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Anytime-anywhere connectivity offered by cellular networks and mobile devices

with multimedia capabilities have revolutionized important sectors of the society such

as health care, education, finance, e-commerce and entertainment. To cater to the

resulting explosive growth in mobile data traffic in an economically and environmentally

sustainable manner, it is critical to efficiently manage the spectral and energy/power

consumption of cellular networks. In this thesis, we identify the key challenges faced by

the cellular networks in efficiently managing energy/power consumption and propose

solutions to alleviate the same.
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Rapid advances in processing capabilities of mobile devices and relatively slower

advances in battery capacity capabilities has created a huge gap between power required

for processing advanced multimedia applications and the available battery capacity. Data

and compute intensive mobile video is the leading multimedia application and leads to

quick drain in the mobile battery level. In the first part of the thesis, we address the

above challenge by developing battery aware mobile video download techniques that

increase the battery available time while maintaining the required user experience levels.

Extensive experiments have demonstrated the feasibility and efficacy of our approach.

Base stations are the dominant contributors to power consumption of cellular

networks. To ensure that quality of service requirements is always met, base stations are

over provisioned to handle maximum load and are always switched on. This is leads to

wasteful expenditure of electricity when load is less than maximum. To address this, we

develop techniques that adapt the coverage area of base stations depending on load to

reduce base station power consumption. Simulation experiments have demonstrated the

significant power savings is possible using the proposed techniques.

Multi-input, multi-output technologies which require multiple Radio Frequency

(RF) chains are being adopted to increase the data rates and coverage capabilities of

base stations. This implies that the already dominant contribution of RF chains to power

consumption of base stations will significantly increase. We conclude the thesis by

developing techniques that switch off RF chains depending on load to reduce base station

power consumption. Simulation experiments demonstrate the power savings possible

using proposed techniques compared to existing techniques.

xviii



Chapter 1

Introduction

In the past three decades, cellular networks and mobile devices have spurred

a tremendous growth in connectivity and information availability across the world.

The connectivity and information availability has played a critical role in successful

digitization of sectors like banking, finance, education, health care, transportation and

hospitality. Further, innovations using advanced technologies such as augmented reality,

virtual reality, Internet of things (IoT) have led to real-time and interactive gaming,

e-commerce, social connectivity platforms that have become an integral part of urban

lifestyle. This is evident by the estimates that the total number of mobile subscriptions

is expected to increase from 7.5 billion in 2016 to 9 billion by 2022 with a compound

annual growth rate of 3% [1] and exceeds the estimated global population [2]. The

growth in connectivity is accompanied by significant increase in worldwide total mobile

data volume from 8.8EB to an estimated 71 EB (with a CAGR of 42%) with mobile

video contributing to more than 75% of the mobile data [1]. To cater to the explosive

growth in connectivity and mobile data volume in an economically and environmentally

sustainable manner, it is crucial to efficiently manage the limited spectral and energy

resources available. In this thesis, we will address the challenges in efficiently managing

the energy resources of mobile devices and power consumption of cellular networks and

propose solutions to alleviate the same.

1
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1.1 Power/Energy Needs of Mobile Devices and Cellu-
lar Networks

To cater to the explosive growth in mobile data subscriptions and traffic, it is

estimated that the total number of base stations (BSs) in cellular networks all over the

world will grow to 11.2 million by 2020 [3], a 47% increase compared to the number

of BSs deployed in 2014. Further, deployment of massive number of antennas at BSs is

seen as a promising paradigm to increase data rates [4]. This is expected to increase the

electricity consumption and thereby, decrease the energy efficiency of cellular networks

[4]. Specifically, the electricity consumption of BSs which constitutes 80% of electricity

consumption of cellular networks is estimated to increase from 84TWh to 109TWh

by 2020 (38% increase since 2014) if measures are not taken to reduce the power

consumption of BSs. The increasing electricity consumption has two effects - (a) the

carbon equivalent emissions is estimated to increase to 235 Mto CO2e by 2020 (a 37%

increase since 2014) [3] and (b) the electricity bill which currently contributes to 10-15%

of the operating expenses in developed markets and about 50% [5] in developing markets.

Hence, it is critical to decrease the power consumption of BSs to enable the cellular

networks operate in an economically and environmentally sustainable manner.

The explosive growth in data traffic in mainly due to data intensive multimedia

applications such as web browsing, mobile video, gaming, augmented reality and virtual

reality. The mobile devices are continuously evolving with increasingly complex process-

ing architectures to support such data and compute intensive multimedia applications.

To power the data and compute intensive applications, mobile device manufacturers are

equipping the mobile devices with increasingly higher energy density batteries. However,

there is a limit to increasing the battery energy density as it proportional to the thickness

of the battery which in turn leads to bulky handsets. This has resulted in a gap between
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the power required and available battery energy density. The energy density gap has to

be minimized to realize the promise of many advanced techniques such as augmented

reality, virtual reality, Internet of Things and applications of the same.

1.2 Contributions and Overview

In this dissertation, we focus on several approaches to reduce the power/energy

consumption of cellular networks and mobile devices and demonstrate the efficacy of the

proposed approaches through experiments. The first key contribution of the dissertation

addresses the energy density gap of mobile device battery by focusing on reducing

the battery consumption due mobile video download. The second key contribution

addresses the reduction of power consumption of the BSs at the system level enabling

economically and environmentally sustainable operation of cellular networks. The third

key contribution focuses on the power consumption of the BSs at the component level,

thus enabling a fine grained control on the power consumption of the BSs. We first

provide an overview of our contributions, followed by individual chapters that give

detailed treatment to each of the contributions, including the related literature and how

our work relates to and differentiates from the existing literature. Our contributions are

summarized below.

1.2.1 Battery Aware Video Download Techniques

Broadly, there has been a two pronged approach to address the gap in power

required and available battery energy density of mobile devices. One approach is to

increase the battery density by using materials and packing architectures that lend

themselves to increased energy density with a small form factor [6]. The other approach

has been to develop and implement battery aware application processing techniques on

the mobile device such as [7]. The battery aware techniques proposed in this thesis
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belong to the second category that addresses the battery energy density gap. In particular,

we focus on developing battery aware video download techniques because mobile video

contributes to over 75% of mobile data traffic [1].

Downloading and viewing mobile video on mobile devices has been on a steady

increase from 5% in 2010 to 20% in 2016 [8]. However, there still exists barriers to

wider adoption to mobile video download and viewing such as limited battery capacity

and connectivity . While advanced 4G and 5G networks are being designed to improve

the connectivity, there is still a void in techniques that address the challenge of limited

battery capacity. Commercially available video download and streaming clients such as

YouTube, Apple’s HTTP Live streaming (HLS) and Microsoft’s Smooth Streaming focus

on optimizing the user experience but does not take in to account the effect of video

download on battery consumption.

As power consumption due to video download over the cellular wireless connec-

tion exceeds that due to video playback [9], we focus on selecting the optimal physical

layer parameters involved in video download to minimize the battery consumption dur-

ing video download. We achieve this via reconfiguration of base station physical layer

components such as number of radio frequency (RF) chains, multi-input multi-output

(MIMO) transmission scheme, modulation order, coding rate, and download rate and

video bit rate adaptation to minimize the battery consumption of the mobile device. The

base station reconfiguration and rate adaptation is carried out in a manner that there is

no degradation in user experience. We discuss and evaluate our framework for video

download as well as streaming scenarios. Through experiments using real world channel

conditions and power consumption models based on actual implemented hardware, we

demonstrate that the proposed battery aware techniques result in significant savings in

battery lifetime and no degradation in user experience compared to non-battery aware

video download and streaming techniques.
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1.2.2 Dynamic Cell Reconfiguration Framework

The last decade has seen significant research and commercial deployment of en-

ergy efficient BSs, including energy efficient power amplifiers and baseband processing

[10], [11], [12]. Energy efficient wireless protocols and network techniques have been

also proposed that take advantage of variable traffic loads and QoS requirements. The

second key contribution of this thesis proposes energy efficient cellular network tech-

niques that minimize the power consumption of BSs at the system level while satisfying

the QoS of associated users.

The various components of the BS can be grouped in to two categories. The

first category of components contribute the static power consumption of the BS and

is a constant irrespective of the load. The second category contribute to the dynamic

power consumption of the BS and is dependent on the BS load. Current base stations

are designed to handle worst case load. Further, in order to ensure that there is no loss

in coverage, BSs are always maintained on. This implies that when the load is low

or there is no load, there is unnecessary expenditure of energy due to the static power

consumption.

Depending on the load, BSs can be switched off by transferring users to neigh-

boring active (on) BSs resulting in significant static power savings. Further, the transmit

power budget can be adapted depending on the load. The second key contribution of the

thesis is an integrated dynamic cell reconfiguration framework that dynamically switches

on/off base stations and adapts the user association and transmit power budget of BSs

depending on the load. We discuss and evaluate the framework under static and dynamic

BS load conditions. Using measurements from actual BS power consumption and real

world BS traffic traces, we demonstrate that the proposed dynamic cell reconfiguration

techniques result in higher power savings compared to techniques that always maintain
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BSs on.

1.2.3 QoS Aware RF Chain Switching

The dynamic cell reconfiguration techniques result in significant savings in BS

power consumption as both static and dynamic components of BS power consumption is

reduced to zero. However, switching off BS has the major limitation of creating coverage

holes which can result in degradation of user Quality of Service (QoS). Further, BS

switch off requires tens of minutes and hence termed as long time scale techniques. Such

long time scale techniques cannot exploit the fine time scale variations of BS load.

Taking cognizance of the above limitations of the system level BS power mini-

mization techniques and identifying further opportunity to minimize power at finer time

scales, the third key contribution of this thesis are techniques that increase the power

efficiency of BSs at the component level at times scales of seconds to minutes. The power

amplifier in the radio frequency (RF) chain is the dominant contributor to the BS power

consumption. The final contribution of this thesis is the RF chain switching technique

which minimizes the power consumption of cluster of BSs in a manner that the QoS

requirements of all the cluster users and BS utilization bounds of individual BSs in the

cluster are satisfied.

The adaptive RF chain switching technique achieves the above by jointly adapting

the number of RF chains, time slots and frequency blocks of individual BSs and user

association of cluster users to minimize the number of RF chains in the cluster and

thereby, power consumption of the cluster of BSs. The short time scale technique allows

finer control on BS power consumption and does not result in coverage holes. Using

measurements from actual BS power consumption and real world BS traffic traces, we

demonstrate that the proposed adaptive RF chain switching techniques result in higher

power savings compared to techniques that always maintain RF chains on.



Chapter 2

Battery Aware Video Download tech-
niques using Rate Adaptation and Base
Station Reconfiguration

2.1 Introduction

By 2022, mobile video is expected to contribute to about more than 75% of the

total mobile data traffic [1], making it the leading multimedia application on mobile

devices. As mobile video is a data and compute intensive application, it places significant

demands on processing and battery capabilities of mobile devices. While the process-

ing capabilities of mobile devices continue to increase significantly, the incremental

improvements in battery technologies will lead to frustratingly lower battery lifetime.

Consequently, it is critical to develop techniques that can lower mobile video battery con-

sumption. It has been shown that RF and baseband components used for video download

are major contributors to battery consumption in addition to decoder and display used

for playback [13]. With the adoption of MIMO technologies that use multiple antennas

with power consuming baseband processing, power due to radio frequency (RF) and

baseband components will dominate the power consumption for high bit rate mobile

video applications. Hence, this chapter focuses on reducing battery demand imposed by

MIMO RF and baseband components while downloading video.

7



8

We first consider the widely adopted Progressive Download video delivery ap-

proach, which attempts to download video at a rate higher than the video bit rate and

hence the video playback rate, thereby buffering video at the mobile device while it is

simultaneously being played back [14]. The higher download rate and hence buffering is

done to avoid buffer underflow (stalling) in case of bad network conditions during the

video session, but there is no consideration about the effect of video download on the

mobile device battery. In contrast, we propose a new battery efficient video download

approach that utilizes elasticity of the video buffer to dynamically adapt the video down-

load rate, sometimes even stopping video download, enabling reconfiguration or idling

of the base station RF and baseband components in a manner that reduces or eliminates

battery demand of the mobile device RF and baseband components. While adapting the

download rate, the proposed approach also tries to avoid buffer underflow, and since the

video bit rate is never adapted, user experience is not compromised while enhancing

battery lifetime.

To further enhance battery lifetime, we next consider adapting the video bit rate in

addition to adapting the video download rate as the former can further reduce the amount

of data to be downloaded and hence the battery load. However, adapting the video bit

rate will compromise video quality, leading to a possible tradeo-off between enhanced

longevity of video experience and video quality. Adaptive Bit Rate (ABR) streaming

techniques [15] are gaining popularity, but they primarily address minimizing stalling

of video under challenging network conditions. In contrast, we propose battery aware

adaptive bit rate streaming techniques which adapt video bit rate, download rate and

MIMO RF and baseband configurations, depending on the battery and buffer levels, and

network load and channel conditions experienced during video streaming to maximize

the longevity of video experience while ensuring a desired level of quality of video

experience. We extend the conventional notion of video user experience to include the
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longevity of video watching (which can be limited by battery lifetime) by introducing

the Video Experience Longevity (VEL) metric. We use the VEL metric to quantify and

compare the performance of the proposed battery aware ABR techniques with other ABR

techniques. As dynamic streaming over HTTP (DASH) is a widely accepted standard for

ABR streaming, we will henceforth refer to ABR as DASH.

2.1.1 Related Work

In this section, we will briefly describe past work related to base station and

mobile device MIMO reconfiguration, video bit rate adaptation and battery efficient

video delivery. As we will discuss, either these techniques do not address maximizing

battery lifetime, or the ones that address do not consider using rate adaptation and

transceiver reconfiguration whose effectiveness we will demonstrate in this chapter.

Base station reconfiguration techniques have been developed for cognitive radios

for dynamic spectrum management [16], which is not the focus of the work presented

in this chapter. The focus in [17] was on choosing optimal MIMO parameter set to

minimize overall link energy while satisfying bit error rate and throughput. While the

above technique does not consider video delivery, [18] proposed to use Space Time

Multiplexing (STM) and Space Time Block Coding (STBC) to reduce video distortion

due to wireless video delivery; however, the latter does not address energy consumption.

In [19], rate adaptation and corresponding switching between Single Input Multi Output

(SIMO) and MIMO is proposed to save uplink RF transmission energy when mobile

device is transmitting files. However, [19] does not aim to reduce downlink RF and

baseband processing battery consumption when mobile device is downloading video,

which is the objective of this work. The energy efficient rate adaptation (EERA) technique

proposed in [20] achieves energy efficiency at the client by selecting RF and MIMO

baseband components at the access point and client Wireless Network Interface Card
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(WNIC) in a manner that reduces per bit energy while maintaining the minimum required

goodput determined by the video bit rate and channel condition. However the energy

efficient rate adaptation technique proposed in [20] does not utilize the elasticity of

the video buffer to dynamically adapt the video download rate, including stopping

transmission, to avoid stalling and reduce battery load, which constitutes an important

part of our proposed approach. Also, mode selection in [20] requires base station to

allocate maximum number of antennas to each user which places high demand on base

station resources whereas our techniques have no such requirement.

Recently, there has been significant research done on developing video bit rate

adaptation techniques [21], [22], including several commercial HTTP based Adaptive

Bit Rate video streaming solutions like Apple HTTP Live Streaming [23], Microsoft

Smooth Streaming [24] and Adobe Open Source Media Framework (OSMF)1. Unlike

the above adaptive HTTP streaming clients and techniques which to the best of our

knowledge (based on available public information at the time of writing this manuscript,

including the Adobe OSMF source files) focus on ensuring user experience in a non-

battery aware manner, our proposed techniques focus on maximizing battery lifetime

while also ensuring desired level of video experience.

Techniques have also been developed to address energy and battery life of mobile

devices during video delivery. In [25], a base station scheduling technique is proposed

which utilizes the Variable Bit Rate (VBR) encoding of multiple broadcast streams in a

manner that does not under/overflow the client buffers and allows transmission of video

streams in bursts, the latter allowing switching off the client WNIC in between bursts to

reduce energy consumption on mobile devices. However, the above approach cannot be

applied to on-demand unicast video delivery (like YouTube) which is the target of the

work detailed in this chapter. Authors in [26] propose battery aware video streaming by

1”Open source media framework,” [Online]. Available: http://www.osmf.org



11

changing video encoding parameters such as bit rate, frames/second in real time using

a proxy server and switching off the client WNIC after bulk download. Our proposed

approach does not require computationally intensive real time transcoding and utilizes

different bit rate representations of a given video available on the server for video bit

rate adaptation. Battery and stream aware adaptive multimedia (BaSe-AMy) streaming

techniques proposed in [27] adapt video bit rate depending on battery level, packet loss

and remaining video stream duration. However, these techniques do not adapt download

rate and transceiver configuration which increases the battery savings achieved by our

proposed techniques.

To the best of our knowledge, this is the first work which proposes to (a) jointly

adapt video download rate and MIMO transceiver components to maximize battery

lifetime and ensure user experience during video download and (b) additionally adapt

video bit rate to maximize video experience longevity while maintaining desired level

of video experience during adaptive bit rate streaming; (c) quantify the performance

of adaptive bit rate streaming techniques in terms of both video viewing time and

user experience. In Section 2.2, we provide an overview of our battery aware video

delivery approach. In Section 2.3, we formulate the download rate and transceiver

configuration selection as an optimization problem and provide a solution. In Section 2.4,

we present the simulation framework developed for video download and experimental

results obtained using different video download techniques. In Section 2.5, we formulate

bit rate, download rate and transceiver configuration selection as an optimization problem

and offer a solution which guarantees minimum desired video quality, and subsequently

extend the solution with a heuristic to achieve higher video quality when possible. We

conclude the section with formulation of the “Video Experience Longevity” metric. In

Section 2.6, we present the simulation framework developed for DASH streaming and

experimental results obtained using different DASH based streaming techniques. We
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conclude in Section 2.7.

2.2 Battery Aware Video Delivery - Overview

In this section, we will describe our overall approach towards battery aware video

delivery. We will then discuss in detail different ways video bit rate and download rate

can be selected and base station and mobile device can be reconfigured, to reduce battery

load and the effect on user experience.

2.2.1 Overall Approach

Our overall approach towards video bit rate and download rate adaptation and

corresponding transceiver reconfiguration for battery aware video delivery consists of two

main objectives namely, maximization of battery lifetime and ensuring user experience.

Our approach towards prolonging battery life [28] is based on the following

factors: (1) minimizing battery load (current drawn from battery), and duration of load,

and (2) idling the battery allowing it to recover charge, and increasing the duration of

idling. Our proposed approach affects the above two factors in the following three ways.

(a) Varying video download rate: A required video download rate is determined by the

video bit rate (rate at which video is encoded by the encoder and decoded by the decoder),

amount of data buffered at the mobile, and channel conditions. The required download

rate is achieved by the base station with suitable configuration of its RF and baseband

components, with corresponding mobile device configurations, the latter affecting battery

load. Hence, for a given video bit rate, by utilizing the elasticity that the video buffer

offers, the download rate can be varied and the base station reconfigured in a way that

reduces the battery load imposed by the mobile device RF and baseband processing. (b)

Stopping download: If for certain periods of time, video download and hence related

processing on mobile device can be stopped, the battery load can be reduced to just
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playback load which is much lower than load due to downloading. Due to significant

difference in consecutive loads (download + playback followed by playback only load),

effect on battery is similar to that of idling thereby enabling battery to recover charge [28],

[29] [We show this later in Section 2.4.5]. We term this as “download idle”. Note that

extensive analysis of charge recovery due to idling is presented in [28] using the analytical

Rakhmatov Vrudhula (RV) rechargeable lithium ion battery model and authors in [29]

have shown the ability of battery to recover charge due to idling using measurements

on a commercially available lithium ion battery. (c) Varying video bit rate: As bit rate

determines the amount of data that needs to be downloaded, bit rate can be varied in a

manner that minimizes amount of data to be downloaded. This offers the opportunity

to either further reduce the duration of download and hence introduce download idle

periods, or choose lower download rates and less power intensive modes reducing the

load imposed on the battery.

While maximizing battery lifetime, we need to also ensure user experience.

Consequently, our approach needs to ensure that (1) the video download rate variation,

including periods of idling, is done in a way that does not lead to buffer overflow or

underflow (stalling of video playback), so that user experience is not affected; (2) the

base station reconfiguration is done taking into account the wireless channel condition

(estimated using Signal to Noise Ratio - SNR) so that a desired bit error rate (BER)

(hence PSNR [30], [31], and video quality) is satisfied; and (3) when additional video bit

rate adaptation is done, a minimum video quality is satisfied in a way that increases the

overall Video Experience Longevity.
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Figure 2.1. MIMO transmitter and receiver

Table 2.1. MIMO transmitter parameters

Channel Coding Rate (CR) 1, 2/3, 1/2, 1/3
MIMO Encoding Rate MIMOEnc STM, STBC

Modulation Schemes (Mod)
Binary Phase Shift Keying (BPSK),
Quadrature Amplitude Modulation
(QAM) - 4QAM, 16QAM, 64QAM

Number of Antennas (NT ) 1, 2, 3, 4

Table 2.2. MIMO receiver parameters

Number of Antennas (NR) 1, 2, 3, 4
MIMO Decoding Rate MIMODec Zero Forcing (ZF), K-Best
Channel Decoding (ChDec) Viterbi Decoding, Turbo Decoding

2.2.2 Download Rate Adaptation and Base Station Reconfigura-
tion

In this section, we will first describe RF and baseband processing components of

base station and mobile device, and their effects on power consumed. Subsequently we

will discuss ways download rate can be varied and transceiver be reconfigured to reduce

battery load. Note, we sometimes refer as baseband components both RF antenna chains

and baseband components.

Fig. 2.1 shows a MIMO transmitter and receiver. The transmitter consists of

channel encoder, MIMO encoder, and set of antennas each with an associated modulator.

The receiver consists of antennas, demodulator, MIMO decoder and channel decoder.

Tables 2.1 and 2.2 list some of the possible configuration choices that can be used for



15

Figure 2.2. Video download using different rates

MIMO transmitter and receiver. The set of all possible combinations of transmitter and

receiver baseband components constitutes the configuration spaces of base station and

mobile device respectively. Henceforth, we will refer to the combination of transmitter

- receiver antennas, channel encoding rate, MIMO encoding, modulation, MIMO and

channel decoding algorithms as the transceiver mode selected.

Among all the MIMO receiver baseband components, the antenna RF chain is

the most power intensive, and the battery load can increase significantly with increase in

number of antennas. We consider two MIMO decoding algorithms, Zero Forcing (ZF)

and K-Best, both of whose power consumption depends on the number of antennas and

modulation scheme used; however, ZF is more power efficient but provides less BER

performance than K-Best. Note the power consumed by demodulation is included in

MIMO decoding, as demodulation is performed as part of MIMO decoding. Finally,

power consumed by channel decoding depends on the algorithm used. Viterbi decoding

consumes less power than Turbo decoding, but also has a lower BER performance than

Turbo [32]. The battery load of a receiver configuration can be estimated by adding the

power consumptions of the individual receiver components as elaborated in Section 2.3.2.

Fig. 2.2 shows typical video download scenarios from the video server through the
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Table 2.3. Examples of modes with different download rates

Mode A CR:1/2, STM, BPSK,2X2, ZF, Viterbi
Mode B CR:1/2, STBC, 4QAM, 2X1, ZF, Viterbi

Mode C
CR:1/2, STM, 4QAM, 4X4, K-Best,
Viterbi

Mode D CR; 1/2, STM, 4QAM, 2X2, ZF, Viterbi

base station to the mobile device over the wireless network. The pipes are representative

of the wireless network. The height and shape of the contents of the pipe depict the

amount and flow of video data. The red portion on the scroll bar indicates the portion

of downloaded video that has been viewed and the blue portion indicates the buffered

portion. Fig. 2.2a depicts the scenario wherein the video is downloaded as fast as possible

(as is the case with HTTP Progressive Download) depicted by the near fullness of the

pipe and buffer. This may require the highest download rate possible under the given

channel condition and BER value. Multiple transceiver modes may satisfy the required

download rate under a given channel condition (SNR) and BER value. Some of these

modes may actually increase the power consumption in the base station, but will reduce

the mobile battery load. For example, the two modes A and B listed in Table 2.3 result

in the same download rate. For the given SNR, mode B increases the power consumed

by the base station as it uses 4QAM modulation scheme which consumes more power

than BPSK used in mode A. However, mode B will reduce battery load, as only one

receiver antenna is used as opposed to two antennas used in mode A. Note that the

reduction in battery load due to reduction in receiver antennas far outweighs any increase

in battery load due to higher order demodulation. There may also exist certain modes that

reduce mobile battery load without increasing power consumption at the base station. For

example, if channel condition improves, for the same download rate, it may be possible

to reconfigure receiver to use ZF decoding instead of K-Best if BER requirement is

met. Hence even when high download rate is required, it may be possible to choose a
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Figure 2.3. Adaptive Bit Rate streaming with different rates

transceiver configuration which reduces battery load.

The opportunities for finding battery efficient modes can be increased if the

required download rate can be reduced. As shown in Fig. 2.2b, using the elasticity

of the buffer, it is possible to reduce the download rate (depicted by dips in the pipe)

which results in lesser buffered data (smaller blue portion), as long as there is no buffer

underflow. For instance, consider modes C and D in Table 2.3. If the download rate

needed is reduced by half, given the same channel condition and BER requirement, mode

D can be used instead of mode C. Reconfiguring to mode D will significantly reduce

the battery load, as it uses less number of antennas and less power intensive ZF MIMO

decoding.

When buffer levels permit, download rate can be reduced to zero. Download

idling reduces the battery load to just the playback load, thereby enabling battery to

recover charge. Note that the idling will deplete the buffer (shown in Fig. 2.2c as gaps in

the pipe and smallest blue portion on the scroll bar), and hence can be done if no buffer

underflow can be ensured.



18

2.2.3 Video Bit Rate Adaptation

In this section, we will elaborate on how video bit rate adaptation affects battery

lifetime and video quality. We pictorially represent adaptive bit rate video streaming in

Fig. 2.3. As in Fig. 2.2, the pipes are representation of wireless network; height and

shape of contents indicate the amount and flow of video data across time; to conserve

space, we have omitted the server, base station and mobile device. Cases 1, 2 and 3 in

Fig. 2.3 illustrate the effect of using bit rates, and with associated Mean Opinion Score

(MOS) values BR1, BR2 and BR3, while Figs. 2.3(a) and 2.3(b) show the effect of using

single download rate, and a set of download rates , on the amount and flow of data in the

pipe. Note that the download rates in the set are listed in descending order.

From Fig. 2.3(a), we make the following observations. (1) When highest down-

load rate DR1 and bit rate BR1 are used, as in case 1, the battery load is highest because

the download duration t1 is longer than t2and t3. Using lower bit rate (cases 2 and 3) re-

duces the amount of data to be downloaded, and hence duration of download (t3 < t2 < t1)

and battery load. Case 1 of Fig. 2.3(b) illustrates the proposed video download rate (and

mode) adaptation techniques which use a combination of high and low download rates

including download idle from the set DR. As elaborated in the previous subsection the

combination of higher, lower download rates and idling offers the potential to reduce

battery load. Additionally, using lower bit rates as in cases 2 and 3 of Fig. 2.3(b) reduces

battery load and the reduced download duration (t6 < t5 < t4) may allow choosing a more

battery efficient combination of download rates (and modes), for instance, introducing

more periods of idling. Therefore, we can infer that bit rate adaptation potentially furthers

the battery savings due to download rate and mode adaptation but at the expense of video

quality.
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2.3 Battery Efficient Download Rate and Mode Selec-
tion

In this section, we will assume fixed video bit rate, and formulate the optimization

problem of adapting video download rate and corresponding transceiver configuration

to maximize battery life. We then present an algorithm, MoDS that solves the problem

using an optimization solver.

2.3.1 Download Rate and Model Selection Problem Definition

The objective of download rate and mode selection is maximization of battery

lifetime during video download subject to download rate and application BER constraints.

Video download session consists of several download epochs requiring download rate

and mode selection in every download epoch. As battery lifetime is a cumulative result

of several such selections and their effect on battery level, we split the optimization

problem in to sub-problems and solve it in each download epoch in order to make it

tractable. Each sub-problem defined in (2.1) below consists of selecting an optimal mode

M for the download epoch under consideration such that battery level BatLev (function

of mode parameters listed in Tables 2.1 and 2.2) is maximized while download rate DR

constraint upper bounded by DRMax and lower bounded by DRMin, and BER constraint

upper bounded by BE RApp, are satisfied. The sub-problems though seem independent,

are connected with each other as the download rate selected in current epoch changes the

buffer level which in turn affects the download rate selection in the subsequent epoch.

max BatLev(M) (2.1)

Subject to: DRMin ≤ DR(M) ≤ DRMax (2.2)

BE R(SNR,M) ≤ BE RApp (2.3)
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The DRMax and DRMin values, which will be defined later in this section, ensure that

buffer does not overflow or underflow respectively. The application BER value BE RApp

ensures that video quality (PSNR) is maintained at desired level. Note that it has been

shown in [30] and [31] that BER below 3 ·10−5 results in PSNR levels greater than 37 dB

(corresponding to MOS value of 5 [30]) thereby ensuring high video quality for videos

with different space–time characteristics. Hence, choosing BE RApp value lesser than

3 ·10−5 will ensure that PSNR of the received videos will be greater than 37 dB.

