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ABSTRACT OF THE DISSERTATION

Green Cellular Networks through QoS Aware Dynamic Base Station - Mobile Device
Reconfiguration

by

Ranjini B. Guruprasad

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2017

Professor Sujit Dey, Chair

Anytime-anywhere connectivity offered by cellular networks and mobile devices
with multimedia capabilities have revolutionized important sectors of the society such
as health care, education, finance, e-commerce and entertainment. To cater to the
resulting explosive growth in mobile data traffic in an economically and environmentally
sustainable manner, it is critical to efficiently manage the spectral and energy/power
consumption of cellular networks. In this thesis, we identify the key challenges faced by
the cellular networks in efficiently managing energy/power consumption and propose

solutions to alleviate the same.
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Rapid advances in processing capabilities of mobile devices and relatively slower
advances in battery capacity capabilities has created a huge gap between power required
for processing advanced multimedia applications and the available battery capacity. Data
and compute intensive mobile video is the leading multimedia application and leads to
quick drain in the mobile battery level. In the first part of the thesis, we address the
above challenge by developing battery aware mobile video download techniques that
increase the battery available time while maintaining the required user experience levels.
Extensive experiments have demonstrated the feasibility and efficacy of our approach.

Base stations are the dominant contributors to power consumption of cellular
networks. To ensure that quality of service requirements is always met, base stations are
over provisioned to handle maximum load and are always switched on. This is leads to
wasteful expenditure of electricity when load is less than maximum. To address this, we
develop techniques that adapt the coverage area of base stations depending on load to
reduce base station power consumption. Simulation experiments have demonstrated the
significant power savings is possible using the proposed techniques.

Multi-input, multi-output technologies which require multiple Radio Frequency
(RF) chains are being adopted to increase the data rates and coverage capabilities of
base stations. This implies that the already dominant contribution of RF chains to power
consumption of base stations will significantly increase. We conclude the thesis by
developing techniques that switch off RF chains depending on load to reduce base station
power consumption. Simulation experiments demonstrate the power savings possible

using proposed techniques compared to existing techniques.
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Chapter 1

Introduction

In the past three decades, cellular networks and mobile devices have spurred
a tremendous growth in connectivity and information availability across the world.
The connectivity and information availability has played a critical role in successful
digitization of sectors like banking, finance, education, health care, transportation and
hospitality. Further, innovations using advanced technologies such as augmented reality,
virtual reality, Internet of things (IoT) have led to real-time and interactive gaming,
e-commerce, social connectivity platforms that have become an integral part of urban
lifestyle. This is evident by the estimates that the total number of mobile subscriptions
is expected to increase from 7.5 billion in 2016 to 9 billion by 2022 with a compound
annual growth rate of 3% [1] and exceeds the estimated global population [2]. The
growth in connectivity is accompanied by significant increase in worldwide total mobile
data volume from 8.8EB to an estimated 71 EB (with a CAGR of 42%) with mobile
video contributing to more than 75% of the mobile data [1]. To cater to the explosive
growth in connectivity and mobile data volume in an economically and environmentally
sustainable manner, it is crucial to efficiently manage the limited spectral and energy
resources available. In this thesis, we will address the challenges in efficiently managing
the energy resources of mobile devices and power consumption of cellular networks and

propose solutions to alleviate the same.



1.1 Power/Energy Needs of Mobile Devices and Cellu-
lar Networks

To cater to the explosive growth in mobile data subscriptions and traffic, it is
estimated that the total number of base stations (BSs) in cellular networks all over the
world will grow to 11.2 million by 2020 [3], a 47% increase compared to the number
of BSs deployed in 2014. Further, deployment of massive number of antennas at BSs is
seen as a promising paradigm to increase data rates [4]. This is expected to increase the
electricity consumption and thereby, decrease the energy efficiency of cellular networks
[4]. Specifically, the electricity consumption of BSs which constitutes 80% of electricity
consumption of cellular networks is estimated to increase from 84TWh to 109TWh
by 2020 (38% increase since 2014) if measures are not taken to reduce the power
consumption of BSs. The increasing electricity consumption has two effects - (a) the
carbon equivalent emissions is estimated to increase to 235 Mto CO2e by 2020 (a 37%
increase since 2014) [3] and (b) the electricity bill which currently contributes to 10-15%
of the operating expenses in developed markets and about 50% [5] in developing markets.
Hence, it is critical to decrease the power consumption of BSs to enable the cellular
networks operate in an economically and environmentally sustainable manner.

The explosive growth in data traffic in mainly due to data intensive multimedia
applications such as web browsing, mobile video, gaming, augmented reality and virtual
reality. The mobile devices are continuously evolving with increasingly complex process-
ing architectures to support such data and compute intensive multimedia applications.
To power the data and compute intensive applications, mobile device manufacturers are
equipping the mobile devices with increasingly higher energy density batteries. However,
there is a limit to increasing the battery energy density as it proportional to the thickness

of the battery which in turn leads to bulky handsets. This has resulted in a gap between



the power required and available battery energy density. The energy density gap has to
be minimized to realize the promise of many advanced techniques such as augmented

reality, virtual reality, Internet of Things and applications of the same.

