# UC Davis UC Davis Previously Published Works

# Title

California's Historic Legacy For Landscape Change, the Wieslander Vegetation Type Maps

Permalink https://escholarship.org/uc/item/6x7675tc

**Journal** Madroño, 63(4)

# ISSN

0024-9637

# Authors

Thorne, James H Le, Thuy N'goc

**Publication Date** 

2016-10-01

# DOI

10.3120/0024-9637-63.4.293

Peer reviewed

# CALIFORNIA'S HISTORIC LEGACY FOR LANDSCAPE CHANGE, THE WIESLANDER VEGETATION TYPE MAPS

# JAMES H. THORNE<sup>1</sup> AND THUY N'GOC LE Department of Environmental Science and Policy, University of California, Davis, CA <sup>1</sup>jhthorne@ucdavis.edu

# ABSTRACT

This paper presents the digitized edition of the Wieslander Vegetation Type Maps (VTMs). The VTMs were part of the first statewide systematic survey of California's vegetation, conducted 1928-1939. Under the direction of Albert Wieslander, crews recorded the patterns of vegetation that they observed from vantage points across the state. The survey covers 176,901 km<sup>2</sup> including border and lake polygons and 165,652 km<sup>2</sup> of landscapes that we describe in more detail. There are 251,541 polygons in the full extent of the maps, with 249,630 in the analysis extent. These polygons are annotated with codes indicating the dominant plant species, for which voucher specimens were collected. The maps contain 655 species codes, representing 535 species or sub-species in 229 genera, including 34 Arctostaphylos Adans. and 16 Quercus L. species. The 249,630 polygons contain 26,013 unique combinations of species and levels of disturbance. These can be classified into 525 vegetation alliances or provisional alliances using the 2009 edition of the Manual of California Vegetation, or into 53 of the simpler California Wildlife Habitat Relationships (WHR) classes. The most extensive WHR types in the VTMs are Annual grasslands (25,733 km<sup>2</sup>) Chamise-redshank chaparral (14,771 km<sup>2</sup>), Mixed chaparral (9314 km<sup>2</sup>), and Coastal Scrub (7088 km<sup>2</sup>). California's Southwestern ecoregion is the most completely surveyed, with 93% of the area mapped, followed by the Central Western ecoregion (88.2%, including the Bay Area), the Sierra Nevada (71.6%), and the Great Valley (39.7%). The VTMs in these ecoregions provide a baseline for assessment of landcover change across large areas, and are an important legacy of the biogeographic patterns of plants and vegetation in California. This paper provides the methods used to digitize the collection and suggestions about how the data may be properly used in future studies.

Key Words: biogeography, ecology, historical landscape monitoring, VTMs, Wieslander Vegetation Type Maps.

The Wieslander Vegetation Type Map (VTM) Project was an effort to inventory the forests and natural lands of California. Lands were surveyed by United States Forest Service (USFS) crews under the direction of Albert Wieslander between 1928 and 1939. It has been considered among the finest vegetation maps ever made in the western hemisphere, and foundational for the subsequent development of other landcover mapping efforts such as the Soil Vegetation Survey (Küchler 1967). In addition to the vegetation maps,  $\sim 18,000$  vegetation plots were surveyed, over 3000 photographs taken, and over 25,000 VTM voucher specimens were collected (Wieslander 1935a, 1935b, 1935c, 1986). Additional maps were produced showing the location of the plots and photographs. This remarkable vegetation survey eventually ended due to funding restrictions during World War Two. The entire collection of reference materials was housed at the University of California, Berkeley, where parts of it were nearly thrown away on two occasions, but survived and in the last decade photographs, maps, and original vegetation plot cards have been registered into the collections of the UC Bancroft Library (2008). The VTM herbarium voucher specimens are housed at the UC Berkeley Jepson Herbarium (JEPS). Systematic efforts to digitize the collection began around 2002 and have produced a database of the plot data with online access (http://vtm.berkeley. edu/), and also online access to scanned versions of the photographs (http://www.lib.berkeley.edu/BIOS/ vtm/) (Kelly et al. 2005; Kelly et al. 2008). Digital production of the vegetation maps is the subject of this paper.

As anticipated by Wieslander (1935a), the Vegetation Type Map Project materials have formed the basis for many studies and publications, particularly the plot data, for which we provide a separate list of publications (Appendix 1). There are several references pointing to the intent to use plot and map data together for landscape assessments (Weeks et al. 1934, 1943; Wieslander and Jensen 1946; Wieslander 1986). The VTM vegetation maps were used in early assessments of regional conditions which include a general assessment for Eldorado County (Weeks et al. 1934) and a land use study across the entire northern Sierra Nevada, which includes a map of forest fire perimeters (Weeks et al. 1943). Elevational transect maps of California dominant trees and vegetation were developed (Critchfield 1971) and statewide maps of California's tree ranges (Griffin and Critchfield 1972) and shrubs (Sampson and Jespersen 1963) have been published. Regional studies that used the VTMs include a landcover change study (Bradbury 1974) and grassland dynamics (Freudenberger et al. 1987). Scans of the VTMs

were used as base data for the first edition of California's Gap Analysis Program vegetation maps (Davis et al. 1995, Davis et al. 1998). Efforts to digitize the VTMs (Kelly et al. 2005; Thorne et al. 2006) have resulted in the digital GIS versions of the VTMs becoming available. These have been used in a few local or regional landscape studies to date, including landscape change and conservation studies in the Bay Area (Thorne et al. 2013; Santos et al. 2014). The maps have also been used in studies on the dynamics of small Sierra Nevadan mammals (Santos et al. 2015), of forest change in the Sierra Nevada (Thorne et al. 2008) and for an educational movie about Sierra Nevada forest dynamics (Thorne and McQuinn 2012).

Albert Wieslander organized the field survey crews, many of whose names are found on VTM quadrangles throughout the duration of the survey. These crews were responsible for all the data collected, and they compiled each data type at the same time. The crews followed detailed protocols for all parts of the survey, which was established by 1933, and that are provided in the field manual (Wieslander et al. 1933, Wieslander et al. unpublished [1933] a, Wieslander et al. unpublished [1933] b). For the field creation of the vegetation maps, these include establishing view points on ridges, and tracing the patterns of the observed vegetation onto topographic maps. Up to nine dominant species were then recorded by species codes, written in the polygons where they were observed. At the start of this work, aerial photography was not yet developed, and was not used during this study, although in most instances the surveyors were looking down on, or laterally across a valley to, the vegetation they were mapping. Sixteen of the vegetation map quadrangles were published by the USFS, a beautiful series of maps with heavily annotated margins. Few collections of this series have survived. These published VTM quadrangles are of reduced detail relative to the original survey maps because of the limited space available in paper maps. The entire vegetation map collection has never been digitized.

The survey methods used to develop the vegetation maps were applied to large areas of the state, and were also used by the National Park Service (NPS), which produced maps for Lassen, Yosemite and Sequoia national parks, as an independent but coordinated effort to the USFS surveys. Areas outside the national parks were mapped by the USFS crews and were intended for use by natural resource managers, who would use the colors on the maps to identify different vegetation types for both timber and fire planning, and by researchers, who would use the more detailed species-specific information contained in each polygon for forestry, ecology, and landscape dynamics studies (Wieslander 1935a).

This paper presents the fully digitized VTM vegetation maps, a snapshot of California's vegetation in the 1930's. We describe the methods used to render the original maps to a geographic information system, report on the characteristics of the GIS product, and describe the extent and types of species and vegetation that were recorded. We identify the number of species reported, and the extent of landcover types according to the California Wildlife Habitat Relationship classification (WHR; Mayer & Laudenslayer 1988; California Department of Fish and Wildlife 2004), and the Manual of California Vegetation classification (MCV; Sawyer and Keeler Wolf 1995, Sawyer et al. 2009). We report the registration errors for each quadrangle, and provide a discussion of the types of analyses the maps have been used for, and their potential to inform future research and resource management.

#### METHODS

#### Scanning

The original VTMs were drawn on U.S. Geological Survey (USGS) topographic maps and in some cases U.S. Army Corps of Engineers maps, here termed base maps. Some of the base maps were originally surveyed as part of the coastal geodetic survey of the late 1800's (earliest topographic base maps surveyed in 1893). At the beginning of the VTM effort, only 30' quadrangles were available, and these make up the majority of the VTM extent surveyed. However, 15' quadrangles were used when those became available to the VTM crews, particularly in the San Francisco Bay Area and south along California' central coast. Additionally, some 7.5' quadrangles were used late in the survey effort. In all cases, when survey work on a quadrangle was completed, it was cut into sections, or 'tiles' (16 tiles for 30' quadrangles and four tiles for 15 and 7.5' tiles), and glued to a canvas backing to prevent loss of map data when the maps were folded (and they are stored folded). Reassembly of these maps was therefore the primary task of transitioning the patterns of species and vegetation to digital form. Most of these quadrangles were found in the collection at UC Berkeley. Thanks for recovery for some southern California quadrangle are due to the USFS office in Redlands; and to Michael Zinke, whose father, UC Berkeley professor Paul Zinke, helped survey some of the maps and who held some of them in his home; and to Sequoia, Yosemite and Lassen National Parks for allowing the maps in their collections to be scanned and added to the overall effort to digitize the collection.

We scanned the VTM vegetation map tiles individually, using a flatbed scanner at 300 dpi resolution. The tiles are arrayed four to each piece of canvas, meaning that the 30' quadrangles have four canvases per quad. The canvas was folded, and one or two tiles were scanned at each scan. The tiles are assigned a name according to the naming convention of the VTM maps: each quadrangle has a numeric code, and the tiles are numbered in counterclockwise rotational sequence with the upper right hand tiles 2016]

listed as A1, A2, A3, and A4; the upper left tiles as B1, B2, B3, and B4; the lower left quadrant tiles C1, C2, C3, and C4; and the lower right tiles as D1, D2 D3, and D4. This pattern is consistent across all tiles on all 30' maps. The four tiles comprising 15 and 7.5' quadrangle tiles are also numbered in counterclockwise fashion, starting in the northeast corner. The 15' quadrangles codes are numeric followed by upper case letters (e.g., 105A, 105B, 105C, 105D), while 7.5' quadrangles are numeric followed by lower case letters (e.g., 88c, 88d, etc.). The scans are stored in a directory structure that reflects the schema used by the VTM project surveyors, of sequential numbers starting in the northeast corner of the state and running back and forth by each row of 30' quadrangle to the highest number, 192D for the quadrangle covering San Diego (Fig. 1).

The NPS effort covered Lassen, Yosemite and Sequoia National Parks. The Lassen and Sequoia National Park maps were created separately from the USFS VTMs. Protocols for VTM mapping in the national parks (Coffman 1934) mention that the effort was intended to support planning in different land cover types, in particular for fire hazard and protection planning, planning insect and disease control, determination of proper land use and treatment such as for "recreation, camp ground development, wild life, re-forestation, erosion control, etc.", augmenting knowledge concerning the flora and other natural features and providing an inventory as part of the nation-wide inventory survey. A report on the results of the VTM effort in Sequoia National Park (Frost 1935) identifies the effort as, "part of a vegetative-type survey of the State of California under the direction of the California Forest Experiment Station; and as a part of the nation-wide forest survey authorized by the McSweeney-McNary Research Act of 1928". There are two copies of the vegetation maps for Yosemite National Park; the NPS-surveyed copy that resides in that park shows only the area inside the boundaries of the park, while the USFS version is housed at the UC Berkeley Bancroft library and contains continuously mapped vegetation across the park boundary. It is difficult to determine which of these maps the original is; however we digitized the version from the UC Bancroft library, which has slight differences from the version in the Yosemite National Park archives.

#### Map Registration

The base topographic maps have been scanned by various map libraries around the state, particularly the University of California Berkeley Geology Library, University of California Santa Barbara Alexandria Digital Library, and California State University Chico Meriam Library California Historic Topographic Map Collection. These maps have typically been sheet scanned using a standard of 300 dots per inch (dpi) resolution, to produce an image file (.tif) of approximately 200 megabytes. We obtained scans from these institutions, in many cases donated, to use in the digital development of the VTM quadrangles. We georeferenced the base maps using their corners and tic marks.

The base topographic maps use Clarke's spheroid of 1866 datum, and the polyconic projection, which was the standard for the U.S. Geological Survey during this time (U.S. Department of Commerce, Coast and Geodetic Survey 1917; Snyder 1983). The base maps were registered by projecting the degreedecimal geographic coordinates from the base map into a polyconic projection for the continental U.S., and using the central meridian for each individual base map. These polyconic coordinates were then used as control points to rectify the base map image. The registered base map was then used as the reference for registering each individual vegetation tile for that quadrangle.

Using ArcGIS (ESRI 2010), the scanned VTM tiles were registered onto the USGS topographic base maps, resulting in a projected version of the vegetation map, reassembled from the multiple tiles. We used 64 control points on the 16 digital VTM tile images, four per tile for a 30' quadrangle. Additionally, for 15' and 7.5' quadrangles, 16 control points were used on the four digital VTM tiles, four per tile. Control points were first selected based on matching geographic coordinates from the VTM tiles to the basemap. When geographic coordinates were not apparent (either faded or cut off), specific topographic lines with the border or parts of text that occur on both VTM tile and basemap were used. Once the digital topographic base map and VTM tiles were in their native projection, it was possible to digitize vegetation polygon boundaries, assemble polygons, and enter their vegetation attributes into the GIS.

# Digitizing

Automated line digitizing options failed to efficiently record the complex patterns on the VTMs (Fig. 2). The hand-drawn and colored vegetation polygons on the original Wieslander VTM tiles were therefore digitized on-screen to create a digital polygon coverage of the Wieslander vegetation maps. On-screen digitizing was performed by hand-digitizing the polygon boundaries with a pen tablet using the registered VTM tile as the background image. A pen tablet (Wacom Digitizing Tablet; Wacom 2004) allows the user to draw polygon boundaries directly on the screen using a pen or stylus. Lines were digitized at an onscreen scale of no less than 1:6000 so that the precision of digitized lines was high, with <10 m spatial error introduced for line accuracy digitization (Thorne et al. 2006, 2008).

#### Attributing

Once the polygon layer had been created for a quadrangle, the species codes written on the maps



FIG. 1. The 30, 15, and 7.5 minute quadrangles surveyed during the VTM survey. The numbers are the VTM quadrangle ID numbers, while the letters represent the quarter quadrangles, which proceed counterclockwise from the northeast corner of any given quad. Quadrangle IDs are not shown for 7.5' quads.

were assigned to each polygon. There are multiple species codes for most polygons, reflecting the diversity of dominant trees, shrubs, and herbs in that polygon. Strings of species codes written in each polygon consist of up to nine species codes. Single species records mean that species covered at least 80% of the polygon. Two or more species mean that no species covered at least 80% of a polygon. Species

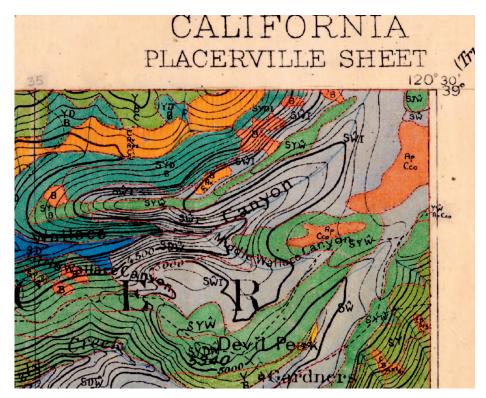



FIG. 2. An example of part of a scanned VTM, quadrangle 56. Lines demarcating different types of vegetation were traced over at a resolution such that the digitized line (shown in red) is less wide than the VTM's polygon boundary. Lines demarcating different types of vegetation were traced over at a resolution such that the digitized line (shown in red) is less wide than the VTM boundary. The polygon colors refer to the vegetation types as the VTM crews defined them; the codes in the polygons refer to the dominant species recorded; and the vertical red lines refer to a recent burn. The complex topographic lines and text on the base map made automated generation of polygon boundaries impractical.

are presented in rank-order dominance, excepting mosaic polygons in which trees and then shrubs, or shrubs and then annuals/perennials are listed (Wieslander 1935a). The species codes were entered in the polygon attribute table in the same order as they appear in the polygon.

Since the attributing process required close inspection of each individual polygon to read the species codes recorded for it, this process also provided an opportunity to double check and correct the line digitizing work. The species codes on the maps were created by the Wieslander project, and are not standard taxonomic codes, and can be cryptic. A list of species and codes is available in the VTM field handbook. We digitized this list, and used it in addition to margin notes on various quadrangles, to develop a lookup table for translating codes to species names and to populate the GIS attribute table with plant species names. We used the first edition Jepson manual (Hickman 1993) as the standard nomenclature, but later provided the additional newly updated Jepson names (Baldwin et al. 2012) as determined through the Jepson Interchange website (http://ucjeps.berkeley.edu/interchange/). Most polygons consist of a single vegetation type.

However there are many cases where the species listed in polygons represent a mosaic of vegetation types within the polygon. Where these could be identified, species comprising the primary dominant type of the polygon were assigned two thirds of a polygon's area, and the secondary types one third (Thorne et al. 2008).

VTM polygons are also colored and in some cases marked with dashed lines that vary in their angle. The colors are the VTM assignment to major vegetation types, and the handbook identifies specific pencil brands and numbers to be used for specific vegetation types. The lines indicate that a polygon is in early seral condition at the time of mapping, due to either fire or logging. The cross hatching and angle was noted in the GIS attribute table. Explanation of the data fields is provided in Appendix 2.

# From Species to Vegetation Types

The species strings from each polygon were used to assign vegetation classifications. We assigned vegetation and habitat types for the Manual of California Vegetation (MCV) classification system (Sawyer and Keeler Wolf 1995), and the California Wildlife Habitat relationships (WHR) Types (Mayer and Laudenslayer 1988; California Department of Fish and Wildlife 2004). We used the colors in the original polygons to help confirm the vegetation type designation derived from our species- and seral condition-based vegetation designations. Polygons with mosaic types were given a primary and secondary MCV and WHR types. Some important and recurring species combinations were classified into provisional vegetation classes and habitat types if they had not yet been classified in the MCV. The second edition of the California MCV (Sawyer et al. 2009) was published during this phase of the work, and the final GIS attributes also provide a crosswalk to this classification.

### Data Vetting

Species strings were checked when assigning MCV/WHR type names, and species found outside their known range were checked to make sure no transcription error had occurred when the codes were originally entered. Species strings were checked a second time in collaboration with a plant ecologist from the USFS, who used distribution and unusual combinations of species as a screen to seek for transcription errors. Major tree species extents were checked spatially with a tree species distribution publication (Griffin and Critchfield 1972), and other species were checked against the Jepson Interchange. Anomalies were corrected where possible, however some codes indicate "true" species occurrences beyond known extents or possible errors that we could not decipher. Accepted anomalies are notated in the comments field for the corresponding polygon in the final GIS products.

# Evaluation of Registration Error

Historical map error was investigated using Root Mean Square Error (RMSE). The RMSE for each quadrangle was determined by georeferencing the VTM base map to a modern map. Modern reference maps used were Digital Raster Grids downloaded from the Cal-Atlas Geospatial Clearinghouse (http:// portal.gis.ca.gov/geoportal). The RMSE in meters between the same locations on each VTM quadrangle and corresponding modern map was calculated by registering control points. These control points were selected from coordinate tick marks, mountain peaks, and some rail and road intersections, if evidence was the roads had not been moved. By choosing the same locations on both maps the spatial accuracy (RMSE) can be determined. The RMSE value indicates how far off any point can be on the base map by comparison to modern topography, and by extension the spatial error of the VTM map.

The RMSE value has been used as the basis for determining the size of grid cells to select to calculate changes on the landscape through comparison with contemporary landcover maps (Thorne et al. 2008). Since the RMSE indicates the spatial accuracy between the historical and contemporary maps, selecting a grid cell size larger than a quadrangle's RMSE assures that the grid cells being compared through time overlap.

### Map Compilation

We finalized two versions of each scanned VTM quadrangle, with and without the margins. The version with the margins cut off can be used to assemble visualizations of the original surveys for large extents of California. The margins in many cases contain considerable notes made by the surveyors, and were therefore retained in the second copy.

We generated the GIS version of the VTMs by quadrangle. Each quadrangle was completed as an original and is associated with the georectified scan of the topographic base map. The quad-by-quad VTMs were then combined, creating a single GIS of the entire survey. As each quadrangle was added to the compiled version, polygons that contained the same species combinations on either side of a quadrangle line were dissolved. In many cases, however, the adjacent species combinations differ, in which case the quadrangle line was retained. Finally, the data vetting exercises described above were conducted a second time on the final GIS layer.

This paper presents the summary information from the compiled digital work, including the number of species, extents of vegetation types, polygon size distribution, and RMSE values. We describe two versions of the GIS. The first includes large polygons on the edges of the survey that may be less well-mapped, and water bodies. The second, used for reporting extents of vegetation types, and information related to the vegetation such as the number of species, excludes the water bodies and large boundary polygons.

