∧ P2)
| none := (𝜆P2', P1 ∧ P2') <$> P2.lift_n y
end

| (prop.or P1 P2) y := have P1.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or2,
match P1.lift_n y with
| some P1' := some (P1' ∨ P2)
| none := (𝜆P2', P1 ∨ P2') <$> P2.lift_n y
end

| (prop.pre t1 t2) y := none
| (prop.pre1 op t) y := none
| (prop.pre2 op t1 t2) y := none
| (prop.post t1 t2) y := none
| (prop.call t) y := none
| (prop.forallc x P) y := none
| (prop.exis x P) y := none

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf $ 𝜆 s,
match s with
| psum.inl a := a.1.sizeof
| psum.inr a := a.1.sizeof
end⟩],
dec_tac := tactic.assumption

}

-- remaining definitions need some additional lemmas in qiaux.lean to prove
-- termination definitions continue in definitions2.lean

167



A.3 definitions2.lean

This file contains the remainder of the quantifier instantiation algorithm. Additionally,

this files defines the evaluation relation for program expressions, an axiomatization of

SMT Logic and the verification relation.

-- second part of definitions

import .definitions1 .qiaux

-- ################################
-- ### QUANTIFIER INSTANTIATION ###
-- ################################

-- first part is in definitions1.lean
-- the following definitions need some additional lemmas from qiaux.lean to prove
-- termination

-- lift_all(P) performs repeated lifting of quantifiers in positive
-- positions until there is no more quantifier to be lifted
def prop.lift_all: prop → prop
| P :=

let r := P.lift_p P.fresh_var in
let z := r in
have h: z = r, from rfl,
@option.cases_on prop (𝜆r, (z = r) → prop) r (

assume : z = none,
P

) (
assume P': prop,
assume : z = (some P'),
have r_id: r = (some P'), from eq.trans h this,
have P'.num_quantifiers < P.num_quantifiers,
from (lifted_prop_smaller P').left r_id,
prop.lift_all P'

168



) rfl

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf $ 𝜆 s, s.num_quantifiers ⟩],
dec_tac := tactic.assumption

}

-- erase_p(P) / erase_n(P) replaces all triggers and quantifiers
-- in either positive or negative position with 'true'
mutual def prop.erased_p, prop.erased_n

with prop.erased_p: prop → vc
| (prop.term t) := vc.term t
| (prop.not P) := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

vc.not P.erased_n
| (prop.and P1 P2) := have P1.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and1,

have P2.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and2,
P1.erased_p ∧ P2.erased_p

| (prop.or P1 P2) := have P1.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or2,
P1.erased_p ∨ P2.erased_p

| (prop.pre t1 t2) := vc.pre t1 t2
| (prop.pre1 op t) := vc.pre1 op t
| (prop.pre2 op t1 t2) := vc.pre2 op t1 t2
| (prop.post t1 t2) := vc.post t1 t2
| (prop.call _) := vc.term value.true
| (prop.forallc x P) := vc.term value.true
| (prop.exis x P) := have P.sizeof < (prop.exis x P).sizeof,

from sizeof_prop_exis,
vc.not (vc.univ x (vc.not P.erased_p))

with prop.erased_n: prop → vc
| (prop.term t) := vc.term t
| (prop.not P) := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

vc.not P.erased_p
| (prop.and P1 P2) := have P1.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and1,

have P2.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and2,
P1.erased_n ∧ P2.erased_n

169



| (prop.or P1 P2) := have P1.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or2,
P1.erased_n ∨ P2.erased_n

| (prop.pre t1 t2) := vc.pre t1 t2
| (prop.pre1 op t) := vc.pre1 op t
| (prop.pre2 op t1 t2) := vc.pre2 op t1 t2
| (prop.post t1 t2) := vc.post t1 t2
| (prop.call _) := vc.term value.true
| (prop.forallc x P) := have P.sizeof < (prop.forallc x P).sizeof,

from sizeof_prop_forall,
vc.univ x P.erased_n

| (prop.exis x P) := have P.sizeof < (prop.exis x P).sizeof,
from sizeof_prop_exis,
vc.not (vc.univ x (vc.not P.erased_n))

using_well_founded {
rel_tac := 𝜆 _ _, `[exact erased_measure],
dec_tac := tactic.assumption

}

-- given a call trigger t, inst_with_p(P, t) / inst_with_n(P, t) instantiates all
-- quantifiers in either positive or negative positions by adding a conjunction
-- where the quantified variable is replaced by the term in the given trigger
mutual def prop.instantiate_with_p, prop.instantiate_with_n

with prop.instantiate_with_p: prop → calltrigger → prop
| (prop.term t) _ := prop.term t
| (prop.not P) t := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

prop.not (P.instantiate_with_n t)
| (prop.and P1 P2) t := have P1.sizeof < (P1 ∧ P2).sizeof,

from sizeof_prop_and1,
have P2.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and2,
P1.instantiate_with_p t ∧ P2.instantiate_with_p t

| (prop.or P1 P2) t := have P1.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or2,

170



P1.instantiate_with_p t ∨ P2.instantiate_with_p t
| (prop.pre t1 t2) _ := prop.pre t1 t2
| (prop.pre1 op t) _ := prop.pre1 op t
| (prop.pre2 op t1 t2) _ := prop.pre2 op t1 t2
| (prop.post t1 t2) _ := prop.post t1 t2
| (prop.call t) _ := prop.call t
| (prop.forallc x P) t := prop.forallc x P ∧ P.substt x t.x -- instantiate
| (prop.exis x P) t := prop.exis x P

with prop.instantiate_with_n: prop → calltrigger → prop
| (prop.term t) _ := prop.term t
| (prop.not P) t := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

prop.not (P.instantiate_with_p t)
| (prop.and P1 P2) t := have P1.sizeof < (P1 ∧ P2).sizeof,

from sizeof_prop_and1,
have P2.sizeof < (P1 ∧ P2).sizeof,
from sizeof_prop_and2,
P1.instantiate_with_n t ∧ P2.instantiate_with_n t

| (prop.or P1 P2) t := have P1.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof,
from sizeof_prop_or2,
P1.instantiate_with_n t ∨ P2.instantiate_with_n t

| (prop.pre t1 t2) _ := prop.pre t1 t2
| (prop.pre1 op t) _ := prop.pre1 op t
| (prop.pre2 op t1 t2) _ := prop.pre2 op t1 t2
| (prop.post t1 t2) _ := prop.post t1 t2
| (prop.call t) _ := prop.call t
| (prop.forallc x P) t := prop.forallc x P
| (prop.exis x P) t := prop.exis x P

using_well_founded {
rel_tac := 𝜆 _ _, `[exact instantiate_with_measure],
dec_tac := tactic.assumption

}

-- finds all call triggers in either positive or negative positions and
-- returns these as list

171



mutual def prop.find_calls_p, prop.find_calls_n

with prop.find_calls_p: prop → list calltrigger
| (prop.term t) := []
| (prop.not P) := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

P.find_calls_n
| (prop.and P1 P2) := have P1.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and1,

have P2.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and2,
P1.find_calls_p ++ P2.find_calls_p

| (prop.or P1 P2) := have P1.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or2,
P1.find_calls_p ++ P2.find_calls_p

| (prop.pre t1 t2) := []
| (prop.pre1 op t) := []
| (prop.pre2 op t1 t2) := []
| (prop.post t1 t2) := []
| (prop.call t) := [ ⟨ t ⟩ ]
| (prop.forallc x P) := []
| (prop.exis x P) := []

with prop.find_calls_n: prop → list calltrigger
| (prop.term t) := []
| (prop.not P) := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

P.find_calls_p
| (prop.and P1 P2) := have P1.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and1,

have P2.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and2,
P1.find_calls_n ++ P2.find_calls_n

| (prop.or P1 P2) := have P1.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or2,
P1.find_calls_n ++ P2.find_calls_n

| (prop.pre t1 t2) := []
| (prop.pre1 op t) := []
| (prop.pre2 op t1 t2) := []
| (prop.post t1 t2) := []
| (prop.call t) := []
| (prop.forallc x P) := []
| (prop.exis x P) := []

172



using_well_founded {
rel_tac := 𝜆 _ _, `[exact find_calls_measure],
dec_tac := tactic.assumption

}

-- performs one full instantiation for each of the triggers in the provided list
def prop.instantiate_with_all: prop → list calltrigger → prop
| P list.nil := P
| P (list.cons t r) := (P.instantiate_with_n t).instantiate_with_all r
using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf $ 𝜆 s, s.2.sizeof⟩]

}

-- performs n rounds of instantiations. each round also involves a repeated lifting.
-- once all rounds are complete, remaining quantifiers and triggers in
-- negative positions will be erased
def prop.instantiate_rep: prop → ℕ → vc
| P 0 := P.lift_all.erased_n
| P (nat.succ n) := have n < n + 1, from lt_of_add_one,

(P.lift_all.instantiate_with_all P.lift_all.find_calls_n)
.instantiate_rep n

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf $ 𝜆 s, s.2⟩]

