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Abstract

Line defects in 5d gauge theories

by

Jihwan Oh

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ori J. Ganor, Chair

This dissertation has two parts. The first part is devoted to the study of a line(ray) operator
in 5d SCFTs with exceptional group global symmetry. We construct an index for BPS oper-
ators supported on a ray in five dimensional superconformal field theories with exceptional
global symmetries. We compute the En representations (for n = 2, . . . , 7) of operators of
low spin, thus verifying that while the expression for the index is only SO(2n − 2)×U(1)
invariant, the index itself exhibits the full En symmetry (at least up to the order we ex-
panded). The ray operators we studied in 5d can be viewed as generalizations of operators
constructed in a Yang-Mills theory with fundamental matter by attaching an open Wilson
line to a quark. For n ≤ 7, in contrast to local operators, they carry nontrivial charge under
the Z9−n ⊂ En center of the global symmetry. The representations that appear in the ray
operator index are therefore different, for n ≤ 7, from those appearing in the previously
computed superconformal index. For 3 ≤ n ≤ 7, we find that the leading term in the index
is a character of a minuscule representation of En. We also discuss the case n = 8, which
presents a unique technical challenge, and remains an open problem.

The second part discusses line defects in 5d non-commutative Chern-Simons theory. We
studied aspects of a topologically twisted supergravity under Omega background and its in-
terpretation as the bulk side of topological subsector of AdS/CFT correspondence. The field
theory side is a protected sub-sector of a specific 3d N = 4 gauge theory(from M2-branes),
especially its Higgs branch, whose chiral ring deformation-quantizes into an algebra via the
Ω−background. The line defect comes from this 3d system. The bulk side is interestingly
captured by a field theory again, a 5d Chern-Simons theory, which is topological in 1 di-
mension and holomorphic in 4 dimensions. The statement of topological holography is an
isomorphism between the operator algebras. It is possible to introduce M5-brane to decorate
the relation. It acts like a module of the algebra(of M2-brane) in the field theory side and a
chiral algebra that interacts with 5d Chern-Simons in the gravity side.
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der Givental for their time. The discussion in my qualifying exam was interesting and mem-
orable. I would like to thank Alexander Givental, who gave helpful advices that significantly
improved the draft of the dissertation.

I have been very fortunate to learn from Chi-Ming Chang, Junya Yagi, Kevin Costello,
Ziqi Yan, Filip Kos, Tadashi Okazaki, Yehao Zhou, Nathan Haouzi, Christian Schmid, Petr
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Chapter 1

Introduction

The main theme of this thesis is about exact calculations that probe non-perturbative aspects
of supersymmetric quantum field theory. Especically, we will focus on physical observables
associated to line operators in two types of 5d gauge theories.

The first part of this thesis calculates a generating function (akin to a character of a Lie
algebra) for (a basis of) quantum states in a subspace of a Hilbert space(that is carved out
by the insertion of the line operator) of states of a certain 5d QFT. The 5d QFT will be
described below, and while a concrete Lagrangian definition is not known at present, evidence
has accumulated from string theory about its existence and properties. In particular, it has
a superconformal symmetry algebra of F (4) and the subspace of quantum states, whose
generating function is described in this work, is the space of certain “short representations”
of the superconformal algebra. Technically, we consider 8 theories labeled by an integer
0 ≤ Nf ≤ 7 and the result presented is a function of Nf + 3 complex variables, which we
denote by q, t, u,m1, . . . ,mNf , and whose physical meaning will be elucidated below. We
provided an explicit expansion as a Taylor series in t up to O(t6). The coefficients of that
Taylor expansion are rational functions which can be interpreted as characters of exceptional
groups. The complete generating function is expressed as an infinite sum of contour integrals
of rational functions. Before describing the particular theory, we would like to provide some
general background, which is needed to understand the technique we used.

[91] showed that in the presence of supersymmetry, whose generator will be denoted by Q,
there is a way to simplify the path integral by adding a suitable Q-exact term to the action,
and taking the limit whereby the coefficient of the Q-exact term is infinite. The technique is
called supersymmetric localization, and the principle can be traced back to the Duistermaat-
Heckman formula. In [91], Witten reproduced Donaldson invariants of a four-manifold by
computing the correlation functions of certain observables in 4d N = 2 gauge theory on the
four-manifold. Another representative example is [16], where Vafa and Witten computed a
partition function of 4d N = 4 Super Yang-Mills theory (SYM) on various four-manifolds,
and showed the partition function is given by the Euler characteristic of a certain instanton
moduli space. Importantly, by examining the modular property of the partition function,
they could show evidence of S-duality, which inverts the gauge coupling, and at the same
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time changes the gauge group, with the modular parameter being the inverse gauge coupling
square.

An important example is an exact computation of the partition function of 4d N = 2
theory on R4, where a certain background called Ω−background was turned on in R4. The
partition function, or a pre-potential of the theory, is a series in q = exp 2πiτ , where τ is an
inverse gauge coupling square. The coefficient of the series is computed exactly by performing
localization in the instanton moduli space [98]. The partition function is sometimes called
Nekrasov partition function.

In recent two decades, there was a tremendous effort to compute partition functions of
supersymmetric field theories on various manifold of diverse dimensions. The program was
started in [31], where the author considered 4d N = 2 gauge theory on S4. Supersymmtric
localization tells us that the field configuration space of the gauge field, which is a part of the
integral domain of the path integral, is localized into instanton and anti-instanton moduli
space at the SO(4)-fixed points of S4. As a result, the integrand is simply given by a product
of Nekrasov partition function with its conjugate. On the other hand, the vector multiplet
scalar, which is a part of the bosonic path integral measure, localizes on a constant matrix,
so the path integral that computes the partition function is simply a matrix integral, with
the integral measures being the Haar measure of the gauge group.

Another important development, which unified the above theme and opened entirely
new directions, is the so called AGT (Alday, Gaiotto, Tachikawa) conjecture [99]. The
conjecture is about the equality between the Nekrasov partition function of a certain class
of N = 2 SCFTs, so called class-S theories, and a conformal block of Liouville theory. This
equality is drawn between four dimensional physical quantity and two dimensional quantity,
so sometimes called as 4d/2d correspondence. Arguably, the most natural way to understand
the correspondence is to think of the 6d origin of the 4d theory, and think of the 4d theory as
a compactification of the 6d (2, 0) SCFT(superconformal field theory) on a Riemann surface;
the 6d (2, 0) theory is defined as a woroldvolume theory of M5-brane in M-theory on flat
11 dimensional background [18]. Following this example, many analogous correspondences
between D-dimensional theory and 6 − D dimensional theory were discovered; all of them
have the same origin, 6d (2, 0) SCFT.

The first part of the thesis applies ideas and techniques developed within the localization
program to a specific (but novel) counting problem in the context of 5d superconformal field
theory. The 5d superconformal field theory, although introduced 25 years ago as an infra-
red fixed point of a certain 5d supersymmetric gauge theory [13], is still poorly understood,
and its existence itself is a conjecture. Nevertheless, proposed techniques for solving certain
counting problems of operators in these types of theories have been developed, and have
passed nontrivial consistency checks. This first part of the thesis is based on work [1].

During the “second string revolution” 25 years ago, a new (indirect) technique has been
introduced for constructing (often strongly interacting) quantum field theories. Shortly after
the discovery that a gauge theory describes the low-energy degrees of freedom of coincident D-
branes, it was realized that D-branes that are near (or on top of) certain types of singularities
(where either the curvature or other fields blow up) carry additional low-energy degrees of
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freedom. Even though the singularity itself can not be analyzed directly, using current tools,
the idea that a space with a singularity is consistent has been central to the “second string
revolution”, and it can often be analyzed using a dual weakly coupled description.

The 5d SCFT with E8 global symmetry was first realized by Seiberg [10] as a D4 brane
worldvolume theory that probes an E8 singularity. The E8 singularity can be equally thought
of as 8 D8 branes and O8-plane located at a fixed point of S1/Z2 in type I’ string theory
background. At the singularity, the 5d gauge coupling formally diverges and the naive
flavor symmetry SO(14) enhances into E8, and the theory is believed to flow into non-
trivial interacting quantum field theory. However, it is not known how to renormalize 5d
supersymmetric gauge theories, and similar problem happens in the higher dimensional gauge
theory, e.g. 6d N = (1, 1) theory [28]. Nevertheless, 1-loop integrals that correct the gauge
coupling are well-defined, as [13] calculated. More evidences that support the existence of
the 5d SCFT are the following.

• M-theory on Calabi-Yau construction [13]: it is generally believed that 11 dimensional
M-theory can be compactified on Calabi-Yau three-fold to yield 5d gauge theory with
some amount of supersymmetry. The non-trivial fixed points with global symmetry En
introduced above correspond to M-theory compactified on singular Calabi-Yau three-
fold, where there is a collapse of a del-Pezzo surface with n− 1 points blown-up.

• E-string/S1 construction [14]: In fact, the 5d SCFT with En global symmetry can
be derived from certain 6d SCFT, called E-string theory. E-string theory is defined
as a worldvolume theory of M5 brane probing the end of the world M9 brane. It is
6d N = (1, 0) SCFT with a global symmetry E8; it looks like a local quantum field
theory, but does not have a Lagrangian description. Its existence is also conjectural.
By compactifying the theory on a circle S1, and reduce it, we can obtain some 5d
SCFT. Moreover, by turning on a Wilson line on the circle S1, taking values in E8,
we can systematically reduce the global symmetry from E8 to En where n = 1, . . . , 7.
Those theories are the 5d SCFT described above.

In each case above the existence of a well-defined 5d QFT with F (4) superconformal sym-
metry as the low-energy limit is a conjecture, but is backed by an argument that is widely
believed to be well-defined in physics. This theory is the subject of the first part of this
thesis. Assuming the theory’s existence, we will explain some properties and observables of
the theory. For each value Nf ∈ {0, . . . , 7}, Part I is studying a function (called the “ray
operator superconformal index”) of Nf + 3 real variables, and the results presented here are
the first 5 terms in a Taylor expansion with respect to the first variable, which we denote
by t. As will be explained below, the remaining Nf + 2 variables can be identified with a
parameterization of the Cartan subalgebra of su(2) ⊕ ENf+1, where En is the exceptional
Lie algebra of rank n (which is isomorphic to a classical algebra for n ≤ 5). The point of
the calculation is to check that the coefficients of the Taylor expansion are characters of
finite dimensional representations of su(2)⊕ ENf+1, even though the technique that is used
to calculate these coefficients is not manifestly SU(2)× ENf+1 invariant.
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The “ray operator superconformal index” – an object that was defined in our work –
can be thought of as a character of a certain module of the 5d superconformal algebra F (4).
To define the ray operator superconformal index, we therefore, first need to understand
the symmetry algebra of 5d SCFTs. The superconformal algebra under the 5d N = 1
superconformal field theories consists of bosonic algebra and fermionic algebra. The bosonic
symmetry algebra is SO(5, 2)× SU(2)R, where the first factor is a conformal group, whose
subgroup can be SO(2)Dilatation × SO(5)Lorentz ⊂ SO(5, 2), and the second factor is R-
symmetry group. Let us denote ∆, Mm

n, RB
A to be the SO(2) dilatation, SO(5) rotation,

and SU(2) R-symmetry generators. The fermionic symmetry generators QA
m, SnB are charged

under the bosonic symmetry algebra, where m,n are SO(5) vector indices and A,B are
SU(2)R spinor indices. One of the most important anti-commutation relation of the algebra
that contains every generators of the superconformal algebra is

{QA
m, S

n
B} = δnmδ

A
B∆ + 2δABMm

n − 3δnmRB
A (1.1)

For later use, let us denote J+ ≡ M1
1, J− ≡ M3

3, JR ≡ R1
1 to be the Cartan generators

of SU(2)+ × SU(2)− ⊂ SO(5), SU(2)R. We are especially interested in some states that
are annihilated by Q1

2, which we will denote as simply Q. Denoting S2
1 as S, since S is a

Hermitian conjugate of Q, the anti-commutator gives a unitarity bound:

{Q,S} = ∆− 2J+ − 3JR ≥ 0 (1.2)

Formally, one can regard Q as an exterior derivative d acting on a formal complex, which
we will define soon, and S as its conjugate d?. The anti-commutator and the states with
∆ = 0 can be then thought of a Laplacian, and harmonic forms. By Hodge theorem, the
space of harmonic forms is isomorphic to the cohomology with a differential d. Hence, we can
identify the Hilbert space, which is the space of 1/8 BPS(Bogomol’nyi-Prasad-Sommerfield)
operators, with the cohomology of Q. The superconformal index is an Euler characteristic
of the Q-cohomology.

Formally, the superconformal index is defined as the character of the Hilbert space H
(viewed as a module over the superconformal algebra F (4) whose Cartan subalgebra is
generated by ∆, J±, JR, F1, . . . , FNf ):

ISCI(ε+, ε−,mi) = TrH
[
(−1)F e−β∆e−2ε+(J++JR)−2ε−J−e−

∑
Fimi

]
, (1.3)

where F is the fermion number (i.e., the standard Z2 grading of a module of a superalgebra).
ε±, mi are chemical potentials for J±, Fi are flavor symmetry generators, and β is the radius
of the time circle S1 where the trace is taken over. β is the parameter associated with the
generator ∆, but note that ISCI is independent of β, as follows from the representation
theory of the superconformal algebra. (Only “short representations”, which are eigenspaces
with ∆ = 0, contribute nontrivially to ISCI .) H is the Hilbert space of states on S4, and
by the standard state-operator correspondence of conformal field theories, it is isomorphic
to the space of local operators. In other words, the Index counts the local operators of the
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theory defined on a flat spacetime, but it can be computed as the path integral of the theory
defined on S4 × S1, invoking the state-operator correspondence.

The 5d superconformal field theory with an exceptional global symmetry En does not
have a known Lagrangian description. Hence, it is hard to compute physical quantities
directly. However, for observables that are protected by supersymmetry, we can study more
explicitly by recalling the RG flow invariance of the observables, which is believed to exist.
The 5d SCFT with En global symmetry is believed to be a UV fix point of a particular 5d
N = 1 supersymmetric gauge theory, which has a Lagrangian description. However, it was
conjectured by [24] that ISCI can be effectively computed in terms of a partition function of
a certain gauge theory on S4×S1. The gauge theory that corresponds to a given 5d SCFT is
the one conjectured by Intriligator, Morrison, and Seiberg [24] as the IR limit under RG flow
of the 5d SCFT. Even though a 5d gauge theory is not renormalizable, it can still produce a
well-defined superconformal index, via localization. In the work described below, we adapted
the technique introduced by [24] for local operators to the case of ray-operators, which are
nonlocal operators that also form a module of the superconformal algebra, but a different
one from the module of local operators, and adapting the technique of [24] involved some
subtleties.

I will now describe the technique developed by [24] and the localization procedure in
greater detail. The reader who is not interested in the details is advised to skip to a sample
of the results, reported in (1.14)-(1.15).

The 5d N = 1 supersymmetric gauge theory has a gauge group G = Sp(1) with a vector
multiplet V , and n− 1 fundamental hypermultiplets Ha, which are charged under the flavor
symmetry SO(2(n− 1)). The obvious flavor symmetry of the gauge theory SO(2(n− 1)) is
enhanced into En by combining with the U(1) topological symmetry. The topological U(1)
symmetry is relevant for an instanton particle, which is also BPS. The instanton is a particle
with a worldline in 5d, different from that of 4d. It is defined as a field configuration that
satisfies F = ?F , where F is a field strength of the gauge field. Given the explicit field content
of the theory, we can perform supersymmetric localization(we will review it briefly soon) on
a particular background S4 × S1, and compute the partition function. As the partition
function counts only BPS operators, it is invariant under the RG flow. Therefore, it can be
thought of as the partition function of the 5d N = 1 SCFT with En global symmetry; we
define the partition function of D-dimensional SCFT on SD−1×S1 as superconformal index.

Let us describe the supersymmetric localization briefly. Let S4×S1 be the 5-dimensional
space-time for the 5d N = 1 IR gauge theory, and let L(V ,Ha) be a Lagrangian of the
theory. We deform the Lagrangian by some Q-exact term, with a chosen supercharge Q:
L′ = L + t{Q, V }, where t ∈ C, and V is a function of fields in the supermultiplets V , Ha.
As the theory is supersymmetric, the result of the path integral does not change by the
Q-exact deformation. Also, we can take t → ∞. As a result, the path integral is localized
to the saddle point equation {Q, V } = 0. It turns out that the field configurations localize
on (1) the two poles of S4, which are SO(4)−fixed points and (2) other part of S4.

The field configuration on each pole is related to instanton particles. More precisely, the
saddle points of the bosonic part of {Q, V } term consist of F = ?F at θ = 0, and F = − ?F
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at θ = π, where θ is one of the spherical coordinates of S4. Note that in the S4 background,
we can explicitly quantify the U(1) topological symmetry charges, up to some normalization,
explicitly from ∫

S4

F ∧ F = k. (1.4)

The set of BPS operators are then graded by the number k, which is we call as instanton
number. We will denote the partition function from each pole as Zinst and Zanti−inst. Each of
Z collects all the contribution from (anti)instanton moduli space. For a concise presentation,
let us discuss Zinst only, as Zanti−inst can be obtained by a complex conjugation. Zinst can
be expressed as a generating series in q, where each term is relevant for the subsector of the
set of BPS operators with charge k under U(1) topological symmetry.

Zinst = 1 +
∞∑
k=1

qkZk
inst (1.5)

It is well known that the partition function Zk
inst can be computed by k D0-brane quantum

mechanical partition function, where the D0 branes probe the k-instanton moduli space.
The fields configurations on the other part of S4 is perturbative modes of 5d fields. We will
denote the partition function of the 5d perturbative modes as Zpert; as a function, Zpert is a
rational function of sum of exponentials with their exponents being polynomials of various
fugacities conjugate to Cartan generators of superconformal algebra.

Other than the north pole and the south pole, the saddle point equation {Q, V } = 0
reduces to F = 0, whose solution set is a space of flat connections. The space of flat
connection can also be interpreted as a space of holonomy. As a result, the path integral
domain related to the gauge connection reduces into Sp(1) group manifold, parametrized by
α.

I =

∫
[dα]Zinst(ε+, ε−, α, φk,mi)Zanti−inst(ε+, ε2, α, φk,mi)Zpert(ε+, ε−, α, φk,mi) (1.6)

where the new fugacity φk is that of the Cartan generators of O(k).
Let us now introduce the line defect on {P} × R+ ⊂ S4 × R, where P is a SO(4) fixed

point of S4. We will first define the infra-red formula of the line defect in the IR gauge theory,
and proceed to its realization in the UV string theory. Let A0 be the time component of
the gauge field Aµ, and Φ be its scalar component of the vector multiplet, where Aµ lives.
The line defect in IR is given by a Wilson ray, which is a path-ordered exponential of gauge
holonomy around the time circle S1:

P exp

[
i

∫ ∞
0

(A0 + Φ) dx0

]
(1.7)

However, this line defect by itself is not gauge invariant, and we need to neutralize the gauge
charge by capping the end {0} with a quark O. We then define the ray operator as

RO = P exp

[
i

∫ ∞
0

(A0 + Φ) dx0

]
O(0) (1.8)
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In other words, in the presence of the line defect, the index counts R, which is labeled by
O. Given this definition, we now want to show how to modify (1.6) for it to compute the
index in the presence of the line defect.

The defect effectively produces a one-dimensional quantum mechanical fields χ, χ† that
interact with the pullback of 5d dynamical and non-dynamical gauge fields At, Ãt and the
vector multiplet scalar Φ. The action is given by

S1d =

∫
dtχ†i,ρ

(
δρσ(δij∂t − iAt,ij + Φij) + δijÃt,ρσ

)
χj,σ (1.9)

where i, j are 5d gauge indices and ρ, σ are 5d flavor group indices. As we will elaborate in
the next paragraph, this action modifies the k D0 brane quantum mechanics.

It is helpful to recall string theory picture to compute ZK
inst explicitly, as K D0-brane

quantum mechanical partition function. In string theory, instantons in 5d gauge theory can
be realized as K D0 branes in the worldvolume of D4 brane, which realizes the 5d gauge
theory. D0 brane worldvolume theory is 1d N = (0, 4) G = O(K) supersymmetric quantum
mechanics with its fields obtained from the quantization of all D0-brane related strings– D0-
D0 and D0-D4. On the other hand, the line operator is realized by an orthogonal D4’ brane
to D4 brane. Hence, the inclusion of the line operator induces D0-D4’ strings– a quantization
of those strings yield χ, χ† of (1.9). Hence, the problem of computing Zinst is reduced into
computing the partition function of N = (0, 4) supersymmetric quantum mechanics of D0
branes, modified by (1.9).

Zinst =

∮ [K/2]∏
i=1

[dφi]ZD0−D0ZD0−D4ZD0−D4′ (1.10)

where
∏[K/2]

i=1 [dφi] is a Haar measure of O(K). ZD0−D0 and ZD0−D4 are 1-loop determinants
of quantum mechanical fields obtained by the quantization of D0-D0, D0-D4 strings; they
depend on ε+, ε−, α, φk,mi. ZD0−D4′ has an additional parameter M , which is a chemical
potential conjugate to the Cartan of gauge group Sp(1) of D4′ brane worldvolume theory.

All the Z-functions in the integrand are rational functions of sinh(. . .) functions with
their argument being a polynomial of ε±, φk, α, mi. In other words, it takes a following
form:

ZDa−Db =

∏n1

j=1 sinh(~ρj · ~φ+ fj(ε+, ε−, α,mi))∏n2

k=1 sinh(~ρk · ~φ+ fk(ε+, ε−, α,mi))
(1.11)

where ~ρj, ~ρk are in the root lattice of G = O(K), ~φ = (φ1, . . . , φk), and ni ∈ Z+. Hence, there
are many poles in the integrand. We use a contour prescription called Jeffrey-Kirwan(JK)
residue formula [42] to evaluate the integral. Let us briefly review the JK prescription.

In JK prescription, one first picks a vector η; we picked it as (1, 3, . . . , 2i− 1, . . . , 2k− 1);
in general the integral result does not depend on the choice of the η vector. Then, we pick k
hyperplanes, which are arguments of sinh functions in the denominator, taking the following
form:

~ρl · ~φ+ fl = 0, where l = 1, . . . , k. (1.12)
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We are supposed to use the usual residue formula at the solution of the linear system of the
equations. JK prescription directs us only evaluate the residue if the set of vectors ~ρl spans
the η-vector. One practical way to test it is to form a k × k matrix Q = Qli = (ρl)i, where
~ρl = ((ρl)1, . . . , (ρl)k), and test if all the components of ηQ−1 are positive.

After evaluation, we obtain a rational function of a sum of exponentials with their ar-
guments being polynomials of ε+, ε−, α, φk, mi. After plugging (1.10) into (1.6), and we
perform the α integral. As this integral is complex one dimensional integral, we apply the
normal residue formula. After making following substitutions,

eε+ → t, eε− → u, emi → fi, (1.13)

and expanding in t up to fifth order, we obtain a nice polynomial of t with its coefficients
being a Weyl character formula for various representations of ENf+1. For instance, let us
look at Nf = 5, 6 cases. The final expression from the above computation is

q−
2
3IE6 = χE6

[0,0,0,0,0,1]t+ χE6

[0,1,0,0,0,1]t
3 + χ2(u)

[
χE6

[0,0,0,0,0,1] + χE6

[0,1,0,0,0,1] + χE6

[0,0,1,0,0,0]

]
t4

+
[
χ3(u)

(
2χE6

[0,0,0,0,0,1] + χE6

[0,1,0,0,0,1] + χE6

[0,0,1,0,0,0]

)
+ χE6

[0,2,0,0,0,1] + χE6

[0,0,0,0,0,1]

]
t5 +O(t6)

(1.14)

q−1IE7 = χE7

[0,0,0,0,0,0,1]t+ χE7

[1,0,0,0,0,0,1]t
3 + χ2(u)

[
χE7

[0,0,0,0,0,0,1] + χE7

[0,1,0,0,0,0,0] + χE7

[1,0,0,0,0,0,1]

]
t4

+
[
χ3(u)

(
2χE7

[0,0,0,0,0,0,1] + χE7

[0,1,0,0,0,0,0] + χE7

[1,0,0,0,0,0,1]

)
+ χE7

[2,0,0,0,0,0,1] + χE7

[0,0,0,0,0,0,1]

]
t5 +O(t6)

(1.15)
Here, χE6

[•] , χ
E7

[•] denote the E6, E7 character formula of a highest weight representation,

labeled by the Dynkin labels [•], and χn(u) is SU(2) character formula of a dimension n
highest weight representation.

In general, χ
ENf+1

[•] is a rational function of fi’s and q, where i = 1, . . . , Nf . However,
we substitute fi = 1 for all i for a simple presentation. In this case, the formula becomes a
rational function of q only, and the coefficients of q-series are dimension of SO(2Nf ) highest
weight representations. For instance, the relevant E7 characters are listed as follows

χE7

[0,0,0,0,0,0,1] =
12

q
+ 32 + 12q,

χE7

[0,1,0,0,0,0,0] =
32

q2
+

232

q
+ 384 + 232q + 32q2,

χE7

[1,0,0,0,0,0,1] =
12

q3
+

384

q2
+

1596

q
+ 2496 + 1596q + 384q2 + 12q3,

χE7

[2,0,0,0,0,0,1] =
12

q5
+

384

q4
+

6348

q3
+

31008

q2
+

73536

q
+ 97536

+ 73536q + 31008q2 + 6348q3 + 384q4 + 12q5.

(1.16)

All the weights that appear in the characters above do not belong to the root lattice. Since
the root lattice is a sub-lattice of index 2 in the weight lattice of E7, we see that all the E7
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representations of ray operators are odd under the Z2 center. In other words, the highest
weight representation labeled by [•]’s that appear in the above formulas transform non-
trivially under the center of ENf+1. This is to be contrasted with the neutral operators
under the center of ENf+1 counted by the usual superconformal index.

The second part of this thesis is on the line operator in a non-commutative deformation
of 5d U(1) Chern-Simons theory with a particular topological twist. We first derive the
operator algebra of the quantum mechanics living on the line. Then, we insert a surface
operator in 5d Chern-Simons theory and show that the operator algebra on the surface
operator forms a bi-module of the algebra of the quantum mechanics. Before providing the
detail of the problem, let us start with a general background used in the main body of the
work– cohomological field theories from topological twisting[91, 93] and Ω-background[98].
Along the way, we will also provide particular applications.

The topological twist of supersymmetric quantum field theories was introduced by Wit-
ten in 1988 [91] and applied to define partition functions of two-dimensional sigma-models
[93] and famously applied to four-dimensional gauge theories [92] where it simplified the
construction of Donaldson invariants on manifolds with Kähler structure. The topological
twist allows one to define and in some cases exactly compute partition functions of certain
supersymmetric field theories on compact manifolds. The topological twist relies on the su-
persymmetry algebra which contains a (classical group) R-symmetry subalgebra R as well as
a subspace of supersymmetry (SUSY) generators on which the R-symmetry acts nontrivially
(i.e., the SUSY generators subspace is a module of the R-symmetry). The supersymmetry
algebra also contains a Lorentz subalgebra M (a copy of so(d) where d is the dimension
of the manifold on which the theory is formulated) which commutes with the R-symmetry,
and the supersymetry generators subspace is a module of the tensor product M ⊗ R of the
Lorentz algebra and the R-symmetry. The R-symmetry algebra can be exponentiated to an
R-symmetry group, and the Lorentz subalgebra can be exponentiated to the Lorentz group.

To define a topological twist, we need a map from the holonomy algebra of the manifold
to the R-symmetry algebra. Given the map, we re-define the Lorentz symmetry algebra
in such a way that a component of the spinor supercharge becomes a scalar Q in the new
Lorentz algebra. The embedding, which we assume lifts to an embedding of the holonomy
group into the R-symmetry group, allows one to construct an R-symmetry principal bundle
with a connection over the manifold, and the Lagrangian of the twisted theory is defined
by modifying the covariant derivatives of the various original fields to include both the spin
connection and the R-symmetry-valued connection.

The SUSY generators subalgebra form a module of the tensor product M ⊗R, and with
a suitably chosen embedding, the SUSY generators subspace contains a nontrivial invariant
element, which is called the BRST operator and will be denoted by Q. The BRST operator
squares to zero and acts on the various operators of the QFT, and the spectrum of the
topologically twisted theory is defined as the Q-cohomology, since it can be shown that
correlation functions of Q-closed operators are independent of their representative in Q-
cohomology.

Twisting can also be performed when the QFT is formulated on flat space, but it is then
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trivially equivalent to the untwisted theory, since the holonomy group is trivial. Nevertheless,
if we choose an embedding of the holonomy group of a curved manifold into the Lorentz group
of flat space, we can identify the BRST operator Q associated with the curved manifold
compactification with a generator of the supersymmetry algebra in the flat case, and we can
define the associated Q-cohomology in the flat case as well. We refer to it as the BPS sector
of the theory. The operators in the Q-cohomology consist of the spectrum of a topological
field theory in the sense that the metric deformation of the theory yields only a Q-exact
deformation. Twisting is essential to apply localization or compactification on a curved
manifold and to focus on a particular BPS sector in the configuration space.

The supersymmetry algebra also contains elements that can be identified with transla-
tions, which act as ordinary partial derivatives on local fields. If a translation generator P
can be written as a Q-commutator P = [Q,K], for some K in the algebra, then the BPS op-
erators are independent of the position, in the sense that the difference between the operator
at two different points is Q-exact. We will also consider cases where only a subspace of the
full (complexified) translation algebra is Q-exact, and in particular, with a choice of com-
plex structure on the manifold, only anti-holomorphic translations (derivatives) are Q-exact,
while the holomorphic translations are not. We call this type of twist as holomorphic-twist.
If the dimension of spacetime d is greater than or equal to 3, and number of supercharges is
more than 4, one can define a hybrid type of twist. With respect to Q, translations along
some spacetime directions are Q-exact and anti-holomorphic translations along some direc-
tions are Q-exact; the representative example is Kapustin twist of 4d N = 2 supersymmetric
gauge theory on Σ1 × Σ2, where Σi are Riemann surfaces.

Ω-deformation gives a further deformation in the supersymmetry algebra of the topolog-
ically twisted field theory with a scalar supercharge Q. Outstanding feature of the deforma-
tion is that the Q becomes Q~ such that (Q~)2 = LV , where LV is the conserved charge acting
on fields as the Lie derivative LV by V . Here V is proportional to ~. Hence, we should pick
a Killing vector field V to define Ω−background. Before the introduction of Ω-background,
the states in the Q-cohomology of the topological field theory satisfied Q2 = 0 relation. Af-
ter applying the Ω-background, the Q-cohomology is deformed to be Q~-cohomology, which
again satisfies (Q~)2 = LV = 0. In other words, the operators in Q~-cohomology is localized
in the fixed point of V .

In the famous example of Donaldson-Witten twist, it is possible to apply double Ω-
background on each 2-planes in 4d spacetime. This was used to derive the prepotential
of 4d N = 2 gauge theory [98]. Similarly, in topological-holomorphic twist, we can apply
Ω-deformation on one 2-plane in 4d spacetime, and localize the theory on the other 2-plane,
where the theory becomes holomorphic. Holomorphic field theory in 1 complex dimension is
special in the sense that the symmetry algebra becomes infinite dimensional. Until recently,
it was not known that there is an infinite symmetry enhancement in 4d(2 complex dimension)
holomorphic field theory [95, 133, 97], which can be obtained by the pure holomorphic twist
in four dimensions. It is expected that one can find more fascinating algebraic structures in
supersymmetric quantum field theory using various twists.

In [3], with Junya Yagi, we proposed a different derivation of the celebrated
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SCFT/VOA correspondence (proposed by [125]) via Ω-background in some particular topo-
logical twist, so called Kapustin twist [135], of 4d N = 2 SCFTs. The SCFT/VOA corre-
spondence is a correspondence between a 4d N = 2 superconformal field theory and a chiral
algebra. More precisely, by picking a well designed supercharge Q in 4d N = 2 supercon-
formal algebra by combining a certain supercharge with a certain conformal supercharge,
one can define Q-cohomology. The operators in the Q-cohomology turn out to form a chiral
algebra; they satisfy the usual holomorphic Operator Product Expansion(OPE) of Vertex
Operator Algebra(VOA). In our work, the first key observation was that the 4d N = 2
SCFTs on a product of two Riemann surfaces can be seen as 2d N = (2, 2) theories on one
of the Riemann surfaces. Here, we do not integrate out all the KK modes, but keep those
as a form of the superpotential of the 2d N = (2, 2) theories. It is known that a localization
can be performed [102], which directly gives a chiral algebra Lagrangian from the superpo-
tential of the 2d N = (2, 2) theory. Second idea was to prove that the supercharge Q~(or
Q~-cohomology) of the Omega deformed theory corresponds to the one used in the original
paper, which is Q. By showing the equivalence of Q and Q~-cohomology, we re-derived the
SCFT/VOA correspondence.