It should be noted that (2.1) may not have a feasible solution always. When

no mode satisfies BE RApp, then download idle (DR(M) = 0) is chosen. This may be

at the expense of buffer underflow if DRMin is greater than zero. In case the DRMin

constraint is violated, mode which gives highest download rate (lower than DRMin)

and satisfies BE RApp is chosen leading to buffer underflow. On the other hand when

DRMax is violated, download idle is chosen to avoid buffer overflow. Having defined

the download rate and mode selection problem, we will next discuss the objective and

constraint functions.

2.3.2 Modeling of Objective and Constraint Functions

Each download epoch involves video download and simultaneous playback. The

RV lithium ion battery model [28], [33] used to estimate the battery level given in (2.4) is

characterized by two parameters, namely, which is the battery capacity and β , a function

of ion diffusion coefficient, is the measure of battery nonlinearity. The second term

in (2.4) represents the ratio of total charge consumed in time T or equivalently in E

download epochs due to variable load I and the total charge present in the fully charged

battery. The charge consumed in each download epoch i is the sum of the linear term

(first term in summation over E) and the summation of nonlinear terms (second term in

summation over E) with summation index m. The summation of nonlinear terms is a
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function of β and accounts for the nonlinearity in diffusion and hence charge recovery

when Ii < Ii−1. Note that our proposed techniques are not battery model specific and can

be used with any model that gives an estimate of battery level in response to battery load.

BatLev = 1− 1
α

E∑
i=1

Ii−1[(ti − ti−1)+2
m=10∑
m=1

e−β
2m2(T−ti)− e−β

2m2(T−ti−1)

β2m2 ] (2.4)

Maximization of BatLev is equivalent to minimizing numerator of second term

in (2.4) which represents the battery charge consumed due to battery load I in time T .

Further, as charge consumed is estimated in each download epoch of duration DPeriod

, which we assume is a constant, maximization of BatLev is equivalent to minimizing

battery load I in each download epoch. As each download epoch involves simultaneous

download and playback, I is given by

I = IDownload + IPlayback (2.5)

IPlayback is the battery load due to video decoder and display used for playback.

While the playback load may vary depending on the resolution of the video, for download

epochs of the same video session, it is fair to treat it as constant. Hence maximization

of BatLev is equivalent to minimizing battery load IDownload imposed by the mode M

during download subject to the download rate and BER constraints in (2.6). IDownload is

given by (2.9).

min IDownload(M) (2.6)

Subject to: DRMin ≤ DR(M) ≤ DRMax (2.7)

BE R(SNR,M) ≤ BE RApp (2.8)
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IDownload =
PDownload

VBat
(2.9)

where VBat is the battery voltage; we assume that it is constant during discharge. Down-

load power PDownload given by (2.10) consists of four components, namely power due to

RF chain (PRF−Chain), MIMO decoding (PMIMO−Dec), channel decoding (PCh−Dec) and

baseband processing (PBaseband).

PDownload = PRF−Chain+PMIMO−Dec +PCh−Dec +PBaseband (2.10)

PRF−Chain depends on NR and system bandwidth BW . It is determined using

(2.11) obtained from relations in [17][34].

PRF−Chain = (1.8 ·10−8BW +0.0061)NR+0.1 (2.11)

PMIMO−Dec depends on MIMO encoding rate MIMOEnc, number of antennas,

algorithm chosen (ZF or K-Best) and modulation scheme used MIMOEnc given by

(2.12) and (2.13), is dependent on the type of MIMO encoding (STM or STBC) used.

PMIMO−Dec is estimated using (2.14)–(2.17), by calculating number of search steps [17]

required to decode a symbol and determining number of parallel search engines [35]

required to execute the steps. We consider only Viterbi channel decoding algorithm in

this work; PCh−Dec estimate is obtained from [36]. PBaseband is given by (2.18) [17].

MIMOEnc−ST M = NR (2.12)

MIMOEnc−ST BC =


NR, (NT

NR
) ≥ NT

(NR−1)NT

NR
, (NT

NR
) < NT

(2.13)
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PST M
MIMO−Dec−K−Best =10−4[MIMOEnc−ST M(0.5N2

T +1.5NT )+3.1N2
T Mod2.5

+0.8NT Mod3.5+1.5NT Mod] (2.14)

PST M
MIMO−Dec−ZF = 10−4[MIMOEnc−ST M(0.3N2

T +NT )+0.13N2
T +0.06N3

T ] (2.15)

PST BC
MIMO−Dec−K−Best =10−4[3.1NT NR+4.1NRMIMO2

Enc−ST BC+

NT Mod(1.5+0.8Mod2.5+6.2Mod1.5MIMOEnc−ST BC)] (2.16)

PST BC
MIMO−Dec−ZF =10−4[1.9NT NR+0.25NRMIMOEnc−ST BC+

MIMO2
Enc−ST BC(0.5+2.3NR+0.5MIMOEnc−ST BC)] (2.17)

PBaseband = 1.62 ·10−9NRBW (2.18)

The download rate DR given by (2.19) forms the first constraint function and is

calculated using the specifications in 3GPP LTE standard [37].

DR = RB · SUBC ·TS ·OFDMSym ·Mod ·CR ·MIMOEnc ·T−1
Frame (2.19)
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where RB represents the number of resource blocks associated with BW . SUBC

is the number of subcarriers used in each resource block. TS is the number of slots used

to transmit OFDMSym number of Orthogonal Frequency Division Multiplexing (OFDM)

symbols. TFrame is the duration of 3GPP LTE frame.

The upper bound on download rate us given by (2.20). It is calculated using video

buffer size Bu fSize, amount of data buffered Bu fAvail and duration of download epoch

DPeriod .

DRMax =
Bu fSize−Bu fAvail

DPeriod
(2.20)

Playback time available PBT is calculated using Bu fAvail and video bit rate VBR

as shown in (2.21).

PBT =
Bu fAvail

VBR
(2.21)

The lower bound on DR, DRMin given by (2.22) is calculated using PBT , VBR and

minimum buffer value Bu fMin, chosen to avoid stalling. It should be noted that the lower

bound for Bu fMin is DPeriod in which case the PBT will at least be DPeriod . However,

this might stall video when channel conditions do not permit minimum download rate

DRMin, hence Bu fMin greater than DPeriod will increase PBT and allow idling while

avoiding stalling.

DRMin =


0,PBT > Bu fMin

VBR+
VBR(bPBTc−PBT+Bu fMin)

DPeriod
,PBT ≤ Bu fMin

(2.22)

The second constraint in terms BE RApp of ensures that mode selected does not

lead to unacceptable BER and hence adversely impact video quality. We use a BER-

SNR look up table (LUT) (Section 2.4.1) in lieu of the BER constraint function in
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the optimization framework. The BER–SNR LUT lists the BER values for different

transceiver configurations under different channel (SNR) conditions.

From (2.4) to (2.22), it is evident that the objective and constraint functions are

nonlinear making mode and download rate selection a nonlinear constrained optimization

(minimization) problem. In the next subsection we will present a solution to this problem.

2.3.3 Mode and Download Rate Selection (MoDS) Algorithm

In this section, we will describe in detail the MoDS algorithm developed to search

the transceiver configuration space (Tables 2.1 and 2.2) for the mode that minimizes the

battery load I subject to download rate and BER constraints.

As power calculation functions for MIMO decoding given by (2.14) to (2.17) are

different for different MIMO encoding schemes and MIMO decoding algorithms, mode

selection in each download epoch needs to be carried out separately for each MIMO

encoding scheme and decoding algorithm. This implies that MIMOEnc and MIMODec

parameters cannot be part of the transceiver mode search space. On the same line of

reasoning, ChDec cannot be used as an optimization parameter. Hence, we split the

transceiver configuration space CS in to two spaces as shown in Fig. 2.4: the outer

space OS consisting of parameters MIMOEnc, MIMODec and ChDec, and inner space

IS consisting of parameters CR, Mod, NT and NR. The BER–SNR LUT used instead

of BER constraint function requires the BER constraint to be evaluated for each mode

outside the optimization framework. Having made the above two modifications to the

problem stated in (2.6), the basic working principle of MoDS algorithm is pictorially

shown in Fig. 2.4. For a given point in outer space OSj , MoDS searches the inner

space for the mode (ISi,OSj) that minimizes battery load and satisfies download rate.

Subsequently the BER constraint is evaluated as shown in Fig. 2.4. This process is

repeated till the entire OS is explored resulting in battery efficient mode that satisfies the
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Figure 2.4. Splitting of configuration space and optimization problem

constraints in (2.6).

The outer space OS, the inner space IS, upper bound and lower bound LB

representing the maximum and minimum values possible for the elements of inner space,

and set of valid inner space points ISValid form the inputs to the MoDS algorithm shown

in Fig. 2.5. Given an outer space point, the nonlinear optimization solver, ‘nlopt’2 is used

to determine the mode that minimizes the battery load I and satisfies the download rate

constraints. It should be noted that when DRMin is zero, download idling (DR(M) = 0)

is chosen as this minimizes the battery load I. If the mode does not belong to ISValid , it

is rounded off to the nearest valid mode by adding such that the resulting mode does not

violate the download constraint. The BER value of mode is obtained from the BER-SNR

LUT. As pictorially shown, if the BER value of mode v lies to the left of BE RApp, then

the mode is added to the set FeasibleMode as the battery efficient mode for the chosen

point OSj of outer configuration space. When BER value lies to the right of BE RApp,

the inner space is constrained to IS′ by lowering and increasing upper and lower bounds

respectively; thereby eliminating modes that do not meet the BER requirement. The

upper bound is shifted to lower points by first gradually reducing CR and then Mod to

lower values. Lowering CR and Mod values constricts the configuration space to modes

with lower CR, Mod and BER values, thereby increasing the chances of finding mode

that satisfies the BER requirement. If BER requirement is not met even at the lowest

2The NLopt nonlinear-optimization package,” [Online]. Available: http:// ab-
initio.mit.edu/wiki/index.php/NLopt
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value of CR and Mod, in the final iteration, the lower bound is shifted to higher points by

gradually increasing the number of antennas NT , and NR. As increasing NT and NR values

will lead to selection of power intensive modes, it is done in the final iteration. The mode

selected in the final iteration is the battery efficient mode corresponding to the chosen

OS point OSj and is added to the set of feasible modes FeasibleMode. This process is

repeated till the outer space is completely explored and then the most battery efficient

mode M is chosen from FeasibleMode. The corresponding download rate DR(M) is the

chosen rate for the ensuing download epoch. The computational complexity of MoDS

algorithm which iteratively searches the IS and OS for battery efficient mode is presented

in Appendix A.1.

The overall framework for information and control data exchange between base

station and mobile device, mode selection and reconfiguration during battery efficient

video download is described in detail in the Appendix A.2. As elaborated in Appendix

A.2, additional data transmitted for conveying buffer levels to base station is nominal–a

byte resulting in 1.14 mW of power consumption [38]. On the other hand, receiving in-

formation from the BS about mode selected requires 8 bytes, and results in about 2.22µW

of power consumption when the mode (1X1,BPSK,CR = 1, ZF) is used. In addition

to the power consumed due to information exchange, during mode reconfiguration at

the mobile device, a change in the number of antennas used in the previous mode to

the current mode results in RF component switching power of 100mW per antenna and

switching time of 5µs [34].

2.4 Simulation Framework and Results

In this section, we describe the simulation framework developed and experimental

results obtained by using our proposed battery aware video download technique MoDS,

and compare with results obtained using conventional HTTP Progressive Download
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(HTTP-PD) as well as the EERA technique [20] discussed earlier in Section 2.1.1.

We have developed a very modular and flexible MATLAB based simulation

framework to estimate battery consumption and assess user experience during video

download and playback. The simulation framework consists of power, battery, BER and

user experience models, and allows us to implement and assess different video download

techniques to download video sequences under varying channel conditions and video

quality requirements. We briefly describe the models followed by discussion of the

framework integrated with the models and various video download techniques.

2.4.1 Power and Battery Models

The power model is used to estimate the power consumed in the mobile device

due to video download and playback. As elaborated in Section 2.3.2, download power

consists of four components namely, PRF−Chain, PMIMO−Dec, PCh−Dec, and and PBaseband

is modeled using (2.10) to (2.18) which are in turn based on measurements made on

ASIC implementations of the respective blocks. Similarly, playback power is estimated

using measurements from video decoder3 and mobile device display [39]. Note that since

the overall device power is the sum of the power consumed by the different components

of download and playback power, the power model can be adapted to a different device

by modeling and substituting for the components that are different. For example, if the

new device uses a different implementation of say, the baseband, then (2.18) will need to

be updated with the appropriate model for the new baseband implementation.

Next we will discuss the RV rechargeable lithium ion battery model [28] which

takes the output of power model to estimate the battery level. As elaborated in Section

2.3.2, (2.4) is used to estimate the battery level given the magnitude and duration of

battery load which is obtained using (2.9). It should be noted that the RV model can be

3[Online]. Available: http://www.privateline.com/imode/MPEG 4 CODEC. pdf
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Table 2.4. BER model simulation parameters

Channel Model Spatial Channel Model (SCM) - CaseII, Vehicular A
Channel Bandwidth 5MHz
SNR(dB) 0-40
FFT Size 512 points
Channel coding 1,2/3,1/2,1/3
Modulation Schemes BPSK, 4QAM, 16QAM, 64QAM
Antenna Configuration STM: 1X1, 2X2, 3X3, 4X4, STBC: 2X1, 2X2
MIMO Decoding Zero Forcing, K-Best
Channel Decoding Viterbi Decoding

used to estimate battery levels of rechargeable lithium ion batteries with different battery

voltage and capacities (battery specific parameters required by the battery model are

obtained by running discharge tests with constant battery load [28], [33]). This implies

that the proposed video download techniques can be evaluated on mobile devices of

varying form factors and battery capacities. Moreover, the proposed techniques are not

battery model specific and can be used with any model that gives the battery level in

response to the battery load.

2.4.2 BER Model

As elaborated in Section 2.3.1, given the channel condition, BER values of

transceiver modes are required by MoDS to ensure that desired BER is maintained. We

have developed a BER model by using MATLAB to simulate different modes under

different channel (SNR) conditions and obtain BER values which are stored in the BER-

SNR look up table (LUT). The simulation parameters used to generate the BER–SNR

LUT are listed in Table 2.4, including the modulation schemes, antenna configurations,

MIMO decoding and channel decoding algorithms. Using the specified channel model,

carrier bandwidth and FFT size, the SNR is varied to obtain the BER values of all the

modes constituting the reconfiguration space.
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2.4.3 User Experience Model

User experience for video download is primarily determined by the video quality

and any stalling in video playback. Video quality of received video is affected by

adaptation of video characteristics such as video resolution, bit rate, and frame rate, and

any packet losses that may occur due to BER during transmission. Since the original

video resolution, bit rate, and frame rate are not changed by HTTP-PD, EERA or MoDS,

the video quality is not affected. Further, by choosing a very low application BER,

BE RApp (< 3 ·10−5, [30], [31]) and carrying out mode selection so as to meet the desired

application BER requirements (10−6 in our experiments), no loss in PSNR and thereby

video quality due to packet loss is ensured. Hence, the only user experience impairment in

the case of video download techniques to be compared here is stalling. Consequently, the

user experience model uses the stalling–MOS relationship developed in [40] to map the

number and duration of stalling events recorded (by the simulation framework developed)

to MOS scores.

2.4.4 Simulation Framework

The simulation framework for video download techniques consists of power,

battery and BER models along with the video download algorithm/technique and sim-

ulation time counter. When video download is initiated, the simulation time counter is

started. The simulation step is equal to the download epoch duration DPeriod , and in

our experiments it is fixed at 2s, though it can be made longer or shorter. In case of

the proposed battery aware video download technique, the MoDS algorithm determines

the battery efficient mode and download rate depending on the current buffer level and

channel condition (SNR) for each simulation step.

For the energy efficient rate adaptation (EERA) technique [20], the EERA algo-

rithm determines the energy efficient mode and the download rate depending on the video
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bit rate and channel condition. While simulating the conventional HTTP-PD technique

implemented using the download mechanism (consisting of initial phase and throttle

phase) in [41], we fix the desired download rate to maximum value determined using

(2.20) in the initial phase and to that which will allow a constant average rate of 1.25

times the video encoding rate when data is sent in bursts of 64KB in the throttle phase.

We select the mode that satisfies the download rate and BER requirement and if no such

mode exists, then the mode that gives highest download rate (lower than the desired rate)

at the given SNR and BER value is chosen. For all the aforementioned techniques, the

BER–SNR LUT (Section 2.4.2) is used to ascertain whether the BER of the selected

mode satisfies the BE RApp. The download power and playback power are calculated

using the power model (Section 2.4.1) and the resulting battery load is input to the

battery model (Section 2.4.1) to estimate the battery level. It should be noted that for

MoDS, the power consumed due to information (1.14mW, see Section 2.3.3) and control

data exchange (2.2µW, see Section 2.3.3) and RF component switching power (100mW

for 5us, see Section 2.3.3) is also added to the download power and playback power

before determining battery load. The simulation framework also records the number and

duration of stalls (buffer underflow/overflow) if any and uses the user experience model

(Section 2.4.3) to quantify the user experience in terms of MOS value.

If the viewer switches to a new video or current video is completely downloaded,

new video download begins. This continues till battery is completely drained. The

simulation counter at this instant gives the battery lifetime for downloading and watching

the chosen video sequence under simulated channel conditions and quality requirements.

It should be noted that while battery lifetime is a cumulative result of multiple video

download and viewing sessions, user experience is assessed for each session.

Table 2.5 lists the simulation parameters used in our experiments. Video charac-

teristics specify the video bit rate used to encode the video and the sequence of videos
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Table 2.5. Video download simulation parameters

Video Characteristics
Video Bit Rate VBR = 4.12Mb/s
Video Sequence 1: {184s, 226s, 195s, 197s,
226s, 257s, 274s, 231s, 200s, 224s, 298s, 235s,
285s, 198s, 233s, 291s, 298s, 236s, 221s, 205s}

Client Characteristics

Video Buffer Size Bu fSize = 300s
Playback Load (Decoder + Display) IPlayback =
34mA
RF Component Switching Power = 100mW
RF Component Switching Time = 5µs

User Characteristics
Constant SR=1
Variable SR: {0.5, 0.1, 0.97, 0.43, 0.27, 0.93,
0.22, 0.19, 0.28, 0.67, 0.6, 0.39, 0.93, 0.82, 0.05,
0.82, 0.38, 0.45, 0.01, 0.28}

Algorithm Parameters Minimum Buffer Level Bu fMin = 10s
SNR(dB) High:40, Low:9, Variable: In the range 0-40
BER Application BER BE RApp = 10−6

watched. Client characteristics enumerate buffer size, playback current, switching power

and switching time specifications of RF components (antennas). In our experiments, we

also consider the increasingly prevalent “video snacking” user viewing pattern wherein

the user begins to watch a video and then switches to a new video without finishing

the current video. This pattern is modeled by randomly generated values of snacking

ratio (SR) which is the ratio of the duration of the video viewed by the user to the

actual duration of the video. In other words, each snacking ratio value specified in user

characteristics indicates how much of the corresponding video in the video sequence the

user will watch. The value of the algorithm parameter, minimum buffer level Bu fMin

used to determine DRMin in (2.22) is also listed in Table 2.5. Table 2.5 lists the channel

conditions based on measurements of cellular network (high, low and variable) and the

application BER requirement that ensures high quality (Section 2.3.1, [30], [31]). Note

the resolution of temporal variation in channel condition is assumed to be comparable to

the simulation step.
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2.4.5 Experimental Results

Next, we present results obtained by simulating video download under different

channel conditions and snacking ratios (and low BER/high video quality requirement)

shown in Table 2.5. Figs. 2.6 and 2.7 show the effects on download rate, battery load,

level, and lifetime while using HTTP Progressive Download (HTTP-PD, shown as red

dot-dash line/red bar) [41], the energy efficient rate adaptation technique (EERA, shown

as blue dashed line/blue bar) [20] and our proposed battery aware download technique

(MoDS, shown as green solid line/green bar).

We will first describe the download characteristics of each of the techniques and

then discuss their impact on battery consumption under different snacking ratio values

and SNR conditions. HTTP-PD delivers video at maximum download rate in the initial

phase followed by constant average download rate in the throttle phase [41] without

attempting to choose battery efficient modes in both phases resulting in maximum battery

drain during video download. However, the above factors contribute to reduced download

duration and extended playback only period after download during which significant

charge recovery takes place as battery load is reduced to only playback load. EERA

reduces battery drain by selecting energy efficient modes; however it downloads at the

video encoding bit rate (4.12 Mb/s) which not only extends the download duration but

also does not fill the buffer and thereby can neither vary download rate nor download

idle to achieve additional battery savings. On the other hand, MoDS selects modes that

maximize battery level and battery load is further reduced by selecting download idling

whenever playback time available is greater than Bu fMin [as in (2.22)].

We will first examine the scenario when the mobile device is experiencing good

network condition (high SNR). The download rates selected while downloading and

viewing a single 184s video with SR = 1 (video viewed completely), and the resulting
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battery load, are shown in Figs. 2.6a and 2.6b respectively. The green solid line shows the

effect of MoDS performing download idling. Fig. 2.6c shows the effect on battery level,

when the simulation is started with battery level of 0.2. Note that for MoDS, download

idle followed by transmission results in alternate fall and rise in load with corresponding

rise and fall in battery level clearly indicating that battery recovers charge as a result

of idling. HTTP-PD results in maximum battery drain (as explained above) till video

download is complete at t = 125s. Subsequently, it recovers significant charge during

the playback only period lasting about 59s as shown in Fig. 2.6c. This explains how

HTTP-PD reduces most of the gains achieved by MoDS through selection of battery

efficient modes and idling. At the end of video duration (184s), we can see that EERA

causes maximum decrease in battery level, followed by HTTP-PD and finally by MoDS,

the latter reducing degradation in battery level significantly compared to EERA but only

marginally compared to HTTP-PD. On the other hand, if we consider SR = 0.5, then

video download and playback will stop at t = 92s indicated by vertical line in Fig. 2.6c.

In this case, HTTP-PD cannot utilize the playback only period to recover charge, hence

it causes maximum battery drain (about 3.6%) followed by EERA and then MoDS.

Figs. 2.7a and 2.7b show the impact on battery lifetime when video sequence

1 is seen with SR = 1 and variable SR respectively and with a starting battery level of

0.2. For SR = 1 [Fig. 2.7a], even though HTTP-PD recovers charge at the end of single

video as elaborated above, subsequently, as download progresses, the high download load

depletes the battery more during download than that can be recovered during playback

period. This widens the gap in battery levels between HTTP-PD and MoDS with the

lower download load and idling for MoDS further extending the battery lifetime to result

in overall gain of 16%. For EERA, the maximum battery drain for single video continues

for subsequent videos resulting in 46% lower battery lifetime compared to MoDS. For

variable SR [Fig. 2.7b], HTTP-PD cannot recover charge in the playback only period
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unless SR is comparable to 1. On the other hand, as EERA extends download time and

does not vary download rate or idle, variable SR has negligible effect on its performance.

MoDS which reduces battery load right from the outset, gains about 71.5% and 43% in

battery lifetime over HTTP-PD and EERA respectively. As no stalling is recorded for

either of the techniques with either SR = 1 or SR = 0.5 or variable SR, user experience is

same for HTTP-PD, EERA and MoDS and MOS is 5 [40]. It should be noted that the

MOS values are the average of the MOS values of videos downloaded and viewed.

Next we will discuss the scenario when mobile device experiences bad channel

condition (low SNR). Low SNR condition does not allow filling up the buffer as fast

resulting in shorter playback period for HTTP-PD. On the other hand, the selection of

modes that minimize battery load by MoDS under low SNR conditions results in reduced

download rates (higher download rates require power intensive modes to maintain BER)

that not only extend duration of download but also do not allow idling. As can be seen

in Fig. 2.7c, for MoDS, this results in loss of about 6.6% over HTTP-PD when SR = 1.

However, it gains by about 9% in battery lifetime compared to EERA which stalls for

380s (31%) as it attempts to download at video bit rate by selecting battery efficient

modes which under low SNR conditions does not allow buffer to fill and avoid stalling.

HTTP-PD and MoDS do not result in stalling, hence result in the same user experience

(average MOS = 5 [40]). On the other hand, EERA on an average (1210s battery lifetime

corresponds to approximately 6 videos of video sequence 1 and 380s stalling corresponds

to about 63s of stalling per video) results in MOS score below 2 [40]. From Fig. 2.7c,

one can see that for variable SR, MoDS gains by 7.7% over HTTP-PD. With no video

stalling, MOS = 5 for both HTTP-PD and MoDS. Though EERA gains by 1.4% over

MoDS, it stalls for 258s (878s, 9 videos, 29s of stalling per video) resulting in MOS

below 2. Under variable SNR conditions, gains under high SNR offset the loss under low

SNR to result in net gain in battery lifetime for MoDS. In this case, the combination of
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power intensive modes under low SNR and battery inefficient modes under high SNR

reduces the gain due to charge recovery for HTTP-PD. It can be seen from Fig. 2.7d

that when SR = 1, a gain of 24% over HTTP-PD and 41% over EERA is possible when

MoDS is used. HTTP-PD and MoDS achieve MOS = 5 with no stalling whereas EERA

results in an average of 6s of stalling per video (1610s, 7 videos, 45s stalling) resulting in

a MOS score of about 2 [40]. For variable SR [Fig. 2.7d], the above gains for MoDS are

extended to 99% and 51% over HTTP-PD and EERA respectively. As with SR = 1, no

stalling results in MOS = 5 for both HTTP-PD and MoDS whereas EERA results in an

average of 2.1s stalling per video (1220s, 11 videos, 24s of stalling) resulting in MOS

value of 3.5.

Studies conducted in [42] and [43] show that the average video completion rate is

as low as 15% on smartphones and slightly higher on Tablets and that 80% of YouTube

sessions are less than half of the video duration indicating that video snacking is highly

prevalent among users. With reference to these statistics, variable SR values less than

1 is more realistic than constant SR equal to 1. From the above results, it can be seen

that MoDS significantly increases battery lifetime in the realistic scenario of variable SR.

With respect to SNR, the statistics presented in [33] for signal strength (SNR) experienced

by users shows that variable SNR conditions are most prevalent and also that low SNR

conditions throughout video download are less likely to occur. Again, the above results

show that MoDS performs best under the most prevalent case of variable SNR conditions

while the loss or nominal gains under low SNR conditions are less likely to occur.

In the next section, we will present battery aware techniques for DASH video that

add to the battery savings achieved by download rate and mode reconfiguration while

ensuring minimum desired video quality.



40

2.5 Bit Rate, Download Rate, and Mode Selection

As explained in Section 2.2.3, adapting the video bit rate may offer the opportu-

nity for further battery savings beyond download rate and transceiver mode adaptation.

However, bit rate adaptation may also affect video quality. When the mobile device is

battery constrained limiting the longevity of watching video, the overall user experience

may be enhanced by considering bit rate adaptation to elongate the battery lifetime and

hence the viewing experience even with some acceptable degradation in video quality.

In this section, we explore the potential additional benefit of video bit rate adaptation,

along with download rate and mode adaptation, to increase the battery lifetime and

thereby the video viewing experience, while ensuring an acceptable video quality. We

first formulate the optimization problem formally, and then present algorithm developed

namely BR-MoDS which uses optimization solver to solve the optimization problem. We

then extend the formulation to consider battery level while selecting bit rate and present

the B2R-MoDS algorithm that solves the extended optimization problem. We conclude

the section by defining the new Video Experience Longevity metric which quantifies the

performance of DASH based techniques in terms of battery lifetime (longevity of video

experience) and quality of video experience.

2.5.1 Maximization of Battery Lifetime with Acceptable Quality

The objective of video bit rate, download rate and mode selection is maximization

of battery lifetime during adaptive video streaming subject to bit rate, download rate

and user experience constraints. In adaptive bit rate streaming, the video is fragmented

in to equally sized segments, each segment encoded using the set of discrete bit rates

available [15]. A segment download can be viewed as a two tiered process wherein first

the bit rate for the segment and subsequently, download rate and mode is selected. It
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should be noted that the download rate and mode selection may need to be done multiple

times during a segment download; in other words each segment may consist of one or

more ‘download epochs’ during which download rate and mode selection is carried out.

This implies that battery lifetime maximization is achieved at two levels, namely at the

segment level and at the download epoch level and hence, we will adopt a two tiered

approach towards selecting a battery efficient combination of bit rate, download rate and

mode. Selections made at either segment or download epoch level maximize battery

level and the cumulative result of these selections maximizes battery lifetime. Therefore,

henceforth we will refer to maximization of battery level instead of battery lifetime as

the objective of bit rate, download rate and mode selection.

First we will formulate the sub-problem that maximizes battery level by choosing

bit rate for each segment subject to bit rate and user experience constraints. We consider

segments of duration SegTime encoded using bit rates belonging to set VValid
BR−Set lower

bounded by VBR−Min and upper bounded by VBR−Max . The amount of data downloaded

SegData, for a segment is given by the product of SegTime and bit rate chosen VBR.

Choosing lower bit rates reduces the amount of data downloaded which in turn reduces

battery load and/or duration of load thereby maximizing battery level (as elaborated

in Section 2.2.3). However, as bit rate selection affects video quality VQ, it has to be

done in a manner that the VQ exceeds a certain threshold VQT hr in order to ensure user

experience. In addition to video quality, maintaining user experience also requires that

VBR does not exceed the network throughput NWTPut in order to avoid video stalling.

Hence bit rate selection to maximize battery level can be viewed as minimizing SegData

subject to bit rate, video quality and network throughput constraints as shown in (2.23).

minSegTime ∗VBR (2.23)
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Subject to: VBR−Min ≤ VBR ≤ VBR−Max (2.24)

VQT hr ≤ VQ (2.25)

VBR ≤ NWTPut (2.26)

Video quality VQ is measured in terms of average MOS value, MOSVideo
Avg .