}

-- finds the maximum quantifier nesting level of a given proposition
def prop.max_nesting_level: prop → ℕ

| (prop.term t) := 0
| (prop.not P) := have P.sizeof < P.not.sizeof, from sizeof_prop_not,

P.max_nesting_level
| (prop.and P1 P2) := have P1.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and1,

have P2.sizeof < (P1 ∧ P2).sizeof, from sizeof_prop_and2,
max P1.max_nesting_level P2.max_nesting_level

| (prop.or P1 P2) := have P1.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or1,
have P2.sizeof < (P1 ∨ P2).sizeof, from sizeof_prop_or2,
max P1.max_nesting_level P2.max_nesting_level

| (prop.pre t1 t2) := 0

173



| (prop.pre1 op t) := 0
| (prop.pre2 op t1 t2) := 0
| (prop.post t1 t2) := 0
| (prop.call t) := 0
| (prop.forallc x P) := have P.sizeof < (prop.forallc x P).sizeof,

from sizeof_prop_forall,
nat.succ P.max_nesting_level

| (prop.exis x P) := 0

using_well_founded {
rel_tac := 𝜆 _ _, `[exact ⟨_, measure_wf $ 𝜆 s, s.sizeof⟩],
dec_tac := tactic.assumption

}

-- the main instantiation algorithm performs n rounds of instantiations
-- where n is the maximum quantifier nesting level and
-- returns the erased proposition
def prop.instantiated_n (P: prop): vc := P.instantiate_rep P.max_nesting_level

-- #############################
-- ### OPERATIONAL SEMANTICS ###
-- #############################

-- semantics of unary operators
def unop.apply: unop → value → option value
| unop.not value.true := value.false
| unop.not value.false := value.true
| unop.isInt (value.num _) := value.true
| unop.isInt _ := value.false
| unop.isBool value.true := value.true
| unop.isBool value.false := value.true
| unop.isBool _ := value.false
| unop.isFunc (value.func _ _ _ _ _ _) := value.true
| unop.isFunc _ := value.false
| _ _ := none

174



-- semantics of binary operators
def binop.apply: binop → value → value → option value
| binop.plus (value.num n1) (value.num n2) := value.num (n1 + n2)
| binop.minus (value.num n1) (value.num n2) := value.num (n1 - n2)
| binop.times (value.num n1) (value.num n2) := value.num (n1 * n2)
| binop.div (value.num n1) (value.num n2) := value.num (n1 / n2)
| binop.and value.true value.true := value.true
| binop.and value.true value.false := value.false
| binop.and value.false value.true := value.false
| binop.and value.false value.false := value.false
| binop.or value.true value.true := value.true
| binop.or value.true value.false := value.true
| binop.or value.false value.true := value.true
| binop.or value.false value.false := value.false
| binop.eq v1 v2 := if v1 = v2 then value.true

else value.false
| binop.lt (value.num n1) (value.num n2) := if n1 < n2 then value.true

else value.false
| _ _ _ := none

-- small-step stack-based semantics
inductive step : stack → stack → Prop
notation s1 ⟶̀̀ s2:100 := step s1 s2

| ctx {s s': stack} {𝜎: env} {y f x: var} {e: exp}:
(s⟶s') →

(s ⋅ [𝜎, letapp y = f[x] in e]⟶(s' ⋅ [𝜎, letapp y = f[x] in e]))

| tru {𝜎: env} {x: var} {e: exp}:
(𝜎, lett x = true in e)⟶(𝜎[x↦ value.true], e)

| fals {𝜎: env} {x: var} {e: exp}:
(𝜎, letf x = false in e)⟶(𝜎[x↦ value.false], e)

| num {𝜎: env} {x: var} {e: exp} {n: ℤ}:
(𝜎, letn x = n in e)⟶(𝜎[x↦ value.num n], e)

175



| closure {𝜎: env} {R' R S: spec} {f x: var} {e1 e2: exp}:
(𝜎, letf f[x] req R ens S {e1} in e2)⟶(𝜎[f↦ value.func f x R S e1 𝜎], e2)

| unop {op: unop} {𝜎: env} {x y: var} {e: exp} {v1 v: value}:
(𝜎 x = v1) →

(unop.apply op v1 = v) →

((𝜎, letop y = op [x] in e)⟶(𝜎[y↦ v], e))

| binop {op: binop} {𝜎: env} {x y z: var} {e: exp} {v1 v2 v: value}:
(𝜎 x = v1) →

(𝜎 y = v2) →

(binop.apply op v1 v2 = v) →

((𝜎, letop2 z = op [x, y] in e)⟶(𝜎[z↦ v], e))

| app {𝜎 𝜎': env} {R S: spec} {f g x y z: var} {e e': exp} {v: value}:
(𝜎 f = value.func g z R S e 𝜎') →

(𝜎 x = v) →

((𝜎, letapp y = f[x] in e')⟶
((𝜎'[g↦ value.func g z R S e 𝜎'][z↦ v], e) ⋅ [𝜎, letapp y = f[x] in e']))

| return {𝜎1 𝜎2 𝜎3: env} {f g gx x y z: var} {R S: spec} {e e': exp} {v vx: value}:
(𝜎1 z = v) →

(𝜎2 f = value.func g gx R S e 𝜎3) →

(𝜎2 x = vx) →

((𝜎1, exp.return z) ⋅ [𝜎2, letapp y = f[x] in e']⟶(𝜎2[y↦ v], e'))

| ite_true {𝜎: env} {e1 e2: exp} {x: var}:
(𝜎 x = value.true) →

((𝜎, exp.ite x e1 e2)⟶(𝜎, e1))

| ite_false {𝜎: env} {e1 e2: exp} {x: var}:
(𝜎 x = value.false) →

((𝜎, exp.ite x e1 e2)⟶(𝜎, e2))

notation s1 `⟶` s2:100 := step s1 s2

176



-- transitive closure
inductive trans_step : stack → stack → Prop
notation s `⟶* ` s':100 := trans_step s s'
| rfl {s: stack} : s⟶* s
| trans {s s' s'': stack} : (s⟶* s') → (s'⟶s'') → (s⟶* s'')

notation s `⟶* ` s':100 := trans_step s s'

def is_value (s: stack) :=
∃(𝜎: env) (x: var) (v: value), s = (𝜎, exp.return x) ∧ (𝜎 x = v)

-- #######################################
-- ### VALIDTY OF LOGICAL PROPOSITIONS ###
-- #######################################

-- validity is axiomatized instead defined
-- see axioms below

constant valid : vc → Prop
notation `⊨` p: 20 := valid p
notation 𝜎 `⊨` p: 20 := ⊨ (vc.subst_env 𝜎 p)
notation `⦉` P `⦊`: 100 :=
∀ (𝜎: env), closed_subst 𝜎 P → ⊨ (prop.subst_env 𝜎 P).instantiated_n

-- simple axioms for logical reasoning

axiom valid.tru:
⊨ value.true

axiom valid.and {P Q: vc}:
(⊨ P) ∧ (⊨ Q)
↔
⊨ P ∧ Q

axiom valid.or.left {P Q: vc}:
(⊨ P) →

⊨ P ∨ Q

177



axiom valid.or.right {P Q: vc}:
(⊨ Q) →

⊨ P ∨ Q

axiom valid.or.elim {P Q: vc}:
(⊨ P ∨ Q)
→

(⊨ P) ∨ (⊨ Q)

-- no contradictions
axiom valid.contradiction {P: vc}:
¬ (⊨ P ∧ P.not)

-- law of excluded middle
axiom valid.em {P: vc}:
(⊨ P ∨ P.not)

-- a term is valid if it equals true
axiom valid.eq.true {t: term}:
⊨ t
↔
⊨ value.true ≡ t

-- universal quantifier valid if true for all values
axiom valid.univ.mp {x: var} {P: vc}:
∀(v, ⊨ vc.subst x v P)
→

⊨ vc.univ x P

-- a free top-level variable is implicitly universally quantified
axiom valid.univ.free {x: var} {P: vc}:
(x ∈ FV P ∧ ⊨ P)
→

⊨ vc.univ x P

178



-- universal quantifier can be instantiated with any term
axiom valid.univ.mpr {x: var} {P: vc}:
(⊨ vc.univ x P)
→

∀(t, ⊨ vc.substt x t P)

-- unary and binary operators are decidable,
-- so equalities with operators are decidable
axiom valid.unop {op: unop} {vx v: value}:
unop.apply op vx = some v
↔
⊨ v ≡ term.unop op vx

axiom valid.binop {op: binop} {v1 v2 v: value}:
binop.apply op v1 v2 = some v
↔
⊨ v ≡ term.binop op v1 v2

-- can write pre1 and pre2 to check domain of operators

axiom valid.pre1 {vx: value} {op: unop}:
(⊨ vc.pre1 op vx)
→

option.is_some (unop.apply op vx)

axiom valid.pre2 {v1 v2: value} {op: binop}:
(⊨ vc.pre2 op v1 v2)
→

option.is_some (binop.apply op v1 v2)