#### RESULTS

The VTMs digitized cover 70 30' quadrangles, 86 15' quadrangles, and 31 7.5' quadrangles (Figs. 1, 3). The extent mapped including the border and lake polygons is 176,901.5 km<sup>2</sup>, and excluding them is 165,652 km<sup>2</sup> (Fig. 4), here called the "analysis extent" and used to report areas of landcover types. Of the total, 7541 km<sup>2</sup> including border polygons and 7299 km<sup>2</sup> excluding them occur in Nevada, near Reno, while the remainder are in California. Secondary WHR types in mosaic polygons occupy 2094 km<sup>2</sup> under both map extents.

The total number of polygons surveyed is 251,541 polygons in the full extent and 249,630 in the analysis extent. A good way to determine the resolution of the mapping is to examine the size distribution of the mapped polygons. The polygon size ranges from 0.34 ha to 137,195 ha for the full extent (Table 1) and to 86,933 ha for the analysis extent. The smallest polygon is a wetland also recorded on the USGS base map. For the full extent, the mean polygon size

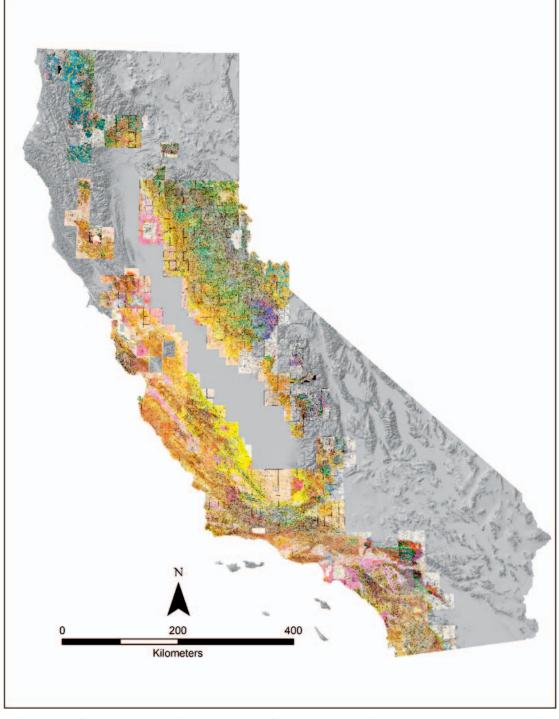



FIG. 3. Scans of the original VTMs showing the extent of the vegetation mapping.

is 70.3  $\pm$  890.9 ha, while the median size is 12.9 ha. The maximum number of polygons is in the 8–16 ha size class, with 48,566. And, 54.5% of all the polygons range in size from 4–32 ha (Table 1). The mean RMSE when registering the VTM topographic base maps to current topographic maps across all quadrangles is 59.7 m, median 48.3 m, and SD 50 m (Appendix 3). Seven quadrangles (five 30',

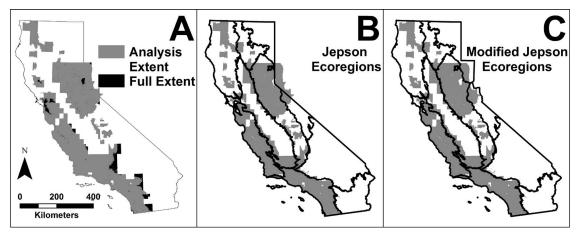



FIG. 4. Figure 4A portrays the extent of the VTM surveys with and excluding large water bodies and polygons on the borders of some surveyed areas. The map excluding border polygons is the one used for reporting extents of vegetation types, here called the "analysis extent". Figure 4B shows the extent of the analyzed maps overlaid on the Jepson (Hickman 1993) ecoregions. Because mapped areas extend beyond some ecoregion boundaries, we report ecoregional vegetation extents using modified ecoregions shown in Figure 4C. The two ecoregions we modified are the Modoc Plateau and East of the Sierra Nevada.

one full 15' and a partially surveyed 15') have RMSE above 150m.

There are 655 codes on the original maps (Appendix 4), representing 535 species or subspecies named in the maps. These represent 229 genera. There are 34 species or subspecies of Arctostaphylos Adans. identified, 12 for Artemisia L., 31 for Ceanothus L., 17 for Eriogonum Michx., 16 for Pinus L., and 16 for Quercus L. Thirty of the genus codes do not include a species name. There are eight codes for human-related landcover such as airport, residence, cultivated, etc., and 12 codes indicate habitat types ranging from rock and glacier, to deserts, marsh and meadow. There are 27 repeating codes but marked with parentheses which indicate the species is present but dead, snags after a burn, or that there is some cultivation or the area will likely be cultivated (specifically for the Cu code). There are 35 codes that refer to species that also have another code. There are seven unidentified codes, and we added a category for polygons with no species listed, termed 'no data'.

There are 26,013 unique combinations of species and cross-hatching codes. These were classed into 525 of vegetation Alliances or Provisional Alliances using the 2009 Manual of California Vegetation classifications (Sawyer et al. 2009), which correspond to 439 Alliances or Provisional Alliances in the 1995 version (Sawyer and Keeler Wolf 1995). The combinations also correspond to 53 California Wildlife Habitat Relationship Classes (Appendix 5; Mayer and Laudenslayer 1988; California Department of Fish and Wildlife 2004).We report historical landcover extents using the WHR classification, because of the lower number of landcover types into which the VTM species codes can be grouped. Those interested in the extents and patterns classed by Alliance should refer to the GIS version of the maps. Across the whole survey, 98.7% of the landcover is in the primary class ( $163,547 \text{ km}^2$ ), and 1.2% is in the secondary ( $2094 \text{ km}^2$ ), indicating mixed vegetation types within those polygons (Table 2). Among the natural vegetation types, the lowest extents mapped

TABLE 1. The polygon size distribution of the mapped extent of the VTM survey.

| Polygon size           | Number           |  |  |  |
|------------------------|------------------|--|--|--|
| distribution           | of polygons      |  |  |  |
| by hectare             | (full VTM        |  |  |  |
| size class             | survey extent)   |  |  |  |
| 0-0.25                 | 147              |  |  |  |
| 0.5                    | 468              |  |  |  |
| 1                      | 2674             |  |  |  |
| 2                      | 11,910           |  |  |  |
| 4                      | 30,356           |  |  |  |
| 8                      | 45,890           |  |  |  |
| 16                     | 48,760           |  |  |  |
| 32                     | 42,584           |  |  |  |
| 64                     | 30,659           |  |  |  |
| 128                    | 18,975           |  |  |  |
| 256                    | 10,158           |  |  |  |
| 512                    | 5016             |  |  |  |
| 1024                   | 2242             |  |  |  |
| 2048                   | 958              |  |  |  |
| 4096                   | 379              |  |  |  |
| 8192                   | 183              |  |  |  |
| 16,384                 | 109              |  |  |  |
| 32,768                 | 45               |  |  |  |
| 65,536                 | 17               |  |  |  |
| >65,536                | 11               |  |  |  |
| Total # of polygons    | 251,541          |  |  |  |
| Average size (ha)      | 70.33            |  |  |  |
| Median size (ha)       | 12.95            |  |  |  |
| Standard deviation     | 890.96           |  |  |  |
| Polygon size range(ha) | 0.034-137,195.80 |  |  |  |

|      |  | 3 |
|------|--|---|
| <br> |  |   |

|      |                            |                               | Total                         |                          |
|------|----------------------------|-------------------------------|-------------------------------|--------------------------|
| WHR  | WHR name                   | Total WHR1 (km <sup>2</sup> ) | Total WHR2 (km <sup>2</sup> ) | Total (km <sup>2</sup> ) |
| ADS  | Alpine Dwarf-Scrub         | 0.11                          | 0                             | 0.11                     |
| AGS  | Annual Grassland           | 24,390                        | 1343                          | 25,733                   |
| ASC  | Alkali Desert Scrub        | 1580                          | 0                             | 1580                     |
| ASP  | Aspen                      | 160                           | 24                            | 184                      |
| BAR  | Barren                     | 2360                          | 1                             | 2361                     |
| BBR  | Bitterbrush                | 399                           | 0                             | 399                      |
| BCDF | Bigcone Douglas-Fir        | 406                           | 15                            | 421                      |
| BOP  | Blue Oak-Foothill Pine     | 5628                          | 0                             | 5628                     |
| BOW  | Blue Oak Woodland          | 5377                          | 0                             | 5377                     |
| COW  | Coastal Oak Woodland       | 3941                          | 0                             | 3941                     |
| CPC  | Closed-Cone Pine-Cypress   | 424                           | 8                             | 432                      |
| CRC  | Chamise-Redshank Chaparral | 14,763                        | 8                             | 14,771                   |
| CRP  | Cropland                   | 22,811                        | 41                            | 22,852                   |
| CSC  | Coastal Scrub              | 7084                          | 4                             | 7088                     |
| DFR  | Douglas Fir                | 4626                          | 0                             | 4626                     |
| DGR  | Dryland Grain Crops        | 1                             | 0                             | 1                        |
| DRI  | Desert Riparian            | 138                           | 0                             | 138                      |
| DSC  | Desert Scrub               | 813                           | 0                             | 813                      |
| DSS  | Desert Succulent Scrub     | 1                             | 0                             | 1                        |
| DSW  | Desert Wash                | 152                           | 0                             | 152                      |
| EOR  | Evergreen Orchard          | 0                             | 0                             | 0                        |
| EPN  | Eastside Pine              | 553                           | 0                             | 553                      |
| EUC  | Eucalyptus                 | 83                            | 0                             | 83                       |
| FEW  | Fresh Emergent Wetland     | 73                            | 0                             | 73                       |
| GLA  | Glacier                    | 1                             | 0                             | 1                        |
| JPN  | Jeffrey Pine               | 4227                          | 0                             | 4227                     |
| JST  | Joshua Tree                | 41                            | 0                             | 41                       |
| JUN  | Juniper                    | 1954                          | 118                           | 2072                     |
| KMC  | Klamath Mixed Conifer      | 2466                          | 0                             | 2466                     |
| LAC  | Lacustrine                 | 5                             | 0                             | 5                        |
| LPN  | Lodgepole Pine             | 1848                          | 0                             | 1848                     |
| LSG  | Low Sage                   | 130                           | 0                             | 130                      |
| MCH  | Mixed Chaparral            | 9313                          | 2                             | 9314                     |
| MCP  | Montane Chaparral          | 3707                          | 2                             | 3709                     |
| MHC  | Montane Hardwood-Conifer   | 440                           | 0                             | 440                      |
| MHW  | Montane Hardwood           | 6573                          | 232                           | 6805                     |
| MRI  | Montane Riparian           | 242                           | 49                            | 290                      |
| PAS  | Pasture                    | 2                             | 0                             | 2                        |
| PGS  | Perennial Grassland        | 715                           | 0                             | 715                      |
| PJN  | Pinyon-Juniper             | 4278                          | 0                             | 4278                     |
| PPN  | Ponderosa Pine             | 6604                          | 0                             | 6605                     |
| RDW  | Redwood                    | 715                           | 12                            | 727                      |
| RFR  | Red Fir                    | 3621                          | 0                             | 3621                     |
| SCN  | Subalpine Conifer          | 1899                          | 0                             | 1899                     |
| SEW  | Saline Emergent Wetland    | 605                           | 0                             | 605                      |
| SGB  | Sagebrush                  | 5631                          | 0                             | 5631                     |
| SMC  | Sierran Mixed Conifer      | 6179                          | 0                             | 6179                     |
| UKW  | Unknown                    | 1684                          | 0                             | 1684                     |
| URB  | Urban                      | 1511                          | 70                            | 1581                     |
| VOW  | Valley Oak Woodland        | 721                           | 29                            | 750                      |
| VRI  | Valley Foothill Riparian   | 536                           | 91                            | 627                      |
| WFR  | White Fir                  | 1213                          | 0                             | 1213                     |
| WTM  | Wet Meadow                 | 926                           | 46                            | 972                      |
|      | Total:                     | 163,547                       | 2094                          | 165,641                  |
|      | Overall Area               | 100,017                       |                               | 424,314.3                |
|      | Percent Area Mapped        |                               |                               | 39.0                     |

TABLE 2. The mapped area of landcover types identified in the VTM survey, using California's Wildlife Habitat Relationships classification and the analysis extent of the VTMs (Fig. 4).

include Alpine dwarf scrub  $(0.1 \text{ km}^2)$ , Desert Succulent Scrub  $(0.9 \text{ km}^2)$ , and Joshua Trees  $(41.01 \text{ km}^2)$ ; while grasslands  $(25,733 \text{ km}^2)$  Chamise-red-shank chaparral  $(14,771 \text{ km}^2)$ , Mixed chaparral

(9314 km<sup>2</sup>), and Coastal Scrub (7088 km<sup>2</sup>) are among the most extensively mapped natural vegetation types (Table 2). Agriculture covers and additional 22,852 km<sup>2</sup>, there was 1581 km<sup>2</sup> of urban, 83  $km^2$  in Eucalyptus, and 1684  $km^2$  of unknown landcover, while only small amounts of the deserts were mapped (Fig. 4, Table 2).

Since the survey covers parts of 10 ecoregions, it is informative to examine landcover by ecoregion, which can provide a sense of the relative proportions of different landcover types within major ecoregions of the state (Table 3A–C). These tables provide the area of WHR landcover types using the analysis extent and the for modified Jepson ecoregions from the 1993 Jepson flora (Fig. 4C, Hickman 1993). The Southwestern ecoregion is the most completely surveyed region, with 93% of the area mapped, followed by the Central Western ecoregion (88.2%) which includes the Bay Area, the Sierra Nevada (71.6%), and the Great Valley (39.7%).

#### DISCUSSION

The Wieslander Vegetation Type Map project was the first attempted systematic survey of the forests and woodlands of California. Encompassing nearly half the state, it represents a tremendous opportunity for assessment of landscape change. The ecoregions with particular promise, because of the extent of surveys within them are the Central Western Coast, Southwestern Coast, the Transverse Ranges, and the Central and Northern Sierra Nevada Mountains. Large areas in the Klamath Mountains and west of Reno, NV were also mapped and could be used for landscape change analyses.

Most of the USFS administrative units in California had been established shortly before the survey, and three were established during the survey. The VTM maps and plot data were used by the USFS to make projections of timber volume and of land condition. Timber volume calculations in tabular form, derived from a 1930's combination of the VTM plot data and maps remain a part of the VTM collection that has not been analyzed, although the data are now digital. Assessments of timber could easily have become the focus of the VTM field effort, and critiques of the VTM plot data are that it is therefore biased in the direction of recording more forested areas and of biasing locations sampled towards relatively bigger trees than surrounding conditions (Bouldin 1999, Keeley 2004). However, the leader of the project, Albert Wieslander, asserts the actual methods used during his 1986 interviews for the Berkeley History project. He reminds us of what the VTM field manual instructs — that the surveyors were to map the existing vegetation, and that each vegetation plot surveyed concurrently with the mapping effort is intended to portray the average condition of the trees and shrubs of the polygon within which it was taken. Regarding the suggested bias towards big trees, both resurveys of VTM plots and comparisons of VTM plot data to contemporary independent plot data, have found declines in large trees (e.g., Lutz et al. 2009; Fellows and Goulden

2008; Dolanc et al. 2013; 2014; McIntyre et al. 2015). However, other historical comparison studies that do not use the VTM plot data (e.g., van Mantgem et al. 2007) have found similar patterns, so it seems difficult to prove that there is a bias in the VTM plot data. There is no way we know of to disprove the suggestions of over-estimation of tree size and oversampling of forest plots relative to forest proportion on the landscape, other than to point out that the head of the program had a different perception of how the data were to be recorded and used, that many of the VTM plot data locations are in chaparral, and that far more research publications have found utility in the VTM plot data (Appendix 1) than have determined it inaccurate (Bouldin 1999, Keeley 2004).

These critiques however, do not relate to the VTM's vegetation maps, which are the subject of this paper. Without doubt these make up one of the most complete and taxonomically extensive field survey efforts ever conducted in California (Colwell 1977). The results include one of the foundational collections of vascular plants for the Jepson Herbarium, which was used to confirm the species mapped, and cartographically exquisite (Figs. 5–9), highly information dense maps that portray large extents of the natural landscapes of California.

#### Approaches to Handling the Spatial Accuracy

We reproduced the VTM maps to their original level of spatial accuracy, and each map has varying levels of topographic fidelity relative to modern terrain maps. Our reasoning was that it was important to get an exact replica of the original VTMs. More intensive transformations of the VTMs to match modern topography are technically feasible, and have been conducted for two areas. Based on more than 14,000 total photo interpreted tiepoints in the Yosemite National Park VTMs (6793 total polygons), Walker (2000) recorded an RMSE in the park VTMs of 242.5 m. The latter could involve a convolution of 1980's-era digitizing errors, plus the original VTM errors. Positional errors were much more pronounced in some areas due to the compounding effects of extreme relief (which caused larger than average base map inaccuracies), and the difficulty of VTM crews in accessing adequate viewing vantage points, which even then often offered only high-oblique angles to look at the ground, such as across canyons. However, Walker's study did not have the benefit of scans of the original maps- he worked with polygons that another, unknown contractor had developed from the hardcopy maps, set upon a digitizing table. We observed similar patterns of higher RMSE in topographically complex regions, but generally found lower RMSE values for the majority of VTM quads after using the scans of the original maps for registration purposes.

In 2008, National Park Service vegetation ecologists at the Santa Monica Mountains National