MOSVideo
Avg defined in (2.27) is the average of MOS values corresponding to bit rates

of previously downloaded N segments and the bit rate to be selected using (2.23) for

the current N +1th segment. As MOS value corresponding to VBR−Max , MOS(VBR−Max)

represents maximum video quality, we define the lower bound on video quality VQT hr ,

as reduced by the factor VQRed which specifies the acceptable loss in video quality due

to battery aware DASH techniques. VQT hr is given by (2.28).

MOSVideo
Avg =

MOSSeg1 + ..+MOSSegN +MOSSegN+1(VBR)
N +1

(2.27)

VQT hr = VQRed MOS(VBR−Max),0 < VQRed ≤ 1 (2.28)

Network throughput given by (2.29) is the ratio of SegData and segment download

duration SegDT . SegData and SegDT used to estimate NWTPut corresponds to the N th

segment, that is the network load conditions experienced during the download of the

previous segment influences the selection of bit rate of the current segment. It should

be noted that SegDT may be lesser than, equal to or greater SegTime than depending on

network load and channel conditions.

NWTPut =
SegData

SegDT
(2.29)

A feasible solution to (2.23) may not always exist. In case NWTPut is lesser
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than VBR−Min, then VBR−Min is selected which may lead to video stalling and violation

of VQT hr . When both NWTPut and VQT hr constraints cannot be satisfied, bit rate which

satisfies the NWTPut is selected to avoid video stalling and leads to violation of VQT hr .

Subsequent to bit rate selection, we will now formulate the download rate and

mode selection sub-problem for all the download epochs that constitute the segment

download. We use the problem formulation given by (2.6) and elaborated in Section

2.3.2, except that upper bound on DR is the amount of segment data that needs to be

downloaded and not amount of data needed to fill the buffer [as in (2.20)] and lower

bound ensures that playback time is at least equal to segment time and not minimum

buffer level Bu fMin, [as in (2.22)]. DRMax corresponding to any download epoch in a

segment cannot exceed the difference of total segment data SegData and segment data

downloaded so far, the latter being the sum of the products of duration of each download

epoch DPeriod and download rate DR chosen for the epoch. On the other hand, DRMin

is zero when the playback time available PBT exceeds SegTime. When PBT available

is less than SegTime, DRMin corresponds to the deficit required to increase PBT to at

least SegTime to ensure that buffer contains enough data to playback the segment without

stalling. Hence the bounds on download rate are now defined as shown in (2.30) and

(2.31).

DRMax =
SegTimeVBR−

∑N
i=1 Di

Period DRi

DN+1
Period

(2.30)

DRMin =


0,PBT ≥ SegTime

(SegTime −PBT)VBR,PBT < SegTime

(2.31)
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Figure 2.8. Bit Rate, Mode and Download Rate Selection (BR-MoDS) algorithm

2.5.2 Bit Rate, Mode, and Download Rate Selection (BR-MoDS)
Algorithm

In this section we will describe BR-MoDS algorithm that adopts the two tiered

problem formulation elaborated in the previous subsection to search the bit rate space

and transceiver configuration space (Tables 2.1 and 2.2). Fig. 2.8 shows the inputs, two

phases and outputs of BR-MoDS algorithm. As shown in Fig. 2.8, phase 1 involves

selecting bit rate V Appr
BR that minimizes the SegData given the bit rate, video quality and

network throughput constraints. If V Appr
BR does not belong to VValid

BR−Set , it is rounded off to

the nearest higher valid bit rate VBR by adding ε such that the resulting bit rate does not

violate the network throughput constraints. It should be noted that the rounding off of bit
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rate does not violate the video quality threshold as a higher bit rate is chosen. The output

of phase 1, VBR along with Bu fLev, BatLev, SNR and DPeriod form the inputs to MoDS

algorithm (Section 2.3.3, Fig. 2.5). As elaborated in the previous subsection, the bounds

on download rate constraint used by the MoDS algorithm are defined by (2.30) to (2.31)

instead of (2.20) to (2.22). The MoDS algorithm is iteratively called, with iterations

corresponding to download epochs, till the aggregate of the segment data downloaded is

equal to SegData as shown in phase 2, Fig. 2.8. The output of MoDS is the mode M and

download rate used in that epoch.

Having discussed in detail the framework and algorithm developed to maximize

battery lifetime during DASH streaming, we next discuss an approach to jointly maximize

both battery lifetime and video quality.

2.5.3 Joint Maximization of Battery Lifetime and Video Quality

The BR-MoDS algorithm described above selects the minimum (optimal) bit rate

that satisfies the video quality and network throughput constraints even though battery

level and network conditions may allow selection of higher bit rate as it aims to maximize

only battery lifetime and not aggregate video quality. On the other hand, aggregate video

quality can be potentially enhanced by choosing a higher video quality threshold VQT hr

which will result in choosing higher bit rates, but will decrease battery savings. This

implies that joint maximization of battery savings and aggregate video quality is required

to balance the battery lifetime–video quality tradeoff achieved by bit rate adaptation.

However, while bit rate impacts video quality directly, it has an indirect relationship with

battery lifetime. Bit rate determines the amount of data to be downloaded, which in turn

(along with battery and buffer levels, channel and network load) determines the mode

and download rate and hence battery lifetime. This indirect relationship does not lend

itself naturally to a joint battery lifetime–aggregate video quality maximization formu-
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lation. Hence in this section, we propose a heuristic approach which uses information

about battery level and network conditions during bit rate selection to opportunistically

maximize both battery lifetime and aggregate video quality.

One possible way of utilizing battery level information during bit rate selection is

to scale bit rate with battery level. The basis for this approach is that when battery level

is high, battery can support higher drain due to higher bit rates whereas when battery

level is low, lower bit rates have to be chosen because higher bit rates will deplete the

battery to a greater extent than when battery level is high. However, though the choice of

low bit rates when battery level is low will conserve battery and extend video viewing

time, it will also result in consistently low video quality and may not meet the video

quality constraint. A better approach will be scaling bit rate with the ratio of battery level

BatLev to the starting battery level BatLev−Init . Using the ratio ensures that scaling of bit

rate and rate of increase in scaling during a session is lesser when BatLev is higher, and

much more when BatLev is lower. For instance, consider the two cases when battery level

reduces by 0.05 and 0.1, the ratio values are 0.95 and 0.9 respectively when BatLev−Init

is 1 and 0.75 and 0.5 when is 0.2. This results in wider range of bit rates selected during

a session when BatLev is low with higher bit rates boosting quality and lower bit rates

offsetting the drain due to higher bit rates. It should be noted that whenever the bit rate

selected exceeds NWTPut , it is set to NWTPut in order to avoid buffer underflow. As the

bit rate selection stated in (2.23) selects the minimum bit rate that satisfies the constraints,

based on the above observations, we modify the lower bound on bit rate VBR−Min to a

battery level dependent bit rate V BA
BR given by (2.32).

V BA
BR = VBR−Min+BatLevBat−1

Lev−Init(VBR−Max −VBR−Min) (2.32)

This implies that the lower bound on bit rate shifts higher or lower depending on
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BatLev thereby using battery level information for bit rate selection. The modified bit

rate selection problem is same as that stated in (2.23) except that VBR−Min is replaced by

V BA
BR . The new algorithm termed Battery Level Aware BR-MoDS, B2R-MoDS is same as

BR-MoDS except that phase 1 is modified to reflect the above change. The computational

complexity of BR-MoDS and B2R-MoDS which use nonlinear optimization solver ‘nlopt’

to determine the minimum bit rate V Appr
BR is presented in the Appendix A.1.

2.5.4 Battery Aware Video Streaming - Framework

In our proposed framework, the execution of BR-MoDS B2R-MoDS algorithms

is distributed as the bit rate selection is mobile device driven (like any DASH based

technique) and download rate and mode selection carried out by MoDS is base station

driven. The framework is the same as that elaborated in Appendix A.2 except that the

bit rate is sent by the mobile device prior to each segment download. Also, the initial

information conveyed by mobile device at the beginning of video session consists of

VBR−Max , VBR−Min, maximum PBT possible and also the segment time SegTime. Sub-

sequently, for each of the download epoch that constitutes the segment download, the

information exchange between base station and mobile device is as explained in Appendix

A.2. However, the buffer status update is used to calculate DRMax and DRMin defined in

(2.30) and (2.31).

2.5.5 Video Experience Longevity (VEL) Metric

In this section, we develop the Video Experience Longevity (VEL) metric to

quantify the performance of the proposed battery aware bit rate adaptation techniques

in terms of both the longevity of video experience and the quality of video experience

as compared to alternative DASH based techniques. In this chapter, for comparison we

consider the non-battery aware rate adaptation algorithm proposed in [22] for DASH [44]
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(termed RA-DASH) and the battery aware rate adaptation technique (termed BaSe-AMy)

proposed in [27]. The VEL metric is developed to compare performances of the differ-

ent techniques for the most demanding scenario when the mobile device continuously

downloads and watches videos till the battery gets exhausted. In this scenario, note that

the longevity of video experience E xpTime is the same as battery lifetime BatLi f etime

minus any stalling time StallTime during the video sessions, as given by (2.33) below.

However, even in other user scenarios, a DASH technique with higher VEL score than

another technique can be considered more efficient in terms of battery lifetime and/or

video experience. While modeling of the quality of video experience VE continues to be

an active area of research, in this chapter we model VE as shown in (2.36) as a weighted

sum of video spatial quality measured by the MOSTot
Avg defined in (2.34) as the average

of MOSVideo
Avg [defined in (2.27)] of all the K videos streamed till the battery dies, and

video temporal quality reflected by a term NStallNorm defined in (2.35), which measures

how free the video experience is from stalls/jitter. The weights wMOS and wNStall in

(2.36) reflect relative priority for spatial quality versus stall-free video in determining

user experience. Note that we normalize NStallNorm to 5 in line with MOS score so we

can consider both of them in VE; when there is no stalling, the value is 5, while in the

extreme case that no video playback is possible at all due to stalling, the value is 0.

E xtTime = BatLi f etime− StallTime (2.33)

MOSTotal
Avg =

MOSVideo1
Avg +MOSVideo2

Avg + ..+MOSVideoK
Avg

K
(2.34)

NStallNorm =
5E xpTime

BatLi f etime
(2.35)
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VE = wMOS MOSTotal
Avg +wNStall NStallNorm,0 < wMOS,wNStall ≤ 1 (2.36)

Next we define the VEL metric in (2.37) to quantify the joint gain/loss in ex-

perience longevity and quality of video experience achieved by the proposed battery

aware DASH techniques over DASH techniques used for comparison. The ratio increases

(decreases) when there is gain (loss) in experience longevity relative to gain (loss) in

video experience.

VE L =
1+∆E xpTime

1−∆VE
(2.37)

∆E xpTime defined in (2.38) and ∆VE defined in (2.39) represent the gain/loss in

experience longevity and video experience respectively achieved by the proposed battery

aware DASH (BA-DASH) techniques (BR-MoDS and B2R-MoDS) over other DASH

techniques (non-battery aware [22] and battery aware [27]).

VE L =
E xpTimeBA−DASH −E xpTimeDASH

E xpTimeDASH

(2.38)

∆VE =
VEBA−DASH −VEDASH

VEDASH
(2.39)

Note that ∆E xpTime and ∆VE for technique used for comparison (RA-DASH or

BaSe-AMy) are zero, implying VEL value of 1. VEL for the proposed techniques can be

greater than or lesser than 1 depending on values of ∆E xpTime and ∆VE . If a proposed

technique has VEL greater than 1, it is more efficient than the DASH technique used for

comparison in terms of experience longevity and/or video experience.
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2.6 Simulation Framework and Results

In this section, we describe the simulation framework developed to adaptively

stream different video sequences under varying channel and network load conditions and

video quality requirements. We will then discuss the experimental results obtained using

the proposed battery aware DASH techniques, as compared to using the conventional

RA-DASH technique and battery aware rate adaptation technique, BaSe-AMy.

2.6.1 Simulation Framework

In this section, we will elaborate on the modifications made to the simulation

framework developed in Section 2.4 to estimate battery consumption during adaptive bit

rate streaming and playback. As rate adaptation techniques for DASH adapt video bit

rate under challenging channel conditions and network load, we extend the simulation

framework developed in Section 2.4 to simulate varying network load (equivalent to

varying number of users) by modulating the peak throughput available to a particular

user while downloading video. Also in the framework, MoDS algorithm is replaced by

BR-MoDS and B2R-MoDS algorithms. When video download is initiated, the simulation

time counter is started. As before, in our experiments, simulation step is fixed at 2s. In the

simulation step that marks the beginning of segment download, BR-MoDS/B2R-MoDS

determines the bit rate of the segment. For all the subsequent simulation steps that

download this segment data, MoDS algorithm (Sections 2.3.3 and 2.4.4) determines

the mode and corresponding download rate. The simulation counter when the battery

is fully drained gives battery lifetime when user downloads and watches chosen video

sequence under simulated channel and network load conditions and quality requirements.

In order to capture the effect of bit rate adaptation on user experience, we modify the

User Experience Model (Section 2.4.3) to include the MOS corresponding to the bit rate
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Table 2.6. Simulation parameters for DASH streaming

Video Characteristics

Video Bit Rate VValid
BR (Mb/s):{4.5, 3.75, 3.125,

2.6, 2.17, 1.81, 1.51}
MOS Values: {4.8, 4.6, 4.49, 4.35, 4.2, 4.02,
3.9}
Segment Time SegTime = 10s
Video Sequence 2: {404s, 1942s, 124s, 360s,
526s, 190s, 757s, 738s, 360s, 255s, 232s, 396s,
181s, 219s, 319s, 139s, 348s, 408s}

Client Characteristics
Video Buffer Size Bu fSize = 50s
Playback Load (Decoder + Display) IPlayback =
34mA

Video Quality Require-
ments

Quality Threshold VQT hr= 4.32 (VQRed=0.9,
10% degradation from highest MOS value of
4.8)

Network Level Variable, Peak Throughput = 2.52-8.4Mb/s

selected. We use the bit rate–MOS model [45] to map the bit rate of each segment to a

MOS value and calculate the average MOS value for the video streamed using (2.27).

Given these MOS values and stalling measurements, the video experience VE of the user

is measured using (2.36).

To allow comparison, we use the same framework to simulate the RA-DASH and

BaSe-AMy, except that, instead of using BR-MoDS/B2R-MoDS, we use the algorithm

implemented in [22] and [27] respectively to determine bit rate. For RA-DASH and

BaSe-AMy, the download rate is determined by (2.30), and mode that satisfies the

download rate and BER requirement is selected. It should be noted that if download rate

determined by BR-MoDS/B2R-MoDS or for RA-DASH/BaSe-AMy exceeds the peak

throughput, then the base station limits download rate to the peak throughput rate. The

user characteristics, channel conditions and application BER requirements are identical

to those in Table 2.5.

Table 2.6 lists the other required simulation parameters used in our DASH stream-

ing experiments. The video characteristics consist of the set of video bit rates available
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for selection, the corresponding MOS values (derived from the video bit rate–MOS

mapping for VGA screen resolution presented in [45]), duration of segments and the

video sequence viewed. Each of the videos in video sequence 2 are available in segments

of duration SegTime and each of these segments are encoded using VValid
BR−Set . Client char-

acteristics enumerate buffer size and playback current requirements. The video quality

requirements specify the maximum quality reduction acceptable VQRed and the quality

threshold VQT hr that must be satisfied. Table 2.6 also lists the peak throughput under

variable network load conditions.

2.6.2 Experimental Results

In this section, we will present the experimental results obtained by simulating

adaptive bit rate streaming of video under variable network load conditions and different

channel conditions. In all the experiments reported below, we set the weights wMOS and

wNStall in (2.36) to 0.5, giving equal priority to spatial quality and stall-free video.

Fig. 2.9 shows the selection of bit rate (shown as green solid line) and download

rate (shown as blue pluses) while streaming a video of 200s duration using RA-DASH,

and our proposed BR-MoDS and B2R-MoDS techniques, under variable network load

(shown as red dashed line representing the variation in peak throughput) and variable

channel conditions. For lack of space, we do not illustrate the same for BaSe-AMy

technique. The 200s video has the same bit rate/MOS characteristics shown in Table

2.6. Fig. 2.9a shows that RA-DASH attempts to track the network throughput while

selecting bit rates, and downloads at the highest rate possible during each download

epoch. From Fig. 2.9b, it can be seen that BR-MoDS chooses the lowest bit rate possible

initially, followed by higher bit rates (in order to boost MOSAvg and satisfy the video

quality constraint) and also lowest download rates possible. Fig. 2.9c shows that B

R-MoDS, as designed, chooses bit rates higher than that selected by BR-MoDS (except
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Table 2.8. VEL metric values for RA-DASH, BaSe-AMy, BR-MoDS and B2-MoDS

VEL
RA-DASH BR-MoDS B2R-MoDS

SNR-Variable 1 1.42 1.33
SNR-High 1 1.56 1.40
SNR-Low 1 1.29 1.19

BaSe-AMy BR-MoDs B2R-MoDS
SNR-Variable 1 1.5 1.41

SNR-High 1 1.54 1.39
SNR-Low 1 1.4 1.3

when BR-MoDS selects higher bit rates to boost MOSAvg), with the bit rate selected

going down as it tracks battery level ratio which decreases as download progresses.

However, like BR-MoDS, it also selects the lowest download rate possible. Though we

do not illustrate the bit rate selection carried out by BaSe-AMy, it should be noted that

BaSe-AMy always selects the highest bit rate possible. BaSe-AMy lowers the bit rate

only when battery lifetime remaining is lesser than that required to completely stream

the video and the battery level is below a certain threshold.

Next we report on the effect of the DASH based techniques on battery level and

quality of video experience. Assuming the battery level is 0.2 at the start of the 200s

video download, the battery level reduces by 16.1%, 17.34%, 10.45%, and 12% for

RA-DASH, BaSe-AMy, BR-MoDS and B2R-MoDS respectively while achieving a video

experience of 4.83, 4.76, 4.66, and 4.793. This shows that the proposed battery aware

DASH techniques result in more battery efficient video streaming than the conventional

RA-DASH and BaSe-AMy techniques. We also see that BR-MoDS can be more battery

efficient than B2R-MoDS as it uses lower bit rates, while B2R-MoDS can achieve higher

video experience.

In the next set of experiments, we simulate the video snacking behavior (variable

snacking ratio, Table 2.5) by the mobile device downloading video sequence 2 (Table
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2.6), starting with battery level 0.2 till the battery gets exhausted, giving the battery

lifetime. We report in Tables 2.7 and 2.8 values for Experience Longevity E xpTime,

quality of Video Experience VE and VE L metric respectively obtained by RA-DASH

and BaSe-AMy when streaming video sequence 2 under variable network load (red

dashed line in Fig. 2.9) and variable, high, and low SNR conditions. Also reported in

Tables 2.7 and 2.8 are the percentage gains (loss) over RA-DASH and BaSe-AMy in

Experience Longevity ∆E xpTime and Video Experience %∆VE , as well as VEL values,

when using BR-MoDS and B2R-MoDS. From Table 2.7 we observe that for variable

SNR conditions (row 1), the experience longevity is significantly increased by using

BR-MoDS and B2R-MoDS; 46.2% and 34.8% compared to RA-DASH and 53.2% and

41.3% compared to BaSe-AMy. In terms of video experience, BR-MoDS loses 3% and

1.7% compared to RA-DASH and BaSe-AMy while B R-MoDS loses 1.9% and gains

0.29% compared to RA-DASH and BaSe-AMy respectively. As can be expected from

the %∆E xpTime and %∆VE results, BR-MoDS and B2R-MoDS show significant gains

in VEL compared to both RA-DASH and BaSe-AMy as shown in Table 2.8.

Under high SNR conditions, the longevity of video experience is higher than under

variable SNR conditions for all the techniques, including RA-DASH and BaSe-AMy, as

less power consuming modes can be used to achieve the required BER. It can be seen

from Table 2.7 that by using BR-MoDS and B2R-MoDS, experience longevity increases

by 61.1% and 41.4% compared to RA-DASH and by 57.8% and 38.5% compared to

BaSe-AMy. In terms of video experience, BR-MoDS loses 3.2% and 2% compared

to RA-DASH and BaSe-AMy while B R-MoDS loses 0.4% and gains 0.7% compared

to RA-DASH and BaSe-AMy respectively. As expected, BR-MoDS and B2R-MoDS

outperform RA-DASH and BaSe-AMy in terms of VEL values (Table 2.8).

Lastly, when channel conditions are bad (low SNR), all the DASH techniques

achieve lower battery lifetime compared to high and variable SNR conditions as more
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power intensive modes have to be used to meet BER requirements resulting in lower

battery lifetime. BR-MoDS and B2R-MoDS extend experience longevity by 32% and

20.2% compared to RA-DASH and 36.9% and 24.6% compared to BaSe-AMy. In terms

of video experience, BR-MoDS and B2R-MoDS lose 2.4% and 0.78% compared to

RA-DASH and 2.35% and 0.66% compared to BaSe-AMy. As before, both BR-MoDS

and B2R-MoDS outperform RA-DASH and BaSe-AMy in terms of VEL metric as shown

in Table 2.8.

In this chapter, we developed techniques for increasing battery lifetime of mobile

devices during video download while ensuring no degradation in user experience. In the

forthcoming chapters, we will focus on increasing the power efficiency of base stations

in the cellular networks.

2.7 Summary

In this chapter, we presented novel battery aware HTTP video delivery schemes.

First, we proposed battery aware video progressive download techniques that dynamically

adapt video download rate and transceiver configurations to reduce battery consumption

while ensuring user experience. Next, we presented battery aware DASH streaming

techniques that aim to maximize both battery lifetime and video quality while ensuring

minimum desired video quality by adapting video bit rate in addition to download rate

and transceiver configuration. Lastly, we proposed the Video Experience Longevity

metric that quantifies the performance of the proposed battery aware DASH techniques in

terms of experience longevity and video experience. Our simulation results demonstrated

the ability of the proposed techniques to achieve significant increase in battery lifetime,

no more than the desired (video quality threshold) loss in video experience and high VEL

values as compared to conventional non-battery aware techniques and other battery aware

techniques.
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While the proposed battery aware video delivery techniques focus on increasing

battery lifetime, in future, we aim to investigate techniques that jointly reduce the

power consumption at the base station and battery consumption of mobile device while

downloading mobile video. We would also like to extend our techniques to explore

battery savings when video is streamed and uploaded from mobile devices.
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Chapter 3

Dynamic Cell Reconfiguration Frame-
work for Energy Conservation in Cellu-
lar Networks

3.1 Introduction

With the explosive growth in wireless communication usage and infrastructure,

energy use of cellular wireless networks has lately become a critical issue [46]–[47].

Designers of communication and networking algorithms and protocols have traditionally

put less weight on the complexity and power consumption at base stations (BSs) than

improving energy efficiency to prolong battery life-time of user equipments (UEs).

Today, however, the situation has changed. Pushed by ever increasing energy costs and

environmental concerns, all information and communications technology (ICT) industries

are seeking ways to reduce energy consumption. In particular, improving the energy

efficiency of BSs has become as important as UEs because the BSs have been identified to

be the most power consuming equipment, e.g., 60–80% of the total energy consumption

in current cellular networks [48].

Energy efficiency with respect to BSs has been considered in many dimensions,

spanning from hardware component improvements to network-level solutions. A number

of these efforts have focused on novel hardware design and manufacture, e.g., energy-

59
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efficient power amplifiers, fanless coolers. Others also considered collocating BSs with

renewable energy sources [49]. In the domain of network-level solutions, there are many

recent papers, including, for example, the smart deployment at the stage of network

planning [50]–[51] by using micro BSs or relays, load-aware dynamic BS switching

on/off [52], [48], [53]–[54], and resource management schemes [55]–[56] such as power

control and energy-aware user association, etc.

The focus of this chapter is to present network-level solution with emphasis on

three energy-saving techniques operating on different control time scales.

• Active BS selection: BSs are typically deployed on the basis of peak traffic volume

and stay always-on irrespective of traffic load. Recent temporal traffic trace reports

that BSs are largely underutilized during low traffic periods such as nighttime

[48]. The active BS selection technique operating on a slow time scale (e.g., order

of hour or so) allows the system to entirely turn off some underutilized BSs and

transfer the imposed loads to neighboring BSs, which leads to huge energy savings.

• Transmit power budget adaptation: A typical macro BS spends a small amount of

total operational power on the transmit power. However, when the BS reduces its

transmit power, a considerable overall energy saving1 is expected due to its exerting

influence on the operational power [58]. The transmit power budget adaptation is a

technique in a fast time scale (e.g., order of minutes), which fine tunes the transmit

power of BS according to its current cell loading for further energy savings.

• User association: The last technique, which determines a proper BS for each user,

is necessary to fully exploit the amount of energy savings. The time scale of user

association is apparently faster than the above two techniques because some UEs

11For example, the BS power consumption model in [57] showed that a macro BS can reduce the total
power consumption from 766 W to 532 W (i.e., 234 W savings) just by reducing its transmit power from
20W to 10W. Refer to Section 3.2.3 for more details on our power consumption model.
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may need to be associated with another BS when a set of active BSs and/or their

transmit powers change. Of course, it should be performed whenever a new user

arrives.

In this chapter, we consider a problem of minimizing the total power consumption

in BSs while satisfying the quality of service (QoS) requirements for all users in the

network. To this end, we develop a novel unified framework for energy conservation,

called dynamic cell reconfiguration (DCR), linking the above three techniques together

into one.

3.1.1 Related Work

Basic concepts of dynamic BS operation, turning BSs on/off based on the temporal

and spatial traffic load, have been addressed in [48], [53]–[54]. The authors in [59], [51]

also investigated a joint operation and deployment problem to determine where, how

many and which type (macro/micro/pico/femto) of BSs need to be deployed in an energy-

efficient manner. However, some of the preliminary works [48], [54] did not capture

the effect of the signal strength degradation when traffic loads are transferred from the

switched-off BS to neighboring BSs. Rather than developing an actual working algorithm,

some [48], [51], [53] simply attempted to see how much energy savings can be expected

under the deterministic traffic variation over time and moreover, sometimes in a simple

network model such as hexagonal or Manhattan model. In order to overcome these

weaknesses, we adopt a more sophisticated channel model based on signal to interference

plus noise ratio (SINR) reflecting the effect of signal degradation and validate our

framework based on a real dataset of BS topology and utilization.

Another piece of technique we investigate in this chapter is the power control,

which has been widely studied in literature (see [60] and the references therein). The

power control is usually employed to combat the near-far problem in uplink [61] or to
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maximize user throughput in downlink by exploiting the variation of time and frequency

channel (i.e., multi-user diversity) as well as mitigating inter-cell interference. The main

purpose of our approach, different from the conventional algorithms, is to reduce the

total energy consumption of BSs by adjusting the transmit power budget. Our algorithm

is concerned about the entire budget but does not care about how the budget would be

actually utilized for multiple users across time/frequency resource in a cell. In this sense,

we call it the transmit power budget adaptation. We would like to highlight that it can be

superimposed over any power allocation algorithms (e.g., water-filling). For example,

once it first adapts the power budget according to the current traffic load, an underlying

algorithm distributes power to users within the budget.

There are a few prior works [55]–[62] studying the power control for the purpose

of BS energy conservation in slightly different settings. In [55], the authors proposed

short- and long-term power controls to exploit the traffic fluctuation, but their analysis

was still in a single-cell setting. In [63], the greening effect of interference management

with combinations of spatial and temporal power budget sharing is investigated. Niu et

al. [62] presented an idea of cell zooming that dynamically adjusts the cell size though

BS cooperation, relaying or physical antenna tilt. Our work fills the voids of the previous

work in that: We not only propose a practical algorithm in a multi-cell setting, but also

address the problem of jointly optimizing the power budget in conjunction with active BS

selection and user association. The rest of this chapter is organized as follows. Section

3.2 formally describes our system model and general problem. In Section 3.3, we propose

a dynamic cell reconfiguration framework and discuss some of practical implementation

issues. In Section 3.4, we present simulation results. In Section 3.5, we conclude the

chapter with our notes and observations.
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3.2 System Model

3.2.1 Network and Channel Model

Let us consider a cellular wireless network with a set of BSs B. Let x denote a

user location lying in the two-dimensional area L and i ∈ B be the index of the ith BS.

We assume the same frequency band with bandwidth W in all cells (i.e., reuse factor

one) and concentrate on downlink communication that is a primary usage mode for

mobile Internet, i.e., from BSs to UEs. However, we would like to mention that some

aspects of our work (e.g., user association and active BS selection) can be applied to the

uplink scenario as well with a slight modification. Following Shannon’s formula, the

transmission rate [bits] of a user at location x when associated to BS i, is given by:

ci(x) =W log2

(
1+

gi(x)pi∑
b∈Bon\{i} gi(x)pb+σ2

)
(3.1)

where σ2 is noise power and pi [or pb] is the transmit power of BS i [or BS b],

gi(x) [or gb(x)] denotes the channel gain from BS i [or BS b] to location x, including

path loss attenuation, shadowing and other factors if any. Note that the transmission

rate ci(x) depends not only on the set of active BSs Bon but also on their transmit power

p = (p1, p2, ..., p|B|).

3.2.2 Traffic Demand and BS Utilization

We assume that a user at location x has a certain traffic demand, which requires

γ(x)[bits]. To guarantee the QoS of the user, the fraction of radio resource blocks (i.e.,

time or frequency) need to be allocated by BS i would be γ(x)
ci(x) .