-- #####################################
-- ### VERIFICATION RELATION (VCGEN) ###
-- #####################################

reserve infix ⊢̀̀ :10

-- verification of expressions

179



inductive exp.vcgen : prop → exp → propctx → Prop
notation P ⊢̀̀ e `:` Q : 10 := exp.vcgen P e Q

| tru {P: prop} {x: var} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.true ⊢ e : Q) →

(P ⊢ lett x = true in e : propctx.exis x (x ≡ value.true ∧ Q))

| fals {P: prop} {x: var} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.false ⊢ e : Q) →

(P ⊢ letf x = false in e : propctx.exis x (x ≡ value.false ∧ Q))

| num {P: prop} {x: var} {n: ℕ} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.num n ⊢ e : Q) →

(P ⊢ letn x = n in e : propctx.exis x (x ≡ value.num n ∧ Q))

| func {P: prop} {f x: var} {R S: spec} {e1 e2: exp} {Q1 Q2: propctx}:
f ∉ FV P →

x ∉ FV P →

f ≠ x →

x ∈ FV R.to_prop.to_vc →

FV R.to_prop ⊆ FV P ∪ { f, x } →

FV S.to_prop ⊆ FV P ∪ { f, x } →

(P ∧ spec.func f x R S ∧ R ⊢ e1 : Q1) →

(P ∧ prop.func f x R (Q1 (term.app f x) ∧ S) ⊢ e2 : Q2) →

⦉ prop.implies (P ∧ spec.func f x R S ∧ R ∧ Q1 (term.app f x)) S ⦊ →
(P ⊢ letf f[x] req R ens S {e1} in e2 :

propctx.exis f (prop.func f x R (Q1 (term.app f x) ∧ S) ∧ Q2))

| unop {P: prop} {op: unop} {e: exp} {x y: var} {Q: propctx}:
x ∈ FV P →

y ∉ FV P →

(P ∧ y ≡ term.unop op x ⊢ e : Q) →

⦉ prop.implies P (prop.pre1 op x) ⦊ →
(P ⊢ letop y = op [x] in e : propctx.exis y (y ≡ term.unop op x ∧ Q))

180



| binop {P: prop} {op: binop} {e: exp} {x y z: var} {Q: propctx}:
x ∈ FV P →

y ∈ FV P →

z ∉ FV P →

(P ∧ z ≡ term.binop op x y ⊢ e : Q) →

⦉ prop.implies P (prop.pre2 op x y) ⦊ →
(P ⊢ letop2 z = op [x, y] in e : propctx.exis z (z ≡ term.binop op x y ∧ Q))

| app {P: prop} {e: exp} {y f x: var} {Q: propctx}:
f ∈ FV P →

x ∈ FV P →

y ∉ FV P →

(P ∧ prop.call x ∧ prop.post f x ∧ y ≡ term.app f x ⊢ e : Q) →

⦉ prop.implies (P ∧ prop.call x) (term.unop unop.isFunc f ∧ prop.pre f x) ⦊ →
(P ⊢ letapp y = f [x] in e :

propctx.exis y (prop.call x ∧ prop.post f x ∧ y ≡ term.app f x ∧ Q))

| ite {P: prop} {e1 e2: exp} {x: var} {Q1 Q2: propctx}:
x ∈ FV P →

(P ∧ x ⊢ e1 : Q1) →

(P ∧ prop.not x ⊢ e2 : Q2) →

⦉ prop.implies P (term.unop unop.isBool x) ⦊ →
(P ⊢ exp.ite x e1 e2 : propctx.implies x Q1 ∧ propctx.implies (prop.not x) Q2)

| return {P: prop} {x: var}:
x ∈ FV P →

(P ⊢ exp.return x : x ≣ ∘)

notation P ⊢̀̀ e `:` Q : 10 := exp.vcgen P e Q

-- verification of environments/translation into logic
inductive env.vcgen : env → prop → Prop
notation ⊢̀̀ 𝜎 `:` Q : 10 := env.vcgen 𝜎 Q

| empty:
⊢ env.empty : value.true

181



| tru {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊢ 𝜎 : Q) →

(⊢ (𝜎[x↦ value.true]) : Q ∧ x ≡ value.true)

| fls {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊢ 𝜎 : Q) →

(⊢ (𝜎[x↦ value.false]) : Q ∧ x ≡ value.false)

| num {n: ℤ} {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊢ 𝜎 : Q) →

(⊢ (𝜎[x↦ value.num n]) : Q ∧ x ≡ value.num n)

| func {𝜎1 𝜎2: env} {f g x: var} {R S: spec} {e: exp} {Q1 Q2: prop} {Q3: propctx}:
f ∉ 𝜎1 →

g ∉ 𝜎2 →

x ∉ 𝜎2 →

g ≠ x →

(⊢ 𝜎1 : Q1) →

(⊢ 𝜎2 : Q2) →

x ∈ FV R.to_prop.to_vc →

FV R.to_prop ⊆ FV Q2 ∪ { g, x } →

FV S.to_prop ⊆ FV Q2 ∪ { g, x } →

(Q2 ∧ spec.func g x R S ∧ R ⊢ e : Q3) →

⦉ prop.implies (Q2 ∧ spec.func g x R S ∧ R ∧ Q3 (term.app g x)) S ⦊ →
(⊢ (𝜎1[f↦ value.func g x R S e 𝜎2]) :

(Q1
∧ f ≡ value.func g x R S e 𝜎2
∧ prop.subst_env (𝜎2[g↦ value.func g x R S e 𝜎2])

(prop.func g x R (Q3 (term.app g x) ∧ S))))

notation ⊢̀̀ 𝜎 `:` Q : 10 := env.vcgen 𝜎 Q

-- ###############################
-- ### VERIFICATION WITHOUT QI ###
-- ###############################

182



-- verification conditions without quantifier instantiation algorithm

notation `{|` P `|}`: 100 := ∀ (𝜎: env), closed_subst 𝜎 P → 𝜎 ⊨ P.to_vc

reserve infix `⊩`:10

-- verification of expressions
inductive exp.dvcgen : prop → exp → propctx → Prop
notation P `⊩` e `:` Q : 10 := exp.dvcgen P e Q

| tru {P: prop} {x: var} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.true ⊩ e : Q) →

(P ⊩ lett x = true in e : propctx.exis x (x ≡ value.true ∧ Q))

| fals {P: prop} {x: var} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.false ⊩ e : Q) →

(P ⊩ letf x = false in e : propctx.exis x (x ≡ value.false ∧ Q))

| num {P: prop} {x: var} {n: ℕ} {e: exp} {Q: propctx}:
x ∉ FV P →

(P ∧ x ≡ value.num n ⊩ e : Q) →

(P ⊩ letn x = n in e : propctx.exis x (x ≡ value.num n ∧ Q))

| func {P: prop} {f x: var} {R S: spec} {e1 e2: exp} {Q1 Q2: propctx}:
f ∉ FV P →

x ∉ FV P →

f ≠ x →

x ∈ FV R.to_prop.to_vc →

FV R.to_prop ⊆ FV P ∪ { f, x } →

FV S.to_prop ⊆ FV P ∪ { f, x } →

(P ∧ spec.func f x R S ∧ R ⊩ e1 : Q1) →

(P ∧ prop.func f x R (Q1 (term.app f x) ∧ S) ⊩ e2 : Q2) →

{| prop.implies (P ∧ spec.func f x R S ∧ R ∧ Q1 (term.app f x)) S |} →
(P ⊩ letf f[x] req R ens S {e1} in e2 :

propctx.exis f (prop.func f x R (Q1 (term.app f x) ∧ S) ∧ Q2))

183



| unop {P: prop} {op: unop} {e: exp} {x y: var} {Q: propctx}:
x ∈ FV P →

y ∉ FV P →

(P ∧ y ≡ term.unop op x ⊩ e : Q) →

{| prop.implies P (prop.pre1 op x) |} →
(P ⊩ letop y = op [x] in e : propctx.exis y (y ≡ term.unop op x ∧ Q))

| binop {P: prop} {op: binop} {e: exp} {x y z: var} {Q: propctx}:
x ∈ FV P →

y ∈ FV P →

z ∉ FV P →

(P ∧ z ≡ term.binop op x y ⊩ e : Q) →

{| prop.implies P (prop.pre2 op x y) |} →
(P ⊩ letop2 z = op [x, y] in e : propctx.exis z (z ≡ term.binop op x y ∧ Q))

| app {P: prop} {e: exp} {y f x: var} {Q: propctx}:
f ∈ FV P →

x ∈ FV P →

y ∉ FV P →

(P ∧ prop.call x ∧ prop.post f x ∧ y ≡ term.app f x ⊩ e : Q) →

{| prop.implies (P ∧ prop.call x) (term.unop unop.isFunc f ∧ prop.pre f x) |} →
(P ⊩ letapp y = f [x] in e :

propctx.exis y (prop.call x ∧ prop.post f x ∧ y ≡ term.app f x ∧ Q))

| ite {P: prop} {e1 e2: exp} {x: var} {Q1 Q2: propctx}:
x ∈ FV P →

(P ∧ x ⊩ e1 : Q1) →

(P ∧ prop.not x ⊩ e2 : Q2) →

{| prop.implies P (term.unop unop.isBool x) |} →
(P ⊩ exp.ite x e1 e2 : propctx.implies x Q1 ∧ propctx.implies (prop.not x) Q2)