Continuing in the same line of idea, in [6], with Junya Yagi, we identified a classical limit
of Vertex Operator Algebra(VOA) in supersymmetric field theories in various dimensions
with topological-holomorphic twist, which is a more general version than a pure topolog-
ical twist. The topological-holomorphic twist is a hybrid twist that renders the operators
in the Q-cohomology invariant under the full translation in the topological directions and
invariant under an anti-holomorphic translation in the holomorphic directions. The classical
limit is meant to turn off a deformation parameter, which previously made the VOA non-
commutative. Upon the twist, we get a scalar supercharge Q and an one-form supercharge
Qµ. Acting the one-form supercharge Q n-times on the operator O in the Q-cohomology,
we can build another set of Q-closed operators O(n), which are non-local. Given the new
ingredients, we define a new algebraic structure with a new bi-linear operation between two
algebra elements [[O1]], [[O2]], so called λ−bracket.

{[[O1]]λ [[O2]]}(z2) = (−1)F1d

[(∫
Sd+1
x2

eλ(z1−z2)dz1 ∧ O(d)
1 (x1)

)
O2(x2)

]
. (1.17)

where F1 is a Fermion number of O1 and d is the number of topological directions, which
is 2. Here O(d)

1 is obtained by applying the 1-form supercharge on the local operator O1

d-times. The λ-bracket satisfies three properties: sesquilinearity, symmetry, and Jacobi
identity. First, sesquilinearity:

{∂z[[O1]]λ [[O2]]} = −λ{[[O1]]λ [[O2]]} ,
{[[O1]]λ ∂z[[O2]]} = (λ+ ∂z){[[O1]]λ [[O2]]} .

(1.18)

Second, symmetry:

{[[O1]]λ [[O2]]} = −(−1)(F1+d)(F2+d){[[O2]]−λ−∂z [[O1]]} . (1.19)
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Finally, Jacobi identity:

{[[O1]]λ {[[O2]]µ [[O3]]}}
= {{[[O1]]λ [[O2]]}λ+µ [[O3]]}+ (−1)(F1+d)(F2+d){[[O2]]µ {[[O1]]λ [[O3]]}} . (1.20)

The algebraic structure we have identified is called the Poisson Vertex Algebra in the liter-
ature. The physical implication of this algebra is not known yet, however.

The application of Ω-background does not restrict to the field theory, but also apply
to supergravity. It gives a new path to rigorously understand a topological subsector of
AdS/CFT correspondence. The celebrated AdS/CFT correspondence [120, 121, 122] lacks a
rigorous mathematical proof; however, in a particular topological sector the correspondence
can be proven. Recently, Costello formed a precise mathematical definition of topological
twists and Ω−deformation of M-theory and coined a notion of Topological Holography [106]:
an isomorphism between the algebra of observables in both sides of the duality. In this
context, one can discover a nice interplay among seemingly different, but well-established
concepts like 2d chiral algebra, 3d N = 4 Coulomb and Higgs branch algebra. Those
algebraic structures are all realized in Ω-deformed worldvolume theories of branes. Moreover,
both sides of the duality turn out to have a surprising triality structure. There seem to be
many interesting aspects to be uncovered in this exact holography.

In [5], with Davide Gaiotto, we studied aspects of a topologically twisted supergravity
[90] under Omega background and its interpretation as the bulk side of topological subsector
of AdS/CFT correspondence. The topologically twisted supergravity is similarly defined
as a topologically twisted field theory. In contrast to fixing a scalar supercharge in the
topologically twisted field theory, we turn on the non-zero vacuum expectation value for
a bosonic ghost for a gravitino in the supergravity to turn on the topologically twisted
background. The background equally applies to the branes located in the spacetime and
gives a twist in the field theory of the worldvolume theory of the brane. We are especially
interested in M2-brane probing in this twisted background.

We consider 11d supergravity with a particular topological twist that makes 4 direc-
tions (C2

NC) holomorphic and 7 directions(R×Cε1 ×Cε2 ×Cε3) topological and turn on Ωεi

background on independent 2-planes labeled by i, with i = 1, 2, 3, where NC stands for non-
commutative, and ε1 + ε2 + ε3 = 0 with εi ∈ R, with ε1 � ε2 � 1. The non-commutativity
originates from the non-zero 3-form C = V d ∧ dz̄1 ∧ dz̄2, where V d is a 1-form, which is a
Poincare dual of the vector field V on Cε2 , and zi are coordinates of C2

NC . We place N M2
branes on R× Cε1 .

The field theory side is a protected sub-sector of 3d N = 4 G = U(N) gauge theory(from
M2-branes) with adjoint hypermultiplet and fundmental hypermultiplet, especially its Higgs
branch, which effectively forms 1d topological quantum mechanics. It is possible to focus on
the Higgs branch as the topologically twisted background gives a certain supercharge, whose
cohomology exactly corresponds to the Higgs branch chiral ring for the 3d N = 4 theory.

3d N = 4 supersymmetry algebra is generated by the Lorentz symmetry SU(2)Lor and
R-symmetry SU(2)H×SU(2)C . The fermionic symmetry generators Qα

AȦ
are charged under
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SU(2)Lor × SU(2)H × SU(2)C , as (2, 2, 2), where α,AȦ are the spinor indices of various
SU(2)’s. The topologically twisted supergravity background induces Rozansky-Witten twist
on the M2-brane worldvolume theory. The Rozansky-Witten twist is defined as a map
from SU(2)Lor to SU(2)C . Under this embedding map, the Cartan of the Lorentz symmetry
generator M is combined with the Cartan RC of SU(2)C generator to become M ′ = M+RC .
As a result, the resulting scalar supercharge Q that defines the Q-cohomology is a linear
combinations of supercharges Q = Q+

11̇
+Q−

12̇
. It is known that the Q-cohomology coincides

with the Higgs branch of the 3d N = 4 theory.
The Higgs branch is parametrized by the scalar components of fundamental, and adjoint

hypermultiplets, which are {Ii, J i, X i
j, Y

i
j }, where i, j are U(N) gauge indices. Those scalars

parametrize the hyper-Kahler target manifold M, which has non-degenerate holomorphic
symplectic structure. This structure turns the ring of holomorphic functions on M into a
Poisson algebra with Poisson brackets between I and J, X and Y. Upon the Ωε1-deformation,
the Poisson bracket of the ring is quantized to become a commutator so that the Poisson
algebra becomes a non-commutative algebra Aε1,ε2 , with the deformation parameter given
by the parameter ε1 of the Ω−background, and ε2 enters due to the F-term relation to be
explained. Another effect of the Ω−deformation is the localization of the 3d theory into
the fixed point of the Ω−background, which is R × {0} ∈ R × C, so eventually we have 1d
quantum mechanics. The observables of the quantum mechanics consist of t[m,n], which
will be defined below. Keeping the notations for each 3d fields, we can write down the path
integral of the quantum mechanics as follows:

Z =

∫
[DI][DJ ]DX][DY ] exp

[∫
R
dt (I(∂t + σ)J + Tr (X∂tY +X[σ, Y ]))

]
(1.21)

where σ is the 1d avatar of 3d N = 4 vector multiplet scalar. Due to the topologically
twisted supergravity background, this quantum mechanics is topological.

The defining commutation relations of Aε1,ε2 , which are descended from the Poisson
brackets, are given by [

Ii, J
j
]

= ε1δ
i
j,

[
X i

j, Y
k
l

]
= ε1δ

i
lδ
k
j (1.22)

The gauge invariant operators in the Higgs branch form a chiral ring. The elements of the
ring are

t[m,n] =
1

ε2
IXmY nJ = STrXmY n (1.23)

with F-term relation imposed on it:[
X i

j, Y
j
k

]
+ IkJ

i = ε2δ
i
k (1.24)

Here, STr means the symmetrized trace; for example, STrXY = TrXY + TrY X.
The elements t[m,n] and the commutation relations define the algebra Aε1,ε2 . In [7], with

Yehao Zhou, we derived the most simplest commutation relation of Aε1,ε2 :

[t[2, 1], t[1, 2]]ε1 = ε1ε2t[0, 0] + ε1ε
2
2t[0, 0]t[0, 0] (1.25)
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where [•]ε1 is the O(ε1) part of [•], t[m,n] ∈ Aε1,ε2 .
The gravity side is interestingly captured by a field theory again, a 5d Chern-Simons

theory [94], which is topological in 1 dimension and holomorphic in 4 dimensions, where
there is a non-commutativity in the holomorphic directions, encoded as [z1, z2] = ε2. The
action is given by

S =
1

ε1

∫
Rt×C2

NC

dz1dz2

(
A ?ε2 dA+

2

3
A ?ε2 A ?ε2 A

)
(1.26)

with |ε1| �|ε2| � 1; here ? is a standard Moyal product, defined as

f ?ε2 g = fg + ε2
1

2
εij

∂

∂zi
f
∂

∂zj
g + ε22

1

222!
εi1j1εi2j2

(
∂

∂zi1

∂

∂zi2
f

)(
∂

∂zj1

∂

∂zj2
g

)
+ . . . (1.27)

where f, g ∈ O(C2) and εij is the alternating symbol.
In components, the 5d gauge field A can be written as

A = Atdt+ Az̄1dz̄1 + Az̄2dz̄2 (1.28)

with all the component functions An are smooth in R1 and holomorphic in C2
NC , where NC

means non-commutative. As R direction is topological, we can lift the dependence on t from
the components An, and write it as a power series in z1 and z2.

An =
∑
i,j=0

zi1z
j
2∂

i
z1
∂jz2An (1.29)

As the equation of motion for 5d CS theory is F = 0, where F is a field strength of the
gauge field A, there is no physical degree of freedom; rather the operator algebra in the
theory consists of the Fourier modes of the gauge field.

As a Lie algebra, the algebra of holomorphic functions on C2
NC is isomorphic to a universal

enveloping algebra of Diffε2(C), which is an algebra of differential operators on C with
[z, ∂z] = ε2. Tensored with the apparent gauge symmetry algebra gl(K) of the theory, the
gauge symmetry algebra is

g = glK ⊗Diffε2(C) (1.30)

Hence, the classical observables in the 5d CS theory is

Obscl(5d CS) = (Sym∗(g∨[1]), d) = C∗(glK ⊗Diffε2C) (1.31)

where C∗(g) is the Lie algebra cohomology of g. Here, g∨ is a dual of g, [1] indicates ghost
number 1, and d is the differential of the complex. The Koszul dual of Obscl(5d CS) is
isomorphic to U(g), where U(g) is a universal enveloping algebra for g.

As there is a non-trivial deformation induced by the coupling constant 1/ε1 in the action
(1.26), the operator algebra is deformed accordingly. So, we will denote the operator algebra
of 5d CS theory as A′ε1,ε2 = Uε1(Diffε2(C)⊗ gl1), where K was specified as 1.
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The statement of topological holography is an isomorphism between two operator al-
gebras, Aε1,ε2 and A′ε1,ε2 . The isomorphism is manifested by the following interaction La-
grangian between 5d CS modes and 1d quantum mechanics, which is realized as an action
defined on a line. ∫

R
t[m,n]∂mz1∂

n
z2
At(t, 0, 0)dt (1.32)

The detailed proof of the isomorphism argued by the the uniqueness of the deformation of
the algebra U(Diffε2(C)⊗ gl1) can be found in [109].

As a result of this interaction Lagrangian, some correlation functions in the 5d-1d coupled
system get a gauge anomaly. The 5d gauge theory itself is renormalizable as proved in [94].
The presence of the 5d-1d interaction Lagrangian introduces a new vertex in various Feynman
diagrams, and some of those Feynman diagrams are not invariant under the gauge symmetry
of the 5d gauge theory, at least superficially. Even though some Feynman diagrams have
non-zero variations under the gauge transformation, what is actually important is to make
sure that the sum of gauge variations of particular combinations of Feynman diagrams is
zero. In [7], with Yehao Zhou, by identifying some Feynman diagrams whose variations are
all proportional to ε1, we showed how to cancel the gauge anomaly. The cancellation of the
5d gauge anomaly itself enabled us to reproduce the algebra commutation relation of Aε1,ε2 ,
(1.25).

It is possible to introduce M5-brane to decorate the relation.

0 1 2 3 4 5 6 7 8 9 10

Geometry Rt C C2
NC C R S1

M2(D2) × × ×
M5 × × × × × ×

Table 1.1: M2, M5-brane

The gauge invariant operators in the M5-brane form a bi-module of the algebra(of M2-
brane) in the field theory side and a chiral algebra that interacts with 5d Chern-Simons in
the gravity side. One of the results in [5] is a formulation of the module in both sides of
twisted holography.

In the field theory side, it is a collection of gauge invariant operators in 2d N = (2, 2)
field theory on M5-brane, which we call asMε1,ε2 . The field content of the 2d theory is chiral
and anti-chiral superfields, whose bottom components are ϕ, ϕ̃. The interaction between the
2d N = (2, 2) system and the 3d N = 4 system is encoded in the 2d superpotential

W = ϕ̃Xϕ (1.33)

The gauge invariant operators that consist of Mε1,ε2 are then given by

b[zm] = IY mϕ, c[zm] = ϕ̃Y mJ (1.34)
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To claim thatMε1,ε2 is a bi-module of the algebra Aε1,ε2 , we need to establish more commu-
tation relations between the set of letters {ϕ, ϕ̃} and {X, Y, I, J}. Those are given by

IP (ϕ, ϕ̃) = P (ϕ, ϕ̃)I

JP (ϕ, ϕ̃) = P (ϕ, ϕ̃)J

X i
jP (ϕ, ϕ̃) = P (ϕ, ϕ̃)X i

j

Y i
j P (ϕ, ϕ̃) = P (ϕ, ϕ̃)(Y i

j + ϕ̃iϕj)

X i
jϕiP (ϕ, ϕ̃) = −ε1∂ϕ̃jP (ϕ, ϕ̃)

X i
jϕ̃

jP (ϕ, ϕ̃) = −ε1∂ϕiP (ϕ, ϕ̃)

(1.35)

where P (ϕ, ϕ̃) is a polynomial of ϕ, ϕ̃. Here, ϕ, ϕ̃ carry gauge indices i, as they are charged
under the 3d gauge group U(N) too. From these ingredients, we show that the simplest
algebra(Aε1,ε2)-bi-module(Mε1,ε2) commutator is[

t[2, 1], b[z1]c[z0]
]
ε1

= ε1ε2t[0, 0]b[z0]c[z0] + ε1ε2b[z
0]c[z0] (1.36)

where b[zm], c[zm] ∈Mε1,ε2 , and the notation [•]ε1 refers to the ε1 order term of [•].
In the gravity side, the corresponding observables arise as a certain Vertex Operator

Algebra, called β − γ system, whose Lagrangian can be written as∫
C
β(z)(∂z̄ − Az̄?ε2)γ(z) (1.37)

where C ⊂ C2
NC . β and γ can be expanded in z, and we call the modes of β and γ as βm

and γm.

0 1 2 3 4 5 6 7 8 9

Geometry Rt C C2
NC C R

1d TQM ×
2d βγ × ×
5d CS × × × × ×

Table 1.2: Bulk perspective

M5-brane realized the moduleMε1,ε2 ; however, we can not simply let M5 brane to enter
into the theory. For the combined system to be quantum mechanically consistent, we need
to cancel all the potential gauge anomaly. Similar to (1.32), βm and γm couple to (1.34) in
the following way

b[zm]βm, c[zm]γm (1.38)

These couplings lead to potential gauge anomalies that are involved in Feynman diagrams of
the coupled system of βγ, 5d CS theory. In [7], with Yehao Zhou, we showed how to cancel
the gauge anomaly. The cancellation of the 5d gauge anomaly itself enabled us to reproduce
the algebra-bi-module commutation relation, (1.36).
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1.1. A list of papers

I have pursued other topics including

• Superconformal blocks of 2d small N = 4 chiral algebra(work with Filip Kos) [2],

• Chiral algebra(or quantum mechanics as a dimensional reduction of chiral algebra)
as a protected subsector of higher dimensional superconformal field theory(work with
Junya Yagi) [3],

• Non-relativistic string theory(work with Jaume Gomis, Ziqi Yan) [4],

• Aspects of Ω−deformed M-theory(work with Davide Gaiotto) [5],

• Poisson Vertex Algebra as a protected subsector of supersymmetric field theories in
diverse dimensions(work with Junya Yagi) [6],

• Double quantization of Seiberg-Witten curve(work with Nathan Haouzi) [8]

However, I will focus on the two topics elaborated more explicitly in the introduction, which
are

• D0-brane quantum mechanics, instanton counting and superconformal index(work with
Chi-Ming Chang, Ori Ganor) [1].

• Feynman diagram and Ω−deformed M-theory(work with Yehao Zhou), [7].

The content below is largely taken from [1] and [7].



18

Chapter 2

An Index for Ray Operators in 5d En
SCFTs

2.1. Introduction

There is strong evidence for an interacting 5d superconformal field theory (SCFT) with E8

global symmetry and a one-dimensional Coulomb branch [10]. A few of its (dual) realizations
in string theory are the low energy limits of the systems listed below:

(i) A D4-brane probing a 9d E8 singularity in type-I’ string theory [10]; the latter is
realized by the infinitely strong coupling limit of seven coincident D8-branes and an
orientifold (O8) plane [11].

(ii) M-theory on a certain degenerate Calabi-Yau manifold [12, 13, 14]; the Calabi-Yau
threefold can be taken as the canonical line bundle of a del Pezzo surface B8 (which
can be constructed as the blow-up of CP2 at 8 points) in the limit that the volume
of B8 goes to zero. (See also [15] where the study of such a limit of M-theory was
initiated, and [17, 19] where the F-theory version of this degeneration was described.)

(iii) The 6d E8 SCFT [20, 22] compactified on S1 [14].

(iv) Webs of (p, q) 5-branes [23].

The E8 theory can be deformed by relevant operators to 5d SCFTs with smaller En global
symmetries (n = 0, . . . , 7). One of the remarkable achievements of the last few years has
been the construction of a supersymmetric index that counts local operators that preserve
(at least) 1

8
of the supersymmetry of the En theories [24, 25, 26, 27, 29, 30].

Technically, this superconformal index is constructed by computing the partition function
on S4×S1 of a 5d supersymmetric gauge theory with gauge group SU(2) and Nf = n − 1
hypermultiplets. The global flavor symmetry is SO(2Nf ), which combines with the U(1)
instanton charge to form the SO(2n − 2)×U(1) ⊂ En, as predicted in [10]. The partition
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function is computed using the techniques developed in [31], with insight from string theory
for the proper treatment of zero size instantons [34]. The partition function is presented as
an integral over a product of Nekrasov partition functions [98], and the resulting index is
expressed as an infinite sum of monomials in fugacities that capture spin and R-charge, with
coefficients that are linear combinations of characters of SO(2n− 2)×U(1). It is remarkable
that these linear combinations of characters match representations of En ⊃ SO(2n−2)×U(1).

The string-theory or M-theory realizations of the En theories allow for a construction of
BPS line operators akin to Wilson lines as follows. In the type-I’ setting (i), we introduce a
semi-infinite fundamental string (F1) perpendicular to the plane of the D8-branes with one
of its endpoints at infinity and the other on the D4-brane. In the M-theory setting (ii), we
add an M2-brane that fills the C fiber of the canonical bundle above a point of the del Pezzo
base. In the 6d setting (iii), the line operator is the low-energy limit of a surface operator
on S1, and in the type-IIB setting (iv), it is realized by an open (p, q) string. In addition,
the 5d En theories also possess BPS operators supported on a line with an endpoint, which
we will refer to as Ray operators. They are analogous to a Wilson line along a ray, capped
by a quark field at the endpoint. The aim of this paper is to study these 5d ray operators
and extend the results of [24, 30] by constructing an index for 1

8
BPS ray operators.

Calculating the index for ray operators again requires a careful treatment of zero-size
instantons and additional insight from string theory. The index can again be written in
terms of characters of SO(2n− 2)×U(1) which combine into characters of En. Unlike local
operators, the ray operators are charged under the center of En, in the cases where it is
nontrivial (n < 8). The appearance of complete En characters is a nontrivial check of the
validity of the assumptions behind the computation of the index. Moreover, for n < 8 the
weight lattice is larger than the root lattice of En, and we find En representations that do
not appear in the superconformal index. For example, for E6 we find the representations 27,
1728, etc., consistent with the Z3 charge of the ray operator.

This chapter is organized as follows. In §2.2 we review the construction of 5d SCFTs with
En global symmetry and their superconformal indices. In §2.3 we introduce ray operators
into the 5d SCFTs, and we compute their indices in §2.4 (with our final results in §2.4). We
conclude with a summary and discussion in §2.5.

2.2. Review of the 5d En SCFTs and their

superconformal indices

Following the discovery of [11] that in the infinite string coupling limit of type I’ string theory,
a 9d En gauge theory describes the low-energy limit of Nf = n − 1 D8-branes coincident
with an O8-plane, Seiberg constructed a 5d SCFT with En global symmetry by probing the
D8/O8 singularity with N D4-branes [10]. The brane directions are listed in the table below.
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0 1 2 3 4 5 6 7 8 9

D8/O8 × × × × × × × × ×
D4 × × × × ×

Denoting by εL, εR left and right 10d Majorana-Weyl spinors, the configuration preserves
those SUSY parameters that satisfy Γ012345678εL = Γ01234εL = εR. The rotations in di-
rections 5 . . . 8 act on spinors as SU(2)R+×SU(2)R−. The second factor acts trivially on the
supercharges, while the first factor acts nontrivially and is identified with the R-symmetry
SU(2)R of the 5d theory. The theory has an N -dimensional Coulomb branch (R+)N/SN
that can be identified with the D4-branes moving away from the En singularity, and a Higgs
branch that can be identified with the moduli space of En instantons at instanton number
N . The supermultiplet associated with the center of mass of the D4-branes in directions
5 . . . 8 decouples and is not considered part of the SCFT.

Raising the value of the inverse string coupling constant 1/gst at the common position
of the D8-branes and O8-plane from zero (formally gst = ∞) to a nonzero value breaks the
global En symmetry to SO(2Nf )×U(1). The SO(2Nf ) factor comes from the gauge symmetry
of the D8-branes, while the U(1) factor is associated with D0-brane charge. At low-energy
the D4-brane probe theory is then described by Sp(N) SYM coupled to Nf hypermultiplets
in the fundamental representation 2N of the gauge group, and also a single hypermultiplet
in the antisymmetric representation. SO(2Nf ) is the global flavor symmetry, while U(1) is
the symmetry associated with instanton number whose conserved current is

J =
1

8π2
tr ?(F ∧ F ). (2.1)

Here F is the Sp(N) field strength.
In this paper, we will focus on the Sp(1) gauge theories, which have no antisymmetric

hypermultiplet. The vector multiplet consists of a gauge field Aµ, a real scalar Φ, and
symplectic-Majorana fermions λAm, where A = 1, 2 denotes the SU(2)R R-symmetry doublet
index, and m = 1, . . . , 4 denotes the SO(1,4) spinor index. The hypermultiplet consists of
complex scalars qA and fermions ψm.

Superconformal indices of 5d SCFTs

We will now discuss some general aspects of the superconformal index [36] of 5d SCFTs. The
superconformal algebra of 5d SCFTs is F (4), which in Euclidean signature has the bosonic
subgroup SO(1,6)×SU(2)R. One of the most important consequences of the superconformal
symmetry is the BPS bound, which follows from the anticommutator [36],

{QA
m, S

n
B} = δnmδ

A
BD + 2δABMm

n − 3δnmRB
A, (2.2)

where D is the dilatation generator, Mm
n are the SO(5) rotation generators, and RB

A are
the SU(2)R R-symmetry generators. QA

m and SmA are the supercharge and superconformal
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charge. Note that Mm
n are components of an Sp(2) matrix. We will work in the basis

where M1
1 = −M2

2 and M3
3 = −M4

4, and we will denote J+ ≡ M1
1, J− ≡ M3

3, which
are the Cartan generators of SU(2)+×SU(2)− ⊂ SO(5). We also denote JR ≡ R1

1, which
is the Cartan generator of SU(2)R. In radial quantization, the superconformal generator
is the hermitian conjugate of the supercharge, i.e., SmA = (QA

m)†. The anticommutator
(2.2) implies positivity conditions on linear combinations of the dilatation, rotations, and
R-symmetry generators. For instance, in the case of m = 2 and A = 1, (2.2) implies

∆ ≡ {Q,S} = D − 2J+ − 3JR ≥ 0, (2.3)

where for simplicity we denote Q ≡ Q1
2, S ≡ S2

1 . The operators that saturate the BPS
bound (2.3) are called 1

8
BPS operators. These operators are annihilated by both Q and

S. By the state-operator correspondence, the space of local operators is isomorphic to the
Hilbert space H of the (radially quantized) theory on S4. The number of 1

8
BPS operators

with given quantum numbers (counted with ± signs according to whether they are bosonic
or fermionic) is captured by the superconformal index,

ISCI(ε+, ε−,mi) = TrH
[
(−1)F e−β∆e−2ε+(J++JR)−2ε−J−e−

∑
Fimi

]
, (2.4)

where F is the fermion number operator, and Fi denote the generators of other global
symmetries.1 Only the states that saturate the BPS bound (with ∆ = 0) contribute to the
trace, and the contributions from states with nonzero ∆ pairwise cancel out due to (−1)F ,
since Q and S commute with the other operators inside the trace.

The 1
8
BPS operators are annihilated by both the supercharge Q and one superconformal

charge S. Formally, if we regard Q as an exterior derivative d and S as its Hermitian
conjugate d?, then {Q,S} corresponds to the Laplacian ∆ = d?d + dd?. Hodge theorem
states that the space of harmonic forms (states with ∆ = 0) is isomorphic to the cohomology
of d. Analogous arguments, formulated in terms of Q, S, show that the Hilbert space H
of 1

8
BPS operators is isomorphic to the cohomology of Q [37], which will be referred to as

Q-cohomology. The superconformal index can be interpreted as the Euler characteristic of
the Q-cohomology.2

Consider an SU(2)+×SU(2)R multiplet of operators with SU(2)+ spin j+ and SU(2)R spin
jR. Out of the (2j++1)(2jR+1) states, at most one can saturate the BPS bound (2.3) — this
is the state with maximal J+ = j+ and JR = jR. Thus, a 1

8
BPS state that contributes to the

index (2.4) has maximal J+ and JR charge in its SU(2)+×SU(2)R multiplet. Consider a 1
8
BPS

state with JR = 0. According to the above discussion, it must be a singlet of SU(2)R. The
algebra of SU(2)R is generated by R1

1, R1
2 and R2

1, and since the state is annihilated by both
R1

2 and Q ≡ Q1
2, it must be annihilated by [R1

2, Q1
2] which is proportional to Q2

2. Similarly,
we see that it is annihilated by S1

1 as well. It therefore has enhanced supersymmetry, being
annihilated by Q1

2, Q2
2, S2

1 , S2
2 , and is in fact a 1

4
BPS. Similarly, a 1

8
BPS state with J+ = 0 is

1In this paper, we will sometimes parametrize the indices using the fugacities t = e−ε+ and u = e−ε− .
2The Q-cohomology contains more information than its Euler characteristic. For example, the Hilbert-

Poincaré polynomial of the Q-cohomology gives the partition function of the BPS operators [37, 38].
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a singlet of SU(2)+ and is annihilated by M1
1, M1

2 and M2
1, and therefore also by [M1

2, Q1
2]

and [M2
1, S2

1 ]. It is thus annihilated by Q1
1, Q1

2, S1
1 , S2

1 . Moreover, since it saturates the BPS
bound D = 3JR, it must be an SU(2)− singlet as well. This is because similarly to the BPS
bound (2.3), we also have in general

{Q1
4, S

4
1} = D − 2J− − 3JR ≥ 0. (2.5)

If the state in question had nonzero SU(2)− spin j−, then it would be part of a multiplet
of (2j− + 1) states with D = 3JR, but the state with maximal J− = j− in that multiplet
would then violate the bound (2.5). It follows that a 1

8
BPS state with J+ = 0 must also

have J− = 0 and is in fact 1
2
BPS, being annihilated by all Q1

m and all Sm1 (m = 1, . . . , 4).
For example, a 1

8
BPS state with J+ + JR = 1

2
must have either J+ = 0 or JR = 0 and is

therefore at least 1
4
BPS. If it is not an SU(2)− singlet, then it must have JR = 0 and J+ = 1

2

and is 1
4
BPS. As another example, a 1

8
BPS state that has J+ + JR = 0 is a singlet of both

SU(2)+ and SU(2)R. It is therefore annihilated by all QA
m and SmA and must be the vacuum

state. Thus in an expansion of the index (2.4) in e−2ε+ , the only term that is ε+-independent
is the contribution of the identity operator 1. Other terms can be expanded in characters of
SU(2)−,

χ2j+1(e−ε−) =

j∑
m=−j

e−2mε− =
sinh(2j + 1)ε−

sinh ε−
.

The terms linear in e−ε+ and proportional to χ2j+1(e−ε−), with j > 0, are the contributions
of 1

4
BPS states. Note that even when both J+ and JR are nonzero, the 1

8
BPS states preserve

half of the supercharges, namely Q1
2 as well as Q1

1, Q1
3, and Q1

4, since the latter three lower
∆ (but the hermitian conjugates of Q1

1, Q1
3, and Q1

4 are in general not preserved).
In Euclidean signature, the space R5 can be conformally mapped to R×S4, and the

superconformal index (2.4) can be interpreted as a twisted partition function of the theory
on S1×S4. For theories with a Lagrangian description, it can be computed by a path integral
with the fields satisfying periodic boundary conditions along S1, further twisted by the
various fugacities.

Superconformal indices from 5d SYM

Now, let us focus on the En SCFTs. It has been shown that the superconformal indices of
them can be computed using the IR 5d SYM with fundamental matters [24, 30].

In the IR theory, the superconformal algebra is not defined, because the Yang-Mills
coupling constant is dimensionful, but we can consider the Q-cohomology on gauge invariant
operators.

A large class of gauge invariant operators can be constructed from the ‘letters’ of the 5d
N = 1 gauge theory, given by the fields listed in the following table, acted on by an arbitrary
numbers of derivatives, modulo the free field equations of motion.
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Fµν λAm Φ qA ψm ∂µ Q

Ẽ 2 3
2

1 3
2

2 1 1
2

In this table, we also introduced a new quantum number Ẽ for the fields, the derivative
symbol and the supercharge Q, and we define

∆̃ = Ẽ − 2J+ − 3JR, (2.6)

so that ∆̃(Q) = 03, which will help with computing the Q-cohomology. One should not

confuse Ẽ and ∆̃ with the dimension D and the radial Hamiltonian ∆ that appear in the
BPS bound formula (2.3). We emphasize that Ẽ, which measures the classical dimension
of the corresponding field in the SYM theory, is purely a bookkeeping device and the Q-
cohomology does not depend on the assignment of the Ẽ. Let us first consider the single-letter
Q-cohomology. The supersymmetry transformation on the component fields in the vector
and hypermultiplets can be found in (2.10) and (2.14) of [24]. It is not hard to see that the

operators with ∆̃ ≥ 1 have trivial Q-cohomology. On the other hand, for ∆̃ = −1 and 0, we
have nontrivial cohomology generated by

∆̃ = −1 : λ+0+,

∆̃ = 0 : λ0±+, q+,
(2.7)

and also the two derivatives ∂+± acting on them. The subscripts of ∂±± and the first two
subscripts of λ±0±, λ0±± denote their 2J+ and 2J− charges. The last subscripts of λ±0±, λ0±±
and also the superscript of q+ denote their 2JR charges.4 Note that only those components
with maximal J+ and JR in an SU(2)+×SU(2)R multiplet, for each field, can be generators
of a nontrivial Q-cohomology.

The single-letter operators are subject to an equation of motion,

∂++λ0−+ + ∂+−λ0++ = −∂5λ+0+, (2.8)

and it is not hard to check that ∂5λ+0+ is Q-exact, and therefore vanishes in the Q-
cohomology. We compute the single-letter index by summing over the letters (F , λ, Φ,
q, ψ):

f =
∑
letters

(−1)F t2(J++JR)u2J−e−
∑
Fimi = fadj + ffund, (2.9)

where t and u are related to ε+ and ε− by t = e−ε+ and u = e−ε− , the mi (i = 1, . . . , Nf ) are
the chemical potentials of the flavor charges of a Cartan subalgebra U(1)Nf ⊂ O(2Nf ), and
the single-letter index for the vector multiplet and fundamental hypermultiplet are given by

fadj =
−t2 − t(u+ u−1) + t2

(1− tu)(1− tu−1)
= − t(u+ u−1)

(1− tu)(1− tu−1)
,

ffund =
t

(1− tu)(1− tu−1)

Nf∑
`=1

2 coshm`.

(2.10)

3Recall Q ≡ Q1
2 has J+ = −1/2 and JR = 1/2.

