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ABSTRACT OF THE DISSERTATION

Dense Human Surface Reconstruction with Lightweight Multi-view System

by

Kunyao Chen

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2022

Professor Truong Nguyen, Chair

Digital humans play the leading roles in every aspect of the virtual world. In recent years,

multi-view reconstruction is emerging as a cutting-edge technique to generate human models.

It reveals the potential to restore intricate surfaces for a wide range of applications requiring

more than minimalist avatars. Even with many promising results, the related systems are still

cumbersome with many requirements on devices and environment. The capture often has to be

performed in a large-scale studio with dozens of HD camera rigs in order to preserve the surface

details as well as mitigate artifacts introduced by occlusion.

Our research aims to simplify the multi-view system and bring it to wider application

scenarios. This goal requires a significant upgrade to the state-of-the-art algorithms in order to

xiv



address gap-region surface and large-displacement registration challenges introduced by reducing

input coverage and curbing computing capability. We tackle these challenges by leveraging

learning-based prior knowledge on 3D human geometries as well as a more robust deformation

framework.

Firstly, we explore learning-based 3D reasoning methods. The current end-to-end frame-

work shows the capability to generate arbitrary 3D shapes with even monocular inputs. We

propose a novel back-propagation method for differentiable rasterizer that improves the accuracy

and decreases the complexity significantly.

With the foundation of reliable surface inference, in the next step, we investigate on

completing the gap-region surface. We realize this purpose in an innovative way that transfers

the time-consuming 3D procedures into a simple 2D image-domain processing. It can work

compatibly with the traditional multi-view depth fusion method.

After that, given a complete key model, we work on fusing the surface information from

other frames in the sequence to further enhance the details. Based on the state-of-the-art method,

we boost the robustness of the embedded deformation in the large-displacement cases when the

models have significant pose and appearance differences. We achieve this with a novel adaptive

regularization and an efficient two-step optimization.

Finally, we design a new framework specifically for human head reconstruction. Instead

of sculpturing the complicated geometries of faces, we focus on generating HD textures and

fusing input sequences with a geometry-aware texture stitching framework. The results preserve

high resolutions details and can be executed in real-time.
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Chapter 1

Introduction

3D human digitization has been drawing huge attention in recent years. While computer-

aided-designed modeling is long applied in the movies and video games industry, the latest

advancements in delicacy and fidelity astonish viewers every now and then. With the support

of modern rendering devices, some of the work (as in Figure 1.1) has blurred the boundaries

between generation and acquisition, achieving the so-called photorealistic phase. Their success

evokes the sense that a digital replica of the real world might be just around the corner.

Figure 1.1: In NVIDIA 2021 GTC keynote, whole kitchen background and several frames of
the speaker was fabricated with advanced modeling and rendering techniques, which was such a
success blindfold that no one noticed until the company revealed the details itself.

1



When people are ambitiously heading towards metaverse, we would like to reconsider

the mature human digitization techniques and argue that the approaches to capture and craft 3D

human models are still far from satisfying for future applications. One line of existing solutions

focuses on generating high-fidelity models without considering efficiency and flexibility. They

adopt very complicated procedures involving numerous capture devices and extensive labor work

to model every detail of the 3D characters and then use motion capture systems or AI-based

tracking methods to restore human movements. However, it is impossible to apply these industrial

solutions to consumer-oriented scenarios in the XR era, where content creators will no longer be

limited to professional and skillful artists, and users may not have access to complex procedures

and overnight processing for a fine-grained model. On the contrary, the other line of solutions

can achieve controllable 3D avatars even with mobile devices. However, these methods are either

over-simplified into cartoon styles or based on certain parametric models, which are often limited

in shape variations, failing to broadly express personal characteristics, subtle body languages, and

some intricate contents such as loose cloth and fancy hairstyles.

Figure 1.2: Off-the-shelf lightweight 3D human digitization solutions. Left: Horizon Avatars
from Meta. Right: parametric models from SMPL-X.

In this context, we aim to build an efficient system that is capable of creating temporal-

consistent, visual-appealing, and detail-enhanced 3D human geometries. Instead of tracking pose

with invasive devices or estimating the parameters for the underlying models, we focus on directly

2



generating ready-to-use dense surfaces with multi-view reconstruction methods. We constrain

the system setup with four consumer-level cameras in combination with a single computing

unit, which is an acceptable upgrade to most current VR/AR hardware packages. Based on this

lightweight design, we proposed several algorithms to guarantee reasonable and complete model

generation with limited resources. To better explain the proposed methods, several basic concepts

of multi-view reconstruction are summarized in the following section.

1.1 Multi-view Reconstruction

1.1.1 TSDF Representation

In this dissertation, multi-view reconstruction specifically refers to a branch of methods

that integrates multi-source images from multiple viewpoints into a 3D representation. We

designate depth images as our main source of input. The general consideration is depth images

provide more explicit spatial information compared with conventional RGB images. In practice,

they can help us significantly reduce the number of capture devices required for reconstruction.

Another noteworthy point is, due to the emergence of low-cost IR sensors, acquiring HD indoor

depth is possible and affordable.

Most recent solutions to fuse the depth images from different viewpoints can be traced

back to KinectFusion [136]. It adopts a 3D volumetric representation denoting as Truncated

Signed Distance Function (TSDF). For each voxel in the space, TSDF value indicates the distance

from the voxel to the nearest surface. Inside regions and outside regions are separated with

positive and negative signs. Besides, the data are truncated to accommodate the fusion logic.

TSDF can be further transferred into mesh with marching cube [82] or directly rendered into

image with ray tracing techniques [42].
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1.1.2 Warping Field Estimation

The essential step to generate TSDF is to map various co-related 2.5D depth back into

a single 3D volume. For static objects, the mapping function (usually specified as a four-by-

four matrix in homogeneous coordinates) is uniformed across the whole space given a specific

viewpoint. However, for dynamic objects, integrating depth from different frames is far more

challenging. In this scenario, the mapping function is not uniformed. A warping field has to be

estimated for variation of the geometries.

DynamicFusion [91] calculates a down-sampled version of the 6D warping field based on

a canonical model. A series of works [29, 98, 28] depict an innovative telepresence system. Unlike

DynamicFusion[91], they abandon non-robust camera pose estimation with several synchronized

cameras at fixed positions. Yet with a similar fusion idea, they progressively merge all TSDF

data in the past short-time interval into a complete model and improve efficiency and accuracy

on warping field estimation via embedded deformation framework [115]. Although the system

achieves real-time performance, they are not robust to the hard footages with fast body motion

and large shape changes. In addition, the method still cannot provide a complete model if there is

a region uncaptured in the whole sequence.

1.1.3 Challenges

The aforementioned telepresence method requires more than eight GPUs and a PC

cluster to satisfy the data collection and processing for a complete reconstruction with dozens of

surrounding cameras. There is still a huge gap to our purpose.

However, reducing the input coverage and computing power usually introduce significant

challenges for the current algorithms. With severe occlusion and unseen areas, the results often

lose track of large non-trivial region. It will continuously aggravate the non-robustness of the

warping field estimation. Besides, in real-time application, restrained computing capability leads
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Figure 1.3: Hardware synchronization board and calibration blocks.

to lower processing rate, which will introduce another large-displacement challenges to the

state-of-the-art deformation based estimation method.

1.2 Multi-view System Setup

In our multi-view capture prototype, we leverage Intel Realsense D415s to collect both

RGB and IR images with 720p resolution in 30 fps. We arrange three Realsense cameras in an

outside-in setup. All of the six cameras are hardware synchronized with less than 1ms latency.

We also expand IO bandwidth to support real-time data transmission.

We build a novel calibration tool sticking with ChArUco [36] patterns to simplify the

calibration process, as shown in Figure 1.3. The calibration follows the method in [147]. We

initially calibrate the cameras pairwisely and then use the bundle adjustment [128] method to

globally optimize on all the cameras.

1.3 Overview

The algorithms we proposed to enhance the reconstruction in the lightweight multi-view

system will be discussed in the remainder of this dissertation.

In Chapter 2, we investigate an approach to improve the bottleneck module in the unsuper-
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vised 3D reasoning framework, i.e. differentiable rasterization. While some recently published

global-gradient methods achieve superior results, they sacrifice much efficiency in the original

local-gradient methods. In our study, we find one substantial fact that has great influence on

the model appearance, the series of 2D supervision in the dataset may not fully represent the

underlying 3D object. To directly tackle this problem, we propose a screen-space regularization

method. Unlike the common geometric regularization, our method targets the unbalanced defor-

mation due to the limited viewpoints. We show that our method shares some high-level ideas with

the global-gradient methods in terms of gradient passing, but our design is more efficient. By

applying the regularization on both multi-view deformation and single-view reconstruction tasks,

the results illustrate that the proposed method can significantly enhance the visual appearance, i.e.

reducing the visual hull redundancy.

In Chapter 3, we address the mesh completion problem by proposing an efficient method

to fill the gap regions on surfaces via leveraging the templates inferred from the 3D reasoning

method. We first segment both source and template models into corresponding parts. Each part

will be aligned with non-rigid deformation. We then modify the gap regions by “virtual” depth

maps rendered using the aligned parts from newly selected viewpoints. The algorithm is evaluated

through experiments on a synthetic dataset.

In Chapter 4, we propose a novel solution that improves embedded deformation by decou-

pling regularization from the underlying deformation model via explicitly managing the rigidity

of surface vertex clusters. We further design an efficient two-step optimization solution that

alternates between isometric deformation and embedded deformation with cluster-based regular-

ization. Our method can easily support region-adaptive regularization with cluster refinement and

execute in real-time. Extensive experiments demonstrate the effectiveness of our approach for

mesh alignment tasks even under large-scale deformation and imperfect data.

In Chapter 5, we explore a pipeline to generate temporal-consistent and high-fidelity 3D

face models. Firstly, we utilize the state-of-the-art real-time single image face reconstruction
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network to estimate the parameters of a 3DMM model, thus obtaining a rough face mesh.

Secondly, we generate texture with a simple projection-based method in order to preserve the

input resolution to a larger extent and keep the overall procedure efficient. After that, the

accumulated texture of previous frames and texture of the current frame are fed into a stitching

network that is capable of fusing two incomplete textures and mitigating alignment artifacts.

In the meanwhile, the source image and the textured mesh are passed to another geometry-

refinement network, adjusting the surface at vertex level for better photo-consistency. In the end,

by progressively blending images from different viewing angles, we obtain a refined surface with

a complete texture map containing high-quality details in all regions.

Chapter 6 provides conclusion and discussion on future work.
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Chapter 2

Screen-space Regularization on

Differentiable Rasterization

2.1 Introduction

Establishing the mapping from the 2D images to its underlying 3D scene is the essential

problem in computer vision, as our brains can easily transfer visual information to perceive the

rich 3D environment[135] but machines can not. Moreover, our brains process many vision tasks

in a combined manner with both 2D and 3D properties instead of purely 2D features[44].

In recent years, with great success in both 2D and 3D problems separately[103, 102],

researchers apply deep learning [64] to those 2D-3D mixed tasks [105, 57, 149, 148, 19, 20,

32, 46]. Most of the work adopt the unsupervised methods, as the supervised methods require

large amount of highly accurate 3D ground truth data. Consequently, these works are limited to

synthetic dataset[17, 138, 112] consisting of computer-aided design (CAD) models.

The basic idea of the unsupervised methods is rendering 3D output back to 2D images

and matching with the input. Hence, the key approach is designing a differentiable renderer

[19, 26, 39, 58, 61, 77, 81, 92, 129, 100] and applying them to one of the two 3D representation:
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(a) Silhouettes in 24 views

(b) Ground truth voxels (c) Reconstructed voxels

Figure 2.1: Example showing that images in the dataset are not enough to fully represent the
3D model. The error is commonly demonstrated as the visual hull redundancy on the top or
bottom of the 3D shape. As shown in (c), green points denote the ground truth voxels, red points
denote the redundant voxels in the reconstructed result.

mesh or voxels.

We focus on the mesh representation, despite the fact that mesh-based methods[81, 39,

58, 77, 19, 48] are not as flexible as volume-based methods due to a fixed template. Comparing

to the current emerging implicit representation[87, 95], the mesh-based method has an advantage:

it allows more straightforward regularization on the geometry.

The previous work on mesh-based differentiable renderer (rasterizer) can be divided

into two categories depending on the gradient approximation approach in the back-propagation

step. For the local-gradient methods[81, 39, 48], the pixels within the close neighbourhood are

calculated to approximate the gradient of a vertex projected on the image. On the other hand, the

global-gradient methods[58, 77, 19] use farther pixels, even all of the pixels in the image into
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computation. Although the global-gradient methods achieve more satisfying results, they largely

increase temporal and spatial complexity.

In fact, one issue existing in the image-based 3D reconstruction but yet seldom analysed

is that in the current dataset there is a gap between input 2D images and the ground truth 3D

models. Specifically, input images cannot fully represent the shapes of the 3D models. As shown

in Figure 2.1, the surface generated with traditional multi-view reconstruction method shape form

silhouette method [1, 118] using 24 views is subject to visual hull redundancy on the top and

bottom. There are large amount of ambiguous regions, any shapes reconstructed in the region are

all satisfied with the 2D inputs. This issue can be addressed with higher resolution images from

extra views. However, in realistic application, without 3D data, we are not guaranteed to gather

all the 2D information we need.

(a) Concave surface (b) Viewpoint0 (c) Viewpoint1 (d) Voxels

Figure 2.2: Comparison of results using different types of methods; Upper row demonstrates the
reconstruction with the global-gradient method, lower row demonstrates the reconstruction with
the local-gradient method; (d) shows the results in voxels, green points represent the ground
truth, red points represent the redundancy.