| return {P: prop} {x: var}:
x ∈ FV P →

(P ⊩ exp.return x : x ≣ ∘)

notation P `⊩` e `:` Q : 10 := exp.dvcgen P e Q

-- verification of environments/translation into logic

184



inductive env.dvcgen : env → prop → Prop
notation `⊩` 𝜎 `:` Q : 10 := env.dvcgen 𝜎 Q

| empty:
⊩ env.empty : value.true

| tru {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊩ 𝜎 : Q) →

(⊩ (𝜎[x↦ value.true]) : Q ∧ x ≡ value.true)

| fls {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊩ 𝜎 : Q) →

(⊩ (𝜎[x↦ value.false]) : Q ∧ x ≡ value.false)

| num {n: ℤ} {𝜎: env} {x: var} {Q: prop}:
x ∉ 𝜎 →

(⊩ 𝜎 : Q) →

(⊩ (𝜎[x↦ value.num n]) : Q ∧ x ≡ value.num n)

| func {𝜎1 𝜎2: env} {f g x: var} {R S: spec} {e: exp} {Q1 Q2: prop} {Q3: propctx}:
f ∉ 𝜎1 →

g ∉ 𝜎2 →

x ∉ 𝜎2 →

g ≠ x →

(⊩ 𝜎1 : Q1) →

(⊩ 𝜎2 : Q2) →

x ∈ FV R.to_prop.to_vc →

FV R.to_prop ⊆ FV Q2 ∪ { g, x } →

FV S.to_prop ⊆ FV Q2 ∪ { g, x } →

(Q2 ∧ spec.func g x R S ∧ R ⊩ e : Q3) →

{| prop.implies (Q2 ∧ spec.func g x R S ∧ R ∧ Q3 (term.app g x)) S |} →
(⊩ (𝜎1[f↦ value.func g x R S e 𝜎2]) :

(Q1
∧ f ≡ value.func g x R S e 𝜎2
∧ prop.subst_env (𝜎2[g↦ value.func g x R S e 𝜎2])

(prop.func g x R (Q3 (term.app g x) ∧ S))))

185



notation `⊩` 𝜎 `:` Q : 10 := env.dvcgen 𝜎 Q

-- #################################################################
-- ### AXIOMS ABOUT FUNCTION EXPRESSIONS, PRE and POSTCONDITIONS ###
-- #################################################################

-- The following equality axiom is non-standard and makes validity undecidable.
-- It is only used in the preservation proof of e-return and in no other lemmas.
-- The logic treats `f(x)` uninterpreted, so there is no way to derive it naturally.
-- However, given a complete evaluation derivation of a function call, we can
-- add the equality `f(x)=y` as new axiom for closed values f, x, y and the
-- resulting set of axioms is still sound due to deterministic evaluation.
axiom valid.app {vx v: value} {𝜎 𝜎': env} {f x y: var} {R S: spec} {e: exp}:
(𝜎[f↦ value.func f x R S e 𝜎][x↦ vx], e)⟶* (𝜎', exp.return y) →

(𝜎' y = some v)
→

⊨ v ≡ term.app (value.func f x R S e 𝜎) vx

-- can write pre and post to extract pre- and postcondition of function values

axiom valid.pre {vx: value} {𝜎: env} {f x: var} {R S: spec} {e: exp}:
(𝜎[f↦ value.func f x R S e 𝜎][x↦ vx] ⊨ R.to_prop.to_vc)
↔
⊨ vc.pre (value.func f x R S e 𝜎) vx

axiom valid.post.mp {vx: value} {𝜎: env} {Q: prop} {Q2: propctx}
{f x: var} {R S: spec} {e: exp}:

(⊩ 𝜎 : Q) →

(Q ∧ spec.func f x R S ∧ R ⊩ e : Q2) →

(𝜎[f↦ value.func f x R S e 𝜎][x↦ vx] ⊨ (Q2 (term.app f x) ∧ S.to_prop).to_vc)
→

(⊨ vc.post (value.func f x R S e 𝜎) vx)

186



axiom valid.post.mpr {vx: value} {𝜎: env} {Q: prop} {Q2: propctx}
{f x: var} {R S: spec} {e: exp}:

(⊩ 𝜎 : Q) →

(Q ∧ spec.func f x R S ∧ R ⊩ e : Q2) →

(⊨ vc.post (value.func f x R S e 𝜎) vx)
→

(𝜎[f↦ value.func f x R S e 𝜎][x↦ vx] ⊨ (Q2 (term.app f x) ∧ S.to_prop).to_vc)

A.4 theorems.lean

This file includes the soundness theorem for quantifier instantiation and the soundness

theorem for the verification rules.

import .definitions2 .qi .soundness

-- This theorem states that any proposition `P` that is valid
-- with instantiations `⦉ P ⦊` is also a valid proposition
-- without quantifier instantiation `{| P |}`:
theorem vc_valid_without_instantiations (P: prop):
⦉ P ⦊ → {| P |}
:= @vc_valid_from_inst_valid P -- actual proof in qi.lean

-- This theorem states that a verified source program `e` does not get stuck,
-- i.e. its evaluation always results either in a value or
-- in a runtime stack `s` that can be further evaluated.
-- The proof internally uses lemmas for progress and preservation.
theorem verification_safety (e: exp) (s: stack) (Q: propctx):
(value.true ⊢ e: Q) → ((env.empty, e)⟶* s) → (is_value s ∨ ∃s', s⟶s')
:= @soundness_source_programs e s Q -- actual proof in soundness.lean

187



Appendix B

User Study Tutorial and Experiments

This appendix lists all tutorial steps and programming tasks that were part of the user

study. Instructions, code and hints were displayed as a series of online web pages with

a live web-based programming environment. An archived version of the user study in-

cluding tutorial and programming tasks is available online at

https://esverify.org/userstudy-archived.

B.1 Tutorial 1: JavaScript Live Editing

Edit and run a simple JavaScript program

Instructions

This user study involves interactions with a programming environment. The source code

can be edited directly and the program can be executed in the browser. Test the editor

by fixing the JavaScript program such that it computes the correct area of a rectangle.

188

https://esverify.org/userstudy-archived


Provided Code

// This is a live demo, simply edit the code and click run

const height = 3;
const width = 4;
const area_of_rect = height * height;

// should print '12', but prints '9' instead
alert(area_of_rect)

Steps and Hints

1. Click the run button to see the result of the computation.

2. Change the source code to compute the correct area of a rectangle.

3. Click the run button again to test the code.

B.2 Tutorial 2: Program Verification With Pre- and Postcondi-

tions

Verify the given annotated max function and fix potential issues.

Instructions

esverify extends JavaScript with special syntax to annotate functions with pre- and

postconditions. These are written as pseudo function calls that are skipped during eval-

uation. The following example includes an incorrect max function that should be fixed

such that it returns the maximum of its arguments and verification succeeds.

189



Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {

requires(typeof(a) === 'number');
requires(typeof(b) === 'number');
ensures(res => res >= a);
ensures(res => res >= b);// postcondition does not hold

if (a >= b) {
return a;

} else {
return a; // <- due to a bug in the implementation

}
}

Steps and Hints

1. Click the verify button to verify all assertions in the code.

2. The second postcondition does not hold due to a bug in the implementation.

3. Change the source code to return the correct maximum of a and b.

4. Click the verify button again to ensure that the new code verifies.

B.3 Tutorial 3: Interactive Verification Condition Inspector

Inspect a verification issue to understand and interactively explore assumptions and as-

sertions.

Instructions

190



The following example includes a max function with missing preconditions. To better

understand the problem, the esverify programming environment provides an interac-

tive inspector for verification conditions that explains assumptions, assertions and coun-

terexamples if available. This inspector also allows interactively adding assumptions and

assertions.

Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {

ensures(res => res >= a);
ensures(res => res >= b);

if (a >= b) {
return a;

} else {
return b;

}
}

Steps and Hints

1. Click the verify button to verify all assertions in the code.

2. Click on the yellow triangle in front of line 3 to select the verification condition.

3. The panel on the right lists assumptions and assertions and the editor shows values

for the counterexample as popup markers.

4. According to the editor popups, the postcondition does not hold if the arguments

are not numbers. Check this hypothesis by entering typeof a === 'number' next

to ’Assume:’ and confirm this with by pressing the enter/return key.

191



5. Also add the assumption typeof b === 'number'.

6. With these assumptions, the postcondition can be verified.

B.4 Tutorial 4: Verification and Debugger Integration

Query the counterexample and step through the code.

Instructions

For each unverified verification condition, the counterexample values can be used to

execute the code with an interactive debugger. The debugger shows variables in scope,

the current call stack and allows step-by-step debugging. Additionally, the debugger can

be queried with watch expressions.

