
UC Irvine
ICS Technical Reports

Title
A survey of behavioral-level partitioning systems

Permalink
https://escholarship.org/uc/item/6x34r0tw

Author
Vahid, Frank

Publication Date
1991-10-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6x34r0tw
https://escholarship.org
http://www.cdlib.org/

A Survey of Behavioral-Level Partitioning Systems ---- -
Frank Vahid :::=--

Technical Report #91-71
October 30, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

vahid@ics.uci.edu

Abstract

z
<D/y
~3

no. 7/

Many approaches have been developed to partition a system Js behavioral description before a struc
tural implementation is synthesized. We highlight the foundations and motivations for behavioral
partitioning. We survey behavioral partitioning approaches, discussing abstraction levels, goals, major

steps, and key assumptions in each.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Contents

1 Introduction

2 Behavioral Partitioning: Foundations and Motivations
2.1 Basic Partitioning

2.1.1 Definitions and Terminology.
2.1.2 Partitioning Algorithms ..

2.2 Basic High-level Synthesis
2.3 Motivations for Behavioral Partitioning

2.3.1 Partitionirig for Tractability ...
2.3.2 Partitioning for Packaging-Constraint Satisfaction

3 A Survey of Behavioral Partitioning Systems
3.1 YSC - The Yorktown Silicon Compiler .
3.2 BUD - Bottom-Up Design

3.2.1 Synthesis by Delayed Binding of Decisions
3.3 APARTY - Architectural Partitioning
3.4 Workbench Behavioral Transformations ..
3.5 Vulcan - Partitioning of Functional Models
3.6 CHOP
3.7 SpecPart - Specification Partitioning .
3.8 SPARTA and SLIP

4 Summary of Three Important Aspects

5 Conclusions

6 References

A Appendix

1

2
2
2
3
6
7
7
8

10
11
13
16
16
20
20
22
23
28

29

29

30

31
A.1 Partitioning for Tractability: Allocation Example . 31

List of Figures

1 Behavioral-partitioning abstraction levels vs. goals 1
2 Graphs and partitions 2
3 Building a cluster tree during pairwise clustering . 4
4 Group migration's local solution-space search strategy 5
5 These seemingly equal moves can be distinguished using a group migration "look-ahead" extension 6
6 A sample mapping of a behavior to CDFGs 7
7 A simple behavior for which functional units must be allocated 8
8 Behavioral vs. structural partitioning 9
9 Comparison of behavioral-partitioning approaches 10
10 Partitioning before logic synthesis 12
11 Building a cluster tree in BUD for behavioral operations 15
12 Selecting a partitioning and creating partitioned structure in BUD 15
13 Multistage clustering 17
14 The extended hypergraph model in Vulcan 21
15 Specification partitioning 25
16 Decomposing a behavior for finer-granularity partitioning 26
17 A refined specification resulting from partitioning· 26
18 Incorporating performance constraints in SpecPart 27

1 Introduction

High-level synthesis (HLS) converts a behavioral specification to a structure (usually a controller/ datapath
pair, or CU /DP). Partitioning the structure can improve floorplanning and other intrachip tasks, or
can create structure subgroups that meet chip size and pin constraints. Recent work has focused on
partitioning behavior before obtaining structure, not only because there are fewer objects to deal with,
but also because results of such partitioning can be used to influence later HLS tasks.

There are essentially two levels at which behavioral partitioning can be performed. At the operation
level, dataflow-level operations such as addition and subtraction, belonging to a single sequential
behavior, are grouped. At the algorithmic level, entire program-grained computations such as processes
and procedures, making up a set of sequential and concurrent behaviors, are grouped. We can also
distinguish between intrachip and interchip partitioning goals. Goals may also involve performance
constraints.

Abstraction Level

Partitioning Goals
lntrachip lnterchip

Minimizing# of CU/DPs

Maximizing performance
by minimizing
inter-CU/DP
communication

1----------------
Mimimizing #of
functional units

Simplifying floorplanning
and routing

Reducing synthesis
tools' computation
and memory requirements

Satisfying packaging
constraints

Mapping to standard
processor chips

----------------!

Satisfying packaging
constraints

Figure 1: Behavioral-partitioni~g abstraction levels vs. goals

Figure 1 summarizes partitioning abstraction-levels and goals. Goals which are addressed by ap
proaches discussed in this report are shown in italics. Current behavioral partitioning approaches are
at the operation level with intrachip goals, at the operation level with the chip-packaging goal, or at
the algorithmic level with the chip-packaging goal.

Publications discussing individual approaches use varying terminology and focus on different as
pects, making comparison of the approaches difficult. In addition, several key assumptions are made
in each approach that are sometimes not emphasized or made explicit; knowing these assumptions is
crucial to understanding the applicability of each partitioning approach. For these reasons, a survey
of behavioral partitioning approaches is necessary.

In this report, we first summarize the graph-theoretic foundations of partitioning. We discuss two
main behavioral-partitioning goals. We then survey behavioral-partitioning systems, focusing on the
mapping of the behavioral problem to a graph problem, on the algorithms used for partitioning, and
on the uses of the partitioning results. Important assumptions are made explicit throughout.

1

2 Behavioral Partitioning: Foundations and Motivations

Partitioning is a long-studied problem, and is usually formulated using graphs. We provide a brief
overview of graph definitions and basic partitioning algori~hms that have proven useful in practice.
We assume a familiarity with high-level synthesis; thus we simply define several terms that we will
use. We then discuss the two main motivations for behavioral partitioning. The terms and algorithms
introduced in this section will be used extensively throughout the remainder of this report.

For a detailed discussion of basic partitioning definitions and algorithms, see [1]. For an introduction
to high-level synthesis, see [2, 3, 4].

2 .1 Basic Partitioning

2 .1.1 Definitions and Terminology

We define a graph as a set V of vertices Vi and a set E of edges ei,j connecting exactly two different
vertices Vi, Vj. Each vertex has a value area(vi), and each edge has a value weight(ei,j). A hypergraph
is defined as above, except each edge connects two or more vertices, and is called a hyperedge. A
hyperedge is denoted as ei,j, ... ,m· Thus each hyperedge is a subset of two or more vertices. Hyperedges
are often called nets. Hypergraphs are often called circuits or networks. Partitioning is the grouping
of vertices of a graph or hypergraph into disjoint sets Vi, Vi, ... Vm. Each set is called a partition or
group. We define:

areaCVi)

cutsize(Vi)

p

IPI

(a) graph

Area of a partition, equal to the sum of the areas of the
vertices in Vi.

Sum of the weights of all hyperedges which connect a vertex
in Vi to a vertex not in Vi.

The set of partitions Vi, Vi, ... Vi.
The number of partitions in P.

(b) hypergraph (c) ports extension

Figure 2: Graphs and partitions

(d) a partitioning

Partitioning is usually subject to a set of constraints and/or an objective function. There are
two types of constraints: (1) Hard constraint- a partitioning that doesn't meet the constraint is
invalid. Although it may serve as an intermediate partitioning, it is not a valid output partition. (2)
Soft constraint- a partitioning that doesn't meet the constraint is undesirable, but can be an output
partition. Common hard constraints include maximum partition area (area(Vi) < max area for all i)
and maximum partition cutsize (cutsize(Vi) < maxcutsize for all i), where maxarea and maxcutsize
are area and cutsize constraints for each partition.

2

We define an objective function (OBJFCT) as an evaluation of a partitioning. OBJFCT is
usually a function of the number of partitions, the cutsizes and areas of each partition, and various
other factors. Soft constraints are incorporated into OBJ FCT. We shall assume throughout this
report that we want to minimize the 0 BJ FCT value.

We extend hypergraphs with a set X of external ports Xi. We extend a hyp,e.redge to be a subset
of VU X. This only affects the cutsize definition. Partitioning is still a grouping of vertices only.

2.1.2 Partitioning Algorithms

There are only two basic types of partitioning algorithms:

• Constructive: creates a partitioning of a graph or hypergraph
• Iterative: improves a partitioning

We shall discuss two of the most commonly used constructive algorithms, and three of the most
commonly used iterative algorithms.

Constructive Algorithms

Random Constructive Partitioning: Given a desired number of partitions, this algorithm randomly
places each vertex into one oft.he partitions.

Algorithm 2.1 : Random Constructive Partitioning

for i = 1 to numpartitions
initialize Vi to 0, add Vi to P

for each Vi not in any Vj
add Vi to a randomly selected Vj

return P

This is the fastest and simplest constructive algorithm, but results in very poor partitions. It is
used to create an initial partition as input to an iterative algorithm.

Clustering Constructive Algorithm: this algorithm merges vertices connected by the heaviest edges,
continuing to merge until some termination criteria is met. An edge weight can be thought of as
the closeness between two vertices. Several clustering variations exists; the following is one common
algorithm:

Algorithm 2.2 : Pairwise Cluster Partitioning
for each Vi

initialize Vi to Vi, add Vi to P
while the termination criteria is not met

find i, j with largest weight(ei,j)
merge Vi, Vj into a new node Vii
remove all edges involving Vi or Vj
add an edge between Vii and every other Vi
set the weight of each new edge to newweight(i,j,k)

return P

Common termination criteria include:

3

I

J

• IPI ::; a constant
• weight(ei,j) ::; a constant for all i, j (edge-weight threshold)

Common newweight(iJ,k) functions include:

• MIN(weight(ei,k),weight(ej,k))
• MAX(weight(ei,k), weight(ej,k))
• AVERAGE(weight(ei,k), weight(ej,k))
• SUM(weight(ei,k), weight(ej,k))
• recomputation in the same manner as was done to obtain original edge weights

;g::r-¢1
V1 V2 V3 V4

(c)

10 .. ~········ cut 20 ~ !' • • • • • • •
30 ••

Figure 3: Building a cluster tree during pairwise clustering

Often various alternative partitionings must be explored rapidly. Repeatedly performing clustering
with a different termination criteria to obtain alternative partitionings can be computationally expen
sive. A cluster tree can be used to reduce computation. Building a cluster tree is done by first making
the termination criteria !Pl = 1. The initial vertices are mapped to tree leaves. The above clustering
algorithm is modified so each merge of Vi, Vj creates a nodeij in the tree with children nodei, nodej.
weight(ei,j) becomes the distance of nodeij from the root. A cut across the final tree (Figure 3(d)) de
fines a partitioning. In this way various alternative partitionings can be found by selecting alternative
cut-lines, without requiring reclustering.