We now define an association probability πi(x), which specifies the probability

that the user at location x is routed to BS i. As can be seen later in subsection 3.3.1,

the optimal πi(x) would be either two extremes 0 or 1. The BS utilization, the average
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occupied fraction of the BS resource blocks, can be defined as follows:

ρi �

∫
L

γ(x)
ci(x)

πi(x)dx (3.2)

Definition 3.1. (Feasible Set): When the set of active BSs Bon and their transmit power

p are given, the set F (Bon, p) of feasible utilization ρ can be defined as follows:

F (Bon,p) �ρ = (ρ1, .., ρBon) | 0 ≤ ρ ≤ 1, (3.3)

∀x ∈ L,0 ≤ π(x) ≤ 1, (3.4)

∀x ∈ L,
∑
i∈B

πi(x) = 1, (3.5)

∀x ∈ L,∀i ∈ B \Bo\, (3.6)

πi(x) = 0 (3.7)

where we use “≤” to denote element-wise inequality for the vectors. Note that the

feasible BS utilization p has the associated probability vector π(x) = (π1(x), ..., π|B|(x))

for all x ∈ L.

3.2.3 Power Consumption Model

Now let us consider the modeling of the total BS operational power consumption

Ti that can capture both dynamic power and static power as follows. The former is

proportional to BS’s utilization. On the other hand, the latter is the fixed amount of power

that a BS dissipates irrespective of its utilization. It is worthwhile mentioning that the

static portion of power consumption can be conserved only if the BS is completely shut
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off.

Ti = (1− qi)ρiPi︸       ︷︷       ︸
dynamic

+ qiPi︸︷︷︸
static

(3.8)

where qi ∈ [0,1] is the portion of the static power consumption for BS i, and Pi

is the maximum power consumption when it is fully utilized with the transmit power

pi. According to [6], Pi is again a function of the transmit power pi with nonnegative

coefficients ai and bi:

Pi = ai pi + bi (3.9)

where the coefficient ai accounts for the power consumption that scales with the

average transmit power and bi is the offset site power which is consumed independently

of the average transmit power. We would like to emphasize that our model given in (3.8)

is general enough to grasp a variety of BS power consumption.

• Energy-proportional BS with qi = 0: Assuming ideally equipped with energy-

proportional equipment, the BS does not consume any power when idle, and

proportionally consumes more power as its utilization increases.

• Non-energy-proportional BS with qi > 0: In practice, several hardware devices

inside a BS dissipate standby power even though the BS does not serve any traffic.

In an extreme case of qi = 1, the model becomes a constant consumption, which

has been widely used in many works in literature [48], [64].

3.2.4 General Problem Statement

We consider a general problem that minimizes the total BS power consumption

while all user traffic requirements are guaranteed to be served, in other words, maintaining

the BS utilization within the feasible set.
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[GP]min
i∈Bon

Ti (3.10)

Subject to:Bon ⊆ B, (3.11)

p ≤ pmax, (3.12)

ρ ∈ F (Bon, p) (3.13)

Our ultimate goal is to develop a framework for BS energy conservation that

encompasses (i) active BS selection, (ii) user association, and (iii) transmit power budget

adaptation. As a first step towards this goal, our own prior work [52] focused on building

solutions for the first two sub-problems assuming all BSs are operating at the maximum

transmit power, i.e., p = pmax without the constraint (3.12).

The active BS selection algorithm presented in this chapter looks similar to GON

in [65] because they have been built based on the same system model. However, from

the problem formulation standpoint, their objective functions are different (e.g., total

power consumption vs. cost minimization with the flow-level performance and the

energy consumption), so are their final algorithms. In addition to that by further relaxing

the maximum transmit power assumption made in [65], we are able to investigate the

interaction between active BS selection and transmit power budget adaptation.

3.3 Dynamic Cell Reconfiguration Framework

In this section, we present details on our framework, called dynamic cell recon-

figuration (DCR), that includes the user association, active BS selection, and transmit

power budget adaptation algorithms.
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3.3.1 User Association

We shall start by considering a given set of active BSs Bon and their fixed transmit

power p. In this setting, the static power consumption term can be ignored. So the

induced sub-problem of [GP] is to determine which BS each user should be associated

to, or equivalently, to find an optimal BS utilization ρ.

[U A−P]
∑

i∈Bon

[(1− qi)Piρi + Li(ρi)] (3.14)

Subject to:ρ ∈ F (Bon, p) (3.15)

where Li(ρi) is a convex penalty function we intentionally introduce. By adding

the penalty into the objective, we can allow the system to balance the traffic load among

BSs and avoid a cell getting too congested. Though there may be other methods of

penalizing the congested cell for the purpose of load balancing, the work presented in

this chapter uses the following penalty function with three configurable parameters.

Li(ρi) =


0, ρi < ρth

Lmax
( ρi−ρth

1−ρth
) (3.16)

where Lmax ≥ 0 is the maximum penalty value and ρth ∈ [0,1] is the BS utilization

threshold from which we start penalizing the BSs; β ≥ 1 controls the sharpness of

the penalty function. It is noteworthy that the modified problem given in (3.14) is

asymptotically equivalent to the original sub-problem without the penalty function Li

in any of the following conditions: As Lmax goes to zero, ρth goes to one, or β goes to

infinity.

Lemma 3.2. The Feasible set F (Bon, p) in (3.3) is convex.
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Proof. The proof is straightforward by definition of convex set. We refer to [65] for the

full proof. �

Theorem 3.3. When the problem given in (3.14) is feasible, the optimal policy is for user

at location x to associate with BS i∗(x), given by

User association algorithm:

i∗(x) = argmax
i∈Bon

ci(x)[(1− qi)Pi + L′i (ρ∗i )]−1 (3.17)

where ρ∗ is the optimal BS utilization

Please refer to Appendix B for the optimality proof.

Remark 1. But the subtlety is that the optimal policy in (3.17) has a chicken-and-egg

dilemma. It requires the optimal utilization ρ∗ in advance to calculate the metric for the

optimal policy. However, we were able to prove that a distributed algorithm that achieves

the global optimum without knowing ρ∗ in an iterative manner. A sketch of the proof is

given as follows. First we show that the optimal BS utilization ρ∗ is the fixed point of

a certain mapping. Next we show that the following algorithm (or mapping) produces

a descent direction at the current BS utilization ρ[k] (i.e., minimizing the inner-product

with the gradient). Thus, it will eventually converge to the global optimal point. The full

proof can be obtained via a slight modification of the convergence proof in [66].

3.3.2 Active BS Selection

In this section, we investigate another piece of subproblem in DCR, namely,

active BS selection, where we assume that all active BSs are operating at the maximum

transmit power, i.e., p = pmax . This assumption will be relaxed and the adaptation of

transmit power will be covered in the forthcoming section. By solving this problem, we
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will be able to answer which BSs need to remain active to guarantee the QoS level of

users and the others to be turned off for minimizing energy consumption in the network.

[BS−P1] min
Bon⊆B

U A(Bon)+
∑

i∈Bon
qiPi

where U A(Bon) � min
ρ∈F (Bon,pmax)

∑
i∈Bon(1−qi)ρiPi which is the optimal objective value of

user association problem.

There is a technical challenge in solving this problem because it can be reduced

from a vertex cover problem which is theoretically known as NP-complete [67]. In order

to overcome such a high computational complexity, we consider the design of an efficient

heuristic algorithm in this section. To that end, we move the static power consumption

term in the objective to the constraint with a nonnegative budget Z.

[BS−P2] min
Bon⊆B

U A(Bon) (3.18)

subject to
∑

i∈Bon
qiPi ≤

Z
λ

(3.19)

As can be easily noticed, there is a close relationship between [BS-P1] and

[BS-P2] as primal/dual problems with a Lagrangian multiplier λ. In order to further

convert [BS-P2], let us introduce a diminishing returns property on a set function that is

formalized by the concept of submodularity [68].

Definition 3.4. (Feasible Set): For a real-valued set function H, we define the discrete

derivative at A ⊆ S in direction s ∈ S as ds(A) = H(A ∪ {s})−H(A). The H is said to

be submodular if
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A1 ⊆ A2 ⊆ S =⇒ dsA∈∀s ∈ S \A∈ (3.20)

Similarly, H is supermodular if −H is submodular.

We rewrite [BS-P2] in the standard form of submodular maximization problem

as follows.

[BS−P3] max
A⊆Bon

H(A) (3.21)

subject toc(A)−
∑
i∈C

ci ≤ C (3.22)

where A = Bon \Binit , Binit is an any initial BS set, H(A) =U A(Binit)

−U A(Binit ∪A),c(i) = qiPi, and C = Z
λ −

∑
i∈Binit c(i)

It is worthwhile mentioning that there exists an intuitive yet efficient greedy

algorithm for [BS-P3] only if H is a non-decreasing submodular. It works as follows:

Starting from the empty setA = ∅, it iteratively adds the element with the highest value of

metric (H(A∪i)−H(A))/c(i)while the total cost is within the budget C. Mathematically,

it has been shown in [68], [69] that this greedy heuristic can give a suboptimal solution

with an approximation factor of (1−1/e).

Though it is quite difficult to prove the submodularity of H in general cases, it is

indeed possible under some reasonable assumptions. We first assume that all BSs have

the same qi and Pi values for mathematical simplicity and ignore the penalty function

Li(ρi) artificially introduced earlier. Then, the user association given in (3.17) becomes

i∗(x) = argmax
i∈Bon

ci(x) (3.23)

where the decision is purely based on the transmission rate (or SINR).We further
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make an assumption of marginal interference as follows.

Assumption 1. Adding (resp. removing) one BS has marginal impact on the total amount

of interference. In other words, the increment (resp. decrement) of interference is almost

negligible to users.

Theorem 3.5. Under Assumption 1, a set function H(A) is nondecreasing and submod-

ular.

Proof. By the definition of H(A), the other terms not having ρi can be ignored since

they are either constant or irrelevant to the set A. Hence, the proof of Theorem 3.5 is

equivalent to proving the following two statements.

1.
∑

i∈Bon ρi is montonically decreasing as Bon increases.

2.
∑

i∈Bon ρi is supermodular as a function of Bon.

Please refer to Appendix B for the full proof. �

The implication of Theorem 3 is that the greedy heuristic mentioned earlier would

also work well to solve our active BS selection problem. After some tweaks to suit the

problem [BS-P1] better, we propose the following active BS selection algorithm that

borrows the metric (i.e., the decrement per unit cost when removing BS i) from the greedy

heuristic.

Our proposed algorithm starts from the point where all BSs are turned on and

finds the best BS candidate which will yield the maximum energy savings when turned

off. Note that the denominator is the amount of static power consumption saving from

turning off BS i. On the other hand, the numerator is the increment of dynamic power

consumption, which comes from the fact that UEs originally associated with the switched-

off BS would see possibly lower transmission rate ci(x) due to father distance to the
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Table 3.1. Active BS selection algorithm

1. Initialize Bon = B
2: Repeat:

3: Find i∗ = argmin
i∈Bon

U A(Bon\{i})−U A(Bon)
qiPi

4: U A(Bon \ {i})−U A(Bon) < qiPi, then Bon→Bon− {i∗}
5: Else, go to Finish
6: Finish: Bon is the set of active BSs

new serving BS. In line 4, the algorithm checks whether there is a net energy saving (in

other words, the decrement in static power consumption is larger than the increment in

dynamic power consumption). If so, we shut off BS i and repeat the loop. Otherwise, we

stop the algorithm.

3.3.3 Transmit Power Budget Adaptation

After the active BS selection finds and turns on the minimum number of BSs

(operating at their maximum transmit power p = pmax), there is still room for further

energy reduction. There may be a scenario where some of active BSs has light traffic load

(i.e., clearly ρi < ρth), but it is not possible2 to turn off any of those BSs since reducing

the set of active BSs will lead to QoS violation. In this section, we will discuss the last

DCR technique, i.e., transmit power budget adaptation, which is a finer level tuning than

the coarse BS on/off control. Given Bon, we decompose the original problem into the

intra-cell problem as follows, in which each BS locally controls the transmit power based

on its own traffic load.

[T X −P] min
pt≤pmax

t

Ti = (1− qi)ρiPi + qiPi (3.24)

Subject to:ρi ≤ ρth (3.25)

2If possible, it should have been done in the stage of active BS selection.
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Plugging (3.9) into (3.24), the total BS operational power consumption can be

rewritten as:

Ti = (ai pi + bi)[(1− qi)ρ+ qi] (3.26)

There are a couple of important observations from (3.26). Looking at the term

inside the first parentheses (a linear relationship with pi), we can notice that reducing

pi will have positive impact towards energy savings. However, on the other hand, it has

negative impact in the term inside the second parentheses because the BS utilization ρi

will increase due to the reduced transmission rate (see (3.1) and (3.2) for the definitions).

Thus, it should be mentioned that it is not always beneficial to keep reducing the transmit

power. In addition, there will exist the minimum transmit power level to meet the

constraint (3.25).

We shall start by deriving how much the transmit power budget each BS can

reduce providing that the interference from other BSs are fixed. Later we will relax this

fixed interference condition in our final algorithm. In general, since ci(x) is a concave

function of transmit power pi(x), the following equality holds:

ρi(pa) ≤ ρi(pb) ·
pb

pa
for any pa ≤ pb (3.27)

Note that equality holds if ci(x) is a linear function of pi(x) (i.e., low SINR

regime), which has been assumed to derive rate/power control algorithms in some

references [70].

After we substitute pa→ pi satisfying ρi(pi) = ρth and pb→ pmax
i into (3.27), we

have the following minimum transmit power level p to meet the constraint (3.25).

pi ≥
ρi(pmax

i )
ρth

pmax
i = p (3.28)
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Now we find the optimal transmit power level to minimize the total BS operational

power consumption. As discussed earlier, reducing the transmit power is not always

beneficial. We will see shortly that the total power consumption is upper bounded by

a convex function of the transmit power, so there exists a minimizer. Applying the

inequality (3.27) again to the total power consumption (3.26), we have

Ti ≤ai(1− qi)ρi(pmax
i )pmax

i + biqi + aiqi pi

+ bi(1− qi)ρi(pmax
i )pmax

i /pi (3.29)

The right-hand side of inequality is convex because it is the weighted summation

of an affine function of pi and another convex function 1/pi. This can be also confirmed

by its second order with respect to pi, i.e., 2bi(1− qi)ρi(pmax
i )pmax

i p−3
i ≥ 0. Thus, a

minimizer p̂ is given by

p̂ =

√
bi(1− qi)ρi(pmax

i )pmax
i

aiqi
(3.30)

Together with the maximum transmit power pmax
i and the minimum transmit

power in (3.28), we can obtain a suboptimal solution p∗ (optimal when the equality holds

in (3.27)).

p∗ =min[max[p̂, p], pmax
i ] (3.31)

Remark 2. When q = 1 (constant BS power consumption), the solution becomes p∗ = p.

On the other extreme case of q = 0 (energy-proportional BS), the solution is p∗ = pmax
i ,

which implies that no power adaptation is required.

So far we have considered one-shot power adjustment starting from pmax
i . If each



75

Table 3.2. Transmit power budget adaptation algorithm

1. Initialize k = 0 and pi[0] = pmax
i

2: Repeat:
3: Update the interference from neighboring BS j , i

4: p→ pi[k], p→ ρi(p)
ρth
· p and p̂→

√
bi(1−qi)ρi(p)p

aiqi

pi[k +1] →min[max[p̂, p, p]
5: If | Ti[k]−Ti[k +1] |> ε, k→ k +1
6: Else, go to Finish
7: Finish: pi[k +1] is a suboptimal transmit power budget

BS reduces its transmit power, then the users will experience different SINR. They will

usually see higher SINR due to reduced interference from neighboring BSs, but it is also

possible to see lower SINR depending on the power reduction ratio between the home

BS (the users are associated with) and the other BSs.

This offers an opportunity to further adjust the transmit power. In other words,

the power adaptation needs to be iteratively carried out with the updated interference

till there is no further savings in terms of the total power consumption. This is the basic

principle of our transmit power budget adaptation algorithm.

Our algorithm is shown in Table 3.2 works as follows. Starting from its maximum

transmit power (step 1), each active BS i adjusts its transmit power based on p, p, and p̂

(step 4). If the reduction of total operational power consumption in this iteration is greater

than a small constant ε > 0 (step 5), then the BS i updates interference from other BSs

based on p j[k +1] for j , i and repeat the loop. Otherwise, the transmit power budget

adaptation algorithm stops (step 6).

In Fig. 3.1, we provide an example to illustrate how the proposed algorithm adapts

the transmit power in a network topology of 4.5x4.5km2 (see Section 3.4 for detailed

parameter settings and Fig. 3.3 for the layout of BSs). For this particular example, we

have considered that only four BSs are active, each of which has the maximum transmit
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power pmax
i = 20W . Figs. 3.1a and b show the transmit power adaptation of the BSs and

their utilizations, respectively, and Fig. 3.1c shows the resulting total BS operational

power consumption. After the first iteration, the transmit power of the least utilized BS 2

is reduced by about 8W whereas BSs 3 and 4 reduce the power about 4W. The reduction

of the transmit power naturally leads to the increase in the BS utilization, however, it is

still a way lower than our threshold ρth = 0.7. The changes are nominal in subsequent

iterations 2 or 3, and the algorithm exits in the next iteration since there is no further

saving in total power consumption.

Based on our empirical data, we would like to highlight that the transmit power

budget adaptation algorithm converges quickly. Even in different configurations (with

a different number of active BSs), we could observe similar a convergence trend, e.g.,

typically within a few iterations. As can be seen in Fig. 3.1c, transmit power budget

adaptation brings about 10% of the total power savings (from 2,131 W to 1,936 W) by

the fine-tuning of transmit power.

The iterative transmit power adaptation algorithm performs well when the traffic

load is fixed or decreases over time as active BSs keep reducing the transmit powers

until the convergence. However, in general scenarios where there exists a mixture of

load-increasing and decreasing BSs with respect to time, some BSs have to increase their

transmit powers. As a result, it would bring more interference to users in other cells,

which also makes neighboring BSs increase the power to meet the QoS requirement of

users. This can lead to oscillatory behavior and pose a technical challenge in terms of

convergence. Additionally, since the transmit power adaptation might not suffice to cater

for the temporal/spatial-varying load, balancing the traffic load via changing the user

association and/or turning on additional BSs (or a different set of active BSs) may be

required.
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3.3.4 Integrated Approach: Dynamic Cell Reconfiguration (DCR)

So far we have developed three pieces of energy saving techniques (i.e., active

BS selection, transmit power budget adaptation and user association) in a static scenario.

To tackle the challenge of time-varying traffic with a mixture of load-increasing and

decreasing BSs mentioned above, this section presents an integrated DCR framework.

This framework jointly optimizes all of our techniques developed so far in a systematic

way towards a single goal, i.e., energy savings while ensuring that the QoS requirements

of all users are met. In the proposed DCR, three techniques with different control time

scales interact with each other as follows. Please see the flowchart in Fig. 3.2 for a

pictorial description.

The active BS selection algorithm described in Section 3.3.2 periodically (every

Tp time units, e.g., half hour in our simulations3) determines a minimal set of BSs to

remain active and turns off the other BSs, followed by the user association update. For

each active BS i ∈ Bon, if ρi does not exceed ρth, the transmit power budget adaptation

described in subsection 3.3.3 can play a role in reducing further power consumption. On

a much faster time scale than the active BS selection, the BS adapts its transmit power

according to the current BS utilization ρi. We would like to mention that the transmit

power adaptation is carried out in a manner transparent to the users, in other words,

it does not change user association unless the BS utilization reaches ρth. In this way,

unnecessary handover can be avoided.

As time goes on, BS i may experience high cell loading ρi ≥ ρth due to the

increased traffic. In this case, the transmit power is immediately reset to pmax
i , i.e., a

fast fallback to continue guaranteeing the QoS. After increasing the transmit power

3Many measurement studies (e.g., [48]) reported that the traffic load clearly varies over time (as well as
space) but could be assumed almost constant during a certain period of time, e.g., typically one hour. Since
the time scale for determining the set of active BSs would be similar to the order of traffic changing, its
period is set at half hour in our DCR framework.
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Figure 3.2. Flowchart of the integrated DCR framework
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to its maximum, if the BS utilization ρi goes down below the threshold ρth, then the

power adaptation can now be carried out. Otherwise (even the maximum transmit power

cannot lower the utilization enough), we recall the active BS selection algorithm to find a

different set of active BSs to be switched on. To this end, we reset Bon =B to consider the

entire BS set as candidate active BSs, which allows us to have a wider choice of selection

and may lead to a more energy-efficient solution. Lastly, there is an underlying user

association algorithm, which is performed whenever a new user arrives to the network.

3.3.5 Discussion on the implementation of DCR

Complexity: It is worth analyzing the applicability of the proposed framework

in terms of computational complexity. In particular, we concentrate on the active BS

selection since it is relatively more complex than the other two techniques. Given the

number of candidate BSs | B |, there are
( |B|

n

)
possible combinations to choose n active

BSs. The total complexity of an optimal algorithm that finds the best set of BSs through

exhaustive search is
∑|B|

n=1
( |B|

n

)
, which grows exponentially with the number of BSs, i.e.,

O(2|B|). On the other hand, however, the proposed active BS selection algorithm only

requires O(| B |2) (i.e., see the pseudo code in subsection 3.3.2: linear complexity in

the line 4x the number of iterations at most | B |), which makes it much easier to be

implemented in practice. This linear complexity is because the proposed algorithm turns

off the BS with a given metric one by one until there is a net energy saving.

Our framework assumes a centralized network controller for running a centralized

piece of DCR framework, i.e., active BS selection. Such a centralized controller can be

radio network controller (RNC) in the 3G universal mobile telecommunications system

(UMTS) access network or mobility management entity (MME) in the 4G long term

evolution (LTE) access network. Each RNC or MME, running one instance of the active

BS selection, is responsible for controlling the BSs (nodeB in UMTS or enodeB in LTE)
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that are connected to it. In practical systems, the typical number of BSs connected to the

RNC or MME is a couple of dozen. This would give an idea of how much complexity

reduction our algorithm offers. For instance, O(230 ≈ 109) vs. O(900) when | B |= 30.

Group handover: When a BS is turned off for energy-saving purpose, UEs served

by the BS need to be transferred to one of its neighboring BSs according to the user

association algorithm presented in Section 3.3. This procedure is nothing new compared

to the conventional handover except the fact that many UEs should be handed over

simultaneously which implies a lot of control signalling.

There have been some studies done on the group handover [71], originally targeted

to support passengers on mass transportation such as buses or trains. If this type of

technique is used together with our framework, then, it would help reducing the possible

performance degradation due to excessive control overhead.

3.4 Simulation Results

We evaluate the performance of the proposed DCR framework though simulations.

Typical maximum transmit power for macro BSs and their maximum operational power

are considered to be pmax
i = 20W and Pmax

i = 865W (with the coefficients ai = 22.7 and

bi = 411) according to [58], respectively. The static power portion qi is assumed to be 0.5,

but we will examine the effect of varying this parameter in subsection 3.4.4. In generating

the user traffic, all intersection points on a rectangular grid with 30 m in the network

are considered as a set of candidate locations for the user arrival. Each user arrives at

location x following a Poisson point process with arrival rate λ(x) and generates one file

request with mean 1/µ(x) = 100Kbyte. We vary the traffic demand γ(x) = λ(x)/µ(x)

[bits] by changing its arrival rate λ(x). Other parameters including channel modeling for

the simulations follow the urban macro model as presented in the 3GPP technical report

[72].
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Figure 3.3. Snapshots of coverage: the maximum penalty Lmax =
∑

i⊆Pmax
i

and sharpness
of the penalty function β = 2: (a) Without penalty (ρth = 1) and (b) with penalty (ρth =

0.5)

3.4.1 Load Balancing via Penalty-based User Association

We shall start by demonstrating the effectiveness of the proposed user association

algorithm. A simple network composed of five active BSs in 2x2km2 and the spatially

heterogeneous traffic load are considered, i.e., the required rate γ(x) ∝ (max(r) − r)5

where r is the distance from the center. So the area in the center, mostly covered by BS 1,

can be interpreted as hotspot. In order to see how the proposed user association algorithm

balances traffic loads, we plot Fig. 3.3 illustrating snapshots of BSs’ coverage areas

for the cases (a) without and (b) with penalty function. We can easily notice the effect

of introducing the penalty function Li into the reconfiguration algorithm by comparing

the two figures. With penalty, some users leave the congested BS 1, as indicated by the

shrinking of cell 1 in Fig. 3.3, and associate with neighboring BSs 2-5, which are actually

under-utilized.

Such a load balancing comes at the cost of slight increase in dynamic power

consumption. In order to show this tradeoff, we manually calculate the delay performance
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Figure 3.4. Tradeoff between delay and total power consumption by varying the BS
utilization threshold ρth from 0.5 to 1.0

as a yardstick of load balancing by assuming M/M/1PS queue 4 In Fig. 3.4, the average

delay is the average performance of these five cells and the worst delay is the highest

delay among five cells (usually, happens in the hot spot cell covered by BS 1). The less

delay means the less congestion (i.e., the more effective load balancing). As shown in

Fig. 3.4, the power cost is marginal compared to the delay benefit we can expect. For

example, in the case of ρth = 0.7, there are 39% and 47% reductions in the average and

worst delay, with 0.56% (2,838 W to 2,854 W) increase in power consumption. Note that

this tradeoff graph may also be used to choose ρth in practice based on the maximum

tolerable delay. In the rest of simulation study, we set ρth = 0.7 as it gives the most of

benefits from load balancing with minimal power cost.

4Under M/M/1 processor sharing (PS) queue, the expected number of flows in cell i is ρi(1− ρi).
With the help of Little’s law, dividing it by the system arrival rate that is the integration over λ(x) over its
coverage area, we can obtain the expected per flow delay in the cell.
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3.4.2 Power Savings Under Static Traffic Load Scenario

Effectiveness of active BS selection: Let us first investigate the performance

of active BS selection together with the user association (i.e., UA-BS). To have more

realistic results, a topology with fifteen BSs in 4.5x4.5km2, a part of 3G network in

metropolitan area [73], is adopted (see Fig. 3.5). For comparison, we also consider three

other schemes:

• All-on (conventional scheme): always turning on all BSs.

• Util-based: turning off the least utilized BS one by one which is shown to be an

effective heuristic in [65].

• Exhaustive: finding an optimal set of BSs through an exhaustive search.

Fig. 3.5 shows snapshots of the active BSs and their coverage areas at the

normalized traffic load5 = 0.3 for different schemes. All-on keeps all BSs turned on at

such a low load, which naturally leads to energy inefficiency. However, the proposed

active BS selection algorithm (with linear complexity) and exhaustive scheme (with

exponential complexity) turn off eight and nine BSs for energy conservation, respectively.

As a consequence, the remaining BSs dynamically reconfigure their cells (i.e., cell

zooming).

In our simulations under various configurations, the proposed algorithm often

finds a near-optimal solution that has the same number of active BSs as exhaustive and

just one or two more in the worst case. It is also worthwhile investigating the static

and dynamic power consumption breakdown: UA-BS (4.46kW = 3.03kW + 1.43kW)

vs. exhaustive (4.25kW = 2.60kW + 1.65kW). US-BA consumes more static power

5In our simulation, the normalized traffic load [no unit] is the traffic load normalized by the traffic load
at peak time.
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Figure 3.6. Total power consumption with different schemes under static traffic load: (a)
Uniform traffic distribution and (b) non-uniform traffic distribution

than exhaustive scheme due to the higher number of active BSs, while it consumes less

dynamic power.

The total power consumption of the cellular network as a function of the static

normalized traffic load in both (a) uniform and (b) non-uniform6 traffic distribution

is evaluated in Fig. 3.6. Our results show that a brute-force util-based works well

in the uniform environment, but not in non-uniform environment. However, UA-BS

always outperforms util-based, and moreover its performance is very close to that of the

exhaustive search solution. Compared to the static All-on scheme, it yields the potential

energy savings of 10–60% depending on the amount of traffic and its spatial distribution.

Further from Fig. 3.6, we can see that UA-BS can clearly reduce more power

consumption compared to All-on and util-based in non-uniform environment than uniform

environment. This is because the non-uniform environment has more spatial variations

(e.g., extremely under-utilized BSs and high-utilized BSs in different areas at the same

time), which allows the active BS selection algorithm to turn more BSs off in sparse

areas, as opposed to the environment where all BSs have a similar level of utilization.

6A linearly decreasing traffic along the diagonal direction from left top to right bottom in Fig. 3.5 is
considered to generate non-uniform environment.
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Effectiveness of transmit power budget adaptation: We will now validate the

performance of another piece of our energy-saving techniques, which is the transmit

power budget adaptation coupled with user association (i.e., UA-TX). In order to see the

pure benefit of adapting transmit power, we do not consider turning off BSs here, but

the other simulation environment remains the same. In Fig. 3.6, the dotted line shows

the total power consumption with the transmit power budget adaptation. As can be seen,

compared to All-on operating at maximum transmit power, the proposed algorithm can

reduce the total power consumption by 1.37 kW (when normalized traffic load = 1) ≈

2.53 kW (when normalized traffic load = 0.1) under uniform environment, and by 1.95

kW≈ 2.79 kW under non-uniform environment, respectively.

We will next the compare the two proposed algorithms, UA-TX and UA-BS.