Provided Code

// returns the maximum of the two provided numbers
function max(a, b) {

requires(typeof(a) === 'number');
requires(typeof(b) === 'number');
ensures(res => res >= a);
ensures(res => res >= b);

if (a > b) {
return a;

}
if (b > a) {

return b;
}

}

Steps and Hints

192



1. Click the verify button to verify all assertions in the code.

2. Click on the first incorrect verification condition in line 5.

3. The verification inspector in the panel on the right lists watch expressions, variables

in scope and the call stack.

4. In this case, the counterexample uses 0 for both a and b.

5. To query the return value, enter res next to ’Watch:’.

6. It seems the function returns undefined.

7. To see the control flow, step through the code by clicking Restart and then clicking

Step Into about eight times.

8. It seems none of the two if statements returned a value when stepping through

the code with this counterexample.

B.5 Experiment 1: Factorial

Instructions

This first experiment involves an incorrect factorial function. This example can either

be fixed by adding a stronger precondition or by changing the if statement. You can

use the verification inspector and the integrated counterexample debugger. Click ‘Next’

if you fixed the example or if you want to move to the next experiment.

193



Provided Code

// returns the factorial of the provided argument
function factorial(n) {

requires(Number.isInteger(n));
ensures(res => res >= 1);

if (n === 0) {
return 1;

} else {
return factorial(n - 1) * n;

}
}

Steps and Hints

No steps or hints.

B.6 Experiment 2: Dice Rolls

Instructions

This experiment involves an function for rolling a six-sided dice. A correct implementa-

tion is given and the following assertions should be verifiable but the postconditions are

missing. The verification inspector is not available. Click ’Next’ if you fixed the example

or if you want to move to the next experiment.

194



Provided Code

// Roll a six-sided dice
function rollDice () {
// missing annotations
// ensures(res => ...);

return Math.trunc(Math.random() * 6) + 1;
}

const r = rollDice() + rollDice() + rollDice();
assert(r >= 3);
assert(r <= 18);

Steps and Hints

1. Add missing postconditions with ensures(res => ...); in order to verify the as-

sertions.

2. You can verify code but there is no verification inspector.

3. Click ’Next’ if you fixed the example or if you want to move to the next experiment.

B.7 Experiment 3: Digital 24 Hour Clock

Instructions

This is the third and final experiment of this user study. Given the number of minutes

since midnight, you should return time in a 24-hour digital clock format. You need

to add an additional precondition and change the returned value. (Hint: Math.trunc

rounds a number down to an integer.) You can use the verification inspector and the

195



editor counterexample popups. Click ’Next’ if you fixed the example or if you want to

finish the experiments.

Provided Code

// Given the number of minutes since midnight,
// returns the current hour and minute as object
// in a { h: 0-23, m: 0-59 } format
function clock_24 (min) {

requires(Number.isInteger(min) && 0 <= min);

ensures(res => res instanceof Object &&
'h' in res && 'm' in res);

ensures(res => Number.isInteger(res.h) &&
0 <= res.h && res.h < 24);

ensures(res => Number.isInteger(res.m) &&
0 <= res.m && res.m < 60);

return {
h: min / 60,
m: min % 60

};
}

Steps and Hints

1. You need to add an additional precondition and change the returned value. (Hint:

Math.trunc rounds a number down to an integer.)

2. You can use the verification inspector and the editor counterexample popups.

3. Click ’Next’ if you fixed the example or if you want to finish the experiments.

196



Appendix C

User Study Survey Answers

This appendix lists all survey answers by participants in the user study. Test subjects were

given a series of online tutorials and programming tasks as listed in Appendix B, and then

filled out an online survey. For features of the programming environment, participants

could either select a given response or type their own answer.

Participant 1

JavaScript experience: 5/5 Program verification experience: No

Verification Inspector Did not use it It impairs the development
process

Counterexample Popups Unsuccessfully tried using it It could be helpful with dif-
ferent UI

Integrated Debugger Unsuccessfully tried using it The feature is helpful

Comments:

197



Participant 2

JavaScript experience: 5/5 Program verification experience: Yes

Verification Inspector Used this feature in experi-
ments

The feature is helpful

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Comments: I liked clicking on particular postconditions and being able to see counterex-
amples and add preconditions in the “scratch pad” area.

Participant 3

JavaScript experience: 4/5 Program verification experience: Yes

Verification Inspector Used this feature in experi-
ments

The feature is helpful

Counterexample Popups Did not use it It could be helpful with dif-
ferent UI

Integrated Debugger Did not use it It could be helpful with dif-
ferent UI

Comments: JS is most useful on front end development. But how do you make assump-
tions/assertions for those UI/Networking related things?

Participant 4

JavaScript experience: 3/5 Program verification experience: Yes

Verification Inspector Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Counterexample Popups Did not use it It could be helpful with dif-
ferent UI

Integrated Debugger Did not use it The feature is helpful

Comments: For a while I couldn’t even tell that the debugging window was there. Per-
haps have it always visible but only populated when something is selected.

198



Participant 5

JavaScript experience: 2/5 Program verification experience: Yes

Verification Inspector I tried to but was not success-
ful.

It impairs the development
process

Counterexample Popups Unsuccessfully tried using it It could be helpful with dif-
ferent UI

Integrated Debugger Used this feature in experi-
ments

The feature is helpful

Comments: I’ve never worked with assume or ensure before, and your modal text felt
very jargon-y to me.

Participant 6

JavaScript experience: 5/5 Program verification experience: Yes

Verification Inspector I tried to but was not success-
ful.

The feature is helpful

Counterexample Popups Did not use it It is not useful for develop-
ment

Integrated Debugger Did not use it For more complex examples,
but I can’t judge the develop-
ment experience as I did not
use it.

Comments: I broke the interface when I tried to enter an assumption.

Participant 7

JavaScript experience: 5/5 Program verification experience: No

Verification Inspector I tried to but was not success-
ful.

It could be helpful with dif-
ferent UI

Counterexample Popups Unsuccessfully tried using it It could be helpful with dif-
ferent UI

Integrated Debugger Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Comments: Keep up the good work!

199



Participant 8

JavaScript experience: 3/5 Program verification experience: Yes

Verification Inspector I tried to but was not success-
ful.

It could be helpful with dif-
ferent UI

Counterexample Popups Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Integrated Debugger Unsuccessfully tried using it It could be helpful with dif-
ferent UI

Comments: The tutorial window often covered parts of the interface that I was required
to interact with and there was no way to dismiss it which made it challenging to use
the interface particularly in the example using the debugger. Entering assumptions in
the right panel does not seem to add them or update the code in the editor which was
confusing and makes the interface not seem very useful if they need to be entered in two
separate places.

Participant 9

JavaScript experience: 5/5 Program verification experience: Yes

Verification Inspector Did not use it The feature is helpful
Counterexample Popups Used this feature in experi-

ments
The feature is helpful

Integrated Debugger Did not use it The feature is helpful

Comments: counterexample of 1499 for min was super helpful!!

200



Participant 10

JavaScript experience: 1/5 Program verification experience: Yes

Verification Inspector I entered the ones from the
tutorial as suggested

Yes, but it also calls for more
logical foundation in intro-
ductory classes.

Counterexample Popups I would have liked a cheat
sheet for the parts that were
not a tutorial. Maybe I’m a
little tired and can’t figure
this out right now. Getting
the answer like in the Tu-
torial would give me some-
thing to chew on.

The feature is helpful

Integrated Debugger Used this feature in experi-
ments

The feature is helpful

Comments: What I want to know as a lay person is will there be some AI auto-pilot who
not only can tell me something is wrong, as this does, but pretty much gives me the right
answer every time. That’s what I want, a glorified spellchecker.

Participant 11

JavaScript experience: 2/5 Program verification experience: No

Verification Inspector Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Did not use it It could be helpful with dif-
ferent UI

Comments: I didn’t like the font in the UI. For instance the difference between ==
and === wasn’t immediately obvious. For someone who doesn’t program in JavaScript
much this made the tutorial more difficult to follow. But overall it’s an interesting pro-
totype and interactive development of assertions along with hints from assertion editor
seems like a useful tool for learning how assertions work and adding them in the code.

201



Participant 12

JavaScript experience: 5/5 Program verification experience: Yes

Verification Inspector Did not use it It could be helpful with dif-
ferent UI

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Did not use it It could be helpful with dif-
ferent UI

Comments: I had some UI difficulty with the specific implementation of adding assump-
tions (e.g. having to add them in multiple places) and another with the interface for the
debugger being very narrow and requiring scrolling to see the whole thing. I did find
this tool very compelling, although the hints to some extent obviated the need for the
tool. It is very difficult to evaluate stuff like this.

Participant 13

JavaScript experience: 4/5 Program verification experience: No

Verification Inspector Did not use it The feature is helpful
Counterexample Popups Unsuccessfully tried using it It could be helpful with dif-

ferent UI
Integrated Debugger Did not use it It could be helpful with dif-

ferent UI

Comments:

Participant 14

JavaScript experience: 4/5 Program verification experience: Yes

Verification Inspector Did not use it It could be helpful with dif-
ferent UI

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Unsuccessfully tried using it The feature is helpful

Comments:

202



Participant 15

JavaScript experience: 4/5 Program verification experience: No

Verification Inspector I think I did on one of them
but don’t remember.