4q± = q1.
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The multi-letter index can be computed by the following formula [39, 40],

I(t, u,mi) =

∫
Sp(1)

Z1-loop(t, u, w,mi)dU,

Z1-loop(t, u, w,mi) = exp
[ ∑

R
{fund, adj}

∞∑
n=1

1

n
fR(tn, un,mn

i )χR(wn)
]
,

(2.11)

where the integral is over the Sp(1) matrices U , and w is one of the eigenvalues of U . The U -
integral can be simplified to a one-dimensional integral dU = 1

π
sin2 αdα where w = eiα. The

representations R that appear in the sum are the fundamental and adjoint representations.
χR(w) are the Sp(1) characters, for example χadj(w) = w−2 + 1 + w2 and χfund(w) = w−1 +
w. One can recognize that the integrand Z1-loop is a multi-letter index that counts gauge
covariant operators, and the integration over the gauge group imposes the gauge invariance.
The single-letter indices (2.10) and the formula (2.11) can also be derived by evaluating a
path integral of the 5d SYM on S1×S4 [31, 24], where the matrix U is identified with the
Sp(1) holonomy along the S1.

The index (2.11) cannot be the full superconformal index, because all the gauge invariant
operators that contribute to (2.11) do not carry the topological U(1) charge associated with
the conserved current (2.1).

The contributions of the operators with n units of the topological U(1) charge to the
superconformal index can be computed in the path integral on S1×S4 with the field strength
restricted to the n-th instanton sector,

1

8π2

∫
S4

tr(F ∧ F ) = n. (2.12)

In [31, 24], using supersymmetric localization, it was shown that the path integral localizes at
the singular instanton solution at the south pole and anti-instanton solution at the north pole.
Near the south (north) poles, the spacetime looks like S1×R4, and the path integral over the
solutions to the instanton (anti-instanton) equation reduces to the the Nekrasov instanton
partition function Zinst(t, u,mi, q) in the Ω-background on R4. The superconformal index is
then computed by the formula

ISCI(t, u,mi, q) =

∫
Sp(1)

Z1-loop(t, u, w,mi)|Zinst(t, u, w,mi, q)|2dU. (2.13)

where Zinst(t, u, w,mi, q)
∗ = Zinst(t, u, w

−1,−mi, q
−1) is the contribution from the anti-

instantons at the north pole.
In [30], it has been argued that the Nekrasov instanton partition function can be com-

puted by the Witten indices of certain D0-brane quantum mechanics. In the next subsection,
we review the D0-brane quantum mechanics, and compute their Witten indices.
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strings N = 4 multiplets fields SU(2)−×SU(2)+×SU(2)R−×SU(2)R+

D0-D0 strings

vector
gauge field (1, 1, 1, 1)

scalar (1, 1, 1, 1)
fermions (1, 2, 1, 2)

Fermi fermions (2, 1, 2, 1)

twisted hyper
scalars (1, 1, 2, 2)

fermions (1, 2, 2, 1)

hyper
scalars (2, 2, 1, 1)

fermions (2, 1, 1, 2)

D0-D4 strings
hyper

scalars (1, 2, 1, 1)
fermions (1, 1, 1, 2)

Fermi fermions (1, 1, 2, 1)
D0-D8 strings Fermi fermions (1, 1, 1, 1)

Table 2.1: The field content of the D0-D4-D8/O8 quantum mechanics.

The D0-D4-D8/O8 system

The instantons in the IR 5d Sp(1) SYM of the En theory are described by the D0-branes
moving in the background of one D4-brane and Nf D8-branes coincident with an O8-plane
[30]. The low energy theory on k D0-branes is a N = 4 O(k) gauged quantum mechanics,
whose field content is listed in Table 2.1, where the last column lists the representations of
various fields under the R-symmetry SU(2)+×SU(2)R+ and global symmetry SU(2)−×SU(2)R−.
The SU(2)+×SU(2)− and SU(2)R+×SU(2)R− are the rotation groups of the four-planes R1234

and R5678, respectively. The vector and Fermi multiplets from the D0-D0 strings are in the
antisymmetric representation of the gauge group O(k). The hyper- and twisted hypermul-
tiplets are in the symmetric representation of O(k). The D0-D4 (D0-D8) strings are in the
bifundamental representation of the gauge group O(k) and flavor group Sp(1) (SO(2Nf )).

Consider a N = 2 subalgebra with supercharges Q and Q† inside the N = 4 supersym-
metry algebra. The Witten index is defined as

Zk
D0-D4-D8/O8(t, u, w,mi) = TrHQM

[
(−1)F e−β{Q

†,Q}t2(J++JR)u2J−v2J ′Rw2Πe−
∑
Fimi

]
, (2.14)

where J±, JR, J ′R and Π are the Cartan generators of the SU(2)±, SU(2)R+, SU(2)R− and
the Sp(1) flavor symmetry. We give a very brief description of how this Witten index is
computed, following [30, 41], by applying supersymmetric localization. The index is invariant
under continuous deformations that preserve the supercharges Q and Q†. One can consider
the free field limit, and the path integral over nonzero modes reduces to the product of
one-loop determinants, which depend on the fixed background of bosonic zero modes. One
then integrates over the zero modes exactly.

The 1d gauge field is non-dynamical, but its holonomy on S1 is a bosonic zero mode,
which combines with the zero mode of the scalar in the vector multiplet to form a complex
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variable φ taking values in the maximal torus of the complexified gauge group. There are
fermionic zero modes coming from the fermions (gauginos) in the vector multiplet, which
are absorbed by the Yukawa coupling terms in the action involving the gauginos, the scalars,
and the fermions in the charged matter multiplets (as in (2.21) of [30]). This contributes
additional terms to the integrand as the free correlators of the scalars and the fermions, which
in turn combine with the previous one-loop determinants to a total derivative of ∂/∂φ̄. The
zero mode integral becomes a contour integral over φ. The contour can be determined by a
careful regularization of the divergences on the complex φ-plane [42, 43], by reintroducing
the auxiliary field D of the vector multiplet.

The gauge group O(k) has two disjoint components. The group element in one com-
ponent, denoted by O(k)+, has determinant +1, and in the other component, denoted by
O(k)−, has determinant −1. The index is a sum of the φ-contour integrals in each of the
components,

Zk
D0-D4-D8/O8 =

1

2
(Zk

+ + Zk
−),

Zk
± =

1

|W |

∮
[dφ]Z±,kD0-D0Z

±,k
D0-D4Z

±,k
D0-D8,

(2.15)

where |W | is the Weyl factor, i.e., the order of the Weyl group of O(k), and the integrands
are given by the one-loop determinants of the fields listed in Table 2.1. They are computed
in [24, 30], and we summarize them in Appendix 2.6.

For k = 1 there is no integral, and the integrand directly gives the Witten index. For
k = 2 and 3, the integrals are one-dimensional. The contour prescription is such that the
integrals pick up the residues of the poles coming from the terms in the denominator of
the integrand (2.54)-(2.58) with + sign in front of the φ. For k ≥ 4, the integrals are
multi-dimensional, and the precise contour prescriptions are provided in [30] in terms of
Jeffrey-Kirwan residues. (See Appendix 2.7 for more details about which poles contribute
to the integral in the cases k = 2 and k = 4.)

We can combine the Witten indices for theories with different k into a generating function

ZD0-D4-D8/O8(t, u, v, w,mi, q) = 1 +
∞∑
k=1

qkZk
D0-D4-D8/O8(t, u, v, w,mi). (2.16)

The Nekrasov instanton partition function can be expressed as a ratio of the generating
functions [30],

Zinst(t, u, w,mi, q) =
ZD0-D4-D8/O8(t, u, v, w,mi, q)

ZD0-D8/O8(t, u, v,mi, q)
, (2.17)

where ZD0-D8/O8(t, u, v,mi, q) is the generating function of the Witten indices of the system
with only D0-branes and Nf D8-branes coincident with an O8-plane. It can be obtained by
decoupling the D4-brane from our original system,

ZD0-D8/O8(t, u, v,mi, q) = lim
w→0

ZD0-D4-D8/O8(t, u, v, w,mi, q). (2.18)
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0 1 2 3 4 5 6 7 8 9 Comments

D8/O8 × × × × × × × × × Nf ≡ (n− 1) D8’s at x9 = 0
D4 × × × × ×
F1 × × x0 ≥ 0
D4′ × × × × × x9 = L > 0
D2 × × × x0 = 0

Table 2.2: The directions of the various branes.

Notice that the Nekrasov instanton partition function on the left hand side of (2.17) is
independent of the fugacity v associated with the Cartan of SU(2)R−. As shown in [30], the
v-dependences of the Witten indices in the numerator and the denominator on the right
hand side of (2.17) cancel each other.

2.3. Line and Ray Operators

The En theories possess BPS line operators that preserve half the supersymmetries. They
can be realized in the type I’ brane construction by probing the D4 brane with a funda-
mental string along directions 9 and, say, 0, in analogy with the way a BPS Wilson line
was introduced into the low-energy N = 4 SYM on D3-branes in [44, 45]. The configuration
preserves an SO(4) ⊂ SO(4, 1) rotation group, as well as those SUSY parameters that satisfy

εL = Γ1234εL = Γ5678εL , εR = Γ9εL . (2.19)

The position of the line operator can be fixed at x1 = · · · = x4 = 0 by introducing an
additional D4-brane (which we denote by D4’) at x9 = L > 0 and requiring the fundamental
string to end on it. This D4’ brane does not break any additional SUSY. Note that the orien-
tation of the string and D4’-brane must be correlated in order to preserve SUSY. Reversing
the orientation of the string changes the subspace of (εL, εR) that are preserved by inserting
a (−) in front of Γ1234 in (2.19). The directions of the various branes so far are summarized
in the first four rows of Table 2.2. As we reviewed in §2.2, the En SCFT can be deformed
by an operator of dimension 4 to a theory that flows in the IR to a weakly coupled Sp(1)
gauge theory with flavor group SO(2Nf ), by lowering the string coupling constant gst to a
finite value at the location of the D8/O8. Denoting by A0 the time component of the gauge
field and by Φ its scalar superpartner (i.e., the scalar component of the vector multiplet),
the line operator reduces to a supersymmetric Wilson line

P exp
[
i

∫ ∞
−∞

(A0 + Φ)dx0
]
,
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which can be made gauge invariant by compactifying time on S1 and taking the trace. The
operator preserves half of the supercharges.5 The gauge theory also has hypermultiplets with
fields in (2, 2Nf ) of Sp(1)×SO(2Nf ). Denoting the scalar component of these fields by qAi
(with i = 1, · · · , 2Nf and A = 1, 2), we can construct gauge invariant operators

q̄2, j(tf )P exp

[
i

∫ tf

ti

(A0 + Φ)dx0

]
q1
i (ti), (2.20)

which preserve half of the SUSY (2.19) that the Wilson line preserves, that is two of the
eight supercharges of the 5d theory.6 The fields at each endpoint can be locally modified, for
example by replacing q1

i (ti) with Dµq
1
i (ti) (D = ∂ − iA). Most kinds of insertions will break

all of the SUSY, but there are some operators that preserve the same amount of SUSY as
(2.20) does. We are interested in counting the number of such BPS operators, with given
spin and R-charge, and in testing whether they can be collected into complete En multiplets.
We therefore consider ray operators of the form

RO = P exp
[
i

∫ ∞
0

(A0 + Φ)dx0
]
O(0), (2.21)

where O(0) is a local operator at x0 = 0 in the 2 of Sp(1).
In order to make the case that (2.21) descend from ray operators in the En SCFT, it

is useful to modify the type-I’ construction by letting the worldsheet of the string end on
a (Euclidean) D2-brane at x0 = 0, extending in directions 7, 8, 9, as listed in Table 2.2.
Introducing a Euclidean brane, which behaves like an instanton, requires us to switch to
Euclidean signature (similarly to Yang-Mills theory for which there are no real instanton
solutions in Minkowski signature). We therefore Wick rotate x0 → −ix0. In Euclidean
signature, the Weyl spinor condition is7

iΓ0123456789εR = εR, iΓ0123456789εL = −εL. (2.22)

The SUSY generators preserved by a Euclidean Dp-brane in directions 0, . . . , p satisfy the
condition εR = iΓ01···pεL. The generators preserved by a fundamental string in the 9th di-
rection satisfy the conditions εR = iΓ09εR and εL = −iΓ09εL. Combining these conditions
we obtain the same conditions on the supersymmetry generators as those imposed by the
Euclidean D4-D8/O8 configuration, which is given by the same equations as (2.19).

5The supersymmetry transformation on A0 and Φ can be found in (2.10) of [24]: δAµ = iλ̄γµε, δΦ = λ̄ε,
where the index A for the SU(2)R is implicit. The combination A0 + Φ is preserved by the transformations
that satisfy the condition iγ0ε+ε = 0, which is the condition imposed by fundamental strings. The 5d spinor
and 10d spinor are related by ε = εL and iγµ = Γ9Γµ.

6The supersymmetry transformation of qAi and q̄A,i can be found in (2.14) of [24]: δqAi =
√

2iε̄Aψi

and δq̄A,i =
√

2iψ̄iεA. By the symplectic-Majorana condition ε̄A = εAB(εT )Bγ
2γ4, the transformations

preserving q1
i and q̄2,i satisfy the condition ε2 = 0, which is equivalent to i

2 (Γ56 − Γ78)εL = εL for the 10d
spinor.

7There is also a reality condition ε?L = CεR, where C is the charge conjugation matrix.
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The D2-brane provides an anchor for the F1 to end on. It breaks half of the remaining
supersymmetries, preserving only those SUSY parameters that satisfy

εL = Γ1234εL = −iΓ56εL = iΓ78εL , εR = Γ9εL . (2.23)

The F1-D2-D4-D8/O8 configuration thus preserves only two linearly independent super-
charges, and we can take one of them to coincide with Q = Q1

2 of (2.3). Indeed, a generator
of a Cartan subalgebra of the SU(2)R that acts on the index A of QA

m can be identified with
i
2
(Γ78 − Γ56), and the index A = 1 can be defined to label the eigenspace of i

2
(Γ78 − Γ56)

with eigenvalue +1. Similarly, i
2
(Γ12 + Γ34) can be identified with J−, which was defined

below (2.2), and the index m = 2 is one of the two indices that generate an eigenspace of
J− with eigenvalue (i.e., spin) zero. The insertion of an F1 ending on a Euclidean D2-brane
thus preserves two out of the eight supercharges QA

m of the 5d SCFT that describes the
low-energy of the D4-brane in the background of the D8/O8 system.

We will be interested in extending the superconformal index (2.4) to ray operators of the
form (2.21), and the operators that will contribute to our index need to preserve only one
supercharge (Q1

2). Such operators can appear on the F1 ∩ D4 intersection by coupling to
operators on the two dimensional D2 ∩ (D8/O8) intersection. More precisely, the low-energy
action of the brane configuration includes factors schematically of the form

S(F1−D2−D4− (D8/O8)) ∼
S9d(D8/O8) + S5d(D4) + S3d(D2) + S2d(F1)

+S2d(D2 ∩ (D8/O8)) + S1d(F1 ∩D2) + S1d(F1 ∩D4) + S0d(D2 ∩D4 ∩ (D8/O8)) .

The 2d intersection D2 ∩ (D8/O8) supports an En chiral current algebra at level k = 1 [de-

noted (Ên)1], and the exponent of the terms −S1d(F1∩D4) and −S0d is expected to be a sum
of products of a ray operator of the En SCFT and a local operator of the F1∩ (D8/O8) the-

ory, of the form
∑

αRαVα(0), where Vα is some local operator in a representation of (Ên)1.
This suggests a connection between the multiplicities of ray operators and representations
of (Ên)1, which we will explore elsewhere [46].

The states corresponding to a ray operator

The state-operator correspondence of 5d SCFTs assigns to a local operator a gauge invariant
state in the Hilbert space of the theory on S4 via a conformal transformation that acts on
the radial coordinate as r → τ = log r. This state-operator correspondence converts the ray
operator to a state in the Hilbert space of the theory on S4 with an impurity at one point of
S4, which we shall refer to as the South Pole (SP). After flowing to the Sp(1) gauge theory,
the impurity is replaced with an external quark at SP in the fundamental representation of
Sp(1). Let G be the (infinite dimensional) group of Sp(1) gauge transformations on S4, and

let G̃ ⊂ G be the group of gauge transformations that are trivial at SP. Then G/G̃ ∼= Sp(1)

and the states that correspond to ray operators are those that are invariant under G̃ but are
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doublets of G/G̃. We will “count” them, or rather calculate their supersymmetric index,
by inserting a Wilson loop at SP into the partition function of the Sp(1) gauge theory on
S4×S1, as will be explained in detail in §2.4.

As we argued above, the “impurity” at SP preserves the SUSY generators with parameters
restricted by (2.23). In the notation of §2.2, these are the generators QA

m with A = 1 and
m = 1, 2 (and the generators with m = 3, 4 or A = 2 are generally not preserved). The
impurity preserves the inversion τ → −τ ; hence, also preserves the superconformal generators
SmA with A = 1 and m = 1, 2. The bosonic subalgebra that preserves a ray is generated by
the dilatation operator D, the generators M1

1 = −M2
2, M1

2, M2
1, M3

3 = −M4
4, M3

4,
M4

3 of the rotation subgroup SU(2)+×SU(2)− ∼= Spin(4) ⊂ Spin(5), and the R-symmetry
generators R1

1. The above bosonic and fermionic generators form a closed subalgebra of
F (4). (See [48] for a discussion of the subalgebra preserved by a ray in 4d superconformal
theories.)

In order to extend the discussion of §2.2 to states on S4 with impurity at SP, we need to
establish first which subalgebra of the superconformal algebra F (4) acts on the Hilbert space.
Such subalgebra properly contains the subalgebra preserved by a ray.8 It also contains the
translation operator P0 and conformal generator K0. Note that neither of these preserve the
ray — P0 does not preserve the origin, while K0 does not preserve the endpoint at infinity.
Nevertheless, if we define the Hilbert space at, say, r = 1, both generators preserve the
location of the impurity on S4. We can now obtain the full set of QA

m and SmA with m = 1, 2
and A = 1, 2 by starting with Q = Q1

2 and its hermitian conjugate S = S2
1 and successively

calculating commutators with the bosonic generators K0, P0, M1
2 and M2

1.
The BPS bound (2.3) is therefore valid for ray operators, too. Note, however, that QA

3

and QA
4 are not preserved by the line impurity at SP, and there is no way to get them from

commutators of Q with SU(2)+×SU(2)− generators. We therefore cannot assume (2.5).
Nevertheless, the parts of the discussion at the end of §2.2 that do not rely on (2.5) are still
valid. In particular, we can define an index similarly to (2.4), and it receives contributions
only from nontrivial elements of the Q-cohomology. Moreover, states that contribute to the
index have maximal J+ + JR in their SU(2)+×SU(2)R multiplet. It follows that no state
that contributes to the index can have J+ + JR = 0, because if it did it would be a singlet of
SU(2)+×SU(2)R and thus would be annihilated by R1

2 and M1
2, and therefore also by the

commutator [M1
2, [R1

2, Q2
1]] ∝ Q1

2. But {Q1
2, Q2

1} ∝ P0, which does not preserve a ray
operator. This observation will become relevant in §2.4 when we preserve our result for the
index of the E8 theory.

The calculation of the index of ray operators that will follow makes the SO(2n−2)×U(1)
⊂ En global symmetry explicit, but in order to properly combine the SO(2n − 2)×U(1)
characters into En characters it is important to first explain a shift in the U(1) charge.

8This distinction also occurs in the case of local operators, where the origin is only preserved by dilatations
and by SO(5)×SU(2)R, but translations Pµ and conformal transformations Kµ are good operators on the
Hilbert space, defined as the space of states on S4.
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Shifted instanton number

Denote the U(1) charge by Q. On local operators that correspond to gauge invariant states
on S4, the U(1) charge is simply the integer instanton number

Q =
1

8π2

∫
S4

tr(F ∧ F ) = k.

However, on states that correspond to a ray operator, the U(1) charge receives an anomalous
contribution and reads

Q = k +
2

Nf − 8
, (Nf = 2, . . . , 7). (2.24)

The correction 2/(Nf − 8), which is fractional for Nf < 6, will be borne out by the index
that we will present in §2.4. Below, we will review the physical origin of this shift. Our
discussion is similar to the arguments presented in [49, 50].

The shift (2.24) is easy to explain on the Coulomb branch of the En theory by using the
D4-D8/O8 brane realization. The space x9 > 0 is described by massive type-IIA supergravity

at low-energy with mass parameter proportional to m
def
=8 − Nf [11]. In Appendix 2.8,

we review the D8-brane solution in the massive type-IIA supergravity, and the D-branes
worldvolume actions in that background. The Coulomb branch corresponds to the D4-brane
moving away from the D8/O8 plane in the positive x9 direction. The low-energy description
is a free U(1) vector multiplet. Denote the vector field by a, the field strength by f = da, and
scalar component by ϕ. The scalar component has a nonzero VEV v = 〈ϕ〉 > 0 (proportional
to the x9 coordinate of the D4-brane).

We can understand the shift (2.24) in the U(1) charge after reviewing the peculiar inter-
action terms that are part of the low-energy description of a D-brane in massive type-IIA
supergravity [51]. As we review in Appendix 2.8, the super Yang-Mills effective action on
a Dp-brane includes an additional Chern-Simons term proportional to ma ∧ fp/2 [52]. It
implies a few modifications to the conservation of string number. For p = 0, we find that
a net number of m fundamental strings must emanate from any D0-brane. As usual, a
D0-brane can be absorbed by a D4-brane and convert into one unit of instanton charge. In
that case, the m strings that are attached to the D0-brane can convert to m units of electric
flux. Indeed, the low-energy description of the D4-brane, which is the low-energy effective
action of the 5d En theory on the Coulomb branch [13], contains an effective Chern-Simons
interaction term proportional to ma ∧ f ∧ f , and can be written as

ICoulomb = −
∫ [ 1

8π2
mvf ∧ ?f +

1

24π2
ma ∧ f ∧ f − a ∧ ?j

]
, (2.25)

where j is the contribution of the hypermultiplet to the U(1) current. The a0 equation of
motion can be written as

1

4π2
mvd(?f) =

1

8π2
mf ∧ f − ?j , (2.26)
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Integrating (2.26) over 4d space shows that m/2 units of electric flux accompany one unit
of instanton charge.

It follows that we can measure the U(1) charge Q in two equivalent ways, by either (i)
integrating 1

4π2 f ∧ f over all of space9, or (ii) measuring the electric flux mv
4π2

∫
?f at infinity

and dividing by m/2. In a general situation, however, there could be a net number n1 of
open fundamental strings attached to the D4-brane and extending into the bulk x9 direction.
Their endpoints on the D4-brane behave as external charges, which contribute n1δ

4(x) to ?j,
and then methods (i) and (ii) above will give a different answer for Q. The answers differ
by 2n1/m. To determine which method is correct, we note that an instanton can evaporate
into the x9-bulk as a D0-brane, which would then carry with it m open strings. Such a
process reduces the instanton number k by 2 (the factor of 2 is the effect of the orientifold),
and at the same time reduces n1 by m. The possibility of such a process demonstrates
that instanton number alone is not conserved, and method (ii) is the correct one. This is
consistent with the shift of −2/m in (2.24).

The center of En

We will now discuss the action of the center Zn of the enhanced En flavor symmetry. For
n ≥ 3, we will use the convention that En is simply connected. For n = 3, . . . , 7, En then
has a nontrivial center given by Zn ∼= Z9−n = Z8−Nf . For n = 2 we have E2 = SU(2)×U(1)
which has Z2

∼= Z2×U(1) as center. So far, when discussing the “SO(2Nf )×U(1) subgroup”
of En, we have not been precise about the global structure, which we will now rectify.

Local operators of the En SCFT are neutral under Z9−n. Indeed, the only En representa-
tions of local operators found in [30] have weights belonging to the root lattice. In contrast,

ray operators are charged under Z9−n. Let Q
(n)
rt be the root lattice of En, and let Q

(n)
wt be

the weight lattice. We will find in §2.4 representations whose weights project to a nontrivial
element of Q

(n)
wt /Q

(n)
rt
∼= Z9−n. For 3 ≤ n ≤ 7, this Z9−n can be identified with the Pontryagin

dual of the center Zn. In other words, ray operators carry nontrivial Z9−n charge.
Consider Nf = 6, for example. E7 has a subgroup [Spin(12)×SU(2)]/Z2, where the Z2

identification means the following. Denote by 32 one of the two chiral spinor representations
of Spin(12), and by 32′ the other one. Spin(12) has a center Z′2×Z′′2, where the generator of
Z′2 is defined to be (−1) in 12 and 32′, and the generator of Z′′2 is defined to be (−1) in 12 and
(−1) in 32; the Z′2×Z′′2 charges in other representations of Spin(12) are defined by requiring
additivity mod 2 under tensor products. Then, when decomposing representations of E7

into irreducible representations of Spin(12)×SU(2), half-integer SU(2) spins will always be
paired with representations of Spin(12) that are odd under Z′2, while even SU(2) spin will

9In our convention, the SU(2) instanton number is related to the U(1) instanton number by

k =
1

8π2

∫
S4

tr(F ∧ F ) =
1

4π2

∫
S4

f ∧ f , (2.27)

where we have used F = fσ3.
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be paired with zero Z′2 charge. So, for example, (12, 2), (32′, 2), and (32, 1) are allowed, but
neither (12, 1) nor (1, 2) nor (32, 2) can appear. Taking the U(1) ⊂ SU(2) subgroup, we find
the subgroup [Spin(12)×U(1)]/Z2 ⊂ E7 under which the fundamental representation 56 and
adjoint 133 decompose as

56 = 121 + 12−1 + 320, 133 = 12 + 10 + 660 + 1−2 + 32
′
1 + 32′−1.

In our conventions, one unit of instanton number (k = 1) corresponds to one unit of the
above U(1) charge. The generator of Z2 that appears in [Spin(12) × U(1)]/Z2 is therefore
identified with (−1)k times the generator of Z′2 ⊂ Z′2 × Z′′2 ⊂ Spin(12). The center of E7

is identified with the other factor, Z′′2 ⊂ Spin(12). We will see that ray operators are odd
under Z′′2.

For E6 (Nf = 5), the center is Z3. The representations of ray operators that we will
find are 27, 1728, etc., and the ray operator has one unit of Z3 charge. E6 has a subgroup
[Spin(10)×U(1)]/Z4 ⊂ E6. The Z4 identification means the following. The center of Spin(10)
is Z4, and a representation of Spin(10) can be assigned a Z4 charge by the rules that: (i)
the Z4 charge is additive under tensor products; (ii) the left-chirality spinors 16 are assigned
charge 1 mod 4. Thus the fundamental 10 is assigned 2 mod 4, the adjoint is assigned 0, and
the right-chirality 16 is assigned charge 3 mod 4. Then, when decomposing any representation
of E6 under Spin(10)×U(1), a Spin(10) representation with Z4 charge γ will always carry
U(1) charge that is γ mod 4. For example, 27 of E6 decomposes under SO(10)×U(1) as

27→ 10−2 + 161 + 14.

In our conventions, one unit of instanton number (k = 1) corresponds to 3 units of U(1)
charge. Thus, any of the states of 10 carry −2/3 instanton number, the states of 16 carry
1/3 instanton number and 1 carries 4/3. The center Z3 is generated by the projection to
[Spin(10)×U(1)]/Z4 of the element (1, e2πi/3) ∈ Spin(10)×U(1). Thus, for the case Nf = 5
we see that ray operators carry instanton charge in 1

3
+ Z and are charged one unit under

Z3.
For Nf = 4, we have E5 = Spin(10) and the center of Spin(2Nf ) = Spin(8) is Z′2×Z′′2 with

Z′2 nontrivial in the vector representation 8v and the spinor representation 8s, and trivial in
the spinor representation 8c of opposite chirality, while Z′′2 is trivial in 8v and nontrivial in
both spinor representations. Then E5 = Spin(10) = [Spin(8)×U(1)]/Z2, where one unit of
U(1) charge is identified with instanton number k and the generator of the last Z2 is identified
with (−1)k times the generator of Z′2. Thus, in decomposing a representation of Spin(10)
into representations of Spin(8)×U(1), even U(1) charge is paired with representations of
Spin(8) that appear in tensor products of 8c, while odd U(1) charge is paired with 8v or
representations that appear in tensor products of one factor of 8v and an arbitrary number
of 8c. The center Z4 ⊂ Spin(10) is generated by k (mod 4) plus twice the Z′′2 charge. So,
for example, the fundamental representation 10 of Spin(10) decomposes under Spin(8)×U(1)
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as10

10 = (8c)0 + 12 + 1−2 .

The states of 10 have Z4 charge 2 (mod 4), while

16 = (8v)1 + (8s)−1

has charge 1 (mod 4), and
16 = (8v)−1 + (8s)1

has charge 3 (mod 4). The trivial representation 1 and the adjoint 45 of Spin(10) have Z4

charge 0 (mod 4). We will find that ray operators have Z4 charge 1 (mod 4). (Whether it
is 1 or −1 is a matter of convention.)

For Nf = 3, we have E4 = SU(5) with center Z5 and subgroup [Spin(6)×U(1)]/Z4 ⊂
SU(5). Here a generator of Z4 can be taken as a generator of the center Z4 ⊂ Spin(6) =
SU(4) times i ∈ U(1). A generator of the center of SU(5) can be taken as e2πi/5 ∈ U(1) [times
the identity in Spin(6)]. We will find that ray operators have one unit of charge under Z5,
meaning that only representations that have Young diagrams with number of boxes equal to
3 (mod 5) can appear.

For Nf = 2, we have E3 = SU(3)×SU(2), and Spin(2Nf )×U(1) = SU(2)′×SU(2)′′×U(1)
is related to E3 = SU(3)×SU(2) by identifying the SU(2) factor with SU(2)′, and noting the
subgroup [SU(2)′′× U(1)]/Z2 ⊂ SU(3). Again, the Z2 identification means that in decompos-
ing representations of SU(3) under SU(2)′′×U(1), odd SU(2)′′ spin is paired with odd U(1)
charge, and vice versa. The center of E3 is Z3×Z′2. Referring to SU(2)′×[SU(2)′′×U(1)]/Z2

⊂ E3, the generator of Z3 ⊂ E3 can be identified with e2πi/3 ∈ U(1), and Z′2 ⊂ E3 is identified
with the center of SU(2)′. We will see that ray operators have charge 2 (mod 3) under Z3,
and they are odd under Z′2.

For Nf = 1, we have E2 = SU(2)×U(1), and the center is Z2×U(1). We will find that
ray operators carry fractional U(1) charge in 4

7
+ Z and their Z2 charge is correlated with

their U(1) charge. More details on the definition of E2 and the embedding of SO(2Nf ) =
SO(2) in it are reviewed in Appendix 2.9.

2.4. The index of line and ray operators

Wilson ray indices

The spectrum of line or ray operators can be studied by computing the line/ray operator
indices analogous to the superconformal indices. Let us first discuss Wilson line operators.
Consider a line operator supported on a line R1 ⊂ R5, which without loss of generality
we can choose to pass through the origin of R5. By a conformal map to S4 × R1, the line

10Note that 8c and not 8v appears in the decomposition above, and the embedding of Spin(8)×U(1) is
not the standard one, but related to it by triality.
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R1 ⊂ R5 is mapped to two lines at antipodal points p,q ∈S4 and along the R1 factor of
S4×R1, with opposite orientations for the two lines {p}×R1 and {q}×R1. Similarly to the
superconformal index, the Wilson line index can be computed by a path integral on S4×S1.
Since the path integral localizes on solutions of constant holonomy U = ei

∫
S1 Aµdx

µ
along the

“thermal” circle S1, the Wilson line operators simply reduce to the Sp(1) characters

χR(w) = trR U. (2.28)

Since the Wilson lines at the antipodal points have opposite orientations, they correspond to
characters of conjugate representations. For Sp(1), conjugate representations are equivalent,
but since the construction generalizes to Sp(N) with any N , we will retain the distinction
between a representation R and its conjugate R̄. This discussion suggests that the Wilson
line index can be calculated by inserting a pair of characters of opposite representations into
the integral formula (2.13) of the superconformal index [53],

IWilson line
R (t, u,mi, q)

?
=

∫
Sp(1)

χR(w)χR̄(w)Z1-loop(t, u, w,mi)|Zinst(t, u, w,mi, q)|2dU. (2.29)

The question mark over the equality sign indicates that (2.29) is not the complete answer,
as we will discuss below, in the context of ray operators.