Iterative Algorithms

Pairwise Exchange Iterative Partitioning: this algorithm simply swaps the vertex pair that gives the
largest decrease in the objective function value. This swapping is repeated until no swap gives a
decrease. One problem with this algorithm is that it is trapped in the first local minimum.

Group Migration Iterative Partitioning: this algorithm is an enhancement to pairwise exchange. It
permits a "bad" swap if a subsequent swap will result in a lower overall 0 BJ FCT value. The algorithm
swaps the vertex pair that gives the largest decrease or the smallest increase in the 0 BJ FCT value.
This swapping is repeated considering only vertices that have not been part of a swap, until there are
no more vertices to consider. The minimum 0 BJ FCT value is recorded. Starting with the initial
partitioning, the swap sequence is repeated until the minimum 0 BJ FCT value is reached. The entire
process is then repeated until the minimum 0 BJ FCT value achievable through swapping is not lower
than the value without swapping.

A group migration algorithm is shown below for improving two-way partitions (P = {Vi, Vi}). A
vertex that has been part of a swap is said to be fixed. The algorithm uses the following variables:

• initval: the 0 BJ FCT value before swapping

4

• minval: the minimum OBJ FCT value encountered during swapping
• bestswap: records the vertices of the best swap encountered at a particular stage and the corre

sponding 0 BJ FCT value

Algorithm 2 .3 : Group Migration

loop /* ma.in loop * /
initval = evaluate 0 BJ FCT for current partitioning
minval = oo

create a copy Parig of P while all Vk in Vi, V2 are not fixed
bestswap. val = oo

for each pair Vi, Vj, where Vi E Vi, Vj E Vi
currval = evaluate OBJ FCT if Vi, Vj swapped
if currval < bestswap. val

bestswap.(i, j, val)= (i, j, currval)
endfor
push bestswap on a queue,
swap Vbestswap.i, Vbestswap.j, fix both vertices
minval = MIN(minval, bestswap.val)

end while
set P = Porig

if initval ::; minval
return P

repeat
pop bestswap off of queue
swap Vbestswap.i, Vbestswap.j

until bestswap. val = min val
endloop /* main loop * /
return P

number of moves

Figure 4: Group migration's local solution-space search strategy

The original Kernighan/Lin algorithm used the increase in cutsize as the OBJ FCT. Fiduc
cia/Mattheyses modified the algorithm by: (1) moving a single vertex at a time, thus allowing for
unbalanced partitions and non-uniform partition areas, (2) extending the external cost calculation
for hypergraphs, and (3) selecting vertices in a time-saving manner. Their modifications changed the
algorithm from O(n2log(n)) complexity to a linear complexity. Krishnamurthy extended the algo
rithm to include look-ahead. For example, in Figure 5, moving v2 to the other partition has the same
effect on partition cut sizes as would moving v1 . However, moving v2 enables a subsequent move of
Vs to reduce the cutsize. Two subsequent moves would be needed to reduce the cutsize if v 1 was
first moved. Krishnamurthy's extension captures this subsequent-move information in the objective

5

function. Other extensions have been proposed for multi-way partitions, and for different objective
functions.

.. ... "
n1

gain(i) = external_nets(i) - internal_nets(i)
gain(1) = gain(2) = 1 - 1 = 0

Figure 5: These seemingly equal moves can be distinguished using a group migration "look-ahead" extension

Simulated Annealing Iterative Partitioning: group migration achieves good results because it accepts
a bad "move" (e.g. swap or any other change in the partitioning) if the move is part of a sequence of
moves that leads to a better overall partitioning. To limit the computational complexity, the sequence
of moves is limited by "fixing" each vertex after it is part of a move. The simulated annealing algorithm
also accepts bad moves, but limits the sequence of moves in a different way. The tolerance for accepting
bad moves is simply decreased over time.

The basic idea of the algorithm is to generate random moves, initially accepting and making many
"bad" moves (i.e. those which increase the 0 BJ FCT value), and rejecting more bad moves as time
proceeds, until only good moves are accepted and no further good moves are found. The initial
acceptance of bad moves is intended to bring the partitioning out of local minimums. The algorithm
is computationally expensive, so is usually used when partitioning quality is more important than
computer runtime. Details are beyond the scope of this report; see [l].

2.2 Basic High-level Synthesis

High-level synthesis (HLS) converts a sequential behavioral specification into a structural design
which implements that behavior. Common tasks are:

• Scheduling: Determining in which control step to perform each behavioral operation (e.g. addi
tion, multiplation, comparison).

• Allocation: Designating which physical functional units (e.g. adders, comparators, registers,
buses), and how many of each, to use in the structural design, and assigning behavioral op
erations to specific physical units (including buses).

• Control creation: Generating the design controller, using microcode and/ or random logic, and
optimizing the logic.

The structure usually consists of a control unit and a datapath (CU /DP), with one or the
other possibly being empty or very small. Follow-up tasks may include technology mapping, fioor
planning, placement, and routing. A "sequential behavior" is a behavior describable by sequential
program control constructs, such as loop and case statements, and procedure calls. It corresponds to
a single process behavior, as opposed to a multiple process behavior, in hardware description language
terminology.

A behavior is usually specified using a hardware description language, such as VHDL. Most HLS
systems convert this to an internal representation of the behavior, called a control/ data-flow graph
(CDFG). Figure 6 shows a behavioral specification and a corresponding sample CDFG. The control
portion of the graph contains square and triangular shaped nodes in our notation, and directed arcs.

6

entity VHDL EXAMPLE is
port (IL I2, I3 : in integer;

o : out integer;)
signal B, F, H : integer;

end entity;

architecture BEHAVIOR of EXAMPLE lo"". ___...___,

begin
process!

var : A, c, E : integer;

while (Il > 0) loop

e:L~Bc>-0~2; l ;~ l
B = A - I2 i ~ ~

end if; ~ ~

::'.7:!~::::: rn " , o I ; ·==:_i. I:::.

var : D : integer;

wait until (B <= OJ;

D = I 3 + B; : .. :
F = I3 + Il;

end process2;

process3
var : G : integer;

wait until (F > 0);
01 = I3 + G;
H = !3 + Il;

end process3;

end

(a) (c)

0

Figure 6: A sample mapping of a behavior to CDFGs

The dataflow portion is shown with circular nodes and undirected edges. The graph formed by the
dataflow portion only is refered to as a dataflow graph (DFG).

Partitioning can be performed at various levels of abstraction. It can be applied to the synthesized
structure, to the synthesized logic, to the DFG only, to the DFG with consideration of information in
the CDFG, to the CDFG, or to specification itself.

2.3 Motivations for Behavioral Partitioning

To date, behavioral-partitioning systems have focused on one of two goals:

• Tractability (Intrachip): Converting difficult HLS or follow-up problems into manageable ones.
• Packaging-constraint satisfaction (Interchip): Creating structure which can be implemented with

a specific chip technology

2.3.1 Partitioning for Tractability

The goal is to tradeoff the solution space size with CPU time and memory requirements. The ap
proach is to divide a problem with a large solution space into several problems with smaller solution
spaces, the totality of the smaller spaces being substantially smaller than the large space. For example,
consider an algorithm of computational complexity 0(nk), where k is a small constant, intended to
solve a particular problem such as scheduling, allocation, or logic synthesis. Assume this means that
nk computations are performed by the algorithm. If the problem is divided into p parts, then p(;)k
computations are required. Thus the ratio of the computations performed before dividing the problem
to those performed after is: P(nt_)k = pk-l This is a constant factor, so the theoretical computational

p

complexity is unchanged. However, this a very significant practical change in the number of compu-
tations required. For example, consider using an n3 algorithm (k = 3). The "speedup" obtained by
dividing a problem into four parts (p = 4) is: 43 - 1 = 16. This can mean the difference between 15

7

minutes and 4 hours. Of course, the computations required to perform the partitioning must also be
considered. Therefore, partitioning for tractability will usually use fast partitioning algorithms, such
as clustering or group migration.

CPU time and memory can also be reduced by using less complex, inferior algorithms on the
original, unpartitioned proqlem. The result is a tractable problem but less of a chance of finding a
good solution. Partitioning permits better algorithms to be applied. But a poor partition, e.g. random,
also results in a tractable problem with less of a chance of finding a good solution. The former may
search a large solution space unthoroughly, the latter may search a greatly reduced solution space very
thoroughly. Both may. not result in good solutions.

(a) (b)

Figure 7: A simple behavior for which functional units must be allocated

Consider a functional unit allocation algorithm that is independent of scheduling algorithms. In
the example of Figure 7(a), a behavior with three addition operations and one subtraction operation is
shown. If a component library contains an adder, a sub tractor, and an adder/ subtractor, any number
and combination of which may be used, then the algorithm must choose between approximately
1148 reasonable valid allocations (see Appendix A.l). By "reasonable" we mean allocations which
don't have excess functional units, such as three adders and two subtractors. If the operators are
clustered into two groups as in Figure 7(b), and then the allocation algorithm is performed separately
on each group, there are only 10 + 14 = 24 reasonable possibilities. This is because operators in
separate clusters can't share the same functional u,nit, which greatly reduces the number of possible
combinations of units. The clustering algorithm should thus insure that operators are separated into
different clusters only if their sharing a functional unit would be an inferior solution. Conversely
stated, the algorithm should attempt to group operators in the same cluster that can beneficially
share a functional unit. An important consideration of partitioning for tractability is thus to partition
in such a manner that a good solution still exists in the reduced search space. If this is done, then
it is much more likely that this good solution will be found, so partitioning may actually improve
the design quality. The partitioning for tractability approaches discussed in this report concentrate
and differ from one another primarily in the specific method of trying to keep a good solution in the
reduced solution space resulting from partitioning.

Improving design quality is often the stated goal of partitioning. As noted above, such parti
tioning has its roots in tractability. Specifically, any solution achieved using a partitioning approach
can theoretically also be achieved without partitioning, except that CPU and memory use would be
unacceptable for practical use.