1.2 Contributions and Overview

In this dissertation, we focus on several approaches to reduce the power/energy
consumption of cellular networks and mobile devices and demonstrate the efficacy of the
proposed approaches through experiments. The first key contribution of the dissertation
addresses the energy density gap of mobile device battery by focusing on reducing
the battery consumption due mobile video download. The second key contribution
addresses the reduction of power consumption of the BSs at the system level enabling
economically and environmentally sustainable operation of cellular networks. The third
key contribution focuses on the power consumption of the BSs at the component level,
thus enabling a fine grained control on the power consumption of the BSs. We first
provide an overview of our contributions, followed by individual chapters that give
detailed treatment to each of the contributions, including the related literature and how
our work relates to and differentiates from the existing literature. Our contributions are

summarized below.

1.2.1 Battery Aware Video Download Techniques

Broadly, there has been a two pronged approach to address the gap in power
required and available battery energy density of mobile devices. One approach is to
increase the battery density by using materials and packing architectures that lend
themselves to increased energy density with a small form factor [6]. The other approach
has been to develop and implement battery aware application processing techniques on

the mobile device such as [7]. The battery aware techniques proposed in this thesis



belong to the second category that addresses the battery energy density gap. In particular,
we focus on developing battery aware video download techniques because mobile video
contributes to over 75% of mobile data traffic [1].

Downloading and viewing mobile video on mobile devices has been on a steady
increase from 5% in 2010 to 20% in 2016 [8]. However, there still exists barriers to
wider adoption to mobile video download and viewing such as limited battery capacity
and connectivity . While advanced 4G and 5G networks are being designed to improve
the connectivity, there is still a void in techniques that address the challenge of limited
battery capacity. Commercially available video download and streaming clients such as
YouTube, Apple’s HTTP Live streaming (HLS) and Microsoft’s Smooth Streaming focus
on optimizing the user experience but does not take in to account the effect of video
download on battery consumption.

As power consumption due to video download over the cellular wireless connec-
tion exceeds that due to video playback [9], we focus on selecting the optimal physical
layer parameters involved in video download to minimize the battery consumption dur-
ing video download. We achieve this via reconfiguration of base station physical layer
components such as number of radio frequency (RF) chains, multi-input multi-output
(MIMO) transmission scheme, modulation order, coding rate, and download rate and
video bit rate adaptation to minimize the battery consumption of the mobile device. The
base station reconfiguration and rate adaptation is carried out in a manner that there is
no degradation in user experience. We discuss and evaluate our framework for video
download as well as streaming scenarios. Through experiments using real world channel
conditions and power consumption models based on actual implemented hardware, we
demonstrate that the proposed battery aware techniques result in significant savings in
battery lifetime and no degradation in user experience compared to non-battery aware

video download and streaming techniques.



1.2.2 Dynamic Cell Reconfiguration Framework

The last decade has seen significant research and commercial deployment of en-
ergy efficient BSs, including energy efficient power amplifiers and baseband processing
[10], [11], [12]. Energy efficient wireless protocols and network techniques have been
also proposed that take advantage of variable traffic loads and QoS requirements. The
second key contribution of this thesis proposes energy efficient cellular network tech-
niques that minimize the power consumption of BSs at the system level while satisfying
the QoS of associated users.

The various components of the BS can be grouped in to two categories. The
first category of components contribute the static power consumption of the BS and
is a constant irrespective of the load. The second category contribute to the dynamic
power consumption of the BS and is dependent on the BS load. Current base stations
are designed to handle worst case load. Further, in order to ensure that there is no loss
in coverage, BSs are always maintained on. This implies that when the load is low
or there is no load, there is unnecessary expenditure of energy due to the static power
consumption.

Depending on the load, BSs can be switched off by transferring users to neigh-
boring active (on) BSs resulting in significant static power savings. Further, the transmit
power budget can be adapted depending on the load. The second key contribution of the
thesis is an integrated dynamic cell reconfiguration framework that dynamically switches
on/off base stations and adapts the user association and transmit power budget of BSs
depending on the load. We discuss and evaluate the framework under static and dynamic
BS load conditions. Using measurements from actual BS power consumption and real
world BS traffic traces, we demonstrate that the proposed dynamic cell reconfiguration

techniques result in higher power savings compared to techniques that always maintain



BSs on.

1.2.3 QoS Aware RF Chain Switching

The dynamic cell reconfiguration techniques result in significant savings in BS
power consumption as both static and dynamic components of BS power consumption is
reduced to zero. However, switching off BS has the major limitation of creating coverage
holes which can result in degradation of user Quality of Service (QoS). Further, BS
switch off requires tens of minutes and hence termed as long time scale techniques. Such
long time scale techniques cannot exploit the fine time scale variations of BS load.

Taking cognizance of the above limitations of the system level BS power mini-
mization techniques and identifying further opportunity to minimize power at finer time
scales, the third key contribution of this thesis are techniques that increase the power
efficiency of BSs at the component level at times scales of seconds to minutes. The power
amplifier in the radio frequency (RF) chain is the dominant contributor to the BS power
consumption. The final contribution of this thesis is the RF chain switching technique
which minimizes the power consumption of cluster of BSs in a manner that the QoS
requirements of all the cluster users and BS utilization bounds of individual BSs in the
cluster are satisfied.

The adaptive RF chain switching technique achieves the above by jointly adapting
the number of RF chains, time slots and frequency blocks of individual BSs and user
association of cluster users to minimize the number of RF chains in the cluster and
thereby, power consumption of the cluster of BSs. The short time scale technique allows
finer control on BS power consumption and does not result in coverage holes. Using
measurements from actual BS power consumption and real world BS traffic traces, we
demonstrate that the proposed adaptive RF chain switching techniques result in higher

power savings compared to techniques that always maintain RF chains on.