|              | Case          | cade Rang     | es                                  | Cent          | ral Weste     | ern CA      | East o        | of Sierra I                         | Nevada                              |               | Great Val                           | ley      |
|--------------|---------------|---------------|-------------------------------------|---------------|---------------|-------------|---------------|-------------------------------------|-------------------------------------|---------------|-------------------------------------|----------|
| WHR          | Total<br>WHR1 | Total<br>WHR2 | Total                               | Total<br>WHR1 | Total<br>WHR2 | Total       | Total<br>WHR1 | Total<br>WHR2                       | Total                               | Total<br>WHR1 | Total<br>WHR2                       | Total    |
| ADS          | 0             | 0             | 0                                   | 0             | 0             | 0           | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| AGS          | 163           | 79            | 242                                 | 6904          | 455           | 7359        | 16            | 3                                   | 19                                  | 11,511        | 266                                 | 11,777   |
| ASC          | 0             | 0             | 0                                   | 3             | 0             | 3           | 1             | 0                                   | 1                                   | 1556          | 0                                   | 1556     |
| ASP          | 1             | 0             | 1                                   | 0             | 0             | 0           | 77            | 5                                   | 82                                  | 0             | 0                                   | 0        |
| BAR          | 44            | 0             | 44                                  | 160           | 0             | 160         | 220           | 0                                   | 220                                 | 41            | 0                                   | 41       |
| BBR<br>BCDF  | $4 \\ 0$      | 0<br>0        | 4<br>0                              | 0<br>27       | 0<br>1        | 0<br>27     | 17<br>0       | 0<br>0                              | 17<br>0                             | 11<br>0       | $\begin{array}{c} 0\\ 0\end{array}$ | 11<br>0  |
| BOP          | 558           | 0             | 558                                 | 2088          | 0             | 2088        | 0             | 0                                   | 0                                   | 40            | 0                                   | 40       |
| BOW          | 143           | 0             | 143                                 | 1822          | 0             | 1822        | 0             | 0                                   | 0                                   | 250           | 0                                   | 250      |
| COW          | 0             | Ő             | 0                                   | 2660          | Ő             | 2660        | 0             | Ő                                   | Ő                                   | 4             | 0                                   | 4        |
| CPC          | 6             | 0             | 6                                   | 116           | 1             | 117         | Õ             | 0                                   | 0                                   | 0             | Õ                                   | 0        |
| CRC          | 0             | 0             | 0                                   | 4507          | 1             | 4508        | 0             | 0                                   | 0                                   | 6             | 0                                   | 6        |
| CRP          | 78            | 0             | 78                                  | 6040          | 20            | 6059        | 54            | 15                                  | 69                                  | 7714          | 1                                   | 7715     |
| CSC          | 0             | 0             | 0                                   | 2470          | 0             | 2470        | 0             | 0                                   | 0                                   | 148           | 0                                   | 148      |
| DFR          | 38            | 0             | 38                                  | 65            | 0             | 65          | 0             | 0                                   | 0                                   | 2             | 0                                   | 2        |
| DGR          | 0             | 0             | 0                                   | 0             | 0             | 0           | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| DRI<br>DSC   | 0<br>0        | 0<br>0        | $\begin{array}{c} 0\\ 0\end{array}$ | 0<br>5        | 0<br>0        | 0<br>5      | 0<br>185      | 0<br>0                              | 0<br>185                            | 131<br>177    | $\begin{array}{c} 0\\ 0\end{array}$ | 131      |
| DSC          | 0             | 0             | 0                                   | 0             | 0             | 0           | 185           | 0                                   | 185                                 | 0             | 0                                   | 177<br>0 |
| DSW          | 0             | 0             | 0                                   | 2             | 0             | 2           | 0             | 0                                   | 0                                   | 110           | 0                                   | 110      |
| EOR          | 0             | Ő             | Ő                                   | 0             | Ő             | $\tilde{0}$ | 0             | Ő                                   | Ő                                   | 0             | 0                                   | 0        |
| EPN          | Õ             | 0             | Ő                                   | 0             | 0             | 0           | 50            | 0                                   | 50                                  | Ő             | Õ                                   | Õ        |
| EUC          | 0             | 0             | 0                                   | 53            | 0             | 53          | 0             | 0                                   | 0                                   | 1             | 0                                   | 1        |
| FEW          | 0             | 0             | 0                                   | 28            | 0             | 28          | 0             | 0                                   | 0                                   | 1             | 0                                   | 1        |
| GLA          | 0             | 0             | 0                                   | 0             | 0             | 0           | 1             | 0                                   | 1                                   | 0             | 0                                   | 0        |
| JPN          | 132           | 0             | 132                                 | 13            | 0             | 13          | 56            | 0                                   | 56                                  | 0             | 0                                   | 0        |
| JST          | 0             | 0             | 0                                   | 0             | 0             | 0           | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| JUN<br>KMC   | 0<br>381      | 0<br>0        | 0<br>381                            | 209<br>0      | 65<br>0       | 274<br>0    | 28<br>0       | $\begin{array}{c} 0\\ 0\end{array}$ | 28<br>0                             | 19<br>0       | 5<br>0                              | 24<br>0  |
| LAC          | 0             | 0             | 0                                   | 5             | 0             | 5           | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| LPN          | 64            | 0             | 64                                  | 0             | 0             | 0           | 104           | 0                                   | 104                                 | 0             | 0                                   | 0        |
| LSG          | 0             | 0             | 0                                   | 0             | 0             | 0           | 23            | 0                                   | 23                                  | Ő             | Õ                                   | Õ        |
| MCH          | 691           | 0             | 691                                 | 2233          | 0             | 2233        | 0             | 0                                   | 0                                   | 77            | 0                                   | 77       |
| MCP          | 196           | 0             | 196                                 | 0             | 0             | 0           | 115           | 0                                   | 115                                 | 0             | 0                                   | 0        |
| MHC          | 3             | 0             | 3                                   | 118           | 0             | 118         | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| MHW          | 418           | 1             | 419                                 | 837           | 108           | 945         | 1             | 0                                   | 1                                   | 61            | 13                                  | 74       |
| MRI          | 4             | 2             | 6                                   | 26            | 0             | 27          | 13            | 8                                   | 21                                  | 46            | 1                                   | 46       |
| PAS<br>PGS   | 03            | 0<br>0        | 03                                  | 2<br>562      | 0<br>0        | 2<br>562    | 0             | 0<br>0                              | $\begin{array}{c} 0\\ 0\end{array}$ | 0<br>107      | $\begin{array}{c} 0\\ 0\end{array}$ | 0<br>107 |
| PJN          | 0             | 0             | 0                                   | 10            | 0             | 10          | 1185          | 0                                   | 1185                                | 107           | 0                                   | 107      |
| PPN          | 312           | 0             | 312                                 | 36            | 0             | 36          | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| RDW          | 0             | 0             | 0                                   | 604           | 2             | 606         | Õ             | 0                                   | 0                                   | Ő             | Õ                                   | Õ        |
| RFR          | 182           | 0             | 182                                 | 0             | 0             | 0           | 1             | 0                                   | 1                                   | 0             | 0                                   | 0        |
| SCN          | 64            | 0             | 64                                  | 0             | 0             | 0           | 196           | 0                                   | 196                                 | 0             | 0                                   | 0        |
| SEW          | 0             | 0             | 0                                   | 202           | 0             | 202         | 2             | 0                                   | 2                                   | 365           | 0                                   | 365      |
| SGB          | 0             | 0             | 0                                   | 5             | 0             | 5           | 1840          | 0                                   | 1840                                | 2             | 0                                   | 2        |
| SMC          | 660           | 0             | 660                                 | 13            | 0             | 13          | 0             | 0                                   | 0                                   | 0             | 0                                   | 0        |
| UKW          | 22            | 0             | 22                                  | 252           | 0             | 252         | 21            | 0                                   | 21                                  | 135           | 0                                   | 135      |
| URB<br>VOW   | 1<br>16       | 0<br>0        | 1<br>17                             | 464<br>442    | 4<br>11       | 468<br>454  | 1<br>0        | 0<br>0                              | 1<br>0                              | 43<br>63      | 0<br>7                              | 43<br>70 |
| VOW<br>VRI   | 10            | 0             | 2                                   | 442<br>192    | 11            | 434<br>207  | 0             | 0                                   | 0                                   | 142           | 13                                  | 155      |
| WFR          | 20            | 0             | 20                                  | 0             | 0             | 207         | 5             | 0                                   | 5                                   | 0             | 0                                   | 0        |
| WTM          | 8             | 1             | 9                                   | 36            | 0             | 36          | 158           | 5                                   | 164                                 | 195           | Ő                                   | 195      |
| Total:       | 4213          | 84            | 4298                                | 33,212        | 682           | 33,894      | 4371          | 36                                  | 4407                                | 22,978        | 304                                 | 23,282   |
| Area of Eco  |               |               | 20,754.8                            |               |               | 38,412.6    |               |                                     | 18,925.4                            |               |                                     | 58,630.3 |
| Percent of 1 | Ecoregion     |               |                                     |               |               |             |               |                                     |                                     |               |                                     |          |
| Mapped       |               |               | 20.7                                |               |               | 88.2        |               |                                     | 23.3                                |               |                                     | 39.7     |

TABLE 3A. The extent of WHR types mapped by the VTM survey within modified Jepson Ecoregions using the analysis extent (Fig. 4C). All area values are in km<sup>2</sup>.

TABLE 3B. The extent of WHR types mapped by the VTM survey within modified Jepson Ecoregions using the analysis extent (Fig. 4C). All area values are in  $km^2$ .

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Modoc    | Plateau and I | Nevada   | 1    | Mojave Dese | ert      | No     | orthwestern | CA                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------------|----------|------|-------------|----------|--------|-------------|--------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WHR |          |               | Total    |      |             | Total    |        |             | Total              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADS |          | 0             |          |      | 0           |          | 0      | 0           | 0                  |
| ASP   5   0   5   0   0   0   0   0     BBR   91   0   91   85   0   85   0   0     BCP   0   0   0   0   0   0   0   0   0     BOW   0   0   0   7   7   272   0     BOW   0   0   0   0   0   233   975   1     CRC   0   0   0   0   277   428   0     DFR   0   0   0   0   0   0   0   0     DR   0   0   0   0   0   0   0   0   0   0     DR   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <                                                                                                      |     |          |               |          |      |             |          | 523    |             | 534                |
| BAR   8   0   8   181   0   181   97   0     BCDF   0   0   0   0   0   0   0   0   0     BOW   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                            |     |          |               |          |      |             |          |        |             | 0                  |
| BBR   91   0   91   85   0   85   0   0     BCDF   0   0   0   7   0   7   272   0     BOW   0   0   0   6   0   6   304   0     COW   0   0   0   0   0   233   975   1     CRC   0   0   0   0   0   23   975   1     CRC   0   0   0   0   0   277   428   0     DGR   0   0   0   0   0   0   0   0     DGR   0   0   0   0   0   0   0   0   0   0     DSW   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                  |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 97                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |          |               |          |      |             |          |        |             | 0<br>0             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 272                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 304                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 203                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPC | 0        | 0             | 0        | 0    | 0           | 0        | 259    | 6           | 265                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRC | 0        | 0             | 0        | 23   | 0           | 23       | 975    | 1           | 976                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 429                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 14                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 4218               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0<br>0             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| EOR00000000EPN8000000EUC0001010GLA0000000JPN600600000JST003703700JUN7510751334233500LAC00000000LSG260260000MCH0001500150674MCP5105101506740MHC0000000PSS00011121PAS0000000PPN2020000SCN5000000SEW110110000SGB203902039140140VRI4040072VRF1010000SGB203902039140140VRI4040                                                                                                                                                                                                                                                                                |     |          |               |          |      |             |          |        |             | 0                  |
| EPN80800000EUC00000000GLA00000000GLA00000000JPN600600001220JUN7510751334233500JUN7510751334233500LAC00000000LSG2602600000LSG2602600000MCH0015001506740MCP5105101121PAS00000000PIN5230523139013900PPN202000000SGB203900000000SGB203900000000SGB2039000000000VWW0000000000SGB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>                                                                                                                                                                   |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          | 0             |          | 0    | 0           | 0        | 0      | 0           | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FEW | 0        | 0             | 0        | 1    | 0           | 1        | 0      | 0           | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GLA | 0        | 0             | 0        | 0    | 0           | 0        | 0      | 0           | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JPN |          | 0             |          |      |             |          | 122    | 0           | 122                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| LPN404000180LSG26026000000MCH00015067400MCP510510007980MHC000001240MHW000202160119MRI415101121PAS00000000PGS000139000PN20200011110RFR20200000SCN50500000SGB2039020391401400SMC000000000UKW4104160677100VOW000404442VRI40400000VGW0003600011000000VGW0003600011000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2085</td></td<>                                                                                                                                                                        |     |          |               |          |      |             |          |        |             | 2085               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0<br>18            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 674                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 798                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 124                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MHW | 0        | 0             | 0        | 2    | 0           | 2        | 1601   | 19          | 1620               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MRI | 4        | 1             | 5        | 1    | 0           | 1        | 12     | 1           | 13                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 25                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 0                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 584<br>121         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          |               |          |      |             |          |        |             | 776                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |               |          |      |             |          |        |             | 20                 |
| SGB   2039   0   2039   14   0   14   0   0     SMC   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <                                                                                                      |     |          |               |          |      |             |          |        |             | 20                 |
| SMC 0 0 0 0 0 0 0 0 0   UKW 41 0 41 6 0 6 771 0   URB 16 0 16 1 0 1 9 0   VOW 0 0 0 4 0 4 44 2   VRI 4 0 4 0 0 7 2   WFR 1 0 1 0 0 357 0   WTM 36 0 36 0 0 11 0   Total: 4364 51 4415 1683 11 1694 15,443 54 11   Area of Ecoregion 30,294.9 73,982.8 53 53 53                                                                                                                                                                                                                                                                                           |     |          |               |          |      |             |          |        |             | Ő                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMC |          |               |          |      |             |          |        |             | 0                  |
| VOW   0   0   0   4   0   4   44   2     VRI   4   0   4   0   0   0   7   2     WFR   1   0   1   0   0   357   0     WTM   36   0   36   0   0   11   0     Total:   4364   51   4415   1683   11   1694   15,443   54   13     Area of Ecoregion   30,294.9   73,982.8   53   53   54   54                                                                                                                                                                                                                                                            |     |          |               |          |      |             |          |        |             | 771                |
| VRI   4   0   4   0   0   7   2     WFR   1   0   1   0   0   357   0     WTM   36   0   36   0   0   11   0     Total:   4364   51   4415   1683   11   1694   15,443   54   12     Area of Ecoregion   30,294.9   73,982.8   53   53                                                                                                                                                                                                                                                                                                                   |     |          |               | 16       |      |             |          |        |             | 9                  |
| WFR   1   0   1   0   0   357   0     WTM   36   0   36   0   0   0   11   0     Total:   4364   51   4415   1683   11   1694   15,443   54   11     Area of Ecoregion   30,294.9   73,982.8   53   54   54                                                                                                                                                                                                                                                                                                                                              |     |          |               |          |      |             |          |        |             | 46                 |
| WTM   36   0   36   0   0   11   0     Total:   4364   51   4415   1683   11   1694   15,443   54   13     Area of Ecoregion   30,294.9   73,982.8   53   53                                                                                                                                                                                                                                                                                                                                                                                             |     |          |               |          |      |             |          |        |             | 8                  |
| Total:   4364   51   4415   1683   11   1694   15,443   54   11     Area of Ecoregion   30,294.9   73,982.8   53   53   53   53   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   54   5 |     |          |               |          |      |             |          |        |             | 357                |
| Area of Ecoregion   30,294.9   73,982.8   53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |          |               |          |      |             |          |        |             | 11                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          | 31            |          | 1083 | 11          |          | 15,445 | 54          | 15,497<br>55,937.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |               | 30,294.9 |      |             | 13,702.0 |        |             | 55,957.5           |
| Mapped 14.6 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Loregion |               | 14.6     |      |             | 23       |        |             | 27.7               |

|  | 305 |
|--|-----|
|  |     |

TABLE 3C. The extent of WHR types mapped by the VTM survey within modified Jepson Ecoregions using the analysis extent (Fig. 4C). All area values are in  $km^2$ .

|              | S             | ierra Nevada  | l            | S             | onoran Des    | ert      | Sc            | outhwestern   | CA         |
|--------------|---------------|---------------|--------------|---------------|---------------|----------|---------------|---------------|------------|
| WHR          | Total<br>WHR1 | Total<br>WHR2 | Total        | Total<br>WHR1 | Total<br>WHR2 | Total    | Total<br>WHR1 | Total<br>WHR2 | Total      |
| ADS          | 0             | 0             | 0            | 0             | 0             | 0        | 0             | 0             | 0          |
| AGS          | 2447          | 372           | 2819         | 5             | 0             | 5        | 2244          | 101           | 2345       |
| ASC          | 3             | 0             | 3            | 0             | 0             | 0        | 13            | 0             | 13         |
| ASP          | 77            | 19            | 96           | 0             | 0             | 0        | 0             | 0             | 0          |
| BAR          | 1442          | 0             | 1443         | 4             | 0             | 4        | 164           | 0             | 164        |
| BBR          | 166           | 0             | 166          | 0             | 0             | 0        | 26            | 0             | 26         |
| BCDF<br>BOP  | 0<br>2653     | 0<br>0        | 0<br>2653    | 0<br>0        | 0<br>0        | 0<br>0   | 379<br>10     | 14<br>0       | 393<br>10  |
| BOP          | 2843          | 0             | 2843         | 0             | 0             | 0        | 9             | 0             | 9          |
| COW          | 0             | 0             | 2045         | 0             | 0             | 0        | 1074          | 0             | 1074       |
| CPC          | 26            | 0             | 26           | 0             | 0             | 0        | 18            | 0             | 18         |
| CRC          | 920           | 5             | 925          | 31            | Ő             | 31       | 8302          | Ő             | 8302       |
| CRP          | 884           | 2             | 885          | 1             | 0             | 1        | 7059          | 2             | 7061       |
| CSC          | 21            | 0             | 21           | 60            | 0             | 60       | 4358          | 4             | 4362       |
| DFR          | 303           | 0             | 303          | 0             | 0             | 0        | 0             | 0             | 0          |
| DGR          | 1             | 0             | 1            | 0             | 0             | 0        | 0             | 0             | 0          |
| DRI          | 0             | 0             | 0            | 0             | 0             | 0        | 6             | 0             | 6          |
| DSC          | 32            | 0             | 32           | 13            | 0             | 13       | 180           | 0             | 180        |
| DSS          | 1             | 0             | 1            | 0             | 0             | 0        | 0             | 0             | $0 \\ 40$  |
| DSW<br>EOR   | 0<br>0        | 0<br>0        | 0            | 0<br>0        | 0<br>0        | 0<br>0   | $40 \\ 0$     | 0<br>0        | 40         |
| EPN          | 495           | 0             | 495          | 0             | 0             | 0        | 0             | 0             | 0          |
| EUC          | 495           | 0             | 495          | 0             | 0             | 0        | 28            | 0             | 28         |
| FEW          | 0             | 0             | 0            | 0             | 0             | 0        | 42            | 0             | 42         |
| GLA          | Ő             | Ő             | Ő            | 0             | Ő             | Ő        | 0             | Ő             | 0          |
| JPN          | 3540          | 0             | 3540         | 0             | 0             | 0        | 303           | 0             | 303        |
| JST          | 3             | 0             | 3            | 0             | 0             | 0        | 1             | 0             | 1          |
| JUN          | 247           | 5             | 252          | 35            | 1             | 37       | 332           | 39            | 371        |
| KMC          | 0             | 0             | 0            | 0             | 0             | 0        | 0             | 0             | 0          |
| LAC          | 0             | 0             | 0            | 0             | 0             | 0        | 0             | 0             | 0          |
| LPN          | 1591          | 0             | 1591         | 0             | 0             | 0        | 67            | 0             | 67         |
| LSG          | 82            | 0             | 82           | 0             | 0             | 0        | 0             | 0             | 0          |
| MCH<br>MCP   | 1797<br>2489  | 2<br>2        | 1798<br>2491 | 145<br>0      | 0<br>0        | 145<br>0 | 3545<br>58    | 0<br>0        | 3545<br>58 |
| MHC          | 2469          | 0             | 2491         | 0             | 0             | 0        | 172           | 0             | 172        |
| MHW          | 3042          | 92            | 3134         | 0             | 0             | 0        | 609           | 0             | 609        |
| MRI          | 84            | 37            | 120          | 1             | Ő             | 1        | 50            | Ő             | 50         |
| PAS          | 0             | 0             | 0            | 0             | Õ             | 0        | 0             | 0             | 0          |
| PGS          | 4             | 0             | 4            | 0             | 0             | 0        | 13            | 0             | 13         |
| PJN          | 1305          | 0             | 1305         | 116           | 0             | 116      | 983           | 0             | 983        |
| PPN          | 5016          | 0             | 5016         | 0             | 0             | 0        | 654           | 0             | 654        |
| RDW          | 0             | 0             | 0            | 0             | 0             | 0        | 0             | 0             | 0          |
| RFR          | 2660          | 0             | 2660         | 0             | 0             | 0        | 0             | 0             | 0          |
| SCN          | 1614          | 0             | 1614         | 0             | 0             | 0        | 0             | 0             | 0          |
| SEW          | 13            | 0             | 13           | 0             | 0             | 0        | 12            | 0             | 12         |
| SGB          | 1444          | 0<br>0        | 1444         | 0<br>0        | 0<br>0        | 0<br>0   | 286<br>252    | 0<br>0        | 286<br>252 |
| SMC<br>UKW   | 5254<br>336   | 0             | 5254<br>336  | 8             | 0             | 8        | 232<br>91     | 0             | 232<br>91  |
| URB          | 29            | 0             | 30           | 0<br>0        | 0             | 0<br>0   | 946           | 65            | 1011       |
| VOW          | 106           | 9             | 115          | 0             | 0             | 0        | 44            | 0             | 44         |
| VRI          | 33            | 11            | 44           | 1             | 0             | 1        | 156           | 49            | 205        |
| WFR          | 787           | 0             | 787          | 0             | 0             | 0        | 42            | 0             | 42         |
| WTM          | 426           | 39            | 464          | 0             | 0             | 0        | 55            | 1             | 55         |
| Total:       | 44,240        | 594           | 44,834       | 421           | 2             | 422      | 32,622        | 277           | 32,899     |
| Area of Eco  |               |               | 62,582.6     |               |               | 29,422.6 |               |               | 35,370.7   |
| Percent of I | Ecoregion     |               |              |               |               |          |               |               |            |
| Mapped       |               |               | 71.6         |               |               | 1.4      |               |               | 93.0       |

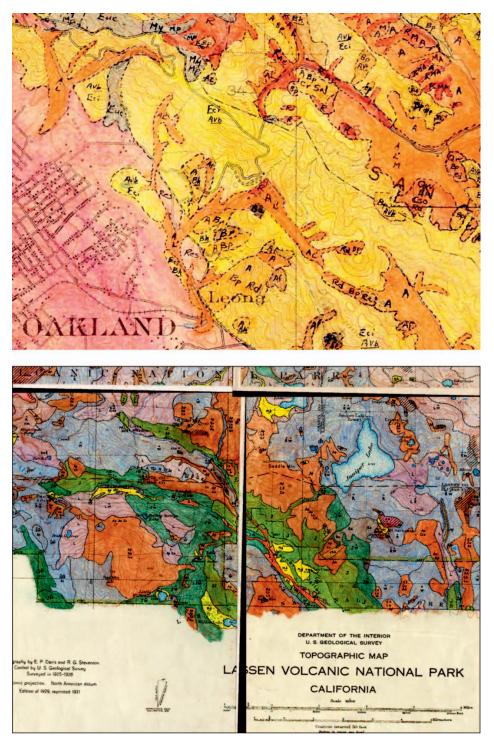



FIG. 5. Details of the original VTMs from the Oakland area and from the National Park Service Mapping in Lassen National Park.

Recreation Area hired Aerial Information Systems (AIS) to convert the original VTM hardcopy maps into an ArcMap geodatabase. They registered the maps and captured data one small area at a time, edge-mapping and redrafting the original vegetation polygons with reference to modern USGS basemaps and 2001 orthophoto imagery. All attribute data was captured, and all taxonomic references were updated with reference to the 1993 Jepson Manual. The NPS has used these digital maps in a number of projects to study vegetation dynamics. (R. Taylor, personal communication).