Under uniform environment, we see that the performance gap between the two schemes

is much lower than that under non-uniform load conditions. This is due to the difference

of utilization levels under uniform and non-uniform traffic distributions, which allows

less or more opportunity for UA-BS to switch off BSs as explained in the previous

subsection. Above a certain traffic load condition, it is not easy for UA-TX to get more

savings. This is mainly because we cannot turn off a BS unless we can ensure its traffic

to be transferred to neighboring BSs. On the other hand, however, UA-TX can get some

savings (even if little) as long as there is any unused power budget. This explains why

UA-TX outperforms or performs comparably to UA-BS as the load increases.

We will conclude the comparison with a note on the overheads introduced by

switching off BSs in UA-BS and transmit power adaptation in UA-TX. The user associ-

ation adaptation is common to both the algorithms and overhead due to user handover

is discussed in subsection 3.3.5. Another overhead is the exchange of message/control

information. UA-BS primarily requires utilization information whereas UA-TX mainly

relies on interference information from neighboring BSs. The amount of information
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Figure 3.7. A sample real-traffic trace during 48 hours

would not be a big deal and may be considered to be marginal compared to the large

volume of data traffic. However, the frequency of information exchange could be costly,

especially in UA-TX, as transmit power adaptation is carried out at much faster time

scales (e.g., an order of minutes) than switching off BSs (e.g., an order of hour or so). In

order to implement the algorithm in practice, more attention needs to be devoted to this

kind of overhead problem.

3.4.3 DCR Framework Under Dynamic Traffic Load Scenario

In this section, we will discuss the performance of the whole DCR framework

including user association, active BS selection and transmit power budget adaptation.

In order to have more realistic results and at the same time to examine the potential

savings in response to time-varying load, we adopt a sample traffic trace [48] shown

in Fig. 3.7. The trace, originally obtained from an anonymous cellular operator, gives

the variation of BS utilization with a temporal granularity of 10 min across 48 h in a

metropolitan area. The other simulation settings, such as the network topology, channel

and power consumption modeling, are exactly the same as the ones used in previous
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Figure 3.8. Number of active BSs

sections. For performance comparison, we consider All-on as a baseline, and we compare

its performance with (i) active BS selection technique used in conjunction with user

association (i.e., UA-BS) and (ii) the integrated DCR framework including all algorithms

we have proposed so far (i.e., UA-BS-TX).

Fig. 3.8 shows the number of active BSs selected by UA-BS-TX under uniform

and non-uniform environment. For reference, we also plot the number of active BSs

for All-on, which is always equal to the total number of BSs. As the transmit power

adaptation is carried out based on Bon given by active BS selection, UA-BS-TX and

UA-BS have the identical number of active BSs. Therefore, we illustrate only the result of

UA-BS-TX here. As can be seen in Fig. 3.8, there is room to turn off some BSs most of

the time except at peak time. For example, under the uniform (resp. non-uniform) traffic

distribution, up to 8 (resp. 12) BSs can be turned off during low traffic periods for energy

conservation by the proposed UA-BS-TX. This is in contrast to the energy-inefficient

scheme, all-on, which turns on all the 15 BSs at all times irrespective of the distribution

and the amount of load.

Fig. 3.9 shows the total power consumption of the cellular network in response
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Table 3.3a. Total energy use of different schemes and energy savings compared to All-on
scheme in different hours for the uniform environment

Overall Peak Off-Peak
All-On 367.80 kWh 143.98 kWh 109.59 kWh
UA-BS 281.63 kWh 134.26 kWh 59.29 kWh

(23.43%) (6.75%) (45.90%)
UA-BS-TX 238.09 kWh 118.95 kWh 45.59 kWh

(35.27%) (17.38%) (58.40%)

Table 3.3b. Total energy use of different schemes and energy savings compared to All-on
scheme in different hours for the non-uniform environment

Overall Peak Off-Peak
All-On 337.37 kWh 123.47 kWh 107.63 kWh
UA-BS 185.06 kWh 91.56 kWh 36.04 kWh

(45.15%) (25.84%) (66.51%)
UA-BS-TX 157.97 kWh 79.56 kWh 30.16 kWh

(53.18%) (35.56%) (71.98%)

to the time varying load. As expected, All-on scheme consumes the highest total power

for all load conditions. UA-BS achieves lower total power consumption than All-on

as it switches on/off BSs dynamically depending on the traffic load. However, since

it operates at p = pmax , its total power consumption is higher than that of UA-BS-TX,

which additionally adapts the transmit power as well.

Tables 3.3a and 3.3b summarizes the total energy use of different schemes in

different hours: Overall (during 48 h), peak times (2-10 and 26-34 h) and non-peak times

(14-22 and 38-46 h). The numbers in parentheses represent the percentage of energy

savings compared to All-on scheme. In overall, UA-BS-TX can provide a significant

amount of energy savings, e.g., 35.27%and 53.18% under uniform and non-uniform

traffic distribution. The energy savings are mostly obtained from turning some BSs off

and the transmit power adaptation contributes to about 10% extra savings. More savings

under the non-uniform environment is due to less number of active BSs than the uniform

environment as shown in Fig. 3.8.
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Figure 3.10. Effect of static power portion qi on maximum energy savings

It is also worthwhile mentioning that the transmit power control relatively be-

comes dominant at peak times in terms of the percentage of the energy savings. For

instance, in the case of uniform traffic distribution, more than half of the energy savings

comes from adapting the transmit power.

3.4.4 Effect of the Portion of Static Power Consumption qi

Fig. 3.10 illustrates the effect of varying the static power consumption weight qi

on maximum power savings possible (at a low load ≈ 0.2) over All-on. As expected, there

is no gain at qi = 0 because energy-proportional BSs have no standby power dissipation.

The savings achieved by UA-BS is always better than UA-TX but the performance gap

decreases as the contribution of static power increases (i.e., qi value increases). For

example, at qi = 1, nearly 50% savings for either UA-BS or UA-TX are possible while the

integrated DCR framework including all three energy saving techniques (i.e., UA-BS-TX)

can obtain more than 70% savings. Given that current and near future BSs are operating

in the high qi range, the proposed DCR energy saving techniques would bring huge

benefit to the cellular networks.
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3.5 Summary

In this chapter, we proposed a novel dynamic cell reconfiguration framework

for BS energy saving that encompasses active BS selection, transmit power budget

adaptation and user association in cellular wireless networks. Through analytical and

simulation studies, we demonstrate the effectiveness of our DCR framework. The

proposed framework can achieve significant savings during periods of low traffic such as

at night and provide considerable savings even at peak time. We also made an interesting

observation that high savings are expected, especially, when the portion of static power

consumption of BSs is high. The proposed framework brings many interesting research

opportunities, for example, we are currently investigating the impacts presented by DCR

on the cellular uplink.

Though the DCR techniques developed result in significant savings in cellular

network power consumption, the underlying operation of BS on/off requires tens of

minutes for completion and will not be able to respond to finer time scale variation

in BS load. This could potentially lead to coverage holes and thereby degradation in

user experience. We address this in the next chapter by developing dynamic RF chain

switching techniques that minimize the power consumption of cellular networks while

ensuring that there are no coverage holes in the cellular networks.
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Chapter 4

User QoS-aware Adaptive RF Chain
Switching for Power Efficient Coopera-
tive Base Stations

4.1 Introduction

By 2022, the expected number of mobile subscriptions and the resulting mobile

traffic is expected to reach 8.9 billion subscriptions and 69 Ebytes respectively [74]. To

cater to the explosive growth in mobile data subscriptions and traffic, it is estimated

that the total number of base stations (BSs) in cellular networks all over the world

will grow to 11.2 million by 2020 [3], a 47% increase compared to the number of BSs

deployed in 2014. Further, deployment of massive number of antennas at BSs is seen

as a promising paradigm to increase data rates [4]. This is expected to increase the

electricity consumption and thereby, decrease the energy efficiency of cellular networks

[4]. Specifically, the electricity consumption of BSs which constitutes 80% of electricity

consumption of cellular networks is estimated to increase from 84TWh to 109TWh

by 2020 (38% increase from 2014) if measures are not taken to reduce the power

consumption of BSs. The increasing electricity consumption has two effects - (a) the

carbon equivalent emissions is estimated to increase to 235 Mto CO2e by 2020 (a 37%

increase from 2014) [3] and (b) the electricity bill which currently contributes to 10-15%

95
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of the operating expenses in developed markets and about 50% [5] in developing markets

will further increase. Hence, increasing the power efficiency of base stations becomes a

critical requirement to reduce growing operating cost for mobile operators and to comply

with the trending global desire to reduce energy consumption and carbon footprint, and

increase sustainability.

Amongst many components of the BS, the power amplifier (PA) in RF chain

consumes about 65% [75] of the total power consumption in the BS. Further, multi-input

multi-output (MIMO) BS providing high data rates and enhanced coverage uses multiple

RF chains which increase the contribution of RF chain power consumption. Consequently,

to reduce BS power consumption, it is vital to develop techniques that can lower RF

chain power consumption.

The total power consumption due to RF chains is determined by the number of

active RF chains, transmission power, transmission bandwidth and duration of transmis-

sion required to satisfy the Quality of Service (QoS) i.e., throughput and block error

rate (BLER) requirements of the users. Given the user association (UA), there may exist

multiple combinations of the above-mentioned BS resources that satisfy the users’ QoS

requirements and which result in varying levels of BS resource utilization and RF chain

power consumption [76].

Moving from single BS to cluster of BSs which have overlapping coverage

areas, there may be multiple users located in the coverage area of more than one BS.

This implies that there may exist multiple combinations of UA across the cluster BSs

which will satisfy the QoS requirements of all the users associated with the cluster BSs.

Different combinations of UA can result in different BS resource utilizations and hence

RF chain power consumption.

In this chapter, we propose a cooperative adaptive RF chain switching technique

which explores the BS resource and UA spaces to maximize the number of RF chains
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Figure 4.1. Comparison of related work with the proposed Co-RFSnooze technique

that can be switched off to minimize RF chain power consumption and thereby power

consumption of the BSs in the cluster. While trying to adapt the BS resources and UA,

the proposed technique ensures that individual BS utilization constraints are not violated

and QoS requirements of all the users in the cluster are satisfied.

4.1.1 Related Work

In this section, we will briefly describe prior work related to BS resource and UA

adaptation to achieve adaptive RF chain switching (RFS) and power efficient operation

of cellular networks. The relevant techniques are grouped in to three categories based

on (a) the number of BSs considered for applying the BS on/off, BS resource and UA

adaptation techniques and (b) the use of coordinated multi-point (CoMP) transmission.

Note that, though BS on/off switches RF chains, it is not adaptive as BS on/off either

switches on or off all RF chains. Further, in each category, techniques are distinguished

based on time scale of operation. We will refer to time scales of milliseconds to minutes

as short time scale and tens of minutes to hours as long time scale. The above described
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grouping is shown in Fig. 4.1.

We will first discuss the techniques applicable to a single BS as shown in the

bottom row of Fig. 4.1. The technique (termed Min-Cost in [76] and RFSnooze in this

chapter) proposed in the preliminary version of this work [76] adapts the number of RF

chains, time slots and frequency blocks while satisfying both the users’ throughput and

BLER requirements as well as BS utilization constraints. Authors in [77] propose data

rate, power, RF chain and subcarrier allocation in a manner that maximizes the energy

efficiency of data transmission of a single BS. The technique proposed in [78] jointly

maximizes transmitter and receiver energy efficiency of a single BS and associated users.

In contrast to the above single BS techniques, the proposed short time scale Co-RFSnooze

technique is applicable to cluster of cooperating BSs. It extends [76] to jointly adapt

the individual BS resources as well as the UA of all the cluster users (Section 4.3.4) to

maximize the number of RF chains that can be switched off in the entire cluster and

minimize the cluster power consumption. We will next discuss the techniques which are

applicable to a cluster of cooperating BSs that do not use CoMP transmission (middle

row, Fig. 4.1).

Dynamic BS on (active)/off (inactive) techniques switch BSs on or off based on

number of associated users [79] and the estimated savings in power consumption due to

switching off of BSs [80]. The above techniques switch off all the components of a BS

which takes tens of minutes and can be classified as a long time scale operation. Though

short time scale operations of BS resource and UA adaptation are applied to the subset of

active BSs, long time scale switching off of BSs could potentially lead to coverage holes.

Coverage holes are a major concern for the operators as a user in the coverage hole will

not receive coverage. In contrast, our proposed approach adapts BS resources and UA on

a short time scale enabling finer tracking of the BS load and finer control on BS power

consumption without degrading coverage capabilities.
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The Co-Nap technique proposed in [81] implements short time scale BS on/off

by adapting the number of ”nap” (sleep) time slots for the cluster BSs in a coordinated

manner. As all the BS RF chains are switched off in the ”nap” time slots, it reduces BS

power consumption. Unlike the Co-Nap strategy which adapts only the on/off pattern

of BSs, the proposed Co-RFSnooze technique jointly adapts BS resources and UA to

achieve adaptive RFS. We will demonstrate in Section 4.4.2 that this joint adaptation

achieves higher power efficiency compared to Co-Nap.

Next, we will discuss techniques that are applicable to cluster of cooperating

BSs using CoMP transmission (top row, Fig. 4.1). The long time scale technique in

[82] determines the BS and RF chain on/off pattern, UA and power allocation and the

short time scale technique in [83] exploits the varying delay tolerance of users to enable

time slot based BS sleep. The throughput requirements of the users associated with

the inactive BS in [82]-[83] are met through CoMP transmission by the active BSs

in the cluster. The authors in [84] propose a resource allocation algorithm for full-

duplex, distributed antenna, multi-user communication network that minimizes the power

consumption of cluster of BSs by dynamically switching off RF chains while satisfying

the QoS requirements of downlink and uplink users. The above techniques require

sharing of the channel state information (CSI) and data of all the users in the cluster via

the backhaul to compute the multi-cell precoding matrix to perform CoMP transmission.

The proposed Co-RFSnooze technique does not utilize CoMP transmission and instead

proposes novel heuristics and combination of centralized-decentralized framework that

requires sharing of only the user QoS and association information to significantly reduce

the communication via the backhaul. As shown in Fig. 4.5b (Section 4.4.2), there are

270 users in the cluster during high load and the techniques [82]-[84] will require sharing

CSI information and data of all the 270 users whereas the proposed technique requires

user QoS and association information of only 35 users (users transferred shown in Fig.
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4.6b).

The technique proposed in [85] determines the BS-user association for CoMP

transmission and performs joint spectrum and power allocation to minimize the total

cluster transmission power. However, [85] does not dynamically switch off RF chains

and always maintains them in the on state. In contrast, the proposed Co-RFSnooze

technique performs BS resource and UA adaptation to dynamically switch off RF chains

in the cluster. This can potentially result in higher power savings compared to [85]

which always switches on all the RF chains (demonstrated in Section 4.4.2 by significant

savings compared to All-On/Co-Nap which switches on all RF chains)

From the above description of the prior art, to the best of our knowledge, this is

the first work

• that dynamically switches RF chains in a cluster of cooperating BSs by jointly

adapting BS resources and UA on a short time scale to minimize the average cluster

power consumption in a transmission frame.

• that jointly adapts BS resources and cluster UA in a manner that the cluster user’s

QoS requirements and the BS resource utilization constraints are satisfied.

• that does not require BS switching and expensive CoMP data transfer and matrix

computations to adaptively switch RF chains in a cluster of cooperating BSs.

The rest of the chapter is organized as follows. Table 4.1a summarizes the

notations used. Section 4.2 describes the system model and the optimization problem.

In Section 4.3, we propose a heuristic algorithm to solve the optimization problem. In

Section 4.4, we provide simulation results under a practical configuration. Finally, we

conclude the chapter in Section 4.5.
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Table 4.1a. Summary of notations

B,BW Set of BSs in the network, Transmission bandwidth of BS b ∈ B
S,R Maximum number of RF chains at BS and user

PT x
b ,PMax Transmit power and maximum transmit power of BS b

tF Duration of frame

T,T A,T I Number of time slots in a frame, Number of active and idle time
slots in a frame

tO, tSw Duration over which all RF chains are off in a frame, RF chain
switching duration in a frame

SA
t ,S

O
t ,S

Sw Number of active and off RF chains in time slot t, Number of RF
chains switching state in a frame

J,ψst
Number of frequency blocks in time slot t ∈ T , Frequency utiliza-
tion of RF chain s in time slot t

m,M Transmission mode and set of all transmission modes

sib(m)
Number of BS RF chains allocated by BS b to the ith user for mode
m

rib(m)
Number of RF chains allocated by ith user associated with BS b
for mode m

dib(m)
Number of independent data streams received by ith user associated
with BS b for mode m

γi,BLE RT h
i

Throughput requirement of ith user, Upper bound on BLER re-
quirement of ith user

Hib,SINRib
Channel matrix between ith user and BS b, Signal to interference
noise received by ith user from BS b

TPib,BLE Rib
Throughput provided by BS b to ith user, BLER provided by BS b
to ith user
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Table 4.1b. Summary of notations - continued

Ib Set of users associated with BS b

INT
b , IT

b
Set of non-transferable and transferable users associated with BS
b

IT∼
b

Subset of IT
b users associated with BS b that require the same set

of RF chains and time slots as users INT
b

PI,PO,PSw Idle and off power consumption of BS, PA switching power
∆p Power gradient

Pb,PC
Average power consumption of BS b in a frame, Average cluster
power consumption in a frame

C, |C | Set of cluster BSs and number of cluster BSs in cluster C

IC, INT
C , IT

C
Set of users in cluster C, Set of non-transferable and transferable
users in cluster C

BSU, kbi
BS-user matrix of size |C |x |IC |, entry in BSU matrix of BS b for
ith user

Ei Set of BSs that satisfy ith user’s mode SINR threshold
g,E Transferor BS, set of transferee BSs
RFU Number of active RF chains to users ratio

4.2 System Model and Problem Formulation

4.2.1 Network, Channel and User QoS Models

Consider the downlink communication in MIMO-Orthogonal Frequency Division

Multiple Access (OFDMA) cellular network with set of BSs B as shown in Fig. 4.2.

The overall bandwidth BW is divided in to J equally sized frequency blocks and the

transmission frame of duration tF is divided in to T equally spaced time slots, each

of duration tF
T . The maximum number of RF chains that can be active at BS b ∈ B

and each user device are S and R respectively. We will define a transmission mode m

as m , (s(m),r(m),d(m)) where s(m) ∈ [1,S] is the number of BS RF chains required

for mode m, r(m) ∈ [1,R] is the number of RF chains required at the user device and

d(m) = min(s(m),r(m)) is the number of independent data streams transmitted by mode

m.
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Figure 4.2. System block diagram

We assume single-input single-output (SISO) and Single User-MIMO (SU-

MIMO) including spatial multiplexing (SM) and spatial diversity (SD) modes for trans-

mission. We will denote the set of all possible transmission modes as M. In the work

presented in this chapter, mode selection is done once every transmission frame and the

mode mib ∈ M selected for the ith user by BS b does not change within time slots of a

frame. Hence, the number of RF chains sib(m) allocated by BS b to the ith user, number

of RF chains rib(m) allocated by the ith user device and the number of independent data

streams dib(m) received by the ith user remains identical for all the active time slots of

the frame.

Let Ib denote the set of users associated with BS b and IT
b ⊆ Ib denote the subset of

‘transferable’ users who are in coverage area of BSs b∼ ∈ B \ b in addition to being in the

coverage area of BS b. For cooperative RF chain switching, we propose to adapt the UA

of such transferable users which lie in the coverage areas of multiple BSs. This motivates

us to consider group or cluster of BSs C ⊆ B having overlapping areas of coverage

enabling cooperation and UA adaptation. In the work presented in this chapter, we adopt
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the network centric clustering of BSs wherein BSs are grouped together statically based

on network planning considerations [86]. Like used extensively in related research [81]

and [87], we assume that the set B can be divided in to disjoint clusters of BSs and the

size of each cluster is |C | where |X | denotes the cardinality of set X . We also assume

that all the BSs in the cooperative cluster can communicate with each other via the X2

interface.

We assume block fading channel between BS b and the ith user over the entire

bandwidth (J frequency blocks) in a frame (T time slots) represented by the complex

channel matrix Hib ∈ Crib xsib of rank A ≤ dib. The noise at each user’s receiver is assumed

to be additive white Gaussian with zero mean and variance σ2. We assume that the user’s

channel state information (CSI) including channel quality information (CQI) and Rank

Indicator (RI) is available at the BS.

Assuming that the transmit power PT x
b of BS b is equally divided over all fre-

quency blocks and transmit antennas, the signal to interference-noise ratio (SINR) re-

ceived by the ith user is

SINRib =
PT x

b

Jsib
·

HibHH
ib∑

b∼∈B\b PT x
b∼ Hib∼HH

ib∼ +σ
2

(4.1)

The throughput TPib from BS b to ith user is given by

TPib =
BW
JT

Tib∑
t=1

Jtib log2[det{Irib + SINRib}] (4.2)

where Tib is the number of time slots and Jtib is the number of frequency blocks

assigned in time slot t ∈ [1,Tib] by BS b to the ith user and Irib is a ribxrib identity matrix.

The BLE Rib achieved for the ith user depends on the BS transmit power PT x
b , channel

Hib, and the mode mib.
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BLE Rib = f (PT x
b ,Hib,mib) (4.3)

In Section 4.3.2, we elaborate how a look up table can be used in lieu of the

function in (4.3). Henceforth, user QoS will refer to the user’s throughput and BLER

requirements.

4.2.2 BS Power Consumption Model

The RF chain consists of PA and RF chain transceiver circuitry. PA is the major

contributor to BS power and has four states of operation namely, off, idle, active and

switching states [88]. PA is switched off in the off state, and it is on but not transmitting in

the idle state. PA transmits in the active state and the power consumption comprises of the

idle power and transmission power. The transmission power consumption depends on PA

efficiency, transmit power (assumed constant), bandwidth and duration of transmission.

The switching power is comparable to idle power, however, the switching duration is

much lower than time slot duration. Hence, the contribution of switching power is

much lower than that of idle power when power consumption is averaged over the frame

duration.

The baseband signal processing, DC-DC conversion, AC-DC conversion and

cooling modules of the BS contribute significantly to BS power consumption. As

they cannot be switched at the time scale of PA, the power consumption of the above

modules has a baseline component independent of the PA state and an additional power

component which scales with bandwidth of transmission when PA is transmitting. We

adopt the model presented in [89] which captures the characteristics of BS module power

consumption described above. The model in [89] is extended to include the off and

switching power of PA and is briefly described below.

The frequency utilization ψst of RF chain s ∈ [1,S] in time slot t ∈ [1,T] due to
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| Ib | users is

ψst =


1
J
∑|Ib |

i=1 Jsti, if PA is in active state

0, if PA is in idle or off state
(4.4)

where Jsti is the number of frequency blocks assigned on RF chain s ∈ [1,S]

in time slot t ∈ [1,T] to the ith user. As in LTE systems, we consider frequency block

allocation on a per time slot basis in a frame [90] to determine ψst . The number of active

RF chains in a time slot t is SA
t =| {s : ψst > 0} |. The number of active and idle time

slots in a frame is given by T A =| {t : SA
t > 0} |, T I =| {t : SA

t = 0∧∃s ∈ [1,S] : s is on} |.

Denoting the duration of PA switching as tSw and the number of RF chains switching

in a frame as SSw, the duration of all the RF chains in the off state in a frame is tO =

tF − tF
T (T A+T I)− tSwSSw.

Using the above definitions, the average power consumption of BS b with S RF

chains in a frame with T time slots is

Pb =
1
tF (

T A
b∑

t=1
(SA

tbPI +∆pPMax
SA
tb∑

s=1

|Ib |∑
i=1

ψstib+

(S− SA
tb)P

O)+ ST I
b PI)+ StO

b PO + SSw
b tSw

b PSw

(4.5)

In the model above, PO is the BS power consumption when the PA is switched

off and includes the idle power consumption of all components excluding the PA and the

off state power consumption of PA. The load independent term PI represents the idle

power of PA and the other components. The BS power consumption in the active time

slots includes the baseline idle power component given by SA
tbPI and the active power

due to transmission modeled as the load dependent term ∆pψst PMax . The load dependent

term ∆pψst PMax increases linearly with only frequency utilization ψst as power gradient

(slope) ∆p and maximum transmit power PMax are maintained constant. In the proposed
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technique, PA is either in the active, off or switching state. Henceforth, T I PI is not

a contributor to Pb. Defining SA
b = {S

A
tb : t ∈ [1,T A

b ]} and ψb = {ψsti : s ∈ [1,SA
tb], t ∈

[1,T A
b ], i ∈ [1, | Ib |]}, the average cluster power consumption in a frame is given by

PC =

|C |∑
b=1

Pb = f ({(Ib,T A
b ,S

A
b ,ψb) : b ∈ C}) (4.6)

4.2.3 Problem Formulation

We can infer from (4.2-4.3, 4.5) that the QoS requirements and channel conditions

of Ib users determine the aggregate BS resource utilization and Pb. At the individual

BSs, given Ib, the BS resource space formed by number of RF chains S, time slots T and

frequency blocks J can be explored during user mode selection to minimize Pb. At the

cluster level, adapting the association of users IC = ∪b∈C Ib will adapt the aggregate BS

resource utilization and Pb. However, the association of all the users Ib∀b ∈ C cannot be

adapted. This is because for every b ∈ C, there may exist a set of non-transferable users

INT
b ⊆ Ib that lie in the coverage area of only BS b and cannot be transferred to any other

BS b∼ ∈ C \ b (see Fig. 4.2). The association of set of transferable users IT
b = Ib \ INT

b

can be adapted as they lie in the coverage area of at least one more BS b∼ ∈ C \ b and

can be transferred to BSs {b∼}. From the above description of INT
b and IT

b , we can see

that INT
b ∩ IT

b = ∅∀b ∈ C. Further, assuming that a user is associated with no more than

one BS, IT
b ∩ Ib∼ = ∅ even though user i ∈ IT

b is located in the coverage area of BS b∼.

Using the above, the set of cluster users is given IC = INT
C ∪ IT

C where INT
C = ∪b∈C INT

b and

IT
C = ∪b∈C IT

b is the set of non-transferable and transferable cluster users respectively. The

sets IT
C and C together form the UA space that can be explored to adapt the set of users

associated with BSs b ∈ C and affect the individual BS resource utilization.

The objective of the BS and UA resource adaptation is to maximize the number
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of RF chains that can be switched off in the cluster to minimize PC while satisfying the

QoS requirements in (4.2-4.3) for all the cluster users and not exceeding the BS resource

utilization limits. The objective and constraints form the optimization problem stated

below. Note, a single cluster C and associated users IC is considered unless otherwise

mentioned.

min
|C |∑
b=1

1
tF (

T A
b∑

t=1
(SA

tbPI +∆pPMax
SA
tb∑

s=1

|Ib |∑
i=1

ψstib+ (4.7)

(S− SA
tb)P

O))+ StO
b PO + SSw

b tSw
b PSw

Subject to: TPib ≥ γi,∀i ∈ IC (4.8)

BLE Rib ≤ BLE RT h
i ,∀i ∈ IC (4.9)

tF

T
T A

b + tSwSSw
b ≤ tF,∀b ∈ C (4.10)

SA
tb ≤ S,∀t ∈ [1,T A

b ],∀b ∈ C (4.11)

ψstb ≤ 1,∀s ∈ [1,SA
tb],∀t ∈ [1,T A

b ],∀b ∈ C (4.12)

To minimize (4.7), the optimization variables are the sets IT
C = ∪b∈C IT

b and

{T A
b , {S

A
tb}, {ψstb} : b ∈ C, t ∈ [1,T A

b ], s ∈ [1,S
A
tb]}. The idle power and transmission power

of the BS due to active RF chains (first and second terms in the summation over T A
b in

(4.7)) are the dominant components of Pb (Section 4.2.2) and thereby, PC . On the other

hand, the off power due to inactive RF chains given by the third term in the summation

over T A
b is much lower than the static and dynamic powers and hence contributes less

to the BS power consumption. This implies that the number of active RF chains will

have priority in the optimization to minimize PC . Minimizing the number of RF chains

will result in minimizing the first and second terms of the summation over T A
b while

maximizing the third term in the summation over T A
b . Further, minimizing the number
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of active RF chains in time slots to zero will maximize the RF chain off duration (tO)

and minimize the number of active time slots T A
b . This will minimize the first term

(entire summation over T A
b ) in (4.7) and maximize the second term (power consumption

when all RF chains are off). Therefore, minimizing PC can be considered equivalent

to minimizing (maximizing) the number of active (off) chains. Constraints (4.8-4.9)

respectively ensure that the throughput TPib and the BLE Rib provided by BS b satisfies

the ith user’s required rate γi and upper BLER bound BLE RT h
i . Constraint (4.10) ensures

that the sum of duration of transmission and switching is upper bounded by tF . The

number of active RF chains in an active time slot is upper bounded by S in (4.11). The

last constraint (4.12) specifies the upper bound on the frequency utilization of every

active RF chain. An important point to note here is that satisfying the constraints (4.8-4.9)

ensures that every cluster user is associated with a BS and therefore explicit constraints

to ensure the same are not required. Henceforth, the optimization will be carried out with

the transmission frame as reference.