In our experiment, we find that this space ambiguity has great influence on local-gradient

methods but has less impact on the global-gradient methods. As shown in Figure 2.2, for the

learning-based single-view reconstruction task, both types of methods generate good results on

the simple concave surface, while the local-gradient method produces significant number of
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bumps on the complicated convex surface. Moreover, for those convex surfaces, although the

inferred results are acceptable projecting from the specific 24 viewpoints trained during iterations,

they have unnatural look from other arbitrary viewpoints. In the following sections, we will show

that these unnatural visual hull redundancies come from the unbalanced deformation around the

silhouette boundary. The global-gradient methods suffer less from this issue as they deform the

vertices on the boundary diversely, and they also deform vertices inside the silhouette along with

the vertices on the boundary.

In this chapter, we address the unbalanced deformation problem of the local gradient

method by exploring the density inequality of the sparsity map in the 2D space. We propose

a screen-space regularization, and show that it significantly enhances the visual appearance of

the local-gradient method and removes the visual hull redundancy. The proposed method is

effective in both multi-view deformation task and learning-based single-view reconstruction

task. Comparing with the state-of-the-art global-gradient methods, our approach achieves better

subjective and slightly better objective results. Since the proposed approach is based on the

local-gradient method, it has lower temporal and spatial complexity, as well as better compatibility

to the modern rendering pipeline.

2.2 Related Work

Differentiable Rasterization. Inversing the rendering process has been investigated

for many years [101]. In the early days, as limited by the hardware, most of the approaches

[143, 101, 41, 86] only involve optimizing on a few specific parameters of the model.

OpenDR [81] is the first general differentiable rasterizer in the sense that it provides

derivatives for most of the parameters in the imaging system and allows optimization towards

image evidences. For derivatives approximation, it applies first-order Taylor expansion, and only

computes within a close neighbourhood in the image space. Later on, many researchers further
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extend the idea by adding additional complicated physics or lighting model, making it faster and

compatible with modern rendering pipeline. Recently, as deep learning emerges, the works in

[39, 48, 123, 26, 92, 39] applied the idea to the deep learning framework. Although the systems

are more complicated nowadays, the fundamental gradient approximation method is unchanged.

Neural 3D Mesh Renderer(NMR) [58] is the first proposed differentiable rasterizer for the

learning-based single-view reconstruction task, which shows promising result. Instead of using

local-gradient approximation, NMR accumulates all the gradients from pixels along X and Y axis

separately. SoftRas [77] embeds an aggregation function in the forward step which connects each

pixel value to all of the faces on the mesh. It achieves top performance.

One obvious shortcoming of global-gradient method is that it is not compatible with

common rendering pipeline and also requires higher temporal and spatial complexity. SoftRas

[77] has O(MN) temporal complexity in both forward and backward steps, (M denotes the number

of pixels in the image, and N denotes the nunber of faces on the mesh.) which is larger than

O(CN) of a common rasterizer, where C denotes the number of pixels around each face (on

average, C ≪ M [96]). In addition, global-gradient methods dramatically change the position of

the vertices that are already inside the silhouette. There is no guarantee on the robustness of this

inner deformation. For the case in which a 3D surface has already matched with the 2D silhouette,

adding extra pixels noise outside the boundary will introduce the ill-deformation globally on the

whole surface. In comparison, the impact is only limited to the local region, for local-gradient

method.

Note that in this chapter, we only focus on the most challenging part, i.e., the surface

reconstruction from 2D binary silhouettes, and other lighting and textures estimation can be easily

added to our framework.

Geometric Regularization. Many approaches have been proposed to improve the visual

appearance of a surface. Traditional Laplacian term [119, 25] is widely used to smooth and

denoise the mesh. There are some variants using cotangent formula [130] or filtering on higher-
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order features [30]. Recently, more researches [79, 45, 55] focus on regularization on the implicit

volumetric representation.

Unlike all of these geometric regularization which are based on the topology priors, the

proposed screen-space regularization targets at the specific issue on image-based deformation

process. It regularizes on the unbalanced deformation in the 3D space due to the limited input

viewpoints.

2.3 Proposed Method

2.3.1 Screen-space Sparsity

The key insight comes from the observation that in the natural-shape mesh reconstructed

with the global-gradient method, faces are relatively equally distributed in the projected image.

On the contrary, in the ill-shape mesh generated by the local-gradient method, a large number

of faces are squeezed near the silhouette boundary, as shown in Figure 2.3. We quantify the

screen-space sparsity as a variable of each pixel accumulating the number of faces within distance

dsp (unit in pixel). This variable can be easily calculated along with rasterization process, and

does not add more complexity to the current rendering pipeline.

The extreme unequal distribution of the results can be explained with unbalanced defor-

mation on the 3D surface due to the limited viewpoints. During the deformation, the unsupervised

2D loss (specifically defined in the equation (2.7)) drags the vertices lying outside the silhouette

towards the boundary. However, this force disappears once the vertices reach the boundary. In 2D

perspective, vertices pile up on the silhouette boundary if there is no fix from the other viewpoints.

In 3D perspective, this issue will result in the visual hull redundancy.

In addition, if the surface cannot completely fill the silhouette, then the 2D loss will push

the vertices outward. In this case, as in the local-gradient method 2D loss only impacts on the

boundary pixels, a few faces are involved in the reconstruction. In 3D perspective, this may result
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Figure 2.3: A demonstration on how screen-space sparsity regularizes the shape. The left part
shows both ill shape (black) and natural shape (green). Red dots represent the vertices on this
projection view. The right part shows the screen-space sparsity value around the boundary pixel
of both ill shape (black) and natural shape (green).

in losing high curvature geometry details.

2.3.2 Screen-space Regularization

We regularize on the screen-space sparsity S(ppp;VVV ) defined in the previous section, where

ppp ∈ R2 denotes the pixel position, and VVV represents the set of all the vertices positions. The

regularization loss can be formulated with:

Lsp = ∑
(i, j)∈N

K(S(pppiii;VVV ),S(ppp jjj;VVV )) (2.1)

N is the set of all the neighbouring pixel pairs. The kernel function K is defined as:

K(x,y) =


|x− y|, c0 ≤ |x− y| ≤ c1,

0, otherwise
(2.2)

where c0 and c1 are the hyper-parameters to control the regularization.
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As shown in Figure 2.4, in the local-gradient method, the unsupervised 2D loss only forces

vertices projected on the boundary pixels ppp000 and ppp111 to move towards the silhouette. However,

the inner vertices without connection to boundary vertices (for example the one projected on ppp222)

cannot contribute to reduce the loss, and it remains static in the position. With the regularization,

the deformation of ppp000 will decrease the surrounding sparsity while the deformation of ppp111 will

increase the surrounding sparsity. To increase sparsity uniformity, ppp222 is forced to deform

according to the movement of ppp000 and ppp111.

(a) (b) (c)

Figure 2.4: Demonstration on the effect of our proposed regularization. The target silhouette is
rendered in cyan. In (a), red channel shows the projected silhouette of the surface; In (b) and (c),
red channel only consists of the pixels need to be deformed. (b) represents the local-gradient
method and (c) represents the local-gradient method with the regularization.

Note that the proposed method does not make the sparsity map entirely equal but to

robustly deform the inner vertices. Therefore, in the kernel function, we design the lower cut-off

value c0 which allows a certain flexibility and reduce the regularization sensitivity to the minor

changes on the boundary. Moreover, the upper cut-off value c1 is designed for the case where two

noncontinuous 3D surfaces are projected close to each other.

As the derivative of sparsity function S(pppiii;VVV ) with respect to each vertex position vvviii is

not straightforward, we simplify the gradient computation as:
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∂S(pppiii;VVV )

∂vvviii
≈−∂S(pppiii|VVV )

∂pppiii
· ∂pppiii

∂vvviii
(2.3)

where S(pppiii|VVV ) denotes the static sparsity map where all vertices’ positions are fixed. The negative

sign before the approximation is used to indicate that we deform in the inverse direction of the

gradients of the sparsity map ∂S(pppiii|VVV )
∂pppiii

. Moreover, the term ∂pppiii
∂vvviii

is also required when computing

the gradient of the 2D photo-consistency loss. It can be obtained with the local-gradient method

[81].

2.3.3 Comparison with the global-gradient method

Intuitively, the regularization works as an internal stress to the deformed model in the 2D

space. Vertices lie around the denser zone of the sparsity map will face against the force from

inner vertices to reduce the further movement, while relatively the ones around the sparser zone

will deform more.

In the state-of-the-art global-gradient method [77, 19], pixel value of the silhouette image

Ii is computed with the aggregation function:

Ii = 1−∏
j
(1−Di

j) (2.4)

Di
j a sigmoid-like function of the shortest distance d from the pixel pi to one edge of the face f j.

It ranges within [0,1].

The partial derivative of pixel intensity Ii with respect to the distance of a specific face f j∗

equals to:
∂Ii

∂d j∗
= ∏

j ̸= j∗
(1−Di

j) ·
∂Di

j∗

∂d j∗
(2.5)

For most of the pixels far away from the face f j∗ , d → ∞,Di
j → 0. Therefore, equation (2.5) can

be approximated with only the faces closed to pixel pi. Let N be the number of these faces, where
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N in most cases is more vital than the exact value of Di
j. If we assume τ = 1−Di

j is a constant

number, then equation (2.5) can be simplified as:

∂Ii

∂d j∗
≈ τ

N ·
∂Di

j∗

∂d j∗
(2.6)

The term τN is similar to our definition on screen-space sparsity. Comparing with equation (2.6)

which uses the sparsity as the weight to control the gradient flow, we explicitly use it as the

regularization in equation (2.1).

In addition, with the regularization, vertices lie inside target silhouette will deform along

with the vertices on the boundary. Unlike the global-gradient method in which inner vertices

directly respond to the 2D loss, our proposed regularization deforms those vertices in a passive

way. It’s more robust and can generate smoother surfaces.

2.4 Experiments

To validate the effectiveness of our approach, we apply our regularization method to

both multi-view deformation task and learning-based single-view reconstruction task. Two tasks

share the same rasterization framework, loss combination and dataset. In multi-view deformation

task, we focus more on the accuracy and efficiency of the different frameworks, while in the

learning-based task, we focus more on the generality of the frameworks among a variety of

shapes.

2.4.1 Local-gradient Method Implementation

In our local-gradient differentiable rasterization, we adopt gradient approximation on the

close neighbourhood similar to [81]. Unlike the original work, we build all the operations on

GPU and follow the logic of the modern rendering pipeline. Besides, we propagate the gradient to
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all of the fragments, the fundamental elements in the fragment shader, instead of just propagating

to the vertices on the surface.

2.4.2 Losses

Following the previous work [58, 77, 19], we adopt the intersection over union (IoU) as

2D loss to evaluate the silhouette prediction. For our regularization method, we additionally apply

the screen-space sparsity regularization loss defined in (2.1). Moreover, to generate smooth and

appealing surfaces, we impose geometric Laplacian loss and flattening loss.

IoU Loss

LIoU = 1− ||S⊙ S̃||1
||S⊕ S̃−S⊙ S̃||1

(2.7)

where S and S̃ denotes the binary silhouette mask of input and output; ⊙ is element-wise product;

⊕ is element-wise addition.

Laplacian Loss is a penalty on the distance of a vertices vi to the center of mass of its

1-ring neighbours Ni:

Llap = ∑ ||δi||22 (2.8)

where δi = vi − 1
||Ni|| ∑ j∈Ni

v j

Flatten Loss is a penalty on angles θi between two adjacent faces:

L f l = ∑(cosθi +1)2 (2.9)

The overall loss combines all the three particular losses with one regularization loss only
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for our proposed method:

L = LIoU +λlapLlap +λ f lL f l +λspLsp (2.10)

2.4.3 Datasets

We use the models from ShapeNet Core dataset [17] which consists of 13 object categories.

We take the same train/test split and render the object in the same 24 views with 64×64 resolution

as in [77] except that we turn off the anti-aliasing function during the rendering process.

2.4.4 Settings

In our experiments, we set λsp = 0.1, λlap = 1×10−5 and λ f l = 1×10−6. We optimize

with Adam optimizer [59] with α = 0.0001, β1 = 0.9 and β2 = 0.999. The batch size is 64. A

good setting of hyper-parameters in our regularization method is dsp = 1, c0 = 7 and c1 = 30. We

will discuss the parameters in the ablation study section.

2.5 Multi-view Deformation

In the multi-view deformation task, we directly pass the gradient from different viewpoints

to deform vertices of the template. We fix the template as a standard sphere. However, we

deliberately choose the radius of the sphere to perform two subtasks: shrinkage and extension. In

the realistic application, the mesh is deformed in the manner mixed with the two types. Here, we

separate the task for clearer demonstration. In the shrinkage subtask, we aim at the performance

on reducing the visual hull redundancy. In the extension subtask, we aim at the performance on

the robustness of the deformation, as the erroneous deformation can be fixed and hidden during

shrinkage.
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(a) Shrinkage (b) Extension

Figure 2.5: Optimization curve: 3D and negative 2D IoU v.s. number of iterations.

2.5.1 Shrinkage Task

As shown in Figure 2.5, we compare three methods: local-gradient method, global-

gradient method (SoftRas [77]) and the proposed method: local-gradient method plus the screen-

space regularization (refer to as SS-Reg) with IoU metrics in both 2D and 3D cases. For the

shrinkage subtask shown on the left, as we directly optimize on the 2D IoU, all of the three

methods converge at same level (around 95.5%). However, the results on 3D IoU diverge:

local-gradient method converges at 77.2%, SoftRas converges at 81.7% while SS-Reg can reach

84.3%.