The ray operator indices can be studied in a similar way. Consider a ray operator located
on a half line R+, whose end point is chosen to be the origin of the R5 spacetime. Under the
conformal map, the ray operator is mapped to a line operator along the R1 factor of S4×R1

and located at a point on S4. The Wilson ray operator index therefore appears to be given
by the formula

IWilson ray
R (t, u,mi, q)

?
=

∫
Sp(1)

χR(w)Z1-loop(t, u, w,mi)|Zinst(t, u, w,mi, q)|2dU. (2.30)

For example, let us consider the indices of Wilson rays in the fundamental representation.
For 0 ≤ Nf ≤ 7, the indices in the t-expansion are given by
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Nf = 0 : IWilson ray
2

?
= 0,

Nf = 1 : IWilson ray
2

?
= 2t+

(
1

q
+ q

)
t3 +O(t4),

Nf = 2 : IWilson ray
2

?
= 4t+

(
6

q
+ 16 + 6q

)
t3 +O(t4),

Nf = 3 : IWilson ray
2

?
= 6t+

(
20

q
+ 64 + 20q

)
t3 +O(t4),

Nf = 4 : IWilson ray
2

?
= 8t+

(
56

q
+ 160 + 56q

)
t3 +O(t4),

Nf = 5 : IWilson ray
2

?
= 10t+

(
144

q
+ 320 + 144q

)
t3 +O(t4),

Nf = 6 : IWilson ray
2

?
= 12t+

(
12

q2
+

352

q
+ 560 + 352q + 12q2

)
t3 +O(t4),

Nf = 7 : IWilson ray
2

?
= 14t+

(
195

q2
+

832

q
+ 896 + 832q + 195q2

)
t3 +O(t4),

(2.31)

where we have turned off the fugacities associated to the flavor SO(2Nf ) group. A few
comments on the above formulas are in order. The leading terms of the t-expansions in
(2.31) correspond to the Wilson rays contracted with the scalar q1 of the hypermultiplet
[see (2.20)]. As we discussed in §2.2, the operator q1 represents a nontrivial class of the Q-
cohomology, has JR charge 1/2, and transforms in the (2, 2Nf ) of Sp(1)×SO(2Nf ). Hence, it
contributes a term 2Nf t to the Wilson ray index. The flavor symmetry of the IR Sp(1) SYM
combines with the instanton number symmetry U(1) and is enhanced to form the En global
symmetry of the UV CFT. Under the broken generators of En → SO(2Nf )×U(1), the Wilson
ray operators are transformed to ray operators of nonzero instanton U(1) charge. However,
our Wilson ray indices (2.31) did not capture those contributions. One would expect the
full ray operator indices to exhibit the structure of the En symmetry; more precisely, the
coefficients of the t-expansion must be characters of En, but this is not the case in (2.31).
For example, for Nf = 6, the representation 12 that appears in the leading t-expansion of
the Wilson ray index should be completed to the representation 56 of E7. This instructs us
to look for additional contributions to the Nekrasov instanton partition function Zinst.

The problem with the naive prescription (2.30) is that it relies on the evaluation of
the Wilson loop (2.28) at a point (the south pole) where the gauge field configuration is
singular (a zero size instanton). To resolve the singularity, we have to invoke a string theory
construction similar to Table 2.2. We then see that in the presence of zero-size instantons
(interpreted as D0-branes) the fundamental string (F1) can end on either the D4-brane
directly or on a D0-brane. If the F1 ends on the D4 it induces the Wilson loop term (2.28)
in the action, but if F1 ends on a D0-brane, with k D0-branes present, it will manifest itself
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as an O(k) Wilson loop. The Hilbert space of the F1-D4-D8/O8 system thus has several
sectors.

Instead of analyzing each string sector separately and adding up the contributions, it is
much more convenient to compute a generating function for the partition function with an
arbitrary number l of F1 strings. We therefore introduce a new variable x, which will play
the role of fugacity for the string number, so that the terms of order xl−1 in the generating
function will capture the partition function with l strings present. (The shift by −1 will be
explained shortly below.) So, we propose a formula for the generating function of the ray
operator indices,

Iall(t, u, x,mi, q)

=

∫
Sp(1)

Z1-loop(t, u, w,mi)Zinst+line(t, u, w, x,mi, q)Zinst(t, u, w
−1,−mi, q

−1)dU,
(2.32)

where Zinst+line is the instanton partition function on the background of a a line operator
on R1 ⊂ R5 with the Omega background turned on (on the space R4 transverse to the line
operator).

To compute Zinst+line we follow a technique developed in [54, 103, 60] and introduce
a D4′-brane on which F1 can end (as in Table 2.2). The D0-D4-D4′-D8/O8 system then
automatically allows for a dynamical generation of finite-mass F1-strings. The D4′ brane
supports a U(1) gauge field, and x is more precisely identified as the fugacity for this U(1)
charge. The presence of the D4-brane generates nontrivial RR four-form flux that induces
a background of (−1) units of U(1)-charge11, and so the sector with l F1-strings has U(1)
charge (l − 1).

Similarly to Nekrasov’s instanton partition function Zinst, the modified partition function
Zinst+line can be computed as a ratio of Witten indices of D0-brane quantum mechanics
systems,

Zinst+line(t, u, w, x,mi, q) =
ZD0-D4-D4′-D8/O8(t, u, v, w, x,mi, q)

ZD0-D4′-D8/O8(t, u, v, x,mi, q)
. (2.33)

The D0-D4-D4′-D8/O8 and D0-D4′-D8/O8 quantum mechanics systems will be discussed in
detail in the next section. The partition function Zinst+line is expected to be independent of
the fugacity v associated with the Cartan subgroup of the SU(2)R− ⊂ Spin(4)5678 rotation
group, since none of the gauge theory degrees of freedom are charged under it. For Nf < 7,
we checked up to O(t5) order that the v-dependences of the numerator and denominator on
the right hand side of (2.33) cancel each other. For Nf = 7, however, the right hand side of
(2.33) does depend on the fugacity v. Thus, in this special case we see that ZD0-D4-D4′-D8/O8

does not factorize into a decoupled E8 SCFT contribution and ZD0-D4′-D8/O8. We will return
to this problem in §2.4.

11The D4-D4′ system is T-dual to a D0-D8 system, and the effect is similar to the induced charge of m
units discussed in §2.3.
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strings N = 4 multiplets fields SU(2)−×SU(2)+×SU(2)R−×SU(2)R+

D0-D4′ strings
twisted hyper

scalar (1, 1, 1, 2)
fermions (1, 2, 1, 1)

Fermi fermions (2, 1, 1, 1)
D4-D4′ strings Fermi fermions (1, 1, 1, 1)

Table 2.3: The quantum mechanics fields from the D0-D4′ strings and D4-D4′ strings.

Setting aside the problem of Nf = 7, for now, the ray operator indices are then extracted
from the generating function Iall by expanding in x,

Iall(t, u, w, x,mi, q) =
1

x
ISCI(t, u, w,mi, q)− Iray(t, u, w,mi, q) +O(x). (2.34)

The first term of the expansion is the superconformal index ISCI, and the second term Iray is
the ray operator index. The minus sign in front of Iray is because the single D4−D4′ string
is fermionic.

The D0-D4-D4′-D8/O8 system

In [54], the interaction of instantons and Wilson line operators was studied by introducing
an extra D4-brane (referred to as a D4′-brane) to the D0-D4 quantum mechanics. The D4′-
brane has no spatial direction in common with the D4-branes in the D0-D4 system. The
directions of the D4- and D4′-branes are listed in Table 2.2. As we take the distance between
the D4- and D4′-branes (along direction 9) to be large, the fundamental strings suspended
between D4 and D4′ become non-dynamical. The boundaries of the fundamental strings on
the D4-branes realize the line operators in the 5d gauge theory, whose positions are fixed
by the D4′-brane. The Witten indices of the D0-D4-D4′ quantum mechanics were studied
in [60]. The D4′-brane introduces additional degrees of freedom coming from the D0-D4′

strings and D4-D4′ strings, which are listed in Table 2.3. The D0-D4′ and D4-D4′ strings are
charged under the U(1) symmetry associated with the D4′-brane. We denote the fugacity of
the U(1) by x = e−M . Up to normalization, the distance between the D4- and D4′-branes
is identified with log |x|. It was shown in [60] that the Witten indices admit a finite series
expansion in the fugacity x, and the k-th order term in the expansion receives contributions
from Wilson line in the k-th anti-symmetric representation of SU(N).

Following [54, 60], we consider the D0-D4-D4′-D8/O8 quantum mechanics.12 The Witten
index of this quantum mechanics can be computed by a contour integral similarly to the way
the index of the D0-D4-D8/O8 was calculated, as reviewed in §2.2. The only modification
required is to include the contributions from the D0-D4′ strings and D4-D4′ strings to the

12The D2−brane that we used in the construction of the ray operators in Table 2.2 doesn’t exist anymore
when we radially quantize the theory on S4 and focus on one of the two poles of S4, to which the ray operator
is mapped. Hence, we do not include D2 brane in the index calculation on the South Pole.
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integrand of the φ-contour integral (2.15). It is easy to obtain the one-loop determinant of
the D0-D4′ strings without any additional calculations. If we exchange the four-planes R1234

and R5678, the orientations of the D4- and D4′-branes are interchanged while the orientations
of the D0-branes and D8/O8 singularity remain the same. One can also see from Table 2.1
and Table 2.3 that when exchanging the SU(2)−×SU(2)+ rotation symmetry of R1234 with
the SU(2)R−×SU(2)R+ rotation symmetry of R5678, the D0-D4 strings switch roles with the
D0-D4′ strings while the other types of strings listed in the tables remain unchanged. To
proceed, we reparametrize the chemical potentials associated to the spacetime rotations and
introduce new chemical potentials ε1, . . . , ε4 by setting

ε+ =
ε1 + ε2

2
, ε− =

ε1 − ε2
2

, m =
ε3 − ε4

2
, (2.35)

with the condition ε1+ε2+ε3+ε4 = 0. The ε1, ε2, ε3, ε4 are the chemical potentials associated
to the rotations of the two-planes R12, R34, R56, R78. The exchange ε1 ↔ ε3 combined with
ε2 ↔ ε4 corresponds to the exchange ε+ ↔ −ε+ combined with ε− ↔ m. The one-loop
determinant of the D0-D4′ strings is therefore obtained from the one-loop determinant of
the D0-D4 strings (2.57), by performing this simple substitution. The result is

Z+, k=2n+χ
D0-D4′ =

(
2 sinh ±M−ε−

2

2 sinh ±M−ε+
2

)χ n∏
I=1

2 sinh ±φI±M−ε−
2

2 sinh ±φI±M−ε+
2

,

Z−, k=2n+1
D0-D4′ =

2 cosh ±M−ε−
2

2 cosh ±M−ε+
2

n∏
I=1

2 sinh ±φI±M−ε−
2

2 sinh ±φI±M−ε+
2

,

Z−, k=2n
D0-D4′ =

2 sinh(±M − ε−)

2 sinh(±M − ε+)

n−1∏
I=1

2 sinh ±φI±M−ε−
2

2 sinh ±φI±M−ε+
2

,

(2.36)

where we have also replaced the chemical potential α associated to the Sp(1) symmetry
on the D4-brane with the chemical potential M associated to the Sp(1) symmetry on the
D4′-brane, and we used the shorthand notation of [30], where sinh(±A ± B · · · ) represents
the product of sinh’s of arguments with all possible sign combinations. (See Appendix 2.6
for more details.)

The D4-D4′ string is a single fermion in the bifundamental representation of the Sp(1)×Sp(1)
symmetry, or equivalently in the vector representation of Spin(4) ∼= Sp(1)×Sp(1). The zero
modes of the four components of the fermionic field in the vector representation form a 4d
Clifford algebra, and the ground states form a spinor representation of the Clifford algebra.
One then easily reads off the one-loop determinant of the D4-D4′ string,

ZD4-D4′ = 2 coshM − 2 coshα = 2 sinh ±α−M
2

, (2.37)

where the shorthand notation of [30], reviewed in Appendix 2.6, was used again.
The integrands ZD0-D4′ and ZD4-D4′ have the x-expansions

ZD0-D4′ = 1 +O(x), ZD4-D4′ =
1

x
− χ2(w) + x. (2.38)
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Plugging this into the φ-contour integral and the integration formula (2.32), one can see
that the leading O( 1

x
) order term in the expansion of the generating function Iall gives

the superconformal index ISCI and the “naive” expression (2.30) for the Wilson ray index
IWilson ray

2 contributes to Iray in the O(1) order term of the expansion, as shown in (2.34).
However, one should be cautious, because the x-expansion in general does not commute with
the φ-contour integral, and the above discussion should be just taken as heuristics. In the
next section, we present the results for the ray operator indices obtained by evaluating the
integrals (2.15) and (2.32) and expanding the generating function Iall. We will demonstrate
that the ray operator indices contain the “naive” Wilson ray operator indices and exhibit
the En symmetry.

Ray operator indices

We computed the ray operator indices up to O(t5) order in the t-expansion, which receives
contributions from up to instanton number five. For simplicity, except for the case Nf = 1,
we turn off all the SO(2Nf ) fugacities, and leave only the fugacity q associated to the U(1)
instanton number symmetry. We list our results for each value of Nf below, including the
correction q−2/(8−Nf ) discussed in §2.3. Note that for 1 ≤ Nf ≤ 6 (i.e., E2, . . . , E7) the leading
order term in the index is O(t), which corresponds to a doublet of the diagonal subgroup
of SU(2)+×SU(2)R, according to the discussion in §2.3. Furthermore, for 2 ≤ Nf ≤ 6 the
coefficient of the O(t) term is a character of a minuscule representation of ENf+1 (i.e., a
representation whose weights form a single orbit of the Weyl group). Thus, these terms
appear to capture the operators that generalize (2.20), with a minuscule representation
of ENf+1 playing the role of the fundamental representation of the flavor symmetry in an
ordinary gauge theory coupled to quarks. For convenience, we recall that

t ≡ e−ε+ , u ≡ e−ε− ,

are the fugacities that couple to J+ + JR and J−, respectively.

Ray operator index in E2 =SU(2)×U(1) theory

q−
2
7 Iray(t, u,m`, q) =

[
z

4
7 + z−

3
7χ2(y)

]
t+ z−

3
7χ4(y)t3

+ χ2(u)
[
z−

3
7 (χ4(y) + 2χ2(y)) + z

4
7 (χ3(y) + 1)

]
t4

+
[
−z−

10
7 χ3(y) + z−

3
7 [χ3(u)(χ4(y) + 3χ2(y)) + χ6(y) + χ2(y)]

+ z
4
7 [χ3(u)(χ3(y) + 2) + 1]− z

11
7 χ2(y)

]
t5 +O(t6)

(2.39)

Here we defined the fugacities y and z, which correspond to the SU(2) and U(1) factors of
E2 respectively. They are related to the fugacities q and y1 [where y1 is associated with the
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flavor SO(2) symmetry of the Nf = 1 5d SYM] by [24],

y2 = qy1, z2 =
y7

1

q
. (2.40)

(See Appendix 2.9 for more details.) Note that the prefactor q
2
7 is q2/(8−Nf ), in accordance

with the shift in (2.24). The U(1) charge Q of all the ray operators (as captured by z) is
in 4

7
+ Z, and the SU(2) spin j [encoded in the character χ2j+1(y)] is integer (half-integer)

when Q− 4
7

is even (odd).

Ray operator index in E3 = SU(3)×SU(2) theory

q−
1
3 Iray(t, u,m`, q) = χE3

[1,0,1]t+
[
χE3

[2,1,1] + χE3

[1,0,3]

]
t3 + χ2(u)

[
χE3

[1,0,3] + χE3

[2,1,1] + χE3

[0,2,1]

]
t4

+
[
χ3(u)

(
χE3

[1,0,1] + χE3

[1,0,3] + χE3

[2,1,1] + χE3

[0,2,1]

)
+ χE3

[3,2,1] + χE3

[1,0,7]

]
t5 +O(t6)

(2.41)
The relevant E3 characters are as follows:

χE3

[1,0,1] =
4

q1/3
+ 2q2/3,

χE3

[1,0,3] =
8

q1/3
+ 4q2/3,

χE3

[1,0,7] =
16

q1/3
+ 8q2/3,

χE3

[2,1,1] =
6

q4/3
+

12

q1/3
+ 8q2/3 + 4q5/3,

χE3

[0,2,1] =
2

q4/3
+

4

q1/3
+ 6q2/3,

χE3

[3,2,1] =
8

q7/3
+

16

q4/3
+

24

q1/3
+ 18q2/3 + 12q5/3 + 6q8/3.

(2.42)

Our notation for E3 characters χE3

[a,b,c] is equivalent to the product χ
SU(3)
[a,b] χ

SU(2)
c+1 , where j = c/2

is the spin of the SU(2) representation, and [a, b] denotes an SU(3) representation with Young
diagram

q q qq q q q q q
a

a+ b

Note that the spin j = c/2 is always half integral, and the number of boxes in the Young
diagram is always 2 (mod 3). This corresponds to charge 5 (mod 6) under the Z6

∼= Z3×Z2

center of E3. Note also that the coefficient of the O(t) term is the character of the minuscule
representation (3, 2) of E3

∼= SU(3)×SU(2).
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Ray operator index in E4 = SU(5) theory

q−
2
5 Iray(t, u,m`, q) = χE4

[0,1,0,0]t+ χE4

[1,1,0,1]t
3

+ χ2(u)
[
χE4

[1,1,0,1] + χE4

[2,0,0,0] + χE4

[0,0,1,1] + χE4

[0,1,0,0]

]
t4

+
[
χ3(u)

(
χE4

[1,1,0,1] + χE4

[2,0,0,0] + χE4

[0,0,1,1] + 2χE4

[0,1,0,0]

)
+χE4

[2,1,0,2] + χE4

[1,1,0,1] + χE4

[2,0,0,0] + χE4

[0,0,1,1] + 3χE4

[0,1,0,0]

]
t5 +O(t6)

(2.43)

The relevant E4 characters are as follows:

χE4

[0,1,0,0] =
6

q2/5
+ 4q3/5,

χE4

[0,0,1,1] =
4

q7/5
+

16

q2/5
+ 20q3/5,

χE4

[1,1,0,1] =
20

q7/5
+

80

q2/5
+ 60q3/5 + 15q8/5,

χE4

[2,0,0,0] =
10

q2/5
+ 4q3/5 + q8/5,

χE4

[2,1,0,2] =
45

q12/5
+

180

q7/5
+

450

q2/5
+ 360q3/5 + 144q8/5 + 36q13/5.

(2.44)

The representation [a, b, c, d] corresponds to a Young diagram with rows of lengths a+b+c+
d, a+ b+ c, a+ b, a. Note that the representations have Young diagrams with total number
of boxes 4a + 3b + 2c + d = 3, 8, 13, . . .. Thus, under the Z5 center they charge 3 (mod 5),
as promised in §2.3. Note also that the coefficient of the O(t) term is the character of the
minuscule representation 10 of E4

∼= SU(5).

Ray operator index in E5 = SO(10) theory

q−
1
2 Iray(t, u,m`, q) = χE5

[0,0,0,0,1]t+ χE5

[0,1,0,0,1]t
3 + χ2(u)

[
χE5

[1,0,0,1,0] + χE5

[0,1,0,0,1] + χE5

[0,0,0,0,1]

]
t4

+
[
χ3(u)

(
χE5

[1,0,0,1,0] + χE5

[0,1,0,0,1] + 2χE5

[0,0,0,0,1]

)
+ χE5

[0,2,0,1,0] + χE5

[0,0,0,0,1]

]
t5 +O(t6)

(2.45)
The relevant E5 characters are as follows:

χE5

[0,0,0,0,1] =
8

q1/2
+ 8q1/2,

χE5

[0,1,0,0,1] =
56

q3/2
+

224

q1/2
+ 224q1/2 + 56q3/2,

χE5

[1,0,0,1,0] =
8

q3/2
+

64

q1/2
+ 64q1/2 + 8q3/2,

χE5

[0,2,0,1,0] =
224

q5/2
+

1120

q3/2
+

2688

q1/2
+ 2688q1/2 + 1120q3/2 + 224q5/2.

(2.46)
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Recall that the root lattice is a sublattice of index 4 in the weight lattice of E5. The quotient
of the weight lattice by root lattice can be identified with the Pontryagin dual of the Z4 ⊂ E5

center, and all the weights appearing in the characters above project to the same generator
of Z4. In other words, there is a natural assignment of an additive Z4 charge to every weight,
with roots having charge 0, and it is not hard to check that all the weights appearing above
have the same nonzero Z4 charge, which is ±1 (depending on convention). As discussed in
§2.3, referring to the “SO(8)×U(1)” subgroup, the value of the Z4 charge when taken mod 2
corresponds to the U(1) charge mod 2. The fact that all q powers in the ray operator index
are half integers means that the U(1) charge is odd, and this confirms that the Z4 charge is
±1 (mod 4). Note also that the coefficient of the O(t) term is the character of the minuscule
representation 16 of E5

∼= SO(10).

Ray operator index in E6 theory

q−
2
3 Iray(t, u,m`, q) = χE6

[0,0,0,0,0,1]t+ χE6

[0,1,0,0,0,1]t
3 + χ2(u)

[
χE6

[0,0,0,0,0,1] + χE6

[0,1,0,0,0,1] + χE6

[0,0,1,0,0,0]

]
t4

+
[
χ3(u)

(
2χE6

[0,0,0,0,0,1] + χE6

[0,1,0,0,0,1] + χE6

[0,0,1,0,0,0]

)
+ χE6

[0,2,0,0,0,1] + χE6

[0,0,0,0,0,1]

]
t5 +O(t6)

(2.47)
The relevant E6 characters are as follows:

χE6

[0,0,0,0,0,1] =
10

q2/3
+ 16q1/3 + q4/3,

χE6

[0,0,1,0,0,0] =
16

q5/3
+

130

q2/3
+ 160q1/3 + 45q4/3,

χE6

[0,1,0,0,0,1] =
144

q5/3
+

576

q2/3
+ 736q1/3 + 256q4/3 + 16q7/3,

χE6

[0,2,0,0,0,1] =
1050

q8/3
+

5712

q5/3
+

13506

q2/3
+ 15696q1/3 + 8226q4/3 + 2016q7/3 + 126q10/3.

(2.48)

The root lattice of E6 is a sublattice of index 3 in the weight lattice. The quotient of the
weight lattice by root lattice can be identified with the Pontryagin dual of the Z3 ⊂ E6 center,
and again all the weights appearing in the characters above project to the same generator
of Z3. This is consistent with the discussion in §2.3, and indeed, as promised there, all the
E6 characters that appear in the index of ray operators decompose under SO(10)×U(1) in
such a way that the powers of q (which are proportional to the U(1) charge) take values
in 1

3
+ Z. Note also that the coefficient of the O(t) term is the character of the minuscule

representation 27 of E6.
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Ray operator index in E7 theory

q−1Iray(t, u,m`, q) = χE7

[0,0,0,0,0,0,1]t+ χE7

[1,0,0,0,0,0,1]t
3

+ χ2(u)
[
χE7

[0,0,0,0,0,0,1] + χE7

[0,1,0,0,0,0,0] + χE7

[1,0,0,0,0,0,1]

]
t4

+
[
χ3(u)

(
2χE7

[0,0,0,0,0,0,1] + χE7

[0,1,0,0,0,0,0] + χE7

[1,0,0,0,0,0,1]

)
+χE7

[2,0,0,0,0,0,1] + χE7

[0,0,0,0,0,0,1]

]
t5 +O(t6)

(2.49)

The relevant E7 characters are listed as follows

χE7

[0,0,0,0,0,0,1] =
12

q
+ 32 + 12q,

χE7

[0,1,0,0,0,0,0] =
32

q2
+

232

q
+ 384 + 232q + 32q2,

χE7

[1,0,0,0,0,0,1] =
12

q3
+

384

q2
+

1596

q
+ 2496 + 1596q + 384q2 + 12q3,

χE7

[2,0,0,0,0,0,1] =
12

q5
+

384

q4
+

6348

q3
+

31008

q2
+

73536

q
+ 97536

+ 73536q + 31008q2 + 6348q3 + 384q4 + 12q5.

(2.50)

It is not hard to check that all the weights that appear in the characters above do not belong
to the root lattice (i.e., they are not representations of the adjoint form of E7). Since the
root lattice is a sublattice of index 2 in the weight lattice of E7, we see that all the E7

representations of ray operators are odd under the Z2 center. Note also that the coefficient
of the O(t) term is the character of the minuscule representation 56 of E7.

Ray operator index in E8 theory

The case Nf = 7 poses a special challenge, because we do not have a consistent result for
the South Pole contribution Zinst+line to the partition function (2.32). The problem, as we
discussed below equation (2.33), is that a direct computation of Zinst+line, following the ideas
developed in [30], yields a result that depends on the SU(2)R− fugacity v. Nevertheless, it is
instructive to look at the result of the integral formula (2.32), after substituting for Zinst+line

the problematic formula (2.33). With χ2(v) ≡ v + 1
v
, and Zinst denoting the instanton

partition function (2.17) without the line, we find

q−2I(calculated)
ray (t, u, v,m`, q) = χ2(v)ISCI(t, u,m`, q) + Iv-independent(t, u,m`, q), (2.51)
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where ISCI is the index of local operators given in (2.13), and

Iv-independent =
(
1 + χE8

[0,0,0,0,0,0,0,1]

)
t+ χ2(u)t2 +

(
χE8

[0,0,0,0,0,0,0,1] + χE8

[0,0,0,0,0,0,1,0]

+ χE8

[0,0,0,0,0,0,0,2]

)
t3

+
{
χ2(u) + χ2(u)

(
3χE8

[0,0,0,0,0,0,0,1] + χE8

[1,0,0,0,0,0,0,0] + χE8

[0,0,0,0,0,0,0,2] + χE8

[0,0,0,0,0,0,1,0]

)}
t4

+
{

2 + 2χE8

[0,0,0,0,0,0,0,1] + χE8

[0,0,0,0,0,0,1,1] + χE8

[0,0,0,0,0,0,0,2] + χE8

[0,0,0,0,0,0,0,3]

+χ3(u)
(
2 + 4χE8

[0,0,0,0,0,0,0,1] + χE8

[1,0,0,0,0,0,0,0] + χE8

[0,0,0,0,0,0,0,2] + χE8

[0,0,0,0,0,0,1,0]

)}
t5 +O(t6).

(2.52)
The relevant E8 characters are listed as follows

χ[0,0,0,0,0,0,0,1] =
14

q2
+

64

q
+ 92 + 64q + 14q2,

χ[1,0,0,0,0,0,0,0] =
1

q4
+

64

q3
+

378

q2
+

896

q
+ 1197 + 896q + 378q2 + 64q3 + q4,

χ[0,0,0,0,0,0,1,0] =
91

q4
+

896

q3
+

3290

q2
+

6720

q
+ 8386 + 6720q + 3290q2 + 896q3 + 91q4,

χ[0,0,0,0,0,0,0,2] =
104

q4
+

832

q3
+

2990

q2
+

5888

q
+ 7372 + 5888q + 2990q2 + 832q3 + 104q4,

χ[0,0,0,0,0,0,1,1] =
896

q6
+

11584

q5
+

65792

q4
+

221248

q3
+

496768

q2
+

791168

q
+ 921088

+ 791168q + 496768q2 + 221248q3 + 65792q4 + 11584q5 + 896q6,

χ[0,0,0,0,0,0,0,3] =
546

q6
+

5824

q5
+

30394

q4
+

98176

q3
+

214474

q2
+

336960

q
+ 390377

+ 336960q + 214474q2 + 98176q3 + 30394q4 + 5824q5 + 546q6.
(2.53)

We computed the contribution to the formula (2.52) up to instanton number five. The O(t5)
order of (2.52) receives contribution from higher instanton number, and we completed the
formula (2.52) “by hand” using the property χE8

R (q) = χE8
R (q−1) of the E8 characters.

Note that since ISCI = 1 +O(t2), the expression (2.51) starts with a t-independent term
χ2(v). But a ray operator index is forbidden from having such a term, according to the
discussion at the end of §2.3, since it would require the existence of a BPS ray operator
with J+ + JR = 0. More generally, the first term on the RHS of (2.51) suggests that
there are unwanted SU(2)R− doublet states that contribute to the partition function (2.33).
It is tempting to drop the χ2(v)ISCI term entirely from the ray index and keep only the v-
independent term, but we have not found a satisfactory argument for this ad-hoc prescription,
and it is not clear whether any additional SU(2)R− singlets should be dropped as well, or not.

Nf = 7 is special, because the parameter m = 8 − Nf is exactly 1 in this case, which
makes it possible for the F1 that appeared in the construction of the line and ray operators
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in §2.3 to end on a D0-brane instead of the D4-brane. The F1 can thus be “screened”, and
the x9 coordinate of the D0-brane is a free parameter, which gives rise to a continuum, in the
absence of the D4’-brane.13 We do not understand why this effect creates the v-dependent
terms, but we suspect that it is part of the problem.

2.5. Discussion

We have extended the analysis of [30] by calculating the index of ray operators in 5d En
SCFTs for n = 2, . . . , 7. We converted the problem to a partition function of the SCFT on
S4×S1 with a Wilson loop along S1 and with twisted boundary conditions parameterized by
the various fugacities. Following [30], we provided evidence that the manifest SO(2n − 2)
flavor symmetry combines with the U(1) symmetry associated with the conserved instanton
charge to form a subgroup of an enhanced En “flavor” symmetry, as predicted in [10]. Our
index reveals En representations that do not appear in the superconformal index of local
operators. These are representations with weights that are not in the root lattice of En, and
the ray operators are charged under the nontrivial center of En. For n = 8 we encountered a
problem with the calculation of the contribution of zero-size instantons to the ray index. The
prescription that we followed for calculating the Nekrasov partition function in the presence
of a Wilson loop does not appear to yield a result that factorizes properly into field theory
modes and modes that are decoupled from the D4-brane. We do not know the reason for
this inconsistency, but we suspect it has to do with the possibility for a fundamental string
(that induces the line operator) to end on a D0-brane.

As in the work of [30], a key ingredient in the calculation is the contribution of coincident
zero-size instantons. In our case, the instantons are also coincident with the defect introduced
by a Wilson loop, and we needed to regularize their contribution carefully. As we saw
in §2.4, merely localizing the Wilson loop on BPS configurations is not the right answer.
Instead, we followed [54, 103, 60] and rather than introducing the Wilson loop directly to
the S4×S1 partition function, we modified the Nekrasov partition function that captures
the contribution of the zero-size instantons near the Wilson loop. The modified Nekrasov
partition function is an index of the quantum mechanics of D0-branes that probe a D4-
D8/O8 system, and the Wilson loop was captured by introducing an additional D4-brane
(denoted by D4’) to the system so that after integrating out the (heavy) fermionic D4-D4’
string modes, the Wilson loop is recovered. That the final result (after inserting this modified
Nekrasov partition function into the 5d index formula) reveals the expected hidden En global
symmetry lends credence to this resolution of zero-size instanton singularities in our context
as well. The modified Nekrasov partition function also appeared as part of Nekrasov’s larger
work [103] on the qq-character.

A better understanding of how the exceptional symmetry of the En SCFTs arises is
important both in its own right and since the En SCFTs describe the low-energy degrees of

13The mass of the D0-brane increases linearly with x9, but this effect is canceled by the decreasing length
of F1, and so there is no potential.
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freedom of M-theory near degenerations of Calabi-Yau manifolds [61] and can also provide
clues about the 6d (1, 0) SCFT with E8 global symmetry. The 5d ray operators presumably
descend from BPS cylinder operators in 6d, that is, surface operators associated with open
surfaces with S1×R+ geometry. The AdS/CFT dual of such an operator, as well as the
analysis of §2.3 suggest that the 1d boundary of these operators are “labeled” by a state of
an E8 affine Lie algebra at level 1. This is the extended symmetry of the low-energy 2d CFT
that described the M2-M9 intersection [62]. It would be interesting to examine further the
relationship between 5d ray operators and 6d surface operators.

On the Coulomb branch of the En theories the low-energy description is given by a
single U(1) vector multiplet, and the ray operators that we counted in this work can act
on the vacuum and create BPS states with one unit of charge. It would be interesting to
explore the relation between the BPS spectrum of the En theories on their Coulomb branch
(computed in [63, 64, 65]) and the index that we calculated in this paper [46]. Indeed, for
n = 2, 3, 4, 5, 6, 7, the net numbers of 1

8
BPS operators with J+ + JR = 1

2
and J− = 0 are

3, 6, 10, 16, 27, 56. These are precisely the numbers of isolated holomorphic curves of genus
0 embedded in the del Pezzo surface Bn [66], and are a special case of the Gopakumar-
Vafa invariants of the Calabi-Yau manifolds that enter the M-theory construction of the
En theories [67, 68]. It would be interesting [46] to explore the connection between ray
operator indices generated by probing the D4-brane with more than one fundamental string
and Gopakumar-Vafa invariants of higher genera and degrees, as computed in [66].