It is not useful for develop-
ment

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Did not use it The feature is helpful

Comments: The counterexamples would be the most helpful contribution of this project
to my own programming practice. It makes it easier and quicker to comprehensively test
a function and catch edge cases, because I don’t have to come up with the test values or
edge cases myself. And it feels better to me to code pre and post conditions explicitly,
rather than write them in comments and reference comments or other documentation
whenever I use the function in a sort of new way. I would want to write requires() and
ensures() statements in my own Javascript programs.

Participant 16

JavaScript experience: 3/5 Program verification experience: No

Verification Inspector Unsuccessfully tried using it It could be helpful with dif-
ferent UI

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Comments:

203



Participant 17

JavaScript experience: 4/5 Program verification experience: No

Verification Inspector They weren’t visible clearly
since the instructions/help
panel was covering it

The feature is helpful

Counterexample Popups Used this feature in experi-
ments

The feature is helpful

Integrated Debugger Did not use it It impairs the development
process

Comments: Great tool!

Participant 18

JavaScript experience: 4/5 Program verification experience: No

Verification Inspector Used this feature in experi-
ments

It could be helpful with dif-
ferent UI

Counterexample Popups Unsuccessfully tried using it The feature is helpful
Integrated Debugger Unsuccessfully tried using it The feature is helpful

Comments:

204



Bibliography

[1] Umut A. Acar. “Self-adjusting Computation: (an Overview)”. In: Proceedings of
the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion. PEPM ’09. Savannah, GA, USA: ACM, 2009, pp. 1–6. isbn: 978-1-60558-
327-3. doi: 10.1145/1480945.1480946.

[2] Amal Ahmed et al. “Blame for All”. In: POPL ’11. 2011.

[3] Rajeev Alur et al. “Syntax-guided synthesis”. In: Dependable Software Systems
Engineering (2015).

[4] Esben Andreasen and Anders Møller. “Determinacy in Static Analysis for jQuery”.
In: OOPSLA ’14. 2014.

[5] Ryoya Arai, Shigeyuki Sato, andHideya Iwasaki. “A Debugger-Cooperative Higher-
Order Contract System in Python”. In: Programming Languages and Systems.
2016.

[6] Stephan Arlt et al. “The Gradual Verifier”. In: NASA Formal Methods. 2014. isbn:
978-3-319-06200-6.

[7] Clark Barrett and Sergey Berezin. “CVC Lite: A New Implementation of the Co-
operating Validity Checker”. In: CAV’04. 2004.

[8] Clark Barrett et al. “CVC4”. In: CAV’11. 2011.

[9] Samuel Baxter et al. “Putting in All the Stops: Execution Control for JavaScript”.
In: PLDI’18.

[10] Bernhard Beckert, Sarah Grebing, and Alexander Weigl. “Debugging Program
Verification Proof Scripts (Tool Paper)”. In: CoRR (2018).

[11] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
oriented Software: The KeY Approach. 2007.

[12] Gavin Bierman, Martin Abadi, andMads Torgersen. “Understanding TypeScript”.
In: ECOOP 2014 – Object-Oriented Programming. Ed. by Richard Jones. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 257–281.

[13] Elisa Gonzalez Boix et al. “Object-oriented Reactive Programming is Not Reactive
Object-oriented Programming”. In: REM’13 (2013).

205

http://dx.doi.org/10.1145/1480945.1480946


[14] Sebastian Burckhardt et al. “It’s Alive! Continuous Feedback in UI Programming”.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013,
pp. 95–104. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2462170.

[15] Miguel Campusano, Alexandre Bergel, and Johan Fabry. “Does Live Program-
ming Help Program Comprehension?” In: (2016).

[16] Adam Chlipala. “Ur/Web: A Simple Model for Programming the Web”. In: Pro-
ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’15. Mumbai, India: ACM, 2015, pp. 153–165.
isbn: 978-1-4503-3300-9. doi: 10.1145/2676726.2677004.

[17] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. “SMTInterpol: An Interpo-
lating SMT Solver”. In: SPIN’12. Oxford, UK, 2012.

[18] M. Christakis, P. Müller, and V. Wüstholz. “Guiding Dynamic Symbolic Execution
toward Unverified Program Executions”. In: ICSE’16. 2016.

[19] Maria Christakis, PeterMüller, and ValentinWüstholz. “Collaborative Verification
and Testing with Explicit Assumptions”. In: FM’12. 2012.

[20] Maria Christakis et al. “Integrated Environment for Diagnosing Verification Er-
rors”. In: TACAS’16. 2016.

[21] Ravi Chugh, David Herman, and Ranjit Jhala. “Dependent Types for JavaScript”.
In: OOPSLA ’12. 2012.

[22] Ravi Chugh et al. “Programmatic and Direct Manipulation, Together at Last”. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’16. Santa Barbara, CA, June 2016.

[23] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: SIGPLAN Not. 46.4 (May 2011), pp. 53–64.

[24] Simon Cruanes and Jasmin Blanchette. “Extending Nunchaku to Dependent Type
Theory”. In: Hammers for Type Theories (HaTT 2016). Vol. 210. 2016, pp. 3–12.

[25] Evan Czaplicki and Stephen Chong. “Asynchronous Functional Reactive Program-
ming for GUIs”. In: Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’13. Seattle, Washington, USA:
ACM, 2013, pp. 411–422. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.
2462161.

[26] Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. “Just Test What You
Cannot Verify!” In: Fundamental Approaches to Software Engineering. 2015.

[27] Claire Dross et al. “Adding decision procedures to SMT solvers using axioms with
triggers”. In: Journal of Automated Reasoning (2016).

[28] ECMA-262. ECMAScript 2017 Language Specification. 6 / 2017. 2017.

206

http://dx.doi.org/10.1145/2491956.2462170
http://dx.doi.org/10.1145/2676726.2677004
http://dx.doi.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/2491956.2462161


[29] Jonathan Edwards. “Subtext: Uncovering the Simplicity of Programming”. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications. OOPSLA ’05. San Diego, CA,
USA: ACM, 2005, pp. 505–518. isbn: 1-59593-031-0. doi: 10.1145/1094811.
1094851.

[30] M.D. Ernst et al. “Dynamically discovering likely program invariants to support
program evolution”. In: Software Engineering, IEEE Transactions on 27.2 (Feb.
2001), pp. 99–123. issn: 0098-5589. doi: 10.1109/32.908957.

[31] R. S. Fabry. “How to Design a System in Which Modules Can Be Changed on the
Fly”. In: Proceedings of the 2Nd International Conference on Software Engineering.
ICSE ’76. San Francisco, California, USA: IEEE Computer Society Press, 1976,
pp. 470–476.

[32] Cormac Flanagan et al. “Extended Static Checking for Java”. In: PLDI’02. 2002.

[33] Cormac Flanagan et al. “The Essence of Compiling with Continuations”. In: PLDI
’93. 1993.

[34] José Fragoso Santos et al. “JaVerT: JavaScript verification toolchain”. In: POPL’18
(2018).

[35] Carlo Alberto Furia and Bertrand Meyer. “Inferring Loop Invariants Using Post-
conditions”. In: Fields of Logic and Computation. 2010.

[36] Joel Galenson et al. “CodeHint: Dynamic and Interactive Synthesis of Code Snip-
pets”. In: ICSE 2014. 2014.

[37] X. Ge et al. “DyTa: dynamic symbolic execution guided with static verification
results”. In: ICSE’11. 2011.

[38] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified For-
mulas in Satisfiabiliby Modulo Theories”. In: CAV’09. 2009.

[39] Bashar Gharaibeh, Hridesh Rajan, and J. Morris Chang. “Analyzing Software Up-
dates: Should You Build a Dynamic Updating Infrastructure?” In: Fundamental
Approaches to Software Engineering (FASE). Saarbrücken, Germany, Apr. 2011.

[40] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implemen-
tation. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1983.
isbn: 0-201-11371-6.

[41] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-output
Examples”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’11. Austin, Texas, USA: ACM,
2011, pp. 317–330. isbn: 978-1-4503-0490-0.

[42] Philip J. Guo. “Online Python Tutor: Embeddable Web-based Program Visualiza-
tion for Cs Education”. In: Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. SIGCSE ’13. Denver, Colorado, USA: ACM, 2013,
pp. 579–584.

207

http://dx.doi.org/10.1145/1094811.1094851
http://dx.doi.org/10.1145/1094811.1094851
http://dx.doi.org/10.1109/32.908957


[43] Christopher Michael Hancock. “Real-time Programming and the Big Ideas of
Computational Literacy”. AAI0805688. PhD thesis. Cambridge, MA, USA, 2003.

[44] Phillip Heidegger and Peter Thiemann. “Contract-Driven Testing of JavaScript
Code”. In: Objects, Models, Components, Patterns. 2010.

[45] Johannes Henkel and Amer Diwan. “Discovering Algebraic Specifications from
Java Classes”. English. In: ECOOP 2003 – Object-Oriented Programming. Ed. by
Luca Cardelli. Vol. 2743. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 431–456. isbn: 978-3-540-40531-3. doi: 10.1007/978-
3-540-45070-2_19.