SS-Reg also achieves better visual appearance. In Figure 2.6, the result from local-gradient

method has visual hull redundancy all around the surface. The result from SoftRas still leaves

redundancy at the bottom. The difference between the reconstructed volume from SS-Reg and the

ground truth volume is only one layer which is inevitably caused by the limited input resolution.

Figure 2.7 shows the heatmap from different viewpoints after convergence. The heatmap

of SS-Reg is smoother comparing to the other two methods. It shows the effectiveness of the

proposed regularization.
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(a) Local-gradient (b) SoftRas (c) SS-Reg

Figure 2.6: Mesh and voxels reconstructed with three methods.

2.5.2 Extension Task

For the extension subtask shown on the left side of Figure 2.5, the performances of

local-gradient method and SS-Reg are quite stable. Local-gradient method converges at 77.6%

and SS-Reg converges at 84.2%. However, the result of SoftRas slips down to 78.2% (2D IoU is

also lower as ill-shape surface prevents it from fully convergence). As mentioned in the previous

discussion, global-gradient method is subject to erroneous deformation of vertices inside the

silhouette. Without correction from the other views, global-gradient method cannot generate

satisfying results, as shown in Figure 2.8. Note that SS-Reg method does not have this issue.

2.5.3 General Deformation

We further test the algorithms on more shapes. We randomly select 500 samples from

five sub-classes in ShapeNet Core dataset [17], 100 samples each. The remaining categories are

either too simple, (such as phone and display), or too complex involving large topology changes

which can hardly be transformed with deformation method (such as bench and table). We use

middle-size sphere as the template, therefore the deformation consists of both shrinkage and
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(a) Local-gradient

(b) SoftRas

(c) SS-Reg

Figure 2.7: Heatmap of the sparsity value from different viewpoints. Truncated in [0,30] for
comparison
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(a) Local-gradient (b) SoftRas (c) SS-Reg

Figure 2.8: Meshes reconstructed in the extension subtask.

extension.

Table 2.1: Muti-views deformation results on five categories. Number shows in percentage of
3D IoU. Bold-faced numbers indicate the better results in SS-Reg.

Category Plane Cabinet Car Sofa Boat Mean
Local 69.2 68.9 65.2 62.2 63.9 65.9

SoftRas 70.6 72.1 70.9 70.5 67.7 70.3
SS-Reg 71.4 72.7 73.5 69.2 69.1 71.2

As shown in Table 2.1, the proposed SS-Reg significantly improves the results of local-

gradient method. Comparing to the state-of-the-art method, SS-Reg achieves better numerical

results in 4 out of 5 classes. Moreover, SS-Reg successfully removes the visual hull redundancy

shown on the meshes in Figure 2.9.

2.5.4 Complexity

Testing with 1080TI GPU, SoftRas takes 0.56s on average for each iteration comparing to

0.15s for SS-Reg. In other words, SS-Reg is approximately four times faster than SoftRas in the

deformation task. With higher resolution input 128×128, SoftRas takes 2.07s for each iteration

while SS-Reg only need 0.32s, a factor of 6 in speed improvement.
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(a) Local-gradient (b) SoftRas (c) SS-Reg

Figure 2.9: Meshes of five categories reconstructed with multi-view deformation rendered in
two different viewpoints

Table 2.2: Single-view reconstruction results on all categories. Number shows in percentage of
3D IoU. Bold-faced numbers indicate the better results in SS-Reg.

Category Plane Bench Cabinet Car Chair
Local 60.4 42.1 66.7 62.3 46.9

SoftRas 62.2 47.1 68.9 71.0 51.8
SS-Reg 61.5 45.8 69.2 73.3 52.3

Category Display Lamp Speaker Rifle Sofa
Local 59.7 43.2 63.6 59.6 61.8

SoftRas 61.0 44.7 65.0 65.9 68.2
SS-Reg 60.3 45.8 64.6 64.0 67.9

Category Table Phone Boat Mean
Local 39.4 74.0 56.5 56.6

SoftRas 45.1 79.7 60.2 60.8
SS-Reg 47.3 81.1 61.5 61.1
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(a) Local-gradient (b) SoftRas (c) SS-Reg

Figure 2.10: Meshes of six less accurate categories reconstructed with single-view reconstruc-
tion rendered in two different viewpoints

2.6 Single-view Reconstruction

We also apply our regularization method to learning-based single-view reconstruction

task. As optimized with all of the models together, it is a good test on the method’s flexibility

and robustness. For a fair comparison, we employ the identical neural network structure as in

the previous work [58, 77]. The network infers the 3D vertices displacement from a single RGB

image. The surface is reconstructed by adding the vertices displacement to the corresponding

vertices of the template sphere mesh. As in multi-view deformation task, we render the deformed

mesh with three different methods and train in unsupervised way with the loss formulated in

equation (2.10).

As shown on Table 2.2, the proposed SS-Reg is also effective in single-view reconstruction

task. We greatly improve the result of basic local-gradient method, and out-perform the state-of-

the-art method in 7 out of 13 categories. Figure 2.10 shows the reconstructed meshes in the other
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6 categories. The visual appearance is appealing, although it may not precisely match the ground

truth.

2.7 Ablation Study

SS-Reg has three hyper-parameters: dsp, c0 and c1. We fix dsp = 1 for 64× 64 input

resolution in all of our experiments as we find that larger value of dsp reduces the regularization

effect. c1 is the upper cut-off threshold for the kernel function of regularization function to avoid

the incorrect regularization across uncontinuous surfaces. Figure 2.11 left shows the failure case

of double wings if c1 is too large. The results are not so sensitive to the exact value of c1, and from

our experience, any value within (15,30) is effective. c0 is the lower cut-off threshold. Smaller

c0 value results in over-regularization shown as the depression on the surface (Figure 2.11 right).

The ideal value lies within the range of (5,10) for the dataset.

Figure 2.11: Failure cases with bad hyper-parameters.

2.8 Conclusion

We present our work on screen-space regularization. Unlike the common geometric

regularization, the proposed method addresses the unequal deformation issue in local-gradient

differentiable rasterization. The result shows that the proposed regularization is effective and
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significantly enhances the performance. It also achieves better results comparing to the state-of-

the-art global-gradient method. Moreover, the proposed method has lower complexity.

There are a few improvements that can be made for the proposed approach. Firstly, there

could be a more adaptive way to handle the hyper-parameter, especially c0. Since we approximate

the gradient of sparsity during computation, it can only guarantee the correct deformation direction

but not accurate value. Moreover, it is unclear if there is better form to regularize the sparsity,

or better definition on the sparsity itself. We plan to investigate these research questions in our

future research.

Chapter 2, in part, is a reprint of the material as it appears in the paper: K. Chen, C. An and

T. Nguyen, “Screen-space Regularization on Differentiable Rasterization”, 2020 International

Conference on 3D Vision (3DV), Fukuoka, Japan, 2020 pp. 220-229. The dissertation author was

the primary investigator and author of this paper.
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Chapter 3

Mesh Completion With Virtual Scans

3.1 Introduction

The emergence of consumer-level range scanners and depth cameras enables artists to

create virtual contents at lower cost. Many commercial software is available to merge scans from

multiple views into 3D models through image-based reconstruction algorithms. Unfortunately,

these methods are inevitably subject to occlusion appearing as complex holes on the reconstructed

surface (see Fig.3.1). The problem is more severe in the applications requiring fewer camera

coverage such as holoportation [98] and fast 3D portrait [71].

Traditional mesh completion methods [72, 66] often fail in the above scenario as they

simply connect the gaps using basic shapes without considering the real contents. Advanced

template-based completion methods [4, 60] attempt to tackle this issue by replacing the hole

regions with the equivalent parts in some standard models. However, to make the results appear

natural, templates and the corresponding parts have to be chosen carefully, which often involves

extensive manual work. Moreover, these methods are often time-consuming.

Some of the state-of-the-art incremental reconstruction methods [29, 28] make use of

temporal information, fusing all volumetric data in the frame sequence into a complete model.
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Figure 3.1: Camera rig of the capture system (black). The reconstructed mesh has complex
holes, which are shown in red on the surface. We set up virtual cameras (red square pyramids)
to fill in the depth information of the gap regions thereby completing the surface.

With the help of modern GPU, these methods can speed up to the real-time level. However, they

cannot fill the space uncaptured in the whole sequence.

In recent years, learning-based reconstruction methods [2, 88] achieved promising break-

throughs. They are capable of inferring complete models with data from fewer viewpoints. In the

state-of-the-art works [107, 106], through implicit function learning, pixel-aligned surface details

can be inferred and reconstructed. The algorithms provide high-quality templates resembling the

scanned models.

In this chapter, we propose an effective method to complete scanned meshes by fusing the

templates generated from the learning-based method. We follow the basic idea in the incremental

volumetric fusion reconstruction approaches [29, 28]. However, we found that blending the whole

template volume data will degrade the quality of the source mesh, because the inferred model

cannot always preserve high curvature details. Therefore, we design a novel selective fusion

pipeline that modifies specifically on the gap regions. The insight is that we can complete the

mesh by simply providing additional depth information of the hole regions. To accomplish this,
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we render, using Blender, new depth images of the aligned template model from the optimized

angles covering the hole regions on the source model. Merging these depth images as “virtual”

scans, we generate the complete mesh by a second pass through the reconstruction pipeline.

Our method transforms some crucial 3D computations in the traditional template-based mesh

completion pipeline, such as filling regions selection, into more efficient 2D processing.

To address the potential occlusion issue in our method and obtain a better completion

result, we also segment the mesh into different parts before the template fusion step as in the

traditional template-based mesh completion methods. Note that the segmented parts are more

rigid, leading to simpler and faster deformation and alignment.

3.2 Method

3.2.1 Overview

As shown in Fig.3.2, the inputs of our algorithm are two meshes: an incomplete source

mesh generated from multi-view depth images, and a water-tight template mesh inferred by the

learning-based method. Moreover, as a post-processing step of the image-based reconstruction

framework, we assume that the input images and camera parameters are given. Our proposed

system fills the gap regions on the source mesh by performing the following steps sequentially:

• We segment both source and template mesh into multiple regular parts;

• We align all the template parts towards the corresponding source parts with a few iterations

of non-rigid ICP [83];

• We render depth images from new angles covering the gap regions with the aligned template

surface;

• We complete the mesh by running the depth merging reconstruction pipeline again to fuse

30



new depth into the model.

The details will be elaborated in the following sections. Note that, although our experiment

focuses on human models, we expect the idea to generalize well with other contents, but further

experimentation is needed.

Figure 3.2: Source mesh (top) and template mesh (bottom).

3.2.2 Segmentation

To robustly produce regular 3D parts, we build our mesh segmentation based on the

state-of-the-art 2D semantic segmentation method [74]. We back-project the segmentation results

on multiple views to assign labels for all vertices on the meshes.

The projection-based assignment is occasionally problematic with inter-class boundaries,

where minor pixel bias leads to the ghosting effect. Therefore, we shrink the area around

boundaries of the 2D segmentation results, as shown in Fig.3.3. Note that this operation also

makes our segmentation more consistent between views.
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Thanks to the state-of-the-art pixel aligned learning-based surface estimation network

[29, 28], the 2D segmentation images have a strong correlation with both source and template

meshes. To further mitigate artifacts, after back-projection, we apply a smoothing operator to

diffuse projected regions along the mesh topology. We iteratively apply the smoothing operator

until the projected regions fully cover the desired corresponding mesh regions. The intermediate

projection-segmentation results are demonstrated in Fig.3.3.

Figure 3.3: Projection-based mesh segmentation. Left to right: 2D segmentation, back-
projection assignment, smoothing with diffusion, final segmentation.

3.2.3 Virtual Scans

Robust automatic gap region detection is the critical step in selective fusion. With the help

of multi-view foreground masks, we can obtain the visual hull surface through the space carving

algorithm [62]. Specifically, for the intermediate volumetric data, we only retain the outermost

layer of voxels lying within the masks after projection. The gap regions are represented as the

remaining voxels occluded in all views. The occluded voxels can be easily determined as the ones

without a valid value from the truncated signed distance function (TSDF). The overall detection

step can be computed alongside the original surface reconstruction pipeline without spending

additional overheads. Note that the voxels detected with the aforementioned method are sparse

and cannot be used for 3D selective fusion with volumetric data. An extra time-consuming region
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growing method has to be done to obtain all gap voxels accurately. However, we bypass this

procedure and apply these sparse points as guidance to set up virtual cameras.

The camera allocation problem can be formulated as follows: for each segmented part,

find the minimal number of cameras with their FOVs collectively covering all gap voxels on all

parts. In practice, we can loose the condition as our method is not subject to the overlapping of

the FOV coverage. Thus, we design a greedy algorithm based on a plane segmentation method in

[140]. We add a voxel into a point cluster as it satisfies:

|Pv −Pc|< Ta (3.1)

|(Pv −Pc) ·Vc|< Tb (3.2)

where Pv and Pc are the positions of a voxel and a cluster, respectively; Ta and Tb are empirically

determined thresholds; and Vc is the normal vector of the best-fit plane of a cluster. We continu-

ously group gap voxels with the above conditions until no more voxels can be grouped. After the

partition, if the number of clusters exceeds the allowable number of virtual cameras, we further

reduce the number of clusters by combining clusters together based on the above two conditions

and the condition:

cos−1 Vc1 ·Vc2

|Vc1||Vc2|
< Tc (3.3)

limits the angle between two clusters’ best-fit planes’ normal vectors.