2.3.2 Partitioning for Packaging-Constraint Satisfaction

The structure output of HLS must eventually be implemented as a chip set. Chips have limited
capacities of silicon area or available gates or transistors, and of the number of pins. If the structure
will not fit on a single chip or requires too many pins, it must be partitioned. The goal of behavioral
partitioning for packaging-constraint satisfaction is to enable HLS to output structural groups, each

8

group implementable as a single chip, as opposed to the structure itself being partitioned (see Figure 8).

Structural partitioning Behavioral partitioning

Behavior Behavior

l
Structure Behavior

I~ Partitioning ·

Structure Structure Structure Structure

where =a chip

(a) (b)

Figure 8: Behavioral vs. structural partitioning

Initially, this approach seems to be less desirable than structural partitioning since estimations
of structure size are less accurate at higher abstraction levels. For example, consider a transistor
schematic. Assuming custom layout implementation, the exact layout area needed for the schematic
is unknown until layout is actually obtained, since placement, routing, and compaction all affect the
layout area. Partitioning a transistor schematic among chips thus requires an area estimator. Now
consider a register-transfer level netlist; increased area estimation error occurs from not knowing the
exact results of technology mapping, logic optimization, and layout.

At the behavioral level, the results of scheduling, allocation, and controller generation are also
unknown, leading to even greater estimation error than from the structural level. However, the
significance of this error may be outweighed by several advantages to partitioning before structure.
Such advantages involve:

• Architectural decisions: it is incorrect to assume that the structure generated by HLS is inde
pendent of that structure's distribution among chips. Scheduling and allocation are influenced
by the partitioning of the behavior into chip behaviors. For example, allocation may use fewer
or smaller functional units to meet a partition's area constraint, or it may choose a faster unit to
make up for interchip communication delay with another partition. Non-essential behavior may
actually be modified to account for pin constraints; for example, a parallel data transfer between
two partitions may be changed to two transfers of half the data, using a latch to store the first
half. These tradeoffs are difficult to consider at the structural level.

• Inherent groupings: the specification may provide natural groupings (e.g. procedures) which may
correspond to good partitions.

• Behavioral chip specifications: since the structure of each chip is generated from the behavior,
this behavior serves as the chip specification. This can aid both functional testing and future
redesign.

• Fewer objects: a behavioral description can capture a system with fewer objects than a structural
description. This can speed partitioning and enable designer control over partitioning decisions.

9

3 A Survey of Behavioral Partitioning Systems

Several approaches exist for partitioning a behavior before the final structure is synthesized. The
following is a survey of these approaches. For each system,. we shall indicate the following information:

• System context: a brief description of the overall system in which the partitioning effort is
embedded.

• Subproblem and goal: the subproblem in the system to which partitioning is applied, and the
goal of that partitioning.

• Approach: a brief description of how partitioning is applied to the subproblem to obtain the goal.

• Abstraction level: a rough categorization of the level of abstraction on which partitioning is
applied.

• Mapping: the mapping of the objects of the abstraction level to a graph or hypergraph model,
or a variation of one of these models.

• Algorithm: the partitioning algorithm(s) used.
• Notes: any miscellaneous key information about the system.
• References: references to publications for the system

This is followed by a more detailed description of the partitioning approach, and is usually ac
companied with an example. There are three important aspects of each approach that should be
focused on: (1) the input level, (2) the mapping of input to partitioning objects, and (3) the use of
the partitioning results. Figure 9 summarizes these three aspects for the approaches surveyed in this
report; we shall refer again to this figure at the end of the survey.

SPECPART

VULCAN

AP ARTY

BUD

YSC

CHOP

Input level of
abstraction

behaviorally-
hierarchical
specification*

sequential,
hierarchical
CDFG

sequential CDFG

sequential CDFG
(single procedure)

logic w/ DFG-like
operations

DFG (acyclic) and
memories

Partitioning
objects

behaviors and
storage elements

CDFG nodes**

DFG and CFG
operations

DFG operations,
using CFG information

logic and DFG-like
operations

DFG operations and
memories

Use of partitioning
results

info. to specification
refinement tool

info. to HLS tool

info. to HLS tool

estimation and
info. to HLS tool

divides input of logic
synthesis tool

info. to DFG
HLStool

* a hierarchy of sequential and concurrent behaviors,
(e.g. processes, procedures, substates) plus storage elements
requires combined control/datapath target architecture

Figure 9: Comparison of behavioral-partitioning approaches

10

3.1 YSC - The Yorktown Silicon Compiler
• System context: To synthesize a sequential behavior into structure consisting of storage units

and combinational logic.
• Subproblem and goal: Tractability - reduce the runtime and memory requirements of logic syn

thesis applied to the combinational logic, and possibly improve follow-up fioorplanning quality

• Approach: The combinational logic is partitioned, with logic synthesis then run on each partition
separately.

• Abstraction level: Combinational logic, containing atomic operations from the behavior (AND,
ADD, SHIFT, EQUAL, etc.).

• Mapping: Graph model, where each vertex represents an operation, and each edge represents a
closeness.

• Algorithm: Clustering
• Notes: The partitioning uses knowledge of the logic optimization capability of each pair of

operations ("similarity information") to ensure that the reduced search space contains good
solutions.

• References: [5, 6, 7]

In Figure 10(a), a sample behavioral input and the resulting structure is shown. The behavioral
language is not any one in particular. Note that the synthesized structure can be divided into three
parts: ports (a, b, elk, y, z), storage (x, c), and logic operations (+, =, -, <),as shown in Figure lO(b).
Logic synthesis maps the operations to gates available in the target technology, such as two-input
NOR gates, and optimizes the logic. An example of optimization is converting two AND gates that
have the same inputs into a single gate.

Partitioning the logic improves the tractability of the logic synthesis problem. The approach is to
cluster the logic into groups, and apply logic synthesis to each group separately. To attain a good
solution, the closeness function attempts to merge highly connected pieces of logic while maintaining
balanced partition areas. The function is:

C(V; Vi = (ki x inputs("Vi, Vj) + wires("Vi, Vj)) k
2

z, J) maxall (k1 X inputs(Vx, Vy)+ wires(Vx, Vy))

(
limit) k

3

(limit)
X min (size("Vi), size(Vj)) X size("Vi) + size(Vj)

where:

°Vi
inputs("Vi, Vj)

wires("Vi, Vj)

size("Vi)

maxall(e(Vx, Vy))

min(x,y)

limit

ki,k2,k3

the i'th group of operations

the number of common inputs shared by groups °Vi and Vj,

the number of output to input and input to output connec
tions between groups °Vi and Vj,

the estimated size of group °Vi (in number of transistors),

the maximum value of expression e for all group pairs
Vx, Vy, x -I y,

the minimum of x and y,

a desired size limit constant,

constants

11

(1)

The first term of the equation favors merging groups which share common data, i.e. are highly
connected. The second term favors merges that involve a small group, which aids in creating balanced
partitions. The third term attempts to prevent any single partition from greatly exceeding a given
limit.

(blt-wldlhs = 4)
a b x y z Ports

waitonclk; ~M= _ x:=a+b; ~
if (a=b)

c := ((x - y) < z);

x c
elk

Combinational
Logic

(a)

threshold : 0.5

(d)

wires
91

,g2 = 0

inputs
91

,g
2

= 0

Cg1,g2 =O

wires =4
-,<

inputs+,= = 4 + 4 = 8

(b)

wires all 01hers = 0

inputs au 01hem o

max(lnputs(g
1
,g j) + wires(g

1
,gj)) = 8

c = 8 + 0 x ~ x ~ = 2.9
+,- 8 12 12+14

C =~x~x~=0.9
-,< 8 16 16+18

c =0
all others

(c)

threshold : 3.0

Merges will not occurr (2.9 < 3.0, .9 < 3.0)

+ - = <
+ 4 2 3 1

- x 4 3 1
x x 4 1

< x x x 4
similarity values

c =3x2.9=8.7 +,=

c = 1 x 0.9 = 0.9
-,<

+,= will now be merged

(e)

Figure 10: Partitioning before logic synthesis

As given above, the partitioning considers oniy the structural aspects of the logic. Knowledge
of the logic synthesis task can be used to improve the overall results. Specifically, particular pairs
of operations are more amenable to logic synthesis than other pairs. For example, consider an =
operation which compares two bit-vectors for equality. Equality can be determined by ANDing the
complements of the exclusive-OR of all bit pairs. A + operation might be implemented using an
exclusive-OR to generate the sum value for each bit pair. If the two operations have the same inputs,
then logic optimization would ideally share the exclusive-OR gates of these two operations, reducing
the logic required.

Similarity of two atomic operations is thus defined as the amenability of the operation pair to
successful logic optimization. Similarity can be computed by attempting logic synthesis for various
configurations of each pair. Results can be stored as values in a similarity table. During partitioning,
the closeness values as determined above can be multiplied by this similarity value, i.e.:

C(Vi, Vj)' = similarity(Vi, Vj) x C(Vi, Vj) (2)

As an example, consider Figure lO(c). The closeness value computations are shown for the example
in Figure 10(a) using the original cost function, which .does not consider similarity information. The
graph model on which clustering will be applied is also shown. In Figure 10(d), clustering for an
edge weight threshold of 0.5 is shown. Note that operations + and = were grouped, based solely
on their interconnectivity and size. Consider if the threshold was increased to 3.0 (or conversely, if
the size limit was reduced). Since no closeness value exceeds this, clustering would not have grouped

12

any operations. However, we intuitively know that + and = are excellent candidates for merging,
as discussed above. This knowledge is accounted for by using the similarity value. In Figure 10(e),
each closeness value is multiplied by the corresponding similarity value. This results in the closeness
value of + and = to exceed 3.0, so that a subsequent clustering would group these two operations, as
desired.

3.2 BUD - Bottom-Up Design
• System context: To synthesize a sequential behavior into structure consisting of a control unit

and one or more datapaths.
• Subproblem and goal: Tractability, leading to better designs - use estimations of the eventual

area/time characteristics of the structure as an aid to making scheduling and allocation decisions.