Chapter 2

Battery Aware Video Download tech-
niques using Rate Adaptation and Base
Station Reconfiguration

2.1 Introduction

By 2022, mobile video is expected to contribute to about more than 75% of the
total mobile data traffic [1], making it the leading multimedia application on mobile
devices. As mobile video is a data and compute intensive application, it places significant
demands on processing and battery capabilities of mobile devices. While the process-
ing capabilities of mobile devices continue to increase significantly, the incremental
improvements in battery technologies will lead to frustratingly lower battery lifetime.
Consequently, it is critical to develop techniques that can lower mobile video battery con-
sumption. It has been shown that RF and baseband components used for video download
are major contributors to battery consumption in addition to decoder and display used
for playback [13]. With the adoption of MIMO technologies that use multiple antennas
with power consuming baseband processing, power due to radio frequency (RF) and
baseband components will dominate the power consumption for high bit rate mobile
video applications. Hence, this chapter focuses on reducing battery demand imposed by

MIMO RF and baseband components while downloading video.



We first consider the widely adopted Progressive Download video delivery ap-
proach, which attempts to download video at a rate higher than the video bit rate and
hence the video playback rate, thereby buffering video at the mobile device while it is
simultaneously being played back [14]. The higher download rate and hence buffering is
done to avoid buffer underflow (stalling) in case of bad network conditions during the
video session, but there is no consideration about the effect of video download on the
mobile device battery. In contrast, we propose a new battery efficient video download
approach that utilizes elasticity of the video buffer to dynamically adapt the video down-
load rate, sometimes even stopping video download, enabling reconfiguration or idling
of the base station RF and baseband components in a manner that reduces or eliminates
battery demand of the mobile device RF and baseband components. While adapting the
download rate, the proposed approach also tries to avoid buffer underflow, and since the
video bit rate is never adapted, user experience is not compromised while enhancing
battery lifetime.

To further enhance battery lifetime, we next consider adapting the video bit rate in
addition to adapting the video download rate as the former can further reduce the amount
of data to be downloaded and hence the battery load. However, adapting the video bit
rate will compromise video quality, leading to a possible tradeo-off between enhanced
longevity of video experience and video quality. Adaptive Bit Rate (ABR) streaming
techniques [15] are gaining popularity, but they primarily address minimizing stalling
of video under challenging network conditions. In contrast, we propose battery aware
adaptive bit rate streaming techniques which adapt video bit rate, download rate and
MIMO RF and baseband configurations, depending on the battery and buffer levels, and
network load and channel conditions experienced during video streaming to maximize
the longevity of video experience while ensuring a desired level of quality of video

experience. We extend the conventional notion of video user experience to include the



longevity of video watching (which can be limited by battery lifetime) by introducing
the Video Experience Longevity (VEL) metric. We use the VEL metric to quantify and
compare the performance of the proposed battery aware ABR techniques with other ABR
techniques. As dynamic streaming over HTTP (DASH) is a widely accepted standard for

ABR streaming, we will henceforth refer to ABR as DASH.

2.1.1 Related Work

In this section, we will briefly describe past work related to base station and
mobile device MIMO reconfiguration, video bit rate adaptation and battery efficient
video delivery. As we will discuss, either these techniques do not address maximizing
battery lifetime, or the ones that address do not consider using rate adaptation and
transceiver reconfiguration whose effectiveness we will demonstrate in this chapter.

Base station reconfiguration techniques have been developed for cognitive radios
for dynamic spectrum management [16], which is not the focus of the work presented
in this chapter. The focus in [17] was on choosing optimal MIMO parameter set to
minimize overall link energy while satisfying bit error rate and throughput. While the
above technique does not consider video delivery, [18] proposed to use Space Time
Multiplexing (STM) and Space Time Block Coding (STBC) to reduce video distortion
due to wireless video delivery; however, the latter does not address energy consumption.
In [19], rate adaptation and corresponding switching between Single Input Multi Output
(SIMO) and MIMO is proposed to save uplink RF transmission energy when mobile
device is transmitting files. However, [19] does not aim to reduce downlink RF and
baseband processing battery consumption when mobile device is downloading video,
which is the objective of this work. The energy efficient rate adaptation (EERA) technique
proposed in [20] achieves energy efficiency at the client by selecting RF and MIMO

baseband components at the access point and client Wireless Network Interface Card
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(WNIC) in a manner that reduces per bit energy while maintaining the minimum required
goodput determined by the video bit rate and channel condition. However the energy
efficient rate adaptation technique proposed in [20] does not utilize the elasticity of
the video buffer to dynamically adapt the video download rate, including stopping
transmission, to avoid stalling and reduce battery load, which constitutes an important
part of our proposed approach. Also, mode selection in [20] requires base station to
allocate maximum number of antennas to each user which places high demand on base
station resources whereas our techniques have no such requirement.

Recently, there has been significant research done on developing video bit rate
adaptation techniques [21], [22], including several commercial HTTP based Adaptive
Bit Rate video streaming solutions like Apple HTTP Live Streaming [23], Microsoft
Smooth Streaming [24] and Adobe Open Source Media Framework (OSMF)'. Unlike
the above adaptive HTTP streaming clients and techniques which to the best of our
knowledge (based on available public information at the time of writing this manuscript,
including the Adobe OSMF source files) focus on ensuring user experience in a non-
battery aware manner, our proposed techniques focus on maximizing battery lifetime
while also ensuring desired level of video experience.