Using Vc and bounding box corner positions of the cluster, we can calculate the virtual

camera pose as shown in Fig.3.4. For each virtual camera and its corresponding body part

segment, we render the z-depth buffer and a particular back-face mask to identify the non-interest

gaps resulting from mesh segmentation. The back-face mask is generated by thresholding the dot

product of the view vector with the normal vector of the surface at the fragment shader.
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Figure 3.4: Virtual camera poses are shown on the left with colored dots indicating different
parts; virtual scans of the right leg are shown on the right: (a) source mesh (b) source depth (c)
deformed template mesh (d) deformed template depth.

3.2.4 Virtual Fusion

During the final process, we apply the depth data from the virtual views to accurately fill

holes on the source mesh. We pass the virtual depth images to the TSDF-based reconstruction

pipeline [29], in which virtual depth images are treated in the same way as real depth images but

with one exception: real-view data are prioritized. Namely, we only allow virtual data to add

information to voxels that have not been updated by any real camera. In this way, virtual data fill

the gap regions without degrading the original detailed surfaces.

3.3 Experiment

3.3.1 Implementation Details

To evaluate our algorithm, we test on four handcrafted synthetic human models. We

render the depth images, RGB images, and foreground masks of the models from multiple fixed
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angles, simulating real-world multi-view reconstruction scenarios. We modify InfiniTAM [56] to

support the fast multi-view depth maps merging and reconstruct the source meshes for completion.

Moreover, we feed multi-view RGB images to PIFu [106] to generate the template meshes.

We utilize the pre-trained model from CDCL [74] that segment the human model into 14

body parts and background on 2D images. The segmentation is inferred at scale 1, 0.75, and 0.5

to refine the boundary between each part and generate an indexed image for each real-camera

view.

After that, we apply the idea in section 3.2.2 to map multi-view 2D segmentation onto 3D

mesh. Then, we deform and align the model by part using Levenberg-Marquardt based non-rigid

deformation method in [29]. As the body part is relatively rigid compared with the full body, our

algorithm converges faster (on average three iterations).

Lastly, we calculate the virtual camera poses and create virtual scans as discussed in

section 3.2.3. We re-run the InfiniTAM software with modification in section 3.2.4 and produce

the final complete output.

3.3.2 Results

We measure the mesh quality in bidirectional RMSE (w.r.t the ground truth mesh).

As shown in Table 3.1, our algorithm outperforms the traditional mesh completion method

[72] and the full volumetric fusion method for all three models. Fig.3.5, Fig.3.6, and Fig.3.7

display the per-vertex error maps, demonstrating the distance from each vertex on the ground

truth mesh to the closest vertex on the result mesh. In (a), the gap regions are highlighted in red

on the mesh and displayed as the large-error regions on the error-map. Although the template

mesh (b) is poorly inferred, our method robustly generates a cleaner mesh with less error in the

gap regions comparing with the other methods.

Surface details are demonstrated in Fig.3.8. In (a) and (b), the model’s necklace is well

preserved with our method comparing to the over-smoothing result with full fusion method. In
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Figure 3.5: Resulting meshes and their per-vertex error maps colorized in three levels: red for
large error, green for medium error, blue for minor error. Note that Liepa denotes the results
from the traditional hole filling method; Full Fusion denotes the results from volumetric fusion
method applying whole template surface to the source; Selective Fusion is our proposed method.

Figure 3.6: Resulting meshes of Kate and per-vertex error maps.
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Figure 3.7: Resulting meshes of Yonni and per-vertex error maps.

(c) and (d), our method produces more visually appealing surface for the model’s hair and nose

region comparing with the traditional mesh completion method [72].

3.4 Conclusion

We present our work on mesh completion with virtual scans. Unlike the traditional

template-based mesh completion approaches and the volumetric fusion methods, we apply the

learning-based model as the template and design a novel fusion pipeline to selectively blend the

inferred surface into the incomplete source mesh. The results show the excellent performance of

our algorithms, both visually and numerically.

Chapter 3, in part, is a reprint of the material as it appears in the paper: K. Chen, F. Yin,

B. Wu, B. Du, and T. Nguyen, “Mesh Completion With Virtual Scans”, IEEE International

Conference on Image Processing (ICIP), 2021: 3303-3307. The dissertation author was the
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Table 3.1: Bidirectional RMSE (in millimeters) w.r.t the ground truth model.

RMSE Kate Kayla Yonni
Source Mesh 11.9247 12.1793 16.7406

Template Mesh 44.4534 15.7061 145.3785
Liepa [72] 17.7706 13.2849 16.4881
Full Fusion 12.4552 13.1374 16.6880

Selective Fusion 10.6584 12.0903 16.2864

Figure 3.8: Comparison of details on resulting meshes.

primary investigator and author of this paper.
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Chapter 4

Efficient Registration for Human Surfaces

via Isometric Regularization on Embedded

Deformation

4.1 Introduction

Immersive 3D digital humans will play the most vital roles in the future metaverse stages.

To obtain ready-to-use dynamic human models, surface registration technique is one of the

key procedures. The goal of surface registration is to find a mapping that optimally aligns

vertices of the source with target models. This type of vertex-wise transformation field can be

further applied to produce geometrically uniform mesh sequences for animation and generate

temporal-consistent content for 4D videos [22]. Moreover, in recent exciting researches [29][98],

real-time holoportation is achieved by progressively refining incomplete volumetric surfaces using

per-vertex correspondences obtained with an accelerated implementation of surface registration.

Traditional mesh alignment methods are frequently used to address the registration prob-

lem. They are formulated to estimate the deformation field between two surfaces iteratively,
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following the Iterative Closest Point (ICP) [9][104]. Due to the limitation that only local corre-

spondences are established, the naive ICP method tends to be trapped into local minima.

A number of approaches [50][14][67] attempt to tackle this issue by providing additional

global correspondence on some sparse 3D feature points. Recently, many approaches are pro-

posed to improve the robustness of 3D correspondence with deep learning methods [134][131].

Furthermore, some researches also seek to obtain the registration directly with an end-to-end

framework [13]. However, none of these results perform well in human-related scenarios because

they are not specifically trained for human models. They can only generate sparse correspon-

dences, and, most importantly, fail to handle large variants on surface details as well as noise

and holes introduced by consumer-level 3D scanners. At the application level, learning-based

methods adopt very complex framework structures; hence, they cannot execute efficiently for

real-time processing.

Another branch of researches tackles the local minimum issue by performing regulariza-

tion during deformation. The most popular practice is to regularize on local rigidity, such as

ARAP [113]. These methods are generally capable of achieving smooth deformation but fail

in more challenging scenarios. For human models, it is common that some parts of the surface,

such as arms and legs, shown as the red region in Fig. 4.1, must be deformed more rigidly to

avoid being collapsed into trivial shapes while other parts of the surface, such as torso and cloth

wrinkles, shown as the green region in Fig. 4.1, should be deformed less rigidly in order to align

with high-frequency surface details on the target.

The embedded deformation [115] is proposed as an efficient registration solution. The

GPU version [29] with an improved implementation is capable of real-time processing. However,

the conventional embedded deformation can hardly support the aforementioned region-adaptive

regularization, because it does not directly regularize on surface vertices but on a deformation

graph designed for acceleration. [67] proposes a method which alters regularization across

regions by dynamically modifying the deformation graph in terms of the rigidity loss. This
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Figure 4.1: Example demonstrating the various rigidity requirements for different surface
regions. Left: source mesh. Middle: target mesh. Right: distance map in three level (red: large;
green: medium; blue: small).

design is not elegant because the underlying deformation graph may not reflect the true surface

condition, especially at the end of the iterations. It is hard to determine the locations, where

regularization weights should be adjusted, and the magnitude of those adjustments. [67] relies

on a pre-established binary tree structure to double the number of deformation nodes, which is

not flexible in practice. Even worse, with respect to implementation, the design is unfriendly to

acceleration. Changing the deformation graph, especially the number of EDNodes, often requires

re-allocating and re-assigning whole GPU memory for the best performance.

In this chapter, we aim to design an efficient non-rigid registration solution with region-

adaptive regularization. We adopt the embedded deformation framework and propose a novel

regularization method. We follow the isometric deformation idea in [50] and define the regulariza-

tion loss on vertex clusters instead of individual vertices. Due to the complexity of optimization,

we propose a more efficient two-step solution, alternating between two deformations: an isometric

deformation and an embedded deformation with cluster-based isometric regularization. We also

progressively refine the member of each cluster guided by the regularization loss in each step. To

showcase the effectiveness of our method, we perform extensive experiments on mesh alignment

tasks. As current 3D human datasets are mostly captured in high-quality studio environments,

we intentionally design various cases to simulate complicated real-world scenarios. The results
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reflect the advantage of our method compared with other state-of-the-art.

4.2 Related Works

Non-rigid registration has been a well-explored topic for decades in the fields of computer

graphics and image processing. One of the well-known approaches is the non-rigid Iterative

Closest Point (ICP) method [9][5], in which correspondences are based solely on local proximity,

and transformation is formulated by a general deformation. The traditional ICP algorithm is

intuitive and simple, but highly dependent on the initial condition and can easily get trapped

into local minima. To resolve this issue, Robust Point Matching (RPM) [43] is proposed, which

combines deterministic annealing and soft-assign optimization to convexify the objective function.

[21] improves RPM using thin-plate splines (TPS) in non-rigid registration. On the other hand,

[89] exploits properties of kinematics to avoid computing pair-wise correspondences, but is slower

and less robust to general non-rigid motion.

Correspondence. Many researches improve the reliability of correspondences. [114, 5,

90] use sparse human-labeled landmarks to relax the demand of high quality correspondences.

[84] proposes an L2E estimator to build better dense correspondences. Recently, deep learning

techniques[145, 134, 131] have shown good performance in finding reliable matches. However,

[120, 145] provides only sparse correspondences while [117, 134, 131] generate dense correspon-

dences but either require additional complex operations or the assistance of powerful GPUs to

infer in a reasonable amount of time.

Deformation Model. The choice of deformation models embodies the assumptions made

on the deformation. Assuming isometry, [14] applies diffusion distance and Gromov-Hausdorff

distance for non-rigid shape matching. [50] applies an additional pruning procedure to the closest-

point correspondences using the geodesic distance. It also classifies components with similar

transformations into a rigid cluster, which reduces the optimization complexity. However, the
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cluster growing mechanism has higher complexity compared with our approach. Representing

points with Gaussian mixture models (GMM), [53] treats the registration as minimizing the

distance measure between two distributions. [54][75][139] use the deformation of vertices on a

coarse cage mesh template to manipulate the source. It keeps the original surface structures and

details but the cage often fails to model subtle changes due to small degrees of freedom. [115]

encodes the mesh into an abstract deformation graph, for which a deformation is parameterized

by a collection of affine transformations on the nodes. It decouples the complexity of the

deformation from that of the geometry, preserving local details in an efficient optimization

process. [68] extends the method with a unified optimization that simultaneously solves for point

correspondences, confidence weights, and a warp field that aligns the source with the target. [146]

casts 3D surface registration into a graph matching problem. [29] adopts [115] and designs an

optimization framework achieving real-time alignment performance.

Regularization. Due to high degrees of freedom, the deformation model can easily

represent unreasonable deformations. Various regularization terms are proposed to improve the

robustness of the resultant meshes following the human intuition of deformation. [5] includes a

term in the cost function that requires the template to be stiff. As-rigid-as-possible energy[113]

is introduced to preserve the local geometry through minimizing the transformation deviation

from neighboring vertices. [76][21] regulate the deformation smoothness through differential

coordinates (first-order) and the TPS transformation (second-order). [114] designs terms for the

affine transformation of each triangle to ensure the smoothness while avoiding drastic changes to

the shape. [90] guides close displacement vectors to point to similar directions through analyzing

the low-frequency component of the field. [68] designs a regularization term to penalize the hole

regions caused by occlusion. [49] constructs a statistical shape model and a noise model that

detect outliers based on their sparsity and incorporates the models into the classic regularization

terms. [84] introduces the manifold regularization to the point set registration problem.
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Figure 4.2: Overview of the alignment procedure. Region-adaptive regularization is achieved
with cluster refinement shown in the upper right corner. Cluster patches are colorized differently.
Error reduction through iterations is demonstrated in the lower right corner.

4.3 Method

4.3.1 Overview

Fig. 4.2 shows the overview of our proposed approach. The source mesh (shown as iter 0)

progressively deforms towards the target surface (shown as iter 9) with region-adaptive rigidity

and local correspondences. For the two-step optimization strategy, one isometric deformation is

performed to specify the regularization target for each cluster. With the help of this regularization,

the non-rigid embedded deformation warps the model. Then new local correspondences are

generated for the transformed vertices, which are applied to guide both isometric deformation

and embedded deformation in the next iteration. Moreover, clusters are refined in each iteration

according to the rigidity loss from each of the two steps with a simple but efficient implementation.

With tolerable amount of overhead involved beyond the embedded deformation, the whole solution

can be executed in real-time.

In Sections 4.3.2 and 4.3.3, we describe the formulation of the mesh alignment task and the
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baseline approach i.e. embedded deformation. Next, we highlight the proposed region-adaptive

regularization, two-step optimization, and cluster refinement in Sections 4.3.4-4.3.6. Furthermore,

the experiment and implementation details are discussed in Section 4.4. At last, both qualitative

and quantitative results are demonstrated in Section 4.5, followed by the conclusion in Section

4.6.