• Approach: Behavioral operations are partitioned, with allocation performed separately on each
group. The area for each group is estimated, and the area of the entire structure estimated
through floorplanning. Scheduling is done, a clock is determined, and the average cycle time is
computed. Area and time characteristics for various partitionings can be rapidly evaluated in
this manner. A partitioning essentially determines a scheduling and allocation, thus conveniently
encapsulating the key HLS decisions.

• Abstraction level: DFG, using CDFG information to guide the partitioning.
• Mapping: Graph model, where each vertex represents an operation that must be bound to a

functional unit, and each edge represents a closeness.
• Algorithm: Clustering, making use of a cluster tree.
• References: [8, 9, 10]

The motivation for developing BUD is that physical design characteristics, such as placement and
routing, play an essential role in the area and delay of a structural design. System designers, it is
observed, make heavy use of such information in making design decisions. Therefore, synthesis tools
should also incorporate such "bottom-up" information when transforming behavior into structure.
The goal is to provide accurate estimates of the area and delay for a given behavior throughout HLS.
The issue is then to perform HLS tasks in a manner that permits accurate estimation. For example,
given only a set of functional-units, interconnect estimations will be extremely inaccurate due to the
large number of possible bindings of operations to functional units; hence an approach which first
selects functional units for the entire behavior is not amenable to estimation.

The approach taken in BUD is to perform HLS tasks by partitioning the behavioral operations of
a CDFG. Since BUD's allocation algorithm is simple and is applied to each partition separately, the
partitioning decisions encompass the major tradeoffs of the design. In addition, the partitions make
likely structural objects, so the area of each object, as well as that of the collection of these objects,
can then be estimated with accuracy. By choosing various partitions, a portion of the design space
can be rapidly explored.

BUD takes as input a CDFG and an area/time OBJ FCT, among other items. The input CDFG
consists of a single acyclic CDFG ("procedure" or "vtbody"). BUD also has access to a database
which returns detailed functional unit structural information, such as area, height, width, and delay.
BUD's overall algorithm is described below. The loop can be exited at any time.

• STEP 1: Select the DFG operations that must be bound to a functional unit (e.g.+,~,=).
Make each operation a graph vertex. For every vertex pair, create an edge with the weight being
the closeness C(vi, Vj) (defined below).

13

• STEP 2: Build a cluster tree, using AVERAGE as the newweight function.

• STEP 3: For each tree level, starting at the root, loop

- Set the partitions to those determined by a cut at this level.
- Estimate area/time for this partitioning (see below).
- Calculate the 0 BJ FCT(area, time) value. Store this information.

• STEP 4: Choose the best partitioning and generate the output structure through scheduling
and allocation. ·

The closeness function is defined as:

where:

v· i

commconn

total conn

par(vi,Vj)

the i'th operation,

the cost, based on delay and area, of the minimal number of
functional units needed to perform all the given operations,

the number of datafiow connections shared by Vi and Vj,

the total datafiow connections to either Vi or vy,

1 if Vi and Vj can be done in parallel, 0 otherwise,

The first term in the equation favors merging operations which have lower area/ delay cost us
ing the same functional unit than when using separate units. For example, a two's complement
adder/subtractor merely complements one input to change an addition to a subtraction. Thus the
area of such a unit is less than the sum of the areas of a separate adder and subtractor. The second
term favors merging operations which use common data. This reduces routing area. The third term
tries to avoid merging operations that can be executed concurrently, since BUD 's scheduler always
schedules merged operations sequentially.

The equation can be enhanced by weighing each term by its significance to the overall design. The
first term can be multiplied by the area of the functional unit needed to perform operations Vi, Vj

divided by the total area of the design, so that large scale merges are more likely than small ones.
For example, a merge which results in a 1000mm2 functional unit has more effect on the overall area
than a merge which results in a 10mm2 unit. The third term of the equation can be multiplied by
the probability of either Vi or Vj being executed in one major cycle of the hardware divided by the
average number of steps in the cycle. This relaxes the parallelism goal for seldomly used operations,
since they have little effect on the average cycle time.

Given a partitioning, BUD allocates each partition using the minimal number of function units
needed to perform all the operations in that partition. The CDFG is scheduled with the restriction
that operations in the same cluster can not be scheduled into the same control step (unless chaining is
used). Given this information, estimations are possible. The details of estimation are beyond the scope
of this report. However they are an integral part of BUD so we shall briefly overview the approach
used.

The registers needed to hold values between control steps are determined. The length and width,
and hence the area, are determined from the registers, functional units, multiplexers, and wiring

14

I STEP 1 I
x :=a +b;
if (a=b)

C := ((x-y) < Z); • (bll-wldl/Js-4)

·~
?x ~est

Operators requiring functional unit: +,=,-,<

fcost values (from database)
+ - +- < <=> other-combinations

20 25 30 20 10 25 sum

<1,J = C(Vl,v f
c =20+10-30 +~ - 1

+,·y~

from !cost from DFG /ab/f connec/lons

lcost(+) + lcost(-) + lcost(+-)

lcOS1(+-)

G =~+-4-- 0 :.7
+,- 30 12+8

C =~+-O __ 0 :0
+,< 40 12+9

c __ =~+-0-- o =O
• 35 12+9

G =~+-O __ 0 :.2
-.< 25 9+9

=-.38 *~+ 0

~ =~2 .7~
~ - .

-0.

c_< =~+-4-- - o =.24
' 45 4+4+4+4+ 1

. 7 ... r-1-i
+

I
<

.035~ ...
2
.T···

2:..:..:.r..:.. ~
.7""11 I I

+ < + <

Figure 11: Building a cluster tree in BUD for behavioral operations

needed within the cluster, assuming a particular layout style. A floorplanner places these cluster
objects on a chip. The bounding box of these placed objects is the estimated area A.

The clock cycle is estimated as the maximum delay through the datapath for any control step.
Contributors to delay include functional units, multiplexors, registers, and wires. The average cycle
time T is then clock X L:i Pi, where Pi is the probability that control step i is executed in a major
cycle of the design. These probabilities are determined from branch probabilities provided as input to
BUD. Once A and T have been estimated, OBJFCT(A, T) can be evaluated.

cutlevel (clusters) chip area A expected cycle OBJFCT = A'xT
timeT

(+-=<) 17.5 36 630

.035 (+-, =<) 15.8 26 411

2 (+-, =, <) 13.8 26 359 (best)

.7 (+,-, =, <) 16.4 26 426

clock ste 1

clock step2 assume clock= 10

clock step 3

T = 10 x L: p = 1 Ox(p +p +p +p l
I I + = - <

= 10x(1+1+.8+.8) = 36

clock step4

(a)

chip

controller

(b) Synthesized Design

Figure 12: Selecting a partitioning and creating partitioned structure in BUD

In Figure 11, a simple behavior is described, and the first two steps of BUD's algorithm are shown.
In Figure 12, the third step is shown, which involves computing the value of 0 BJ FCT for various
partitions determined by different cuts of the cluster tree, where the details of estimation have been
omitted. As an example of expected cycle-time estimation, consider the first row of the table in
Figure 12. Since all operations are in the same cluster, none will share the same clock step. Thus

15

four cycles are needed. The expected cycle time of 36 was computed using the fact that the right
branch of the CDFG is taken 80% of the time. For the other three rows of the table, + and = are in
separate clusters so can be done in parallel, resulting in a shorter expected cycle time. For the given
0 BJ FCT, it is fo~.md that clustering + and - is beneficial, due to the sharing of a functional unit
and reduced wiring .. However, merging = and < is not beneficial, since the advantage of using a single
functional unit is outweighed by the need for additional multiplexors, the wiring between clusters, and
the resulting floorplan aspect ratio.

3.2.1 Synthesis by Delayed Binding of Decisions

BUD's clustering approach was also used in (11] as part of an effort to perform HLS without making
important decisions concerning scheduling and allocation independently. The clustering serves to
prune the solution space to promising designs, therefore improving design quality through tractability.
Minor variations from BUD's approach include differing assumptions of functional unit sharability
and consideration of more than one "procedure".

3.3 APARTY - Architectural Partitioning
• System context: To synthesize a sequential behavior into structure consisting of one or more

control units and one or more datapaths.
• Subproblem and goal: Tractability leading to better designs, indirectly addressing packaging

constraints- create structural partitions from a behavior to guide HLS tasks in a manner which
improves area and performance of the resulting design.

• Approach: Behavioral operations are clustered, using an algorithm in which clustering and tree
cutting can be iterated. During each iteration, the clusters resulting from the previous cut
serve as the input to the next clustering. Any one of several closeness functions can be used
during an iteration. Simple allocation and/ or scheduling can be done to estimate cluster area,
interconnection requirements, or schedule length. Various partitionings can be rapidly evaluated
in this manner.

• Abstraction level: CDFG
• Mapping: Graph model, where each vertex represents an operation that must be bound to a

functional unit or a control branch operation, and each edge represents a closeness.
• Algorithm: Clustering, making use of a cluster tree, and permitting multiple stages of clustering

with different closeness functions.
• References: [12, 13, 14, 15]

There are two apparent limitations in the BUD approach which APARTY seeks to overcome:

1. As a cluster tree is built, the closeness of two clusters will contain some error since it is not actually
recomputed, but is instead taken as an average of the weights between the cluster members.

2. The criteria of interconnect, functional-unit sharability, and potential parallelism are all incor
porated as terms of a single closeness function. It may be difficult or impossible to balance the
relative weights of these terms to achieve the desired design.

The first limitation is solved by clustering in stages. Each time a cutline is selected, the resulting
clusters can serve as the basis of a new clustering. Thus, a new graph model must be created, with
edge weights corresponding to the closeness between a pair of clusters. This requires that closeness
be defined between groups of operations (clusters), rather than just between pairs of operations. An

16

example of this extension to traditional clustering is shown in Figure 13. Figure 13(a) is taken directly
from Figure 3(d).

The second limitation is addressed by providing a variety of closeness functions, each of which
concentrates on a specific criteria (possibly different from those in BUD). Since clustering is now done
in stages, each stage can use any on~ .of these functions. In addition, different 0 BJ FCTs can be
applied at each stage.