Techniques have also been developed to address energy and battery life of mobile
devices during video delivery. In [25], a base station scheduling technique is proposed
which utilizes the Variable Bit Rate (VBR) encoding of multiple broadcast streams in a
manner that does not under/overflow the client buffers and allows transmission of video
streams in bursts, the latter allowing switching off the client WNIC in between bursts to
reduce energy consumption on mobile devices. However, the above approach cannot be
applied to on-demand unicast video delivery (like YouTube) which is the target of the

work detailed in this chapter. Authors in [26] propose battery aware video streaming by

”Open source media framework,” [Online]. Available: http://www.osmf.org
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changing video encoding parameters such as bit rate, frames/second in real time using
a proxy server and switching off the client WNIC after bulk download. Our proposed
approach does not require computationally intensive real time transcoding and utilizes
different bit rate representations of a given video available on the server for video bit
rate adaptation. Battery and stream aware adaptive multimedia (BaSe-AMy) streaming
techniques proposed in [27] adapt video bit rate depending on battery level, packet loss
and remaining video stream duration. However, these techniques do not adapt download
rate and transceiver configuration which increases the battery savings achieved by our
proposed techniques.

To the best of our knowledge, this is the first work which proposes to (a) jointly
adapt video download rate and MIMO transceiver components to maximize battery
lifetime and ensure user experience during video download and (b) additionally adapt
video bit rate to maximize video experience longevity while maintaining desired level
of video experience during adaptive bit rate streaming; (c) quantify the performance
of adaptive bit rate streaming techniques in terms of both video viewing time and
user experience. In Section 2.2, we provide an overview of our battery aware video
delivery approach. In Section 2.3, we formulate the download rate and transceiver
configuration selection as an optimization problem and provide a solution. In Section 2.4,
we present the simulation framework developed for video download and experimental
results obtained using different video download techniques. In Section 2.5, we formulate
bit rate, download rate and transceiver configuration selection as an optimization problem
and offer a solution which guarantees minimum desired video quality, and subsequently
extend the solution with a heuristic to achieve higher video quality when possible. We
conclude the section with formulation of the “Video Experience Longevity” metric. In
Section 2.6, we present the simulation framework developed for DASH streaming and

experimental results obtained using different DASH based streaming techniques. We
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conclude in Section 2.7.

2.2 Battery Aware Video Delivery - Overview

In this section, we will describe our overall approach towards battery aware video
delivery. We will then discuss in detail different ways video bit rate and download rate
can be selected and base station and mobile device can be reconfigured, to reduce battery

load and the effect on user experience.

2.2.1 Opverall Approach

Our overall approach towards video bit rate and download rate adaptation and
corresponding transceiver reconfiguration for battery aware video delivery consists of two
main objectives namely, maximization of battery lifetime and ensuring user experience.

Our approach towards prolonging battery life [28] is based on the following
factors: (1) minimizing battery load (current drawn from battery), and duration of load,
and (2) idling the battery allowing it to recover charge, and increasing the duration of
idling. Our proposed approach affects the above two factors in the following three ways.
(a) Varying video download rate: A required video download rate is determined by the
video bit rate (rate at which video is encoded by the encoder and decoded by the decoder),
amount of data buffered at the mobile, and channel conditions. The required download
rate is achieved by the base station with suitable configuration of its RF and baseband
components, with corresponding mobile device configurations, the latter affecting battery
load. Hence, for a given video bit rate, by utilizing the elasticity that the video buffer
offers, the download rate can be varied and the base station reconfigured in a way that
reduces the battery load imposed by the mobile device RF and baseband processing. (b)
Stopping download: If for certain periods of time, video download and hence related

processing on mobile device can be stopped, the battery load can be reduced to just
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playback load which is much lower than load due to downloading. Due to significant
difference in consecutive loads (download + playback followed by playback only load),
effect on battery is similar to that of idling thereby enabling battery to recover charge [28],
[29] [We show this later in Section 2.4.5]. We term this as “download idle”. Note that
extensive analysis of charge recovery due to idling is presented in [28] using the analytical
Rakhmatov Vrudhula (RV) rechargeable lithium ion battery model and authors in [29]
have shown the ability of battery to recover charge due to idling using measurements
on a commercially available lithium ion battery. (c) Varying video bit rate: As bit rate
determines the amount of data that needs to be downloaded, bit rate can be varied in a
manner that minimizes amount of data to be downloaded. This offers the opportunity
to either further reduce the duration of download and hence introduce download idle
periods, or choose lower download rates and less power intensive modes reducing the
load imposed on the battery.

While maximizing battery lifetime, we need to also ensure user experience.
Consequently, our approach needs to ensure that (1) the video download rate variation,
including periods of idling, is done in a way that does not lead to buffer overflow or
underflow (stalling of video playback), so that user experience is not affected; (2) the
base station reconfiguration is done taking into account the wireless channel condition
(estimated using Signal to Noise Ratio - SNR) so that a desired bit error rate (BER)
(hence PSNR [30], [31], and video quality) is satisfied; and (3) when additional video bit
rate adaptation is done, a minimum video quality is satisfied in a way that increases the

overall Video Experience Longevity.
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Figure 2.1. MIMO transmitter and receiver

Table 2.1. MIMO transmitter parameters

Channel Coding Rate (CR) 1,2/3,1/2,1/3
MIMO Encoding Rate MIMOg,. | STM, STBC
Binary Phase Shift Keying (BPSK),

Modulation Schemes (Mod) Quadrature  Amplitude  Modulation
(QAM) - 4QAM, 16QAM, 64QAM
Number of Antennas (Ny) 1,2,3,4

Table 2.2. MIMO receiver parameters

Number of Antennas (Ng) 1,2,3,4
MIMO Decoding Rate MIMOp,. | Zero Forcing (ZF), K-Best
Channel Decoding (Chpe) Viterbi Decoding, Turbo Decoding

2.2.2 Download Rate Adaptation and Base Station Reconfigura-
tion

In this section, we will first describe RF and baseband processing components of
base station and mobile device, and their effects on power consumed. Subsequently we
will discuss ways download rate can be varied and transceiver be reconfigured to reduce
battery load. Note, we sometimes refer as baseband components both RF antenna chains
and baseband components.