[46] Martin Hentschel, Richard Bubel, and Reiner Hähnle. “The Symbolic Execution
Debugger (SED): a platform for interactive symbolic execution, debugging, ver-
ification and more”. In: International Journal on Software Tools for Technology
Transfer (2018).

[47] Michael Hicks, Jonathan T. Moore, and Scott Nettles. “Dynamic Software Updat-
ing”. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Lan-
guage Design and Implementation. PLDI ’01. Snowbird, Utah, USA: ACM, 2001,
pp. 13–23. isbn: 1-58113-414-2.

[48] Robert Hirschfeld et al. “Dynamic Contract Layers”. In: SAC ’10. 2010.

[49] Stefan Huster et al. “Using Robustness Testing to Handle Incomplete Verifica-
tion Results When Combining Verification and Testing Techniques”. In: Testing
Software and Systems. 2017.

[50] R Jiménez-Peris et al. “Towards Truly Educational Programming Environments”.
In: Computer science education in the 21st century. Springer, 2000, pp. 81–111.

[51] David H. Jonassen et al. Learning to Solve Problems with Technology: A Construc-
tivist Perspective (2nd Edition). Prentice Hall, Aug. 2002. isbn: 0130484032.
url: http://www.worldcat.org/isbn/0130484032.

[52] Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter. “An Evalua-
tion of Reactive Programming and Promises for Structuring Collaborative Web
Applications”. In: Proceedings of the 7th Workshop on Dynamic Languages and
Applications. ACM. New York, NY, USA: ACM, 2013. isbn: 978-1-4503-2041-2.
doi: 10.1145/2489798.2489802.

[53] Matthias Keil and Peter Thiemann. “Blame Assignment for Higher-order Con-
tracts with Intersection and Union”. In: ICFP’15. 2015.

[54] Caitlin Kelleher and Randy Pausch. “Lowering the Barriers to Programming: A
Taxonomy of Programming Environments and Languages for Novice Program-
mers”. In: ACM Comput. Surv. 37.2 (June 2005), pp. 83–137. issn: 0360-0300.
doi: 10.1145/1089733.1089734. url: http://doi.acm.org/10.1145/1089733.
1089734.

[55] Casey Klein, Matthew Flatt, and Robert Bruce Findler. “Random Testing for
Higher-order, Stateful Programs”. In: OOPSLA ’10. 2010.

208

http://dx.doi.org/10.1007/978-3-540-45070-2_19
http://dx.doi.org/10.1007/978-3-540-45070-2_19
http://www.worldcat.org/isbn/0130484032
http://dx.doi.org/10.1145/2489798.2489802
http://dx.doi.org/10.1145/1089733.1089734
http://doi.acm.org/10.1145/1089733.1089734
http://doi.acm.org/10.1145/1089733.1089734


[56] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”. In: Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09.
Big Sky, Montana, USA: ACM, 2009, pp. 207–220. isbn: 978-1-60558-752-3.
doi: 10.1145/1629575.1629596. url: http://doi.acm.org/10.1145/1629575.
1629596.

[57] Kenneth Knowles and Cormac Flanagan. “Hybrid Type Checking”. In: TOPLAS
(2010).

[58] GE Kransner and S Pope. “Cookbook for using the Model-View-Controller User
Interface paradigm”. In: Object Oriented Programming (1988), pp. 26–49.

[59] Claire Le Goues, K. RustanM. Leino, andMichał Moskal. “The Boogie Verification
Debugger (Tool Paper)”. In: Software Engineering and Formal Methods. Ed. by
Gilles Barthe, Alberto Pardo, and Gerardo Schneider. 2011.

[60] K. Rustan M. Leino. “Accessible Software Verification with Dafny”. In: IEEE Soft-
ware (2017).

[61] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Cor-
rectness”. In: LPAR’10. 2010.

[62] K. Rustan M. Leino. “Developing Verified Programs with Dafny”. In: ICSE’13.
2013.

[63] K. Rustan M. Leino. “Extended Static Checking: A Ten-Year Perspective”. In: In-
formatics - 10 Years Back. 10 Years Ahead. 2001.

[64] K. Rustan M. Leino and Clément Pit-Claudel. “Trigger selection strategies to sta-
bilize program verifiers”. In: CAV’16. 2016.

[65] K. Rustan M. Leino and Valentin Wüstholz. “The Dafny Integrated Development
Environment”. In: Workshop on Formal Integrated Development Environment, F-
IDE 2014. 2014.

[66] Remo Lemma and Michele Lanza. “Co-evolution As the Key for Live Program-
ming”. In: Proceedings of the 1st International Workshop on Live Programming.
LIVE ’13. San Francisco, California: IEEE Press, 2013, pp. 9–10. isbn: 978-1-
4673-6265-8.

[67] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Communication of
the ACM 52.7 (July 2009), pp. 107–115.

[68] Bil Lewis andMireille Ducasse. “Using events to debug Java programs backwards
in time”. In: Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. OOPSLA ’03. Ana-
heim, CA, USA: ACM, 2003, pp. 96–97. isbn: 1-58113-751-6.

[69] Tom Lieber, Joel R. Brandt, and Rob C. Miller. “Addressing Misconceptions About
Code with Always-on Programming Visualizations”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’14. Toronto, Ontario,
Canada: ACM, 2014, pp. 2481–2490. isbn: 978-1-4503-2473-1. doi: 10.1145/
2556288.2557409.

209

http://dx.doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/2556288.2557409
http://dx.doi.org/10.1145/2556288.2557409


[70] Henry Lieberman. Your wish is my command: Programming by example. Morgan
Kaufmann, 2001.

[71] Henry Lieberman and Christopher Fry. “Bridging the Gulf Between Code and Be-
havior in Programming”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’95. Denver, Colorado, USA: ACM Press/Addison-
Wesley Publishing Co., 1995, pp. 480–486. isbn: 0-201-84705-1. doi: 10.1145/
223904.223969.

[72] B. Liskov and L. Shrira. “Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems”. In: PLDI ’88. 1988.

[73] John H. Maloney and Randall B. Smith. “Directness and Liveness in the Morphic
User Interface Construction Environment”. In: Proceedings of the 8th Annual ACM
Symposium on User Interface and Software Technology. UIST ’95. Pittsburgh, Penn-
sylvania, USA: ACM, 1995, pp. 21–28. isbn: 0-89791-709-X.

[74] Sean McDirmid. “Living It Up with a Live Programming Language”. In: Proceed-
ings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications. OOPSLA ’07. Montreal, Quebec, Canada: ACM,
2007, pp. 623–638. isbn: 978-1-59593-786-5.

[75] Sean McDirmid. “Usable Live Programming”. In: Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software. Onward! 2013. Indianapolis, Indiana, USA: ACM, 2013,
pp. 53–62. isbn: 978-1-4503-2472-4.

[76] Sean McDirmid and Jonathan Edwards. “Programming with Managed Time”.
In: Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. Onward! 2014. Portland,
Oregon, USA: ACM, 2014, pp. 1–10. isbn: 978-1-4503-3210-1.

[77] Leonardo deMoura andNikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: TACAS’08.
2008.

[78] Leonardo de Moura et al. “The Lean Theorem Prover (System Description)”. In:
Automated Deduction - CADE-25. Ed. by Amy P. Felty and Aart Middeldorp. 2015,
pp. 378–388.

[79] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision Pro-
cedures”. In: TOPLAS (1979).

[80] Hoang Duong Thien Nguyen et al. “SemFix: Program Repair via Semantic Analy-
sis”. In: Proceedings of the 2013 International Conference on Software Engineering.
ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013, pp. 772–781. isbn: 978-1-
4673-3076-3.

[81] Phuc C. Nguyen and David Van Horn. “Relatively Complete Counterexamples for
Higher-order Programs”. In: PLDI ’15. 2015.

[82] Phuc C. Nguyen et al. “Soft Contract Verification for Higher-order Stateful Pro-
grams”. In: POPL’17 (2017).

210

http://dx.doi.org/10.1145/223904.223969
http://dx.doi.org/10.1145/223904.223969


[83] Jens Nicolay et al. “Detecting Function Purity in JavaScript”. In: Source Code
Analysis and Manipulation (SCAM), 2015 IEEE 15th International Working Con-
ference on. SCAM ’15. Bremen, DE, Sept. 2015.

[84] Oscar Marius Nierstrasz et al. “Deep Into Pharo: Versioning Your Code with Mon-
ticello”. In: (2013).

[85] Donald A Norman. Cognitive engineering. 1986.

[86] Seymour Papert.Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc., 1980.

[87] Changhee Park and Sukyoung Ryu. “Scalable and Precise Static Analysis of JavaScript
Applications via Loop-Sensitivity”. In: ECOOP’15. 2015.

[88] Patrick Rein et al. “Exploratory and Live, Programming and Coding: A Literature
Study Comparing Perspectives on Liveness”. In: The Art, Science, and Engineering
of Programming 3 (2018).