10~ 20 : : : : : : .. cut
30. '. 1• • • • • ••

Closeness values are
recomputed entirely
from scratch using
the same or different
closeness function.

(b)

Figure 13: Multistage clustering

I.. . . • .. a
19 ... ~.. cut
23 . '.

APARTY takes as input a CDFG and a set of physical constraints, among other items. The input
CDFG consists of a set of acyclic CDFG's ("procedures" or "vtbodies"), and their possibly cyclic
relationships. Constraints are also specified (e.g. maximum partition area or maximum schedule
length). APARTY has access to technology information, such as area per bit used for an operation.
The partitioning methodology is described below.

•STEP 1: Choose a closeness function C(vi,Vj) (described below). Make each object (clusters if
the CDFG is already partitioned, operations otherwise) a graph vertex. For every vertex pair,
create an edge with the weight being the closeness C(Vi, Vj).

• STEP 2: Build a cluster tree, using MIN or MAX as the newweight function.

• STEP 3: For each tree level, usually starting at the leafs, do:

- Set the partitions to those determined by a cut at this level.
- Choose a cutline criteria (area, interconnect, or time), and estimate its value (see below).
- If the estimated value exceeds a physical constraint, go to the next level. Otherwise, calculate

the 0 BJ FCT(criteria) value. The actual 0 BJ FCT details are up to the designer to decide.

• STEP 4: Choose the "best" partitioning. Repeat STEP 1 using the partitioned CDFG, or
terminate if decided by the designer. The output structure can be generated using HLS tools
that use the partitioning information as a guide.

APARTY's closeness functions focus on one of three goals:

• Control Transfer Reduction: Reduce the number of times that control is passed between parti
tions, thus improving performance if interpartition delay is large. This assumes that multiple
controllers can be generated for the partitions.

• Data Transfer Reduction: Reduce the interconnections required for data transfer between clus
ters, thus reducing the data lines between partitions and perhaps improving performance.

17

• Hardware Sharing: Reduce the overall hardware used by sharing functional units.

There are five such functions defined in AP ARTY:

Control closeness of operations:
• Goal: Control Transfer Reduction.
• Closeness Function:

(4)

where P(Vi Jvj) is the probability that operation j is executed given that operation i is executed,
and both operations belong to the same acyclic CDFG. For example, in Figure 12, P(v+, v=) = 1
and P(v+, v_) = .8.

• Favors merging: operations that are likely to both be executed in a single pass through an acyclic
behavior.

Data closeness of clusters:
• Goal: Data Trans! er Reduction.
• Closeness Function:

C V.· V _ · commconn(Vi, Vj)
(i, J) - totalconn(Vi) + totalconn(Vj)

(5)

where commconn and totalconn are defined as in Section 3.2, extended for a pair of operation
groups, rather than just a pair of operations. Note that the function is C(Vi, Vj), and not
C(Vi, Vj), since we are dealing with clusters, not operations. See Figure 11 for an example.

• Favors merging: clusters which would otherwise require many data lines between them for passing
data.

Control closeness of clusters:
• Goal: Control Transfer Reduction.
• Closeness Function:

C(Vi, Vj) = P(Vi n Y.f) = P(Vi) x P(VjJVi) (6)

P(Vi) is the probability that an operation in cluster Vi is activated, where each operation may
belong to any of the acyclic CDFG's.

• Favors merging: clusters (as opposed to operations) that are likely to both be executed in a
single pass of the sequential behavior.

• Notes: (1) This function considers cluster pairs rather than just operation pairs. (2) There
may be cyclic relationships between any acyclic CDFG's. Thus, the additional P(Vi) factor
is required to more heavily weight clusters that contain commonly executed operations. (3)
P(Vi n Vj) also equals P(Vj) x P(VilVj). This value may differ from that given above, since
calls between procedures are not necessarily symmetric. APARTY uses the maximum of the two
possible values. (4) Since APARTY does not currently take branch probabilities as an input, the
above probabilities are estimated statically.

Parameter data closeness of clusters:
• Goal: Data Trans! er Reduction.
• Closeness Function:

C(V; V) _ CommCalls(Vi, Vj)
n 1

- Lk ExternCalls(Vi,Pk) + Lk ExternCalls(Vj,pk)
(7)

where CommCalls(11i, Vj) is the number of procedures called by both Vi and Vj, Pk is a procedure,
and ExternCalls(Vi,Pk) is the total number of calls, made from anywhere, to the procedure Pk,
if Pk is called in Vi (otherwise it is zero).

18

• Favors merging: clusters which would otherwise require many data lines for passing procedure
parameters between themselves or to another cluster

• Notes: the denominator terms decrease the closeness value if a common procedure is also called
from many other clusters. Conversely stated, the closeness of two clusters is increased if some
procedure is called only by those two clusters.

Functional unit sharability of operations:

• Goal: Ha rd ware Sharing.
• Closeness Function:

where:

D(Vk, Vt)

j(vk,Vt)

f (Vk, Vt)/\ g(Vk, VI)

1 if Vk, v1 are scheduled into different control steps, 0 other
wise
1 if vk, v1 can share a functional unit, 0 otherwise

• Favors merging: Operators that can share the same functional unit. It discourages merging
operations that are scheduled concurrently, since otherwise the operations would have to be
rescheduled sequentially to execute on the same functional unit, thus negatively affecting perfor
mance.

• Notes: The CDFG must have been preliminarily scheduled.

Several possible 0 BJ FCTs can be used to select a cutline, based on estimates of the area per
cluster, the cluster interconnect, or the schedule length. Area evaluation: Each cluster is assumed
to use the minimum required number of functional units. Contributors to a cluster's estimated area
are the functional units and multiplexors. A maximum area constraint is an input to the system.
Interconnect evaluation: Calculated as the average number and size of external data values accessed per
cluster. Clusters whose area is less than a minimum area constraint are ignored. Low interconnect is
prefered. Schedule length: Each cluster is assumed to use the minimum required number of functional
units. The partitioning information is considered when scheduling. A maximum schedule length
constraint is an input to the system.

For APARTY's built in OBJFCTs, if more than one cutline is valid for area or schedule length
evaluation, then the highest one is chosen. This assumes that higher cuts will encourage shared
functional units and thus result in lower overall area, assuming that interconnect area can be ignored.

Partitioning in APARTY consists of choosing the number of clustering stages, and selecting a
closeness function and 0 BJ FCT to be applied at each stage. The standard configuration is:

1. Closeness Function: Control closeness of operations
0 BJ FCT : highest cutline meeting maximum area constraint

2. Closeness Function: Data closeness of clusters
0 BJ FCT : highest cutline meeting maximum area constraint with minimum average data
interconnections per partition

3. Closeness Function: Control closeness of clusters
OBJ FCT : highest cutline meeting maximum area constraint

4. Closeness Function: Parameter data closeness of clusters
0 BJ FCT : highest cutline meeting maximum area constraint

19

5. Closeness Function: Functional unit sharability of operations
0 BJ FCT : highest cutline meeting maximum area constraint

This obtains what is often called instruction-set partitioning. Alternatively, data partitioning can
be achieved by using data closeness functions only, perhaps ending with the functional-unit sharability
function to reduce hardware. Data partitioning focuses on reducing data interconnect.

The CDFG is passed to HLS tools along with the partitioning information. Currently, the tools used
will generate a single controller for the design. Ideally, partitions might contain their own controllers.
This requires general transformations to be applied to the CDFG such that a partition is made into
a separate process. No such transformations currently exist.

3.4 Workbench Behavioral Transformations
• System context: To synthesize a sequential behavior into structure consisting of one or more

control units and one or more datapaths.
• Subproblem and goal: Tractability leading to better designs, and packaging constraints - To divide

the sequential behavior into concurrent behaviors (processes) such that HLS can accommodate
behavioral chip partitioning or improve area and performance of the resulting design.

• Approach: Partitioning choices are entirely up to the designer. The system provides a set of
CDFG transformations for converting.a a subset of possible CDFG partitionings into processes.
If an original single process is too large to fit on a chip, transformations can create multiple
smaller processes to be distributed among multiple chips. Another transformation organizes
processes in a manner that indicates to the scheduler that each process is a stage in a pipeline,
which may improve performance.

• Abstraction level: CDFG
• Mapping: None - partitioning is up to the designer.
• Algorithm: None - partitioning is up to the designer.
• Notes: This research effort focuses on the details of the CDFG transformations to create par

titions that represent processes and pipestages, and on the usefulness of such transformations.
Deciding what the partitions should be is a task left to the designer. Although the transforma
tions are quite useful, they are beyond the scope of this survey, which focuses on the task of
partitioning decisions. Note that the transformations are not general enough to be used to gen
erate processes for all possible CDFG partitionings that may be output by a CDFG partitioning
system.

• References: [15, 16, 17]

3.5 Vulcan - Partitioning of Functional Models
• System context: To synthesize a sequential behavior into structure consisting of multiple inter

connected combined controller/ datapaths.
• Subproblem and goal: Packaging constraints - partition the behavior such that the structure

synthesized for each partition meets chip-packaging constraints while also meeting an overall
schedule length constraint.

• Approach: In the representation used, CDFG control nodes can be hierarchically composed
of CDFG's. By assuming a combined controller/datapath target architecture, the hierarchical
CDFG maps easily to a hierarchical hypergraph model, which is then partitioned using modified
hypergraph partitioning algorithms. Focus is on creating OBJ FCT's which efficiently recompute
area, pin, and schedule length estimates after each move in an algorithm. Initially, vertices of a
single hierarchical lev:el in the hypergraph are considered; if constraints can not be met, a large
vertex is decomposed and iterative partitioning is applied.

20

• Abstraction level: CDFG
• Mapping: Hierarchical hypergraph model with edges and hyperedges. Each hierarchical CDFG

node is mapped to a hierarchical vertex, and each control or data dependency edge is mapped
to an edge. Hardware sharing between CDFG nodes is represented as a hyperedge.

• Algorithm: Modified group migration and simulated annealing
• Notes: In this synthesis approach, a different CDFG representation is used. Each CDFG

node is synthesized into a separate finite-state machine, thus generating multiple combined con
troller/ data paths.