For broad landscape analyses, incorporating the spatial inaccuracies of the historic maps can be adequately addressed using a grid-based analysis in which the vegetation polygons are resampled to grids for change analysis by comparison to contemporary vegetation maps. To this end we provide the RMSE values of registering each quadrangle to modern topography (Appendix 3). This has proven effective for change analyses on a single 30' quadrangle in the Sierra Nevada (Thorne et al. 2008) and for a study in the Bay Area (Thorne et al. 2013). The RMSE errors suggest that analyses across large regions could be conducted at 100 m or 150 m resolution. Analyses for smaller areas and finer scales may need to consider further topographically-based modification of the VTMs. Such attempts should also consider the minimum mapping unit limitations of the VTMs. Generally, contemporary vegetation maps have finer spatial grain, and less taxonomic detail than the VTMs. The normalization of these map components with the contemporary data to be used is suggested for spatiallybased landscape change analyses using the VTMs.

At the beginning of the survey, the VTM mapping used first edition USGS topographical quadrangles, which were part of the US Geodetic Survey and recorded topography onto 30' quadrangles, often from the late 1800's. The topographic base maps were nearly all developed prior to adoption of the North American Datum of 1927 (NAD27), meaning that the VTMs were drawn on topographic maps made using the 1866 Clarks ellipsoid datum and the polyconic projection (Gannet 1904, United States Department of Commerce, Coast and Geodetic Survey 1917, Beaman 1928, Snyder 1982). During the course of the survey, maps with greater spatial resolution became available and some of the later edition VTM quadrangles are presented on 15' and even 7.5' quads, and use the NAD27 datum. In all cases we converted the final GIS to NAD83, California Teale Albers projection. However, in cases where both 7.5' or 15' quadrangles exist as well as a 30' map, it appears that the finer-resolution quadrangles are copies from the original surveys, conducted using the 30' quadrangle.

# Opportunities

An interesting perspective that archival agency data permit, is the tracking of prevailing practice and

thought within agencies through administrative changes over time. Historians working for the NPS or the USFS infrequently describe this type of dynamic. However, it can be very valuable for the purposes of tracking landscape-scale dynamics to do so, because understanding how one program influenced the next can help with the integration of large survey datasets for analysis. In the case of the VTMs, the methods used were subsequently incorporated into the state of California's Soil Vegetation Survey mapping efforts. The Soil Vegetation Survey (SVS) was a collaborative program by the state, the USFS, and the University of California, which mapped much of California's natural lands and is spatially complimentary to the VTMS (Keeler-Wolf 2007). The SVS maps contain polygon-specific information about the soil types and species codes denoting dominant species in rank descending order for each polygon, which are the same as the codes used in the VTM maps. There was considerable overlap of personnel during the SVS program, including Wieslander himself, who was instrumental in developing and running the SVS program (Wieslander 1986). An important product that integrates the VTM maps with the SVS is the atlas of range maps for California's tree species (Griffin and Critchfield 1972). The digitization of the SVS is an opportunity to establish additional California reference conditions for vegetation, from the 1940's and 1950's, particularly for the northwest ecoregion, and potentially parts of the Sierra Nevada. Further investigation into how California's SVS and the National Resources Conservation Service's soil survey program (http://www.nrcs.usda.gov/wps/portal/nrcs/ main/soils/survey/) correspond to each other; and into the relationship between the VTM's speciesspecific mapping efforts and later ones using the US National Vegetation Classification System (http:// usnvc.org/) or other national landcover classifications, could allow an examination of the VTM results from broader spatial and mapping perspectives, and also might permit use of the detail in the VTMs to assess the quality of the national products.

The VTM maps contain more taxonomic information than available in modern landcover maps in California. Modern vegetation mapping efforts in California fall into two general classes; efforts that are specific to California and efforts that are part of more extensive mapping endeavors. There exist currently several California-specific vegetation mapping efforts including: the Manual of California Vegetation (MCV), the State government's most intensive and detailed mapping effort; a USFS product termed 'CalVeg' (http://www.fs.fed.us/r5/ rsl/projects/mapping/accuracy.shtml); and the 'FRAP' map, a rasterized state-level effort to integrate the most current, detailed, and accurate maps available. It is produced by the California Department of Forestry and Fire Protection (http:// frap.fire.ca.gov/). Each of these products provides more detail than any of the national-scale map

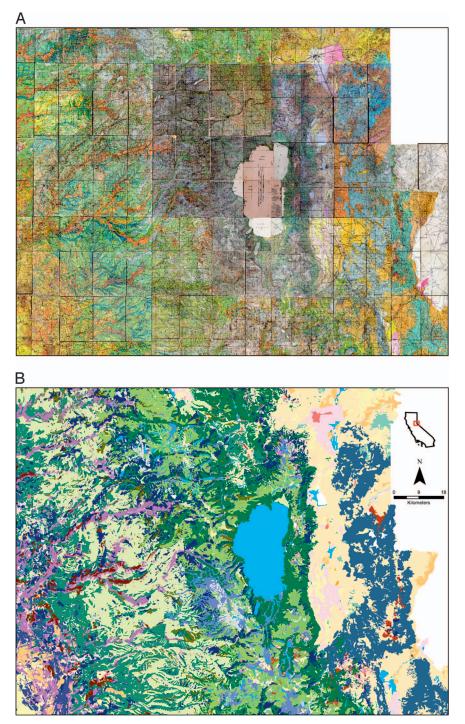



FIG. 6. A mosaic of multiple VTM quadrangles representing the Lake Tahoe and Central Sierra Nevada region. Figure 6A shows the original maps. Figure 6B shows the GIS rendered from the VTMs, using WHR landcover types as the classification (Fig. 7).



FIG. 7. The legend of the WHR types shown in the GIS portrayal of Figure 6.



FIG. 8. A detail of VTM map from the south shore of Lake Tahoe, from a movie that uses the VTMs to help inform changes in forest lands in the Sierra Nevada (Thorne & McQuinn 2012)

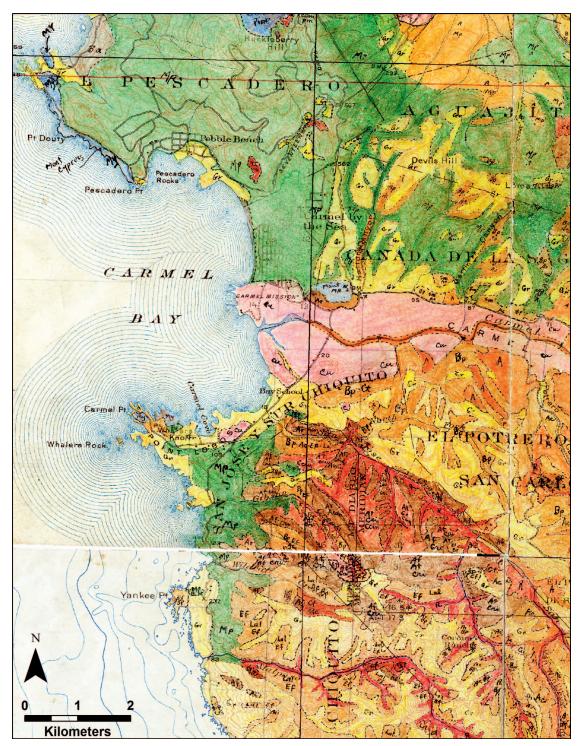



FIG. 9. A detail from mosaicked VTM tiles from the Monterey Bay Area.

efforts. The first edition of the US GAP analysis program map for California (Davis et al 1995, 1998) has more species-specific information in it than other national products, which include a second edition National GAP Analysis effort (http://gapanalysis. usgs.gov/), Landfire (http://landfire.cr.usgs.gov/ viewer/), and NatureServe's (http://www. natureserve.org/) maps. However, even the state's MCV maps, which contain by far the most speciesspecific information among contemporary maps, do not retain at the polygon level the number of species recorded by the VTMs. In addition, while the MCV classification of landscapes has been adopted by the National Park Service, which has funded such mapping for all NPS lands in California, the methods are intensive, and despite a long-term dedicated effort, less than  $\frac{1}{2}$  the state has been mapped using this approach. The MCV rate of mapping is not dissimilar to the rate the VTM project accomplished, of about one half of the state in about 14 years. By recording the dominant species in each polygon, the VTMs have greater flexibility to be classed according to various classifications, for comparison to modern maps. Inclusion of this level of taxonomic detail could become a goal for contemporary mapping efforts.

Use of national-scale map classifications for assessment of landcover change in California may be problematic, because of the lack of recognition of endemic dominant tree species, and also due to widespread mis-identification or mis-classification of vegetation types, particularly of the second edition US GAP analysis survey map, and also of early versions of NatureServe's map for the region. While a formal comparative analysis of all contemporary map products available has not yet been done, the high levels of plant species diversity in California require some engagement of local botanists to develop maps sufficiently accurate for use in assessment of landcover change (Thorne et al 2008). It should be noted that the groups engaged with the different state-level mapping approaches are aware of each other's work, and are collaborating in an attempt to improve the quality of statewide maps.

The VTM maps can be used for several types of analysis. First, as shown by Griffin and Critchfield (1972), the ranges and locations of individual species can be developed. Second, assessment of change in the location of habitats can be determined (Thorne et al. 2008). However, the VTM polygons are generally too large to permit direct comparison with the more detailed maps produced using the MCV methodology, and for practical purposes, landcover change has so far been done using the state's more general classification system, the WHR.

Finally, several quadrangles that we suspect were surveyed are missing from the overall collection. Historically, it was permitted that originals were removed for use by various research and agency personnel. During the efforts to digitize the collection, several repositories of maps were recovered. However, two 15' quadrangles are missing from the Central Coast ecoregion, which if recovered would improve representation for that region: quads 86B (west of Orestimba Peak) and 85D (south of the Mt. Doug and west of the Gilroy Hot Springs quadrangles). Additionally the 30' Cuyama quadrangle is missing a portion (156D tiles 3 and 4), and three 7.5' quadrangles south of Pacifico Mountain and San Fernando (162q, r, and w) were not in the collection. It may be possible that these quadrangles are still in existence, and the authors request agency and research personnel to search their archives. The VTM maps and corresponding GIS are posted on the VTM website at UC Berkeley (http://vtm. berkeley.edu), which can be used for further detail about the missing quadrangles and to obtain the data for other purposes. Additionally, two 30' quadrangles representing the locations of VTM plots around northern Lake Tahoe and to the west of it (the Colfax and Truckee quadrangles) would greatly improve the collection if they are found and returned.

# ACKNOWLEDGMENTS

This study was a joint effort supported financially by many agencies including the U.S. Forest Service, National Science Foundation, California Energy Commission, Sequoia and Kings Canyon National Parks, Lassen National Park, Tahoe National Forest, Sierra National Forest, Klamath National Forest, Los Padres National Forest, the Keck Foundation and the Tejon Ranch Conservancy. It would not have been possible without the aid of Mary Larsgaard and Greg Hajic at the Alexandria Digital Library (University of California, Santa Barbara), the Chico Map Library, and the UC Berkeley Geology Map Library, who provided scanned base maps. Financial and intellectual support were unstintingly provided by Professors Barbara Allen-Diaz, Craig Moritz, Maggi Kelly, and David Ackerly, UC Berkeley, Dr. Todd Keeler-Wolf, CA Department of Fish and Wildlife, and Dr. Hugh Safford, U.S. Forest Service.

We thank our colleagues who also worked on organizing the project and the digitizing the maps, Ryan M. Boynton, Jackie Bjorkman, Andrew Holguin, Jeff Kennedy, and Sarah Thrasher. We thank Aaron Fulton, Camille Kustin, Alexa Callison-Burch, Noriyuki Nawata, Joyce Hsu, Clay Delong, Trevor Cleak, Simmy Pattar, Myra Kim, Joseph A. Stewart, Brian Morgan, Rodd Kelsey, Kyle Shipley, Michael Louie, Trevor Cleak, and many other students for their patient work digitizing and attributing the original maps. We thank Dr. Jim Quinn, UC Davis, for providing the space to house computers and host the work.

#### LITERATURE CITED

- BALDWIN, B. G., D. H. GOLDMAN, D. J. KEIL, R. PATTERSON, T. J. ROSATTI, AND D. H. WILKEN (eds). 2012. The Jepson Manual: vascular plants of California, second edition. University of California Press, Berkeley, CA.
- BEAMAN, W. M. 1928. Topographic instructions of the United States Geological Survey. Department of Interior, U.S. Geological Survey, United States Government Printing Office, Washington, D.C.

[Vol. 63

- BOULDIN, J. R. 1999. Twentieth-century changes in forests of the Sierra Nevada, California. Ph.D. Dissertation, Plant Biology, University of California, Davis, CA.
- BRADBURY, D. E. 1974. Vegetation history of Ramona Quadrangle San Diego County, California (1931– 1972). Ph.D. dissertation. University of California, Los Angeles, CA.
- CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE. 2004. The California wildlife habitat relationships system. California Department of Fish and Game, Sacramento, CA. Website http://www.dfg.ca.gov/whdab/html/ wildlife\_habitats.html (15 June 2013).
- COFFMAN, J. D. 1934. Suggestions for the mapping and study of vegetation cover types in the areas administered by the National Park Service. United States Department of the Interior, National Park Service, Branch of Forestry.
- COLWELL, W. L. 1977. The status of vegetation mapping in California today. Pp. 195–220 in M. G. Barbour and J. Major (eds), John Wiley & Sons, Sacramento, CA.
- CRITCHFIELD, W. B. 1971. Profiles of California vegetation. Research Paper PSW-76. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.
- DAVIS, F. W., P. A. STINE, D. M. STOMS, AND A. D. HOLLANDER. 1995. Gap analysis of the actual vegetation of California: 1. The southwestern region. Madroño 42:40–78.
- DAVIS, F. W., D. M. STOMS, A. D. HOLLANDER, K. A. THOMAS, P. A. STINE, D. ODION, M. I. BORCHERT, J. H. THORNE, M. V. GREY, R. E. WALKER, K. WARNER, AND J. GRAAE. 1998. The California gap analysis project: final report. University of California, Santa Barbara, Santa Barbara, CA. Website http:// www.biogeog.ucsb.edu/projects/gap/gap\_rep.html (accessed 15 June 2013)
- DOLANC, C. R., J. H. THORNE, AND H. D. SAFFORD. 2013. Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007. Global Ecology and Biogeography 22:264– 276.
- DOLANC, C. R., H. D. SAFFORD, J. H. THORNE, AND S. Z. DOBROWSKI. 2014. Changing forest structure across the landscape of the Sierra Nevada, CA, USA, since the 1930's. Ecosphere 5:1–26.
- ERTTER, B. 2000. Our undiscovered heritage: past and future projects for species-level botanical inventory. Madroño 47:237–252.
- ESRI. 2004. Arc Info. Geographic Information System software, Redlands, CA.
- FELLOWS, A. W. AND M. L. GOULDEN. 2008. Has fire suppression increased the amount of carbon stored in western U. S. forests? Geophysical Research Letters 35:L12404.
- FROST, W. T. 1935. The Vegetative Type Survey of Sequoia National Park 1933–1934. Single hard copy report, located in Sequoia National Park library, Ash Mountain, CA.
- FREUDENBERGER, D. O., B. E. FISH, AND J. E. KEELEY. 1987. Distribution and stability of grasslands in the Los Angeles Basin. Bulletin of Southern California Academy of Sciences 86:13–26.
- GANNET, S. S. 1904. Geographic tables and formulas. United States Geological Survey, Department of Interior, Government Printing Office, Washington, D.C.
- GRIFFIN, J. R. AND W. B. CRITCHFIELD. 1972. The distribution of forest trees in California. Research

Paper PSW-82. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.

- HICKMAN, J. C. (ed.). 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley, CA.
- KEELEY, J. E. 2004. VTM plots as evidence of historical climate change: goldmine or landmine? Madroño 51:372–378.
- KELLY, M., B. ALLEN DIAZ, AND N. KOBZINA. 2005. Digitization of a historic dataset: the Wieslander California Vegetation Type Mapping Project. Madroño 52:191–201.
- KELLY, M., K. I. UEDA, AND B. ALLEN DIAZ. 2008. Considerations for ecological reconstruction of historic vegetation: analysis of the spatial uncertainties in the California Vegetation Type Map dataset. Plant Ecology 194:37–94. Website http://vtm.berkeley.edu/ (accessed 15 June 2013).
- KEELER-WOLF, T. 2007. The history of vegetation classification and mapping in California. Pp. 1–42 in Barbour, M. G., T. Keeler-Wolf, and A. A. Schoenherr (eds.). Terrestrial Vegetation of California. University of California Press, Berkeley, CA.
- KÜCHLER, A. W. 1967. Vegetation Mapping. The Roland Press Company, New York, NY.
- LUTZ. J. A., J. W. VAN WAGTENDONK, AND J. F. FRANKLIN. 2009. Twentieth-century decline of largediameter trees in Yosemite National Park, California, USA. Forest Ecology and Management 257:2296– 2307.
- MAYER, K. E. AND W. F. LAUDENSLAYER. (eds.). 1988. A Guide to Wildlife Habitats of California. State of California, Resources Agency, Sacramento, CA.
- MCINTYRE, P., J. H. THORNE, C. R. DOLANC, A. FLINT, L. FLINT, M. KELLY, AND D. D. ACKERLY. 2015. 20th century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences. http://www.pnas.org/content/early/2015/01/14/ 1410186112.full.pdf
- SAMPSON, A. W. AND B. S. JESPERSEN. 1963. California range brushlands and browse plants. University of California, Division of Agriculture and Natural Resources, Oakland, CA.
- SANTOS, M. J., J. H. THORNE, J. CHRISTENSEN, AND Z. FRANK. 2014. Assessing conservation success through reconstruction of the history of conservation land acquisitions and land-cover dynamics in a metropolitan area. Landscape and Urban Planning. 127:114–123.
- SANTOS, M. J., J. H. THORNE, AND C. MORITZ. 2015. Synchronicity in elevation range shifts among small mammals and vegetation over the last century is stronger for omnivores. Ecography. 37:1–13
- SAWYER, J. O. AND T. KEELER-WOLF. 1995. A manual of California vegetation. California Native Plant Society, Sacramento, CA.
- SAWYER, J. O., T. KEELER-WOLF, AND J. EVENS. 2009. A manual of California Vegetation, Second Edition. California Native Plant Society, Sacramento, CA.
- SNYDER, J. P. 1982. Map projections used by the U.S. Geological Survey. Geological Survey Bulletin 1532. United States Government Printing Office, Washington, DC.
- THORNE, J. H., M. J. SANTOS, AND J. BKORKMAN. 2013. Historic and future conservation progress and urban growth impacts in the San Francisco Bay Area,

California. PLoS ONE 8(6):e65258. doi:10.1371/ journal.pone.0065258

- THORNE J. H. AND S. MCQUINN. Mapping Change in Sierra Nevada Forests. 2012. Website http://vimeo. com/41524838 (accessed 15 June 2013).
- THORNE, J. H., B. J. MORGAN, AND J. A. KENNEDY. 2008. Vegetation Change over 60 Years in the Central Sierra Nevada. Madroño 55:223–237.
- THORNE, J. H., R. KELSEY, J. HONIG, AND B. J. MORGAN. 2006. The development of 70 year old Wieslander Vegetation Type Maps and an assessment of landscape change in the central Sierra Nevada. California Energy Commission. CEC 500-2006-107. PIER Energy Related Environmental Program, Sacramento, CA.
- UC BANCROFT LIBRARY. 2008. The Wieslander VTM collection of maps, photographs and vegetation plot cards is housed in this library. http://www.lib.berkeley.edu/BIOS/vtm/.
- UNITED STATES DEPARTMENT OF COMMERCE, COAST AND GEODETIC SURVEY. 1917. Geodesy: tables for a polyconic projection of maps, based upon Clarke's reference spheroid of 1866. Fourth edition. Special Publication No. 5. Department of Commerce, Washington Government Printing Office, Washington, DC.
- VAN MANTGEM, P. J., N. L. STEPHENSON, J. C. BYRNE, L. D. DANIELS, J. F. FRANKLIN, AND P. Z. TULE. 2009. Widespread increase of tree mortality rates in the Western United States. Science, 323:521–524
- WACOM. 2004. A digitizing screen that uses digital pen. Wacom Technology, Vancouver, WA.
- WALKER, R. E. 2000. Investigations in vegetation map rectification, and the remotely sensed detection and measurement of natural vegetation changes. Ph.D. dissertation. University of California, Santa Barbara, CA.
- WEEKS, D., A. E. WIESLANDER, AND C. L. HILL. 1934. The utilization of Eldorado County Land. University of California Bulletin 572. Giannini Foundation, University of California, Berkeley, CA.
- WEEKS, D., A. E. WIESLANDER, H. R. JOSEPHON, AND C. L. HILL. 1943. Land utilization in the northern Sierra Nevada. Agricultural Experiment Station, University of California College of Agriculture, Berkeley, CA.
- WIESLANDER, A. E. 1935a. A vegetation type map for California. Madroño 3:140–144.
  - —. 1935b. First steps of the forest survey in California. Journal of Forestry 33:877–884.
  - —. 1935c. The Forest Survey in California. R publication Series. California Forest and Range Experiment Station, Berkeley, CA.
- . 1986. California forester: mapper of wildland vegetation and soils (an oral history conducted in 1985 by Ann Lange). Regional Oral History Office, Bancroft Library, University of California, Berkeley, CA.
- WIESLANDER, A. E AND H. A. JENSEN. 1946. Forest areas, timber volumes, and vegetation types in California. Forest Survey Rel. No. 4. Forest and Range Experiment Station, Berkeley, CA.
- WIESLANDER, A. E, H. A. JENSEN, AND H. S. YATES. Unpublished (but dated 1933) a. California vegetation type map: Instructions for the preparation of the vegetative type map of California. Unpublished. USDA Forest Service report on the file in library at Yosemite National Park, Yosemite Valley, CA.
- WIESLANDER, A. E, H. S. YATES, H. A. JENSEN, AND P. L JOHANNSEN. Unpublished (but dated 1933) b. Manual of Field Instructions for Vegetation Type Map of

California. USDA Forest Service report on the file in library at Yosemite National Park, Yosemite Valley, CA.