Our results are also related to the elliptic genus of an E-string near a surface operator of
the 6d (1, 0) E8-theory. The E-string is the BPS string-like excitation of the 6d theory on the
Coulomb branch. A single E-string is described by a left-moving E8 chiral current algebra
together with four noninteracting 2d bosons and right-moving fermions, but k coincident
E-strings have nontrivial 2d CFT descriptions with (4, 0) supersymmetry [69]. It was shown
in [70] that the intermediate steps in the computation of a 5d index for the Nf = 8 case can
be used to also compute the elliptic genus of k E-strings (see also [69, 71]). More precisely,
the index of the 5d theory on S4×S1 is a contour integral over a complex variable w that
can be identified with the holonomy of a U(1) ⊂ SU(2) gauge field on S1. The integrand is a
product of terms, one of which is a Nekrasov partition function whose wk coefficient yields
the elliptic genus of k E-strings. Our computation of the index of ray operators also has a
Nekrasov partition function ingredient, from which a modified E-string elliptic genus can be
read off. It counts bound states of k E-strings and a 1+1d defect, introduced into the 6d
theory via a BPS surface operator, and compactified on S1.

Our calculation, which builds on the techniques developed in [24, 30], uses an ordinary
super Yang-Mills theory to capture properties of a strongly interacting SCFT. It joins a
growing body of work that demonstrates that the manifestly nonrenormalizable Yang-Mills
theories in dimensions d > 4 still prove to be very useful in the right context. For example,
[72] proposed that 5d super Yang-Mills theory can describe the 6d (2, 0)-theory, in [73] it
was shown how Yang-Mills theory can be used to calculate a superconformal index for the
6d (2, 0)-theory and reproduce its anomaly coefficient, and in [74, 75] it was demonstrated
that a 6d Yang-Mills theory can be used to calculate Little String Theory amplitudes.



CHAPTER 2. AN INDEX FOR RAY OPERATORS IN 5D En SCFTS 48

The localization computation of the superconformal indices in [] requires deforming the
5d SYM in a way that keeps the indices invariant. In §2.2, we demonstrated that the
perturbative part of the indices (2.11) can be reproduced by directly counting the local
gauge invariant operators in the 5d SYM. One expects that the instanton contribution to
the indices can be reproduced in a similar way, involving quantizing the moduli space of the
instantons on S4 and counting the instanton operators [76, 77, 78, 79] in 5d SYM. Similar
problems have been studied in 3d Chern-Simons matter theories [80, 81, 82, 83], where partial
success was achieved, and the superconformal indices were computed in certain monopole
sectors by directly counting monopole operators.

2.6. Appendix: One-loop determinants in the

D0-D4-D8/O8 quantum mechanics

The one-loop determinants of the D0-D4-D8/O8 quantum mechanics fields, listed in Ta-
ble 2.1, were computed in [24, 30]. The exact forms can be found in equations (3.42)-(3.50)
of [30], and we summarize them in this appendix, using the conventions of [30] whereby, for
example, a term of the form 2 sinh(±A ± B ± C + D) should be interpreted as a product
over eight terms (all combinations of ± signs):

2 sinh(±A±B ± C +D)→ 256 sinh(A+B + C +D) sinh(A+B − C +D)

sinh(A−B + C +D) sinh(A−B − C +D) sinh(−A+B + C +D)

sinh(−A+B − C +D) sinh(−A−B + C +D) sinh(−A−B − C +D).

The one-loop determinants of the D0-D0 strings are given by

Z+, k=2n+χ
D0-D0 =

[( n∏
I=1

2 sinh ±φI
2

)χ n∏
I<J

2 sinh ±φI±φJ
2

]
(2 sinh ε+)n

( n∏
I=1

2 sinh ±φI+2ε+
2

)χ
×

n∏
I<J

2 sinh ±φI±φJ+2ε+
2

(
2 sinh ±m−ε−

2

)n( n∏
I=1

2 sinh ±φI±m−ε−
2

)χ n∏
I<J

2 sinh ±φI±φJ±m−ε−
2

× 1(
2 sinh ±m−ε+

2

)n+χ

( n∏
I=1

1

2 sinh ±φI±m−ε+
2

)χ n∏
I=1

1

2 sinh ±2φI±m−ε+
2

n∏
I<J

1

2 sinh ±φI±φJ±m−ε+
2

× 1(
2 sinh ±ε−+ε+

2

)n+χ

( n∏
I=1

1

2 sinh ±φI±ε−+ε+
2

)χ n∏
I=1

1

2 sinh ±2φI±ε−+ε+
2

n∏
I<J

1

2 sinh ±φI±φJ±ε−+ε+
2

,

(2.54)
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and

Z−, k=2n+1
D0-D0 =

( n∏
I

2 cosh ±φI
2

n∏
I<J

2 sinh ±φI±φJ
2

)
(2 sinh ε+)n

n∏
I=1

2 cosh ±φI+2ε+
2

×
n∏

I<J

2 sinh ±φI±φJ+2ε+
2

(
2 sinh ±m−ε−

2

)n n∏
I=1

2 cosh ±φI±m−ε−
2

n∏
I<J

2 sinh ±φI±φJ±m−ε−
2

× 1(
2 sinh ±m−ε+

2

)n+1

n∏
I=1

1

2 cosh ±φI±m−ε+
2

2 sinh ±2φI±m−ε+
2

n∏
I<J

1

2 sinh ±φI±φJ±m−ε+
2

× 1(
2 sinh ±ε−+ε+

2

)n+1

n∏
I=1

1

2 cosh ±φI±ε−+ε+
2

2 sinh ±2φI±ε−+ε+
2

n∏
I<J

1

2 sinh ±φI±φJ±ε−+ε+
2

,

(2.55)

and

Z−, k=2n
D0-D0 =

( n−1∏
I<J

2 sinh ±φI±φJ
2

n−1∏
I

2 sinh (±φI)
)

2 cosh ε+(2 sinh ε+)n−1

×
n−1∏
I=1

2 sinh (±φI + 2ε+)
n−1∏
I<J

2 sinh ±φI±φJ+2ε+
2

× 2 cosh ±m−ε−
2

(
2 sinh ±m−ε−

2

)n−1
n−1∏
I=1

2 sinh (±φI ±m− ε−)
n−1∏
I<J

2 sinh ±φI±φJ±m−ε−
2

× 1(
2 sinh ±m−ε+

2

)n
2 sinh (±m− ε+)

n−1∏
I=1

1

2 sinh (±φI ±m− ε+) sinh ±2φI±m−ε+
2

× 1(
2 sinh ±ε−+ε+

2

)n
2 sinh (±ε− + ε+)

n−1∏
I=1

1

2 sinh (±φI ± ε− + ε+)2 sinh ±2φI±ε−+ε+
2

×
n−1∏
I<J

1

2 sinh ±φI±φJ±m−ε+
2

n−1∏
I<J

1

2 sinh ±φI±φJ±ε−+ε+
2

(2.56)
The first to the forth lines of the equations (2.54), (2.55) and(2.56) are the one-loop de-
terminants of the N = 4 vector multiplet, Fermi multiplet, twisted hypermultiplet and
hypermultiplet, respectively. The one-loop determinants of the D0-D4 strings are given by

Z+, k=2n+χ
D0-D4 =

( 2 sinh m±α
2

2 sinh ±α+ε+
2

)χ n∏
I=1

2 sinh ±φI±α−m
2

2 sinh ±φI±α+ε+
2

,

Z−, k=2n+1
D0-D4 =

2 cosh m±α
2

2 cosh ±α+ε+
2

n∏
I=1

2 sinh ±φI±α−m
2

2 sinh ±φI±α+ε+
2

,

Z−, k=2n
D0-D4 =

2 sinh(m± α)

2 sinh(±α + ε+)

n−1∏
I=1

2 sinh ±φI±α−m
2

2 sinh ±φI±α+ε+
2

.

(2.57)
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The one-loop determinants of the D0-D8 strings are given by

Z+, k=2n+χ
D0-D8 =

Nf∏
`=1

(
(2 sinh m`

2
)χ

n∏
I=1

2 sinh ±φI+m`
2

)
,

Z−, k=2n+1
D0-D8 =

Nf∏
`=1

(
2 cosh m`

2

n∏
I=1

2 sinh ±φI+m`
2

)
,

Z−, k=2n
D0-D8 =

Nf∏
`=1

(
2 sinhm`

n−1∏
I=1

2 sinh ±φI+m`
2

)
.

(2.58)

Finally, the Weyl factors of the O(k)+ and O(k)− components in (2.15) are given by

|W |χ=0
+ =

1

2n−1n!
, |W |χ=1

+ =
1

2nn!
, |W |χ=0

− =
1

2n−1(n− 1)!
, |W |χ=1

− =
1

2nn!
. (2.59)

2.7. Appendix: On the computation of North Pole

and South Pole contributions

The South Pole (and similarly North Pole) contribution to the integrands (2.13) and (2.32)
is evaluated by a separate index computation of a 1d field theory (Quantum Mechanics)
that describes the dynamics of strings connecting D0-branes to the various D-branes in
the problem (D4-branes, D4’-branes, Nf D8-branes, and the D0-branes themselves). The
integrals involved have been described in great detail in [30], but for the sake of completeness
we will now expand on a few of the technical details involved.

The O(qk) North Pole contribution, for k = 2n or k = 2n + 1, is given by an integral
over n variables, denoted as φ1, . . . , φn. The integrand is a fraction whose numerator and
denominator are both products of terms that are contributions of individual fields of the
1d field theory, with bosonic fields contributing to the denominator and fermionic fields to
the numerator. Each individual term is written as 2 sinh X, with X a linear expression in
the equivariant parameters ε+, ε−, the U(1) ⊂ Sp(1) chemical potential α, the U(1)2Nf ⊂
SO(2Nf ) chemical potentialsm1, . . . ,mNf and the integration variables φ1, . . . , φn. The exact
form of the integrand can be found in equations (3.42)-(3.50) of [30]. We also summarized
it in Appendix 2.6. For simplicity, we will set m1 = · · · = mNf = 0 from now on.

For even k = 2n, the integral takes the form

Z2n
D0-D4-D4′-D8/O8 =

1

2nn!

∮
Z+

D0-D0Z
+
D0-D4Z

+
D0-D8Z

+
D0-D4′dφ1 · · · dφn, (2.60)

where Z+
D0-D0, Z+

D0-D4, Z+
D0-D8 are all functions of φ1, . . . , φn, ε+, ε−, and α, and Z+

D0-D4′ is a
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function of the same parameters and also M . The formulas for Z+
D0-D0, Z+

D0-D4, Z+
D0-D8 are

Z+
D0-D0 =

(
2 sinh ±m−ε−

2

2 sinh ±m−ε+
2

2 sinh ±ε−+ε+
2

)n n∏
I=1

1

2 sinh ±2φI±m−ε+
2

2 sinh ±2φI±ε−+ε+
2

×
n∏

I<J

2 sinh ±φI±φJ
2

2 sinh ±φI±φJ+2ε+
2

2 sinh ±φI±φJ±m−ε−
2

2 sinh ±φI±φJ±m−ε+
2

2 sinh ±φI±φJ±ε−+ε+
2

,

Z+
D0-D4 =

n∏
I=1

2 sinh ±φI±α−m
2

2 sinh ±φI±α+ε+
2

, Z+
D0-D8 =

Nf∏
`=1

n∏
I=1

2 sinh ±φI+m`
2

.

The additional parameter m that appears in Z+
D0-D0 and Z+

D0-D4 represents an additional twist
that can be set to m = 0, but is kept nonzero in intermediate stages of the computation in
order to regularize the integral over φ1, . . . , φn, as we shall review below. The formulas for
odd k are of a similar spirit, but slightly more complicated, and can be found in [30], and
also copied in Appendix 2.6. The formula for Z+

D0-D4′ is

Z+
D0-D4′ =

n∏
I=1

2 sinh ±φI±M−ε−
2

2 sinh ±φI±M−ε+
2

. (2.61)

The integration parameters φI (I = 1, . . . , n) live on a cylinder, with −∞ < ReφI <
∞, and 0 ≤ ImφI < 2π periodic. The integral (2.60) is performed by summing over the
contributions of the poles within the integration path, which we have not described yet. A
pole can arise when an argument of a sinh in the denominator of Z+

D0-D0 or Z+
D0-D4 equals a

multiple of πi. Which poles to keep was determined in [30], using the Jeffrey-Kirwan (JK)
residue technique developed in [84] and explained in [43, 42]. For n = 1 the integration is
one-dimensional and the JK prescription is to consider only the poles arising from the terms
where the coefficient of φ1 in the argument of sinh is positive. These are 14 poles, which we
list below:

φ1 → ±1
2
ε−− 1

2
ε+, ±1

2
ε−− 1

2
ε+ + iπ, ±α− ε+, ±1

2
m+ 1

2
ε+, ±1

2
m+ 1

2
ε+ + iπ, (2.62)

and
φ1 → ±M + ε+.

For generic M , m, ε−, ε+, and α, these are all simple poles, but when we set m → 0, we
get a double pole at φ1 = 1

2
ε+. For n = 1, keeping m 6= 0 in intermediate steps is only a

convenience. It will become crucial for n > 1. The poles are depicted in Figure 2.1 in the
regime m� ε+ � ε− � α.

For k = 3 the index is similarly calculated by an integral over a single parameter φ1,
but for k = 4 the integral is over two parameters dφ1dφ2, and the prescription is as follows.
Residues of poles are evaluated at values of (φ1, φ2) where the arguments of at least two
different sinh’s in the denominator of the integrand are an integer multiple of iπ. They are
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Figure 2.1: The location of the poles on the complex φ1 plane for instanton number k = 2.
The filled circles indicate the poles that are retained by the Jeffrey-Kirwan prescription,
while the hollow circles indicate the poles that are ignored.

a simple pole if exactly two sinh’s vanish. The argument of the ith sinh (i = 1, 2) takes the
form

∑
I QiIφI + ζi, where QiI are constants (taking the possible values 0, ±1/2 or ±1),

and ζi are independent of φ1 and φ2 (and are linear expressions in ε+, ε−, m, M , α). The
Jeffrey-Kirwan prescription requires us to fix an arbitrary (row) vector η ≡ (η1 η2), then
calculate, for each pole, the vector ηQ−1, and keep the residue only if all the components of
ηQ−1 are positive. (In other words, η has to be inside the cone generated by the rows of Q.)

Double poles appear at

φ1 = ±φ2 = ±1
2
m± 1

2
ε+ (± signs are uncorrelated),

where also one of the expressions ±φ1 ± φ2 ±m− ε+ (for the appropriate sign assignments)
vanishes. These are 8 in number, and there are additional 8 double poles at

φ1 = ±φ2 = ±1
2
ε− ± 1

2
ε+ (± signs are uncorrelated),

where also one of the expressions (±φ1±φ2±ε−+ε+)/2 vanishes. However, in these cases also
±φ1± φ2 vanishes (for two sign assignments), which gives the numerator of Z+

D0-D0 a double
zero, and these poles therefore do not contribute to the integral. In the above discussion, we
can also add iπ to both φ1 and φ2 and get another set of eight double poles, but if we add
iπ to only φ1 or only φ2, we get a simple pole. Ignoring the above mentioned double poles,
for k = 4 there are 352 simple poles that pass the Jeffrey-Kirwan requirement.
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2.8. Appendix: D-branes in massive type IIA

The massive type IIA supergravity action is given by14

SNS =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
,

SR = − 1

4κ2
10

∫
d10x
√
−G

(
|F2 + MB2|2 + |F̃4 −

1

2
MB2

2 |2
)
,

SCS = − 1

4κ2
10

∫ {
B2 ∧ F 2

4 −
1

3
MB3

2 ∧ F4 +
1

20
M2B5

2

}
,

Smass = − 1

4κ2
10

∫
d10x
√
−GM2 +

1

2κ2
10

∫
MF10,

(2.63)

where the F̃4 is defined by

F̃4 = dC3 − C1 ∧ dB2. (2.64)

Consider a D8-brane localized at a constant value of x9, say at x9 = 0. It behaves like a
domain wall that splits the spacetime into two regions x9 < 0 and x9 > 0. The action of the
D8-brane is given by

SD8 = −µ8

∫
d9x e−Φ

√
−G(9) + µ8

∫
C9. (2.65)

In this appendix, we use Polchinski’s convention [85]. The gravitational coupling κ10 and
the Dp-brane charge µp are given by

κ2
10 =

1

2
(2π)7α′4, µ2

p = (2π)−2pα−p−1. (2.66)

Varying the total action by C9 gives the equation of motion of the Romans mass M,

∂M

∂x9
= 2κ2

10µ8δ(D8), (2.67)

which implies that the Romans mass jumps by 2κ2
10µ8 when crossing the D8-brane. Similarly,

the derivative of the dilaton jumps when crossing the D8-brane15

∂9Φ
∣∣∣
x9=0+

− ∂9Φ
∣∣∣
x9=0−

=
5

2
µ8κ

2
10e

Φ(0)
√
G99(0). (2.69)

14The action is invariant under the NSNS gauge transformation, where the usual B2-field transformation
δB2 = dΛ1 is accompanied with the transformation of the RR-fields δC1 = −MΛ1 and δC3 = MΛ1 ∧B2.

15The simplest way to derive this relation is to consider the equation of motion of the dilaton in the
Einstein frame GEµν = e−

1
2 ΦGµν ,

∇Eµ ∂µΦ− 5

4
M2e

5
2 Φ =

5

2
µ8κ

2
10(GE99)−

1
2 e

5
4 Φδ(D8). (2.68)



CHAPTER 2. AN INDEX FOR RAY OPERATORS IN 5D En SCFTS 54

Away from the D8-brane, the equations of motion of the dilaton Φ and the metric Gµν ,
with all the other fields setting to zero, are given by

Rµν + 2∇µ∂νΦ−
1

2
Gµν

(
R + 4∇ρ∂ρΦ− 4∂ρΦ∂ρΦ−

1

2
M2e2Φ

)
= 0

R + 4∇µ∂µΦ− 4∂µΦ∂µΦ = 0

(2.70)

Let us consider a domain wall ansatz,

ds2 = Ω2(x9)ηµνdx
µdxν , Φ = Φ(x9). (2.71)

The solution to the equations is given by

Ω(x9) =
2

3
c2(c1 ± c2Mx9)−

1
6 , eΦ(x9) = (c1 ± c2Mx9)−

5
6 , (2.72)

c1 and c2 are constant away from the D8-brane. By the equations (2.67) and (2.69) and
the continuity of the metric and dilaton, c1 and c2 still remain constant when crossing
the D8-brane, and we must take the lower sign in (2.72). By a coordinate transformation

x′9 = 1
M

(c1 − c2Mx9)
2
3 , the solution can be put into the form as (relabel x′9 by x9)

eΦ(x9) = (Mx9)−
5
4 , ds2 = (Mx9)−

1
2

[
−(dx0)2 + (dx1)2 + · · ·+ (dx8)2

]
+ (Mx9)

1
2 (dx9)2.

(2.73)
Now, let us focus on the case of interest: Nf D8-branes coinciding with O8 plane in the

strong coupling limit. The D8/O8 singularity is located at x9 = 0, where the string coupling
diverges. The total RR 9-form charge is m ≡ (8−Nf ), and the Romans mass is given by

M = 2mµ8κ
2
10 =

m

2π
√
α′
. (2.74)

We introduce a D4-brane located at y > 0. The DBI action of the U(1) gauge theory on the
D4-brane worldvolume is given by

SDBI = −µ4

∫
d5x e−Φ

[
− det(G

(5)
ab +Bab + 2πα′fab)

]1/2

. (2.75)

In the static gauge, the induced metric G
(5)
ab is given by

G
(5)
ab = (Mx9)−

1
2

(
ηab + (2πα′)2δAB∂aX

A∂bX
B
)

+ (2πα′)2(Mx9)
1
2∂aϕ∂bϕ, (2.76)

where a, b = 0, 1, · · · , 4 and A,B = 5, · · · , 8. We expand the DBI action

SDBI = −µ4 volD4 −
1

2g2
ym(v)

∫
d5x

[1

2

(
f +

1

2πα′
B2

)
ab

(
f +

1

2πα′
B2

)ab
+ ηab∂aϕ∂bϕ

]
− 1

8π2
√
α′

∫
d5x ηabδAB∂aX

A∂bX
B +O(α3),

(2.77)
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where ∗5 is the Hodge star operator with respect to the 5-dimensional flat metric. The
Yang-Mills coupling gym is determined by vev of the scalar field v = 〈ϕ〉 = x9/2πα′ as

1

g2
ym(v)

= µ4(2πα′)2Mx9 =
mv

4π2
. (2.78)

The Wess-Zumino action on D4-brane worldvolume is given by

SWZ = µ4

[∫
C5 +

∫
(2πα′f +B2) ∧ C3 +

1

2

∫
(2πα′f +B2)2 ∧ C1

]
. (2.79)

There is an additional Chern-Simons term [52]

SCS = −1

6
µ4M(2πα′)3

∫
a ∧ f 2, (2.80)

which is required to maintain gauge invariance under the NSNS gauge transformation,

δB2 = dΛ1, a = − 1

2πα′
Λ1, δC1 = −MΛ1, δC3 = MΛ1 ∧B2, δC5 = −1

2
MΛ1 ∧B2

2 .

(2.81)
In general, the Chern-Simons action on the Dp-brane worldvolume reads

SCS = − 1(
p
2

+ 1
)
!
µpM(2πα′)

p
2

+1

∫
p+1

a ∧ f
p
2 = − 1(

p
2

+ 1
)
!(2π)

p
2

m

∫
p+1

a ∧ f
p
2 . (2.82)

2.9. Appendix: E2 group theory

The case Nf = 1 corresponds to flavor group E2
∼= SU(2)×U(1). In (2.40) we used a relation,

given in (4.10) of [24], to convert the fugacities associated with E2 to fugacities associated
with the SO(2Nf )×U(1)I subgroup that is manifest in the index formula [and we added the
subscript I to distinguish U(1)I from the U(1) factor of E2]. We will now explain the origin
of (2.40). Pick a Cartan subalgebra U(1)′ ⊂ SU(2), and consider a state with U(1)′×U(1)

⊂ E2 charges Q′ and Q̃. With the fugacities defined in (2.40), its contribution to the

index is yQ
′
zQ̃, which can also be written as yQ1

1 qQI , where Q1 is the charge associated with
SO(2Nf ) = SO(2) ∼= U(1) and QI is the instanton charge associated with U(1)I . According
to (2.40), the charges are related by

Q1 = 1
2
Q′ + 7

2
Q̃ , QI = 1

2
Q′ − 1

2
Q̃. (2.83)

These relations have a nice string theory interpretation in terms of the D0-D8/O8 system,
following the analysis of [86, 87, 88, 89]. Consider an O8 plane with Nf = 1 D8-brane, and
separate the D8-brane from the orientifold plane. The W-boson of SU(2) ⊂ SU(2)×U(1)
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∼= E2 can be constructed as an open fundamental string connecting the D8-brane to a D0-
brane that is stuck on the O8-plane. This string has charges QI = Q1 = 1, and since it is
the W-boson of SU(2), it has charge Q′ = 2 and Q̃ = 0, which is consistent with (2.83).
[Our normalization has charge Q′ = ±1 for the fundamental representation 2 of SU(2).] On
the other hand, we can construct an SU(2) neutral state from a D0-brane connected by
8−Nf = 7 strings to the D8-brane. This particle has charges QI = 1, Q1 = −7, Q′ = 0 and

Q̃ = −2, again consistent with (2.83).
Let us now turn to the algebraic description of E2 and its SO(2)×U(1)I subgroup. For

n ≥ 3, the Lie algebra En corresponds to the Dynkin diagram of E8 with simple roots
αn+1, . . . , α8 deleted, referring to the root labeling as in Figure 2.3.16 This definition, how-
ever, is inadequate for n = 2, as E2

∼= SU(2)×U(1) (and not SU(2)×SU(2), as the extension
of the above definition to n = 2 might suggest). Before we proceed to the definition of E2,
let us list for reference the simple weights of E8,

Λ1 = 4α1 + 5α2 + 7α3 + 10α4 + 8α5 + 6α6 + 4α7 + 2α8,

Λ2 = 5α1 + 8α2 + 10α3 + 15α4 + 12α5 + 9α6 + 6α7 + 3α8,

Λ3 = 7α1 + 10α2 + 14α3 + 20α4 + 16α5 + 12α6 + 8α7 + 4α8,

Λ4 = 10α1 + 15α2 + 20α3 + 30α4 + 24α5 + 18α6 + 12α7 + 6α8,

Λ5 = 8α1 + 12α2 + 16α3 + 24α4 + 20α5 + 15α6 + 10α7 + 5α8,

Λ6 = 6α1 + 9α2 + 12α3 + 18α4 + 15α5 + 12α6 + 8α7 + 4α8,

Λ7 = 4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 8α6 + 6α7 + 3α8,

Λ8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

They satisfy (Λi|αj) = δij, where (·|·) is the bilinear form on the root lattice.
The correct definition of our Lie algebra En, valid for 2 ≤ n ≤ 8, is as follows. First,

consider the sublattice Q8−n of the E8 root lattice that is generated by the simple roots
αn+1, . . . , α8. The root spaces of those roots of E8 that are in Q8−n generate an su(9 − n)
subalgebra. Indeed, the roots αn+1, . . . , α8 form a subdiagram of Dynkin type A8−n. The
exponent of this subalgebra is a subgroup SU(9−n)⊂ E8, and En is defined as the commutant
of this subgroup. Note that with this definition, the simple roots of En are not α1, . . . , αn.
For example, for E7, the root spaces of ±α8 generate an su(2) subalgebra that does not
commute with the root space of α7, so α7 cannot be a simple root of E7, as defined. Instead,
we define

α′7 ≡ Λ7 − Λ6 = −2α1 − 3α2 − 4α3 − 6α4 − 5α5 − 4α6 − 2α7 − α8 ,

and the simple roots of E7 can then be taken as α1, . . . , α6, α
′
7. It is easy to verify that their

inner products correspond to the Dynkin diagram of E7, and they all have zero inner product
16For n = 3, 4, the simple roots are relabeled as

E3 : c c c
α1 α2 α3

E4 : c c c c
α1 α2 α3 α4
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with α8. Similarly, for n = 5, 6, we take the simple roots of En ⊂ E8 to be α1, . . . , αn−1,Λn−
Λn−1. For n = 4, we take the simple roots of E4 ⊂ E8 to be α1, α2, α3,Λ4 − Λ3 − Λ2. For
n = 3 we take the simple roots of E3 ⊂ E8 to be α1,Λ3 − Λ1 − Λ2,Λ3 − Λ2.

The case E2 ⊂ E8 requires a more careful treatment. E2 ' SU(2)×U(1)I is defined as the
subgroup that commutes with the SU(7) ⊂ E8 generated by the root spaces of α3, . . . , α8.
Define the root

β ≡ Λ2 − Λ1 = α1 + 3α2 + 3α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8 .

Then ±β are the only roots of E8 that are orthogonal to α3, . . . , α8. The root spaces of β
and −β generate an su(2) subalgebra whose exponent we identify with the SU(2) factor of
E2. The intersection of this su(2) with the Cartan subalgebra of E8 is spanned by β?, which
is the element of the Cartan subalgebra that assigns to a state with weight λ the charge
Q′(λ) ≡ (β|λ). Then, the generator of the U(1) factor of E2

∼= SU(2)×U(1) is γ?, with

γ ≡ 3Λ1 − Λ2 = 7α1 + 7α2 + 11α3 + 15α4 + 12α5 + 9α6 + 6α7 + 3α8 ,

which is the unique (up to multiplication) element of the root lattice that is orthogonal to
α3, . . . , α8 and β.17 Under the subgroup E2×SU(7) ⊂ E8 the representation 248 decomposes
as

248 = (1, 1)0 + (3, 1)0 + (1, 48)0 + (1, 7)4 + (1, 7)−4

+(2, 7)−3 + (2, 7)3 + (1, 35)−2 + (1, 35)2 + (2, 21)1 + (2, 21)−1 .

We now define “fugacities” y and z, so that the contribution of a hypothetical state with E8

weight λ (assumed to be orthogonal to α3, . . . , α8) to the E2
∼= SU(2)×U(1) index will be

y(β|λ)z
1
7

(γ|λ) .
Now, consider the U(1)I×SO(2) ⊂ E2 subgroup. For a state associated to a weight λ of

E8, we can associate U(1)′×U(1) ⊂ SU(2)×U(1) ∼= E2 charges

Q′(λ) = (β|λ) , Q̃(λ) = 1
7
(γ|λ).

Then their SO(2) and U(1)I charges are given by

Q1(λ) = 1
2
Q′(λ) + 7

2
Q̃(λ) = (1

2
β + 1

2
γ|λ) = (Λ1|λ) ,

and
QI(λ) = 1

2
Q′(λ)− 1

2
Q̃(λ) ≡ 1

7
(δ|λ),

where we defined

δ ≡ 7
2
β − 1

2
γ = 7α2 + 5α3 + 10α4 + 8α5 + 6α6 + 4α7 + 2α8,

17γ is not a root because (γ|γ) = 14.
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which is the (unique up to multiplication) weight that is orthogonal to Λ1 and α3, . . . , α8.
As was discovered in [24], the superconformal index for local operators is

ISCI = 1 + (2 +
1

qy1

+ qy1)t2 +O(t3) = 1 +

[
1 +

(
1

y2
+ 1 + y2

)]
t2 +O(t3),

and as we have seen in §2.4, the ray operator index is

Iray = q−2/7

(
1

y2
1

+
q

y1

+ y2
1

)
t+O(t2) =

[
z−3/7

(
y +

1

y

)
+ z4/7

]
t+O(t2),

which both nicely fit into E2
∼= SU(2)×U(1) representations.
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Figure 2.2: The location of the poles on the φ1−φ2 real plane for instanton number k = 4, for
η = (1, 3). The lines are the loci where the argument of a single sinh in the denominator of the
integrand vanishes. Poles are at the intersection of two lines. The solid circles indicate the
poles that are retained by the Jeffrey-Kirwan prescription. (One pole, at φ1 = −M−ε−−2ε+
and φ2 = M+ε+, is outside the frame of the picture.) The hollow circles are possible locations
of non-simple poles, where three lines intersect. (Whether they are simple or non-simple
depends on Imφ1 and Imφ2.)
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Figure 2.3: The Dynkin diagram of E8 and its subdiagram corresponding to SO(14) ⊂ E8.
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Chapter 3

Feynman diagrams and Ω−deformed
M-theory

3.1. Introduction

In [90], Costello and Li developed a beautiful formalism, which prescribes a way to topolog-
ically twist supergravity. Combining with the classical notion of topological twist of super-
symmetric quantum field theory [91, 93], we are now able to explore a topological sector for
both sides of AdS/CFT correspondence. It was further suggested in [94] a systematic method
of turning an Ω-background, which plays an important roles [98, 99, 100, 101, 102, 103] in
studying supersymmetric field theories, in the twisted supergravity.

Topological twist along with Ω-deformation enables us to study a particular protected
sub-sector of a given supersymmetric field theory [3, 104, 105, 6], which is localized not only
in the field configuration space, but also in the spacetime. Interesting dynamics usually
disappear in the way, but as a payoff we can make more rigorous statement on the operator
algebra.

The topological holography [106] is an exact isomorphism between the operator algebras
of gravity and field theory. [94] studied Ω−deformed M-theory and M2-brane inside, and
proved the isomorphism between 5d non-commutative U(K) CS(Chern-Simons theory) [107,
108], which consists of the topological sector of 11d supergravity, and 1d TQM(topological
quantum mechanics), which is obtained from the M2-brane theory: Higgs branch of 3d
N = 4 ADHM gauge theory. The isomorphism was manifested by the mathematical notion,
so called Koszul duality [109].

The important first step of the proof was to impose a BRST-invariance of the 5d U(K)
CS theory coupled with the 1d TQM. 5d CS theory is a renormalizable, and self-consistent
theory [108]. However, in the presence of the topological defect that couples 1d TQM
and 5d CS theory, certain Feynman diagrams turn out to have non-zero BRST variations.
For the combined, interacting theory to be quantum mechanically consistent, the BRST
variations of the Feynman diagrams should combine to give zero. This procedure magically
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reproduces the algebra commutation relations that define 1d TQM operator algebra, Aε1,ε2 .
It is very intriguing that one can extract non-perturbative information in the protected
operator algebra from the perturbative calculation.

In fact, both the algebra of local operators in 5d CS theory and the 1d TQM opera-
tor algebra Aε1,ε2 are deformations of the universal enveloping algebra of the Lie algebra
Diffε2(C)⊗ glK over the ring C[[ε1]]. Deformation theory tells us that the space of deforma-
tions of U(Diffε2(C)⊗ glK) is the second Hochschild cohomology HH2(U(Diffε2(C)⊗ glK)).