• References: [18, 19]

In Figure 14, a sample CDFG is shown. The HLS approach used maps each CDFG control node
to a controller/ datapath pair. Each controller is either waiting, active, or done. When waiting, the
controller waits for all controllers of predecessor CDFG nodes to be done. At this time it becomes
active and begins executing its corresponding operation. When the operation is complete, it is done.
It only returns to waiting if the entire CDFG is reset (e.g. after one major cycle of the hardware).

v

z

x y

regular edge -, -- denotes dependency

hyperedge - - - - - denotes shared hardware

partitioning cannot cut hyperedge

Figure 14: Th~ extended hypergraph model in Vulcan

Creating a separate controller per CD FG node is relevant because each node represents an entity
with a specific interface (done and reset control signals, and data). Thus each node has an estimated
size and an interconnect with other nodes, so maps easily to a hypergraph partitioning model.

The inputs to VULCAN are a CDFG, area, pin and schedule length constraints, a clock cycle time,
and sets of nodes which share the same hardware, among other things. The overall algorithm is as
follows:

• STEP 1: Map the hierarchical CDFG to a hierarchical graph model. If several CDFG nodes will
be implemented with the same hardware, create a hyperedge between the corresponding vertices.

• STEP 2: Estimate the area of each vertex, the wire width (i.e. weight) of each edge, and the
schedule length of the hypergraph (see below).

• STEP 3: Apply a two-way hypergraph partitioning algorithm, using a modified 0 BJ FCT (see
below). If area constraints can not be met, partition the subgraph of the largest vertex. Repeat
until constraints are met. Multi-way partitions are achieved by repeated two-way partitioning.
The vertices of a hyperedge must always be in the same partition, since they will share the same
hardware.

• STEP 4: Synthesize structure for each partition. Each partition's structure corresponds to a
chip.

Bottom-level CDFG nodes represent combinational logic blocks, so the area of the corresponding
vertex is estimated as a function of the number of literals. The areas of relevant bottom-level vertices

21

are summed to obtain the area of a higher-level (i.e. complex) vertex. The exception is for vertices
incident to a hyperedge; in this case, only one vertex per hyperedge contributes to the area, since
all of these vertices will share the same hardware. The area of a partition is estimated in a similar
manner. Edge weights are estimated as the number of wires needed for control (to indicate done and
reset) plus the number of wires needed for data.

Vertices that represent combinational blocks are assigned a delay equal to the estimated number
of clock cycles required for signals to propagate through the block. A complex vertex's delay is then
the longest delay through all paths of its subgraph, plus one clock cycle for every edge on the path
that crosses between partitions, representing interchip delay. The schedule length T is then the delay
of the CDFG's longest path.

The partitioning is subject to:

• area(Vi) :::; maxarea and cutsize(Vi) < maxcutsize for all i, and T < maxschedule (hard
constraints)

• OBJFCT = k1avgcut+ k2(T- maxschedule)

where avg cut is the average cutsize of all Vi, and ki, k2 are constants. Given a partitioning that
meets the hard constraints, the above 0 BJ FCT attempts to minimize the av.erage number of pins
per chip and the overall schedule length. Variations of this 0 BJ FCT have also been proposed.

During partitioning, objects are tentatively moved among partitions. It is inefficient to recompute
the values of all partition areas and cutsizes as well as the schedule length for each move. Incremental
modifications to those values will save computation. Doing so for area is simple: simply subtract the
areas of the moved objects from the source partition, and add it to the destination partition. Cutsize
is also straightforward. Schedule length, however, can not be incrementally modified. Thus VULCAN
uses an approximation of the change, and only recomputes the actual schedule length when an actual
move (as opposed to a tentative one) is made.

3.6 CHOP
• System context: To synthesize a D FG and memories into structure consisting of one control unit

and one or more datapaths.
• Subproblem and goal: Packaging constraints - partition the DFG and memories such that the

structure synthesized for each partition meets chip packaging and schedule length constraints.
• Approach: Permit rapid estimation for a given DFG partitioning. Feasible implementations for

each partition are estimated, and then a feasible overall implementation is selected. Area, pin,
and delay estimates are derived from this.

• Abstraction level: DFG and memories
• Mapping: Graph model, mapping DFG nodes to vertices, DFG edges to edges.
• Algorithm: None - partitioning is up to the designer.
• Notes: CHOP assumes behavior is described as a DFG, as opposed to a CDFG, which restricts

its usefulness to a small subset of applications (acyclic data-operations only). CHOP actually
performs estimation (not partitioning), most of the details of which are beyond the scope of this
survey.

• References: [20, 21]

The inputs to CHOP are a DFG and memories, area, pin, and schedule length constraints, a
partitioning, and technology information, among other things. The overall algorithm is as follows:

22

• STEP 1: Create a set of feasible implementations for each partition. Various possible allocation
and pipelining choices are considered, among other things. Estimate the area, cutsize, and
schedule length of each feasible implementation.

• STEP 2: Choose a feasible implementation for each partition, considering area constraints for
each partition and the overall schedule constraint.

• STEP 3: Permit the designer to repartition and return to STEP 1. Conversely, apply a synthesis
tool to generate structure for each partition, passing the feasibility implementation information
to the tool.

3. 7 SpecPart - Specification Partitioning
• System context: To synthesize a a set of concurrent and sequential behaviors into structure

consisting of one or more control units and datapaths.
• Subproblem and goal: Packaging constraints - partition the behavior such that the structure syn

thesized for each partition meets chip-packaging constraints, while also meeting an overall system
performance constraint, and retaining the ability to modify the behavior after partitioning.

• Approach: Partition the specification itself, as part of a partitioning/ communication-tradeoffs
design iteration loop. Entire specification portions (behaviors and storage elements) are treated
as the objects considered for grouping. Each object has an estimated area determined by treating
each as a CU /DP; a system clock is estimated and scheduling and allocation are performed on
each object. Each object communicates with others through data and control ports. Objects are
partitioned into chips. The area of each chip and the pins required for interchip communication
are estimated. Expected execution time of each object is estimated, based on both computa
tion and communication times (including off-chip delays). Various partitionings can be rapidly
evaluated in this manner.

• Abstraction level: Specification objects (language-imposed behavioral groupings and storage el
ements)

• Mapping: Hypergraph model, where specification objects (procedures, substates, processes, stor
age) are mapped to nodes. Estimated control and data lines between objects are represented as
hyperedges. Extension: special directed edges are added to represent estimated on-chip/off-chip
communication times.

• Algorithm: Any hypergraph partitioning. Currently clustering, group migration, and manual. A
modified 0 BJ FCT is used for the extended hypergraph.

The motivation for developing SpecPart is the elevation of behavioral partitioning from the op
eration level to the algorithmic level (see Section 1), where a behavioral specification is viewed as a
set of behaviors, such as processes, procedures, substates, and other code groupings imposed by the
language, and a set of storage elements, including registers, memories, stacks, and queues. These
behaviors and storage elements are then grouped into chips. This approach is in contrast to con
verting a description to a CDFG, and then grouping the data and control nodes (i.e. operation-level
partitioning).

A focus is on determining how to obtain estimates of the area and pins of a group. Several behaviors
that belong to a group may be sequential to one another, meaning that their structural implemen
tation may share a single CU /DP. The effect of this sharing on structure area can be considered by
applying to each group an area estimator which assumes the implementation will use a minimal num
ber of CU /DPs. This estimation method is only feasible when considering a small number of possible
groupings (e.g. when using a cluster tree). To consider more possible groupings, which is necessary to
explore area/pin/performance tradeoffs thoroughly, a faster estimation method is needed. Each object

23

I
J

is treated as an individual CU /DP, and hence has its area estimated only once, before partitioning.
A group's area is then the sum of its members' areas.

A second focus is on refining the original behavioral specification with the chip structure determined
by partitioning, as opposed to combining the addition of chip structure with structural synthesis of
the behavior. Thi_s _is. seen as necessary since the specification may be changed by the designer after
partitioning, as is commonly done in practice.

A third focus is on incorporating performance constraints for multiple behaviors into partitioning.
This is done by extending the hypergraph model, by using an abstraction in which communi~ation is
modeled as protocols, and by modifying the objective function.

SpecPart takes as input a hierarchical behavioral specification (in the SpecCharts language [22]),
an 0 BJ FCT based on area, pins, performance and the number of chips, and a set of soft constraints
on these metrics, among other things. It also has access to area, wire/pin, and execution-time estima
tors. The overall algorithm is described below (for the moment we shall ignore system performance
constraints).

• ·STEP 1: Select the specification objects to be considered for partitioning (see below). Convert
each object into a new concurrent process that communicates with other processes through
connected ports (see below).

• STEP 2: Map each object to a vertex. Estimate the area of each object assuming a single
CU /DP implementation, making this the vertex area. For each set of connected ports, add a
hyperedge between the corresponding vertices, with a weight equal to the estimated wire-width
of the ports.

• STEP 3: Partition the hypergraph, using hypergraph algorithms or manually, and provide
evaluation metrics. Go to step 1, step 3, or step 4, based on the designer's choice.

• STEP 4: Create a refined specification in the original language, containing chip modules and
their interconnection, and the behavioral spedfication of each chip.

Treating sequential behaviors as separate CU /DPs may lead to slightly inaccurate area estimates.
Thus, a goal of object selection is to choose the minimal number of behaviors (i.e. those high in the
specification hierarchy which encompass many sub-behaviors and storage elements) such that objects
are still fine-grained enough to enable a satisfactory partitioning.

Each object is moved to a concurrent process which communicates with other processes through
ports only. A behavior's original location will only contain actions which activate/ deactivate the new
process. All access to memories is through address and data ports; for registers, access is simply
through data ports. The area estimator provides an area for each process. All ports are of one
dimensional type, since memories are accessed with address and data ports; thus the wire-width of
each connection of ports is estimated simply as the number of bits required.