Fig. 2.1 shows a MIMO transmitter and receiver. The transmitter consists of
channel encoder, MIMO encoder, and set of antennas each with an associated modulator.
The receiver consists of antennas, demodulator, MIMO decoder and channel decoder.

Tables 2.1 and 2.2 list some of the possible configuration choices that can be used for
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Figure 2.2. Video download using different rates

MIMO transmitter and receiver. The set of all possible combinations of transmitter and
receiver baseband components constitutes the configuration spaces of base station and
mobile device respectively. Henceforth, we will refer to the combination of transmitter
- receiver antennas, channel encoding rate, MIMO encoding, modulation, MIMO and
channel decoding algorithms as the transceiver mode selected.

Among all the MIMO receiver baseband components, the antenna RF chain is
the most power intensive, and the battery load can increase significantly with increase in
number of antennas. We consider two MIMO decoding algorithms, Zero Forcing (ZF)
and K-Best, both of whose power consumption depends on the number of antennas and
modulation scheme used; however, ZF is more power efficient but provides less BER
performance than K-Best. Note the power consumed by demodulation is included in
MIMO decoding, as demodulation is performed as part of MIMO decoding. Finally,
power consumed by channel decoding depends on the algorithm used. Viterbi decoding
consumes less power than Turbo decoding, but also has a lower BER performance than
Turbo [32]. The battery load of a receiver configuration can be estimated by adding the
power consumptions of the individual receiver components as elaborated in Section 2.3.2.

Fig. 2.2 shows typical video download scenarios from the video server through the
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Table 2.3. Examples of modes with different download rates

Mode A | CR:1/2, STM, BPSK,2X2, ZF, Viterbi
Mode B | CR:1/2, STBC, 4QAM, 2X1, ZF, Viterbi
CR:1/2, STM, 4QAM, 4X4, K-Best,
Viterbi

Mode D | CR; 1/2, STM, 4QAM, 2X2, ZF, Viterbi

Mode C

base station to the mobile device over the wireless network. The pipes are representative
of the wireless network. The height and shape of the contents of the pipe depict the
amount and flow of video data. The red portion on the scroll bar indicates the portion
of downloaded video that has been viewed and the blue portion indicates the buffered
portion. Fig. 2.2a depicts the scenario wherein the video is downloaded as fast as possible
(as is the case with HTTP Progressive Download) depicted by the near fullness of the
pipe and buffer. This may require the highest download rate possible under the given
channel condition and BER value. Multiple transceiver modes may satisfy the required
download rate under a given channel condition (SNR) and BER value. Some of these
modes may actually increase the power consumption in the base station, but will reduce
the mobile battery load. For example, the two modes A and B listed in Table 2.3 result
in the same download rate. For the given SNR, mode B increases the power consumed
by the base station as it uses 4QAM modulation scheme which consumes more power
than BPSK used in mode A. However, mode B will reduce battery load, as only one
receiver antenna is used as opposed to two antennas used in mode A. Note that the
reduction in battery load due to reduction in receiver antennas far outweighs any increase
in battery load due to higher order demodulation. There may also exist certain modes that
reduce mobile battery load without increasing power consumption at the base station. For
example, if channel condition improves, for the same download rate, it may be possible
to reconfigure receiver to use ZF decoding instead of K-Best if BER requirement is

met. Hence even when high download rate is required, it may be possible to choose a
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Figure 2.3. Adaptive Bit Rate streaming with different rates

transceiver configuration which reduces battery load.

The opportunities for finding battery efficient modes can be increased if the
required download rate can be reduced. As shown in Fig. 2.2b, using the elasticity
of the buffer, it is possible to reduce the download rate (depicted by dips in the pipe)
which results in lesser buffered data (smaller blue portion), as long as there is no buffer
underflow. For instance, consider modes C and D in Table 2.3. If the download rate
needed is reduced by half, given the same channel condition and BER requirement, mode
D can be used instead of mode C. Reconfiguring to mode D will significantly reduce
the battery load, as it uses less number of antennas and less power intensive ZF MIMO
decoding.

When buffer levels permit, download rate can be reduced to zero. Download
idling reduces the battery load to just the playback load, thereby enabling battery to
recover charge. Note that the idling will deplete the buffer (shown in Fig. 2.2¢ as gaps in
the pipe and smallest blue portion on the scroll bar), and hence can be done if no buffer

underflow can be ensured.
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2.2.3 Video Bit Rate Adaptation

In this section, we will elaborate on how video bit rate adaptation affects battery
lifetime and video quality. We pictorially represent adaptive bit rate video streaming in
Fig. 2.3. As in Fig. 2.2, the pipes are representation of wireless network; height and
shape of contents indicate the amount and flow of video data across time; to conserve
space, we have omitted the server, base station and mobile device. Cases 1, 2 and 3 in
Fig. 2.3 illustrate the effect of using bit rates, and with associated Mean Opinion Score
(MOS) values BR;, BR, and BR3, while Figs. 2.3(a) and 2.3(b) show the effect of using
single download rate, and a set of download rates , on the amount and flow of data in the
pipe. Note that the download rates in the set are listed in descending order.