#### APPENDIX 1

A brief list of plot-based publications that make use of the Wieslander VTM plots for historical change studies.

- BOLSINGER, C. L. 1988. The hardwoods of California's timberlands, woodlands, and savannas. Resource Bulletin PNW 148, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.
- BYRD, K. B., A. R. RISSMAN, AND A. M. MERENLENDER. 2009. Impacts of conservation easements for threat abatement and fire management in a rural oak woodland landscape. Landscape and Urban Planning 92:106–116.
- COX, R. D., K. L. PRESTON, R. A. MINNICH, AND E. B. ALLEN. 2014. Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in southern California, USA. Global Ecology and Conservation 2:190–203
- CRIMMINS, S. M., S. Z. DOBROWSKI, J. A. GREENBERG, J. ABATZOGLOU, AND A. R. MYNSBERGE. 2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science 331:324– 327.
- DODGE, J. M. 1975. Vegetation changes associated with land use and fire history in San Diego County. Ph.D. dissertation. University of California, Riverside, CA.
- DOBROWSKI, S. Z., J. H. THORNE, J. A. GREENBERG, H. D. SAFFORD, A. R. MYNSBERGE, S. M. CRIMMINS, AND A. K. SWANSON. 2011. Modeling plant distributions over 75 years of measured climate change in California, USA: Relating temporal transferability to species traits. Ecological Monographs 81:241–257.
- DOLANC, C. R., H. D. SAFFORD, J. H. THORNE, AND S. Z. DOBROWSKI. 2014 Changing forest structure across the landscape of the Sierra Nevada, CA, USA. Ecosphere. 5:101. doi: 10.1890/ES14-00103.1
- DOLANC, C. R., H. D. SAFFORD, S. Z. DOBROWSKI, AND J. H. THORNE. 2014. Twentieth Century shifts in abundance and composition of vegetation types of the Sierra Nevada, CA, US. Journal of Applied Vegetation Science 17:442–455. doi: 10.1111/avsc. 12079
- DOLANC, C. R., B. WESTFALL, H. D. SAFFORD, J. H. THORNE, AND M. W. SCHWARTZ. 2013. Growthclimate relationships for six subalpine tree species of the central Sierra Nevada, CA, USA. Canadian Journal of Forest Research 43:1114–1126.
- DOLANC, C. R., J. H. THORNE, AND H. D. SAFFORD. 2013. Widespread shifts in the demographic structure of subalpine conifer forests over last 80 years in the central Sierra Nevada. Global Ecology and Biogeography 22:264–276.
- FELLOWS, A.W. AND M. L. GOULDEN. 2008. Has fire suppression increased the amount of carbon stored in western U.S. forests? Geophysical Research Letters 35:L12404, doi: 10.1029/2008GL033965
- FRANKLIN, J. 2002. Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science 5:133–146.
- FRANKLIN, J., C. L. COULTER, AND S. J. REY. 2004. Change over 70 years in a southern California

chaparral community related to fire. Journal of Vegetation Science 15:701-710.

- HOLZMAN, B. A. 1993. Vegetation change in California's blue oak (Quercus douglasii) woodlands 1932-1992. Ph.D. Dissertation. University of California, Berkeley, CA.
- KELLY, A. E. AND M. L. GOULDEN. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences 105:11,823-11.826.
- LUTZ J. A., J. W. VAN WAGTENDONK, AND J. F. FRANKLIN. 2009. Twentieth-century decline of largediameter trees in Yosemite National Park, California USA. Forest Ecology and Management 257:2296-2307
- MCINTYRE, P., J. H. THORNE, C. R. DOLANC, A. FLINT, L. FLINT, M. KELLY, AND D. D. ACKERLY. 2015. 20th century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences 112:1458-1463
- MINNICH, R. A., M. G. BARBOUR, J. H. BURKE, AND R. F. FERNAU. 1995. Sixty years of change in Californian conifer forests of the San Bernardino Mountains. Conservation Biology 9:902–914.
- MINNICH, R. A. AND R. J. DEZZANI. 1998. Historical decline of coastal sage scrub in the Riverside-Perris Plain, California. Western Birds 29:366-391.
- PRESTON K. L., R. A. REDAK, M. F. ALLEN, AND J. T. ROTENBERRY. 2012. Changing distribution patterns of an endangered butterfly: linking local extinction patterns and variable habitat relationships. Biological Conservation 152:280-290
- RUBIDGE, E. M., W. B. MONAHAN, J. L. PARRA, S. E. CAMERON AND J. S. BRASHARES. 2011. The role of climate, habitat, and species co-occurrence as drivers of change in small mammal distributions over the past century. Global Change Biology 17:696-708
- SWANSON, A., S. DOBROWSKI, A. FINLEY, J. H. THORNE, AND M. W. SCHWARTZ. 2013. Spatially explicit methods capture prediction uncertainty in species distribution model forecasts through time. Global Ecology and Biogeography 22:242-251
- SYPHARD, A. D. AND J. FRANKLIN. 2010. Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science 21:177–189
- TALLUTO, M. V. AND K. N. SUDING. 2008. Historical change in coastal sage scrub in southern California, USA in relation to fire frequency and air pollution. Landscape Ecology 23:803-815
- TAYLOR, A. H. 2000. Fire regimes and forest changes in mid and upper forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A. Journal of Biogeography 27:87-104.
- TAYLOR, R. S. 2004. A natural history of coastal sage scrub in southern California: regional floristic patterns and relations to physical geography, how it changes over time, and how well reserves represent its biodiversity. Ph.D. Dissertation. University of California, Santa Barbara, CA.

-. 2004b. Changes in coastal sage scrub composition and structure over 70 years in an urbanizing landscape. Pp. 500-501 in Abstracts of the 89th Annual Meeting of the Ecological Society of America, August 1-6, Portland, OR.

WEEKS, D. A. AND H. A. JENSEN. 1946. Forest areas, timber volumes, and vegetation types in California.

Forest Survey Rel. No. 4. Forest and Range Experiment Station, Berkeley, CA.

#### APPENDIX 2

The data fields in the VTM GIS. This Appendix provides a definition for each field found in the attribute tables of GIS developed from the VTMs. They are presented in descending order, which follows the column headings from left to right.

FID = internal GIS ID

VTM ID = unique polygon ID

Area HA = calculated polygon area in hectares

Area  $M^2$  = calculated area in square meters

WHR1 = California Wildlife Habitat Relationship Code for primary vegetation type, derived from cross walking the Manual of California Vegetation (1995) classification to the WHR system.

WHR1 Type = Full name of the California Wildlife Habitat Relationship type for primary vegetation type, derived from cross walking the Manual of California Vegetation (1995) classification to the WHR system.

WHR2 = California Wildlife Habitat Relationship Code for secondary vegetation type, derived from cross walking the Manual of California Vegetation (1995) classification to the WHR system.

WHR2 Type = Full name of the California Wildlife Habitat Relationship type for secondary vegetation type, derived from cross walking the Manual of California Vegetation (1995) classification to the WHR system.

MCV1 1995 = Alliance name from 1995 edition of the Manual of California Vegetation. This is for the primary vegetation type in a polygon.

MCV2 1995 = Alliance name from 1995 edition of the Manual of California Vegetation. This is for the secondary vegetation type in a polygon.

 $MCV1 \ 2009 = Alliance$  name from 2009 edition of the Manual of California Vegetation. This is for the primary vegetation type in a polygon.

 $MCV2 \ 2009 = Alliance$  name from 2009 edition of the Manual of California Vegetation. This is for the secondary vegetation type in a polygon.

SP1-Sp9 = VTM codes listing the species, or occasionally the vegetation or land cover type, recorded in each polygon

SP1 Name–SP9 Name = Latin binomial for the species codes from previous column, from the first edition Jepson Manual (Hickman 1993).

CH Angle = Angle of cross-hatching in polygons that show cross-hatching. These lines refer to sparse vegetation or recent disturbance for the polygon in question. The disturbance can be either due to fire or to logging. If the crosshatching is in black ink it refers to sparse vegetation, in red to brown ink (refer to scanned images, not completely recorded in GIS) it refers to fire, if in blue ink it refers to logging.

Note that for burned areas, the field instructions (Wieslander et al. 1934) indicate that crews were to get fire maps from local rangers and then to adjust the fire perimeters when in the field. Therefore, early fires recorded in the VTMs may represent more accurate fire boundaries than early fire boundaries derived from other sources. These fire boundaries may portrayed in a compiled form in the Weeks et al. (1943) publication for the central and northern Sierra Nevada, but they could also be extracted from the GIS of the VTMs to compare with other maps of fire perimeters from the 1930's, and comparison to contemporary fire perimeters.

VTM Quad ID = ?

We interpret the cross-hatching angles to mean the following (as per the field manual by Coffman (1934):

Burns

//: 45° angle. Recent burns are indicated by a crosshatching of diagonal lines running from left to right in red to brown ink.

 $=:90^{\circ}$  angle. Brushfields and woodland areas which have resulted from fire within the virgin stands that are not restocking to coniferous timber. The timber species are present as reproduction, rather than as mature trees. (no visible reproduction). Indicated by cross-hatching of horizontal lines.

0 = no cross-hatching.

\\:135° angle. Brushfields and woodland areas which have resulted from fire within the virgin stands that are restocking to coniferous timber. The timber species are present as reproduction, rather than as mature trees. Numbers on top of the cross hatching refer to 1 = well stocked; 2 = medium stocked, and 3 = poorly stocked.

||: 360° angle. Areas recently deforested by burns, which have not yet developed into brushfields or other non-coniferous fire types. Indicated by cross-hatching of vertical lines.

Logging

//: 45° angle. Selectively logged areas with residual stand sufficient to justify a second cut prior to maturity of reproduction. Indicated by a cross-hatching of diagonal lines running from left to right;

=: 90° angle. Clean cut or burned logged over areas which are not restocking (no visible reproduction). Indicated by cross-hatching of horizontal lines.

\\:135° angle. Clean cut areas, which are restocked to seedlings, saplings, or trees. Numbers on top of the cross hatching refer to 1 = well stocked; 2 = medium stocked, and 3 = poorly stocked.

CH Color = the colors of cross-hatching were sometimes recorded during digitization, but could be added for all cross-hatching, using the scheme for cross-hatching above.

Vegstring = A compilation of the species names from the polygon and the crosshatching. This was used to determine the MCV type, from which WHR types were derived. Early

seral stage from cross-hatching was taken into account at this point.

Comments = Comments relating to species that may be out of the known range, uncertain codes, or other details related to that polygon.

CalVeg1 = A placeholder column in case the US Forest Service desires to translate the MCV types to CalVeg codes. This is for the primary type in the polygon.

CV1 Name = A placeholder column in case the US Forest Service desires to translate the MCV types to CalVeg names. This is for the primary type in the polygon.

CalVeg2 = A placeholder column in case the US Forest Service desires to translate the MCV types to CalVeg codes. This is for the secondary type in the polygon.

CV2 Name = A placeholder column in case the US Forest Service desires to translate the MCV types to CalVeg names. This is for the secondary type in the polygon.

VTM color = The colors in the VTMs are tied to a classification scheme that relied on Dixon colored pencils (Dixon Ticonderoga Company, Lake Mary, FL) of different numbers. The colors refer to categories of land cover and vegetation. There are extensive notes about the composition of species related to the colors in the field manuals. We did not determine a way to process the colors (which may or may not be consistently applied to all maps, there are certain maps such as the southern-most quads in north coast ecoregion which have different coloring). Remote sensing techniques might be applied to the scans if review of the field manuals suggests that better vegetation types could be defined using the colors than the approach we used. We used the actual species recorded, in addition to any cross-hatching to assign a MCV alliance name. We checked to see if the color of the polygon indicated a landcover type in agreement to the one we assigned. The color in some cases caused us to change a hardwood woodland type to a chaparral type.

VTM type = This is associated the color discussion above, and could be filled out later if found useful.

Vetting = This indicates if species listed in the polygon were checked in one of the several levels of vetting, and if so for what region of the state.

#### MADROÑO

APPENDIX 3. The root mean square error (RMSE), and notes for each VTM quadrangle that was digitized. These values represent the degree to which the basemaps that the vegetation polygons are drawn on differ from the current measure of topography, and are obtained by registering the old topography to a modern topographic surface. In essence, these measurements provide an estimate of potential spatial error in the location of vegetation introduced by the maps it was recorded upon. Note that some 15' and 7.5' quadrangles that either were not used in the final GIS or were not registered are listed, in order to provide a full set of VTM quadrangle codes. Where RMSE rows are marked with a "—" indicates that the value was not recorded. Generally single numbers identify a 30' quadrangle, a number followed by a capital letter indicate a 15' quadrangle, and a number followed by a lowercase letter signifies a 7.5' quadrangle. Many of the 7.5' quadrangles are of 30' maps, in which case the 7.5' were not included in the GIS, and RMSE was not tested because we assumed the 7.5' versions were copied from the coarser scale maps. However, those 7.5' quadrangles were scanned.

| VTM<br>quadrangle<br>number | Quadrangle name | Root<br>mean<br>square<br>error (m) | Quadrangle<br>size,<br>in<br>minutes | Extent of<br>quadrangle<br>surveyed —<br>100 percent if blank | Notes<br>made during<br>digitization                                   |
|-----------------------------|-----------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| 7                           | SEIAD VALLEY    | 131.6                               | 30                                   |                                                               |                                                                        |
| 8                           | PRESTON PEAK    | 116.5                               | 30                                   |                                                               |                                                                        |
| 12                          | SAWYERS BAR     | 86.1                                | 30                                   |                                                               |                                                                        |
| 22                          | BURNEY          | 114.2                               | 30                                   |                                                               |                                                                        |
| 23                          | REDDING         | 80.4                                | 30                                   |                                                               |                                                                        |
| 24                          | WEAVERVILLE     | 119.1                               | 30                                   |                                                               |                                                                        |
| 25                          | BIG BAR         | 127.8                               | 30                                   | approx. 50%                                                   | lower left section<br>missing                                          |
| 30                          | SPORTSHAVEN     | 80.4                                | 30                                   | approx. 50%                                                   | C&D apparently<br>missing                                              |
| 33                          | SHINGLETOWN     | 77.7                                | 30                                   | approx. less than 50%                                         | quads only partially<br>mapped                                         |
| 37                          | SIERRAVILLE     | 118.7                               | 30                                   |                                                               |                                                                        |
| 38                          | DOWNIEVILLE     | 129.5                               | 30                                   |                                                               |                                                                        |
| 39                          | KIMSHEW POINT   | 189.6                               | 30                                   |                                                               |                                                                        |
| 40                          | CHICO           | 139.3                               | 30                                   |                                                               |                                                                        |
| 49                          | BUTTE CITY      | 31.0                                | 30                                   |                                                               |                                                                        |
| 50                          | SMARTVILLE      | 180.3                               | 30                                   |                                                               |                                                                        |
| 51                          | COLFAX          | 115.8                               | 30                                   |                                                               |                                                                        |
| 52                          | TRUCKEE         | 106.2                               | 30                                   | over 50%                                                      | lower right quad<br>missing                                            |
| 53                          | WELLINGTON      | 94.4                                | 30                                   |                                                               | c                                                                      |
| 54                          | MARKLEEVILLE    | 127.7                               | 30                                   |                                                               |                                                                        |
| 55                          | PYRAMID PEAK    | 83.7                                | 30                                   |                                                               |                                                                        |
| 56                          | PLACERVILLE     | 119.7                               | 30                                   |                                                               |                                                                        |
| 57                          | SACRAMENTO EAST | 137.4                               | 30                                   |                                                               |                                                                        |
| 65                          | NAPA            | 78.8                                | 30                                   |                                                               |                                                                        |
| 68                          | JACKSON         | 73.5                                | 30                                   |                                                               |                                                                        |
| 69                          | DEVILS NOSE     | 106.6                               | 30                                   | fully mapped. I think it<br>its fine                          | Note on quad —<br>topography in fairly<br>large error in section<br>B5 |
| 70                          | DARDANELLE      | 85.6                                | 30                                   |                                                               |                                                                        |
| 71                          | BRIDGEPORT      | 48.1                                | 30                                   |                                                               |                                                                        |
| 76                          | MT. LYELL       | 72.7                                | 30                                   |                                                               |                                                                        |
| 77                          | YOSEMITE FALLS  | 83.1                                | 30                                   |                                                               |                                                                        |
| 78                          | SONORA          | 160.9                               | 30                                   |                                                               |                                                                        |
| 84                          | HALF MOON BAY   | 63.3                                | 30                                   |                                                               |                                                                        |
| 89                          | MARIPOSA        | 71.3                                | 30                                   | approx. less than $50\%$                                      | The northwest corner of this set is missing                            |
| 90                          | KAISER PEAK     | 108.1                               | 30                                   | approx. less than 50%                                         | Upper right and lower<br>right quads missing.<br>Partial veg polys.    |
| 91                          | MT. GODDARD     | 50.8                                | 30                                   | approx. less than 50%                                         | partial VM polys                                                       |
| 98                          | MOUNT WHITNEY   | 75.5                                | 30                                   | approx. less than 50%                                         | partial polys on the<br>lower left quad; scale<br>is suspect           |
| 99                          | TEHIPITE DOME   | 59.3                                | 30                                   | approx. 50%                                                   | Upper left & right<br>quads on same<br>canvas backing.                 |
| 100                         | PATTERSON MTN.  | 48.4                                | 30                                   |                                                               | U                                                                      |
| 103                         | PANOCHE         | 68.6                                | 30                                   | approx. 50%                                                   | legends in margins,<br>partial VTM polys                               |

| VTM<br>quadrangle |                               | Root<br>mean<br>square | Quadrangle<br>size,<br>in | Extent of<br>quadrangle<br>surveyed — | Notes<br>made during                                                                    |
|-------------------|-------------------------------|------------------------|---------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| number            | Quadrangle name               | error (m)              | minutes                   | 100 percent if blank                  | digitization                                                                            |
| 108               | PRIEST VALLEY                 | 51.7                   | 30                        |                                       |                                                                                         |
| 109               | COALINGA                      | 73.9                   | 30                        | approx. 75%                           | upper right quad<br>missing, legends in<br>margins                                      |
| 112               | KAWEAH                        | 72.7                   | 30                        | approx. 50%                           | lower right missing,<br>partial polys, no<br>legends                                    |
| 113               | OLANCHA                       | 77.2                   | 30                        | approx. less than 50%                 | partial polys, no legend                                                                |
| 125               | KERNVILLE                     | 52.2                   | 30                        |                                       |                                                                                         |
| 128               | LOST HILLS                    | 83.5                   | 30                        |                                       |                                                                                         |
| 129               | CHOLAME                       | 81.5                   | 30                        |                                       |                                                                                         |
| 134               | MCKITTRICK SUMMIT             | 74.2                   | 30                        |                                       |                                                                                         |
| 135               | BUENA VISTA LAKE BED          | 97.6                   | 30                        |                                       | only a few polys                                                                        |
| 136<br>137        | BRECKENRIDGE MTN.<br>MOJAVE   | 124.2<br>82.8          | 30<br>30                  | a little over 50                      | nantial natura laganda in                                                               |
|                   |                               |                        |                           | a little over 50                      | partial polys, legends in<br>margins and on<br>maps, some edges cut                     |
| 153               | BISSELL                       | 76.1                   | 30                        |                                       |                                                                                         |
| 154               | LIEBRE TWINS                  | 94.1                   | 30                        |                                       |                                                                                         |
| 155<br>156        | PLEITO HILLS                  | 65.1<br>100.9          | 30<br>30                  |                                       | D 2.4 missing                                                                           |
| 150               | CUYAMA<br>LOMPOC              | 77.2                   | 30<br>30                  |                                       | D—3,4 missing                                                                           |
| 157               | GUADALUPE                     | 78.5                   | 30                        | over 50%                              | only 2 quads for this                                                                   |
|                   |                               |                        |                           | 0.01 30 /0                            | coastal area, no<br>legend                                                              |
| 165               | SAN GORGONIO MTN.             | 110.8                  | 30                        | 1 (1 500)                             | 1.1. 1.0.0. 1                                                                           |
| 174               | INDIO                         | 173.8                  | 30                        | approx. less than 50%                 | only lower L&R quads<br>available, mislabeled<br>according to labeling<br>scheme        |
| 175               | SAN JACINTO                   | 81.3                   | 30                        |                                       |                                                                                         |
| 176               | LAKE ELSINORE                 | 77.9                   | 30                        |                                       |                                                                                         |
| 177               | CORONA NORTH                  | 80.3                   | 30                        |                                       |                                                                                         |
| 180               | SAN LUIS REY                  | 70.6                   | 30                        |                                       |                                                                                         |
| 181               | RAMONA                        | 101.6                  | 30                        |                                       |                                                                                         |
| 182               | RABBIT PEAK                   | 101.3                  | 30                        |                                       |                                                                                         |
| 190<br>191        | CARRIZO MTN.<br>CUYAMACA PEAK | 175.8<br>46.4          | 30<br>30                  |                                       |                                                                                         |
| 179A              | SAN CLEMENTE                  | 70.6                   | 30<br>30                  |                                       |                                                                                         |
| N59B              | WADSWORTH                     | 98.2                   | 30                        | approx. less than 50%                 | upper and lower right                                                                   |
| 1(3)D             | WILDSWORTH                    | 50.2                   | 50                        | approx. less than 5070                | quads missing, small<br>amount of veg data.<br>no data on B tiles, so<br>not registered |
| N60               | RENO                          | 113.3                  | 30                        |                                       |                                                                                         |
| N61               | CARSON                        | 128.9                  | 30                        | over 50%                              | only lower right quad<br>in collection got the<br>others from Zinke 3/<br>07            |
| N62C              | WABUSKA                       | 92.6                   | 30                        | approx. less than 50%                 | only lower left quad<br>present, partial veg<br>data in CA.                             |
| 43A               | COVELO EAST                   | 46.8                   | 15                        | over 50%                              | lower left cut out                                                                      |
| 43D               | JAMISON RIDGE                 | 51.3                   | 15                        | approx. 50%                           | upper right cut off                                                                     |
| 46A               | FOSTER MTN.                   | 27.5                   | 15                        | approx. less than 50%                 | US Army Corps<br>Engineers basemap                                                      |
| 46B               | WILLITS                       | 32.0                   | 15                        | approx. less than 50%                 | only partial topo and veg coverage                                                      |
| 46D<br>47C        | UKIAH<br>LAKEPORT             | 27.6<br>24.4           | 15<br>15                  |                                       |                                                                                         |
| 47C<br>47D        | BARTLETT SPRINGS              | 24.4                   | 15                        | approx. less than 50%                 | partial veg information                                                                 |
|                   |                               | <u>~</u>               | 1.7                       | approx. 1005 than 5070                | Partial veg information                                                                 |