4.3 Co-RFSnooze Algorithm

4.3.1 Multiple Multidimensional Knapsack Problem

The problem in (4.7-4.12) belongs to the class of Multiple Multidimensional

Knapsack Problem (MMKP) as described below. Let the set of cluster users IC and set of

cluster BSs C denote the set of items and knapsacks respectively. UA is equivalent to

assigning items to knapsacks and BS resource utilization is equivalent to utilizing the

knapsack capacity. The profit of assigning user (item) i ∈ IC to BS b ∈ C (knapsack) is

the throughput TPib and the achievable BLE Rib provided by BS b to user i. The number

of BS RF chains S denotes the number of dimensions of the knapsack and the capacity

of BS b in dimension s ∈ [1,S] is JT , the total number of frequency blocks in a frame.
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The weight of user i ∈ IC in dimension s ∈ S is the total number of frequency blocks

assigned to the user in the frame given by
∑

t∈T Jsti. The BS resource and UA adaptation

to minimize average cluster power consumption can be seen as MMKP with minimizing

the total BS resource utilization, maximizing the users’ throughput and minimizing the

users’ BLER as the criteria for optimization. The problem stated in (4.7-4.12) is a variant

of the above multi-criteria MMKP which minimizes BS resource utilization subject to

lower bound on throughput provided and upper bound on achieved BLER. As MMKP is

a NP-Hard problem [91], we propose a heuristic algorithm that integrates BS resource

and UA adaptation heuristics to solve (4.7-4.12).

4.3.2 BS Resource Adaptation - Heuristics and Algorithm

Consider the set of users Ib associated with BS b and let I =| Ib |. For brevity of

notation, we will drop the subscript b in this subsection. Selection of mode mi ∈ M for

the user i ∈ Ib utilizes Ti active time slots, sti∀t ∈ [1,Ti] active RF chains and Jsti∀s ∈

[1, sti], t ∈ [1,Ti] frequency blocks. The mode selection for individual users impacts the

overall BS utilization as follows.(i) T A =maxi=1,..,I Ti, (ii) SA
t =maxi=1,..,I sti,∀t ∈ [1,Ti]

and (iii) ψst =
∑I

i=1
Jsti
J ∀t ∈ [1,Ti], s ∈ [1,SA

t ]. From the above, it can be inferred that T A,SA
t

and ψst can be minimized if each is minimized for every user. However, minimizing each

of the BS resource in isolation for every user will lead to an increase in the other BS

resources because (a) decreasing Ti increases sti and Jsti, (b) decreasing sti increases Ti

and Jsti and (c) decreasing Jsti increases Ti and sti in order to satisfy the QoS of the user.

Therefore, joint adaptation of resources allocated to every user is required to minimize

BS utilization and Pb.

The RFSnooze (Min-Cost in [76]) algorithm shown in Table 4.2 jointly adapts

the BS resources to minimize BS utilization and Pb. The inputs to the algorithm are

the required throughput γi and BLER threshold BLE RT h, the rank indicator RIi and
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Table 4.2. RFSnooze algorithm

Input: Ib, {γi,BLE RT h
i ,RIi,CQIi,Hi : i ∈ [1, I]},S, J,R,T

Output: T A, {SA
t : t ∈ [1,T A]}, {ψst : s ∈ [1,SA

t ], t ∈ [1,T A]}
1. For all users i ∈ [1, I]
2: Initialize MFS

i = ∅, Ji(m) = 0, Ti(m) = 0,∀m ∈ M
3: For all modes m ∈ M
4: Scheduler updates Ti(m) = maxt∈[1,T]{t : Jti > 0},

Ji(m) =
∑Ti(m)

t=1 Jti(m) if TPi(m, Ji(m),Ti(m))) ≥ γi
5: Determine BLE Ri(PT x,Hi,m) using CQIi entry in LUT
6: If BLE Ri(PT x,Hi,m) ≤ BLE RT h

i ,di(m) ≤ RIi(m),Ti(m) ≤ T, Jti ≤ JT ,
then update MFS

i = MFS
i ∪m

7: Compute Pi(m) using (4.13)
8: Find mode m∗ = argminm∈MFS

i
Pi(m)

9: Update Ti = Ti(m∗i ), sti = s(m∗i ),ψsti = J−1Jti(m∗i ),∀s ∈ [1, sti],∀t ∈ [1,Ti]
10: Determine T A = maxi∈[1,I]Ti
11: For all time slots t = 1, ..,T A

12: Determine SA
t = maxi∈[1,I]sti

13: Determine off RF chains SO
t = S− SA

t
14: Determine ψst = J−1 ∑I

i=1 Jsti,∀s ∈ [1,SA
t ];ψst = 0,∀s ∈ [1,SO

t ]

the channel quality indicator CQIi sent as periodic feedback by all the users i ∈ [1, I]

[92], the channel matrix Hi , the BS and user device resource upper bounds S,T, J and R.

The steps of the algorithm are explained briefly below. The reader can refer to [76] for

detailed explanation of the algorithm.

In step 4, the output of iterative frequency domain scheduler [93] is extended to

allocate Ti(m) time slots, si(m) RF chains, Ji(m) frequency blocks for all modes m ∈ M

in a frame for all users i ∈ [1, I]. The BLE R in step 5 is determined using the CQI and RI

measurements and the Look Up Table (LUT) in [94] (used in lieu of BLER function in

(4.3)) that specifies for different CQI values, the SINR threshold SINRT h(m) required for

every mode m ∈ M to result in BLE R ≤ 0.1. For all permissible modes {m : di(m) ≤ RIi},

if SINRi ≥ SINRT h(m) (SINRi is given by (4.1)), then BLE Ri(m) = BLE RT h
i , else

BLE Ri(m) is set to value greater than BLE RT h.

In step 6, the set of feasible modes MFS
i ⊆ M is updated with modes m that
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satisfies the throughput, BLER, and upper bounds on frequency and time utilization.

From (4.5), the power consumption due to feasible mode m ∈ MFS
i is given by

Pi(m) =
1
tF (Ti(m)si(m)PI +

si(m)∆pPMax

J

Ti(m)∑
t=1

Jti(m)) (4.13)

The power consumption is calculated for every mode m ∈ MFS
i in step 7 and the

mode m∗i that results in minimum power consumption is chosen in step 8. The number

of active time slots T A, active RF chains {SA
t : t ∈ [1,T A]}, the frequency utilization

{ψst : s ∈ [1,SA
t ], t ∈ [1,T A]} are the algorithm outputs determined in steps 10-14.

From Table 4.2, the complexity of RFSnooze to determine the combination of

modes is given by | M | O(I) and is linear in I. In comparison, complexity of exhaustive

search given by O(| M |I) is exponential in I.

4.3.3 UA Adaptation - Heuristics

SINR threshold for a mode m is defined as the threshold below which the BLER

due to mode m, BLE R(m) > BLE RT h and can be determined as outlined in [94]. BS b

that can provide SINR greater than the minimum of the SINR thresholds of all modes

m ∈ M can service the ith user as there exists at least one mode m for which SINRib >

SINRT h(m). Let Ei denote the set of BSs that can service the ith user. We assume that

the cluster users send the CQI and RI information for every BS b ∈ C to the entire cluster

[95]. Using this information, the BS-user assignment matrix BSU = [kbi]|C |x |IC | with

elements kbi ∈ [0, | C |] is maintained at all BSs b ∈ C. The value kbi = 0 indicates that

BS b < Ei as it does not satisfy the minimum of mode SINR thresholds for the ith user.

Sorting the BSs b ∈ Ei in the decreasing order of SINR, the values kbi = 1 indicates that

BS b provides the highest SINR, kbi = 2 indicates that BS b provides the second highest

SINR to the ith user and so on. Using the BSU matrix, the INT
b and IT

b users associated
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Table 4.3. Illustration of BSU matrix with | C |= 4 and | IC |= 10

BS-User 1 2 3 4 5 6 7 8 9 10
1 0 4 1 0 1 3 1 0 2 0
2 1 3 0 0 0 4 2 0 3 2
3 2 2 0 1 0 2 3 0 0 0
4 0 1 0 0 0 1 4 1 1 1

Modified BSU matrix after restricting Ei = {b : kbi ∈ [1,2]}
1 0 0 1 0 1 0 1 0 2 0
2 1 0 0 0 0 0 2 0 0 2
3 2 2 0 1 0 2 0 0 0 0
4 0 1 0 0 0 1 0 1 1 1

with BS b can be defined as

INT
b = {i : kbi = 1∧Ei = {b} ∧ {v : kvi ≥ 2} = ∅} (4.14)

IT
b = {i : kbi = 1∧Ei = b∪ {v : kvi ≥ 2}} (4.15)

Table 4.3 shows the BSU matrix for a cluster of size | C |= 4 and | IC |=

10. Using (4.14-4.15), the sets INT
b and IT

b for BSs b = 1,2,3,4 can be written as:

INT
1 = {U3,U5},IT

1 = {U7};INT
2 = ∅,IT

2 = {U1};INT
3 = {U4}, IT

3 = ∅;I
NT
4 = {U8},IT

4 =

{U2,U6,U9,U10}. Note, for BS2, as INT
2 = ∅ all the RF chains can be switched off by

transferring U1. We will next discuss heuristics for allocating BS resources to INT
b and

IT
b users. Without loss of generality, we will consider BS b ∈ C for the discussion and

drop the subscript b for brevity.

From (4.5), the utilization of BS resources is the aggregate utilization due to

INT ∪ IT . By allocating resources first to INT and subsequently to IT , we can rewrite

(4.5) as

P =
1
tF

(TNT∑
t=1
(SNT

t PI +
∆pPMax

J

SNT
t∑

s=1

|INT∪IT
∼ |∑

i=1
Jsti)
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+

T A∑
t=T A−TNT+1

((SA
t − SNT

t )PI +
∆pPMax

J

SA
t∑

s=SA
t −SNT

t +1

|IT \IT∼ |∑
i=1

Jsti)+
T A∑
t=1
(S− SA

t )PO
)
+ tOSPO + tSwSSwPSw (4.16)

where T NT and SNT
t are the number of active time slots and RF chains in time

slot t ∈ [1,T NT ] required to satisfy the QoS requirements of INT and IT∼ ⊆ IT users.

This implies that SA
t − SNT

t RF chains can be switched off in time slots {t ∈ [1,T A] :

SA
t − SNT

t > 0} if | IT \ IT∼ | users are transferred to feasible cluster BSs. The subset of

transferable users IT∼ are updated as non-transferable users as their QoS requirements

are satisfied by allocating no more than SNT
t RF chains in time slots T NT allocated to

INT users. The possibility of reducing | IT | and complexity of UA is the motivation to

allocate BS resources first to INT users and subsequently to IT users. Next, we will select

the ”transferor” BS g which will transfer users and the ”transferee” BSs E to transfer

users to.

Higher the number of RF chains SA
t − SNT

t that can be switched off, higher the

savings in transferor BS power consumption. However, as the number of users | IT \ IT∼ |

that are transferred increases, the number of users that receive less than maximum SINR

and the transferee BS power consumption also increases. To maximize SA
t − SNT

t while

minimizing | IT \ IT∼ | and the increase in transferee BS power consumption, the RF

chain-user ratio RFU is defined as

RFU =

∑T A

t=T A−TNT+1 SA
t − SNT

t

| IT \ IT∼ | (4.17)

Larger the RFU ratio, higher will be the savings in transferor BS power consump-

tion and lower will be the number of users receiving less than maximum SINR. Also,

large RFU ratio will result in lower increase in transferee BS power consumption. Hence,
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the BS with the largest RFU ratio is nominated as the transferor BS g.

Amongst the multiple BSs which cover user i ∈ IT
g \ IT∼

g , the selection of transferee

BS is restricted to that subset of BSs b ∈ Ei with kbi = 2 in the BSU matrix. This has

a two-fold effect of reducing (a) the impact on QoS of the user i ∈ IT
g \ IT∼

g and (b) the

complexity of UA. The set of transferee BSs corresponding to IT
g \ IT∼

g is denoted as E .

The above selection criterion is applied to Table 4.3 resulting in replacing all the

entries with kbi > 2 with kbi = 0 to indicate that BS b is not a transferee BS for the ith

user. The bottom portion of Table 4.3 shows the modified BSU matrix. This reduces

| Ei | for ith user and also minimizes the impact on the user QoS. For instance the set of

transferee BSs for U7 is reduced from E7 = {BS1,BS2,BS3,BS4} to E7 = {BS1,BS2}.

We will now discuss the three feasibility conditions that have to be satisfied for

transferring users. The first condition is that the QoS requirements of transferrable users

of transferor BS and the users of transferee BS have to be satisfied by the transferee BS

after the transfer.

C1 : satisfy constraints (4.8-4.9)∀e ∈ E, i ∈ Ie∪ IT
g \ IT∼

g (4.18)

Let us denote the number of active time slots, active RF chains and frequency

utilization of BS b before user transfer as T A
b ,S

A
b ,ψb and after user transfer as T A∗

b ,SA∗
b ,ψ∗b.

The second condition is that BS resource utilization of transferee BS e after transfer

T A∗
e ,SA∗

e ,ψ∗e should satisfy (4.10-4.12).

C2 : satisfy constraints (4.10-4.12)∀e ∈ E (4.19)

Denoting the power consumption of BSs after user transfer as P∗, the third

condition is that the difference in cluster power consumption before and after transfer

should be positive.
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C3 :
(
Pg(Ig,T A

g ,S
A
g ,ψg)+

|E |∑
e=1

Pe(Ie,T A
e ,S

A
e ,ψe)−P∗g(INT

g ∪ IT∼
g ,

T A∗
g ,SA∗

g ,ψ∗g)−
|E |∑
e=1

P∗e (INT
e ∪(IT

g \ IT∼
g ), IT

e ,T
A∗
e ,SA∗

e ,ψ∗e )
)
> 0 (4.20)

4.3.4 Co-RFSnooze Algorithm

The Co-RFSnooze algorithm adopts a bottom-up iterative approach which adapts

BS resources at individual cluster BSs and adapts UA at cluster level in an iterative

manner. An iteration consists of two key interlinked steps explained below. The first key

step is that the Co-RFSnooze algorithm applies the RFSnooze algorithm at each cluster

BS to INT and subsequently to IT users and determines the RFU ratio. This step (a)

minimizes the number of RF chains required to satisfy the QoS requirements of INT users

at the individual BS level, (b) reduces the cardinality of the IT (Section 4.3.3) to prune

the UA space at the cluster level and (c) determines the BS resources required to satisfy

the QoS requirements of the IT \ IT∼ users using which the RFU ratio is calculated. The

RFU ratio guides the choice of transferor BS and is the crucial link between individual

BS resource adaptation and cluster level UA adaptation.

The second key step is the selection of transferor and transferee BSs. The BS

with highest RFU ratio is selected as the transferor BS to maximize the savings in power

consumption due to switching off RF chains and minimize the impact on users’ received

SINR. The set of transferee BSs is restricted to BSs that provide the second highest SINR

to IT \ IT∼ of transferor BS to reduce UA space. The above two key steps are carried out

iteratively by Co-RFSnooze algorithm as described below.

The Co-RFSnooze algorithm is shown in Table 4.4. The algorithm inputs are the

set of cluster users, their QoS requirements and the channel state information, the BS
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Table 4.4. Co-RFSnooze algorithm

Input: {INT
b , IT

b : b ∈ [1, | C |]}, {γi,BLE RT h
i : i ∈ [1, | IC |}, {RIib,CQIib,

Hib : i ∈ [1, | IC |],b ∈ [i, | C |]},S, J,R,T
Output:{Ib,T A

b , {S
A
tb}, {ψstb} : s ∈ [1,SA

tb], t ∈ [1,T
A
b ],b ∈ [1, | C |]}

1. Initialize set of possible transferor BSs G = C, set of transferee BSs E = {},
transferor BS g = {}

2. For all BSs b ∈ C
3: Initialize INT

b and IT
b using (4.14) and (4.15)

4: Apply RFSnooze to INT
b to determine BS resource allocation for INT

b
5: Apply RFSnooze to IT

b to determine BS resource allocation for IT
b

6: Determine IT∼
b ⊆ IT

b that require no additional time slots
and RF chains as compared to INT

b
7: Update INT

b = INT
b ∪ IT∼

b , IT
b = IT

b \ IT∼
b , update BSUb with kei = 0,∀e ∈ C \ b

8: Calculate Pb using (4.5) and RFUb using (4.17)
9: If G = {}, then go to step 27, Else
10: Select transferor BS with highest RFU ratio g = maxb∈GRFUb
11: Update G = G \g
12: Determine subset of BSs E = {e : ∃i ∈ IT

g \ IT∼
g ∧ kei = 2}

to which BS g can transfer users IT
g \ IT∼

g

13:For all BSs e ∈ E
14: Update INT

e = INT
e ∪ {i : i ∈ IT

g \ IT∼
g ∧ kei = 2}

15: Apply RFSnooze to INT
e to determine BS resource allocation for INT

e
16: Apply RFSnooze to IT

e to determine BS resource allocation for IT
e

17: Determine P∗e using (4.5) and ∆Pe = Pe −P∗e
18: If transfer feasibility condition C1 or C2 is violated
19: Then set P∗e =∞,∆Pe =∞
20: Apply RFSnooze to INT

g users of transferor BS g to determine
BS resource allocation

21: Determine P∗g using (4.5) and ∆Pg = Pg −P∗g
22: If transfer feasibility condition C3 is true, then for all users i ∈ IT

g \ IT∼
g ,

for all BSs e ∈ E
23: Update the BSU matrix kgi = 0, kei = 1
24: Else for all users i ∈ IT

g \ IT∼
g , for all BSs e ∈ E

25: Update the BSU matrix kei = 0
26: Go to step 2
27: For all BSs b ∈ C
28: Ib = {i : kbi = 1}, {T A

b , {S
A
tb}, {ψstb} : s ∈ [1,SA

tb], t ∈ [1,T
A
b ]} -

Output of step 4
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resource upper bounds for the cluster BSs. The algorithm outputs are the set of users

associated with each of the cluster BSs and corresponding resource utilization of the BS.

Starting with the set of transferor BSs G = C and set of transferee BSs E = ∅, the

algorithm iterates till the set of transferor BSs G = ∅. Each iteration starts by allocating

individual BS resources first to INT
b users in step 4 and subsequently to IT

b users in step

5. The set of users IT∼
b that can be serviced in T NT

b time slots with SNT
tb , t ∈ [1,T

NT
b ] RF

chains is obtained from step 6. The sets INT
b and IT

b are updated in step 7 and the power

consumption Pb and the RFU ratio are calculated in step 8.

Using the RFU ratio, steps 10-11 selects the transferor BS g and updates the

set of transferor BSs G to exclude the selected BS g. The set of transferee BSs E is

selected in step 12 and the corresponding sets of INT
e ,∀e ∈ E are updated in step 14 to

include the transferable users IT
g \ IT∼

g of BS g. The update of G and of INT
e ∀e ∈ E is of

particular importance. By updating the set G = G \g in the current iteration eliminates

the selection of BS g as transferor BS in any subsequent iterations. This reduces the

cardinality of set of possible transferor BSs G for subsequent iterations and ensures

convergence of the algorithm in at most | C | iterations. The update INT
e = INT

e ∪ IT
g \ IT∼

g

categorizes IT
g \ IT∼

g of BS g as non-transferable users of BS e. This will not allow

oscillatory behavior wherein the users IT
g \ IT∼

g are assigned back to the transferor BS g

in subsequent iterations in which transferee BS e may be selected as transferor BS and

BS g as transferee BS.

The BS resource allocation taking in to account the transferred users is determined

in steps 15-16 following which the transfer feasibility conditions C1, C2 and C3 (Section

4.3.3) are tested in steps 18-22. Note that condition C1 is implicitly satisfied by the

RFSnooze algorithm as it selects feasible modes which satisfies the constraints (4.8-4.9)

for each user. Iterative allocation of resources to users as explained in Section 4.3.2, [76]

ensures that the BS resource utilization constraints (4.10 -4.12) are satisfied. Given the
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resource utilization of BSs g and E , C3 is evaluated using (4.20). If conditions C1, C2

and C3 hold, then the BSU matrix entries for users IT
g \ IT∼

g are updated in step 23 to

reflect the disassociation from transferor BS g (kgi = 1 to kgi = 0) and association with

the transferee BS e (kei = 2 to kei = 1). If the conditions do not hold, then the BSU matrix

is updated in step 25 to reflect that the users IT
g \ IT∼

g are non-transferable users of BS g

(kei = 2 to kei = 0). In addition the power consumption of all transferee BSs is set to an

arbitrarily large number to indicate that the transfer is not feasible. This is carried out for

implementation purposes as elaborated in the next subsection. With the updated UA and

set of possible transferor BSs G, the next iteration is initiated in step 26.

The iterations terminate when there are no more candidates for transferring users,

i.e., G = ∅. In the final iteration, steps 2-8 are executed, however, since there are no more

transferable users, the BS resource allocation obtained in step 4 is the final BS resource

allocation. The check in step 9 is true for the final iteration and the algorithm terminates

by executing steps 27-28. The outputs of the algorithm are the UA obtained from the

BSU matrix and the corresponding BS resource utilization of the cluster BSs.

We will use the example in Table 4.3 (bottom portion) with cluster of size | C |= 4

and | IC |= 10 users to run through the algorithm steps with the aid of Fig. 4.3. The

rows of Fig. 4.3 illustrate the BS resource utilization for each BS at the beginning of

an iteration and lists the subsequent steps. The BS resource utilization is shown for one

time slot of a transmission frame with J = 24 frequency blocks available on each of S = 4

RF chains (S1, ..,S4). The maximum number of user RF chains is R = 4. The frequency

blocks allocated to users are indicated by the color used for the user. Due to lack of space,

we have omitted showing multiple time slots in the transmission frame. For each user, the

modes m ∈ MFS
i and the corresponding allocation of time slots and frequency blocks are

listed in the legend using a 5-tuple - (si,ri,di, Ji,Ti). The IT of each BS are differentiated

by two vertical black colored lines placed on the BS resources allocated. For instance,
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Figure 4.3. Application of Co-RFSnooze algorithm to example in Table 4.3
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IT = {U7} for BS1 and two black lines are placed on the yellow blocks on S1 RF chain.

Initially G = {BS1,BS2,BS3,BS4},E = ∅. The top row of Fig. 4.3 shows the set

of feasible modes MFS (Section IIIB) and the minimum power mode m∗ (indicated by the

tick mark) selected for INT and IT of BSs BS1,BS2,BS3,BS4 in steps 4 and 5 of iteration

1. The outputs of steps 1-28 for iteration 1 are listed below the BS resource utilization

illustration. At the end of iteration 1, the RF chain requirements at BS1 = {S1,S2,S3,S4},

BS2 = ∅, BS3 = {S1,S2} and BS4 = {S1,S2,S3,S4}. Due to transfer of U1 from BS2 to

BS3, 2 RF chains are switched off at BS2 in iteration 1. This is the initial BS resource

utilization of iteration 2 shown in second row of Fig. 4.3. The steps 4-26 of iteration

2 result in transfer of U2,U9 from BS4 to BSs BS1,BS3 and switching off RF chains

S2,S3,S4 of BS4. This is shown in the third row of Fig. 4.3. The algorithm terminates

with the third iteration as RFU ratios RFU1 = 0,RFU2 = 0,RFU3 = 0,RFU4 = 0. We

can see that Co-RFSnooze reduces the number of active RF chains from 12 to 7 in the

cluster by iteratively applying the RFSnooze algorithm and UA adaptation heuristics.

4.3.5 Complexity Analysis

As exhaustive search of UA space evaluates | C | |ITC | combinations, the complexity

of UA adaptation is O(| C | |ITC |). For each UA combination, the exhaustive search of the

BS resource space has to evaluate | M | |I1 | +..+ | M | |I |C | | combinations. Therefore, the

complexity of joint search of BS resource spaces and UA spaces is given by O(| C | |ITC |

(| M | |I1 | +..+ | M | |I |C | |)). The Co-RFSnooze algorithm evaluates a single combination

of UA in an iteration and the maximum number of iterations for convergence of Co-

RFSnooze is | C |. The complexity of UA space search is O(| C |). In each iteration, the

RFSnooze algorithm is executed at most twice for the entire cluster (steps 4-5, 15-16 and

20 in Table 4.4). The number of operations when RFSnooze algorithm (Section 4.3.2)

applied to the every BS of entire cluster is
∑|C |

b=1 | M | | Ib |=| M | | IC |. The complexity of
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Figure 4.4. Implementation of Co-RFSnooze algorithm

the Co-RFSnooze algorithm for determining the BS resource allocation and UA in | C |

iterations is given by 2 | C | | M | O(| IC |) where | C | and | M | are constants for a given

cluster and BS resource configurations. Hence, Co-RFSnooze algorithm achieves linear

complexity compared to the exponential complexity of exhaustive search.

4.3.6 Co-RFSnooze Framework

We propose a combination of the centralized approach [96] and the decentralized

approach in [95] for the Co-RFSnooze framework to minimize the exchange of user QoS,

channel state information (CSI) and control information between the cluster BSs to adapt

UA.

The cluster BSs send training sequences to all the cluster users periodically [92].

In response, as implemented in decentralized approach in [95], the users estimate the

CSI for each of the BS in the cluster and then send | C | CSI estimates as feedback to

every BS in the cluster. In this manner, the cluster BSs have the information about the

SINR received by ith user from every cluster BS b ∈ C. This enables the BSs to build and

maintain a copy of the BSU matrix locally denoted as BSUb. With the aid of Table 4.4
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and Fig. 4.4, we will next discuss information exchange required for the Co-RFSnooze

iterations.

With the inputs required and BSU matrix available at the BSs, steps 2-7 (Table

4.4) are run at every BS b ∈ C for updating IT . Subsequently, the BSs broadcast their

RFU values to all the other cluster BSs. The BS with highest RFU ratio selects itself

as the transferor BS with the other BSs implicitly getting this information from the

broadcasted RFU values. Using the updated local copy of BSU matrix, the transferor BS

g determines the set of transferee BSs E as in step 12. The above operations are listed in

boxes in Fig. 4.4.

We adopt the cooperation protocol in [96] to set up the communication interface

between BS g and BSs e ∈ E shown in Fig. 4.4. The BS g sends the ”Transferor Request”

to BSs e ∈ E which in turn sends the ”Transferee Ack” response to complete the coopera-

tion setup. The BS g transmits to each BS e ∈ E , the row ke∗ ∈ BSUg corresponding to BS

e. Note that the row ke∗ ∈ BSUg transmitted by BS g is identical to the row ke∗ ∈ BSUe

(local copy of BSU matrix at BS e) except for the entries corresponding to i ∈ IT∼
g for

which kei = 0, kei ∈ BSUg (as updated in step 7, Table 4.4) and kei = 2, kei ∈ BSUe. This

difference indicates to BS e the reduced set of users IT
g \ IT∼

g required for steps 13-19.

The QoS requirements (γi,BLE Ri) of the users {i : i ∈ IT
g \ IT∼

g } required as input to

RFSnooze algorithm in steps 15-16 are transmitted to the transferee BS. Execution of

RFSnooze algorithm in steps 15-16 will implicitly evaluate conditions C1 and C2, which

if violated will set the difference power consumption ∆Pe to an arbitrarily large value.

The ∆Pe is conveyed to BS g by all BSs e ∈ E which evaluates condition C3. The BSUg

matrix is updated as per step 23 or step 25 depending on evaluation of condition C3. The

updated rows ke∗ ∈ BSUg are transmitted to BSs e ∈ E and the current iteration ends. The

cth iteration consists of the operations indicated by the boxes and information exchange

shown in Fig. 4.4. After a cluster BS has been selected as transferor BS, in subsequent
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iterations, it broadcasts RFU = 0 value. In terms of implementation, when all the BSs

broadcast RFU = 0, the algorithm terminates. Subsequently, the cluster BSs use the

updated local BSU matrices to service the associated users.

The overhead due to information exchange among the cluster BSs is as follows.

A byte each for mantissa and exponent is sufficient to represent RFU values. The size

of BSU row given by d(log2 | C |)e | IC | depends on the cluster size and number of

cluster users. Two bytes are sufficient to convey the QoS requirements of each of the

users i ∈ IT
g \ IT∼

g . The ∆Pe values can be expressed using a byte each for mantissa

and exponent. Analysis in [87] shows that the gains due to adding a BS to the cluster

significantly decreases when | C |> 4. Assuming | C |= 4 and | IC |= 300, the BSU row,

RFU byte, ∆Pe value and QoS information will account for 600+8+16+16∗ | IT
g \ IT∼

g |

bits. Assuming 0.5uW [83] is consumed for every bit transmitted over the backhaul,

number of iterations is | C |= 4 and total number of users transferred | IT
g \ IT∼

g |= 35 (Fig.

4.6b, high load), then the overhead due to information exchange for Co-RFSnooze is

2.368mW. Note that the overhead due to information exchange in iterations has been

accounted in the calculation of PC for the Co-RFSnooze algorithm in Section 4.4.2.

The time scale of BS resource allocation is of the order of milliseconds as

current LTE standards allows BS resource allocation every time slot (1ms duration) in a

transmission frame. UA adaptation requires user transfer/handover from the transferor

BS to the transferee BS. In the work presented in this chapter, it is assumed that the

cluster BSs are connected via X2 interface and X2 handovers can be used to achieve the

user transfer. Experiments in [97] show that the X2 handovers can take up to 100ms.