Let us elaborate a little more of Hochschild homology. For g an associative algebra, we
define the Hochschild chain complex by Cn(g,M) = g⊗n, where M is a g−module. The
complex is equipped with a boundary operator di with

d0(a1 ⊗ . . .⊗ an) = a1 ⊗ . . .⊗ an
di(a1 ⊗ . . .⊗ an) = a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an
dn(a1 ⊗ . . .⊗ an) = an ⊗ a1 ⊗ . . .⊗ an−1

(3.1)

We define Hochschild homology of g with coefficients in M as (Cn(g,M), D) where

D =
n∑
i=0

(−1)idi (3.2)

Although this Hochschild cohomology is known to be hard to compute, there is still a
clever way of comparing these two deformations [109]: notice that both of the algebras are
defined compatibly for super groups GLK+R|R, so they are actually controlled by elements
in the limit

H2(lim
R

HC∗(U(Diffε2(C)⊗ glK+R|R))) (3.3)

and the limit is well-understood, it turns out that the space of all deformations is essentially
one-dimensional: a free module over C[κ] where κ is the central element 1⊗ IdK . Hence the
algebra of local operators in 5d CS theory and the 1d TQM operator algebra are isomorphic
up to a κ-dependent reparametrization

~ 7→
∞∑
i=1

fi(κ)~i (3.4)

where fi(κ) are polynomials in κ.
Later, in [5] the same algebra with K = 1 was defined using the gauge theory approach,

and a combined system of M2-branes and M5-branes were studied. Especially, [5] interpreted
the degrees of freedom living on M5-branes as forming a bi-module Mε1,ε2 of the M2-brane
operator algebra, and suggested the evidence by going to the mirror Coulomb branch algebra
[110, 111] and using the known Verma module structure of massive supersymmetric vacua
[112, 113]. Appealing to the brane configuration in type IIB frame, they argued a triality in
the M2-brane algebra, which can also be deduced from its embedding in the larger algebra,
affine gl(1) Yangian [114, 115, 116, 117].
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Crucially, [5] noticed U(1) CS should be treated separately from U(K) CS theory with
K > 1, since the algebras differ drastically and the ingredients of Feynman diagram are
different in U(1) CS, due to the non-commutativity. As a result, the operator algebra
isomorphism should be re-assessed.

Our work was motivated by the observation, and we will solve the following problems in
a part of this paper.

• The simplest algebra(Aε1,ε2) commutator, which has ε1 correction.

• Feynman diagrams whose non-trivial BRST variation lead to the simplest algebra
commutator.

Next, we will make a first attempt to derive the bi-module structure from the 5d U(1) CS
theory, where the combined system of the M2-branes and the M5-brane is realized as the 1d
TQM and the β − γ system. Especially, we will answer the following problems.

• The simplest algebra(Aε1,ε2), bi-module(Mε1,ε2) commutator, which has ε1 correction.

• Feynman diagrams whose non-trivial BRST variation lead to the simplest algebra(Aε1,ε2),
bi-module(Mε1,ε2) commutator.

Our work is only a part of a bigger picture. The algebra Aε1,ε2 is a sub-algebra of affine
gl(1) Yangian, and there exists a closed form formula for the most general commutators,
which can be derived from affine gl(1) Yangian. One can try to derive the commutators
from 5d U(1) CS theory Feynman diagram computation.

Going to type IIB frame, the brane configurations map to Y-algebra configuration [118].
Here, the general M2-brane algebra is formed by the co-product of three different M2-brane
algebras related by the triality. M5-brane VOA is the generalized W1+∞ algebra, whereas
our M5-brane VOA is the simplest possible VOA, β − γ system. Hence, we are curious if
our story can be further generalized to the coupled system of the 5d U(1) CS theory and the
generalized W1+∞ algebra.

Lastly, [94] argued that considering N M5 branes and take large N limit, W1+∞ algebra
emerges as an operator algebra on the M5 branes. It would be nice to revisit the argument
using the technique shown in this paper, which originally came from [119].

After reviewing the general concepts in section §3.2, we show the following algebra com-
mutator in §3.3.

[t[2, 1], t[1, 2]]ε1 = ε1ε2t[0, 0] + ε1ε
2
2t[0, 0]t[0, 0] (3.5)

where [•]ε1 is the O(ε1) part of [•], t[m,n] ∈ Aε1,ε2 . The detail of the proof is shown in Ap-
pendix 3.6. The commutation relation was successfully checked by 1-loop Feynman diagram
associated to 5d CS theory and 1d TQM. This is the content of section §3.4. We collected
some intermediate integral computations used in the Feynman diagram in Appendix 3.7.

Next, we show the following algebra-bi-module commutator in §3.3.[
t[2, 1], b[z1]c[z0]

]
ε1

= ε1ε2t[0, 0]b[z0]c[z0] + ε1ε2b[z
0]c[z0] (3.6)
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where b[zm], c[zm] ∈ Mε1,ε2 . The detail of the proof can be found in Appendix 3.6. We
reproduced the commutation relation using the 1-loop Feynman diagram computation in
the 5d CS theory, 1d TQM, and 2d βγ coupled system. This is the content of section
§3.5. We collected some intermediate integral computations used in the Feynman diagram
in Appendix 3.7 and Appendix 3.7.

3.2. Twisted holography via Koszul duality

Twisted holography is the duality between the protected sub-sectors of full supersymmetric
AdS/CFT [120, 121, 122], obtained by topological twist and Ω-background both turned on in
the field theory side and supergravity side. The most glaring aspect of twisted holography1

is an exact isomorphism between operator algebra in both sides, which is manifested by a
rigorous Koszul duality. Moreover, the information of physical observables such as Witten
diagrams in the bulk side that match with correlation functions in the boundary side is fully
captured by OPE algebra in the twisted sector [126].

This section is prepared for a quick review of twisted holography for non-experts. The
idea was introduced in [90] and studied in various examples [94, 109, 127, 106, 5, 128] with
or without Ω-deformation. The reader who is familiar with [94] can skip most of this section,
except for §3.2, §3.2, and §3.2, where we set up the necessary conventions for the rest of this
paper. These subsections can be skipped as well, if the reader is familiar with [5]. Also, see
a complementary review of the formalism in the section 2 of [5].

After defining the notion of twisted supergravity in §3.2, we will focus on a particular
(twisted and Ω−deformed) M-theory background on Rt × C2

NC × Cε1 × Cε2 × Cε3 , where
NC means non-commutative, and εi stands for Ω−background related to U(1) isometry
with a deformation parameter εi in §3.2. N M2 branes extending Rt × Cε1 leads to the
field theory side. As we will explain in §3.2, a bare operator algebra isomorphism between
twisted supergravity and twisted M2-brane worldvolume theory is given by an interaction
Lagrangian between two system. Due to this interaction, a perturbative gauge anomaly
appears in various Feynman diagrams, and a careful cancellation of the anomaly will give
a consistent quantum mechanical coupling between two systems. Strikingly, the anomaly
cancellation condition itself leads to a complete operator algebra isomorphism, by fixing
algebra commutators. This will be described in §3.2. To discuss holography, it is necessary
to include the effect of taking large N limit and the subsequent deformation in the spacetime
geometry. We will illustrate the concepts in §3.2. In §3.2, we will explain how to introduce
M5-brane in the system and describe the role of M5-brane in the gravity and field theory side.
In short, the degree of freedom on M5-brane will form a module of the operator algebra of
M2-brane. Similar to M2-brane case, anomaly cancellation condition for M5-brane uniquely

1A similar line of development was made in [123, 124], using twisted Q-cohomology, where Q is a
particular combination of a supercharge Q and a conformal supercharge S [125]. In the sense of [3], Q-
cohomology is equivalent to QV -cohomology, where QV is the modified scalar super charge in Ω−deformed
theories.
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fixes the structure of the module. Lastly, in section §3.2, we will introduce more general
framework where our work can be embedded using type IIb string theory and suggest some
future directions.

Twisted supergravity

Before discussing the topological twist of supergravity, it would be instructive to recall the
same idea in the context of supersymmetric field theory, and make an analogue from the
field theory example.

Given a supersymmetric field theory, we can make it topological by redefining the global
symmetry M using R-symmetry R.

M → M ′ = M +R (3.7)

As a part of Lorentz symmetry is redefined, supercharges, which were previously spinor(s),
split into a scalar Q, which is nilpotent

Q2 = 0, (3.8)

and a 1-form Qµ. Because of the nilpotency of Q, one can define the notion of Q-cohomology.
Following anti-commutator explains the topological nature of the operators in Q-cohomology–

a translation is Q-exact.
{Q,Qµ} = Pµ (3.9)

To go to the particular Q-cohomology, one needs to turn off all the infinitesimal super-
translation εQ except for the one that parametrizes the particular transformation δQ gener-
ated by Q.

More precisely, if we were to start with a gauge theory, which is quantized with BRST
formalism, the physical observables are defined as BRST cohomology, with respect to some
QBRST . The topological twist modifies QBRST , and the physical observables in the resulting
theory are given by Q′BRST -cohomology.

QBRST → Q′BRST = QBRST +Q (3.10)

As an example, consider 3d N = 4 supersymmetric field theory. The Lorentz symmetry
is SU(2)Lor and R-symmetry is SU(2)H×SU(2)C , where H stands for Higgs and C stands for
Coulomb. There are two ways to re-define the Lorentz symmetry algebra, and we choose to
twist with SU(2)C , as this will be used in the later discussion. In other words, one redefines

M → M ′ = M +RC (3.11)

The resulting scalar supercharge is obtained by identifying two spinor indices, one of Lorentz
symmetry α and one of SU(2)C R-symmetry a

Qα
aȧ → Qa

aȧ (3.12)
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and taking a linear combination.
Q = Q+

11̄
+Q−

12̄ (3.13)

This twist is called Rozansky-Witten twist [129], and will be used in twisting our M2-brane
theory.

One way to start thinking about the topological twist of supergravity is to consider a
brane in the background of the “twisted” supergravity. If one places a brane in a twisted
supergravity background, it is natural to guess that the worldvolume theory of the brane
should also be topologically twisted coherently with the prescribed twisted supergravity
background.

Given the intuition, let us define twisted supergravity, following [90]. In supergravity, the
supersymmetry is a local(gauge) symmetry, a fermionic part of super-diffeomorphism. To
quantize the supergravity, one needs to introduce ghost field for the local symmetry. As su-
persymmetry is a fermionic symmetry, the corresponding ghost field used in the quantization
is a bosonic spinor, q.

One can think the infinitesimal super-translation parameter ε that appears in the global
supersymmetry transformation as a rigid limit of the bosonic ghost q. For instance, in
4d N = 1 holomorphically twisted field theory [130, 131, 132, 133], with Q paired with
ε+, the supersymmetry transformation of the bottom component φ of anti-chiral superfield
Ψ̄ = (φ̄, ψ̄, F̄ ) transforms as

δφ = ε̄ψ̄, δψ̄ = iε+∂̄φ̄+ iε−∂φ̄+ ε̄F̄ (3.14)

As we focus on Q-cohomology, we set ε+ = 1, ε− = ε̄ = 0, then the equations reduce into

δφ̄ = 0, δψ̄ = i∂̄φ̄ (3.15)

In the similar spirit, in the twisted supergravity, we control the twist by giving non-zero
VEV to components of the bosonic ghost q.

Indeed, [90] proved that by turning on non-zero bosonic spinor vacuum expectation value
〈q〉 6= 0 with qαΓαβµ qβ = 0 for a vector gamma matrix, one can obtain the effect of topological
twisting. We can now compare with the field theory case above (3.8): Q2 = 0 with Q 6= 0.
One can think of εQ as a rigid limit of q.

The operator algebra of twisted type IIB supergravity is isomorphic to that of Kodaira-
Spencer theory [134]. The following diagram gives a pictorial definition of the two theories,
which turned out to be isomorphic to each other.
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Figure 3.1: Starting from type IIB string theory, one can obtain same theory by taking two
operations– 1. String field limit, 2. Topological twist– in any order.

Notice that the topological twist in the first column of the picture is the twist applied on
the worldsheet string theory2, whereas that in the second column is the twist on the target
space theory.

Lastly, there are two types of twists available: a topological twist and a holomorphic
twist, and it is possible to turn on the two different types of twists in the two different
directions of the spacetime. The mixed type of twists is called a topological-holomorphic
twist, e.g. [135]. Different from a topological twist, a holomorphic twist makes only the
(anti)holomorphic translation to be Q-exact; after the twist we have Q and Qz such that

{Q,Qz} = Pz (3.16)

Hence, the anti-holomorphic translation is actually physical(not Q-exact), and there ex-
ists non-trivial dynamics arising from this. [90, 94] showed that it is possible to discuss a
holomorphic twist in the supergravity. We will refer a topological twist as A-twist and a
holomorphic twist as B-twist. It is actually important to have a holomorphic direction to
keep the non-trivial dynamics, as we will later see.

Ω-deformed M-theory

Similar to the previous subsection, we will start reviewing the notion of Ω-deformation of
topologically twisted field theory. To define Ω-background, one first needs an isometry,

2We thank Kevin Costello, who pointed out that the arrow from Type IIb string theory to B-model
topological string theory is still mysterious in the following sense. In Ramon-Ramond formalism, as the
super-ghost is in the Ramond sector and it is hard to give it a VEV. In the Green-Schwarz picture surely
it should work better, but there are still problems there, as the world-sheet is necessarily embedded in
space-time whereas in the B model that is not allowed.
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typically U(1), generated by some vector field V on a plane where one wants to turn on
the Ω-background. Ω-deformation is a deformation of topologically twisted field theory and
physical observables are defined with respect to the modified QV cohomology, which satisfies

Q2
V = LV , where QV = Q+ iV µQµ (3.17)

where LV is a conserved charge associated to V , and iV µ is a contraction with the vector
field V µ, reducing the form degree by 1.

As the RHS of (3.17) is non-trivial, QV cohomology only consists of operators, which are
fixed by the action of LV – O such that LVO = 0. Hence, effectively, the theory is defined in
two less dimensions. More generally, one can turn on Ω-background in the n planes, and the
dynamics of the original theory defined on D-dimensions is localized on D− 2n dimensions.

In [94], a prescription for turning Ω-background in twisted 11d supergravity was intro-
duced; we need 3-form field εC, along with U(1) isometry generated by a vector field εV ,
where ε is a constant, measuring the deformation. Similar to the field theory description, in
this background(〈q〉, C 6= 0), the bosonic ghost q squares into the vector field, εV to satisfy
the 11d supergravity equation of motion.

q2 = qα(Γαβ)µqβ = εVµ (3.18)

The Ω-background localizes the supergravity field configuration into the fixed point of the
U(1) isometry. More generally, one can turn on multiple Ωεi-background in the separate
2-planes, which we will denote as Cεi .

The 11d background that we will focus in this paper is

11d SUGRA: Rt × C2
NC × Cε1 × TN1;ε2,ε3 (3.19)

where TN1;ε2,ε3 is Taub-NUT space, which can be thought of as S1
ε2
× R× Cε3 . The twist is

implemented with the bosonic ghost chosen such thatB(holomorphic) twist in C2
NC directions

3 and A(topological) twist in Rt × Cε1 × TN1;ε2,ε3 directions4. The 3-form is

C = V d ∧ dz̄1 ∧ dz̄2 (3.20)

where V d is 1-form, which is a Poincare dual of the vector field V on Cε2 plane.
The statement of twisted holography is the duality between the protected subsector of

M2(M5)-brane and the localized supergravity, due to the Ω-background. We first want to
introduce M2 branes and establish the explicit isomorphism at the level of operator algebras.
Place N M2-branes on

M2-brane: Rt × {·} × Cε1 × {·} (3.21)

3NC stands for Non-Commutative. This will become clear in the type IIa frame.
4As remarked, if one introduces branes, the worldvolume theory inherits the particular twist that is

turned on in the particular direction that the branes extend.
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To set up the stage for the concrete computation, it is convenient to go to type IIa frame
by reducing along an M-theory circle. We pick the M-theory circle as S1

ε2
, which is in the

direction of the vector field V .5

After reducing on S1
ε2

, the Taub-NUT geometry maps into one D6-brane and N M2-branes
map to N D2-branes.

type IIa SUGRA : Rt × C2
NC × Cε1 × R× Cε3

D6-brane : Rt × C2
NC × Cε1

D2-branes : Rt × × Cε1

(3.22)

and 3-form C-field reduces into a B-field, which induces a non-commutativity [z1, z2] = ε2 on
C2
NC .

B = ε2dz̄1 ∧ dz̄2 (3.23)

There are two types of contributions to gravity side: 1. closed strings in type IIa string
theory and 2. open strings on the D6-brane. It was shown in [94] that we can completely
forget about the closed strings, so the open strings from the D6-brane entirely capture gravity
side.

D6-brane worldvolume theory is 7d SYM, and it localizes on 5d non-commutative U(1)
Chern-Simons on Rt × C2

NC due to Ωε1 on Cε1 [136]. The 5d Chern-Simons theory is not
the typical Chern-Simons theory, as it inherits a topological twist in Rt direction and a
holomorphic twist in C2

NC direction, in addition to the non-commutativity. As a result, a
gauge field only has 3 components

A = Atdt+ Az̄1dz̄1 + Az̄2dz̄2 (3.24)

and the action takes the following form.

S =
1

ε1

∫
Rt×C2

NC

dz1dz2

(
A ? dA+

2

3
A ? A ? A

)
(3.25)

The star product ?ε2 is the standard Moyal product induced from the non-commutativity
of C2

NC : [z1, z2] = ε2. The Moyal product between two holomorphic functions f and g is
defined as

f ?ε g = fg + ε
1

2
εij

∂

∂zi
f
∂

∂zj
g + ε2

1

222!
εi1j1εi2j2

(
∂

∂zi1

∂

∂zi2
f

)(
∂

∂zj1

∂

∂zj2
g

)
(3.26)

The gauge transformation Λ ∈ Ω0(R× C2
NC)⊗ gl1 acting on the gauge field A is

A 7→ A+ dΛ + [Λ, A], where [Λ, A] = Λ ?ε2 A− A ?ε2 Λ (3.27)

5For a different purpose, to make contact with Y-algebra system, type IIb frame is better, but we will
not pursue this direction in this paper.
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The field theory side is defined on N D2-branes, which extend on Rt × Cε1 . This is 3d
N = 4 gauge theory with 1 fundamental hypermultiplet and 1 adjoint hypermultiplet. Since
the D2-branes are placed on the A-twisted background, the theory inherits the topological
twist, which is Rozansky-Witten twist. We will work on N = 2 notation, then each of N = 4
hypermultiplet splits into a chiral and an anti-chiral N = 2 multiplet. We denote the scalar
bottom component of the fundamental chiral and anti-chiral multiplet as Ia and Ja, and that
of adjoint multiplets as Xa

b and Y a
b , where a and b are U(N) gauge indices. They satisfy

following basic Poisson bracket:

{Ia, J b} = δba, {Xa
b , Y

c
d } = δadδ

c
b (3.28)

It is known that the Q-cohomology of Rozansky-Witten twisted N = 4 theory consists of
Higgs branch chiral ring, after imposing gauge invariance. The elements of Higgs branch
chiral ring are gauge invariant polynomials of I, J , X, and Y .

IS(XmY n)J, TrS(XmY n) (3.29)

where S[•] means fully symmetrized polynomial of the monomial •.
Upon imposing the F-term relation

[X, Y ] + IJ = ε2δ, (3.30)

one can show two words in (3.29) are equivalent up to a factor of ε2
6, and the physical

observables purely consist of one of them. Let us call them as

t[m,n] =
1

ε1
TrSXmY n (3.32)

Ωε1 quantizes the chiral ring to an algebra and the support of the operator algebra in 3d
N = 4 theory also localizes to the fixed point of the Ωε1 . Therefore, the theory effectively
becomes 1d TQM(Topological Quantum Mechanics) [137, 138, 113].

In summary, two sides of twisted holography are 5d non-commutative Chern-Simons
theory and 1d TQM. Until now, we have not quite taken a large N limit and resulting back-
reaction that will deform the geometry. The large N limit will be crucial for the operator
algebra isomorphism to work and we will illustrate this point in the section §3.2.

Comparing elements of operator algebra

As 5d CS theory has a trivial equation of motion: F = 0, all the observables have positive
ghost numbers. Also, since Rt direction is topological, the fields do not depend on t. As a re-
sult, operator algebra consist of ghosts c(z1, z2) with holomorphic dependence on coordinates

6They are related by following relation:

IS[XmY n]J = ε2TrS[XmY n] (3.31)
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of C2
NC , z1, z2. The elements are then Fourier modes of the ghosts.

c[m,n] = zm1 z
n
2 ∂

m
z1
∂nz2c(0, 0) (3.33)

The non-commutativity in C2
NC planes induces an algebraic structure in the holomorphic

functions on C2
NC defined by the Moyal product.[
za1z

b
2, z

c
1z
d
2

]
= (za1z

b
2) ?ε2 (zc1z

d
2)− (zc1z

d
2) ?ε2 (za1z

b
2) =

∑
m,n

fm,na,b;c,dz
m
1 z

n
2 (3.34)

The operator algebra Aε1,ε2 of 5d CS theory is defined by (3.33) and (3.34). Formally, Aε1,ε2 =
C∗ε1(g), where g = Diffε2C ⊗ gl1, and C∗ε1(g) is a Lie algebra cohomology of g. One can
understand the new factor Diffε2C in the gauge symmetry algebra, from the isomorphism
between the algebra of holomorphic functions on C2

NC and the algebra of differential operators
on Cε2 .

On the other hand, the elements of the algebra of operators in 1d TQM consist of t[m,n].
The defining commutation relations come from the quantization of the Poisson brackets
deformed by Ωε1 : [

Ia, J
b
]

= ε1δ
b
a, [Xa

b , Y
c
d ] = ε1δ

a
dδ

c
b (3.35)

We will write the F-term relation with gauge indices explicit as follows.

X i
kY

k
j −Xk

j Y
i
k + IjJ

i = ε2δ
i
j (3.36)

We will call the algebra defined by t[m,n] and (3.35), (3.36) as ADHM algebra or Aε1,ε2 .
There is a one-to-one correspondence between c[m,n] and t[m,n], and [109] proved an

isomorphism between !Aε1,ε2 = Uε1(g) and Aε1,ε2 for 5d U(K) Chern-Simons theory coupled
with 1d TQM with N > 1, where !Aε1,ε2 is a Koszul dual of an algebra Aε1,ε2

7. The proof
consists of two parts. First, one checks two algebras’ commutation relations match in the
O(ε1) order. Next, one proves the uniqueness of the deformation of the universal enveloping
algebra U(g) by ε1 that ensures all order matching.

One of our goal is to extend the O(ε1) order matching to K = 1. It may seem trivial
compared to higher K, but it turns out that it is actually more complicated. We will give
the proof in §3.4, §3.5. The uniqueness of the deformation applies for all K including K = 1,
so we will not try to spell out the details in this work.

Koszul duality

Let us explain why in the first place we can expect the Koszul duality between 5d and 1d
operator algebra. Further details on Koszul duality can be found in [139, 140, 5, 128]

The 5d theory is defined on Rt × C2
NC , where Rt is topological and C2

NC , and 1d TQM
couples to the 5d theory along Rt. As explained in (3.9), there is a scalar supercharge Q and

7It is known that for Aε1,ε2 = C∗(g), the Koszul dual !Aε1,ε2 is U(g).
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1-form supercharge δ that anti-commute to give a translation operator Pt. We can build a
topological line defect action using topological descent.

Pexp

∫ ∞
−∞

[δ, x(t)] (3.37)

where
x(t) =

∑
m,n

c[m,n]t[m,n] (3.38)

The BRST variation of (3.37) vanishes if x(t) satisfy a Maurer-Cartan equation:

[Q, x] + x2 = 0 (3.39)

and if x ∈ A × !A for some A, the Maurer-Cartan equation is always satisfied. Hence, it is
natural to expect the Koszul duality between Aε1,ε2 and Aε1,ε2 . So, the coupling between the
5d ghosts and gauge invariant polynomials of 1d TQM is given by

Sint =

∫
Rt
t[m,n]c[m,n]dt. (3.40)

Now that we have three types of Lagrangians:

S5d CS + S1d TQM + Sint (3.41)

We need to make sure if the quantum gauge invariance of 5d Chern-Simons theory remains
to be true in the presence of the interaction with 1d TQM. Namely, we need to investigate if
there is non-vanishing gauge anomaly in Feynman diagrams. Along the way, we will derive
the isomorphism between the operator algebras, as a consistency condition for the gauge
anomaly cancellation.

Anomaly cancellation

To give an idea that the cancellation of the gauge anomaly of 5d CS Feynman diagrams
fixes the algebra of operators in 1d TQM that couples to the 5d CS, let us review 5d U(K)
Chern-Simons example shown in [109]. Consider following Feynman diagram.



CHAPTER 3. FEYNMAN DIAGRAMS AND Ω−DEFORMED M-THEORY 73

Figure 3.2: The vertical solid line represents the time axis. Internal wiggly lines stand for
5d gauge field propagators Pi, and the external wiggly lines stand for Fourier components
5d gauge field.

The BRST variation(δA = ∂c) of the amplitude of the above Feynman diagram is non-zero.

ε1εij(∂ziA
a)(∂zjc

b)Kfef caef
d
bf t[0, 0]t[0, 0] (3.42)

where Kab, fabc are a Killing form and a structure constant of u(K), and t[m,n] is an element
of G = U(N), Ĝ = U(K) ADHM algebra.

To have a gauge invariance, we need to cancel the anomaly, and the gauge variation of
the following diagram has exactly factors like εij(∂ziA

a)(∂zjc
b):

Figure 3.3

The BRST variation of the amplitude is

ε1εij(∂ziA
a)(∂zjc

b)Kfef caef
d
bf [t[1, 0], t[0, 1]] (3.43)

Imposing the cancellation of the BRST variation between (3.42) and (3.43), we obtain

[t[1, 0], t[0, 1]] = ε1t[0, 0]t[0, 0] (3.44)
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This is very impressive, since we obtain the ADHM algebra from 5d Chern-Simons theory
Feynman diagrams!

We will see that if K = 1, some ingredients of Feynman diagram change, but we can still
reproduce ADHM algebra with G = U(N), Ĝ = U(1).

Large N limit and a back-reaction of N M2-branes

Although we have not discussed explicitly about taking large N limit, but it was being used
implicitly in establishing the isomorphism between !Aε1,ε2 and Aε1,ε2 .

Here we explain some detail of taking large N limit. First notice that there are homo-
morphisms ιN

′
N : O(T ∗VK,N ′) → O(T ∗VK,N) for all N ′ > N induced by natural embedding

CN ↪→ CN ′ , where
VK,N = glN ⊕ Hom(CK ,CN), (3.45)

so that T ∗VK,N is the linear span of single operators I, J,X, Y , and the algebra O(T ∗VK,N) is
the commutative (classical) algebra generated by these operators (with no relations imposed).
Then we define the admissible sequence of weight 0 as

{fN ∈ O(T ∗VK,N)GLN |ιN ′N (fN ′) = fN}, (3.46)

and for integer r ≥ 0, a sequence {fN} is called admissible of weight r if {N−rfN} is
admissible sequence of weight 0 (e.g. the sequence {N} is admissible of weight 1), and define
O(T ∗VK,•)

GL• to be the linear span of admissible sequences of all possible weights. It’s easy
to see that O(T ∗VK,•)

GL• is an algebra. Next we turn on the quantum deformation which
turn the ordinary commutative product to the Moyal product ?ε1 , and it’s easy to see that
for admissible sequences {fN} and {gN}, {fN ?ε1 gN} is also admissible. In this way we
obtained the quantized algebra Oε1(T ∗VK,•)GL• .

Consider the moment map

µε2 : glN → Oε1(T ∗VK,N), Ej
i 7→ Xk

i Y
j
k −X

j
kY

k
i + IiJ

j − ε2δji , (3.47)

which is GLN -equivaraint. Together with the Moyal product on Oε1(T ∗VK,N), µε2 gives rise
to a GLN -equivaraint map of left Oε1(T ∗VK,N)-modules

µε2 : Oε1(T ∗VK,N)⊗ glN → Oε1(T ∗VK,N). (3.48)

Taking GLN -invariance, we obtain the quantum moment map

µε2 : (Oε1(T ∗VK,N)⊗ glN)GLN → Oε1(T ∗VK,N)GLN . (3.49)

It’s easy to varify that the image of µε2 is a two-sided ideal. Similar to Oε1(T ∗VK,•)GL• , we
can define admissible sequences in (Oε1(T ∗VK,N)⊗glN)GLN and call this space (Oε1(T ∗VK,•)⊗
gl•)

GL• . Quantum moment maps for all N give rise to

µε2 : (Oε1(T ∗VK,•)⊗ gl•)
GL• → Oε1(T ∗VK,•)GL• , (3.50)
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and the image is a two-sided ideal, so we can take the quotient of Oε1(T ∗VK,•)GL• by this
ideal, this is by definition the large-N limit denoted by Oε1(Mε2

K,•).
From the definition above, we can write down a set of generators of Oε1(Mε2

K,•):

{N} and {IαS(XnY m)Jβ} for all integers n,m ≥ 0. (3.51)

Note that Costello also defined a combinatorical algebra Acomb
ε1,ε2

in section 10 of [109], which
depends on K but not on N . This is related to Oε1(Mε2

K,•) in the sense that generators of

Acomb
ε1,ε2

are

{N} and { 1

ε1
IαS(XnY m)Jβ} for all integers n,m ≥ 0, (3.52)

when ε1 6= 0. In the notation of [109] they corresponds to

D(∅) and Sym(D(α ⇓, ↑n, ↓m, β ⇑)) for all integers n,m ≥ 0, (3.53)

respectively.
The general philosophy of AdS/CFT [120] teaches us that the back-reaction of N M2-

branes will deform the spacetime geometry. In our case, since the closed strings completely
decouple from the analysis, the back-reaction is only encoded in the interaction related to the
open strings. More precisely, the back-reaction is already encoded in the 5d-1d interaction
Lagrangian (3.40), a part of which we reproduce below.

Sback =

∫
Rt
t[0, 0]c[0, 0]dt. (3.54)

Here, we can explicitly see N in t[0, 0], as

t[0, 0] = IJ/ε1 = ε2Trδ
i
j/ε1 = N

ε2
ε1

(3.55)

where in the second equality, we used the F-term relation.
After taking large N limit, N becomes an element of the algebra Aε1,ε2 , which is coupled

to the zeroth Fourier mode of the 5d ghost, c[0, 0].

M5-brane in Ω−deformed M-theory

We want to include one M5(D4)-brane in the story, and review the role played by the new
element(the bi-module from M5(D4)-brane) in the boundary and the bulk.

0 1 2 3 4 5 6 7 8 9 10

Geometry Rt Cε1 C2
NC Cε3 R S1

ε2

M2(D2) × × ×
M5 × × × × × ×
D4 × × × × ×

Table 3.1: M2, M5-brane
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In the boundary perspective, it intersects with the M2(D2)-brane with two directions
and supports 2d N = (2, 2) supersymmetric field theory with two chiral superfields, whose
bottom components are ϕ, ϕ̃, arising from D2 −D4 strings. This 2d theory interacts with
the 3d N = 4 ADHM theory with a superpotential

W = ϕ̃Xϕ (3.56)

where X is a scalar component of the adjoint hypermultiplet of the 3d theory.

Figure 3.4: 3d N = 4 ADHM quiver gauge theory with G = U(N), F = U(1), decorated
with 2d N = (2, 2) field theory. X, Y are scalars of adjoint hypermultipet, and I, J are
scalars of (anti)fundamental hypermultiplet. The triangle node encodes the 2d theory. ϕ
and ϕ̃ are 2d scalars. In type IIA language, the circle, square, and triangle node correspond
to D2, D6, D4 branes, respectively.

A naive set of gauge invariant operators living on the 2d intersection are

IXmY nϕ̃, ϕXmY nJ, ϕXmY nϕ̃ (3.57)

The superpotential reduces [112, 5] the above set into

Mε1,ε2 = {b[zn] = IY nϕ̃, c[zn] = ϕY nJ} (3.58)

The set of 2d observables Mε1,ε2 forms a bi-module of the ADHM algebra Aε1,ε2 .
The difference between left and right actions of the algebra A on Mε1,ε2 is encoded in

the form of a commutator:

[a,m] = m′, where a ∈ A, m,m′ ∈Mε1,ε2 (3.59)
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To verify (3.59), we need to establish the commutation relations between the set of letters
{ϕ, ϕ̃} and {X, Y, I, J}. Those are given by8

IP (ϕ, ϕ̃) = P (ϕ, ϕ̃)I

JP (ϕ, ϕ̃) = P (ϕ, ϕ̃)J

X i
jP (ϕ, ϕ̃) = P (ϕ, ϕ̃)X i

j

Y i
j P (ϕ, ϕ̃) = P (ϕ, ϕ̃)(Y i

j + ϕ̃iϕj)

X i
jϕiP (ϕ, ϕ̃) = −ε1∂ϕ̃jP (ϕ, ϕ̃)

X i
jϕ̃

jP (ϕ, ϕ̃) = −ε1∂ϕiP (ϕ, ϕ̃)

(3.60)

Again, the non-trivial commutation relations in the last three lines originates from the effect
of the particular superpotential W .

Ωε1 localizes 2d N = (2, 2) theory on a point, which is the origin of Rt.