| VTM<br>quadrangle<br>number | Quadrangle name               | Root<br>mean<br>square<br>error (m) | Quadrangle<br>size,<br>in<br>minutes | Extent of<br>quadrangle<br>surveyed —<br>100 percent if blank | Notes<br>made during<br>digitization          |
|-----------------------------|-------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------------------------------|
| 59d                         |                               |                                     | 15                                   |                                                               | US Army Corps                                 |
|                             |                               |                                     |                                      |                                                               | Engineers basemap,<br>not used                |
| 60a                         | LOWER LAKE                    | 9.5                                 | 15                                   |                                                               |                                               |
| 60b                         | KELSEYVILLE                   | 224.5                               | 15                                   |                                                               | US Army Corps<br>Engineers basemap            |
| 61A<br>64A                  | HOPLAND<br>SANTA ROSA         | 29.9                                | 15<br>15                             | approx loss than 50%                                          | vog man nartial                               |
| 64D                         | PETALUMA                      | 30.0<br>31.3                        | 15                                   | approx. less than 50% over 50%                                | veg map partial<br>partial veg map            |
| 65C                         | MARE ISLAND                   | 78.8                                | 15                                   | over 5076                                                     | partial veg map                               |
| 65D                         | CORDELIA                      | 78.8                                | 15                                   |                                                               |                                               |
| 66B                         | ALLENDALE                     | 20.6                                | 15                                   | over 50%                                                      | lower left edge cut off                       |
| 66C                         | ANTIOCH NORTH                 | 23.8                                | 15                                   | 0,01,00,00                                                    | lower left edge eut off                       |
| 72                          | _                             |                                     | 15                                   |                                                               |                                               |
| 79Å                         | COPPEROPOLIS                  | 42.5                                | 15                                   |                                                               |                                               |
| 80C                         | TRACY                         | 34.0                                | 15                                   |                                                               |                                               |
| 81A                         | BRENTWOOD                     | 22.6                                | 15                                   |                                                               |                                               |
| 81B                         | DIABLO                        | 35.6                                | 15                                   |                                                               |                                               |
| 81C                         | DUBLIN                        | 31.3                                | 15                                   | over 50%                                                      | corners cut off                               |
| 81D                         | ALTAMONT                      | 30.7                                | 15                                   | over 50%                                                      | legends in margin, some<br>edges cut          |
| 82A                         | OAKLAND EAST                  | 34.6                                | 15                                   | over 50%                                                      | partial edges cut off                         |
| 82B                         | SAN FRANCISCO NORTH           | 36.5                                | 15                                   |                                                               | 1 0                                           |
| 82C                         | SAN MATEO                     | 35.2                                | 15                                   |                                                               |                                               |
| 82D                         | HAYWARD                       | 67.9                                | 15                                   | over 50 fine                                                  | partial veg mapped,<br>edges partially cut of |
| 84A                         | PALO ALTO                     | 63.3                                | 15                                   |                                                               |                                               |
| 85A                         | MT. DAY                       | 57.2                                | 15                                   |                                                               |                                               |
| 85B                         | SAN JOSE EAST                 | 57.2                                | 15                                   |                                                               |                                               |
| 85C                         |                               | 57.2                                | 15                                   |                                                               |                                               |
| 86A                         | ORESTIMBA PEAK                | 30.6                                | 15                                   |                                                               |                                               |
| 86C                         | GILROY HOT SPRINGS            | 30.6                                | 15                                   | over 50%                                                      | edges cut                                     |
| 86D                         | PACHECO PASS                  | 30.6                                | 15                                   | over 50%                                                      | edges cut                                     |
| 88A                         | INDIAN GULCH                  | 22.2                                | 15                                   |                                                               |                                               |
| 104A                        | QUIEN SABE VALLEY             | 23.3                                | 15                                   |                                                               |                                               |
| 104B                        |                               | 23.0                                | 15                                   |                                                               |                                               |
| 104C                        |                               | 27.9                                | 15                                   |                                                               |                                               |
| 104D                        | SAN BENITO                    | 27.8                                | 15                                   |                                                               |                                               |
| 105A                        |                               | 46.7                                | 15                                   |                                                               |                                               |
| 105B                        | SOQUEL                        | 33.4                                | 15                                   |                                                               |                                               |
| 105C                        | MONTEREY                      | 45.5                                | 15                                   |                                                               |                                               |
| 105D                        | SALINAS                       | 40.2                                | 15                                   |                                                               |                                               |
| 106A                        | CARMEL VALLEY                 | 24.7                                | 15                                   |                                                               |                                               |
| 106B                        | POINT SUR<br>PARTINGTON RIDGE | 21.7                                | 15                                   |                                                               |                                               |
| 106D                        |                               | 30.1                                | 15                                   |                                                               |                                               |
| 107A<br>107B                | NORTH CHALONE PEAK<br>SOLEDAD | 48.3<br>48.3                        | 15<br>15                             |                                                               |                                               |
| 107B<br>107C                | JUNIPERO SERRA PEAK           | 48.3                                | 15                                   | over 50%                                                      | 2 maps this one edition                       |
| 107D                        | THOMPSON CANYON               | 48.3                                | 15                                   |                                                               | of 1930, partial polys                        |
| 130A                        | SAN MIGUEL                    | 91.3                                | 15                                   |                                                               |                                               |
| 130B                        | BRADLEY                       | 57.7                                | 15                                   |                                                               |                                               |
| 130C                        | ADELAIDA                      | 41.0                                | 15                                   |                                                               |                                               |
| 130D                        | PASO ROBLES                   | 46.7                                | 15                                   |                                                               |                                               |
| 131A                        | BRYSON                        | 44.0                                | 15                                   |                                                               |                                               |
| 131B                        | CAPE SAN MARTIN               | 33.9                                | 15                                   | 500/                                                          |                                               |
| 131C                        | PIEDRAS BLANCAS               | 30.0                                | 15                                   | over 50%                                                      | mostly water quad                             |
| 131D                        | SAN SIMEON                    | 30.3                                | 15                                   | over 50%                                                      | mostly water quad                             |
| 132A                        | SAN LUIS OBISPO               | 65.8                                | 15                                   |                                                               |                                               |
| 132B                        | CAYUCOS                       | 37.4                                | 15                                   |                                                               |                                               |
| 132C                        | PORT SAN LUIS                 | 49.4                                | 15                                   |                                                               |                                               |
| 132D                        | ARROYO GRANDE NE              | 54.0                                | 15                                   |                                                               |                                               |

|              |                               | Root           | Quadrangle |                       |                                            |
|--------------|-------------------------------|----------------|------------|-----------------------|--------------------------------------------|
| VTM          |                               | mean           | size,      | quadrangle            | Notes                                      |
| quadrangle   |                               | square         | in         | surveyed —            | made during                                |
| number       | Quadrangle name               | error (m)      | minutes    | 100 percent if blank  | digitization                               |
| 133A         | LA PANZA                      | 30.2           | 15         |                       |                                            |
| 133B         | POZO SUMMIT                   | 32.1           | 15         |                       |                                            |
| 133C         | NIPOMO                        | 29.9           | 15         |                       |                                            |
| 133D         | LOS MACHOS HILLS              | 30.6           | 15         |                       |                                            |
| 159A         | SANTA BARBARA                 | 58.2           | 15         | over 50%              | only part of lands                         |
|              |                               |                |            |                       | around SB are                              |
|              |                               |                |            |                       | mapped on this quad                        |
| 159B         | GOLETA                        | 58.2           | 15         | over 50%              | only part of lands                         |
|              |                               |                |            |                       | around Goleta are                          |
|              |                               |                |            |                       | mapped on this quad                        |
| 160A         | SANTA PAULA                   | 61.7           | 15         |                       |                                            |
| 160B         | VENTURA                       | 61.7           | 15         |                       |                                            |
| 160D         | CAMARILLO                     | 61.7           | 15         |                       |                                            |
| 161A         | NEWHALL                       | 37.8           | 15         |                       |                                            |
| 161B         | PIRU                          | 74.8           | 15         |                       |                                            |
| 161C         | TRIUNFO PASS                  | Not tested     | 15         |                       |                                            |
| 161D         | CALABASAS                     | 59.9           | 15         |                       |                                            |
| 162A<br>162B | PACIFICO MOUNTAIN             | 141.5          | 15<br>15   |                       |                                            |
| 162B<br>162D | SAN FERNANDO                  | 141.5          | 15         |                       |                                            |
| 162D<br>163A | PASADENA<br>MOUNT SAN ANTONIO | 141.5<br>157.1 | 15         | avan 500/             | there are 2 mans and                       |
| 105A         | MOUNT SAN ANTONIO             | 137.1          | 15         | over 50%              | there are 2 maps, each<br>with 1/2 the veg |
|              |                               |                |            |                       | polys                                      |
| 163B         | VALYERMO                      | 157.1          | 15         |                       | porys                                      |
| 163D         | GLENDORA                      | 157.1          | 15         |                       |                                            |
| 163D         | CUCAMONGA PEAK                | 157.1          | 15         |                       |                                            |
| 164C         | SAN BERNARDINO NORTH          | 60.3           | 15         |                       |                                            |
| 164D         | REDLANDS                      | 60.3           | 15         |                       |                                            |
| 178A         | LONG BEACH                    | 52.0           | 15         | approx. less than 50% | small area mapped,                         |
| 17011        | Lonce Blanch                  | 0210           | 10         | appron 1000 man 0070  | legend in margin                           |
| 178 <b>B</b> | REDONDO BEACH                 | 52.0           | 15         | approx. 50%           | partial veg polys                          |
| 178C         | SAN PEDRO                     | 52.0           | 15         | * *                   |                                            |
| 178D         | SEAL BEACH                    | 52.0           | 15         |                       |                                            |
| 192A         | LA JOLLA                      | 30.9           | 15         |                       |                                            |
| 192D         | NATIONAL CITY                 | 30.9           | 15         | over 50%              | map extends beyond                         |
|              |                               |                |            |                       | box, edges cut, good                       |
|              |                               |                |            |                       | condition                                  |
| 40d          | RICHARDSON SPRINGS NW         |                | n/a        |                       |                                            |
| 40f          | RICHARDSON SPRINGS            |                | n/a        |                       |                                            |
| 40k          | CHICO                         |                | n/a        |                       |                                            |
| 401          | ORD FERRY                     |                | n/a        |                       |                                            |
| 40m          | LLANO SECO                    |                | n/a        | 500/                  | 1.0                                        |
| 40p          | OROVILLE                      |                | n/a        | over 50%              | upper left cut off                         |
| 49a          | PALERMO                       |                | 7.5        |                       | Upper right and lower                      |
| 49b          | BIGGS                         |                | 7.5        |                       | left cut off                               |
| 490<br>49c   | WEST OF BIGGS                 |                | 7.5        |                       |                                            |
| 490<br>49d   | BUTTE CITY                    |                | 7.5        |                       |                                            |
| 49U<br>49E   | MARYSVILLE BUTTES             | _              | n/a        |                       | This quad may have                         |
| 4)L          | MARTSVILLE DOTTES             |                | n/a        |                       | high RMSE.                                 |
| 49f          | PENNINGTON                    |                | 7.5        |                       | lingh KWDL.                                |
| 49g          | GRIDLEY                       |                | 7.5        |                       |                                            |
| 49h          | HONCUT                        |                | 7.5        |                       |                                            |
| 49i          | YUBA CITY                     |                | 7.5        |                       |                                            |
| 49j          | SUTTER                        |                | 7.5        |                       |                                            |
| 49k          | SUTTER BUTTES                 |                | 7.5        | approx. 50%           | Contour level 5 feet,                      |
|              |                               |                |            | TT                    | between broken                             |
|              |                               |                |            |                       | contours 500 feet.                         |
| 491          | MERIDIAN                      | _              | 7.5        |                       |                                            |
| 49m          | GRIMES                        |                | 7.5        |                       |                                            |
| 49n          | TISDALE WEIR                  |                | 7.5        |                       |                                            |
| 490          | GILSIZER SLOUGH               |                | 7.5        |                       |                                            |
| -            |                               |                |            |                       |                                            |

| VTM<br>quadrangle<br>number | Quadrangle name   | Root<br>mean<br>square<br>error (m) | Quadrangle<br>size,<br>in<br>minutes | Extent of<br>quadrangle<br>surveyed —<br>100 percent if blank | Notes<br>made during<br>digitization                                           |
|-----------------------------|-------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|
| 49p                         | OLIVEHURST        |                                     | 7.5                                  |                                                               |                                                                                |
| 50e                         | LOMA RICA         |                                     | 7.5                                  | over 50%                                                      | upper right corner cut<br>off, but present,<br>incomplete topo and<br>veg work |
| 50m                         | WHEATLAND         | 107.4                               | 7.5                                  |                                                               |                                                                                |
| 57c                         | LINCOLN           | 137.4                               | n/a                                  |                                                               | Values for this series from the 30' quad.                                      |
| 57d                         | SHERIDAN          | 137.4                               | 7.5                                  |                                                               |                                                                                |
| 57e                         | PLEASANT GROVE    | 137.4                               | 7.5                                  |                                                               |                                                                                |
| 57f                         | ROSEVILLE         | 137.4                               | 7.5                                  | 500/                                                          | 4 1 14                                                                         |
| 57j                         | FOLSOM            | 137.4                               | 7.5                                  | over 50%                                                      | map not glued to<br>canvas, entire. Only<br>partial topo and veg<br>coverage   |
| 57k                         | CITRUS HEIGHTS    | 137.4                               | 7.5                                  |                                                               |                                                                                |
| 571                         | RIO LINDA         | 137.4                               | 7.5                                  |                                                               |                                                                                |
| 57n                         | CARMICHAEL        | 137.4                               | 7.5                                  |                                                               |                                                                                |
| 67a                         | CARBONDALE        | 40.5                                | 7.5                                  |                                                               |                                                                                |
| 67h                         | GOOSE CREEK       |                                     | 7.5                                  |                                                               |                                                                                |
| 67i                         | CLEMENTS          |                                     | 7.5                                  |                                                               |                                                                                |
| 67p                         | LINDEN            |                                     | 7.5                                  |                                                               |                                                                                |
| 781                         | LA GRANGE         | _                                   | 7.5                                  | over 50%                                                      | only partial topo and<br>veg map                                               |
| 78m                         | SNELLING          | _                                   | 7.5                                  |                                                               |                                                                                |
| 78n                         | MERCED FALLS      |                                     | 7.5                                  | over 50%                                                      | only partial topo and veg map                                                  |
| 800                         | WESTLEY           | 37.8                                | 7.5                                  | approx. less than 50%                                         | partial veg mapped,<br>legends in margin                                       |
| 79c                         | BACHELOR VALLEY   | 42.5                                | 7.5                                  | approx. less than 50%                                         | only partial veg                                                               |
| 79d                         | FARMINGTON        | 42.5                                | 7.5                                  | approx. less than 50%                                         | very small amount of<br>veg                                                    |
| 79f                         | OAKDALE           | 42.5                                | 7.5                                  |                                                               |                                                                                |
| 79i                         | COOPERSTOWN       | 42.5                                | 7.5                                  | approx. less than 50%                                         | partial veg mapped                                                             |
| 79p                         | TURLOCK LAKE      | 42.5                                | 7.5                                  | approx. less than 50%                                         | partial veg mapped                                                             |
| 800                         | WESTLEY           | 37.8                                | n/a                                  | approx. less than 50%                                         | partial veg mapped,<br>legends in margin                                       |
| 87a                         | WINTON            | 22.2                                | 7.5                                  |                                                               | Old Quadrangle name                                                            |
| 88c                         | HAYSTACK MOUNTAIN | 22.2                                | 7.5                                  |                                                               | Old Quadrangle name                                                            |
| 88d                         | YOSEMITE LAKE     | 22.2                                | 7.5                                  | approx. less than 50%                                         | very small amount of<br>veg mapped                                             |
| 88f                         | PLANADA           | 22.2                                | 7.5                                  | approx. less than 50%                                         | partial veg mapped,<br>legend                                                  |
| 88i                         | RAYNOR CREEK      | 22.2                                | 7.5                                  | approx. less than 50%                                         | very small amount of veg mapped                                                |
| 88j                         | LE GRAND          | 22.2                                | 7.5                                  | approx. less than 50%                                         | very small amount of<br>veg mapped                                             |
| 101a<br>111a                |                   | 31.4                                | 7.5<br>7.5                           |                                                               |                                                                                |
| 111h                        | ROCKY HILL        | 56.2                                | 7.5                                  | approx. 50%                                                   | no polys in the flats                                                          |
| 162m                        | LA CRESENTA       | 141.5                               | 7.5                                  | TT                                                            | Old Quadrangle name                                                            |
| 162n                        | SUNLAND           | 141.5                               | 7.5                                  |                                                               | Old Quadrangle name                                                            |
| 1620                        | PACOIMA           | 141.5                               | 7.5                                  |                                                               | Old Quadrangle name                                                            |
| 162p                        | VAN NUYS          | 141.5                               | 7.5                                  | approx. 50%                                                   | about 1/2 of map has<br>veg polys; old<br>quadrangle name                      |
| 162s                        | ALTADENA          | 141.5                               | 7.5                                  |                                                               | Old Quadrangle name                                                            |
| 162s                        | SIERRA MADRE      |                                     | 7.5                                  | approx. 50%                                                   | a few veg polys                                                                |
| 162u                        | EL MONTE          |                                     | 7.5                                  | approx. less than 50%                                         | legend in map, partial<br>polys; old quadrangle<br>name                        |

| VTM<br>quadrangle<br>number | Quadrangle name | Root<br>mean<br>square<br>error (m) | Quadrangle<br>size,<br>in<br>minutes | Extent of<br>quadrangle<br>surveyed —<br>100 percent if blank | Notes<br>made during<br>digitization                                                                       |
|-----------------------------|-----------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 162v                        | ALHAMBRA        |                                     | 7.5                                  | approx. 50%                                                   | partial polys, legend on<br>margin; old<br>quadrangle name                                                 |
| 162x                        | HOLLYWOOD       | 141.5                               | 7.5                                  | approx. less than 50%                                         | mostly city; old<br>quadrangle name                                                                        |
| 162y                        | SAWTELLE        | 141.5                               | 7.5                                  |                                                               | Old Quadrangle name                                                                                        |
| 163p                        | AZUSA           | _                                   | 7.5                                  |                                                               | Old Quadrangle name                                                                                        |
| 163q                        | GLENDORA        | _                                   | 7.5                                  | approx. 75%                                                   | about 1/2 of map has<br>veg polys and topo<br>lines; ; old<br>quadrangle name                              |
| 163r                        | LA VERNE        | —                                   | 7.5                                  | approx. 75%                                                   | partial polys; old<br>quadrangle name                                                                      |
| 163w                        | CLAREMONT       | —                                   | 7.5                                  | approx. less than 50%                                         | partial polys, legend on<br>map; ; old<br>quadrangle name                                                  |
| 163x                        | COVINA          | _                                   | 7.5                                  |                                                               | Old Quadrangle name                                                                                        |
| 163y                        | PUENTE          | _                                   | 7.5                                  |                                                               | Old Quadrangle name                                                                                        |
| 177d                        | LA BREA         | _                                   | n/a                                  | approx. 50%                                                   | 1/2 of map has polys                                                                                       |
| 177e                        | LA HABRA        | 52.0                                | 7.5                                  | approx. less than 50%                                         | bounding box<br>coordinates cut off,<br>check against other<br>maps. Partial polys;<br>old quadrangle name |
| 178d                        | INGLEWOOD       |                                     | n/a                                  | approx. less than 50%                                         | partial veg polys; old<br>quadrangle name                                                                  |

APPENDIX 4. The list of all codes and the names assigned to them in the VTM map data. Codes with parentheses around the species name indicate the entity was dead.