From Fig. 2.3(a), we make the following observations. (1) When highest down-
load rate DR; and bit rate BR, are used, as in case 1, the battery load is highest because
the download duration #; is longer than #,and #3. Using lower bit rate (cases 2 and 3) re-
duces the amount of data to be downloaded, and hence duration of download (3 < t, < 1)
and battery load. Case 1 of Fig. 2.3(b) illustrates the proposed video download rate (and
mode) adaptation techniques which use a combination of high and low download rates
including download idle from the set DR. As elaborated in the previous subsection the
combination of higher, lower download rates and idling offers the potential to reduce
battery load. Additionally, using lower bit rates as in cases 2 and 3 of Fig. 2.3(b) reduces
battery load and the reduced download duration (g < #5 < t4) may allow choosing a more
battery efficient combination of download rates (and modes), for instance, introducing
more periods of idling. Therefore, we can infer that bit rate adaptation potentially furthers
the battery savings due to download rate and mode adaptation but at the expense of video

quality.
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2.3 Battery Efficient Download Rate and Mode Selec-
tion

In this section, we will assume fixed video bit rate, and formulate the optimization
problem of adapting video download rate and corresponding transceiver configuration
to maximize battery life. We then present an algorithm, MoDS that solves the problem

using an optimization solver.

2.3.1 Download Rate and Model Selection Problem Definition

The objective of download rate and mode selection is maximization of battery
lifetime during video download subject to download rate and application BER constraints.
Video download session consists of several download epochs requiring download rate
and mode selection in every download epoch. As battery lifetime is a cumulative result
of several such selections and their effect on battery level, we split the optimization
problem in to sub-problems and solve it in each download epoch in order to make it
tractable. Each sub-problem defined in (2.1) below consists of selecting an optimal mode
M for the download epoch under consideration such that battery level Bat; ., (function
of mode parameters listed in Tables 2.1 and 2.2) is maximized while download rate DR
constraint upper bounded by DRM4* and lower bounded by DRY" and BER constraint
upper bounded by BE Ry, are satisfied. The sub-problems though seem independent,
are connected with each other as the download rate selected in current epoch changes the

buffer level which in turn affects the download rate selection in the subsequent epoch.

max Baty,(M) 2.1)
Subject to: DRM™ < DR(M) < DRM4~ (2.2)

BER(SNRM) < BERy, (2.3)
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The DRM4* and DRMi" yalues, which will be defined later in this section, ensure that
buffer does not overflow or underflow respectively. The application BER value BE Ry,
ensures that video quality (PSNR) is maintained at desired level. Note that it has been
shown in [30] and [31] that BER below 3- 107 results in PSNR levels greater than 37 dB
(corresponding to MOS value of 5 [30]) thereby ensuring high video quality for videos
with different space—time characteristics. Hence, choosing BE Ry, value lesser than
3107 will ensure that PSNR of the received videos will be greater than 37 dB.

It should be noted that (2.1) may not have a feasible solution always. When
no mode satisfies BERy,,, then download idle (DR(M) = 0) is chosen. This may be
at the expense of buffer underflow if DRY" is greater than zero. In case the DRM™"
constraint is violated, mode which gives highest download rate (lower than DRMim)
and satisfies BERyp, is chosen leading to buffer underflow. On the other hand when
DRM* s violated, download idle is chosen to avoid buffer overflow. Having defined
the download rate and mode selection problem, we will next discuss the objective and

constraint functions.

2.3.2 Modeling of Objective and Constraint Functions

Each download epoch involves video download and simultaneous playback. The
RV lithium ion battery model [28], [33] used to estimate the battery level given in (2.4) is
characterized by two parameters, namely, which is the battery capacity and S , a function
of ion diffusion coefficient, is the measure of battery nonlinearity. The second term
in (2.4) represents the ratio of total charge consumed in time 7" or equivalently in E
download epochs due to variable load / and the total charge present in the fully charged
battery. The charge consumed in each download epoch i is the sum of the linear term
(first term in summation over E) and the summation of nonlinear terms (second term in

summation over £) with summation index m. The summation of nonlinear terms is a
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function of S and accounts for the nonlinearity in diffusion and hence charge recovery
when [; < I;_;. Note that our proposed techniques are not battery model specific and can

be used with any model that gives an estimate of battery level in response to battery load.