Therefore, the time required for BS resource adaptation is about f times ( f = 10 with the

values considered) lesser than that required for UA adaptation and results in a two time

scale system. The Co-RFSnooze algorithm accommodates the two time scale requirement

as follows. Steps 4-5 in Table 4.4 are carried out at periodicity of pBR at individual BSs
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Table 4.5. Simulation parameters

Power gradient ∆p 4.2
Off power PO, Idle Power PI 82.75W, 186W
PA switching power PSw,
switching time tSw 100W, 35us

Maximum transmit power
PMax 40W

Bandwidth BW , Number of
frequency blocks J

20MHz, 100

Duration of frame tF , Number
of time slots T

10ms, 10

Number of RF chains at BS S
and user device R

4, 4

Set of modes M , | M |
{(1,1,1) (SISO), (2,2,2) (SM), (2,2,1)
(SD), (4,1,1) (SD), (4,4,4) (SM), (4,2,2)
(SM-SD)}, 6

Size of cluster | C | 4
Maximum number of cluster
users

300

BLE RT h for all cluster users 0.1
Simulation time 24 hours

to adapt BS resource utilization. At periodicity f · pBR > pBR, all the iterations of the

algorithm executing all the steps in Table 4.4 are carried out to determine the BS resource

allocation and UA of cluster BSs. In Section 4.4.2, we evaluate the performance of Co-

RFSnooze algorithm at a single time scale using the sample load trace from anonymous

operator with granularity of 1 minute. We have chosen a single time scale of 1 minute

( f · pBR) as it satisfies the time scale requirements of both the adaptations as well reduces

the overhead due to user transfer and allows evaluation of the Co-RFSnooze performance

in its entirety, i.e, execute all the iterations at every point of the trace. Note, however, the

evaluation can be easily extended to show the two time scale operation of Co-RFSnooze.
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4.4 Simulation Framework and Results

4.4.1 Simulation Framework

In this section, we describe the simulation framework developed and the simula-

tion parameters listed in Table 4.5. We adopt the topology with 15 BSs in 4.5x4.5km2

[98], a part of 3G network in urban environment. The inter-cell distance is 0.5km. The

cluster size | C | is set to 4 and a 16th BS is randomly placed in the considered 15 BS

topology to obtain 4 clusters. Without loss of generality, we consider one of the four clus-

ters to evaluate the proposed Co-RFSnooze algorithm. The BS power model presented

in Section 4.3.2 is used to estimate the average BS and cluster power consumption in a

frame. The BS power consumption parameters are specified in [89] and [88] and listed

in Table 4.5. The users (maximum 300) are uniformly and randomly distributed in the

cluster. The traffic load is assumed to be spatially heterogeneous with user’s required rate

γ ∝ (max(d) − d2) where d is the distance between the user and BS. The BLE R LUT

table in [94] is extended to include the modes (4,4,1) and (4,4,4) and used to determine

the BLE R of users as explained in Section 4.3.2. Other parameters for the simulations

follow the suggestions in the LTE specifications [90]. We consider the COST-231 HATA

model for the path loss between the BS and user [99].

For comparing the performance of Co-RFSnooze algorithm, we consider the

following algorithm/schemes (Section 4.1.1):

• All-On (conventional scheme): turns on all BS RF chains in active time slots and

turns off in off slots.

• RFSnooze [76]: adapts number of active RF chains, time slots and frequency

blocks at individual BSs in an uncoordinated manner. RFSnooze [76] has been

extended to Co-RFSnooze algorithm in this work.
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• Co-Nap [81]: adapts the on/off pattern of the cluster BSs and turns off all BS RF

chains to switch off BSs. The short time scale operation of BS switching effected

by switching on/off all RF chains in a cooperative manner without using CoMP

transmission makes Co-Nap the most relevant prior art technique for comparison.

• Exhaustive Search: yields the combination that switches off the optimal number of

RF chains

We will now discuss the implementation details of All-On and Co-Nap. The UA

rule for All-On and Co-Nap schemes is that the user is associated with that BS which

provides the highest SINR. The scheduling algorithm [93] (Section 4.3.2, [76]) is used to

determine the feasible set of modes MFS. As all the RF chains are switched on during

the active time slots for All-On and Co-Nap, the mode that utilizes all the RF chains and

satisfies the minimum throughput and BLER constraints is selected from the feasible

mode set. If the QoS constraints are not satisfied by modes utilizing all the RF chains,

then the mode with next highest number of RF chains that satisfies the QoS constraints

is selected. The dominant operation in mode selection is determination of MFS and is

carried out as explained in Section 4.3.2, [1] for All-On, Co-Nap and RFSnooze. Hence,

the the complexity of mode selection for All-On and Co-Nap is given by | M | O(| IC |)

(Section 4.3.2).

In case of All-On and Co-Nap, RF chains that are not transmitting in active time

slots (in a frame) are in the idle state and by the UA rule, the set IT
b = ∅, Ib = INT

b ∀b ∈ C.

Incorporating the above in to (4.5), the BS average power consumption in a frame is

P =
1
tF (

T A∑
t=1

SPI +
∆pPMax

J

SA
t∑

s=1

|INT |∑
i=1

Jsti)+ tOSPO (4.21)

All-On does not adapt switching of BSs and RF chains. In contrast, Co-Nap

adaptively switches on/off BSs and impacts the average power consumption of the
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cluster as briefly explained below. Co-Nap divides the transmission time into discrete

transmission cycles comprising of | C | number of blocks. The BS on/off (flickering)

pattern determines the active and inactive (napping) blocks for all the BSs in every

transmission cycle. The BS resource allocation is carried out for all the active blocks

in a manner that the user QoS requirements are satisfied. Assuming that a block spans

over multiple frames, Pb in a frame in an active time block is given by (4.21). For a

frame in an inactive block (BS off), (4.21) reduces to SPO (as tO = tF). For Co-Nap, the

complexity of determining the on/off (1/0) pattern for | C | BSs in | C | blocks and BS

resource allocation for | IC | cluster users is given by | C | O(2|C |)+ | M | O(| IC |).

4.4.2 Simulation Results

We will now present the experimental results obtained using the simulation

framework described above. In order to evaluate the performance of the comparison

schemes and the proposed algorithm in a practical setting, we adopt the sample traffic

trace shown in Fig. 4.5a. The sample traffic trace is the normalized BS utilization

measured by an anonymous operator in [100] for 24 hours with granularity of 1 minute.

The simulation step is fixed as 1 minute, however, our simulation framework supports

simulation step lesser than or greater than 1 minute. Fig. 4.5b shows the number of users

in a simulation step. It is given by the product of value of the sample trace and maximum

number of cluster users (Table 4.5). Assuming that the number of users and their

requirements do not change over the simulation step, the comparison schemes/algorithms

and Co-RFSnooze algorithm is run once in every simulation step to determine the BS

resource allocation for all the frames and in case of Co-RFSnooze, additionally, the

updated UA. The PC in a simulation step is the power consumption averaged over all the

frames in a simulation step and is estimated using (4.6) for the proposed algorithms and

using (4.21) in (4.6) for All-On.
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Figure 4.5. (a) Sample traffic trace, (b) number of cluster users

For Co-Nap, the simulation step is equivalent to the transmission cycle and

consists of | C |= 4 blocks of equal duration. Co-Nap is run once every simulation step to

determine the number of active blocks and resource allocation for all the frames in the

active blocks. The PC in a simulation step is equal to the power consumption averaged

over the four blocks.

Fig. 4.6a shows the average power consumption of the cluster in a frame PC for

All-On (shown in red), RFSnooze (shown in blue) and Co-RFSnooze (shown in green).

All-On consumes higher power than proposed algorithms because, regardless of the load,

all the RF chains are on in the active time slots. This increases total RF chain power

consumption due to (a) frequency utilization of each active RF chain and (b) idle power

of the RF chain transceiver circuitry as all RF chains are either in active or idle state.

Joint adaptation of number of active RF chains, frequency and time utilization reduces

the cluster power consumption for RFSnooze. The green plot in Fig. 4.6a shows that the

savings due to RFSnooze is further extended by Co-RFSnooze. This increase in power

savings validates our extension of RFSnooze to Co-RFSnooze which, as elaborated

in Section 4.3.4, integrates BS resource adaptation and UA to maximize the number

of cluster RF chains that can be switched off. Under high load conditions, RFSnooze
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achieves up to 35% gains (635th minute) and Co-RFSnooze achieves up to 56% gains

(382nd minute) compared to All-On. RFSnooze achieves up to 42% gains (1151th minute)

and Co-RFSnooze achieves 49% gains (960th minute) compared to All-On under low

load conditions. Note that we refer to the savings in average cluster power consumption

as the gains achieved.

We will now compare the performance of RFSnooze and Co-RFSnooze using

Figs. 4.6a and 4.6b. Fig. 4.6b shows the number of users transferred by Co-RFSnooze

during UA adaptation. Under high load conditions, Fig. 4.6b shows that higher number

of users is transferred (up to 35) and Fig. 4.6a shows that Co-RFSnooze achieves up

to 43% savings (382nd minute) compared to RFSnooze because higher number of user

transfers allows switching off of additional RF chains (Section IIIB,C). Under low load

conditions, Co-RFSnooze achieves lower savings of up to 29% (960th minute) because

(a) higher number of RF chains are switched off at individual BSs by RFSnooze (b) the

number of cluster users (Fig. 4.5b) and transferred users is lower as shown in Fig. 4.6b

and (c) higher incidence of instances when no users are transferred resulting in identical

performance of RFSnooze and Co-RFSnooze as indicated by corresponding instances in

Fig. 4.6a.

Fig. 4.6c shows the PC due to Co-Nap (shown in red), RFSnooze (shown in

blue) and Co-RFSnooze (shown in green). Under high load, Co-Nap performance is

comparable to All-On as it is unable to allow BSs to nap and satisfy the QoS constraints.

RFSnooze achieves up to 35% gains (635th minute) and Co-RFSnooze achieves up to

56% gains (382nd minute) compared to Co-Nap under high load conditions. During

transition from high load to low load and vice versa, Fig. 4.6c shows the dips in power

consumption for Co-Nap (for instance between 50th and 150th minute) as lower load

allows napping of BSs. RFSnooze and Co-RFSnooze outperform Co-Nap even in the

transition regions by adapting BS resources and jointly adapting BS resources and UA
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Figure 4.7. Comparison of number of cluster active RF chains of RFSnooze and
Co-RFSnooze with (a) All-On, and (b) Co-Nap

respectively. The percentage of gains is lower compared to that under high load conditions

at 22% (140th minute) for RFSnooze and 38% (72nd minute) for Co-RFSnooze. Under

low load, Co-Nap outperforms RFSnooze as it is able to aggressively nap BSs and satisfy

the QoS constraints. Co-RFSnooze outperforms Co-Nap whenever user transfers are

possible which allows it to switch off additional RF chains. However, as explained earlier,

whenever user transfers are not possible, Co-Nap outperforms Co-RFSnooze. The above

behavior of Co-RFSnooze compared to Co-Nap is shown in the inset (zoomed-in section

between 900th and 1200th minute) of Fig. 4.6c wherein the green curve repeatedly

goes above and below the red curve. Also, due to the bulk of the savings coming from

RFSnooze under low load, which underperforms Co-Nap, Co-RFSnooze achieves up to

11% (960th minute) compared to Co-Nap.

Next, we will compare the number of cluster active RF chains used by the

proposed algorithms with that used by All-On and Co-Nap in Figs. 4.7a and 4.7b

respectively. The number of cluster active RF chains in (a) a frame is the sum of the

active RF chains used at individual BSs and (b) a simulation step is the number of cluster

active RF chains averaged over all the frames in the simulation step.
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Table 4.6. Average percentage savings in PC of RFSnooze and Co-RFSnooze

Low Load High Load Total
RFSnooze vs All-On 32.74% 26.21% 30%

Co-RFSnooze vs All-On 41.5% 47.38% 44.67%
RFSnooze vs Co-Nap -16.1% 26% 7.68%

Co-RFSnooze vs Co-Nap -0.86% 47.25% 25.52%

In Fig. 4.7a, all the cluster BS RF chains are active for All-On under high load

whereas RFSnooze uses lesser number of RF chains and the least number are used by

Co-RFSnooze. Under low load conditions, there are dips in the number of BS RF chains

for All-On because there are no users associated with certain BSs in that instance and

we see corresponding dips for RFSnooze and Co-RFSnooze as well. Fig. 4.7b shows

that all the cluster RF chains are active for Co-Nap when the load is high as napping of

BSs is not possible. Under low load, Co-Nap aggressively reduces the number of RF

chains and thereby the power consumption as observed in Fig. 4.6c. RFSnooze consumes

higher power than Co-Nap under low load conditions because it uses higher number of

RF chains, as is evident from Fig. 4.7b. Further, we can see that the number of active

RF chains used by Co-RFSnooze repeatedly goes above and below the number of RF

chains used by Co-Nap. This results in similar pattern of PC of Co-RFSnooze in Fig.

4.6c. During the transition from low load to high load and vice versa, the number of RF

chains for RFSnooze and Co-RFSnooze is lower than that of Co-Nap. This is the cause

for the trend of PC of Co-Nap, RFSnooze and Co-RFSnooze during transition periods as

seen in Fig. 4.6c.

Table 4.6 presents the percentage of savings in PC , averaged over 24 hours, for

the proposed algorithms with respect to All-On and Co-Nap. Co-RFSnooze outperforms

both All-On and Co-Nap when the savings are averaged over 24 hours which includes

periods of low, medium and high loads.

We conclude the results by presenting the comparison of Co-RFSnooze and
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Table 4.7. Average percentage savings in PC of Co-RFSnooze compared to Exhaustive
Search

Low Load Medium Load High Load
Co-RFSnooze vs 0% -13% -18%
Exhaustive Search

exhaustive search in Table 4.7. The simulation framework and parameters used is

identical to that used for the remaining experiments except the following two changes.

As the computational complexity of exhaustive search is exponential in | IC | (Section

4.3.5), to keep the simulation time tractable, we have chosen (a) the number of cluster

users | IC |= 100 and (b) low, medium and high load points of 0.1,0.5,0.8 of the sample

trace in Fig. 4.5a and the resulting number of users are 10,50,80. We have conducted

three runs of Co-RFSnooze and Exhaustive search for each of the load points and report

the average percentage savings in PC of Co-RFSnooze compared to exhaustive search in

Table 4.7. The deviation of the Co-RFSnooze PC from the optimal value achieved by

exhaustive search is at most 18% at high load.

4.5 Summary

In this chapter, we presented novel RF switching technique to minimize the

average power consumption of a cluster of BSs in a transmission frame while satisfying

the cluster users’ QoS requirements and BS utilization constraints. Simulation results

indicate that the proposed algorithms significantly outperform the conventional All-

On scheme while Co-RFSnooze significantly gains over time slot based adaptive BS

switching scheme Co-Nap under high and medium loads while being comparable under

low load conditions.

In the next chapter, we conclude the thesis with future directions for the work

carried out.
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Chapter 5

Conclusion

Cellular networks and mobile devices continue to evolve to offer high bit rates, ex-

tensive coverage and processing advanced multimedia applications. Anytime-anywhere

connectivity with high data rates and capability to process advanced multimedia applica-

tions have revolutionized important sectors of the society and become an integral part

of lifestyle of urban and rural populations across the world. The result of the advances

in cellular networks and mobile devices is a continued explosive growth in number of

mobile subscriptions and volume of mobile data. In this dissertation, we address the

challenges in effective and efficient utilization of power/energy resources required to

cater to the explosive growth in number of subscriptions and volume of mobile data in an

economically and environmentally sustainable manner.

Mobile video is the leading multimedia application and contributes to about

two thirds of mobile data traffic. Also, it is a data and compute intensive application

which results in significant demands on the components involved in video download

and processing the video data. It is shown that the components involved in download

consume higher energy than that required for processing. While there is a strong body of

research which address the energy consumption due to processing of video data, there

is a little research which aims to minimize the battery drain due to video download. In

Chapter 2, we developed battery aware techniques for video download and streaming.
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We provided discussion on the power models of base station components involved in

video transmission and mobile device components involved in video download as well as

playback. Also, included in the discussion are bit error rate, channel and user experience

and consumption models and battery models to complete the modeling of the ecosystem

of video transmission and video download and playback. We proposed two techniques

(BR-MoDS and B2R-MoDS) that are applicable for mobile video download and video

streaming. Further, we also proposed novel Video Experience Longevity metric which

quantifies the gain in battery lifetime and user experience compared to non-battery aware

video download and streaming techniques. Experiments showed that the proposed battery

aware video download and streaming techniques offer significant savings in battery

lifetime compared to non-battery aware video download and streaming techniques with

comparable user experience. Further, higher VEL metrics for the proposed BR-MoDS

and B2R-MoDS techniques demonstrate that there exists gain in battery lifetime as well

as video experience compared to the non-battery aware techniques.

It would be interesting to extend the mobile battery aware techniques to jointly op-

timize the BS power consumption during video transmission and the battery consumption

of mobile devices during video download. Further, such techniques can enable the video

consumer to set the priority levels for prioritizing battery drain versus the user experience.

On the same lines, a guarantee on battery drain extent can be an extra dimension in

pricing of data plans by the video content providers.

Moving from the mobile devices to cellular networks, we identified that reducing

power consumption of BSs at the system level is critical for energy efficient operation of

cellular networks. In Chapter 3, we developed the an integrated framework for dynamic

cell reconfiguration for minimizing the power consumption of cellular networks while

satisfying the user Quality of Service (QoS). The dynamic cell reconfiguration framework

integrates three techniques namely, BS switch off/on, user association and transmit power
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budget adaptation. We discussed user QoS, network, channel and BS power consumption

models followed by algorithm presentation. We evaluated the proposed dynamic cell

reconfiguration techniques and framework for static and dynamic traffic load conditions

using actual measurements of BS power consumption and real world traces of BS

load. Experiments show that the proposed framework significantly reduces the power

consumption of cellular networks while satisfying the QoS requirements of associated

users.

An important extension to the work would be the joint optimization of set of active

BSs, user association and transmit power budget allocation and energy consumption of

the mobile devices. This would result in an end-end framework for energy efficiency of

cellular networks and mobile devices. Further, by exploiting the heterogeneity of macro,

micro and pico base stations, coverage holes created by switching off macro BSs can

be alleviated by offloading users to micro and pico base stations. Such user association

presents interesting challenges in tradeoff between increase in power consumption of

micro and pico base stations, decrease in macro BS power consumption and satisfying

user QoS requirements.

Lastly, we identified that reduction of power consumption of BSs at the compo-

nent level enables adaptation to load variations on time scale of seconds and minutes.

In chapter 4, we discuss the component level BS power consumption model which is

centered around the various states of power amplifies in the radio frequency (RF) chain

and its impact on the power consumption of other components of the BS. The channel,

network and user QoS models were also presented to model the cellular network and

associated users interaction and resulting BS power consumption. We first proposed the

RFSnooze technique which adapts the number of RF chains, time slots and frequency

blocks to minimize the number of active RF chains and thereby, the BS power con-

sumption. The RFSnooze technique achieves the objective while ensuring that the BS
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resource utilization bounds and user QoS requirements are satisfied. We extended the

RFSnooze technique to Co-RFSnooze technique which adapts the number of Rf chains

in a cluster of cooperating base stations to minimize the power consumption of cluster of

BSs. Co-RFSnooze technique achieves the above by jointly adapting the individual BS

resources and user association of users in the cluster of BSs while ensuring that the BS

resource utilization bounds and cluster user QoS requirements are satisfied. Experiments

using measurements from actual BS component power consumption and real world traces

of BS load demonstrate that the proposed Co-RFSnooze technique achieves significant

savings in cluster power consumption with no degradation in user QoS levels.

Adaptive RF chain switching to minimize the number of active RF chains can

be extended to minimize the number of RF chains in massive MIMO systems which

have been identified as one of the key enablers of the 5G cellular networks. Further, the

optimization of BS resource utilization and cluster user association presents interesting

research problems when the ecosystem includes renewable energy and energy storage

systems.



Appendix A

Battery Aware Video Download Tech-
niques

A.1 Battery Efficient Video Download - Framework

The overall framework for information and control data exchange between base

station and mobile device, mode selection and reconfiguration during battery efficient

video download is shown in Fig. A.1. Each download epoch, Ti consists of the following

events, represented by the time duration; (a) TVideo - video data transmission by the base

station, (b) TStatus - channel condition and buffer level status update sent by mobile device,

(c) TMode−Sel - mode selection performed by base station (executing MoDS algorithm)

based on mobile device status update, (d) TMode - mode selected communicated by base

station and (e) TMode−Con f ig - reconfiguration of RF and base band components of base

station and mobile device according to the mode selected. The mobile device status

update, mode selection and communication and mode reconfiguration are carried out

in advance in the current download epoch Ti for the next download epoch Ti+1. This

ensures that video is transmitted continuously except during TMode, TMode−Con f ig and

when MoDS selects download idle. We will next discuss the mobile device status update

and base station mode update in detail. The Buffer Status Report (BSR) [90] used to

report the uplink buffer level reports the mobile device buffer level during download

140
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Figure A.1. Overall Framework for battery efficient video download

(downlink) as described below. When the video download session is initiated, Long

Buffer Status Report (L-BSR, 3 bytes) conveys video bit rate (VBR) and Short BSR (S-

BSR, 1 byte) conveys the mobile device buffer size. As S-BSR is insufficient to report the

buffer size in bytes, the buffer size is reported in terms of maximum playback time PBT

possible which is the ratio of buffer size, Bu fSize to VBR. As VBR and Bu fSize are constant

for a given video, this information is sent one time at the beginning of the download

session. Subsequently, for each download epoch, the buffer level is reported in terms

of available PBT calculated using (17) using periodic S-BSR. The MoDS algorithm

uses the VBR, Bu fSize and PBT information obtained from the BSR to calculate DRMin

and DRMax . The periodic Channel Quality Indicator (CQI) [90] reports the channel

condition required to obtain the BER values for the modes. Finally, the mode selected

is communicated by the base station to the mobile device using the Downlink Control

Information (DCI, format 1A, 2A, about 8 bytes) [90]. It should be noted that CQI

and DCI information exchange is currently carried out as part of the LTE specifications

[90] and the additional data transmitted for buffer levels is nominal – a byte resulting in

1.14mW of power consumption [101] and imposes no more than 0.4% of power overhead
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even when the mode (1x1, BPSK, CR=1, ZF) is selected. On the other hand, receiving 8

bytes of DCI results in about 2.22µW of power consumption when the mode (1x1, BPSK,

CR=1, ZF) is used.

A.2 Scalability Analysis for MoDS under Multi - Client
Scenario

In our proposed approach each base station has an instance of MoDS. At the

network level, as the number of clients in a network using MoDS grows, they will be

geographically distributed across multiple cells of the network, hence will use multiple

instances of MoDS associated with the corresponding base station. At the base station

level, empirical evidence suggests that the number of clients streaming video concurrently

will be rather limited. For example, the study conducted by Motorola in [101] indicates

that even with LTE networks, no more than 8 video clients can be supported while

downloading video with bit rate of 3.5Mb/s (the high bit rate per video stream reflecting

the growing trend of watching higher resolution videos).

As elaborated in Appendix A.1 and shown in Fig. A.1, mode selection time,

TMode−Sel is the time taken by MoDS to select mode for each user in every download

epoch of duration, Ti and by studying how TMode−Sel varies with number of concurrent

video clients, we can analyze the performance of a single instance of MoDS running on a

single base station serving multiple concurrent video clients. We next present experiments

devised to measure TMode−Sel , for each user in the presence of increasing number of

concurrent video clients that the base station has to service. We simulate each concurrent

user streaming the same video of 183s duration encoded using bit rate of 4.1Mb/s and a

snacking ratio of 0.5, under variable SNR conditions (Table 2.5, Section 2.4.4). Note we

assume all the users downloading the same video to remove any variability that could

arise because of video characteristics, but the experiments can be easily conducted with
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Table A.1. TMode−Sel for each video client in the multi-client scenario

Number of concurrent
video clients

Maximum -
TMode−Sel(ms)

Mean - TMode−Sel(ms)

1 186.6 148.3
2 371.1 302.7
3 540.7 416.7
4 752.6 590.5
5 857.7 685.3
6 1039.3 819.5
7 1228.9 1074.5
8 1403.7 1289.7
9 1620.9 1447.1
10 1731.3 1636.5
11 1918.3 1784.1
12 2114 1959.6

concurrent users streaming arbitrarily different videos as well. Table T1 below shows

the maximum and mean values of TMode−Sel when number of concurrent video clients is

varied from 1 to 6, with the MoDS algorithm running on an Intel Core i7-3632QM CPU

operating at 2.2GHz. As expected the time taken by MoDS for each client increases with

increasing number of clients. The number of concurrent clients that can be served by a

single CPU will be limited by what can be the allowable value for TMode−Sel , which as

shown by Fig. A.1, Appendix A.1 is upper-bounded by the duration of each download

epoch Ti minus time needed to send status update from the mobile device, TStatus, time

needed to send the selected mode to the mobile device, TMode and time needed for

mode reconfiguration, TMode−Con f ig. For example, since the download epoch duration

value used for the experiment results reported Section 2.4.5 is 2s, it is reasonable to say

TMode−Sel can be up to 1400ms, which means up to 8 concurrent video clients ([102]

shows that LTE networks can support up to 8 concurrent video clients) can be served by

each Intel Core i7-3632QM CPU, thus requiring 1 such CPU to support 8 concurrent

users (at a list price of under $400 per base station).
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A.3 Computational Complexity Analysis and Compari-
son – Video Download Techniques

In order to compare the computational complexity of the three video download

techniques, namely, HTTP-PD, EERA and MoDS (considered in Section 2.4.5), we

will first analyze computational complexity of each technique in terms of the mode

parameters and dimension of the configuration space. As listed in Table 2.4, the mode

parameters are channel coding rate, CR, modulation schemes Mod, MIMO encoding

rate MIMOEnc−Rate, number of transmit antennas NT , number of receive antennas NR,

MIMO decoding algorithms MIMODec and channel decoding algorithms ChDec. We

denote the number of choices available for coding rate, modulation, MIMO encod-

ing rate, MIMO decoding algorithms and channel decoding algorithms as NCR, NMod ,

NMIMO−Enc, NMIMO−Dec and NCh−Dec respectively. For HTTP-PD, the entire search

space is traversed for the mode that satisfies the maximum download rate, DRMax and ap-

plication BER, BE RApp with computational complexity O(NCR · NMod · NMIMO−Enc ·

NT · NR · NMIMO−Dec · NCh−Dec). As elaborated in Section 2.3.3, the computational

complexity of MoDS is O(NMIMO−Enc · NMIMO−Dec · NCh−Dec · IM · IS3
Dim) where IM

denotes the number of iterations required by the optimization tool ”nlopt” to deter-

mine the mode that imposes minimum load on battery while satisfying the down-

load rate and application BER constraints and ISDim denotes the dimension of inner

space (consisting of CR, Mod, NT and NR). It should be noted that the dimension

of inner space is constant and is equal to 4 and from our experiments; we have ob-

served that the typical value of IM is 5. The computational complexity of EERA is

O(log(NCR ·NMod) ·NMIMO−Enc ·NR ·NMIMO−Dec ·NCh−Dec) [20]. From the above dis-

cussion, we can see that the computational complexities for the three techniques have

certain similar and also different factors; hence it will be difficult to completely compare
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the complexities. However, when we consider typical values for the parameters as fol-

lows, NCR = 16 [103], NMod = 4, NMIMO−Enc = 14 [103], NT = 8, NR = 8, NMIMODec = 2,

NChDec = 2, ISDim = 4 and IM = 5 and compare the complexities for MoDS and EERA,

we can see that number of steps required for MoDS is 17920 and that for EERA is 1863.

We can therefore conclude that MoDS has higher computational complexity than EERA.

A.4 Computational Complexity Analysis and Compari-
son – ABR Streaming Techniques

In order to compare the computational complexity of the ABR streaming tech-

niques, namely, ABR-DASH, BaSe-AMy, BR-MoDS and B2R-MoDS, we will first

analyze computational complexity of bit rate selection followed by that of download

rate and mode selection. Bit rate adaptation by all the techniques considered involves

selecting a bit rate version based on certain conditions from a list of ‘n’ bit rates (n=7 and

is the same as the cardinality of the set VBR−ValidSet in our experiments). The reference

ABR-DASH technique proposed in [21] uses a multiplicative factor (determined using

certain heuristics) to scale down/up the bit rate of the current segment and determine

the approximate bit rate for the next segment. BR-MoDS and B2R-MoDS select the

approximate bit rate for the next segment depending on the constraints specified in (2.23)

and (2.32) and require IBR (number of iterations required by the solver to determine

the approximate bit rate, Section 2.5.3) steps. Note that from our experiments, we have

observed that IBR has a maximum value of 2. Given the approximate bit rate determined

by ABR-DASH, BR-MoDS and B2R-MoDS, selection of valid bit rate from VBR−ValidSet

(Table 2.6) requires logn steps resulting in computational complexity of O(logn) for

ABR-DASH and O(IBR+ logn) for BR-MoDS and B2R-MoDS. BaSe-AMy on the other

hand has constant complexity (O(1)) as it uses certain logic to select either the bit rate

positioned above or below the bit rate of the current segment in VBR−ValidSet and does
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not require to traverse the entire VBR−ValidSet . We can therefore conclude that for bit rate

selection, BaSe-AMy has lowest computational complexity followed by ABR-DASH

and then BR-MoDS and B2R-MoDS. Subsequent to bit rate selection, download rate

and mode is selected for every download epoch constituting the segment and we will

next discuss the computational complexity of mode selection for all the techniques. For

ABR-DASH and BaSe-AMy, the entire search space is traversed to find the mode that

satisfies the maximum download rate, DRMax and application BER, BE RApp with com-

putational complexity O(NCR ·NMod ·NMIMO−Enc ·NT ·NR ·NMIMO−Dec ·NCh−Dec). As

BR-MoDS and B2R-MoDS uses MoDS for mode selection, the computational complex-

ity is O(NMIMO−Enc ·NMIMO−Dec ·NCh−Dec · IM · IS3
Dim) (Section 2.3.3). From the above

discussion, we can infer that the BR-MoDS and B2R-MoDS have lower computational

complexity for mode selection than ABR-DASH and BaSe-AMy as BR-MoDS and B2R-

MoDS do not have to traverse the entire configuration space. Also, given that n typically

has values in the range 7-10 [104] - [105] and the mode selection parameters have values

in the range 2-16 (Appendix A.2), we can infer that the computational complexity of

mode selection (for instance, the number of steps computed for BR-MoDS using the

parameters values in Appendix A.2 is 17920) is significantly higher than that of bit rate

selection (for instance BR-MoDS requires 2 · log7 = 2.98steps). Therefore the ascending

order of the techniques in terms of their computational complexities is BR-MoDS and

B2R-MoDS, BaSe-AMy and ABR-DASH.