Figure 3.5: Left figure represents a coupled system of 3d N = 4 ADHM theory(the cylinder)
and 2d N = (2, 2) theory(the middle disk in the cylinder) from D2 branes and a D4 brane.
Ωε1 localizes the system to 1d+ 0d system.

Hence, the resulting system is 1d ADHM algebra Aε1,ε2 and 0d bi-module Mε1,ε2 of the
algebra.

To study the bulk perspective, we need to study what degree of freedoms that M5-brane
support in the 5d spacetime Rt × C2

NC and how the M5-brane interacts with 5d Chern-
Simons theory. 5d CS theory is defined in the context of type IIa, and M5-brane is mapped
to a D4-brane. The local degree of freedom comes from D4-D6 strings, which are placed
on {·} × C ∈ Rt × C2

NC . These 2d degrees of freedom are actually coming from 4d N = 2
hypermultiplet, as the true intersection between D4 and D6 is C × Cε1 . The Ωε1 reduces
the 4d N = 2 hypermultiplet into a β − γ system [3]. Hence, we arrive at β − γ VOA on
C ⊂ C2

NC .

8For the derivation, we refer the reader to [112, 5].
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0 1 2 3 4 5 6 7 8 9

Geometry Rt Cε1 C2
NC Cε3 Rε2

1d TQM ×
2d βγ × ×
5d CS × × × × ×

Table 3.2: Bulk perspective

The β − γ system minimally couples to 5d Chern-Simons theory via∫
C
β(∂̄ + A?)γ (3.61)

The observables to be compared with those of field theory side: b[zn] and c[zn] can be
naturally compared with the modes of β and γ: ∂nz β, ∂nz γ, and the Koszul duality manifests
itself by the coupling between two types of observables:∫

{0}
∂k1z2 βγ · b[z

k1 ] +

∫
{0}
∂k2z2 γ · c[z

k2 ] (3.62)

where z = z2, and the integral on a point is merely for a formal presentation.
The following figure depicts the entire bulk and boundary system including the line and

the surface defect, and describes how all the ingredients are coupled.

Figure 3.6: 5d Chern-Simons(Rt × C2
NC), 1d generalized Wilson line defect(Rt), and 2d

surface defect(C ⊂ C2
NC).

As explained in section §3.2, we need to make sure if the introduction of the 2d system is
quantum mechanically consistent, or anomaly free. Imposing the anomaly cancellation con-
dition of 5d, 2d, 1d coupled system, we should be able to derive the bi-module commutation
relations defined in the field theory side. This is the content of §3.5.
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The most general configuration in type IIb frame

The system we are considering in this work is the simplest configuration belong to the more
general framework [5]. We will briefly sketch it; however, we will not elaborate more on this
in the later sections. This can be seen as some possible future directions, related to our
remark in the introduction.

We can introduce more M2i-branes on Rt ×Cεi and M5I-branes on C×Cj ×Ck, where
i ∈ {1, 2, 3}, (j, k) ∈ {(1, 2), (2, 3), (3, 1)}, and I = {1, 2, 3}\{j, k}. Using the M-theory
/ type IIB duality, we can map the most general configuration to “GL-twisted type IIB”
theory [141], where each M2-brane maps to (1, 0), (0, 1), (1, 1) 1-brane, respectively, and each
M5-brane maps to D3-brane whose boundary is provided by (1, 0), (0, 1), (1, 1) 5-branes.

At the corner of the tri-valent vertex, so-called Y-algebra [118], which comes form D3-
brane boundary degree of freedom [142, 143], lives. This VOA(Vertex Operator Algebra)
is the most general version of our toy model βγ system, and is labeled by three integers
N1, N2, N3, each of which is the number of D3-branes on three corners of the trivalent graph.
So, in principle, one can extend our analysis related to the M5-brane into Y-algebra VOA.
The Koszul dual object of the the VOA was called as universal bi-module BN1,N2,N3

ε1,ε2
in [5].

Moreover, our ADHM algebra from M21-brane has its triality image at M22-brane and
M23-brane. It was proposed in [5] that there is a co-product structure in M2i-brane algebras
in the Coulomb branch algebra language9. Hence, one can generalize our analysis related to
the M2-brane into the most general algebra, obtained by fusion of three M2i-brane algebra.
This was called as universal algebra An1,n2,n3

ε1,ε2
in [5].

3.3. M2-brane algebra and M5-brane module

In this section, we will provide a representative commutation relation for the algebra Aε1,ε2
[a, a′] = a0 + ε1a1 + ε21a2 + . . . , where a, a′, ai ∈ Aε1,ε2 (3.63)

and a representative commutation relation for the algebra Aε1,ε2 and the bi-module Mε1,ε2

for Aε1,ε2 .

[a,m] = m0 + ε1m1 + ε21m2 + . . . , where a ∈ Aε1,ε2 , m,mi ∈Mε1,ε2 (3.64)

We first recall the notation for a typical element of Aε1,ε2 and Mε1,ε2 :

t[m,n] =
1

ε1
TrS(XmY n) =

1

ε1ε2
IS(XmY n)J ∈ Aε1,ε2

b[zm] =
1

ε1
IY mϕ̃ ∈Mε1,ε2

c[zn] =
1

ε1
ϕY nJ ∈Mε1,ε2

(3.65)

9It is equally possible to describe the M2-brane algebra in terms of Coulomb branch algebra, as the
ADHM theory is a self-mirror in the sense of 3d mirror symmetry [144, 145].
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For the convenience of later discussions, we also introduce the notation:

T [m,n] =
ε2
ε1
TrS(XmY n) =

1

ε1
IS(XmY n)J ∈ Aε1,ε2 (3.66)

Our final goal is to reproduce the Aε1,ε2 algebra from the anomaly cancellation of 1-loop
Feynman diagrams in 5d Chern-Simons theory. So, it is important to have commutation
relations that yield O(ε1) term in the right hand side, where ε1 is a loop counting parameter
in 5d CS theory.

M2-brane algebra

Since we have not provided a concrete calculation until now, let us give a simple computation
to give an idea of ADHM algebra and its bi-module. It is useful to recall G = U(N),
Ĝ = U(K) ADHM algebra, which serves as a practice example, and at the same time as an
example that explains the non-triviality of G = U(N), Ĝ = U(1) ADHM algebra, compared
to K > 1 cases.

It was shown in [109] that following commutation holds for G = U(N), Ĝ = U(K)
ADHM algebra.

[t[1, 0], t[0, 1]] = ε1t[0, 0]t[0, 0] or [IXJ, IY J ] = ε1(IJ)(IJ) (3.67)

This does not work for Ĝ = U(1). It is instructive to see why.

[TrX, TrY ] = [X i
i , Y

j
j ] = δijδ

j
i ε1 = δijε1

= Nε1
(3.68)

Multiplying both sides by ε22/ε
2
1, we can convert it into T [m,n] basis:

[T [1, 0], T [0, 1]] = ε2T [0, 0] (3.69)

The RHS of (3.69) is different from (3.67) crucially in its dependence on ε1. The RHS of
(3.69) is O(ε01), but that of (3.67) is O(ε1). While it was sufficient to consider this simple
commutator to see the ε1 deformation of the algebra for Ĝ = U(K) with K > 1, we need to
consider a more complicated commutator to see O(ε1) correction in the RHS.

With the help of the computer algebra, we could identify the simplest non-trivial pairs
are (t[3, 0], t[0, 3]), (t[2, 1], t[1, 2]).

[t[3, 0], t[0, 3]] = 9t[2, 2] +
3

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

)
[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

) (3.70)

where
σ2 = ε21 + ε22 + ε1ε2, σ3 = −ε1ε2(ε1 + ε2) (3.71)
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We gave a proof for [t[3, 0], t[0, 3]] in Appendix §3.6.
To compare the commutation relation to that from 5d Chern-Simons calculation, we

need to make sure if the parameters of ADHM algebra Aε1,ε2 are the same as those in 5d CS
theory. From [109], the correct parameter dictionary10 is

(ε1)ADHM = (ε1)CS,

(
ε2 +

1

2
ε1

)
ADHM

= (ε2)CS (3.72)

Hence, the commutation relation that we are supposed to match from the 5d computation
is

[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

((
ε22 +

3

4
ε21
)
t[0, 0] +

(
ε1ε

2
2 −

ε31
4

)
t[0, 0]t[0, 0]

)
(3.73)

There is one term in the RHS of (3.73) that is in O(ε1) order:

[t[2, 1], t[1, 2]] = O(ε01)− 1

2
ε1ε

2
2t[0, 0]t[0, 0] +O(ε21) (3.74)

We will try to recover the O(ε1) term from 5d Feynman diagram calculation11 in section
§3.4; the general argument that gauge anomaly cancelation leads to the Koszul dual algebra
commutation relation is given in §3.2.

M5-brane module

We will use the commutation relations (3.35), (3.36), (3.60) to compute the commutators
between a ∈ Aε1,ε2 and m ∈ Mε1,ε2 , which are defined in (3.32), (3.58). When one tries to
compute some commutators, one immediately notices some normal ordering ambiguity in a
general module element m, which can be seen in following example.

[IXJ, (Iϕ̃)(ϕJ)] =
[
IiX

i
jJ

j, Iaϕ̃
aϕbJ

b
]

(3.75)

Assuming that the order of letters is consistent with the order of fields in the real line Rt,
it is obvious that we need to place ϕ̃aϕb together, as they are defined at a point {0} ∈ Rt

12.
However, it is ambiguous whether we put Ia, J

b in the right or left of ϕ̃aϕb, as Ia, J
b are

living on Rt. We will try to fix this ambiguity to prepare a concrete calculation.
Considering following normal ordering when writing a module element (IY ϕ)(ϕJ) will

be enough to fix the ambiguity.
|ϕ̃jϕk|IiJkY i

j (3.76)

10We thank Davide Gaiotto, who pointed out this subtlety.
11The basis used in the Feyman diagram computation is T [m,n], not t[m,n]. However, the change of

basis does not affect any computation because the O(ε1) term in (3.74) is quadratic in t.
12Recall that ϕ, ϕ̃ are chiral multiplet scalars that are localized at the interface(between the line and the

surface). After Ωε1 deformation, the interface localizes to a point. Hence, ϕ, ϕ̃ are localized to be at a point
on the line.
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We simply choose other letters like X, Y, I, J to be placed on the right side of ϕ and ϕ̃.
Still, there is an ordering ambiguity. For instance between two words:

|ϕ̃ϕ|IJY vs |ϕ̃ϕ|JIY (3.77)

We simply choose an alphabetical order to arrange letters. In other words, we use the
commutation relations until the letters in the word has a alphabetical order. When the word
has an alphabetical order, we contract the gauge indices to form a single-trace word, and
omit the gauge indices. For instance,

(ϕ̃ϕ) :=|ϕ̃jϕj|
(IY ϕ̃)(ϕJ) :=|ϕ̃jϕl|IkJ lY k

j

(Iϕ̃)(ϕJ)(IJ) :=|ϕ̃jϕk|IjJkIiJ i
(3.78)

As a consequence, some more steps are needed for the following:

|ϕ̃jϕk|IiIjJkJ i (3.79)

That is, we need to commute Ii through Jk to contract with J i. While doing this, we
necessarily use [Ii, J

k] = ε1δ
k
i + JkIi, which produces two terms.

Having fixed the ordering ambiguity, there is a few things to keep in mind additionally:

• We use F-term relation and the basic commutation relation between X and Y in maxi-
mum times to get rid of X’s in the word, since the module only consists of ϕ, ϕ̃, I, J , Y .

• To use F-term relation, we first need to pull the target XY(or YX) pair to the right
end, not to ruin the gauge invariance, and pull it back to the original position in the
word.

• To use the superpotential relations(Xϕ = ε1∂ϕ̃ or Xϕ̃ = ε1∂ϕ), we need to bring X
right next to ϕ or ϕ̃.

Given the prescription, we would like to find a ∈ Aε1,ε2 and m ∈ Mε1,ε2 such that the
value of [a,m] contains O(ε1) terms. To illustrate the prescription, let us consider following
simple example, which will not produce O(ε1) term.

Example: [IXJ, (IY ϕ̃)(ϕJ)]

It is much clear and convenient to use closed word version for the algebra element. We
will recover the open word at the end by simply multiplying ε2 on the closed words.

[TrX, (IY ϕ̃)(ϕJ)] = (X) · (IY ϕ̃)(ϕJ)− (IY ϕ̃)(ϕJ) · (X) (3.80)
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Compute the first term:

X0
0 |ϕ̃bϕc|IaY a

b J
c =|ϕ̃bϕ|Ia(ε1δab + Y a

b X
0
0 )J c

= ε1|ϕ̃bϕc|IbJ c + (IY ϕ̃)(ϕJ) · (X)
(3.81)

So,
[TrX, (IY ϕ̃)(ϕJ)] = ε1|ϕ̃bϕc|IbJ c

= ε1(Iϕ̃)(ϕJ)
(3.82)

After normalization, by multiplying ε2
ε31

both sides, we get

[T [1, 0], b[z]c[1]] = ε2b[1]c[1] (3.83)

There is no O(ε1) correction. So, we need to work harder.
The first bi-module commutator that has an ε1 correction with some non-trivial depen-

dence on ε2 is [TrS(X2Y ), (IY ϕ̃)(ϕJ)]. After properly normalizing it, we have

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(3.84)

Here, we used the re-scaled basis T [m,n] for Aε1,ε2 . This is a better choice to be coherent
with the form of the bi-module elements, since b[zn] = IY nϕ̃ and c[zn] = ϕY nJ explicitly
depend on I and J . 13We have shown the proof in Appendix §3.6.

3.4. Perturbative calculations in 5d U(1) CS theory

coupled to 1d QM

In this section, we will provide a derivation of the G = U(N), Ĝ = U(1) ADHM algebra
Aε1,ε2 using the perturbative calculation in 5d U(1) CS. We will see the result from the
perturbative calculation matches with the expectation (3.74). The strategy, which we will
spell out in detail in this section, is to compute the O(ε1

1) order gauge anomaly of various

13Similar to the algebra case, there might be a shift in parameters ε1 and ε2 in 5d CS side; here, we
simply assumed that there is no shift: (ε1)5d = (ε1)1d−2d, (ε2)5d = (ε2)1d−2d. If there were a shift in the ε2
dictionary, the tree level term may be a potential problem.
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Feynman diagrams in the presence of the line defect from M2 brane(R1×{0} ⊂ R1×C2
NC).

Imposing a cancellation of the anomaly for the 5d CS theory uniquely fixes the algebra
commutation relations.

Purely working in the weakly coupled 5d CS theory, we will derive the representative
commutation relations of the ADHM algebra (3.74):

• Algebra commutation relation

[t[2, 1], t[1, 2]] = . . .+ ε1ε
2
2t[0, 0]t[0, 0] + . . . (3.85)

where t[n,m] is a basis element of Aε1,ε2 .

As we commented in §3.3, the algebra basis used in the Feynman diagram computation is
T [m,n], which is related to t[m,n] by rescaling with ε2. The effect of the change of basis is
trivial in (3.85), so we will interchangeably use t[m,n] and T [m,n] without loss of generality.

Ingredients of Feynman diagrams

To set-up the Feynman diagram computations, we recall the 5d U(1) Chern-Simons theory
action on Rt × C2

NC .

S =
1

ε1

∫
Rt×C2

NC

dz1dz2

(
A ?ε2 dA+

2

3
A ?ε2 A ?ε2 A

)
(3.86)

with |ε1| �|ε2| � 1. In components, the 5d gauge field A can be written as

A = Atdt+ Az̄1dz̄1 + Az̄2dz̄2 (3.87)

with all the components are smooth holomorphic functions on R1 × C2
NC .

Now, we want to collect all the ingredients of the Feynman diagram computation. It is
convenient to rewrite (3.86) as

S =
1

ε1

∫
R1×C2

NC

dz1dz2

(
AdA+

2

3
A(A ?ε2 A)

)
(3.88)

(3.88) is equivalent to (3.86) up to a total derivative. From the kinetic term of the Lagrangian,
we can read off the following information:

• 5d gauge field propagator P is a solution of

dz1 ∧ dz2 ∧ dP = δt=z1=z2=0. (3.89)

That is,

P (v1, v2) = 〈A(v1)A(v2)〉 =
z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12

d5
12

(3.90)

where

vi = (ti, zi, wi), dij =
√
t2ij+|zij|2+|wij|2, tij = ti − tj (3.91)
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From the three point coupling in the Lagrangian, we can extract 3-point vertex. This
is not immediate, as the theory is defined on non-commutative background. Different from
U(N) CS, where the leading contribution of the 3-point vertex was AAA, the leading contri-
bution of the 3-point coupling of the U(1) gauge bosons starts from O(ε2)A∂z1A∂z2A. The
reason is following:∫

dz ∧ dw ∧ A ∧ (A ?ε2 A)

=

∫
A ∧ ((Atdt+ Az̄dz̄ + Aw̄dw̄) ? (Atdt+ Az̄dz̄ + Aw̄dw̄))

=

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄ (At ? Az̄ − Az̄ ? At) + . . .]

=

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄ (0 + 2ε2 (∂zAt∂wAz̄ − ∂wAt∂zAz̄)) + . . .]

= 2ε2

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄(∂zAt∂wAz̄ − ∂wAt∂zAz̄)] +O(ε22)

(3.92)

Note that for U(N) case, SU(N) Lie algebra factors attached to each A prevents the O(ε02)
term to vanish. Still, U(1) ⊂ U(N) part of A contributes as O(ε2), but it can be ignored,
since we take ε2 � 1.

Hence, in U(1) CS, the 3-point A∂zA∂wA coupling contributes as

• Three-point vertex I3pt:
I3pt = ε2dz ∧ dw (3.93)

Now, we are ready to introduce the line defect into the theory and study how it couples
to 5d gauge fields. Classically, t[n1, n2] couples to the mode of 5d gauge field by∫

R
t[n1, n2]∂n1

z1
∂n2
z2
Adt (3.94)

The last ingredient of the bulk Feynman diagram computation comes from the interaction
(3.94).

• One-point vertex IA1pt:

IA1pt =

{
t[n1, n2]δt,z1,z2 if ∂n1

z1
∂n2
z2
A is a part of an internal propagator

t[n1, n2]∂n1
z1
∂n2
z2
A if ∂n1

z1
∂n2
z2
A is an external leg

(3.95)

Lastly, the loop counting parameter is ε1. Each of the propagator is proportional to
ε1 and the internal vertex is proportional to ε−1

1 . Hence, 0-loop order(O(ε1
0)) Feynman

diagrams may contain the same number of internal propagators and internal vertices and 1-
loop order(O(ε1)) diagrams may contain one more internal propagators than internal vertices.
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Until now, we have collected all the components of the 5d perturbative computation
(3.90), (3.93), (3.94), and (3.95). With these, let us see what Feynman diagrams have non-
zero BRST variations and how the cancelation of BRST variations of different diagrams
leads to the ADHM algebra Aε1,ε2 .

Feynman diagram

We will show that the following Feynman diagram has a non-vanishing amplitude and a
non-vanishing gauge anomaly consequently, under the BRST variation:

QBRSTA = ∂c (3.96)

Figure 3.7: The vertical solid line represents the time axis, where 1d topological defect is
supported. Internal wiggly lines stand for 5d gauge field propagators Pi, and the external
wiggly lines stand for 5d gauge field A.

We will follow the approach shown in [119]. We first integrate over the first vertex (P1 ∂
2
z∂wA P2)

and then integrate over the second vertex(P2 ∂z∂
2
wA P3).

First vertex(P1 ∂
2
z∂wA P2)

First, we focus on computing the integral over the first vertex:

ε1ε
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z2
1w1∂

2
z1
∂w1A) (3.97)

Note that ∂z1 and ∂w1 comes from the three point coupling at v1:

ε2A ∧ ∂z1A ∧ ∂w1A (3.98)
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And ∂z2 comes from the 3-pt coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (3.99)

We will consider ∂w2 later when we treat the second vertex.
The factor z2

1w1∂
2
z1
∂w1A is for the external leg attached to v1, which is c[2, 1]. Basically,

this is an ansatz, and we can start without fixing m,n in c[m,n]. However, we will see that
the integral converges to a finite value only with this particular choice of (m,n). For a simple
presentation, we will drop ∂2

z1
∂w1A, and recover it later.

After some manipulation, which we defer to Lemma 1. in Appendix 3.7, (3.97) becomes

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d5
01d

9
12

(3.100)

This is the crucial step that shows the necessity of choosing c[m,n] to be c[2, 1]. Otherwise,
the numerator of (3.100) would have holomorphic or anti-holomorphic dependence on z1 or
w1, and this makes the z1, w1 integral to vanish.

The integral can be further simplified by using the typical Feynman integral technique,
which can be found in Lemma 2. in Appendix 3.7. We are left with

z̄2(w̄2dt2 − t2dw̄2)

(
c1

d5
02

+
c2w

2
2

d7
02

+
c3z

2
2

d7
02

+
c4z

2
2w

2
2

d9
02

)
(3.101)

with ci being a constant. Note that all the terms in the parenthesis has a same order of
divergence. So, it suffices to focus on the first term to check the convergence of the full
integral(we still need to do v2 integral below.)

We will explicitly show the calculation for the first term, and just present the result for
the second, third and fourth term in (3.192). They are all non-zero and finite. We will
denote the first term as P , which is 1-form.

Second vertex(P ∂2
z1
∂z2A P3)

Now, let us do the integral over the second vertex(v2). The remaining things are organized
into ∫

v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A) (3.102)

where we dropped forms related to v3, as we do not integrate over it. ∂w2 comes from the
3-pt coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (3.103)

The factor z2w
2
2∂z2∂

2
w2
A is for the external leg attached to v2, which corresponds to c[1, 2].

Again, this is an ansatz. We will see that only this integral converges and does not vanish
below. We will drop ∂z2∂

2
w2
A and recover it later.
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The integral (3.102) is simplified to∫
v2

−|z2|2|w2|4

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2 (3.104)

The intermediate steps can be found in Lemma 3 in Appendix 3.7. We see that it was
necessary to choose c[m,n] to be c[1, 2]. Otherwise, the numerator of (3.104) would contain
holomorphic or anti-holomorphic dependence on z2 or w2, and this makes the z2 and w2

integrals to vanish.
Now, it remains to evaluate the delta function at the third vertex, and use Feynman

technique to evaluate the integral. By Lemma 4 in Appendix 3.7, we are left with

(const)ε1ε
2
2t[0, 0]t[0, 0]∂2

z1
∂z2A1∂

1
z1
∂2
z2
A2 (3.105)

The BRST variation of the amplitude is

(const)ε1ε
2
2t[0, 0]t[0, 0]∂2

z1
∂z2A1∂

1
z1
∂2
z2
c2 (3.106)

This indicates that the theory is quantum mechanically inconsistent, as it has a Feynman
diagram that has non-zero BRST variation. However, as long as there is another diagram
whose BRST variation is proportional to the same factors

ε1ε
2
2t[0, 0]t[0, 0]∂2

z1
∂z2A1∂

1
z1
∂2
z2
c2, (3.107)

we can cancel the anomaly.
Hence, imposing BRST invariance of the sum of Feynman diagrams, we bootstrap the

possible 1d TQM that can couple to 5d U(1) CS.
An obvious choice is the tree level diagrams where (∂z1A)(∂z2A) appears explicitly:

Figure 3.8: There is no internal propagators, but just external ghosts for 5d gauge fields,
which directly interact with 1d QM. The minus sign in the middle literally means that we
take a difference between two amplitudes. In the left diagram t[1, 2] vertex is located at
t = 0 and t[2, 1] is at t = ε. In the right diagram, t[1, 2] is at t = −ε and t[2, 1] at t = 0.
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The amplitude of the tree level diagrams can be obtained without the above complicated
calculation.

[t[2, 1], t[1, 2]] ∂2
z1
∂z2A1∂

1
z1
∂2
z2
A2 (3.108)

The BRST variation of the amplitude is proportional to

[t[2, 1], t[1, 2]] ∂2
z1
∂z2A1∂

1
z1
∂2
z2
c2 (3.109)

By equating (3.106) and (3.109), we get

[t[2, 1], t[1, 2]] = ε1ε
2
2t[0, 0]t[0, 0] + . . . (3.110)

So, we have reproduced the O(ε1) part of the ADHM algebra Aε1,ε2 commutation relation
from the Feynman diagram computation:

[t[2, 1], t[1, 2]]ε1 = ε1ε
2
2t[0, 0]t[0, 0] (3.111)

3.5. Perturbative calculations in 5d U(1) CS theory

coupled to 2d βγ

In this section, we will provide a bulk derivation of the ADHM algebra Aε1,ε2 action on the
bi-module Mε1,ε2 of the ADHM algebra Aε1,ε2 using 5d Chern-Simons theory. The strategy
is similar to that of the previous section. We will compute the O(ε1

1) order gauge anomaly
of various Feynman diagrams in the presence of the line defect from M2 brane(R1 × {0} ⊂
R1×C2

NC), and at the same time the surface defect from M5 brane on ({0}×C ⊂ R1×C2
NC).

Imposing a cancellation of the anomaly for the 5d gauge theory uniquely fixes the algebra
action on the bi-module.

We will confirm the representative commutation relation between ADHM algebra and its
bi-module (3.112) using the Feynman diagram calculation in 5d Chern-Simons, 1d topological
line defect, and 2d βγ coupled system.

• The algebra and the bi-module commutation relation[
t[2, 1], b[z1]c[z0]

]
|ε1 = ε1ε2 t[0, 0]c[z0]b[z0] + ε1ε2 c[z

0]b[z0] (3.112)

where c[zn] and b[zm] are elements of the 0d bi-module.

Ingredients of Feynman diagrams

The generators of the 0d bi-module b[zn], c[zm] couple to the mode of β, γ through∫
{0}
∂k1z2 βγ · b[z

k1 ] +

∫
{0}
∂k2z2 γ · c[z

k2 ] (3.113)
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where z = z2. The coupling is defined at a point, so the integral is only used for a formal
presentation.

From the coupling, we learn another ingredient of the 5d-2d Feynman diagram compu-
tation:

• One-point vertices from (3.113):

Iβ1pt =

{
b[zk]δz2 if ∂kz2β is a part of an internal propagator

b[zk]∂kz2β if ∂kz2β is an external leg
,

Iγ1pt =

{
c[zk]δz2 if ∂kz2γ is a part of an internal propagator

c[zk]∂kz2γ if ∂kz2γ is an external leg

(3.114)

In the case of multiple β, γ internal propagators flowing out, we prescribe to keep only
one δz2 function.

The βγ−system also couples to 5d Chern-Simons theory in a canonical way:

1

ε1

∫
β(∂z̄2 − Az̄2?ε2)γ (3.115)

from which we read off the last ingredients of the perturbative computation:

• The βγ propagator Pβγ = 〈βγ〉 is a solution of

dz2 ∧ dPβγ = δz2=0 (3.116)

That is,

Pβγ = 〈βγ〉 ∼ 1

z2
(3.117)

• The normalized three-point(β,A5d, γ) vertex :

IβAγ3pt = 1 (3.118)

Note that we are taking the lowest order vertex in the Moyal product expansion of (3.115),
and normalize the coefficient to 1, for simplicity, in the following computation. Each βγ
propagator contributes ε1, and each βAγ vertex contributes ε1

−1.
We remind the reader the universal bi-module Bε1,ε2 , which we introduced in section §3.2,

can couple to general Vertex Algebras at corner in the presence of N1, N2, N3 M5-branes
wrapping Cε1 × Cε2 , Cε2 × Cε3 , Cε1 × Cε3 , respectively. In this subsection, we demonstrate
the simplest example, a single M5-brane wrapping Cε1 × Cε2 , where Mε1,ε2(spanned by
b[zn1 ]c[zn2 ]) couples to a βγ system. The analysis can be straightforwardly extended to
bc-ghost VOA.



CHAPTER 3. FEYNMAN DIAGRAMS AND Ω−DEFORMED M-THEORY 91

Feynman diagram I

Recall that there was the gauge anomaly in the 5d CS theory in the presence of the topological
line defect. Similarly, the bi-module coupled with βγ-system provides an additional source
of the 5d gauge anomaly, since βγ system has the non-trivial coupling (3.115) with the 5d CS
theory and is charged under the 5d gauge symmetry. For the entire 5d-2d-1d coupled system
to be anomaly-free, the combined gauge anomaly should be canceled. The bulk anomaly
cancellation condition beautifully fixes the action of the algebra on the bi-module.

The simplest example involving the bi-module is akin to the first example of §3.4; notice
the similarity between Fig 3.2 and Fig 3.9. As a result, the calculation in this section
resembles that of §3.4.

The algebra action on the bi-module, which we want to reproduce from the 5d gauge
theory(with βγ-system) calculation, is[

t[2, 1], b[z1]c[z0]
]
ε1

= . . .+ ε1ε2t[0, 0]b[z0]c[z0] + . . . (3.119)

Let us make an ansatz for the diagrams that are related to the RHS of (3.119). The diagrams
should contain n interaction vertices and n+1 internal propagators to produce the factor ε1,
and there must be appropriate IA1pt, I

β
1pt, and Iγ1pt, so that each of 1-point vertex contributes

t[0, 0], b[z0], c[z0], respectively. The answer is:

Figure 3.9: Feynman diagrams, related to the RHS of (3.119). The vertical straight lines are
the time axis. The gray plane is where βγ-system is living. The internal horizontal straight
lines are βγ propagators and the external slant straight lines are modes of βγ. Note that no
βγ propagates along the time axis. The βAγ three point vertex is restricted to the βγ-plane,
but the AAA three point vertex can be anywhere in the bulk.

We will show that the amplitude for Fig 3.9 is

(const) ε1 ∂
2
w∂wA∂zβ γ c[z

0]b[z0]t[0, 0] (3.120)
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The factor z2
2w2∂

2
z2
∂w2A is for the external leg attached to the top 3-point vertex, v2. The

factor corresponds to c[2, 1]. Again, this is an ansatz. We will see that only this integral
converges and does not vanish below. We will drop ∂2

z2
∂w2A and recover it later.

We will prove that the constant factor in front of (3.120) is finite only if the external legs
are ∂2

z∂wA∂zβγ. For simplicity, we will abbreviate the leg factors during the computation.

First vertex

First, we focus on computing the integral over the first vertex:∫
v1

∂z1P1(v0, v1) ∧ (w1dw1) ∧ (z2
1dz1) ∧ ∂w1P2(v1, v2) (3.121)

Note that ∂z1 and ∂w1 comes from the three point coupling at v1:

ε2A ∧ ∂z1A ∧ ∂w1A (3.122)

In Lemma 5 in Appendix 3.7, we showed how to evaluate (3.121) and arrive at following
expression.

−
∫ 1

0

dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)2(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7
(3.123)

where [dV1] is an integral measure for v1 integral. We see from (3.123) that it was necessary
to choose c[m,n], βn to be c[2, 1], β1. Otherwise, the numerator of (3.123) would contain
holomorphic or anti-holomorphic dependence on z1 or w1, and this makes the z1 or w1 integral
to vanish.

Also, we can drop terms proportional to |z2|2, since there is a delta function at the second
vertex that evaluates z2 = 0. So, (3.123) simplifies to

−
∫ 1

0

dx
√
x(1− x)

7
∫
v1

[dV1]
|z1|4(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7
(3.124)

This is evaluated to
c1t2
d3

02

+
c2t2|w2|2

d5
02

(3.125)

where c1 and c2 are 1-forms of v2. Let us call them as P1
02 and P2

02 respectively.

Second vertex
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Now, compute the second vertex integral, using the above computation:∫
v2

(P1
02 + P2

02) ∧ dw2
1

w2

(w2)δ(z2 = 0, t2 = ε)

= ε1

∫ (c1

r5
+
c2

r3

)
rdrdθ

= 4π4ε1

(
1

43200|ε|
+

1

57600|ε|3

) (3.126)

We can re-scale ε to be 1, so the integral converges. Reinstating Gamma function factors,
we finally obtain

(const) =
Γ(7)

Γ(7/2)Γ(7/2)
4π4

(
1

43200
+

1

57600

)
=

112π

3375
(3.127)

Hence, the amplitude for the Feynman diagram is

(const)ε1ε2t[0, 0]b[z0]c[z0](∂2
z∂wA)(∂wβ)γ (3.128)

Its BRST variation is

(const)ε1ε2t[0, 0]b[z0]c[z0](∂2
z∂wc)(∂wβ)γ (3.129)

The gauge anomaly (3.129) should be canceled by introducing another diagrams. An
obvious choice is the tree level diagrams, where ∂2

z1
∂z2A∂z2βγ appears explicitly.

Figure 3.10: Feynman diagrams, related to the LHS of (3.119). The vertical straight lines
are time axis, and βγ lives on the gray planes. βγ only flows out of the time axis, but not
flowing along the time axis. Note that there is no internal propagators of any sort. All types
of lines are external legs; they are modes of β, γ, A.