E m=10 _p2,.2(T_+. @20 2(T—+.
1 e ﬁ m (T tl)_e ﬂ m (T Z‘1—1)

Batpey=1-= > Ii[(t—ti1)+2 ) o ] Q4

@ m=1 ﬁm

i=1

Maximization of Baty,, is equivalent to minimizing numerator of second term
in (2.4) which represents the battery charge consumed due to battery load / in time 7.
Further, as charge consumed is estimated in each download epoch of duration Dp,,ijoq
, which we assume is a constant, maximization of Baty,, 1s equivalent to minimizing
battery load 7 in each download epoch. As each download epoch involves simultaneous

download and playback, [ is given by

I = Ipownioad + IPlayback (25)

Ipiayback 1s the battery load due to video decoder and display used for playback.
While the playback load may vary depending on the resolution of the video, for download
epochs of the same video session, it is fair to treat it as constant. Hence maximization
of Batp,, is equivalent to minimizing battery load Ip,ynioqaqs imposed by the mode M
during download subject to the download rate and BER constraints in (2.6). Ipywnioaq 15

given by (2.9).

min IDownload(M) (26)
Subject to: DRM™ < DR(M) < DRM4~ (2.7)

BER(SNRM) < BER4,, (2.8)
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P Download

Ipownioad = Va 2.9)
at

where V3, 1s the battery voltage; we assume that it is constant during discharge. Down-
load power Ppoywnioaa given by (2.10) consists of four components, namely power due to
RF chain (Prr-chain), MIMO decoding (Pyrp0-pec), channel decoding (Pcj—pec) and

baseband processing (Paseband)-

PDownload = PRF—Chain + PMIMO—Dec + PCh—Dec + PBaseband (210)

PrF—chain depends on Ng and system bandwidth BW. It is determined using

(2.11) obtained from relations in [17][34].

PrE—Chain = (1.8 1078BW +0.0061)Ng +0.1 @2.11)

Pyiivo-pec depends on MIMO encoding rate MIMOg,., number of antennas,
algorithm chosen (ZF or K-Best) and modulation scheme used MIMOg,. given by
(2.12) and (2.13), is dependent on the type of MIMO encoding (STM or STBC) used.
Pyrivo-pec 1s estimated using (2.14)—(2.17), by calculating number of search steps [17]
required to decode a symbol and determining number of parallel search engines [35]
required to execute the steps. We consider only Viterbi channel decoding algorithm in

this work; Pcj—pec estimate is obtained from [36]. Ppysepana 18 given by (2.18) [17].

MIMOEguc—stm = N (2.12)

NR,(%_;) > Nr
MIMOEuc-stBc = (2.13)

(Ne— DYz, (M) < Ny
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P e ket =10 IMIMOgpe—stm(0.5N7 + 1.5N7) + 3. 1N} Mod*>

+0.8NrMod>?> + 1.5Nr Mod] (2.14)

PytM o peezi = 10 IMIMOgyc—st(0.3N7 + Nr) +0.13N7 +0.06N;3]  (2.15)

STBC -4 2
PMIMO—Dec—K—Best =10 [31NTNR +4'1NRMIM0EnC—STBC+

NrMod(1.5+0.8Mod*> +6.2Mod' > MIMOgne—srac)] (2.16)

PyTBC o vezr =107 [1.ONT NR +0.25NRkMIM O pe—sTpc+

MIMO?.,  rpc(0.5+23Ng +0.5MIMOpye_srpc)] (217

Pgaseband = 1.62- 10 NxkBW (2.18)

The download rate DR given by (2.19) forms the first constraint function and is

calculated using the specifications in 3GPP LTE standard [37].

DR = RB-SUBC~TS-OFDngm-Mod~CR-MIM0EnC-T_1

Frame

(2.19)
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where RB represents the number of resource blocks associated with BW. SUB¢
is the number of subcarriers used in each resource block. TS is the number of slots used
to transmit O F DMy, number of Orthogonal Frequency Division Multiplexing (OFDM)
symbols. Trrqme 1 the duration of 3GPP LTE frame.

The upper bound on download rate us given by (2.20). It is calculated using video

buffer size Bu fs;;., amount of data buffered Bu f4,,;; and duration of download epoch

DPeriod .

DRMax — BufSize - Bquvail (220)

D Period

Playback time available PBT is calculated using Bu f4,,;; and video bit rate Vpg
as shown in (2.21).

pBT = BJavail 2.21)

VBR
The lower bound on DR, DRY" given by (2.22) is calculated using PBT, Vg and
minimum buffer value Bu fy;;,, chosen to avoid stalling. It should be noted that the lower
bound for Bu fyin 1S Dperioq in which case the PBT will at least be Dp,,;,q. However,
this might stall video when channel conditions do not permit minimum download rate
DRMi" hence Bu Jfumin greater than Dp,,;,q Will increase PBT and allow idling while

avoiding stalling.

Mi 0,PBT > BufMi,,
DRMin = (2.22)

V; PBT |-PBT+B in
VBR + BR(L APeriod-'— ufM )aPBT < BufMll’l

The second constraint in terms BE Ry, of ensures that mode selected does not
lead to unacceptable BER and hence adversely impact video quality. We use a BER-

SNR look up table (LUT) (Section 2.4.1) in lieu of the BER constraint function in
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the optimization framework. The BER-SNR LUT lists the BER values for different
transceiver configurations under different channel (SNR) conditions.

From (2.4) to (2.22), it is evident that the objective and constraint functions are
nonlinear making mode and download rate selection a nonlinear constrained optimization

(minimization) problem. In the next subsection we will present a solution to this problem.

2.3.3 Mode and Download Rate Selection (MoDS) Algorithm

In this section, we will describe in detail the MoDS algorithm developed to search
the transceiver configuration space (Tables 2.1 and 2.2) for the mode that minimizes the
battery load / subject to download rate and BER constraints.