4.3.2 Problem Formulation

Let S = {V ,N } be the source surface consisting of vertices V = {xi ∈ R3} and vertex

normals N = {ni ∈ R3}. Similarly, let T = {Ṽ ,Ñ }, Ṽ = {x̃i}, and Ñ = {ñi} be the target

surface, vertices, and normals, respectively. Conventional mesh alignment aims to compute a

warping field aligning two surfaces, which is typically solved via optimization. The basic loss

function can be written as:

L = Ldata +αregLreg (4.1)

where the data term Ldata penalizes the geometry deviation between source and target. This is

conventionally formulated with point-to-point distance and point-to-plane distance:

Ldata = ∑
i

αpt∥x̃K
i − xK

i ∥2 +αpl|ñi · (x̃K
i − xK

i )|2 (4.2)

For ICP-based methods, the data term sums up the distances of all correspondence pairs, which

are gathered by searching for the closest point in each iteration with KDTree [8]. (x̃K
i ,x

K
i ) denotes

the i-th correspondence pair in the K-th iteration.

4.3.3 Embedded Deformation

The embedded deformation method represents the 3D warping field with an underlying

deformation graph G = {Vg,E}, where EDnodes Vg = {n j ∈ R3} are the selected anchor
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points to control the deformation of a local region, and edges E between EDnodes are used for

regularization, specifying the influence each node has on the shared surface vertices. Typically,

EDnodes are gathered by sampling on the source surface. [115] proves that simple uniform-

sampling can achieve near-optimal results.

The local deformation of each EDnode is defined as an affine transformation specified by

a matrix A j ∈ R3×3 and a translation vector t j ∈ R3. Each vertex is transformed to a new position

xK
i in K-th iteration according to its surrounding EDnodes:

xK
i = ∑

j
wi j

(
A j(xi −n j)+ t j +n j

)
(4.3)

where wi j normalizes the influence weight w(xi,n j) among the EDNodes controlling the same

vertex:

w(xi,n j) = max(0,(1−
d2(xi,n j)

r2
i

)3) (4.4)

ri is a parameter for the influential radius of each EDNode. In [67], geodesic distance is applied

as d(xi,n j) to avoid geometric artifacts. However, there is no efficient way to compute geodesic

distance. We follow the real-time implementation [29] adopting the Euclidean distance. In

addition, in the approach of [67], the deformation graph is modified such that EDNodes’ initial

positions n j vary across iterations to better represent the deformed surface. However, changing

the number of EDNodes would involve large memory switching cost that is not ideal for GPU

computation.

The overall optimization function of the embedded deformation can be written as:

min
{A j,t j}

L = min
{A j,t j}

Ldata +αregLreg +αrotLrot (4.5)

The data term Ldata can be calculated by applying xK
i in equation (4.3) to equation (4.2) .

The rotation term Lrot measures the deviation of transformation A j from the orthogonal
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matrix:

Lrot = ∑
j

(
(aT

1 a2)
2 +(aT

1 a3)
2 +(aT

2 a3)
2 +(1− aT

1 a1)
2 +(1− aT

2 a2)
2 +(1− aT

3 a3)
2
)

(4.6)

where a1, a2, and a3 are the column vectors of A j.

The regularization term Lreg ensures the smoothness of the deformation, traditionally

defined on the edges of deformation graph E :

Lreg = ∑
k

∑
j

wk j∥A j(nk −n j)+ t j +n j −nk − tk∥2 (4.7)

wk j can be computed in the same way as equation (4.4).

4.3.4 Cluster-based Regularization

We introduce a cluster-based regularization term inspired by the isometric deformation

[50] to replace the original one in equation (4.7).

Lreg = ∑
i
∥Ac(i)xi + tc(i)− xK

i ∥2 (4.8)

where c(i) denotes the cluster that the vertex i belongs to. Vertices in one cluster share the same

cluster-wise rotation Ac(i) ∈ SO(3) and translation tc(i) ∈ R3. With new parameters involved,

equation (4.3) should be modified accordingly as:

xK
i = ∑

j
wi j

(
Ac(i)

(
A j(xi −n j)+ t j +n j

)
+ tc(i)

)
(4.9)

The optimization function would be written as:

min
{A j,t j}∪

{Ac(i),tc(i),c(i)}

L = min
{A j,t j}∪

{Ac(i),tc(i),c(i)}

Ldata +αregLreg +αrotLrot (4.10)
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Regularization demonstrated in equation (4.8) has certain advantages over the original

design in equation (4.7): The regularization is explicitly defined on surface vertices; therefore,

it captures the surface condition more accurately. This is crucial for a smooth deformation,

especially at the end of iterations when EDNodes are not uniformly located. On the other hand,

we decouple the proposed regularization and the underlying deformation graph in a way that

it eliminates the necessity to modify the deformation graph in order to adjust regularization.

Moreover, regularizing on vertex groups enables the control over regional rigidity instead of

purely vertex-level local rigidity. It can be further applied to the region-adaptive regularization

described in the following section.

4.3.5 Efficient Two-step Solution

Directly optimizing with the regularization in the last section is not easy. Note that

equation (4.8) is in a complicated format, involving the new position xK
i obtained from equation

(4.9). Moreover, there is no sufficient solution to optimize the clusters c(i). [50] obtains the

clusters with pre-calculated features and complex grouping methods in each iteration, which

cannot be accelerated with parallel computing.

We propose a two-step optimization procedure combined with a cluster refinement strategy.

Firstly, we invoke an isometric deformation, i.e. each vertex warps rigidly along with its cluster.

Each vertex is mapped to a target position ẋK
i , which will be applied to the regularization in the

next step:

ẋK
i = AK

c(i)x
K−1
i + tK

c(i) (4.11)

where AK
c(i) and tK

c(i) represent the transformation of each cluster in the current iteration. Note that,

as cluster components c(i) are modified during the process, we compute cluster transformations

in an incremental way where parameters are re-initialized in each iteration, measuring the
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transformation from iteration K-1 to iteration K. For the general setup, all vertices are assigned

to a single cluster in the initial ICP iteration, i.e. invoking a global rigid deformation. Later on,

the clusters are separated and combined for an accurate representation of the regional rigidity.

For specific deformation models, such as human bodies used in our experiments, we can utilize

results from a 3D mesh segmentation network as the initial value for better performance. The

optimization function of the K-th iteration can be written as:

min
{AK

c(i),t
K
c(i)}

Liso = min
{AK

c(i),t
K
c(i)}

Ldata(c)+αreg(c)Lreg(c) (4.12)

The regularization term can be written as:

Lreg(c) = ∑
i

∑
j
∥AK

c(i)x
K−1
i + tK

c(i)−AK
c( j)x

K−1
i − tK

c( j)∥
2 (4.13)

Equation (4.13) penalizes on the transformation deviation between adjacent vertex pairs

(i, j). It is similar to ARAP [113], except that the regularization loss within each cluster is equal

to zero. That is, Lreg(c) only calculates the loss on edges across the clusters.

In the second step, we invoke embedded deformation, leveraging the cluster-based trans-

formations obtained from the first step as regularization targets. The optimization function can be

written as:

min
{A j,t j}

Lnrig = min
{A j,t j}

Ldata(n)+αreg(n)Lreg(n)+αrotLrot (4.14)

where vertex xi is deformed with:

xK
i = ∑

j
wi j

(
A j(xi −n j)+ t j +n j

)
(4.15)

and the regularization term is defined specifically as:
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Lreg(n) = ∑
i
∥AK

c(i)x
K−1
i + tK

c(i)− xK
i ∥2 = ∑

i
∥ẋK

i − xK
i ∥2 (4.16)

Note that in the second step, cluster-based transformation AK
c(i) and tK

c(i) are treated as fixed

values, implying that equation (4.16) is in the point-to-point distance format similar to the data

term in equation (4.2). Consequently, the regularization weight αreg(n) is no longer latent, but

an exact ratio between non-rigid and rigid deformation, making the regularization process more

comprehensible.

4.3.6 Adaptive Cluster Refinement

In order to realize the region adaptive feature, we dynamically change the cluster compo-

nents during each iteration. Unlike the complicated re-grouping method in [50], we separate and

combine clusters from the ones generated in the previous iteration. This separation is managed

with non-rigid regularization term NRi = ∥ẋK
i − xK

i ∥2. Before each non-rigid deformation, we

randomly generate sub-clusters by sampling Nc anchors in each cluster and assigning vertices

in the cluster to these anchors to form sub-cluster candidates. After optimization, we calculate

the separation error Es of each sub-cluster candidate by averaging the NRi of all its vertices. The

sub-cluster would be labeled as a new cluster if Es is larger than the threshold Ts.

Similarly, the combination process is controlled by the cluster regularization term CRi =

∥AK
c(i)x

K−1
i + tK

c(i)−AK
c( j)x

K−1
i − tK

c( j)∥
2. The combination error Ec between two clusters is com-

puted by averaging all the CRi of edges across the cluster boundaries. After each isometric

deformation, we merge two clusters if Ec is smaller than the threshold Tc.

Fig. 4.3 demonstrates the cluster distribution of intermediate results during deformation.

Rigid regions (shown in blue) are represented by larger clusters while non-rigid regions (shown

in red) are represented by smaller clusters.
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Figure 4.3: Examples of intermediate results. (a)(b) Cluster distribution from two viewpoints.
(c) Error map of regularization loss.

4.4 Experiments

To validate the performance and effectiveness of the proposed methods, we perform

extensive experiments on three elaborately designed cases to simulate the complicated real-world

scenarios and compare our method with the embedded deformation, the ARAP-based deformation,

and their variants.

4.4.1 Dataset

The experiments are based on the MIT human dataset [132], which contains 10 subsets of

meshes. All meshes are in real human scale with heights around 1.8 meters. Each subset records

a different action with diverse surface appearances and consists of a sequence with more than 150

frames. The original video is captured at 25FPS, a relatively low frame rate. Some subsets, such

as bouncing, jumping and handstand, are challenging as they involve fast motion.

In our general test case, we adopt the original frame rate and select 50 consecutive meshes

in each subset (500 samples in total). Moreover, to simulate real-world 3D scanned surfaces, we
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intentionally generate holes on the 500 meshes to create the incomplete mesh test case. Lastly, in

the inaccurate correspondence test, we experiment on extreme large-scale deformation cases by

selecting meshes 5 frames apart in the bouncing, handstand and marching subsets (300 samples in

total). Under this setting, ICP-based methods usually have to be guided by global correspondences

to obtain reasonable results. In our experiment, we leverage the body-part segments as weak

correspondences. Note that the segments are also employed as cluster initialization. We compute

transformations of corresponding body-part segments and apply them in the first iteration before

the closest points searching. Note that comparing with the learning-based registration methods

[134, 131], our segmentation-based method provides very sparse correspondences, but in a more

efficient way and fits our proposed method well. The weak correspondences are applied to all the

methods in the large-scale deformation cases equally for a fair comparison. We also add random

noise to these correspondences by slightly altering the transformations to simulate inaccurate

correspondences and test the robustness of the methods.

4.4.2 Incomplete Mesh Generation

Occlusions due to limited coverage of physical scans inevitably introduce gap regions

on resultant meshes. Such occlusions mainly appear as narrow strips, for example, the image

of an arm projected onto the torso. To better re-enact this scenario, we manually introduce

discontinuities with controllable shapes on the surfaces in our mesh dataset.

Given a mesh with a set of vertices V . We uniformly sample a few vertices on the mesh

and add them to the selection set, then iteratively choose the top-most and bottom-most neighbors

of the selection set along a direction (such as the z-axis, as shown in Fig. 4.4) and add them to the

selection set. This gives us a vertical line segment V σ
s on the mesh surface after σ iterations. To

further expand resultant crease, we iteratively append all the 1-ring neighbors of the currently

selected set. This gives us a region masked by vertices V σ+φ
s after φ iterations. We then remove

V σ+φ
s (and their adjacent edges and faces) from our mesh. Fig. 4.4 provides an overview of the

52



incomplete mesh generation process.

Figure 4.4: Incomplete mesh generation process. V σ
s : Vertices marked with black circles. V σ+φ

s :
Masked region.

4.4.3 3D Body-part Segmentation

To infer body-part labels in 3D, the majority of the methods require annotated meshes

as supervision. However, most public 3D human-related datasets do not provide body-part

annotations. Others may contain models with less various surfaces, such as unclothed and hairless

models in [63], or have labels without distinguishing left and right [144], which is critical to our

experiment as we also require correspondence. Thus, we prepare the annotation for the MIT

dataset by ourselves. We generate the ground-truth labeling through 2D projection-based as well

as 3D deformation-based methods to avoid the time-consuming manual labeling process and also

make the annotation more consistent across meshes.

For the projection-based method, we segment the 2D image [74] from each camera

view in the MIT dataset and then back-project the segmentation results using calibrated camera

parameters. Such assignment is occasionally problematic with inter-class boundaries, where

minor pixel bias leads to the ghosting effect. Therefore, we shrink the area around boundaries

of the 2D segmentation results. Afterwards, to tolerate the precision problem of the calibration
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information provided, we assign labels to vertices by voting the segmentation results from all

views. The resultant mesh may contain unassigned vertices due to the shrinking procedure. We

diffuse the labels along the mesh topology until all blank regions are fully covered [116]. This

process is illustrated in Fig. 4.5 (a).

Considering challenging cases that the initial 2D body-part segmentation network mal-

functions, as shown in Fig. 4.5, we leverage deformation to propagate labels from neighboring

frames in the sequence since deformation retains the order of vertices [114]. However, long-term

continuous deformation may fail for sequences with fast motion due to various reasons. For

instance, as the color labels propagate through a sequence, shifting can accumulate. Moreover,

two originally separate body segments attached to each other may change the surface topology

of the mesh. When those two segments subsequently separate again, artifacts are generated in

the form of erroneous surfaces that attempt to retain the connection between those two segments.