[89] Bob Reynders, Dominique Devriese, and Frank Piessens. “Multi-tier Functional
Reactive Programming for the Web”. In: Onward! 2014. ACM, Oct. 2014, pp. 55–
68.

[90] Andrew Reynolds et al. “Quantifier Instantiation Techniques for Finite Model
Finding in SMT”. In: CADE’13. 2013.

[91] Jay W Roberts. Beyond Learning by Doing: Theoretical Currents in Experiential
Education. ERIC, 2011.

[92] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. “REScala: Bridging Between
Object-oriented and Functional Style in Reactive Applications”. In: Proceedings
of the 13th International Conference on Modularity. MODULARITY ’14. Lugano,
Switzerland: ACM, 2014, pp. 25–36. isbn: 978-1-4503-2772-5. doi: 10.1145/
2577080.2577083.

[93] Erik Sandewall. “Programming in an Interactive Environment: The “Lisp” Expe-
rience”. In: ACM Comput. Surv. 10.1 (Mar. 1978), pp. 35–71. issn: 0360-0300.
doi: 10.1145/356715.356719.

[94] Christopher Schuster, Tim Disney, and Cormac Flanagan. “Macrofication: Refac-
toring by Reverse Macro Expansion”. In: Programming Languages and Systems:
25th European Symposium on Programming. ESOP 2016. Eindhoven, NL, Apr.
2016. url: http://dx.doi.org/10.1007/978-3-662-49498-1_25.

[95] Christopher Schuster and Cormac Flanagan. “A Light-Weight Effect System for
JavaScript”. In: Proceedings of the 2015 Scripts to Programs Workshop. STOP ’15.
Prague, CZ, July 2015.

[96] Christopher Schuster and Cormac Flanagan. “Reactive Programming with Re-
active Variables”. In: Constrained and Reactive Objects Workshop, MODULARITY
Companion 2016. CROW 2016. Malaga, Spain, Mar. 2016. url: http://doi.
acm.org/10.1145/2892664.2892666.

211

http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1145/356715.356719
http://dx.doi.org/10.1007/978-3-662-49498-1_25
http://doi.acm.org/10.1145/2892664.2892666
http://doi.acm.org/10.1145/2892664.2892666


[97] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. “Dynamic Witnesses for Static
Type Errors (or, Ill-typed Programs Usually Go Wrong)”. In: ICFP’16. 2016.

[98] Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshkenani. “A sur-
vey of dynamic software updating”. In: Journal of Software: Evolution and Process
25.5 (2013), pp. 535–568. issn: 2047-7481. doi: 10.1002/smr.1556.

[99] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing En-
gine for C”. In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ESEC/FSE-13. Lisbon, Portugal: ACM, 2005, pp. 263–272.
isbn: 1-59593-014-0. doi: 10.1145/1081706.1081750.

[100] Damien Sereni and Neil D. Jones. “Termination Analysis of Higher-order Func-
tional Programs”. In: APLAS’05. 2005.

[101] B. Shneiderman. “DirectManipulation: A Step Beyond Programming Languages”.
In: Computer 16.8 (Aug. 1983), pp. 57–69. issn: 0018-9162.

[102] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”. In:
Workshop on Scheme and Functional Programming. 2006.

[103] Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit Dynamic Frames: Combin-
ing Dynamic Frames and Separation Logic”. In: ECOOP 2009. 2009.

[104] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. “From Program Verifi-
cation to Program Synthesis”. In: POPL ’10: Proceedings of the 37th ACM SIGACT-
SIGPLAN conference on Principles of Programming Languages. 2010.

[105] Andre Staltz. Unidirectional User Interface Architectures. http://staltz.com/
unidirectional-user-interface-architectures.html. Blog. 2015.

[106] Ofer Strichman and Rachel Tzoref-Brill, eds. Haifa Verification Conference, HVC
2017. 2017.

[107] A. J. Summers and P.Müller. “Automating Deductive Verification forWeak-Memory
Programs”. In: TACAS’2018. 2018.

[108] Suresh Thummalapenta et al. “SynthesizingMethod Sequences for High-coverage
Testing”. In: OOPSLA ’11. 2011.

[109] Nikolai Tillmann and Jonathan de Halleux. “Pex–White Box Test Generation for
.NET”. In: TAP’08. 2008.

[110] Nikolai Tillmann andWolfram Schulte. “Parameterized Unit Tests”. In: ESEC/FSE-
13. 2005.

[111] Emina Torlak and Rastislav Bodik. “Growing Solver-aided Languages with Rosette”.
In: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. Onward! 2013. Indi-
anapolis, Indiana, USA: ACM, 2013, pp. 135–152. isbn: 978-1-4503-2472-4.

212

http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1145/1081706.1081750
http://staltz.com/unidirectional-user-interface-architectures.html
http://staltz.com/unidirectional-user-interface-architectures.html


[112] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. “JIT Feedback—what
Experienced Developers like about Static Analysis”. In: International Conference
on Program Comprehension (2018).

[113] Tom Van Cutsem and Mark S. Miller. “Proxies: Design Principles for Robust
Object-oriented Intercession APIs”. In: Proceedings of the 6th Symposium on Dy-
namic Languages. DLS ’10. Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 59–72.
isbn: 978-1-4503-0405-4.

[114] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. “A tale of two provers:
verifying monoidal string matching in liquid Haskell and Coq”. In: 2017.

[115] Niki Vazou et al. “Refinement Reflection: Complete Verification with SMT”. In:
POPL’18. 2018.

[116] Niki Vazou et al. “Refinement Types for Haskell”. In: ICFP’14. 2014.

[117] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Refinement Types for
TypeScript”. In: Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’16. Santa Barbara, CA, USA:
ACM, 2016, pp. 310–325.

[118] Xiaoyin Wang et al. “Automating Presentation Changes in Dynamic Web Appli-
cations via Collaborative Hybrid Analysis”. In: Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. FSE
’12. Cary, North Carolina: ACM, 2012, 16:1–16:11. isbn: 978-1-4503-1614-9.

[119] XinyuWang, Isil Dillig, and Rishabh Singh. “Program Synthesis Using Abstraction
Refinement”. In: POPL’18 (2018).

[120] Greta Yorsh, Thomas Ball, and Mooly Sagiv. “Testing, Abstraction, Theorem Prov-
ing: Better Together!” In: ISSTA ’06. 2006.

213




	List of Figures
	List of Tables
	List of Listings
	Abstract
	Acknowledgments
	Introduction
	Live Programming
	Program Verification
	Research Goal and Method
	Outline and Contributions

	Live Programming Environments for JavaScript
	Introduction
	Separating Rendering from Event Handling
	Traditional/Imperative GUI Programming
	Model-View-Update Pattern
	User Interactions in MVU Applications

	Live Programming Environment Integration
	Code Updates
	Navigating Execution History and Code Versions
	Enforcing MVU Pattern
	Formalism
	Implementation

	Live Programming by Example
	Live Code Updates based on Output Examples
	Formal Definition

	Live Programming by Direct Manipulation of the Output
	Example Interaction

	Discussion and Future Work
	Live Programming for MVU applications
	Live Programming by Example


	Program Verification for JavaScript
	Overview
	ESVERIFY
	Annotating JavaScript with Assertions
	max: A Simple Example
	Stateful Programs and Loop Invariants
	Higher-order Functions
	Arrays and Objects
	Dynamic Programming Idioms

	Implementation
	Evaluation
	Reversing an Ascending List
	MergeSort Algorithm
	Custom Generic List Class
	Theorems and Proofs written in JavaScript

	Future Work and Conclusions

	Formal Development of Program Verification with λS
	Overview
	Logical Foundation
	Quantifier Instantiation Algorithm and Decision Procedure
	Syntax and Semantics of λS
	Program Verification
	Soundness
	Extensions
	Imperative Programs
	Recursive Data types and Classes

	Comparison with Refinement Types

	Automatic Test Generation with Counterexamples
	Overview
	Verification Errors and Assertion Violations
	Dynamic Checking of Assertions
	Higher-order Functions
	Contract Checking

	Synthesis of Counterexample Values
	Generating Counterexample Function Calls
	Conclusion and Future Work

	Integrated Development and Verification Environments
	Overview
	Environment Integration
	Basic Line Markers
	Verification Condition Inspector
	Counterexample Popups
	Debugger Integration

	Evaluation and User Study
	Research Questions
	Methodology
	Results
	Threats to Validity

	Future Work and Conclusions

	Related Work
	Live Programming
	Program Verification
	Automatic Test Generation
	Integrated Verification Tools

	Conclusions
	Discussion of Research Method
	Summary of Results
	Future Work

	Formal Definitions and Theorems in Lean
	syntax.lean
	definitions1.lean
	definitions2.lean
	theorems.lean

	User Study Tutorial and Experiments
	Tutorial 1: JavaScript Live Editing
	Tutorial 2: Program Verification With Pre- and Postconditions
	Tutorial 3: Interactive Verification Condition Inspector
	Tutorial 4: Verification and Debugger Integration
	Experiment 1: Factorial
	Experiment 2: Dice Rolls
	Experiment 3: Digital 24 Hour Clock

	User Study Survey Answers
	Bibliography