As Fig 3.10 does not involve any loops, we do not need an extra computation. The amplitude
is simply [

t[2, 1], b[z1]c[z0]
]

(∂2
z∂wA)(∂wβ)γ (3.130)



CHAPTER 3. FEYNMAN DIAGRAMS AND Ω−DEFORMED M-THEORY 94

and its BRST variation is proportional to[
t[2, 1], b[z1]c[z0]

]
(∂2
z∂wc)(∂wβ)γ (3.131)

By equating (3.129) and (3.131), we get[
t[2, 1], b[z1]c[z0]

]
= ε1ε2t[0, 0]b[z0]c[z0] + . . . (3.132)

We know from (3.112) that there is one more O(ε1) order term ε1ε2c[z
0]b[z0], which was

indicated as . . . in (3.132), in the RHS of

[t[2, 1], b[z1]c[z0]]ε1 (3.133)

This indicates that there must be another Feynman diagram, which is proportional to
∂2
z∂wA∂wβγ. We will find the Feynman diagram in the next subsection and complete the

RHS of (3.133).

Feynman diagram II

We can explain the boxed term in (3.112)[
t[2, 1], b[z1]c[z0]

]
ε1

= . . .+ ε1ε2b[z
0]c[z0] + . . . (3.134)

using the Feynman diagram below.

Figure 3.11: A Feynman diagram, related to RHS of (3.134).

The amplitude for the diagram is

(const)ε2ε1b[z
0]c[z0] (3.135)

since there are 4 internal propagators(ε41) and 3 internal vertices(ε−3
1 ), one of which is A∂A∂A

type vertex(ε2). We will explicitly show that (const) does not vanish and hence the diagram
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has non-zero BRST variation, which completes the RHS of (3.133).

First vertex(Pβγ ∂w1β ∂z2P12)

First, we focus on computing the integral over the first vertex:∫
v1

1

w1

(w1dw1)δ(t1 = 0, z1 = 0) ∧ ∂z2P12(v1, v2) (3.136)

Note that ∂w2 comes from the three point coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (3.137)

This integral evaluates to

−2π(t2dz̄2 + z̄2dt2)z̄2

5
√
t22+|z2|2

5 (3.138)

We presented the details in Lemma 6. in Appendix 3.7.

Third vertex(Pβγ γ ∂w2P23)

Second, we focus on computing the integral over the third vertex:∫
v3

1

w3

(dw3)δ(t3 = 0, z3 = 0) ∧ ∂w2P (v2, v3) (3.139)

Note that ∂w2 comes from the three point coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (3.140)

This integral evaluates to

−(t2dz̄2 − z̄2dt2)
2π

15w2
2

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
(3.141)

We presented the details in Lemma 7. in Appendix 3.7.

Second vertex(∂z2P12 ∂
2
z2
∂w2A ∂w2P23)

Now, combine (3.138) and (3.141), and compute the second vertex integral; here zn2w
m
2
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denotes the external gauge boson leg.∫
v2

dw2 ∧ dz2 ∧ (t2dz̄2 − z̄2dt2) ∧ (t2dz̄2 + z̄2dt2)z̄2

× 4π2zn2w
m
2

75w2
2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)

=

∫
v2

dw2 ∧ dz2 ∧ dz̄2 ∧ dt2
4π2t2|z2|2

75w2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
(3.142)

We inserted (n,m) = (2, 1) for the external gauge boson leg. Then, z2
2 pairs with z̄2

2 , and w2

combines with 1/w2
2 to yield 1/w2. Since we do not have dw̄2, the integral is holomorphic

integral. If (n,m) were other values, the integral will simply vanish.
In Lemma 8. in Appendix 3.7, we show that (3.142) is convergent, and bounded as

c1 < (3.142) < c2 (3.143)

where c1, c2 are some finite constants.
Hence, the amplitude for the Feynman diagram is

(const)ε1ε2b[z
0]c[z0](∂2

z∂wA)(∂wβ)γ (3.144)

Its BRST variation is therefore non-vanishing:14

(const)ε1ε2b[z
0]c[z0](∂2

z∂wc)(∂wβ)γ (3.145)

This completes the remaining part of the algebra-bi-module commutation relation (3.133):[
t[2, 1], b[z1]c[z0]

]
ε1

= ε1ε2t[0, 0]b[z0]c[z0] + ε1ε2b[z
0]c[z0] (3.146)

3.6. Appendix: Algebra and bi-module computation

We will prove the key commutation relations for the algebra Aε1,ε2 and the bi-moduleMε1,ε2 .

Algebra

The simplest algebra commutator that has ε1 correction in the RHS is

[t[3, 0], t[0, 3]] = 9t[2, 2] +
3

2
(σ2t[0, 0]− σ3t[0, 0]t[0, 0]) (3.147)

14We hope there is no confusion between the ghost for the 5d gauge field ∂2
z∂wc and the module element

c[z0].
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where
σ2 = ε21 + ε22 + ε1ε2, σ3 = −ε1ε2(ε1 + ε2) (3.148)

We will prove (3.147) in this section. The strategy is simple, if we notice that the first term
in the RHS comes from one contraction of X and Y. While deriving 9t[2, 2], we expect the
other central terms will follow. For a simple presentation, we will abbreviate “Tr”.[

X3, Y 3
]

= (X3)(Y 3)− (Y 3)(X3) (3.149)

Commute X’s to the right in X3Y 3:15

(X3)(Y 3) = 3ε1(X2Y 2) +X0
1X

1
2Y

0′

1′ Y
1′

2′ Y
2′

0′ X
2
0

= 3ε1(X2Y 2) + 3ε1(XY Y X) +X0
1Y

0′

1′ Y
1′

2′ Y
2′

0′ X
1
2X

2
0

= 3ε1((X2Y 2) + (XY 2X) + (Y 2X2)) + (Y 3)(X3)

(3.150)

So, [
X3, Y 3

]
= 3ε1((X2Y 2) + (XY 2X) + (Y 2X2))

=
3

2
ε1((X2Y 2) + (X2Y 2) + (XY 2X) + (XY 2X) + (Y 2X2) + (Y 2X2) )

(3.151)
We would like to rearrange the boxed terms to reproduce the underlined terms in the first
term of (3.147), which can be re-written as

9ε1STrX
2Y 2 =

9

6
ε1

(
(X2Y 2) + (XYXY ) + (XY 2X) + (Y X2Y )

+ (Y 2X2) + (Y XY X)

) (3.152)

Start from the first box: To reproduce (XYXY ) from (XXY Y ) , we may swap X and Y

in the middle. I will use following F-term relation and commutation relation, same as [GO]:

Xa
b Y

b
c −Xb

cY
a
b + IcJ

a = ε2δ
a
c , [J b, Ia] = ε1δ

b
a, [Xa

b , Y
c
d ] = ε1δ

a
dδ

c
b (3.153)

(XXY Y ) =X0
1 (ε1δ

1
0δ

3
2 + Y 3

0 X
1
2 )Y 2

3

=ε1(X)(Y ) +X0
1Y

3
0 (Y 1

2 X
2
3 + (ε1N + ε2)δ1

3 − I3J
1)

=ε1(X)(Y ) + (Nε1 + ε2)(XY )− I3J
1X0

1Y
3

0 +X0
1Y

1
2 (−ε1Nδ2

0 +X2
3Y

3
0 )

=ε1(X)(Y ) + (Nε1 + ε2)(XY )− (IXY J)− (IJ)(IJ)−Nε1(IJ)

+ (ε1 + ε2)(IJ)− ε1N(XY ) + (XYXY )

=ε1(X)(Y ) + ε2(XY )− (IXY J)− (IJ)(IJ) + (−Nε1 + ε1 + ε2)(IJ)

+ (XYXY )

(3.154)

15Note: 1. When there are sub(super)scripts, they are indices, not powers, 2. (•) denotes a fully contracted
word. For example, (X) = Xi

i , (XY ) = Xi
jY

j
i .
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The third box: To reproduce (Y XY X) from (Y Y XX) , we may swap the middle Y X.

(Y Y XX) =Y 0Y 1
2 X

3
0X

2
3 = Y 0

1 (X3
0Y

1
2 − ε1δ1

0δ
3
2)X2

3

=Y 0
1 X

3
0 (−ε1Nδ1

3 +X2
3Y

1
2 )− ε1(Y )(X)

=− ε1N(Y X)− ε1(Y )(X) + Y 0
1 X

3
0 (X1

2Y
2

3 + (I3J
1 − ε2δ1

3))

=− ε1N(Y X)− ε1(Y )(X) + ε1N(Y X)− ε1N(Y X) + ε1N(Y X)

+ (Y XY X) + (IXY J)− ε1N(IJ)− ε2(Y X)

=− ε1(Y )(X) + (Y XY X) + (IXY J)− ε1N(IJ)− ε2(Y X)

(3.155)

The second box: To reproduce (Y XXY ) from (XY Y X) .

(XY Y X) =X0
1Y

1
2 Y

2
3 X

3
0 = (δ0

3δ
2
1ε1 + Y 2

3 X
0
1 )Y 1

2 X
3
0

=ε1(Y )(X) + Y 2
3 X

0
1 (−ε1δ1

0δ
3
2 +X3

0Y
1

2 )

=ε1(Y )(X)− ε1(Y )(X) + (Y XXY )

=(Y XXY )

(3.156)

Now, as we have reproduced all the desired terms in t[2, 2], we can collect (3.154),(3.155),(3.156),
plug in to (3.151), and see if terms other than the underlined terms produce the desired cen-
tral terms.[

STrX3, STrY 3
]

=
3

2
ε1
(
(X2Y 2) + (XYXY ) + (XY 2X) + (Y X2Y ) + (Y 2X2) + (Y XY X)

)
+

3

2
ε1

(
ε1(X)(Y ) + ε2(XY )− (IXY J)− (IJ)(IJ) + (−Nε1 + ε1 + ε2)(IJ)

− ε1(Y )(X) + (IXY J)− ε1N(IJ)− ε2(Y X)

)
= 9ε1STrX

2Y 2 +
3

2
ε1
(
(ε1 + ε2)(IJ)− (IJ)(IJ)− 2Nε1(IJ)

+ ε1[(X), (Y )] + ε2((XY )− (Y X))
)

= 9ε1STrX
2Y 2 +

3

2
ε1
(
(ε1 + ε2)(IJ)− (IJ)(IJ)− 2ε2ε1N

2 +Nε21 + ε2ε1N
2
)

=− 9ε1STrX
2Y 2 +

3

2
ε1
(
(ε1 + ε2)(IJ)− (IJ)(IJ)− ε2ε1N2 +Nε21

)

(3.157)

where I used following in the last line.

(XY )− (Y X) = Xa
b Y

b
a − Y a

b X
b
a = Y b

aX
a
b + ε1N

2 − Y a
b X

b
a = ε1N

2

[(X), (Y )] = Xa
aY

b
b − Y b

b X
a
a = ε1δ

a
a + Y b

b X
a
a − Y b

b X
a
a = ε1N

(3.158)
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Now, we need to normalize the basis properly, recalling:

tm,n =
1

ε1
STrXmY n, N = ε1t[0, 0], (IJ) = t[0, 0]ε1ε2 (3.159)

So, (3.157) becomes

[t[3, 0], t[0, 3]] = 9t[2, 2] +
3

2

(
(ε1 + ε2)

(IJ)

ε1
− ε1

(IJ)

ε1

(IJ)

ε1
− ε2N2 +Nε1

)
= 9t[2, 2] +

3

2

(
(ε1 + ε2)ε2t[0, 0]− ε1ε22t[0, 0]t[0, 0]− ε21ε2t[0, 0]t[0, 0] + ε21t[0, 0]

)
= 9t[2, 2] +

3

2

(
(ε21 + ε22 + ε1ε2)t[0, 0]− ε1ε2(ε1 + ε2)t[0, 0]t[0, 0]

)
= 9t[2, 2] +

3

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

)
(3.160)

where we used (3.148) in the last equality.

Bi-module

The simplest algebra, bi-module commutator that has ε1 correction in the RHS is

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(3.161)

We will prove it in this section.
Let us expand the LHS.[

S(X2Y ), (IY ϕ̃)(ϕJ)
]

=
1

3
(XXY +XYX + Y XX) · (IY ϕ̃)(ϕJ)

− 1

3
(IY ϕ̃)(ϕJ) · (XXY +XYX + Y XX)

(3.162)
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Compute the first term:

(XXY ) · (IY ϕ̃)(ϕJ) = X0
1X

1
2 |ϕ̃bϕc|IaY a

b J
cY 2

0 +X0
1X

1
2 |ϕ̃bϕcϕ̃2ϕ0|IaY a

b J
c

=|ϕ̃bϕc|IaX0
1 (ε1δ

1
b δ
a
2 + Y a

b X
1
2 )J cY 2

0 + ε1X
0
1 |ϕ̃b(δ1

cϕ0 + δ1
0ϕc)|IaY a

b J
c

=ε1|ϕ̃bϕc|I2X
0
b J

cY 2
0 + ε1|ϕ̃bϕc|Ia(ε1δ0

b δ
a
1 + Y a

b X
0
1 )X1

2J
cY 2

0 + ε1|ϕ̃bϕ0|IaX0
cY

a
b J

c

+ ε1|ϕ̃bϕc|Ia(X)Y a
b J

c

=ε1(−ε1)(IY J) + ε1|ϕ̃0ϕc|I1J
cX1

2Y
2

0 + (IY ϕ̃)(ϕJ)(X2Y ) + (−ε1)ε1(IY J)

+ ε1|ϕ̃bϕc|Ia(ε1δab + Y a
b (X))J c

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ) · (XXY )− ε21ε2(Y )

+ ε21(Iϕ̃)(ϕJ) + ε1(IY ϕ̃)(ϕJ)(X)

=− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ) · (XXY ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X)

(3.163)

So,
[(XXY ), (IY ϕ̃)(ϕJ)] =− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X)
(3.164)

Next,

(XYX) · (IY ϕ̃)(ϕJ) = X0
1Y

1
2 |ϕ̃bϕc|Ia(ε1δ2

b δ
a
0 + Y a

b X
2
0 )J c

=ε1|ϕ̃2ϕc|I0X
0
1Y

1
2 J

c + ε1|ϕ̃2ϕcϕ̃
1ϕ2|I0X

0
1J

c+|ϕ̃bϕc|IaX0
1Y

1
2 Y

a
b X

2
0J

c

+|ϕ̃bϕcϕ̃1ϕ2|IaX0
1Y

a
b X

2
0J

c

=ε1(IXY ϕ̃)(ϕJ) + ε1(−ε1)((ϕ̃ϕ)(IJ) + (Iϕ̃)(ϕJ))

+|ϕ̃bϕc|Ia(ε1δ0
b δ
a
1 + Y a

b X
0
1 )J cY 1

2 X
2
0 + (−ε1)(|ϕ̃bϕ2|IaY a

b X
2
0J

0+|ϕ̃bϕc|IaY a
b J

c(X))

=ε1(IXY ϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)− ε21(Iϕ̃)(ϕJ) + ε1|ϕ̃0ϕc|I1J
cY 1

2 X
2
0

+ (IY ϕ̃)(ϕJ)(XYX)− ε1|ϕ̃bϕ2|Ia(−ε1δa0δ2
b +X2

0Y
a
b )J0 − ε1(IY ϕ̃)(ϕJ)(X)

=ε1(IXY ϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)− ε21(Iϕ̃)(ϕJ) + ε1|ϕ̃0ϕc|I1J
c(−ε1Nδ1

0 +X2
0Y

1
2 )

+ (IY ϕ̃)(ϕJ)(XYX) + ε21(ϕ̃ϕ)(IJ)− ε1(−ε1)(IY J)

=ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ)− ε21(IY J) + ε21(IY J)

+ (IY ϕ̃)(ϕJ)(XYX)

=ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ)(XYX)

(3.165)

So,

[(XYX), (IY ϕ̃)(ϕJ)] = ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ) (3.166)
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Next,

(Y XX) · (IY ϕ̃)(ϕJ) = Y 0
1 |ϕ̃bϕc|IaX1

2 (ε1δ
2
b δ
a
0 + Y a

b X
2
0 )J c

=ε1Y
0

1 |ϕ̃2ϕc|I0X
1
2J

c + Y 0
1 |ϕ̃bϕc|Ia(ε1δ1

b δ
a
2 + Y a

b X
1
2 )X2

0J
c

=ε1(−ε1)(IY J) + ε1Y
0

1 |ϕ̃1ϕc|IaXa
0J

c+|ϕ̃bϕcϕ̃0ϕ1|IaY a
b X

1
2X

2
0J

c + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε1(−Nε1)(Iϕ̃)(ϕJ)

+ ε1|ϕ̃1ϕcϕ
0ϕ1|IaXa

0J
c+|ϕ̃bϕcϕ0ϕ1|Ia(−ε1δa2δ1

b +X1
2Y

a
b )X2

0J
c + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ)−Nε21(Iϕ̃)(ϕJ) + ε1(−ε1)(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+ ε1(−ε1)(ϕ̃ϕ)(IJ)− ε1|ϕ̃1ϕcϕ̃
0ϕ1|I2X

2
0J

c

+ (−ε1)(|ϕ̃bϕc|IaY a
b J

c(X)+|ϕ̃0ϕc|IaY a
2 X

2
0J

c) + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ)−Nε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)

− ε1(−ε1)(Iϕ̃)(ϕJ)− ε1(−ε1)(ϕ̃ϕ)(IJ)− ε1(IY ϕ̃)(ϕJ)(X)

− ε1(−ε1N)(Iϕ̃)(ϕJ)− ε1(−ε1)(IY J) + (IY ϕ̃)(ϕJ)(Y XX)

=ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+ (IY ϕ̃)(ϕJ)(Y XX)

(3.167)
So,

[(Y XX), (IY ϕ̃)(ϕJ)] =ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)

− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)
(3.168)

Collecting above, we have[
S(X2Y ),(IY ϕ̃)(ϕJ)

]
=

1

3

(
− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X) + ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ)

+ ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

)
= ε1(IXY ϕ̃)(ϕJ)− 2

3
ε21ε2(Y )− 1

3
ε21N(Iϕ̃)(ϕJ)− 1

3
ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+
1

3
ε21(Iϕ̃)(ϕJ)

(3.169)
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We are not done yet, since (IXY ϕ̃)(ϕJ) is reducible by the F-term relation.

ε1|ϕ̃0ϕc|I1J
cX1

2Y
2

0 =ε1|ϕ̃0ϕc|I1J
c(X2

0Y
1

2 − (I0J
1 − ε2δ1

0))

=ε1(−ε1)(IY J)− ε1|ϕ̃0ϕc|(J cI1 − ε1δc1)I0J
1 + ε1ε2(Iϕ̃)(ϕJ)

=− ε21(IY J)− ε1|ϕ̃0ϕc|(I0J
c + ε1δ

c
0)I1J

1 + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ)

=− ε21(IY J)− ε1(Iϕ̃)(ϕJ)(IJ)− ε21(ϕ̃ϕ)(IJ) + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ)

(3.170)

Plugging this into (3.169), we get[
S(X2Y ), (IY ϕ̃)(ϕJ)

]
= (−ε21(IY J)− ε1(Iϕ̃)(ϕJ)(IJ)− ε21(ϕ̃ϕ)(IJ) + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ))− 2

3
ε21ε2(Y )− 1

3
ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

− 1

3
ε21N(Iϕ̃)(ϕJ) +

1

3
ε21(Iϕ̃)(ϕJ)

(3.171)
After normalization, by multiplying ε2

ε31
both sides, and using the identity16

(ϕ̃ϕ)ε2 = (Iϕ̃)(ϕJ) (3.173)

we have

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(3.174)

16The identity can be derived using the F-term relation:

ϕ̃i
(

[X,Y ]ji + IiJ
j − ε2δji

)
ϕj = 0

(Y )− (Y ) + (Iϕ̃)(ϕJ)− ε2(ϕ̃ϕ) = 0

(Iϕ̃)(ϕJ) = ε2(ϕ̃ϕ)

(3.172)
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3.7. Appendix: Intermediate steps in Feynman

diagram calculations

Intermediate steps in section 4.2

Lemma 1.
We will compute the following integral.

ε1ε
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z2
1w1∂

2
z1
∂w1A) (3.175)

Computing the partial derivatives, we can re-write it as

ε1ε
2
2

(
z̄1

d2
01

w̄1

d4
12

(w1z1z̄2)

)
[P (v0, v1) ∧ dw1 ∧ z1dz1 ∧ P (v1, v2)] (3.176)

We see

P (v0, v1) ∧ P (v1, v2) =
dz̄1dw̄1dt1
d5

01d
5
12

(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2

− w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄2)

(3.177)

Including ∧dw1 ∧ (z1dz1)∧, we can simplify it:

P (v0, v1) ∧ P (v1, v2) ∧ (w1dw1) ∧ (z1dz1) = dz̄1dz1dw1dw̄1dt1
(
|z1|2|w1|2z̄2

)
×[

∂z̄0

(
z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12

d5
01d

9
12

)
− ∂z̄0(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12)

d5
01d

9
12

] (3.178)

By integration by parts, the the integral over t1, z1, z̄1, w1, w̄1 of all the terms in the first
two lines vanishes.

So we are left with

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d5
01d

9
12

(3.179)

Lemma 2.

We can use Feynman integral technique to convert (3.179) to the following:∫
v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

((1− x)(|z1|2+|w1|2 + t21) + x(|z12|2+|w12|2 + t212))7

=

∫
v1

∫ 1

0

dx
(Γ factors)

√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

(|z1 − xz2|2+|w1 − xw2|2 + (t1 − xt2)2 + x(1− x)(|z2|2+|w2|2 + t22))7

(3.180)
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Shift the integral variables as

z1 → z1 + xz2, w1 → w1 + xw2, t1 → t1 + xt2 (3.181)

Then the above becomes∫
v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1 + xz2|2|w1 + xw2|2z̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

× ((w̄1 + (x− 1)w̄2)dt2 − (t1 + (x− 1)t2)dw̄2)

(3.182)

Drop terms with odd number of t1 and terms that has holomorphic or anti-holomorphic
dependence on z1 or w1:∫

v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)9(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)z̄2(w̄2dt2 − t2dw̄2)

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

(3.183)
After doing the v1 integral using Mathematica with the integral measure
dt1dz1dz̄1dz2dz̄2, we get

z̄2(w̄2dt2 − t2dw̄2)

(
c1

d5
02

+
c2w

2
2

d7
02

+
c3z

2
2

d7
02

+
c4z

2
2w

2
2

d9
02

)
(3.184)

Lemma 3.
We will compute the integral over the second vertex.∫

v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A)

=

∫
v2

P ∧ w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d7
23

∧ dw2 ∧ dz2

(3.185)

Now, compute the integrand:

z̄2(w̄2dt2 − t2dw̄2)w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d5
02d

7
23

∧ dw2 ∧ dz2

=
|z2|2|w2|4(t2 − t3 − t2)

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2

=− |z2|2|w2|4t3
d5

02d
7
23

dt2dz̄2dw̄2dw2dz2 substitute t3 = ε, then,

=− |z2|2|w2|4ε
d5

02d
7
23

dt2dz̄2dw̄2dw2dz2

(3.186)

We can rescale ε→ 1, without loss of generality, then it becomes

−|z2|2|w2|4

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2 (3.187)
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Lemma 4.
Now, it remains to evaluate the delta function at the third vertex. In other words, substitute:

w3 → 0, z3 → 0, t3 → ε = 1 (3.188)

Then, use Feynman technique to convert the above integral into

− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(x(z2
2 + w2

2 + (t2 − 1)2) + (1− x)(z2
2 + w2

2 + t22))6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z2
2 + w2

2 + (t2 − x)2 + x(1− x))6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z2
2 + w2

2 + t22 + x(1− x))6

(3.189)

In the second equality, we shifted t2 to t2 + x.
After doing v2 integral, it reduces into

Γ(6)

Γ(5/2)Γ(7/2)

π

2880

∫ 1

0

dxx(1− x)2 =
Γ(6)

Γ(5/2)Γ(7/2)

π

2880
(3.190)

Finally, re-introduce all the omitted constants:

(FirstTerm) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

2880
(3.191)

Similarly, we can compute all the others without any divergence.

(Second Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

5760

(Third Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

8640

(Fourth Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

20160

(3.192)

Hence, every terms in (3.184) are integrated into finite terms.

Intermediate steps in section 5.2

Lemma 5.
We want to evaluate the following integral.∫

v1

∂z1P1(v0, v1) ∧ (w1dw1) ∧ (z2
1dz1) ∧ ∂w1P2(v1, v2) (3.193)
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Substituting the expressions for propagators, we get∫
v1

|z1|2z1w1(w̄1 − w̄2)

d7
01d

7
12

(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2

+ t01z̄12dw̄2 − t01w̄12dz̄2)dz̄1dw̄1dt1dz1dw1

(3.194)

We already know that the terms proportional to w̄2 will vanish in the second vertex integral,
so drop them. Evaluating the delta function at v0, the above simplifies to∫

v1

|z1|2z1|w1|2

d7
01d

7
12

(− z̄1w̄12dt2 + z̄1t12dw̄2 − w̄1t12dz̄2 + w̄1z̄12dt2

− t1z̄12dw̄2 + t1w̄12dz̄2)dz̄1dw̄1dt1dz1dw1

(3.195)

Note that the integrand with the odd number of t1 vanishes, so∫
v1

|z1|2z1|w1|2

d7
01d

7
12

(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)dz̄1dw̄1dt1dz1dw1 (3.196)

Now, apply Feynman technique, and omit the Gamma functions, to be recovered at the end.∫ 1

0

dx
√
x(1− x)

7
∫
v1

|z1|2|w1|2z1(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)

(x(|z1|2+|w1|2+|t1|2) + (1− x)(|z12|2+|w12|2+|t12|2))7

=

∫ 1

0

dx

∫
v1

√
x(1− x)

7|z1|2|w1|2z1(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)

(|z1 − xz2|2+|w1 − xw2|2 + (t1 − xt2)2 + x(1− x)(|z2|2+|w2|2 + t22))7

(3.197)

Shift the integral variables as

z1 → z1 + xz2, w1 → w1 + xw2, t1 → t1 + xt2 (3.198)

Then the above becomes∫ 1

0

dx
√
x(1− x)

7
∫
v1

dz1dz̄1dw1dw̄1dt1(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(z1 + xz2)(
−(z̄1 + xz̄2)(w̄1 + (x− 1)w̄2)dt2 − (z̄1 + xz̄2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

+
(w̄1 + xw̄2)t2dz̄2 + (w̄1 + xw̄2)(z̄1 + (x− 1)z̄2)dt2
(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

) (3.199)

The terms with (anti)holomorphic dependence on complex coordinates drop:∫ 1

0

dx
√
x(1− x)

7
∫
v1

dz1dz̄1dw1dw̄1dt1(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(
−|z1|2t2dw̄2 + x|z1|2w̄2dt2 − x2|z2|2(x− 1)w̄2dt2
(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

+
−x2|z2|2t2dw̄2 + x2z2w̄2t2dz̄2 + x2|z2|2w̄2(x− 1)dt2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

) (3.200)
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We can be prescient again; using the fact that the second vertex is tagged with a delta
function δ(z2 = 0, t2 = ε) ∝ dz2dz̄2dt2, we can drop most of the terms.

−
∫ 1

0

dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(−|z1|2 − x2|z2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

= −
∫ 1

0

dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)2(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

(3.201)
where [dV1] is an integral measure for v1 integral.

Intermediate steps in section 5.3

Lemma 6.
We will evaluate the following integral.∫

v1

1

w1

(w1dw1)δ(t1 = 0, z1 = 0) ∧ ∂z2P12(v1, v2) (3.202)

Substituting the expressions for propagators, we get∫
v1

z̄1 − z̄2

d7
12

(z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12)dw1δ(t1 = z1 = 0)

=

∫
v1

z̄1 − z̄2

d7
12

(z̄2dw̄1dt2 + t2dz̄2dw̄1)dw1δ(t1 = z1 = 0)

= (t2dz̄2 + z̄2dt2)

∫
v1

z̄1 − z̄2√
t212+|z12|2+|w12|2

7dw̄1dw1δ(t1 = z1 = 0)

= (t2dz̄2 + z̄2dt2)

∫
dw1dw̄1

−z̄2√
t22+|z2|2+|w1 − w2|2

7

= − (t2dz̄2 + z̄2dt2)

∫
rdrdθ

z̄2√
t22+|z2|2 + r2

7 = −2π(t2dz̄2 + z̄2dt2)z̄2

5
√
t22+|z2|2

5

(3.203)

where the first equality comes from the fact that δ(t1 = z1 = 0) ∝ dt1dz1dz̄1.
Lemma 7.
We will evaluate the following integral.∫

v3

1

w3

(dw3)δ(t3 = 0, z3 = 0) ∧ ∂w2P (v2, v3) (3.204)
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Substituting the expressions for propagators, we get∫
v3

w̄2 − w̄3

w3d7
23

(z̄23dw̄23dt23 − w̄23dz̄23dt23 + t23dz̄23dw̄23)dw3δ(t3 = z3 = 0)

=

∫
v3

w̄2 − w̄3

w3d7
23

(−z̄2dw̄3dt2 + t2dz̄2dw̄3)dw3δ(t3 = z3 = 0)

=(t2dz̄2 − z̄2dt2)

∫
v3

w̄2 − w̄3

w3

√
t223+|z23|2+|w23|2

7dw̄3dw3δ(t3 = z3 = 0)

=(t2dz̄2 − z̄2dt2)

∫
dw3dw̄3

(w̄2 − w̄3)/w3√
t22+|z2|2+|w2 − w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
dw3dw̄3

−w̄3/(w3 + w2)√
t22+|z2|2+|w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
|w3|≤|w2|

dw3dw̄3

−w̄3

(
1− w3

w2
+ 1

2!

w2
3

w2
2
− . . .

)
w2

√
t22+|z2|2+|w3|2

7

+ (t2dz̄2 − z̄2dt2)

∫
|w3|≥|w2|

dw3dw̄3

−w̄3

(
1− w2

w3
+ 1

2!

w2
2

w2
3
− . . .

)
w3

√
t22+|z2|2+|w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
|w3|≤|w2|

dw3dw̄3

(
0 +

−|w3|2

w2
2

√
t22+|z2|2+|w3|2

7 + 0 + 0 + . . .

)

=(t2dz̄2 − z̄2dt2)

∫ |w2|

0

rdrdθ
−r2

w2
2

√
t22+|z2|2 + r2

7

=− (t2dz̄2 − z̄2dt2)
2π

15w2
2

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)

(3.205)

Lemma 8.
We will evaluate∫

v2

dw2 ∧ dz2 ∧ dz̄2 ∧ dt2
4π2t2|z2|2

75w2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
. (3.206)

Assuming the w2 integral domain is a contour surrounding the origin of w2 plane or a path
that can be deformed into the contour, we may use the residue theorem for the first term of
(3.206). After doing w2 integral we have∫ ∞

ε

dt2

∫
Cz2

d2z2
4π2t2|z2|2

75
√
t22+|z2|2

5

2√
t22+|z2|2

3 =
2π3

225ε2
(3.207)
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Combining with the other diagram with the second vertex in the t ∈ [−∞,−ε], we get

2π3

225ε2
−
(
− 2π3

225ε2

)
=

4π3

225ε2
(3.208)

Re-scaling ε→ 1, this is finite.
For the second term of (3.206), let us choose the contour to be a constant radius circle

so that r(θ) = R. We need to use an unconventional version of the residue theorem, as the
integrand is not a holomorphic function, depending on |w2|2. Let w2 = Reiθ, then for a given
integrand f(w2, w̄2), we have

I =

∫ 2π

0

d(Reiθ)f(Reiθ, Re−iθ) (3.209)

Then, w2 integral is evaluated as

−
∫ 2π

0

d(Reiθ)

Reiθ
4π2t2|z2|2

75
√
t22+|z2|2

5

5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5 = − 8π3it2|z2|2

75
√
t22+|z2|2

5

5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

(3.210)
Before evaluating z2 integral, it is better to work without R. using the following inequality
is useful to facilitate an easier integral:

0 <
8π3it2|z2|2

75
√
t22+|z2|2

5

(
5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

)
<

(8π3it2|z2|2)(2t22 + 2|z2|2)

75(t22+|z2|2)5
(3.211)

Here we used R ∈ Real+. The left bound is obtained by R → ∞, and the right bound is
obtained by R → 0. We only care the convergence of the integral. So, let us proceed with
the inequalities.

− 4π

192

8π3i

75

1

ε3
< −

∫ ∞
ε

dt2

∫
Cz2

d2z2
8π3it2|z2|2

75
√
t22+|z2|2

5

(
5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

)
< 0 (3.212)

After rescaling ε→ 1, we have a finite answer. Combining with the other diagram with the
second vertex in the t ∈ [−∞,−ε], we get the left bound as

− 4π

192

8π3i

75
−
(

4π

192

8π3i

75

)
= − π4i

225ε3
(3.213)

After rescaling ε1 → 1, this is also finite.
Hence, combining with (3.208), we get the bound

4π3

225ε2
− π4i

225ε3
< (3.206) <

4π3

225ε2
(3.214)
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