Manual relabeling has to be involved in these failure cases.

Figure 4.5: (a). Left to right: 2D segmentation, back-projection assignment, final torso
segmentation. (b). Failure cases of projection-based segmentation

Both back-projection and label propagation may encounter corresponding compromised

cases, which occur for human body motions relatively more often, making the use of neural

network a more straight-forward and efficient method. Nevertheless, the network can have a

general and scalable architecture for multiple segmentation tasks. It confers to our system the
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potential of application beyond human objects and the structure can be further simplified to

accelerate the inference to real-time.

We adopt the state-of-the-art KP-FCNN architecture from [124] to train the network with

data prepared through the aforementioned workflow. The final instance mIOU on the testset of

MIT dataset is 79.8. The visualization of the results from various subsets is shown in Fig. 4.6.

Note that the isometric regularization proposed is not bound to the 3D segmentation network we

used in this chapter. Any black-box annotation methods can be applied here.

Figure 4.6: Results of our 3D body-part segmentation network on various poses.

4.4.4 Segmentation as Initial Correspondence

Nearest-neighbour-based correspondence from ICP is limited to the locality of a source

vertex. In cases where a source vertex and its correct target counterpart are far away and possibly

impeded by other vertices in between, ICP alone cannot produce the correct deformation results.

To achieve large-scale deformation, we introduce an initial correspondence to the algorithm. Note

that we only compute and apply the correspondences in the first iteration, unlike [50] which
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requires accurate correspondences in the whole process. The initial correspondence is generated

through the network proposed above that segments each human mesh into ten parts.

Given the labels, we first calculate all body segment centers on both the source and target

meshes. A body segment center xθ
c for a segment θ is defined as the center of the segment’s

bounding box.

Next, we find the principle components for all body segments on both meshes, where the

principle component vθ
pc of a body segment θ is the eigenvector associated with the 2nd largest

eigenvalue of the covariance matrix of all vertices in that segment. Since a principle component

can have two orientations, to eliminate this ambiguity, we also introduce a reference vector for

each segment. A segment’s reference vector vθ
r is defined as the vector pointing from the segment

center xθ
c to the average position of the vertices xθ

r that bound another specific segment:

vθ
r = (

1
Nr

∑xθ
r )− xθ

c (4.17)

The right image in Fig. 4.7 exemplifies the set of reference vectors for the mesh on the

left. Since each reference vector points to a unique direction for a given mesh, we disambiguate

the orientation of the principle components by comparing them to their corresponding reference

vectors. That is, we define a principle component vθ
pc to be correctly oriented if the angle between

it and its corresponding reference vector vθ
r is less than 90 degrees by checking whether the

following holds:

(vθ
pc)

T vθ
r > 0 (4.18)

If the above equation is not true for a pair of principle component and reference vector,

we reverse the principle component. This process is visualized in Fig. 4.7, where, for the person’s

right thigh, the angle between its principle component (labeled with blue arrow) and reference

vector (labeled with yellow arrow) is less than 90 degrees. On the other hand, for the person’s
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Figure 4.7: Left: example of labeled mesh with two selected principle components. Right:
example of reference vectors with two selected principal components.

left forearm, the angle between its principle component (labeled with green arrow) and reference

vector (labeled with red arrow) is greater than 90 degrees, so we reverse the principle component

in the latter case. We perform this operation on both the source and target mesh to ensure that

all principle components are correctly matched. Note that although reference vectors alone can

capture the transformations between segments, principle components are more accurate in this

regard.

With segment centers and principle components correctly matched between the source

and target meshes, we calculate the segment-wise rotation and translation. Then, for each source

vertex, we find the vertex on the target mesh that is closest to the transformed version of the

source vertex. In this way, we are able to relocate each source vertex to a similar position on the

target mesh with respect to the segment that the vertex belongs to in the first iteration, thereby

speeding up the converging time in easy deformation cases as well as realizing almost impossibly

hard cases.

To simulate uncertainty in the real-world cases and test the robustness of current global

registration methods, we add Gaussian distributed noise to both the rotation and translation
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of each segment with variances equal to 10 degrees and 10% of the segment bounding box’s

diagonal, respectively.

4.4.5 Implementation Details

We implement all the methods with high-performance implementations. We optimize

equations (4.5, 4.12, 4.14) with Levenberg–Marquardt [65] algorithm. We solve the optimization

problem with the GPU version of Optlang [27]. We use an efficient KDTree implementation [10]

to find closest points. All experiments run on a PC with Intel i7-10700K CPU, NVIDIA 2080TI

GPU, and 32GB of RAM.

We explore extensively on regularization weights and all the other parameters including

Nmax: the maximum number of clusters allowed, Rs: sampling ratio of the sub-clusters, Ts: cluster

separation threshold, and Tc: cluster combination threshold. The regularization weight tuning will

be discussed in detail in the ablation study section. For the remaining parameters, the experiments

show that they do not have significant influence on the final results in a reasonable value range.

Therefore, in the following section, we only show results with the setup: Nmax = 1000, Rs = 6,

Ts = 1×10−3, and Tc = 5×10−4.

4.5 Results

4.5.1 Quantitative Evaluation

In this section, we demonstrate the numerical results of our experiments. We compare

seven algorithms in terms of the deviation between the output mesh and the target ground truth

mesh, calculated as the sum of the bi-directional RMSE (Root Mean Square Error): distance of

all vertices on the output mesh to their closest points on the ground truth surface, and similarly

the inverse point-to-plane distance of ground truth vertices to the output surface:
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f (A,B) =

√
1

Nv
∑

x∈VA

(min
p∈SB

∥x− p∥2) (4.19)

RMSE = f (A,B)+ f (B,A) (4.20)

where VA is the set of all vertices on mesh A and SB is the surface of mesh B.

Let EDO as the embedded deformation with relaxation on the regularization weight. EDO

fix stands for the embedded deformation without relaxation. ARAP is the traditional vertex-

based deformation method with ARAP regularization. We also compare with other non-rigid

deformation works [141, 5, 69] with open-sourced implementations using the default parameters

in [141] for the same dataset. The results are shown as RPTS, NICP and RNRR. For our proposed

methods, EDC represents embedded deformation with isometric regularization. We test with two

different EDNode sizes. Baseline EDO and EDC use 1
20 of all their vertices as EDNodes, whereas

EDO 2x and EDC 2x use 1
10 . As our proposed EDC method decouples the deformation model

and regularization, in the EAC 2x Re method, we resample the EDNodes in each iteration so that

the underlying model reflects more accurate surface geometry and is not affected by accumulated

error of deformation. Note that all our methods are separately tuned on a validation set with 50

samples in each test case. The final parameters are shown in Table 4.1.

Comparing the results of EDO and EDO fix in Table 4.2, we observe that relaxation

improves the original embedded deformation, which demonstrates the importance of balancing

the rigidity of different parts of the surface during deformation. Comparing the results of EDO and

EDO 2x, we see that increasing the number of EDNodes does not always improve the final results

as the local minimum issue may occur without proper regularization. Although we exhaustively

search for optimal parameters, in the general case, we cannot make EDO with more EDNodes

perform better. However, due to its superiority, EDC can easily achieve better results by either

using more EDNodes or resampling them. Note that we fail to achieve a comparable results with
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Table 4.1: Optimal value of regularization parameters. For EDO and its variations: maximum
regularization weight. For EDC and its variations: inter-cluster regularization weight (left) for
the isometric deformation step and cluster-based regularization weight (right) for the nonrigid
embedded deformation step. Note that we decrease the regularization weights in all the methods
exponentially with a fixed base b = 0.9.

General / Incomplete Mesh Inaccurate Corr

EDO 100 20

EDO 2x 200 20

EDO fix 50 2

ARAP 4 0.25

EDC 1 / 2 0.05 / 0.5

EDC 2x 0.5 / 2 0.05 / 0.5

EDC 2x Re 0.5 / 2 0.05 / 0.5

the source code of RPTS, NICP and RNRR, it could partially result from the fact they don’t

contain meticulous relaxation design.

4.5.2 Optimization Curve

We track the registration process by calculating the RMSE between the intermediate

results and the target ground truth after each deformation iteration. We take the average RMSE

among 50 samples in each of the three test cases. The optimization curves are shown in Fig. 4.8.

Figure 4.8: Optimization curves of the seven algorithms in three test cases: average bi-
directional RMSE among all samples v.s. iterations.
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Table 4.2: Bi-directional RMSE between the deformed meshes and the ground truth in meters.
Our proposed method (EDC), its variants, and the best results are highlighted. Note that we
don’t test RPTS, NICP, RNRR in inaccurate correspondence case.

General Incomplete Mesh Inaccurate Corr

RPTS 0.008805 0.008989 /

NICP 0.008311 0.008449 /

RNRR 0.007295 0.007602 /

EDO 0.003839 0.004500 0.006014

EDO 2x 0.004367 0.005155 0.006783

EDO fix 0.004168 0.004909 0.006327

ARAP 0.003835 0.004980 0.005809

EDC 0.003386 0.003541 0.004408

EDC 2x 0.003042 0.003707 0.003624

EDC 2x Re 0.002775 0.003325 0.003086

Our proposed methods (EDC, EDC 2x, and EDC 2x Re) achieve the best performance

in all three test cases by converging with smaller errors in contrast to the other methods. For a

fair comparison, in the general and incomplete mesh test, identical rotation and translation are

applied to mesh vertices in the first iteration regardless of deformation methods. In these two

cases, our proposed methods, which begin with one cluster, converge at the same rate as EDO

methods but slower than ARAP in early iterations. However, ARAP is optimized with ten times

more parameters and runs much slower (shown in Table 4.3). In the third experiment, we apply

the inaccurate correspondences to all three methods in the first iteration. Our methods, which

start with ten clusters, converge faster than the other methods. Note that, as our proposed methods

and ARAP all directly regularize on surface vertices, the optimization curves are smoother and

more stable at the end of iterations.

4.5.3 Qualitative Evaluation

In Fig. 4.10, we demonstrate deformed output meshes from different algorithms (shown

on the right) along with the optimization curve for the specific case (shown on the left). We use the
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point-to-plane inverse distance (from target to source) as the error, assign it to each ground truth

vertex, and render the target mesh into a colormap. Note that, on the left side, we show different

objects for different experiment cases. In the general test (upper), we render the source mesh

and target-to-source error map to demonstrate the difference between the two. In the incomplete

mesh test case (middle), we render the incomplete target mesh and complete-to-incomplete error

map to display the discontinuity we test with. In the inaccurate correspondence case (lower),

to visualize the large-scale divergence, we render the source mesh by itself and error map from

the transformed source mesh to the target mesh where we directly apply the noisy cluster-wise

transformations.

Our proposed method achieves the best visual appearance in all three experiments by

creating intuitive results without affecting any part of the model (indicated by fewer red regions)

as well as preserving the surface details (indicated by fewer green regions).

4.5.4 Running time

We record the running time of five ICP iterations without early stop for six methods in

the general test case. The mean values are shown in Table 4.3. As EDO and EDC use simplified

deformation model, they only take around 1
7 running time in five iterations compared to ARAP

methods. Due to only a small amount of overhead involved in the isometric deformation step, the

overall EDC costs relatively the same time as EDO. It can be further accelerated with smaller

max cluster sizes and better implementation.

4.6 Ablation Study

We tune all algorithms with meticulous parameter search. While Table 4.1 summarizes

the parameters with the best performance on validation sets, Fig. 4.9 shows the tuning process

for EDO and EDC with a heat map for each method. Since both heatmaps share the same color
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Table 4.3: Running time and number of optimization parameters for each algorithm. Note that
RNRR runs on CPU while the other methods run on GPU

Time (ms) # Parameters

EDO 23.408 6000

ARAP 153.966 140028

RNRR 357.440 /

EDC Cluster 4.874 <600

EDC Nonrigid 20.051 6000

EDC Combined 24.925 6000

Figure 4.9: Examples of the parameter tuning process shown as heat maps.

scales, we clearly see that EDC attains lower RMSE on the majority of combinations of its two

parameters compared with the best-performing case for EDO. Moreover, since the parameters are

tuned with approximately the same multiples apart (i.e. parameter pnext ≈ 2p), we find that EDC

is less sensitive to parameter changes as its optimal performance does not vary significantly in a

large span of parameter values.

4.7 Conclusion

In this chapter, we improve embedded deformation with a novel isometric regularization

method. We propose a two-step procedure that successfully decouples the deformation model

and regularization, and efficiently achieves region adaptive regularization. We verify the strength

of our algorithm with extensive experiments.
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The proposed deformation framework can be further improved. Firstly, we introduce

several more parameters in our algorithms. Although we have shown that most of the parameters

such as Nmax, Rs, Ts and Tc do not significantly influence the final results, they still have to be

adjusted in a new dataset where meshes have different scales and numbers of vertices. Better

solutions to set the parameters, such as dynamically updating Ts and Tc given the statistics from

the input meshes, can be implemented in future work. Secondly, our algorithm potentially

converges slower in the first several iterations due to the naive cluster separation strategy currently

employed. We will consider designing a more robust cluster refinement method as well as

exploring on generating better initial clusters for faster convergence. Lastly, we can further

accelerate our algorithm by replacing the general non-linear least squares solver (Optlang) with a

made-to-measure optimizer.

Chapter 4, in part, is a reprint of the material as it appears in the paper: K. Chen, F.