Appendix B

Dynamic Cell Reconfiguration Frame-
work

B.1 Proof of Theorem 3.3

Proof. The problem given in (3.14) is a convex optimization because its feasible set

F (Bon, p) is convex (from Lemma 3.2) and the objective function is also convex (due

to the summation of the linear function of ρi and convex function Li(ρi)). Hence, it is

sufficient to show that,

〈∇((1− qi)Piρi + Li(ρi)),ρ− ρ∗〉 ≥ 0 (B.1)

for all ρ ∈ F (Bon, p). Let pi(x) and p∗i (x) be the associated probability vectors

for ρ and ρ∗, respectively. Then, (3.17) generates the deterministic cell coverage, and

thus the association rule is given by

π∗(x) = 1
{
i = argmax

j∈Bon

c j(x)
(1− q j)Pj + L‘

j(ρ∗j

}
(B.2)

and then the inner product (B.1) can be computed as

147
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∑
i∈Bon
((1− qi)Pi + L∼i (ρ∗i ))(ρi − ρ∗i ) =∑

i∈Bon
(1− qi)Pi + L∼i (ρ∗i )

∫
L

γ(x)
ci(x)
(πi(x)− π∗(x))dx

=

∫
L
γ(x)

∑
i∈Bon

(1− qi)Pi + L∼i (ρ∗i )
ci(x)

(πi(x)− π∗i (x))dx (B.3)

It is clear that the inequality

∑
i∈Bon

(1− qi)Pi + L∼i (ρ∗i )
ci(x)

πi(x) ≥
∑

i∈Bon

(1− qi)Pi + L∼i (ρ∗i )
ci(x)

π∗(x)

holds from B.2. Substituting this inequality into (B.3) yields the condition in (B.1), which

completes the proof. �

B.2 Proof of Theorem 3.5

Lemma B.1.
∑

i∈Bon ρi is monotonically decreasing as Bon increases.
∑

i∈Bon ρi ≥∑
i∈Bon∪{b} ρi holds

Proof. When we additionally turn on a BS b ∈ B \Bon, some of users will change their

association to the new BS b. Let Lb denote the coverage area of BS b. For those users

x ∈ Lb, according to (3.23), each users will have higher transmission rate ci(x) (or better

SINR) than before turning on BS b. If not, it should have not switched to the BS b. On

the other hand, for the other users x ∈ L \Lb, the association will remain unchanged.

Thus, each user will have the same signal strength gi(x) · pi and at the same time will see

the same amount of interference based on Assumption III.1. Consequently, there is no

change in their transmission rate ci(x)
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Recall the definition of BS utilization P in subsection 3.2.2 that
∑

i∈Bon ρi is equal

to the summation of λ(x)/ci(x) for all users x ∈ L. As discussed above, ci(x) is higher

than (for users x ∈ Lb) or equal to (for users x ∈ L \Lb) before turning on BS b. Note

that λ(x) is given and fixed. Hence,
∑

i∈Bon ρi ≥
∑

i∈B∪{b} ρi holds, which completes the

proof. �

Lemma B.2.
∑

i∈Bon ρi is supermodular as a function of Bon

Proof. According to the equivalent definitions of sub/ supermodular set function (see

Proposition 2.1 in [68]), it is sufficient to show that the following inequality holds for all

b ∈ B \ (Bon∪ {k}).

db(Bon) ≥ db(Bon∪ {k}) (B.4)

where db(A) =
∑

i∈A ρi −
∑

i∈A∪{b} ρi that is a reduction in the summation of BS

utilization by adding BS b.

Let us consider two different sets of active BSs Bon and Bon ∪ {k} and then

investigate how the user association will change in each case when an additional BS b is

turned on. For the two different sets, the coverage area of BS b is denoted by Lb(Bon) and

Lb(Bon∪ {k}), respectively. Since the association is based on the best the transmission

rate, the former area is a superset of the latter, i.e., Lb(Bon) ⊇ Lb(Bon∪ {k}).

Note that there are two types of area: (i) Common area Lcomm = Lb(Bon) ∩

Lb(Bon∩{k}), where the users switched to BS b for both starting sets, and (ii) difference

area Ldi f f = Lb(Bon) \Lb(Bon∪ {k}), where the users could not be switched to BS b

because BS k provides better SINR than BS b.

We rewrite the summation from the perspective of users.
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db(Bon)− db(Bon∪ {k}) (B.5)

=

∫
x∈L

[ γ(x)
max
i∈Bon

ci(x)
− γ(x)

max
i∈Bon∪{k}

ci(x)
]
dx

−
∫

x∈L

[ γ(x)
max

i∈Bon∪{k}
ci(x)

− γ(x)
max

i∈Bon∪{k,b}
ci(x)

]
dx (B.6)

It is enough to consider the two areas Lcomm and Ldi f f since γ(x)/ci(x) is

unchanged in the other area. Thus, the difference can be computed as follows.

=

∫
x∈Lcomm

[
γ(x)

max
i∈Bon

ci(x)
− γ(x)

cb(x)

]
dx

+

∫
x∈Ldi f f

[
γ(x)

max
i∈Bon

ci(x)
− γ(x)

cb(x)

]
dx

−
∫

x∈Lcomm

[
γ(x)

max
i∈Bon∪{k}

ci(x)
− γ(x)

cb(x)

]
dx (B.7)∫

x∈Lcomm

[
γ(x)

max
i∈Bon

ci(x)
− γ(x)

max
i∈Bon∪{k}

ci(x)

]
dx

+

∫
x∈Ldi f f

γ(x)
max
i∈Bon

ci(x)
− γ(x)

cb(x)

]
dx (B.8)

The first integral is non-negative because max
i∈Bon

ci(x) ≤ max
i∈Bon∪{k}

ci(x) holds. The

second integral is also non-negative because max
i∈Bon

ci(x) ≤ cb(x) holds for all users x ∈

Ldi f f . This completes the proof. �



Bibliography

[1] Ericsson mobility report. Technical report, Ericsson, June 2017.

[2] UN Global Population. http://www.un.org/en/development/desa/news/population/
2015-report.html. Accessed: 2017-09-09.

[3] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok. The global footprint of mo-
bile communications: The ecological and economic perspective. IEEE Commun.
Mag., 49(8):55–62, August 2011.

[4] Qingqing Wu, Geoffrey Ye Li, Wen Chen, Derrick Wing Kwan Ng, and Robert
Schober. An overview of sustainable green 5g networks. CoRR, abs/1609.09773,
2016.

[5] Nokia Solutions and Networks. Flatten network energy consumption. Technical
report, 2013.

[6] Battery Tech. http://www.pocket-lint.com/news/130380-future-batteries-coming-
soon-charge-in-seconds-last-months-and-power-over-the-air.html. Accessed:
2017-09-09.

[7] R. Mizouni, M. A. Serhani, A. Benharref, and O. Al-Abassi. Towards battery-
aware self-adaptive mobile applications. In 2012 IEEE Ninth International Con-
ference on Services Computing, pages 439–445, June 2012.

[8] Ericsson consumer lab report. https://www.ericsson.com/en/networked-society/
trends-and-insights/consumerlab/consumer-insights/reports/tv-and-media-2016.
Accessed: 2017-09-09.

[9] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe Migliore.
Profiling power consumption on mobile devices. 2013.

[10] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li. A survey of energy-
efficient wireless communications. IEEE Communications Surveys Tutorials,

151

http://www.un.org/en/development/desa/news/population/2015-report.html
http://www.un.org/en/development/desa/news/population/2015-report.html
http://www.pocket-lint.com/news/130380-future-batteries- coming-soon-charge-in-seconds-last-months-and-power-over-the-air.html
http://www.pocket-lint.com/news/130380-future-batteries- coming-soon-charge-in-seconds-last-months-and-power-over-the-air.html
https://www.ericsson.com/en/networked-society/trends-and-insights/consumerlab/consumer-insights/reports/tv-and-media-2016
https://www.ericsson.com/en/networked-society/trends-and-insights/consumerlab/consumer-insights/reports/tv-and-media-2016


152

15(1):167–178, First 2013.

[11] J. Joung, C. K. Ho, and S. Sun. Power amplifier switching (pas) for energy efficient
systems. IEEE Wireless Communications Letters, 2(1):14–17, February 2013.

[12] A. S. Y. Poon. An energy-efficient reconfigurable baseband processor for wireless
communications. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 15(3):319–327, March 2007.

[13] Y. Xiao, R. S. Kalyanaraman, and A. Yla-Jaaski. Energy consumption of mobile
youtube: Quantitative measurement and analysis. In 2008 The Second Inter-
national Conference on Next Generation Mobile Applications, Services, and
Technologies, pages 61–69, Sept 2008.

[14] K. J. Ma, R. Bartos, S. Bhatia, and R. Nair. Mobile video delivery with http. IEEE
Communications Magazine, 49(4):166–175, April 2011.

[15] A. Begen, T. Akgul, and M. Baugher. Watching video over the web: Part 1:
Streaming protocols. IEEE Internet Computing, 15(2):54–63, March 2011.

[16] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE
Journal on Selected Areas in Communications, 23(2):201–220, Feb 2005.

[17] H. S. Kim and B. Daneshrad. Energy-constrained link adaptation for MIMO
OFDM wireless communication systems. IEEE Transactions on Wireless Commu-
nications, 9(9):2820–2832, September 2010.

[18] R. Hormis, E. Linzer, and X. Wang. Adaptive mode- and diversity-control for
video transmission on mimo wireless channels. IEEE Transactions on Signal
Processing, 57(9):3624–3637, Sept 2009.

[19] H. Kim, C. B. Chae, G. de Veciana, and R. W. Heath. A cross-layer approach
to energy efficiency for adaptive mimo systems exploiting spare capacity. IEEE
Transactions on Wireless Communications, 8(8):4264–4275, August 2009.

[20] Chi-Yu Li, Chunyi Peng, Songwu Lu, and Xinbing Wang. Energy-based rate adap-
tation for 802.11n. In Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking, Mobicom ’12, pages 341–352, 2012.

[21] G. Tian and Y. Liu. Towards agile and smooth video adaptation in http adaptive
streaming. IEEE/ACM Transactions on Networking, 24(4):2386–2399, Aug 2016.



153

[22] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate adaptation for adap-
tive http streaming. In Proceedings of the Second Annual ACM Conference on
Multimedia Systems, MMSys ’11, pages 169–174, 2011.

[23] Apple http live streaming. https://datatracker.ietf.org/doc/draft-pantos-http-live-
streaming. Accessed: 2017-09-09.

[24] Microsoft smooth streaming. http://www.iis.net/downloads/microsoft/smooth-
streaming. Accessed: 2017-09-09.

[25] F. Molazem Tabrizi, J. Peters, and M. Hefeeda. Dynamic control of receiver buffers
in mobile video streaming systems. IEEE Transactions on Mobile Computing,
12(5):995–1008, May 2013.

[26] M. Tamai, N. Shibata, K. Yasumoto, and M. Ito. An energy-aware video streaming
system for portable computing devices. In 7th International Conference on Mobile
Data Management (MDM’06), pages 58–58, May 2006.

[27] M. Kennedy, H. Venkataraman, and G. M. Muntean. Battery and stream-aware
adaptive multimedia delivery for wireless devices. In IEEE Local Computer
Network Conference, pages 843–846, Oct 2010.

[28] D. N. Rakhmatov and S. B. K. Vrudhula. An analytical high-level battery model
for use in energy management of portable electronic systems. In IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM
Digest of Technical Papers (Cat. No.01CH37281), pages 488–493, Nov 2001.

[29] Min Chen and G. A. Rincon-Mora. Accurate electrical battery model capable of
predicting runtime and i-v performance. IEEE Transactions on Energy Conversion,
21(2):504–511, June 2006.

[30] Oleg I. Atayero, Aderemi A.and Sheluhin and Yury A. Ivanov. Modeling, Sim-
ulation and Analysis of Video Streaming Errors in Wireless Wideband Access
Networks, pages 15–28. Springer Netherlands, Dordrecht, 2013.

[31] O Sheluhin, A. A. Atayero, Y. A. Ivanov, and J. O Iruemi. Effect of video streaming
space–time characteristics on quality of transmission over wireless telecommunica-
tion networks. In IEEE/ACM International Conference on Computer Aided Design.
ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281), Oct
2011.

[32] S. Shah and V. Sinha. Iterative decoding vs. viterbi decoding: A comparison. In

https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming
https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming


154

National Conference on Communications, Feb 2002.

[33] He Wu, Sidharth Nabar, and Radha Poovendran. An energy framework for
the network simulator 3 (ns-3). In Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques, SIMUTools ’11, pages 222–230,
2011.

[34] Shuguang Cui, A. J. Goldsmith, and A. Bahai. Energy-constrained modulation
optimization. IEEE Transactions on Wireless Communications, 4(5):2349–2360,
Sept 2005.

[35] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge. Silicon com-
plexity for maximum likelihood mimo detection using spherical decoding. IEEE
Journal of Solid-State Circuits, 39(9):1544–1552, Sept 2004.

[36] Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and Chen-Yi Lee. Design of
a power-reduction viterbi decoder for wlan applications. IEEE Transactions on
Circuits and Systems I: Regular Papers, 52(6):1148–1156, June 2005.

[37] ETSI. Physical channels and modulation. Technical Report v.13.3.0, TS 136 211,
2016.

[38] L. Wang, A. Ukhanova, and E. Belyaev. Power consumption analysis of con-
stant bit rate data transmission over 3g mobile wireless networks. In 2011 11th
International Conference on ITS Telecommunications, pages 217–223, Aug 2011.

[39] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pages 21–21, 2010.

[40] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz. Quantifi-
cation of youtube qoe via crowdsourcing. In 2011 IEEE International Symposium
on Multimedia, pages 494–499, Dec 2011.

[41] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, and J.M. Lopez-
Soler. Analysis and modelling of youtube traffic. Transactions on Emerging
Telecommunications Technologies, 23(4), 2012.

[42] The U.S. digital video benchmark—2012 review. Technical report, 2012.

[43] Xin Li, Mian Dong, Zhan Ma, and Felix C.A. Fernandes. Greentube: Power
optimization for mobile videostreaming via dynamic cache management. In



155

Proceedings of the 20th ACM International Conference on Multimedia, MM ’12,
pages 279–288, 2012.

[44] 3GPP. Transparent end-to-end packet switched streaming service (pss);progressive
download and dynamic adaptive streaming over http. Technical Report 26, 3GPP
TS 26.247, 2011, 2011.

[45] G. Cermak, M. Pinson, and S. Wolf. The relationship among video quality, screen
resolution, and bit rate. IEEE Transactions on Broadcasting, 57(2):258–262, June
2011.

[46] R. Q. Hu and Y. Qian. An energy efficient and spectrum efficient wireless hetero-
geneous network framework for 5g systems. IEEE Communications Magazine,
52(5):94–101, May 2014.

[47] Y. Yi K. Son, H. Kim and B. Krishnamachari. Toward energy-efficient operation of
base stations in cellular wireless networks. In Green Communications: Theoretical
Fundamentals, Algorithms, and Applications. CRC Press, Taylor Francis, Oxford,
2012.

[48] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu. Toward dynamic energy-efficient
operation of cellular network infrastructure. IEEE Communications Magazine,
49(6):56–61, June 2011.

[49] J. Gong, J. S. Thompson, S. Zhou, and Z. Niu. Base station sleeping and resource
allocation in renewable energy powered cellular networks. IEEE Transactions on
Communications, 62(11):3801–3813, Nov 2014.

[50] F. Richter, A. J. Fehske, and G. P. Fettweis. Energy efficiency aspects of base
station deployment strategies for cellular networks. In 2009 IEEE 70th Vehicular
Technology Conference Fall, pages 1–5, Sept 2009.

[51] Q. Zhang H. Chen and F. Zhao. Energy-efficient base station sleep scheduling in
relay-assisted cellular networks. In KSII Transactions on Internet Information
Systems, pages 1074–1086, Mar 2015.

[52] K. Son, S. Nagaraj, M. Sarkar, and S. Dey. Qos-aware dynamic cell reconfig-
uration for energy conservation in cellular networks. In 2013 IEEE Wireless
Communications and Networking Conference (WCNC), pages 2022–2027, April
2013.

[53] Marco Ajmone Marsan and Michela Meo. Energy efficient management of two



156

cellular access networks. SIGMETRICS Perform. Eval. Rev., 37(4):69–73, March
2010.

[54] E. Oh, K. Son, and B. Krishnamachari. Dynamic base station switching-on/off
strategies for green cellular networks. IEEE Transactions on Wireless Communi-
cations, 12(5):2126–2136, May 2013.

[55] S. Luo, R. Zhang, and T. J. Lim. Optimal power and range adaptation for green
broadcasting. IEEE Transactions on Wireless Communications, 12(9):4592–4603,
September 2013.

[56] K. Son and B. Krishnamachari. Speedbalance: Speed-scaling-aware optimal load
balancing for green cellular networks. In 2012 Proceedings IEEE INFOCOM,
pages 2816–2820, March 2012.

[57] A. J. Fehske, F. Richter, and G. P. Fettweis. Energy efficiency improvements
through micro sites in cellular mobile radio networks. In 2009 IEEE Globecom
Workshops, pages 1–5, Nov 2009.

[58] O. Arnold, F. Richter, G. Fettweis, and O. Blume. Power consumption modeling
of different base station types in heterogeneous cellular networks. In 2010 Future
Network Mobile Summit, pages 1–8, June 2010.

[59] Kyuho Son, Eunsung Oh, and Bhaskar Krishnamachari. Energy-efficient design
of heterogeneous cellular networks from deployment to operation. Computer
Networks, 78:95 – 106, 2015. Special Issue: Green Communications.

[60] Mung Chiang, Prashanth Hande, Tian Lan, and Chee Wei Tan. Power control in
wireless cellular networks. Found. Trends Netw., 2(4), April 2008.

[61] A. Sampath, P. Sarath Kumar, and J. M. Holtzman. Power control and resource
management for a multimedia cdma wireless system. In Proceedings of 6th
International Symposium on Personal, Indoor and Mobile Radio Communications,
volume 1, pages 21–25 vol.1, Sep 1995.

[62] Zhisheng Niu, Yiqun Wu, Jie Gong, and Zexi Yang. Cell zooming for cost-efficient
green cellular networks. Comm. Mag., 48(11):74–79, November 2010.

[63] J. Kwak, K. Son, Y. Yi, and S. Chong. Greening effect of spatio-temporal power
sharing policies in cellular networks with energy constraints. IEEE Transactions
on Wireless Communications, 11(12):4405–4415, December 2012.



157

[64] M. Ajmone Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo. Optimal energy
savings in cellular access networks. In 2009 IEEE International Conference on
Communications Workshops, pages 1–5, June 2009.

[65] K. Son, H. Kim, Y. Yi, and B. Krishnamachari. Base station operation and user
association mechanisms for energy-delay tradeoffs in green cellular networks.
IEEE Journal on Selected Areas in Communications, 29(8):1525–1536, September
2011.

[66] H. Kim, G. de Veciana, X. Yang, and M. Venkatachalam. Distributed alpha
-optimal user association and cell load balancing in wireless networks. IEEE/ACM
Transactions on Networking, 20(1):177–190, Feb 2012.

[67] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[68] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions—i. Mathematical Programming,
14(1):265–294, Dec 1978.

[69] A note on maximizing a submodular set function subject to a knapsack constraint.
Operations Research Letters, 32(1):41 – 43, 2004.

[70] B. Radunovic and J. Y. Le Boudec. Optimal power control, scheduling, and
routing in uwb networks. IEEE Journal on Selected Areas in Communications,
22(7):1252–1270, Sept 2004.

[71] Lei Sun, Hui Tian, and Ping Zhang. Decision-making models for group vertical
handover in vehicular communications. Telecommun. Syst., 50(4):257–266, August
2012.

[72] 3GPP. Further advancements for e-utra physical layer aspects. Technical Report 36,
3GPP TR 36.814, 2010, 2010.

[73] K. Son, S. Lee, Y. Yi, and S. Chong. Practical dynamic interference management
in multi-carrier multi-cell wireless networks: A reference user based approach. In
8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks, pages 186–195, May 2010.

[74] Ericsson mobility report on the pulse of networked society. Technical report,
Ericsson, November 2016.



158

[75] Josip Lorincz, Tonko Garma, and Goran Petrovic. Measurements and modelling
of base station power consumption under real traffic loads. Sensors, 12(4):4281,
2012.

[76] R. Guruprasad, K. Son, and S. Dey. Power-efficient base station operation through
user QoS-aware adaptive RF chain switching technique. In IEEE ICC, pages
244–250, June 2015.

[77] D. W. K. Ng, E. S. Lo, and R. Schober. Energy-efficient resource allocation in
ofdma systems with large numbers of base station antennas. IEEE Transactions
on Wireless Communications, 11(9):3292–3304, September 2012.

[78] Qingqing Wu, Meixia Tao, and Wen Chen. Joint tx/rx energy-efficient scheduling
in multi-radio networks: A divide-and-conque approach. CoRR, abs/1502.00052,
2015.

[79] J. Wu, S. Zhou, and Z. Niu. Traffic-aware base station sleeping control and
power matching for energy-delay tradeoffs in green cellular networks. IEEE Trans.
Wireless Commun., 12(8):4196–4209, August 2013.

[80] K. Son, S. Nagaraj, M. Sarkar, and S. Dey. Qos-aware dynamic cell reconfiguration
for energy conservation in cellular networks. In IEEE WCNC, pages 2022–2027,
April 2013.

[81] K. Adachi, J. Joung, S. Sun, and P. H. Tan. Adaptive coordinated napping
(CoNap) for energy saving in wireless networks. IEEE Trans. Wireless Commun,
12(11):5656–5667, November 2013.

[82] Q. Zhang, C. Yang, H. Haas, and J. S. Thompson. Energy efficient downlink
cooperative transmission with bs and antenna switching off. IEEE Trans. Wireless
Commun., 13(9):5183–5195, September 2014.

[83] S. Han, C. Yang, and A. F. Molisch. Spectrum and energy efficient cooperative
base station doze. IEEE J. Selected Areas Commun., 32(2):285–296, February
2014.

[84] D. W. K. Ng, Y. Wu, and R. Schober. Power efficient resource allocation for
full-duplex radio distributed antenna networks. IEEE Transactions on Wireless
Communications, 15(4):2896–2911, April 2016.

[85] Xueqing Huang and Nirwan Ansari. Joint spectrum and power allocation for multi-
node cooperative wireless systems. IEEE Transactions on Mobile Computing,



159

14(10):2034–2044, October 2015.

[86] Nokia. 3gpp setup of comp cooperation areas, r1-090725. Technical report,
February 2009.

[87] Thorsten Biermann. Dealing with Backhaul Network Limitations in Coordinated
Multi-Point Deployments. PhD thesis, Dept. Electrical Engineering, Paderborn
Univ., Paderborn, Germany, 2012.

[88] A. Chatzipapas, S. Alouf, and V. Mancuso. On the minimization of power con-
sumption in base stations using on/off power amplifiers. In IEEE Online Conf. on
Green Commun., pages 18–23, September 2011.

[89] H. Holtkamp, G. Auer, S. Bazzi, and H. Haas. Minimizing base station power
consumption. IEEE J. on Selected Areas Commun., 32(2):297–306, February
2014.

[90] ETSI. Physical channels and modulation. Technical Report v.13.3.0, TS 136 211,
2016.

[91] Bing Han, Jimmy Leblet, and Gwendal Simon. Hard multidimensional multiple
choice knapsack problems, an empirical study. Computers & operations research,
37(1):172–181, 2010.

[92] ETSI. LTE E-UTRA physical layer procedures. Technical Report v.13.0.0, TS 36
213, 2016.

[93] Y. Zaki, T. Weerawardane, C. Gorg, and A. Timm-Giel. Multi-QoS-aware fair
scheduling for LTE. In IEEE VTC Spring, pages 1–5, May 2011.

[94] Mohammad T Kawser, Nafiz Imtiaz Bin Hamid, Md Nayeemul Hasan, M Shah
Alam, and M Musfiqur Rahman. Downlink snr to cqi mapping for different
multiple antenna techniques in LTE. IJIEE, 2(5):757, 2012.

[95] A. Papadogiannis, E. Hardouin, and D. Gesbert. A framework for decentralising
multi-cell cooperative processing on the downlink. In IEEE Globecom Workshops,
pages 1–5, November 2008.

[96] Y. Gao, Q. Wang, and G. Liu. The access network and protocol design for CoMP
technique in LTE-Advanced System. In WiCOM, pages 1–4, September 2010.

[97] K. Alexandris, N. Nikaein, R. Knopp, and C. Bonnet. Analyzing x2 handover in



160

LTE/LTE-A. In WiOpt, pages 1–7, May 2016.

[98] K. Son, S. Lee, Y. Yi, and S. Chong. REFIM: A practical interference management
in heterogeneous wireless access networks. IEEE J. Selected Areas Commun.,
29(6):1260–1272, June 2011.

[99] 3GPP. Spatial channel model for multi input multi output (MIMO) simulations.
Technical Report 25, 3GPP TR 25.996 2011-03, 2011.

[100] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu. Toward dynamic energy-efficient
operation of cellular network infrastructure. IEEE Commun. Mag., 49(6):56–61,
June 2011.

[101] L. Wang, A. Ukhanova, and E. Belyaev. Power consumption analysis of con-
stant bit rate data transmission over 3g mobile wireless networks. In 2011 11th
International Conference on ITS Telecommunications, pages 217–223, Aug 2011.

[102] Opportunity and impact of video on lte networks. Technical report, Motorola,
June 2009.

[103] I. D. Erotokritov. Space-time block coding for multiple transmit antennas over
time selective fading channels, 2006.

[104] Apple http live streaming. http://goo.gl/fJIwC. Accessed: 2017-09-09.

[105] M. Gra, C. Timmerer, H. Hellwagner, W. Cherif, D. Negru, and S. Bat-
tista,combined bitrate suggestions for multi-rate streaming of industry solutions.
http://alicante.itec.aau.at/am1.html. Accessed: 2017-09-09.

http://goo.gl/fJIwC
http://alicante.itec.aau.at/am1.html

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Power/Energy Needs of Mobile Devices and Cellular Networks
	Contributions and Overview
	Battery Aware Video Download Techniques
	Dynamic Cell Reconfiguration Framework
	QoS Aware RF Chain Switching


	Battery Aware Video Download techniques using Rate Adaptation and Base Station Reconfiguration
	Introduction
	Related Work

	Battery Aware Video Delivery - Overview
	Overall Approach
	Download Rate Adaptation and Base Station Reconfiguration
	Video Bit Rate Adaptation

	Battery Efficient Download Rate and Mode Selection
	Download Rate and Model Selection Problem Definition
	Modeling of Objective and Constraint Functions
	Mode and Download Rate Selection (MoDS) Algorithm

	Simulation Framework and Results
	Power and Battery Models
	BER Model
	User Experience Model
	Simulation Framework
	Experimental Results

	Bit Rate, Download Rate, and Mode Selection
	Maximization of Battery Lifetime with Acceptable Quality
	Bit Rate, Mode, and Download Rate Selection (BR-MoDS) Algorithm
	Joint Maximization of Battery Lifetime and Video Quality
	Battery Aware Video Streaming - Framework
	Video Experience Longevity (VEL) Metric

	Simulation Framework and Results
	Simulation Framework
	Experimental Results

	Summary
	Acknowledgements

	Dynamic Cell Reconfiguration Framework for Energy Conservation in Cellular Networks
	Introduction
	Related Work

	System Model
	Network and Channel Model
	Traffic Demand and BS Utilization
	Power Consumption Model
	General Problem Statement

	Dynamic Cell Reconfiguration Framework
	User Association
	Active BS Selection
	Transmit Power Budget Adaptation
	Integrated Approach: Dynamic Cell Reconfiguration (DCR)
	Discussion on the implementation of DCR

	Simulation Results
	Load Balancing via Penalty-based User Association
	Power Savings Under Static Traffic Load Scenario
	DCR Framework Under Dynamic Traffic Load Scenario
	Effect of the Portion of Static Power Consumption TEXT

	Summary
	Acknowledgements

	User QoS-aware Adaptive RF Chain Switching for Power Efficient Cooperative Base Stations
	Introduction
	Related Work

	System Model and Problem Formulation
	Network, Channel and User QoS Models
	BS Power Consumption Model
	Problem Formulation

	Co-RFSnooze Algorithm
	Multiple Multidimensional Knapsack Problem
	BS Resource Adaptation - Heuristics and Algorithm
	UA Adaptation - Heuristics
	Co-RFSnooze Algorithm
	Complexity Analysis
	Co-RFSnooze Framework

	Simulation Framework and Results
	Simulation Framework
	Simulation Results

	Summary
	Acknowledgements

	Conclusion
	Battery Aware Video Download Techniques
	Battery Efficient Video Download - Framework
	Scalability Analysis for MoDS under Multi - Client Scenario
	Computational Complexity Analysis and Comparison – Video Download Techniques
	Computational Complexity Analysis and Comparison – ABR Streaming Techniques

	Dynamic Cell Reconfiguration Framework
	Proof of Theorem 3.3
	Proof of Theorem 3.5

	Bibliography