APPENDIX 4. CONTINUED

| data. Codes with parentheses around                      | Service Service and land |                                              |  |  |
|----------------------------------------------------------|--------------------------|----------------------------------------------|--|--|
| te the entity was dead.                                  | Species<br>code          | Species and land cover name used             |  |  |
| Species and land cover name used                         | Arc                      | Artemisia cana bolanderi                     |  |  |
|                                                          | Are                      | Arctostaphylos regismontana                  |  |  |
| No data                                                  | Arr                      | Artemisia rothrockii                         |  |  |
| Quercus agrifolia                                        | Arsp                     | Artemisia spinescens                         |  |  |
| Alnus rhombifolia                                        | As                       | Adenostoma sparsifolium                      |  |  |
| Populus tremuloides                                      | Asa<br>Asbo              | Actaea rubra<br>Astragalus bolanderi         |  |  |
| Amelanchier alnifolia<br>Arctostaphylos auriculata       | Asc                      | Astragatus botanderi<br>Asclepias cordifolia |  |  |
| Arctostaphylos andersonii                                | Ase                      | Arctostaphylos nummularia                    |  |  |
| Arctostaphylos pechoensis                                | Asi                      | Arctostaphylos silvicola                     |  |  |
| Artemisia arbuscula                                      | Asl                      | Aster chilensis                              |  |  |
| Xylococcus bicolor                                       | Aso2                     | Aristida oligantha                           |  |  |
| Abronia maritima                                         | Asp                      | Atriplex spinifera                           |  |  |
| Artemisia californica                                    | Ast                      | Arctostaphylos stanfordiana                  |  |  |
| Amorpha californica                                      | At                       | Arctostaphylos tomentosa                     |  |  |
| Acer glabrum                                             | Atb                      | Atriplex lentiformis breweri                 |  |  |
| Acleisanthes longiflora                                  | Atc                      | Atriplex canescens                           |  |  |
| Achyrachaena mollis                                      | Ate                      | Alnus incana tenuifolia                      |  |  |
| Arctostaphylos canescens                                 | Atem                     | Artemisia sp.                                |  |  |
| Arctostaphylos columbiana                                | Atex                     | Atriplex argentea mohavensis                 |  |  |
| Acaena pinnatifida californica                           | Atl                      | Atriplex lentiformis                         |  |  |
| Acamptopappus sphaerocephalus                            | Ato                      | Artemisia nova<br>Atteinlar, polyagung       |  |  |
| Arctostaphylos pringlei drupacea<br>Adolphia californica | Atp<br>Atr               | Atriplex polycarpa<br>Artemisia tridentata   |  |  |
| Artemisia dracunculus                                    | Atri                     | Artemisia tridentata<br>Artemisia tridentata |  |  |
| Arctostaphylos manzanita elegans                         | Att                      | Atriplex lentiformis torreyi                 |  |  |
| Aesculus californica                                     | Atx                      | Atriplex sp.                                 |  |  |
| Adenostoma fasciculatum                                  | Aty                      | Artemisia pycnocephala                       |  |  |
| Atriplex confertifolia                                   | Av                       | Arctostaphylos viscida                       |  |  |
| Amorpha fruticosa                                        | Avb                      | Avena barbata                                |  |  |
| Arctostaphylos glauca                                    | Avb2                     | Avena barbata                                |  |  |
| Elymus caninus                                           | Avf2                     | Avena fatua                                  |  |  |
| Arctostaphylos glandulosa                                | Avh                      | Artemisia douglasiana                        |  |  |
| Acacia greggii                                           | Avh2                     | Artemisia vulgaris heterophylla              |  |  |
| Pseudoroegneria spicata spicata                          | Avx2                     | Avena sp.                                    |  |  |
| Arctostaphylos hookeri                                   | Aw                       | Arctostaphylos wieslanderi                   |  |  |
| Airport                                                  | Ax                       | Astragalus sp.                               |  |  |
| Allenrolfea occidentalis                                 | Axp                      | Arctostaphylos sp.                           |  |  |
| Arctostaphylos manzanita                                 | Ay<br>B                  | Arctostaphylos sp.                           |  |  |
| Arctostaphylos viscida mariposa<br>Aster chilensis       | B<br>B1                  | Quercus kelloggii<br>Abies bracteata         |  |  |
| Arctostaphylos morroensis                                | B3                       | Populus balsamifera trichocarpa              |  |  |
| Arctostaphylos morroensis<br>Arctostaphylos myrtifolia   | Ba                       | Barren                                       |  |  |
| Arctostaphylos nevadensis                                | Bas2                     | Bassia hyssopifolia                          |  |  |
| Arctostaphylos nevadensis                                | Bc                       | Brickellia californica                       |  |  |
| Antirrhinum multiflorum                                  | Bd                       | Baccharis douglasii                          |  |  |
| Arctostaphylos nissenana                                 | Be                       | Baccharis emoryi                             |  |  |
| Annuals                                                  | Beach                    | Beach                                        |  |  |
| Arctostaphylos otayensis                                 | Ber                      | Berberis aquifolium repens                   |  |  |
| Arctostaphylos obispoensis                               | Bf                       | Berberis fremontii                           |  |  |
| Arctostaphylos patula                                    | Bg                       | Brickellia grandiflora                       |  |  |
| Artemisia tridentata parishii                            | Bg2                      | Bromus grandis                               |  |  |
| Apocynum cannabinum                                      | Bh                       | Bromus hordeaceus                            |  |  |
| Aira caryophyllea                                        | Bh2                      | Bromus hordeaceus<br>Tritalain inizialar     |  |  |
| Arctostaphylos pechoensis                                | Bi<br>D=2                | Triteleia ixioides                           |  |  |
| Arctostaphylos pilosula                                  | Bm2<br>Bma2              | Bromus carinatus carinatus                   |  |  |
| Arctostaphylos pumila                                    | Bma2<br>Bn               | Bromus madritensis<br>Berberis nervosa       |  |  |
| Arctostaphylos patula<br>Arctostaphylos mewukka mewukka  | Bn<br>Bn                 |                                              |  |  |
| Arctostaphylos mewukka mewukka<br>Arctostaphylos pungens | Bp<br>Br2                | Baccharis pilularis<br>Bromus diandrus       |  |  |
| Arctostaphylos pungens<br>Arctostaphylos parryana        | Br2<br>Bra2              | Bromus atanarus<br>Bromus hordeaceus         |  |  |
| Arctostaphylos parryana<br>Arctostaphylos rudis          | Brm                      | Brickellia microphylla                       |  |  |
| Agrostis variabilis                                      | Brm2                     | Briza minor                                  |  |  |
| 115105115 Fulluonis                                      | DIIII2                   | Di 124 mator                                 |  |  |

Species code

А

A2

A3

Aa

Aaa

Aan

Aap

Aar

Ab

Ac

Aca

Acg

Acl

Acm

Acn

Aco

Acp

Acs

Ad

Ado

Adr

Ae

Aec

Af

Aff

Afr

Ag

Agc2

Ags2

Airpt

Ah

Alo

Am

Ama

Ame

Amr

Amy

An

Ane

Ang

Ani

Ann

Aob

Ao

Ap

Apa

Apc

Apc2

Ape

Api

Apm

App

Aps

Apu

Apy

Ār

Ar2

Agl Agr

Abm

2016]

APPENDIX 4. CONTINUED

| Species<br>code | Species and land cover name used                | Species code | Species and land cover name used                          |  |  |
|-----------------|-------------------------------------------------|--------------|-----------------------------------------------------------|--|--|
| Bru             | Bromus madritensis rubens                       | Cog          | Coreopsis gigantea                                        |  |  |
| Bru2            | Bromus madritensis rubens                       | Col          | Calystegia occidentalis s.l.                              |  |  |
| Brx             | Unknown Code                                    | Coo          | Calystegia occidentalis                                   |  |  |
| Bs              | Pseudotsuga macrocarpa                          | Ср           | Pinus coulteri                                            |  |  |
| Bsg             | Balsamorhiza sagittata                          | Cpa          | Ceanothus palmeri                                         |  |  |
| Bsp2            | Bromus sp.                                      | Cpl          | Ceanothus papillosus                                      |  |  |
| BT<br>Bt2       | Sequoia gigantea                                | Сро          | Ceanothus prostratus                                      |  |  |
| Burn            | <i>Bromus tectorum</i><br>Burn                  | Cpr<br>Cpu   | Ceanothus parryi<br>Calochortus pulchellus                |  |  |
| Bv              | Baccharis salicifolia                           | Cpu<br>Cpv   | Ceanothus parvifolius                                     |  |  |
| Bv2             | Bromus vulgaris                                 | Cr           | Corvlus cornuta californica                               |  |  |
| Bx2             | Bromus sp.                                      | Cra          | Coleogyne ramosissima                                     |  |  |
| C               | Quercus chrysolepis                             | Crc          | Croton californicus                                       |  |  |
| C.Nev           | Cupressus nevadensis                            | Crf          | Ceanothus fresnensis                                      |  |  |
| Ca              | Ceanothus foliosus foliosus                     | Cri          | Ceanothus cuneatus rigidus                                |  |  |
| Ca1             | Opuntia sp.                                     | Crn          | Cryptantha intermedia                                     |  |  |
| CAG             | Únknown Code                                    | Cs           | Chrysolepis sempervirens                                  |  |  |
| Cax             | Carex sp.                                       | Csa          | Ceanothus sanguineus                                      |  |  |
| Cb              | Cercocarpus betuloides                          | Cse          | Ceanothus prostratus                                      |  |  |
| Cc              | Ceanothus cuneatus                              | Cso          | Ceanothus oliganthus sorediatus                           |  |  |
| Ccl             | Carpenteria californica                         | Csp          | Ceanothus spinosus                                        |  |  |
| Ccm             | Chrysolepis chrysophylla minor                  | Ct           | Ceanothus thyrsiflorus                                    |  |  |
| Cco             | Ceanothus cordulatus                            | Ctc          | Ceanothus thyrsiflorus                                    |  |  |
| Ccr             | Ceanothus crassifolius                          | Ctl          | Ceanothus tomentosus olivaceus                            |  |  |
| Ccu             | Ceanothus cuneatus                              | Cto          | Ceanothus tomentosus                                      |  |  |
| Ccx<br>Cd       | Unknown Code<br>Ceanothus leucodermis           | Cu<br>Cv     | Cultivated<br>Ceanothus velutinus                         |  |  |
| Cde             | Ceanothus dentatus                              | Cve          | Ceanothus vertucosus                                      |  |  |
| Cdi             | Ceanothus diversifolius                         | Cve<br>Cvp   | Chrysothamnus viscidiflorus puberulus                     |  |  |
| Cdu             | Cneoridium dumosum                              | Cx           | Ceanothus sp.                                             |  |  |
| Ce              | Echinocereus engelmannii                        | Cxb          | Carex barbarae                                            |  |  |
| Cec             | Cercis occidentalis                             | Cy           | Cycladenia humilis                                        |  |  |
| Cem             | Centaurea melitensis                            | Ď            | Pseudotsuga menziesii menziesii                           |  |  |
| Ceme            | Cemetary                                        | D'           | Quercus douglasii                                         |  |  |
| Ceo             | Cephalanthus occidentalis californicu           | D3           | Fraxinus anomala                                          |  |  |
| Cf              | Chamaebatia foliolosa                           | Da           | Mimulus aurantiacus                                       |  |  |
| Cfa             | Chamaebatia australis                           | Dam          | Datura wrightii                                           |  |  |
| Cfo             | Ceanothus foliosus                              | Dc           | Dicentra chrysantha                                       |  |  |
| Cg              | Ceanothus greggii                               | De           | Desert                                                    |  |  |
| Cgp             | Ceanothus greggii perplexans                    | Deser        | Desert                                                    |  |  |
| Cgr             | Collomia grandiflora                            | Dis2         | Distichlis spicata                                        |  |  |
| Chb<br>Chc      | Ericameria bloomeri<br>Chagagatia agmihaglinia  | DIt2         | Distichlis spicata                                        |  |  |
| Chn             | Chaenactis carphoclinia                         | DLake<br>Dr  | Dry Lake<br>Pinus sabiniana                               |  |  |
| Chp             | Chrysothamnus nauseosus<br>Chrysothamnus parryi | Dp<br>Dpu    | Mimulus aurantiacus puniceus                              |  |  |
| Chr             | Chrysothamnus sp.                               | Dr           | Dendromecon rigida                                        |  |  |
| Chv             | Chrysothamnus viscidiflorus                     | Dump         | Dump                                                      |  |  |
| Chx             | Unknown Code                                    | Dy           | Cupressus sargentii                                       |  |  |
| Ci              | Ceanothus integerrimus                          | Ē            | Ouercus engelmannii                                       |  |  |
| Cim             | Ceanothus impressus                             | Ea           | Encelia actoni                                            |  |  |
| Cin             | Ceanothus incanus                               | Ear          | Ericameria arborescens                                    |  |  |
| Cj              | Ceanothus jepsonii                              | Eb           | Ericameria brachylepis                                    |  |  |
| Cl              | Cercocarpus ledifolius                          | Eba          | Eriogonum baileyi                                         |  |  |
| Cle             | Ceanothus lemmonii                              | Ec           | Eriodictyon californicum                                  |  |  |
| Clo             | Ceanothus sp.                                   | Eca          | Ephedra californica                                       |  |  |
| Cm              | Ceanothus megacarpus megacarpus                 | Ech          | Eucrypta chrysanthemifolia chrysanthemifolia              |  |  |
| Cn              | Cornus nuttallii                                | Ech2         | Ellisia chrysanthemifolia                                 |  |  |
| Cnc             | Chrysothamnus nauseosus consimilis              | Eci          | Erodium cicutarium                                        |  |  |
| Cng             | Chrysothamnus nauseosus gnaphalodes             | Eci2         | Erodium cicutarium                                        |  |  |
| Cno             | Chrysothamnus nauseosus albicaulis              | Eco<br>Eco   | Eriophyllum confertiflorum                                |  |  |
| Co<br>Coa       | Ceanothus oliganthus<br>Convolvulus arvensis    | Eco2<br>Ecr  | Elymus condensatus<br>Friodictvon crassifolium            |  |  |
| Cof             |                                                 | Ecr          | Eriodictyon crassifolium<br>Fricameria cupeata spathulata |  |  |
| 001             | Lessingia filaginifolia                         | LUS          | Ericameria cuneata spathulata                             |  |  |

APPENDIX 4. CONTINUED

APPENDIX 4. CONTINUED

| Species    | Species and land                                | Species     | Species and land                                              |
|------------|-------------------------------------------------|-------------|---------------------------------------------------------------|
| code       | cover name used                                 | code        | cover name used                                               |
| Ecu        | Ericameria cuneata                              | Gl          | Abies grandis                                                 |
| Ed         | Eriogonum deflexum                              | Gb          | Gnaphalium canescens beneolens                                |
| Ee         | Ericameria ericoides                            | Gd          | Gayophytum diffusum                                           |
| Eel        | Eriogonum elatum                                | Ge          | Garrya elliptica                                              |
| Ef         | Eriogonum fasciculatum                          | Gf          | Garrya fremontii                                              |
| Efa        | Marah fabacea                                   | Gfb         | Garrya buxifolia                                              |
| Efc        | Eriogonum cinereum                              | Gfl         | Garrya flavescens                                             |
| Eff        | Eriogonum fasciculatum foliolosum               | Gfv         | Garrya congdonii                                              |
| Efp        | Eriogonum fasciculatum polifolium               | Gh          | Gaultheria humifusa                                           |
| Ehe<br>Em  | Eriogonum heermannii<br>Euphorbia misera        | Gl<br>Glaci | <i>Gutierrezia microcephala</i><br>Glacier                    |
| Em2        | Elymus X trachycaulus                           | Gls         | Glossopetalon spinescens                                      |
| Emi        | Eriogonum microthecum                           | Gr          | Grass sp.                                                     |
| Eml        | Eriogonum microthecum                           | Gr2         | Grass sp.                                                     |
| Emo        | Ericameria cooperi cooperi                      | Grs         | Grayia spinosa                                                |
| Emp        | Emmenanthe penduliflora                         | Gs          | Gaultheria shallon                                            |
| En         | Eriogonum nudum                                 | Gsa         | Gutierrezia sarothrae                                         |
| Enc        | Encelia californica                             | Gv          | Garrya veatchii                                               |
| Ene        | Ephedra nevadensis                              | Gy          | Cupressus goveniana                                           |
| Enf        | Encelia farinosa                                | H           | Tsuga heterophylla                                            |
| Ep         | Eriogonum parvifolium                           | H'          | Unknown Code                                                  |
| Epa        | Ericameria palmeri                              | H2          | Aesculus californica                                          |
| Epc        | Epilobium ciliatum                              | Hb          | Herbs                                                         |
| Epi        | Ericameria pinifolia                            | Hb2         | Herbs                                                         |
| Epv        | Ephedra viridis                                 | Hd          | Holodiscus discolor                                           |
| Era        | Eriogonum arborescens                           | Hdd         | Holodiscus discolor                                           |
| Erc        | Ericameria cooperi cooperi                      | Hdg         | Holodiscus microphyllus glabrescens                           |
| Erd<br>Ere | Eriogonum douglasii douglasii                   | Hg          | Heterotheca grandiflora                                       |
| Ero        | Eriogonum elongatum elongatum<br>Erodium botrys | Hg2<br>Hgr  | Hordeum marinum gussoneanum<br>Helianthus gracilentus         |
| Es         | Picea engelmannii                               | Hgu2        | Hordeum marinum gussoneanum                                   |
| Esa        | Eriophyllum staechadifolium                     | Hj2         | Hordeum jubatum                                               |
| Esc        | Eschscholzia californica                        | Hm          | Tsuga mertensiana                                             |
| Ese        | Eremocarpus setigerus                           | Hm2         | Hordeum murinum                                               |
| Esp        | Erodium sp.                                     | Нр          | Hypericum perforatum                                          |
| Et         | Eriodictyon trichocalyx                         | Hp2         | Hypericum perforatum                                          |
| Etl        | Eriodictyon trichocalyx lanatum                 | Hpe         | Helianthus petiolaris petiolaris                              |
| Eto        | Eriodictyon tomentosum                          | Hs          | Hazardia squarrosa                                            |
| Eu         | Eucalyptus sp.                                  | Hsc         | Helianthemum scoparium                                        |
| Euc        | Camissonia californica                          | Hsv         | Helianthemum scoparium                                        |
| Eul        | Krascheninnikovia lanata                        | Hys         | Hymenoclea salsola                                            |
| Eum        | Eriogonum umbellatum                            | I           | Calocedrus decurrens                                          |
| Ev         | Eriogonum roseum                                | Ia          | Isomeris arborea                                              |
| Evm        | Eriogonum luteolum                              | Iax         | Iva axillaris robustior                                       |
| Ew         | Eriogonum wrightii                              | Imi         | Iris missouriensis                                            |
| Ex<br>F3   | Eriogonum sp.<br>Populus fremontii fremontii    | Iv<br>Ivv   | Isocoma acradenia acradenia<br>Isocoma monziasii vermoniaidas |
| Far2       | Festuca sp.                                     | J           | Isocoma menziesii vernonioides<br>Pinus jeffreyi              |
| Fbi        | Ambrosia chamissonis                            | J<br>J3     | Juncus sp.                                                    |
| Fc         | Fremontodendron californicum                    | Jc          | Juniperus californica                                         |
| Fca        | Fragaria vesca                                  | Jm          | Juniperus communis                                            |
| Fch        | Ambrosia chenopodiifolia                        | Jo          | Juniperus occidentalis                                        |
| Fco        | <i>Festuca</i> sp. <i>viridula</i>              | Ju          | Juniperus osteosperma                                         |
| Fd         | Fraxinus dipetala                               | Jue         | Juncus effusus                                                |
| Fg         | Frankenia salina                                | Jx          | Juncus sp.                                                    |
| Fm2        | Vulpia myuros hirsuta                           | K           | Pinus attenuata                                               |
| Fmv2       | Vulpia myuros myuros                            | Kc2         | Koeleria macrantha                                            |
| Fnm        | Forestiera pubescens                            | Koa         | Kochia americana                                              |
| Fp         | Pinus balfouriana                               | L           | Pinus contorta murrayana                                      |
| Fr2        | Festuca sp. rubra                               | Ľ'          | Umbellularia californica                                      |
| Fra        | Ambrosia acanthicarpa                           | La          | Lupinus albifrons                                             |
| Fx2        | <i>Festuca</i> sp.                              | Laf         | Lithophragma affine<br>Water                                  |
| G          | Quercus garryana                                | Lake        | Water                                                         |