Yin, B. Wu, B. Du, and T. Nguyen, “Efficient Registration for Human Surfaces via Isometric

Regularization on Embedded Deformation”, submitted to IEEE Transactions on Visualization

and Computer Graphics(TVCG), 2021. The dissertation author was the primary investigator and

author of this paper.
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Figure 4.10: The optimization curves (left) and final outputs (right) for three selected cases.
The deformed meshes and error maps from two viewpoints are displayed for four methods: (a)
ARAP, (b) EDO, (c) EDC, and (d) EDC 2x Re.
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Chapter 5

FaceFusion: Towards Lightweight

High-fidelity 4D Faces

5.1 Introduction

Reconstructing photo-realistic dynamic 3D faces is one of the most important techniques

in human digitization. It opens the gate to many metaverse applications such as virtual communi-

cation, VTuber live show, immersive interactive video games.

In the past few years, considerable success has been made in model-based single image

face reconstruction. With the help of Deep Convolutional Neural Network (DCNNs), one can

obtain a ready-to-use face mesh by estimating the coefficients of any 3D Morphable Model

(3DMM) [11, 16, 51, 70, 40, 12], as well as generating a texture map given a frontal view or

near-frontal view image [35, 121, 126, 24]. Recently, a lot of work [108, 97, 80, 23, 38, 73]

has been done to improve texture generation. Some of them [38, 73] is capable of producing

impressive models consisting of most of the high-frequency details in the input images by

exploiting Generative Adversarial Networks (GANs).

However, generating a high-fidelity dynamic face given a video input is still challenging.
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Figure 5.1: Our method reconstructs high-fidelity 3D face models by leveraging temporal
information. Instead of costly inferring the unseen region and modeling precise surface, we stitch
and refine the full-detail raw textures which are directly collected from the source pixels. Our
method enables lightweight reconstruction and can be employed to many real-time applications.
As shown above, after continuously blending new inputs, we obtain a complete texture. Three
generated models are displayed on the right without any post-processing.

Firstly, the trivial solution, generating model and texture map for each individual frame, is not

satisfying, because most of the single image reconstruction methods cannot handle side-view

face images as reliable as front-view ones. It is a common observation that a network infers

different appearances for the same surface region captured from other viewpoints, especially in

occluded areas, hence there is no guarantee of view consistency across the whole sequence. In

addition, we cannot follow tracking or blendshapes solution in the animation industry to apply

baked texture maps to models in other frames, because the generated high-resolution texture maps

are often non-uniformed. They contain expression variance facial information such as wrinkles,

skin details, and hairs. Although some works [37, 7] attempt to decouple those content from

the texture map, they either have to adopt a more complicated procedure or involve customized

model. Most of them can only be performed offline.

In this chapter, we propose an efficient solution to generate high-fidelity face models

from video input. Instead of expecting a perfect output from network in one step, we adopt a

refinement strategy and focus on leveraging temporal information. In the first step, we follow

the model-based single-view reconstruction framework and generate a rough face geometry with

the state-of-the-art real-time reconstruction network [47]. After that, we texture the surface with
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a projection-based method in which we only map the RGB value from image space to texture

space, and remove some areas with apparent artifacts without introducing additional complicated

structure to infer the occluded region.

The initial face model is far from satisfying with respect to three types of inconsistency:

• Geometry v.s. Input inconsistency. Due to the simplification of 3DMM parameters and

network structure, the result of [47] doesn’t always fit the input image accurately enough.

Particularly, [47] tends to generate an open mouth surface even the mouth is closed in the

input image.

• Texture v.s. Geometry inconsistency. The misalignment error can be propagated to the

texture map. For example, if the estimated model is oversized, the background pixels will

be introduced to the texture.

• Inter-view inconsistency. Although all models are mapped into the identical UV coordinates,

the texture from different views can still mismatch, especially for the high-frequency details

such as beard, mustache and moles. Directly averaging two texture maps would easily

result in a ghosting effect.

Therefore, we design a FaceFusion network to stitch two incomplete texture maps from

different viewpoints as well as address the aforementioned inconsistency. We are inspired by

the structure in end-to-end image stitching networks [93, 94], and feed two texture maps into an

encoder-decoder structure, and generate a high-quality texture map free from the ghosting effect.

We also integrate a mesh refinement module to fix the inaccurate geometry. Specifically, we

deform surfaces based on a projected 2D deformation map which is estimated with convolution

framework, unlike in the other work, memory and time consuming Multilayer perceptron (MLP)

or Graph Convolutional Network (GCN) has to be involved. With differentiable rasterization, two

networks can be collaboratively trained without any 3D or texture space supervision. After the
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above training procedure, we finetune the network to support progressive fusing which one of

inputs is an accumulated texture generated with all of the previous frames.

5.2 Related Works

Single-view 3DMM-based method. With the developing popularity of metaverse appli-

cations, the demand for 3D face reconstruction is also rapidly growing. The seminal work of

3D Morphable Models (3DMM) [11] is introduced by Blanz and Vetter. The 3DMM performs a

promising result of face reconstruction with the optimal combination of shape and albedo, given a

single view image. After that, many researchers [31, 12, 52, 16] are exploring on different aspects

of 3DMM. Focusing on the 3DMM limitation of facial shape, skin reflectance and illumination,

Tewari et al. [122] introduce a self-supervised learned parametric face model based on just

monocular images. To improve the linear 3DMM, taken two networks as the non-linear 3DMM

decoders, Tran et al. [126, 127, 125] propose an innovative framework to learn non-linear 3DMM

from numerous unconstrained face images. The new framework shows better performance than

the linear one. After that, Deng et al. [24] further uses identity information and proposes a hybrid-

level weakly-supervised training for CNN-based 3D face reconstruction. Based on Basel Face

Model [52] and expression basis, this method performs more accurate shapes. For Multi-view

Geometry Consistency Net (MGCNet) [111], Shang et al. present a self-supervised pipeline for

monocular 3D Face reconstruction and introduce a new multi-view geometry consistency loss.

However, these 3DMM-based methods rely on 3DMM texture data, so the restoration of facial

details is not accurate.

Single-view non-3DMM-based method. 3DMM provides great prior knowledge of the

face and also give some limitation of shape and texture. Many efforts are devoted to generating

3D faces directly. Feng et al. [33] choose to directly generate the 3D face dense alignment for face

restructure with the Position map Regression Network (PRNet). Furthermore, Chen et al. [18]
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and Gecer et al. [37] propose the networks to generate texture, shape and normal map directly.

However, these methods acquire a lot of computation, which is difficult to run in real-time.

Multi-view reconstruction and Unconstrained reconstruction. Compared with the

limited data of a single-view, multi-view reconstruction benefits from more data and is also

an attractive problem. Multi-view 3D face network (MVFnet) [137] proposed by Wu et al. is

a 3DMM parameters regressor that is trained with the novel self-supervised view alignment

loss. The input of this network is multi-view face images taken simultaneously under the same

lighting condition, which is a strong limitation. Bai et al. [6] propose the non-rigid multi-view

stereo (NRMVS) to regress the face shape directly without requiring the input images taken

simultaneously. Moreover, Gao et al. [34] propose a semi-supervised manner with adversarial

loss that face reconstruction is facilitated using unconstrained photos. These methods use new

data, but the effect is not ideal.

5.3 Overview

Figure 5.2 demonstrates our reconstruction pipeline. In Section 5.4, we describe the

pre-processing step in which we generate rough geometries and textures, and also transform them

into the format that is more suitable for DCNN. Next, we highlight the proposed FaceFusion

network in Section 5.5, specifying our design and loss functions. Furthermore, in Section 5.6,

we discuss the fine-tuned network to achieve our final purpose, improving the rough models

by leveraging temporal information. After that, the experiment and implementation details are

discussed in Section 5.7. At last, both qualitative and quantitative results are demonstrated in

Section 5.8, followed by the conclusion in Section 5.9.
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Figure 5.2: Overall reconstruction pipeline.

5.4 Rough Model Generation

The input video is processed frame-by-frame. Firstly we detect the face position with a

robust face detector [15]. Then we send cropped face image to [47] to estimate 3DMM coefficients

as well as camera position. Note that, our solution sets no constraints on the reconstruction

approach in this step. It can work with more complicated algorithms or other parameter-rich

3DMM models for better initial guesses. We choose [47] only for efficiency consideration.

Next, we create texture map by mapping the RGB values from the input image to the UV

space T ∈ R3×512×512. It can be achieved through an inverse-rendering procedure. Specifically,

we exchange texture coordinates and image-space coordinates of the generated face model and

render with the input image as texture. This implementation could be problematic as both

back-oriented faces and occluded faces can be painted as well. In addition, as the estimated

model doesn’t always align with the input, the texels that lie on the surface boundaries could

be disseminated with colors of the wrong surface, as shown in Figure 5.3. Traditionally, the

back-oriented issue could be tackled with back-face culling while the occluded faces issue is

addressed with a depth test method. However, as 3DMM is an one-layer model, we resolve all

three issues with large-angle removal method. For each pixel (or fragment in GPU), we calculate

the angle between its normal and the viewing angle. We set all pixels with angles large than 70
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degree to be black.

Figure 5.3: (a) 3DMM model projects to source image. (b) Generated texture after back-face
culling. (c) Generated texture after removing large-angle faces.

Moreover, in the preprocessing step, we also render vertex position XYZ value to the

texture space. We feed that as the representation of geometry to the following geometry refinement

network.

5.5 Face Fusion

5.5.1 Texture Stitching

The overall training framework is shown in Figure 5.4. In the texture stitching module,

we follow [94] as it reveals the capability to stitch two coarsely aligned images and generate

high-resolution output without ghosting effects. In our task, stitching two texture maps seems

easier in terms of the fact that less distortion is involved when mapping from image space to the

regularized UV space. However, unlike in the common stitching problem, we have no access to

the high-resolution texture ground truth. Also, the content of the rough textures could be slightly

different.

Therefore, we utilize the self-supervised framework in the single-view reconstruction task,

render the generated face model back to the image plane, and train with image space losses. Note

that, although DCNN is powerful in the high-resolution image generation and transformation
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tasks [133], it has to be fed with pixelwise aligned input and output pairs. Mismatch could cause

artifacts in the final generation. For that reason, geometry refinement has to be trained with the

texture stitching module simultaneously in order to fulfill better outcome.

Figure 5.4: We train FaceFusion network to combine two rough models in a self-supervised
manner. Note that two models are fed into the identical geometry refinement network and
they share weight during training. Network and implementation details are shown in the
supplementary material.

5.5.2 Geometry Refinement

In the geometry refinement module, instead of optimizing on the latent coefficients of

3DMM, we directly deform the vertices of the surface, allowing a more accurate and customized

adjustment beyond the pre-defined model space.

As 3DMM surface is quite dense, consisting of near 40K vertices and 80K faces, directly

applying MLP and GCN to predict the position of each vertex is not ideal for both training

and inference. Alternatively, we follow the work in [3] to estimate a 2D deformation map
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D ∈ R3×512×512. The deformation map carries the movements information of all of the vertices.

Specifically, the displacement of a vertex can be calculated by mapping it to the corresponding

pixel and sampling the neighborhood with the bilinear interpolation:

∆vi = Ib(D(i;δr)) (5.1)

where Ib denotes the bilinear interpolation function and δr stands for the network parameters.

Note that, deformation map decouples the network from underlying models and can work with

any 3DMM model as well as arbitrary number of vertices. In addition, it can be trained with pure

convolution structure.

Besides, the global transformation including: scale vector s ∈ R3, rotation quaternion

q ∈H4 and translation vector t ∈ R3 are estimated as well in another branch in the decoder. (See

details in Figure 5.4). As these parameters are in low dimensions, we simply utilize MLP structure

to estimate.

In summary, the new position of the vertex i after deformation can be written as:

v∗i = S ·R ·
(
vi + Ib(D(i;δr))

)
+ t (5.2)

where S, R are scale and rotation in matrix format.

5.5.3 Differentiable Renderer

With help of a differentiable renderer, we transform the 3D result to the 2D image plane

and train the whole framework end-to-end. Thanks to the simplicity of face shape and our

refinement policy, we can employ a differentiable rasterizer [78] to accomplish the deformation,

with no necessity to exploit a more complicated raytracing-based method.

As we maintain our 3D models in image space coordinates and apply the global transfor-

mation in the geometry refinement module, in the rasterizer, we simply utilize the orthographic

74



camera with fixed focal length and principal point. Additionally, since our generated texture

has been baked with lighting information, and in our application, the environment lighting is

relatively stable. We fix the lighting parameters in the renderer as white ambient.

5.5.4 Loss Functions

Feature Loss

Following [93] and [94] , we penalize the difference between rendered appearance of re-

constructed model I ∈R3×512×512 and input image I0 ∈R3×512×512 by applying weight-averaged

ℓ1 loss of last five VGG layers outputs:

Lvgg = ∑
k

wk||F k(I)−F k(I0)||1 (5.3)

Compared with pixel-wise ℓ1 loss, the feature losses are proven to be more robust to variations

such as pose, illumination as well as minor misalignment.

Adversarial Loss

We integrate the improved multi-scale discriminator [133] into our framework and demon-

strate that it can effectively work with differentiable renderer if basic alignment is guaranteed.

Given input and output resolution 512× 512, we exploit three PatchGAN discriminators to

process on three scales: 512×512, 256×256, 128×128. We denote the k-th discriminator as

Dk = Dk(s,x). When training with two-frame rough textures, s is the input texture for the specific

view, x is the rendered image. We denote the GAN loss as LGAN(G,Dk), where G represents the

whole FaceFusion network. We also add the featuring matching loss in [133]:

L f m(G,Dk) =
T

∑
1

1
Ni
||D(i)

k (s,x)−D(i)
k (s,G(s))||1 (5.4)
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where i denotes the i-th layer feature of the discriminator.