Each process is mapped to a hypergraph vertex, and each port interconnection to a hyperedge.
Any hypergraph partitioning algorithm can then be applied. An existing example is a clustering
algorithm using SU lvl as the newweight function. Group migration has also been incorporated, using
the following straightforward OBJ FCT:

24

OBJFCT = ki L (100 X excessarea(Vi))2 + k2 L (100 X excesscutsi~e(Vi))2
. max area . maxcutszze
i t

ports mode rd wr sel Din Daul Parity

memory MO, M1;
register PC, x, y, z;

CALC
loop

wait on mode;
if (moda="01)

PC :=PC+1;
elsif (moda="10i

PC := Din+x+y+z;

INTERFACE

READ
if (rd='1' and sel='O')

Daul := MO(PCJ;
Parity := EXOR(MO[PC]);

elsif (rd='1' and sel='1')
Daul := M1(PC];
Parity := EXOR(M1 (PC]);

event1 evenl2

WRITE

(a)

if (wr='1' and sel='O')
MO(PC~ :=Din;

elsif (wr= 1' and se1='1 ')
M1 [PC] := Din;

chip 1

area:3100
pins: 16

+k
3

(lOo X excessc~ips)
2

(g)
max chips

sel

wr

rd
Parity

Dout

Din

chip2
OBJFCT = ((100x(3100-2800)/2800)

2
+ (1 OOx0/2800)) 2

+ ((100x0/30f + (100x0/30)
2

) + (100x0/2)
2

.____...... I OBJFCT = 114.8 I
area: 1420

pins: 10

constraints: area < 2800
pins<30 (c)

Figure 15: Specification partitioning

This function attempts to minimize constraint v~olations. If a metric does not exceed a constraint,
then its excess value is zero, rather than being a negative value. Thus, any partitionings that meet
all constraints are considered equal. Multiplying each term by 100 makes the term a percentage by
which the actual value is greater than the constraint. Squaring of terms is done to favor balanced over
unbalanced excesses. Other objective functions can also be used.

When a satisfactory partitioning is found, a new specification is generated. At its top-level will
be processes representing the chips, with connections between these for communication. The goal
of refinement is to minimize the change from the original specification; hence a behavior or storage
element is only converted to a process if the partitioning requires it. For example, a memory that was
originally declared as a global memory need only be converted to a process if it is accessed off-chip;
otherwise it is a global memory in the chip on which it exists. Similarly, a behavior in the hierarchy
is only converted to a process if its ancestor behavioral object is on a separate chip; otherwise it will
appear in the ancestor's hierarchy just as it did in the original specification.

In Figure 15(a), a behavior with two processes, each represented as a box, is shown (in no particular
language). The second process consists of two sub-behaviors that could be processes, procedures, or
substates. Two memories and four registers are also declared. In the example, only the objects at
the top of the specification hierarchy are selected; thus, INTERFACE is considered in its entirety.
Figure 1.5(c) shows the hypergraph model created for this example, including estimates of the number
of wires between objects. Note that nine wires are estimated for communication between INTERFACE
and Ml. Four are for address, four for data, and one to indicate writing or reading. A partitioning is
also shown. Figure 15(d) shows the partitioning evaluation. The only constraint exceeded is the area

25

I STEP 1 I

SYSTEM

ICALC loop

jWRITE

(a)

memories and registers each
have their own prowss

INTERFACE READ

activates READ wait uni/I activated
and WRITE if (rd='1' and sel-'O')

MO

wait until activated ports Addr : In bitvectOf;
if (wr='1' and sel='O')

(b)

Data: inout bitvector;

lnterfaws with other
fXOWSSeS through
a<kiress and data ports

lsTEP 2 & 3 j

(c)