2016]

| Species<br>code | Species and land cover name used            | Species<br>code | Species and land cover name used                 |  |
|-----------------|---------------------------------------------|-----------------|--------------------------------------------------|--|
| Lal             | Lupinus albicaulis                          | Ok              | Quercus kelloggii                                |  |
| Lar             | Lupinus arboreus                            | Olive           | Olive orchard                                    |  |
| Lc              | Pinus contorta                              | Oo              | Opuntia X occidentalis                           |  |
| Lcf             | Leptodactylon californicum                  | Ool             | Opuntia littoralis                               |  |
| Lch             | Lupinus chamissonis                         | Ot              | Opuntia treleasei                                |  |
| Lde             | Lithocarpus densiflorus echinoides          | Ox              | <i>Opuntia</i> sp.                               |  |
| Lg              | Ledum glandulosum                           | P               | Pinus monophylla<br>Washingtonin Glifford        |  |
| Lig<br>Lm2      | Ligusticum grayi                            | P3<br>Pa        | Washingtonia filifera                            |  |
| Liii2<br>Ln     | Lolium multiflorum<br>Lepidium nitidum      | Pad             | Heteromeles arbutifolia<br>Prunus andersonii     |  |
| Lp              | Pinus flexilis                              | Pal             | Palafoxia arida                                  |  |
| Lpu             | Leptodactylon pungens                       | Pan             | Keckiella antirrhinoides                         |  |
| Lpu             | Lupinus sp.                                 | Pb              | Keckiella breviflora                             |  |
| Ls              | Lotus scoparius                             | Pba             | Phacelia brachyloba                              |  |
| Lsa             | Lotus selsuginosus                          | Pbc             | Ptelea crenulata                                 |  |
| Lsp             | Lathyrus splendens                          | Pbs             | Polygonum bistortoides                           |  |
| Lsq             | Lepidospartum squamatum                     | Pc              | Keckiella cordifolia                             |  |
| Lsu             | Lonicera subspicata                         | Pci             | Plectritis ciliosa                               |  |
| Lt              | Larrea tridentata                           | Pcm             | Penstemon sp.                                    |  |
| Luca            | Lupinus argenteus heteranthus               | Pct             | Horkelia tridentata tridentata                   |  |
| Lul             | Lupinus lepidus lobbii                      | Pd              | Prunus virginiana demissa                        |  |
| Lup             | Lupinus sp.                                 | Pda             | Polygonum davisiae                               |  |
| Lux             | Lupinus excubitus                           | Pe              | Prunus emarginata                                |  |
| Lx              | Lotus sp.                                   | Pf              | Prunus fasciculata                               |  |
| Lys             | Stephanomeria spinosa                       | Pfr             | Prunus fremontii                                 |  |
| M               | Arbutus menziesii                           | Pg              | Purshia tridentata glandulosa                    |  |
| M2              | Acer macrophyllum                           | Phb             | Phyllodoce breweri                               |  |
| M3              | Alnus incana tenuifolia                     | Phd             | Phlox cespitosa                                  |  |
| Ma              | Carpobrotus chilensis                       | Phh             | Phacelia heterophylla virgata                    |  |
| Mad             | Ericameria discoidea                        | Pht             | Phacelia thermalis                               |  |
| Marsh           | Marsh                                       | Pi              | Prunus ilicifolia                                |  |
| Mas             | Ericameria suffruticosa                     | Pj              | Prosopis glandulosa torreyana                    |  |
| Mbu2            | Melica bulbosa                              | Pl              | Philadelphus lewisii                             |  |
| Mc              | Myrica californica                          | Plb             | Horkelia cuneata puberula                        |  |
| Md              | Meadow                                      | Pln             | Plagiobothrys nothofulvus                        |  |
| Md2             | Meadow                                      | Pm              | Pickeringia montana                              |  |
| Mdw             | Meadow                                      | Po              | Pellaea mucronata                                |  |
| Mh<br>Mhi       | Myrica hartwegii<br>Madiana maharana ha     | Pos             | Ivesia santolinoides                             |  |
| Mic             | Medicago polymorpha<br>Miaropus adiforniaus | Pot<br>Pp       | Populus tremuloides<br>Pinus guadrifolia         |  |
| Mill            | <i>Micropus californicus</i><br>Mill        | *               | Pinus quadrifolia<br>Psorothammus poludonius     |  |
| Ml              | Mirabilis californica                       | Ppo<br>Ps       | Psorothamnus polydenius<br>Penstemon spectabilis |  |
| Mm              | Minubuls californica<br>Minulus moschatus   | Ps2             | Poa secunda secunda                              |  |
| Mo              | Monardella odoratissima                     | Psc2            | Poa secunda secunda                              |  |
| Moss            | Moss                                        | Pse             | Pluchea sericea                                  |  |
| Mp              | Pinus radiata                               | Psp2            | Poa secunda secunda                              |  |
| Mpa             | Malva parviflora                            | Psu             | Prunus subcordata                                |  |
| Mpe             | Claytonia perfoliata                        | Pt              | Purshia tridentata                               |  |
| Mv              | Marrubium vulgare                           | Pta             | Pteridium aquilinum pubescens                    |  |
| Mya             | Cupressus abramsiana                        | Pur             | Arctostaphylos purissima                         |  |
| My              | Cupressus macrocarpa                        | Px2             | Poa sp.                                          |  |
| Mz              | Manzanita sp.                               | Q               | Chrysolepis chrysophylla                         |  |
| Ν               | Torreya californica                         | Qa              | Quercus agrifolia agrifolia                      |  |
| N2              | Acer negundo californicum                   | Qc              | $\widetilde{Q}$ uercus chrysolepis nana          |  |
| Nav2            | Navarretia sp.                              | Qd              | $\widetilde{Q}$ uercus berberidifolia            |  |
| Ng              | Nicotiana glauca                            | Qdo             | $\widetilde{Q}$ uercus douglasii                 |  |
| Np              | Turricula parryi                            | Qdu             | $\widetilde{Q}$ uercus durata                    |  |
| Npa             | Nolina parryi                               | Qe              | Quercus engelmannii                              |  |
| Ny              | Cupressus macnabiana                        | Qg              | $\widetilde{Q}$ uercus garryana                  |  |
| 0 <sup>°</sup>  | Cupressus lawsoniana                        | Qgb             | $\widetilde{Q}$ uercus garryana                  |  |
| O3              | Fraxinus latifolia                          | Qgs             | Quercus garryana                                 |  |
| Ob              | Opuntia bigelovii                           | Qk              | Quercus kelloggii                                |  |
| Oc              | Oemleria cerasiformis                       | Qp              | Quercus palmeri                                  |  |

APPENDIX 4. CONTINUED

| Species<br>code | Species and land cover name used                 | Species<br>code | Species and land cover name used          |
|-----------------|--------------------------------------------------|-----------------|-------------------------------------------|
| Qs              | Quercus sadleriana                               | Smo             | Symphoricarpos mollis                     |
| Qv              | $\widetilde{Q}$ uercus vaccinifolia              | So              | Styrax officinalis redivivus              |
| Qw              | Quercus wislizeni frutescens                     | Sol             | Sonchus oleraceus                         |
| R               | Sequoia sempervirens                             | Sos             | Sorbus scopulina                          |
| R1              | Abies magnifica                                  | Sp2             | Nassella pulchra                          |
| R2<br>Ra        | Alnus rubra<br>Ribes aureum                      | Sr<br>Ss        | Sambucus racemosa                         |
| Rb              | Ribes bracteosum                                 | Ss<br>Ss2       | Salvia spathacea<br>Achnatherum speciosum |
| Rc              | Rhamnus californica                              | Sso             | Salvia sonomensis                         |
| Rca             | Ribes californicum                               | Stn             | Stellaria nitens                          |
| Rce             | Ribes cereum                                     | Str             | Stephanomeria pauciflora                  |
| Rci             | Rhamnus ilicifolia                               | Su              | Solanum umbelliferum                      |
| Rcl             | Rosa californica                                 | Sum             | Suaeda moquinii                           |
| Rcr             | Rhamnus crocea                                   | Sv              | Sambucus mexicana                         |
| Rct             | Rhamnus tomentella tomentella                    | Sx              | Salix sp.                                 |
| Rd              | Toxicodendron diversilobum                       | Sy              | Cupressus sargentii                       |
| Rep             | Reproduction<br>Residence                        | T<br>Tar2       | Lithocarpus densiflorus                   |
| Res<br>Rha      | Rhamnus sp.                                      | Tai2<br>Tc      | Taraxacum sp.<br>Tetradymia canescens     |
| Ri              | Rhus integrifolia                                | Te              | Trientalis latifolia                      |
| Ris             | Ribes sp.                                        | Teg             | Tetradymia glabrata                       |
| River           | Water                                            | Tet             | Tetradymia sp.                            |
| R1              | Malosma laurina                                  | Ti              | Trichostema lanatum                       |
| Rm              | Ribes malvaceum                                  | Tla             | Trichostema lanceolatum                   |
| Ro              | Rhus ovata                                       | Tm2             | Unknown Code                              |
| Rock            | Rock                                             | Тр              | Pinus torreyana                           |
| Ros             | Unknown Code                                     | Tri2            | Trifolium variegatum                      |
| Rp              | Rubus parviflorus                                | Ts              | <i>Tetradymia</i> sp.                     |
| Rr<br>Rt        | Ribes roezlii<br>Rhus trilobata                  | Tule            | Tule<br>Currossus forbasii                |
| Rv              | Rubus ursinus                                    | Ty<br>Tyl       | Cupressus forbesii<br>Typha latifolia     |
| Rve             | Ribes velutinum                                  | Uc              | Umbellularia californica                  |
| Rvg             | Ribes velutinum                                  | Ue              | Ulex europaeus                            |
| S               | Pinus lambertiana                                | V               | Quercus lobata                            |
| S1              | Abies magnifica shastensis                       | V3              | $\widetilde{F}$ raxinus velutina          |
| S3              | Platanus racemosa                                | Vc              | Vitis californica                         |
| Sa              | Salvia apiana                                    | Vec             | Veratrum californicum californicum        |
| Saa             | Salicornia virginica                             | Vg              | Vitis girdiana                            |
| Sab             | Sarcobatus vermiculatus                          | VI<br>V-        | Viguiera laciniata                        |
| Sad<br>Sal      | Salvia dorrii<br>Symphoricarnos albus laevigatus | Vo<br>W         | Vaccinium ovatum<br>Quarcus wislizani     |
| Salsp           | Symphoricarpos albus laevigatus<br>Salvia sp.    | W'<br>W'        | Quercus wislizeni<br>Pinus monticola      |
| Sand            | Sand                                             | W1              | Abies concolor                            |
| Sar             | Symphoricarpos rotundifolius                     | Wash            | Wash                                      |
| Sas             | Salicornia subterminalis                         | Wat             | Water                                     |
| Sav             | Sarcobatus vermiculatus                          | Water           | Water                                     |
| Sc              | Lepechinia calycina                              | Resr            | Reservoir                                 |
| Sca             | Simmondsia chinensis                             | Wc              | Juglans californica                       |
| Sci             | Scirpus acutus                                   | WildH           | Wild hay                                  |
| Scl<br>Sco2     | Salvia clevelandii                               | Wm<br>Wmo       | Wyethia mollis<br>Wyethia mollia          |
| Sco2<br>Scr     | Achnatherum coronatum<br>Salvia dorrii           | Wp              | Wyethia mollis<br>Pinus albicaulis        |
| Sd              | Senecio flaccidus douglasii                      | Ws              | Picea breweriana                          |
| Sf              | Malacothamnus fasciculatus                       | Xa              | Salix lasiolepis                          |
| Sg              | Sambucus mexicana                                | Xcr             | Salix sp.                                 |
| Sha             | Shepherdia argentea                              | Xe              | Salix exigua                              |
| Sia             | Sisymbrium altissimum                            | Xr              | Salix laevigata                           |
| Sih             | Malvella leprosa                                 | Xt              | Xerophyllum tenax                         |
| Sil             | Silene lemmonii                                  | Y               | Pinus ponderosa                           |
| Skt             | Salsola tragus                                   | Yb              | Yucca brevifolia                          |
| SI              | Salvia leucophylla<br>Eniographica linegrifolia  | Ym<br>Vw        | Yucca schidigera                          |
| Sli<br>Sm       | Ericameria linearifolia<br>Salvia mellifera      | Yw<br>#2        | <i>Yucca whipplei</i><br>desert composite |
| 5111            | σαινα πειιμεία                                   | <i>π</i> ~      | desert composite                          |

2016]

| Species | Species and land                     |
|---------|--------------------------------------|
| code    | cover name used                      |
| (A)     | (Quercus agrifolia)                  |
| (Atr)   | (Artemisia tridentata)               |
| (Cb)    | (Cercocarpus betuloides)             |
| (Cd)    | (Ceanothus leucodermis)              |
| (Chr)   | (Chrysothamnus sp.)                  |
| (Cnc)   | (Chrysothamnus nauseosus consimilis) |
| (Cu)    | (Cultivated)                         |
| (D')    | (Quercus douglasii)                  |
| (Dp)    | (Pinus sabiniana)                    |
| (Ef)    | (Eriogonum fasciculatum)             |
| (Gr)    | (Grass sp.)                          |
| (I)     | (Calocedrus decurrens)               |
| (J)     | (Pinus jeffreyi)                     |
| (Jc)    | (Juniperus californica)              |
| (Jo)    | (Juniperus occidentalis)             |
| (L)     | (Pinus contorta murrayana)           |
| (Ps2)   | (Poa secunda secunda)                |
| (Qc)    | (Quercus chrysolepis nana)           |
| (Qd)    | (Quercus berberidifolia)             |
| (Qdu)   | (Quercus durata)                     |
| (Qw)    | (Quercus wislizeni frutescens)       |
| (Res)   | (Residence)                          |
| (W)     | (Quercus wislizeni)                  |
| (W1)    | (Abies concolor)                     |
| (Wp)    | (Pinus albicaulis)                   |
| (Y)     | (Pinus ponderosa)                    |
| (Yw)    | (Yucca whipplei)                     |

# MADROÑO

APPENDIX 5. Summary information about the number of polygons and extent of landcover types in the VTM dataset. This table reports the extents by WHR type. If there is no entry in the WHR2 column, this indicates that this type never appears as the lesser landcover type in a mosaic polygon.

| WHR type                                        | # Polygons   | Area (ha)    | Area (km <sup>2</sup> ) | WHR1 (km <sup>2</sup> ) | WHR2 (km <sup>2</sup> ) |
|-------------------------------------------------|--------------|--------------|-------------------------|-------------------------|-------------------------|
| Alkali Desert Scrub                             | 183          | 181,386.72   | 1813.87                 | 1215.29                 | 598.58                  |
| Alpine Dwarf-Scrub                              | 1            | 11.07        | 0.11                    | 0.11                    |                         |
| Annual Grassland                                | 26,361       | 2,493,051.93 | 24,930.52               | 16,703.45               | 8227.07                 |
| Aspen                                           | 1397         | 16,621.51    | 166.22                  | 111.36                  | 54.85                   |
| Barren                                          | 5084         | 984,838.82   | 9848.39                 | 9848.39                 |                         |
| Bigcone Douglas-Fir                             | 2485         | 40,590.86    | 405.91                  | 271.96                  | 133.95                  |
| Bitterbrush                                     | 554          | 40,665.5     | 406.65                  | 272.46                  | 134.2                   |
| Blue Oak Woodland                               | 7872         | 575,031.04   | 5750.31                 | 3852.71                 | 1897.6                  |
| Blue Oak-Foothill Pine                          | 6208         | 584,171.64   | 5841.72                 | 3913.95                 | 1927.77                 |
| Chamise-Redshank Chaparral                      | 24,594       | 1,482,483.19 | 14,824.83               | 9932.64                 | 4892.19                 |
| Closed-Cone Pine-Cypress                        | 1775         | 42,577.3     | 425.77                  | 285.27                  | 140.51                  |
| Coastal Oak Woodland                            | 16,400       | 413,077.2    | 4130.77                 | 2767.62                 | 1363.15                 |
| Coastal Scrub                                   | 20,787       | 719,598.95   | 7195.99                 | 4821.31                 | 2374.68                 |
| Cropland                                        | 10,953       | 2,287,121.92 | 22,871.22               | 15,323.72               | 7547.5                  |
| Desert Riparian                                 | 41           | 13,766.08    | 137.66                  | 92.23                   | 45.43                   |
| Desert Scrub                                    | 848          | 82,198.27    | 821.98                  | 550.73                  | 271.25                  |
| Desert Succulent Scrub                          | 2            | 88.86        | 0.89                    | 0.89                    |                         |
| Desert Wash                                     | 77           | 16,065.61    | 160.66                  | 107.64                  | 53.02                   |
| Douglas Fir                                     | 3165         | 463,911.64   | 46,39.12                | 3108.21                 | 1530.91                 |
| Dryland Grain Crops                             | 3            | 78.29        | 0.78                    | 0.78                    |                         |
| Eastside Pine                                   | 1043         | 55,391.95    | 553.92                  | 371.13                  | 182.79                  |
| Eucalyptus                                      | 483          | 8559.26      | 85.59                   | 57.35                   | 28.25                   |
| Evergreen Orchard                               | 1            | 10.07        | 0.1                     | 0.1                     |                         |
| Fresh Emergent Wetland                          | 152          | 7536.81      | 75.37                   | 50.5                    | 24.87                   |
| Glacier                                         | 6            | 83.19        | 0.83                    | 0.83                    |                         |
| Jeffrey Pine                                    | 6824         | 423,717.62   | 4237.18                 | 2838.91                 | 1398.27                 |
| Joshua Tree                                     | 48           | 4101.13      | 41.01                   | 41.01                   |                         |
| Juniper                                         | 2207         | 200,936.8    | 2009.37                 | 1346.28                 | 663.09                  |
| Klamath Mixed Conifer                           | 1786         | 246,565.04   | 2465.65                 | 2465.65                 |                         |
| Lacustrine                                      | 1874         | 328,093      | 3280.93                 | 3280.93                 |                         |
| Lodgepole Pine                                  | 2858         | 187,690.68   | 1876.91                 | 1257.53                 | 619.38                  |
| Low Sage                                        | 248          | 13,059.2     | 130.59                  | 87.5                    | 43.1                    |
| Mixed Chaparral                                 | 25,067       | 955,059.69   | 9550.6                  | 6398.9                  | 3151.7                  |
| Montane Chaparral                               | 12,274       | 379,163.82   | 3791.64                 | 2540.4                  | 1251.24                 |
| Montane Hardwood                                | 18,983       | 664,821.89   | 6648.22                 | 4454.31                 | 2193.91                 |
| Montane Hardwood-Conifer                        | 1093         | 45,000.08    | 450                     | 301.5                   | 148.5                   |
| Montane Riparian                                | 1211         | 25,536.53    | 255.37                  | 171.09                  | 84.27                   |
| Pasture                                         | 18           | 216.42       | 2.16                    | 1.45                    | 0.71                    |
| Perennial Grassland                             | 677          | 71,471.24    | 714.71                  | 714.71                  | 1412.06                 |
| Pinyon-Juniper                                  | 2765         | 427,897.64   | 4278.98                 | 2866.91                 | 1412.06                 |
| Ponderosa Pine                                  | 7728         | 661,092.49   | 6610.92                 | 4429.32                 | 2181.61                 |
| Red Fir                                         | 3886         | 362,675.06   | 3626.75                 | 2429.92                 | 1196.83                 |
| Redwood                                         | 1038         | 71,584.58    | 715.85                  | 479.62                  | 236.23                  |
| Sagebrush                                       | 5547         | 569,785.19   | 5697.85                 | 3817.56                 | 1880.29                 |
| Saline Emergent Wetland                         | 322          | 60,783.72    | 607.84                  | 407.25                  | 200.59                  |
| Sierran Mixed Conifer                           | 6667         | 618,111.45   | 6181.11                 | 4141.35                 | 2039.77                 |
| Subalpine Conifer                               | 4140         | 191,573.34   | 1915.73                 | 1283.54                 | 632.19                  |
| Unknown<br>Urban                                | 4561         | 168,449.76   | 1684.5<br>1512.73       | 1684.5                  | 499.2                   |
|                                                 | 389          | 151,272.98   |                         | 1013.53                 |                         |
| Valley Foothill Riparian<br>Valley Oak Woodland | 1454<br>1746 | 54,608.97    | 546.09                  | 365.88                  | 180.21                  |
| Wet Meadow                                      |              | 80,122.67    | 801.23                  | 536.82                  | 264.4                   |
|                                                 | 3985         | 96,410.32    | 964.1                   | 645.95                  | 318.15                  |
| White Fir                                       | 1675         | 121,434.12   | 1214.34                 | 813.61                  | 400.73                  |