Silhouette Loss

VGG-based feature losses can handle low-frequency information in the source image very

well while GAN Loss are capable of recovering high-frequency details. However, both losses

are defined on the RGB space. As shown in Figure 5.5, with only RGB losses, when the output

silhouette doesn’t match the source silhouette, the network tends to incorrectly fit the texture with

the corresponding color at the imprecise position instead of correcting the surface. Therefore, we

define a silhouette loss to guide the deformation explicitly with the silhouette H ∈ R×512×512.

Lsilh = ∑ ||H
′
(I)−H (I0)||1 (5.5)

The differentiable rasterizer [78] highlights its global gradient design in which vertex

can be affected by all surrounding pixels. In the default settings, [78] generate soft silhouettes

with value range from 0 to 1 instead of binary mask (shown in Figure 5.5). In this way, the inner

vertices may be deformed as well, leaving a very noisy surface after optimization. To solve the

issue, we intentionally set all pixels five pixels away from the boundaries to be one. We denote

the fix silhouette as H ′
. This implementation can efficiently achieve our deformation purpose

without wasting great efforts tuning the renderer-related hyper-parameters (σ, γ, blur radius).

Figure 5.5: (a) Failure case deforming with RGB-only losses. (b) Texture generated with
RGB-only losses. (c) Inside-hard silhouette. (d) Inside-soft silouette
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Regularization Loss

In order to generate smooth surface, we also include Laplacian Loss and Normal Consis-

tency Loss to regularize on the surface deformation. Laplacian Loss measures on the distance of

a vertices vi to the center of mass of its 1-ring neighbours Ni:

Llap = ∑
i
||δi||22 (5.6)

where δi = vi − 1
||Ni|| ∑ j∈Ni

v j

Normal Consistency Loss is defined on normal disparity between two adjacent faces with

normals ni and n j:

Lnc = ∑
i j

(
1−

ni ·n j

||ni||||n j||
)2 (5.7)

Combining all of the aforementioned losses, we train FaceFusion network given two-frame

rough models with:

min
G

((
max

Dk
∑

n∈0,1
∑
k

Ln
GAN(G,Dk)

)
+

∑
n∈0,1

λ f m ∑
k

Ln
f m(G,Dk)+λvggLn

vgg +λsilhLn
silh+

λlapLn
lap +λncLn

nc

)
(5.8)

where n ∈ 0,1 denotes the losses from two views accordingly.
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5.6 Progressive fusion

We extent the two-frame fusion framework to broader scenarios where we not only blend

with rough models, but also with the fused model obtained in the previous frames. As shown in

Figure 5.6, FaceFusion that is only trained with the rough textures cannot produce a satisfying

result, if we directly feed the resultant texture back to FaceFusion network along with a rough

texture. We upgrade the network by fine-tuning with a new type of dataset mixed with original

rough textures and stitched textures. Note that the stitched textures don’t fit the previous training

framework very well, because supervision with only one viewing angle doesn’t satisfy the fact

that stitched textures should preserve all the information in the previous images.

Figure 5.6: Results of progressive fusion. Top: before fine-tuning. Below: after fine-tuning.

Instead of making the accumulated result consistent with all the underlying frames, we

take a simple but effective policy in which we only make the results consistent with the new input

while preserve the remaining void region in the new texture similar to the accumulated texture.
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Consequently, we train accumulated texture compatible FaceFusion with:

min
G

(
max

Dk
∑
k

LGAN(G,Dk)+max
DT

k
∑
k

LGAN(G,DT
k )

+λ f m ∑
k

L f m(G,Dk)+λ f m ∑
k

L f m(G,DT
k )

+λvggLvgg +λsilhLsilh +λlapLlap +λncLnc

)
(5.9)

where we introduce a new discriminator DT
k = DT

k (s,M (x)) for accumulated textures. s is the

concatenation of two input textures. x is output texture. M is the void mask of new texture, as we

only discriminate on the remaining parts in the UV space.

5.7 Experiment

5.7.1 Dataset

We experiment our method with a simple dataset. We collect turning head video of 40

objects with various expression. The videos are captured at 720×1080 resolution, 10 fps. The

video length is around 15s.

We select 30 objects as the training set, 5 as validation set and test with the remaining 5

objects. To blend with two-frame rough models, we train FaceFusion network with data consisting

of two randomly selected frames of a single object. To achieve progressive fusion, we iteratively

train FaceFusion network with data from two randomly frames of a single object in the first run,

then feed the stitched texture and a new texture of the same object in the second run.

5.7.2 Data Preprocessing

As our 3DMM model doesn’t contain movable eyeballs and teeth structures, to mitigate

the influence of misalignment on these parts, the captured images are preprocessed to remove
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eyes, mouth, hair, and background. Firstly, we get 68 face landmarks by the face-alignment

detector [15] and crop the image into 512×512 resolution with the face in the center. Simply

applying face segmentation network to detect face region could result in an irregular forehead.

To tackle this issue, the 3DMM face masks are obtained with a face reconstruction method [24],

and the face segmentation mask of both skin and hair is obtained based on an off-the-shelf face

segmentation network built on BiSeNet [142]. The final data is obtained with the intersection

mask of the face parsing mask and the 3DMM mask. The results are shown in Figure 5.7.

Figure 5.7: (a) Captured 720×1080 image. (b) Cropped 512×512 face image. (c) Cropped
with the face segmentation mask of skin. (d) Cropped with the face segmentation mask of skin
and hair. (e) Cropped with the 3DMM mask. (f) Cropped by the intersection mask of the face
segmentation mask of skin and hair and the 3DMM mask.

5.8 Results

5.8.1 Implementation Details

We set λ f m = λvgg = λsilh = 10, λlap = 1×10−5, λnc = 1×10−2 and optimize equation

(5.8) and (5.9) with batchsize equals two. More details are demonstrated in the supplementary
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material. Without further speedup, both texture stitching and geometry refinement module take

around 60 ms to process with NVIDIA V100 GPU.

5.8.2 Quantitative Evaluation

With five test objects, we randomly select 20 pairs of frames for each person and utilize

FaceFusion network to generate 10 models. The ten models are rendered back into 20 images with

the estimated camera parameters. We compare our results with three single-view reconstruction

approaches [24],[111] and [126]. For each method, 20 models are generated separately and also

rendered back to the specific views. FaceNet [110] is introduced to evaluate identity consistent

with high-fidelity 3D face models to alleviate the misalignment issue. Given one face image, the

FaceNet extracts a 512-dimensional embedding, regarded as the face’s feature vector. Low Mean

Squared Error (MSE) between two vectors represents the faces are more similar. Table 5.1 shows

the FaceNet-MSE results of the proposed method and other comparison methods. To prove the

effectiveness of the proposed method, we add two baselines. Baseline 1 is the evaluation result of

the same person from different angles. Baseline 2 is the evaluation result of the same image with

or without eyes and teeth.

It can be seen from the Table 5.1 that the performance of the proposed method is better

than that of other comparison methods. Meanwhile, the evaluation of the proposed method is

less different from baseline 1, which shows that the proposed method can generate consistent

high-fidelity 3D face models.

5.8.3 Qualitative Evaluation

Figure 5.8 demonstrates the visual appearance of the reconstructed models. Compared to

the other method, our proposed approach can generate faces that are more similar to the input. In

addition, our method successfully recover the high-frequency details such as hairs, moles and
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Table 5.1: Objective identity consistence comparison based on FaceNet-MSE [110] (10−4) ↓

Method Obj 1 Obj 2 Obj 3 Obj 4 Obj 5
Baseline 1 1.45 4.10 2.84 3.72 2.96
Baseline 2 0.91 3.58 0.83 1.07 4.51
Deng et al.[24] 11.53 14.95 8.85 8.31 10.31
MGCNet [111] 11.75 9.86 10.70 7.23 9.07
L. Tran et al. [126] 16.91 10.40 16.16 9.48 9.38
Ours 6.86 5.03 3.76 6.26 6.40

wrinkles in the source images. Besides, our method can robustly handle side-view images. More

results are demonstrated in the supplementary material.

Figure 5.9 shows the process that texture is continuously fused through the video. Com-

pared to the simple averaging accumulation method, our texture stitching network can generate

higher resolution results with no ghosting artifacts. Without further fine-tuning, FaceFusion

focuses on combining the information in the current frames, without maintaining texture contents

in the previous frames.

5.9 Conclusion

In this chapter, we propose a lightweight solution to generate high-fidelity face models

with certain consistency. We design a FaceFusion network, enabling both two frame blending and

progressive fusion.

The proposed framework can be further improved. Firstly, we experiment our method in a

large dataset with more diversity in races, ages, skin colors etc. Secondly, we’d like to extend

our work from simple 3DMM model to full head. We will explore on more complicated models

with eye balls, teeth and eyelid structure. Last but not least, we plan to accelerate our algorithm,

further decrease the cost and apply it to real-time applications.

Chapter 5, in part, is a reprint of the material as it appears in the paper: K. Chen, B. Li, Y.

Ye, and T. Nguyen, “FaceFusion: Towards Lightweight High-fidelity 4D Faces”, submitted to
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Figure 5.8: Reconstruction results of four methods. Note that our method generate single model
using two frames data. The other methods generate models separately for each image.

Proceedings of the European Conference on Computer Vision (ECCV), 2022. The dissertation

author was the primary investigator and author of this paper.
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Figure 5.9: Progressive fusion results. Red block are zoomed out to show the reconstruction
details
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Chapter 6

Conclusion and Future Work

To achieve our central goal that enabling high quality reconstruction for multi-view system

in limited-input situation, firstly, we investigate single-view 3D reasoning and improve on one

of the most important modules, differentiable rasterization, in the mesh-based unsupervised

learning framework. We propose a screen-space regularization method which tackles the implicit

redundancy issues while keeping the overall solutions simple. Compared with the state-of-the-art

differentiable rasterization design, the proposed method achieves better numerical results with

much lower complexity.

The main issue of conventional approaches in fewer-camera scenarios is that the results

often contain complex holes. We design an effective method to fill the gap regions on surfaces

through “virtual” scans which are provided by inferred surfaces from a 3D reasoning method.

Compared with the traditional mesh completion approaches, our algorithm can generate natural

appearances without any user interaction. Compared with the state-of-the-art volumetric fusion

methods, our approach supports selective blending, which only modifies the regions of interest

and prevents adverse template inference from impacting the source.

Subsequently, we explore the scenarios with video stream input. In order to make use

of temporal information to further improve the reconstruction results, it’s critical to establish
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correspondences between surfaces across different frames. The problem is conventionally tackled

through non-rigid deformation. Among many ICP-based deformation methods, the embedded

deformation is known for its efficiency. However, the embedded deformation regularizes on an

underlying simplified structure, which could be problematic for intricate surfaces with various

potential artifacts in human body reconstructions. Moreover, without elaborate parameter-tuning,

embedded deformation may perform suboptimally, leading to slow convergence or a local mini-

mum as all regions on the surface are assumed to share the same rigidity during the optimization.

We propose a novel design that leverages isometric deformation idea and decouples regularization

from simplified structures. Our method outperforms state-of-the-art methods both numerically

and visually.

Furthermore, we investigate on human faces reconstruction, as faces often contain the

most important and subtle information in real applications. We design a solution to integrate

consecutive images of a tuning-head person with various expressions into a series of consistent

high-fidelity 3D face models. Compared with the state-of-the-art single-view face reconstruction

approaches, our method can resolve the ambiguities caused by occlusion and robustly handle

challenging cases with extreme viewing angles.

For future works, we plan to extend our research in the following aspects. Firstly, while

we propose several algorithms to address the key issues, we haven’t fully integrated them together

into a complete system. We will continue implementing the missing modules to realize the entire

pipeline from depth sequences capture, sequential surface reconstruction to the final 4D video

generation. Following this, we will accelerate the current algorithms system-wisely and explore

the boundaries of performance given the hardware combinations.

There remains considerable room for further study of each step in the reconstruction

pipeline. Apart from the reasonable extensions mentioned at the end of each chapter, we are

interested in recently popular learning-based methods with implicit function representation

[88, 99]. Related methods reveal the potential to generate more intricate surfaces. The highlighted
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implicit functions in the frameworks, no matter based on occupancy or SDF, are closely related

to the TSDF in our depth fusion algorithms. We would like to investigate the possible way to

cooperate these learning-based methods into our pipeline.

Besides, we also want to explore another branch of human digitization research. Unlike

our purpose to simplify the multi-view system, a series of work [109, 85, 3] provide successful

reconstruction and animation solutions by accumulating more information, such as hair, cloth,

and pose related shape variation, to the simple parametric models. Compared with free-form 3D

reasoning, this type of reconstruction method can provide more robust and regularized predictions

on the surface. Moreover, “animatable” models can be exploited to interpolate between large-

shape-variation frames and generate more reasonable and smooth results.

More often, work is not accomplished after obtaining satisfying models. For many

communication-based applications, it is necessary to consider how to compress and transmit

sequences of meshes. A single HD model often contains more than 10K vertices, faces, and a

high-resolution texture map. 4D video stream consisting of these models might take unacceptable

brand width. Following our deformation framework, the established dense correspondences

can be applied to fulfill this compression task. Instead of encoding raw positions and indices

frame-by-frame, it is much more efficient to encode the inter-frame vertices’ displacements and

keep the connectivity unchanged in the short-time interval. And the by-product, local rigidity,

estimated in our algorithm can also help to better encode these displacements.
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