Dout

Parity
rd

~~~~p:::;;::;i!.:t7-sel 
"'1---lt-"""...---'- wr 

Din 

Figure 16: Decomposing a behavior for finer-granularity partitioning 

SYSTEM 
ports mode Din wr 

CHIP1 mode Din wr sel 

register x,y,z; 

~ CALC 
cal loop w -wait on mode; t-

if (mode="01) a: 
PCI := PCo + 1; 3 

elsif (mode="1 O") 
PCi := Din+x+y+z; 0 8 a. 

a. 

PC_process 0 
register PC; a. 

~ 
PCo := PC always; 

8 PC := PCI when PCl'aciive; 

WRITE ~ wait until WRITE active; 
if (wr='1' and sel.;;;O') 

wrMO(PCo,Dln); < elsif (wr='1' and sel='1') 
wrM1 (PCo,Dln); Ei 

~ 

CHIP2 

::: 
JJ 
=i 

I~ 
03 

"ti 
() 
0 

E; 

8 

~ 

~ 

S! 

~ 

sel rd 

; i 
sel rd 

INTERFACE 

READ 

Dou1 Parity 

tttt t 
Dou1 Parity 

if (rd='1 'and sel='O') 

~!:1~~,9~~~lbout); 
el~~J~~6oji~~}:=· 1? 

Parity := EXOR(Dout); 

event1 event2 

WRITE_aciive <= '1'; 

MO_process 
memory MO; 

loop 
if (rw0='1') 

MO(AO] := DO; 
else 

DO := MO[AO]; 

M1_process 
memory M1; 

loop 
if(rw1='1') 

Mt[A1]:=D1; 
else 

Dt :=M1[A1]; 

Figure 17: A refined specification resulting from partitioning 

26 



constraint of the first chip, which leads to a positive value for 0 BJ FCT. 

In Figure 16(a), an alternative object selection is shown in which READ and WRITE are also 
selected. In Figure 16(b ), the results of converting to processes are shown. Note that READ and 
WRITE are concurrent processes, and that INTERFACE consists only of a simple behavior that 
controls those two processes. Also note that the memories have their -myn processes (as was also true 
for the previous example). The partitioned hypergraph is shown in Figure 16(c). The second chip 
exceeds the pin constraint by only one. Area constraints are now met for both chips. Respecification 
can also be used reduce chip pin-counts by creating behaviors which use a different set of ports. 

The refined specification in Figure 17 is derived from the partitioning of Figure 16( c). At the top 
level are two concurrent behaviors which represent two chips. Note that x, y, z are accessed only on 
CHIPl, so they are defined as registers global to that chip. On the other hand, PC is accessed by both 
chips, so is converted to a process which communicates through ports; likewise for MO and Ml. The 
WRITE process communicates with MO through address, data, and control ports. Assume that the 
procedures wr MO and wr Ml exist, and that they implement one half of the communication protocol 
by placing the address and data parameters on the appropriate buses, and set the rw line to the value 
for writing. 

Note that since READ and INTERFACE were grouped to the same chip, READ appears as a 
sub-behavior of INTERFACE as it was in Figure 15(a). On the other hand, WRITE is replaced in 
INTERFACE by a behavior which merely activates the WRITE process through a port to the other 
chip. 

cslc, read, write, read, write - 500 units 

a:mstrein each to 100 

comptime(READ) = 25 

commtime(READ) = 30+30+50=110 

exectlme(READ) = 110 + 25 = 135; excess = 135-100=35 

comptime(WRITE) = 20 

commtime(WRITE) = 150 + 150 + 10 = 310 
exectlme(WRITE) = 330; excess = 230 

comptime(CALC) = 40 

commtime(CALC) = 10+10+10+10=40 

exectlme(CALC) = 80; excess = 0 

OBJFCT' = OBJFCT + 
( ((100x35)/100) "51 + ((100x230)/100) ~ + ((1OOx0)/100) ~) 

OBJFCT'=114.8 + 54125.0 =154239.8 I 
(a) 

corrmtine(READ) = 30 + 30 + 10 = 70 

exectime(READ) = 70 + 25 = 95; excess = 0 

corrmtine(WRITE) = 30 + 30 + 10 = 70 
execllme(WRITE) = 90; excess= 0 

corrmtrne(CALC) = 10+ 10+ 10 +50 = 80 

execllme(CALC) = 120; excess= 20 

constraints: area< 2800 
pins<30 

OBJFCT' = (100x(3380-2800/2800) )~ 
(100x20/100) 

2 

= 429.1 +400 

I= 829.1 I 
(b) 

Figure 18: Incorporating performance constraints in SpecPart 

The above is extended to consider performance. Each behavior in the specification may optionally 
have an expected execution-time constraint. This is the average time it takes to execute the behav
ior from start to finish. This constraint is associated with the corresponding hypergraph vertex as 

27 



maxexectime( vi)· A behavior's execution time is viewed as the sum of its computation time and its 
communication time. The former is determinable by operator delays and branch probabilities. The 
latter requires that communication be modeled as protocols. A behavior can initiate a protocol (such 
as a memory read protocol), which will take a specific amount of time to complete .. These times will 
differ for on-chip and off-chip accesses. A special directed communication edge is added between a be
havior's vertex and all vertices with which the behavior initiates a communication protocol. ·The edge 
has two weights corresponding to an off-chip and an on-chip communication delay (off chipdelay( ej,k) 
and onchipdelay( ej,k)), which is the protocol time multiplied by the estimated number of uses of this 
protocol in a single pass of the behavior. The total communication time of a vertex.is the sum of the 
exiting communication edge weights, using the appropriate off-chip/on-chip edge weight for a given 
partitioning. The following is added to 0 BJ FCT: 

OBJFCT _ k """"' ( excessexectime( Vj )) 
2 

- ... + 4 L..i 100 x . . ( ) . maxexectime Vj 
J 

where: 

excessexectime( Vj) 

exectime( Vj) 

comptime( Vj) 

commtime( Vj) 

commdelay( ej,k) 

= exectime( Vj) - maxexectime( Vj ), if exectime( Vj) > 
maxexectime( Vj ), 0 otherwise, 

= commtime(vj) + comptime(vj), 

the expected time to execute a single pass of the behavior 
associated with Vj assuming communication times are 0, 

= L:k commdelay( ej,k) 

= off chipdelay( ej,k) if Vj and Vk are not in the same parti
tion Vi, onchipdelay( ej,k) otherwise (recall that these delays 
incorporate expected frequency of use), 

user-defined constant 

(10) 

Note that this term involves Vj, not Vi. Specifically, excess execution time is determined per vertex, 
not per partition. 

As an example, consider the example of Figure 15. Suppose the designer knows that a typical 
sequence consists of executing CALC once, followed by two READs and two WRITEs. This average 
time to perform this sequence is constrained to 500 time units. One way to achieve this is to constrain 
each of the three behaviors to 100 time units. In Figure 16, partitioning was performed without 
incorporation of performance, and the minimal 0 BJ FCT value was found. In Figure 18( a), a graph 
model is shown with the communication edges and their estimated on-chip/off-chip delays, along 
with the estimated comptime for the three time-constrained vertices (hyperedges and vertex sizes 
are omitted for clarity). Extending the OBJ FCT to consider performance gives a very high value, 
indicating poor system performance due to excessive interchip communication time. A repartitioning 
finds the minimal value for the extended 0 BJ FCT. 

3.8 SPARTA and SLIP 

Because the term "system partitioning" can refer to either the level of the input description or the level 
of the modules on which to implement hardware, the SPARTA (A System Partitioning Aid [23)) and 
SLIP (System Level Interactive Partitioning [24)) systems are commonly confused with behavioral
partitioning systems. SPARTA is used to evaluate structural netlist partitionings among chips or other 

28 



packages such that packaging constraints are met. It consists of spreadsheet-like software that is used 
to evaluate various chip metrics such as area, pins, and power. Traditional spreadsheets are extended 
to permit metric calculations using programs, not just arithmetic expressions. SLIP concentrates on 
providing a data model for a hierarchical structural partitioning and for packaging technologies. 

4 Summary of Three Important Aspects 

This report has demonstrated the various input levels assumed by behavioral-partitioning approaches. 
Inputs included a DFG plus memories, DFG operations plus logic, a single sequential CDFG procedure, 
a sequential CDFG with multiple procedures, a sequential hierarchical CDFG, and a behaviorally
hierarchical original specification. 

We have also shown that the pieces of the input that are actually treated as partitioning objects 
(i.e. are grouped) varies between systems. The assumed target architecture affects the range of possible 
pieces. We demonstrated the manners in which these pieces are mapped to a graph model and then 
partitioned. 

The use of the partitioning results also varies among approaches. The results can be used to obtain 
estimations, to divide the input to logic synthesis into several smaller inputs, to provide structural 
information to a high-level synthesis tool, or to add strudure to the original specification which can 
then be further modified by other tools or designers. 

Refer to Figure 9 for a summary of these three aspects for each approach considered in this report. 

5 Conclusions 

The various assumptions made in each behavioral-partitioning approach greatly affect an approach's 
domain of applicability, with the assumed input being the most important. An approach which assumes 
a behavior is described as a DFG cannot be used for behaviors which contain much control, as many 
behaviors do. An approach which assumes that behavior consists of registers and combinational logic 
can only be used after high-level synthesis. An approach which assumes that behavior is a sequential 
CDFG cannot be used for behaviors which contain concurrency. The input level also determines the 
type of performance constraints that can be specified. 

As yet, no approach which assumes a CU /DP target architecture has shown the ability to create 
multiple concurrent controllers to reduce interchip delay. Instead, a single controller exists on one 
chip which controls datapaths on the same or separate chips. Conversely, approaches which assume 
a combined control/ data path target architecture can create multiple controllers. Hence the desired 
target architecture also plays an important role in the applicability of a partitioning approach. 

In terms of results, intrachip behavioral partitioning for tractability has shown beneficial results 
by reducing computation time and/or improving the quality of structure and layout by reducing 
functional units, busing or overall routing area. 

More research is needed in the area of interchip behavioral partitioning, whose usefulness has yet to 
be conclusively demonstrated. Real examples are needed, especially those with much control (i.e. not 
just DFGs) and concurrency. Comparison with structural approaches is also necessary. Other areas 
of future work include optimizing performance through the use of minimal CU /DPs and executing 
behaviors on standard processor chips. 

29 



6 References 

[1] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. England: John Wiley and 
Sons, 1990. 

[2] M. McFarland, A. Parker, and R. Camposano, "Tutorial on High-Level Synthesis," in Proc. of 
the 25th Design Automation Conference, 1988. 

[3] R. Walker and R. Camposano, A Survey of High-Level Synthesis Systems. Massachusetts: Kluwer 
Academic Publishers, 1991. 

[4] D.D. Gajski, et. al., High-Level Synthesis: Introduction to Chip and System Design. Kluwer 
Academic Publishers, 1991. 

[5] R. Camposano and R. Brayton, "Partitioning Before Logic Synthesis," in Proc. of the Interna
tional Conference on Computer-Aided Design, 1987. 

[6] R. Camposano and J. van Eijndhoven, "Partitioning a Design in Structural Synthesis," in Proc. 
of the International Conference on Computer Design, 1987. 

[7] D. Gajski, Silicon Compilation. Massachusetts: Addison-Wesley, 1988 .. 

[8] M. McFarland and T. Kowalski, "Incorporating Bottom-Up Design into Hardware Synthesis," 
IEEE Transactions on Computer-Aided Design, September 1990. 

[9] M. McFarland, "Computer-Aided Partitioning of Behavioral Hardware Descriptions," in Proc. of 
the 20th Design Automation Conference, 1983. 

[10] M. McFarland, "Using Bottom-Up Design Techniques in the Synthesis of Digital Hardware from 
Abstract Behavioral Descriptions," in Proc. of the 23rd Design Automation Conference, 1986. 

[11] J. Rajan and D. Thomas, "Synthesis by Delayed Binding of Decisions," in Proc. of the 22nd 
Design Automation Conference, 1985. 

[12] E. Lagnese, Architectural Partitioning for System Level Design of Integrated Circuits. PhD thesis, 
Carnegie Mellon Unversity., March 1989. 

[13] E. Lagnese and D. Thomas, "Architectural Partitioning for System Level Synthesis oflntegrated 
Circuits," IEEE Transactions on Computer-Aided Design, July 1991. 

[14] E. Lagnese and D. Thomas, "Architectural Partitioning for System Level Design," in Proc. of the 
26th Design Automation Conference, 1989. 

[15] D.E. Thomas, et. al., "The System Architect's Workbench," in Proc. of the 25th Design Automa
tion Conference, 1988. 

[16] R. Walker, Design Representation and Behavioral Transformation for Algorithmic Level Integrated 
Circuit Design. PhD thesis, Carnegie Mellon Unversity., April 1988. 

[17] R. Walker and D. Thomas, "Behavioral Transformation for Algorithmic Level IC Design," IEEE 
Transactions on Computer-Aided Design, October 1989. 

[18] R. Gupta and G. Micheli, "Partitioning of Functional Models of Synchronous Digital Systems," 
in Proc. of the International Conference on Computer-Aided Design, 1990. 

30 



(19] G. Micheli and D. Ku, "HERCULES - A System for High-Level Synthesis," in Proc. of the 25th 
Design Automation Conference, 1988. 

(20] K. Kucukcakar and A. Parker, "CHOP: A Constraint-Driven System-Level Partitioner," in Proc. 
of the 28th Design Automation Conference, 1991. 

(21] K. Kucukcakar and A. Parker, "CHOP: A Constraint-Driven System-Level Partitioner." Univer
sity of Southern California, TR CEng 90-26, 1990. 

(22] S. Narayan, F. Vahid, and D. Gajski, "System Specification and Synthesis with the SpecCharts 
Language," in Proc. of the International Conference on Computer-Aided Design, 1991. 

(23] M. Resnick, "SPARTA: A System Partitioning Aid," IEEE Transactions on Computer-Aided 
Design, October 1986. 

(24] M. Beardslee et. al., "SLIP: A Software Environment for System Level Interactive Partitioning," 
in Proc. of the International Conference on Computer-Aided Design, 1989. 

A Appendix 

A.1 Partitioning for Tractability: Allocation Example 

. The following table shows the number of possible allocations for the DFG of Figure 7( a), assuming 
any number of adders (A), subtractors (S), and adder/subtractors (AS) are available as functional 
units. Since there are only four operators that add or subtract, we know that there can be no more 
than four adder/ sub tractors allocated. Since there is only one subtraction operation, there can be 
no more than one subtractor allocated. Likewise, there can be no more than three adders used. All 
possible combinations of these selections are listed in the table. 

Certain of these combinations are not feasible, m~aning that they lack enough functionality (e.g. only 
one adder with no other functional units). Also, certain combinations provide excess functionality, 
e.g. three adders and four adder/subtractors. These selections are considered invalid, and marked 
with a '-'in the fourth column. For the valid component selections, the number of possible bindings 
of DFG operations to functional units is shown, computed by a program which exhaustively made all 
possible bindings. 

31 



#A #S #AS num possible allocs 
----------------------------------
0 0 0 
0 0 1 1 
0 0 2 16 
0 0 3 Bi 
0 0 4 256 
0 1 0 
0 1 1 2 
0 1 2. 24 
0 1 3 108 

0 1 4 
1 0 0 
1 0 1 8 
1 0 2 54 

1 0 3 192 
1 0 4 
1 i 0 1 
1' 1 1 16 
1 1 2 81 

1 1 3 
1 1 4 
2 0 0 
2 0 1 27 

2 0 2 128 
2 0 3 
2 0 4 
2 1 0 8 
2 1 1 54 

2 1 2 
2 1 3 
2 1 4 
3 0 0 
3 0 1 64 
3 0 2 
3 0 3 
3 0 4 
3 1 0 27 
3 1 1 
3 1 2 
3 1 3 
3 1 4 

----------------------------------
Totals: possible component selections: 19, possible allocs: 1148 

The following tables show the possible allocations for the partitioned DFG of Figure 7(b ). Note 
the substantial reduction in possibilities. 

32 



(Cluster 1) 
#A #S #AS num. possible allocs 

0 0 0 
0 0 1 1 
0 0 2 4 
0 1 0 
0 1 1 2 
0 1 2 
1 0 0 

1 
1 
1 

0 

0 2 

1 0 
1 1 1 
1 1 2 

2 

1 

Totals: possible compon~nt selections: 5, possible allocs: 10 

(Cluster 2) 
#A #S #AS num. possible allocs 

0 0 0 
0 0 1 1 
0 0 2 4 
1 0 0 1 
1 0 1 4 
1 0 2 
2 0 0 4 
2 0 1 
2 0 2 

Totals: possible component selections: 5, possible allocs: 14 

33 