As power calculation functions for MIMO decoding given by (2.14) to (2.17) are
different for different MIMO encoding schemes and MIMO decoding algorithms, mode
selection in each download epoch needs to be carried out separately for each MIMO
encoding scheme and decoding algorithm. This implies that MIM Og,. and MIMOp,.
parameters cannot be part of the transceiver mode search space. On the same line of
reasoning, Chp.. cannot be used as an optimization parameter. Hence, we split the
transceiver configuration space CS in to two spaces as shown in Fig. 2.4: the outer
space OS consisting of parameters MIMOgyc, MIMOp,. and Chp,., and inner space
IS consisting of parameters CR, Mod, Ny and Ng. The BER-SNR LUT used instead
of BER constraint function requires the BER constraint to be evaluated for each mode
outside the optimization framework. Having made the above two modifications to the
problem stated in (2.6), the basic working principle of MoDS algorithm is pictorially
shown in Fig. 2.4. For a given point in outer space OS;, MoDS searches the inner
space for the mode (/S;,0S;) that minimizes battery load and satisfies download rate.
Subsequently the BER constraint is evaluated as shown in Fig. 2.4. This process is

repeated till the entire OS is explored resulting in battery efficient mode that satisfies the
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O8={(MIMO¢,, MIM Oy, Chyc)}

Figure 2.4. Splitting of configuration space and optimization problem

constraints in (2.6).

The outer space OS, the inner space IS, upper bound and lower bound LB
representing the maximum and minimum values possible for the elements of inner space,
and set of valid inner space points 78V/“ form the inputs to the MoDS algorithm shown
in Fig. 2.5. Given an outer space point, the nonlinear optimization solver, ‘nlopt’? is used
to determine the mode that minimizes the battery load I and satisfies the download rate
constraints. It should be noted that when DRM" is zero, download idling (DR(M) = 0)
is chosen as this minimizes the battery load I. If the mode does not belong to 15V it
is rounded off to the nearest valid mode by adding such that the resulting mode does not
violate the download constraint. The BER value of mode is obtained from the BER-SNR
LUT. As pictorially shown, if the BER value of mode v lies to the left of BER,,,, then
the mode is added to the set Feasibley,q. as the battery efficient mode for the chosen
point OS; of outer configuration space. When BER value lies to the right of BERy),
the inner space is constrained to /S by lowering and increasing upper and lower bounds
respectively; thereby eliminating modes that do not meet the BER requirement. The
upper bound is shifted to lower points by first gradually reducing CR and then Mod to
lower values. Lowering CR and M od values constricts the configuration space to modes
with lower CR, M od and BER values, thereby increasing the chances of finding mode

that satisfies the BER requirement. If BER requirement is not met even at the lowest

>The NLopt nonlinear-optimization package,” [Online]. Available: http://  ab-
initio.mit.edu/wiki/index.php/NLopt
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value of CR and M od, in the final iteration, the lower bound is shifted to higher points by
gradually increasing the number of antennas Ny, and Ng. As increasing Ny and Ny values
will lead to selection of power intensive modes, it is done in the final iteration. The mode
selected in the final iteration is the battery efficient mode corresponding to the chosen
OS point OS; and is added to the set of feasible modes Feasibley,q.. This process is
repeated till the outer space is completely explored and then the most battery efficient
mode M is chosen from Feasibleys,q.. The corresponding download rate DR(M) is the
chosen rate for the ensuing download epoch. The computational complexity of MoDS
algorithm which iteratively searches the /S and OS for battery efficient mode is presented
in Appendix A.1.

The overall framework for information and control data exchange between base
station and mobile device, mode selection and reconfiguration during battery efficient
video download is described in detail in the Appendix A.2. As elaborated in Appendix
A.2, additional data transmitted for conveying buffer levels to base station is nominal-a
byte resulting in 1.14 mW of power consumption [38]. On the other hand, receiving in-
formation from the BS about mode selected requires 8 bytes, and results in about 2.22uW
of power consumption when the mode (1X1, BPSK,CR = 1,ZF) is used. In addition
to the power consumed due to information exchange, during mode reconfiguration at
the mobile device, a change in the number of antennas used in the previous mode to
the current mode results in RF component switching power of 100mW per antenna and

switching time of Sus [34].

2.4 Simulation Framework and Results

In this section, we describe the simulation framework developed and experimental
results obtained by using our proposed battery aware video download technique MoDS,

and compare with results obtained using conventional HTTP Progressive Download



29

(HTTP-PD) as well as the EERA technique [20] discussed earlier in Section 2.1.1.

We have developed a very modular and flexible MATLAB based simulation
framework to estimate battery consumption and assess user experience during video
download and playback. The simulation framework consists of power, battery, BER and
user experience models, and allows us to implement and assess different video download
techniques to download video sequences under varying channel conditions and video
quality requirements. We briefly describe the models followed by discussion of the

framework integrated with the models and various video download techniques.

2.4.1 Power and Battery Models

The power model is used to estimate the power consumed in the mobile device
due to video download and playback. As elaborated in Section 2.3.2, download power
consists of four components namely, Prr—chain, PMivMo-Decs Pch-Dec, and and Ppysepana
is modeled using (2.10) to (2.18) which are in turn based on measurements made on
ASIC implementations of the respective blocks. Similarly, playback power is estimated
using measurements from video decoder® and mobile device display [39]. Note that since
the overall device power is the sum of the power consumed by the different components
of download and playback power, the power model can be adapted to a different device
by modeling and substituting for the components that are different. For example, if the
new device uses a different implementation of say, the baseband, then (2.18) will need to
be updated with the appropriate model for the new baseband implementation.

Next we will discuss the RV rechargeable lithium ion battery model [28] which
takes the output of power model to estimate the battery level. As elaborated in Section
2.3.2, (2.4) is used to estimate the battery level given the magnitude and duration of

battery load which is obtained using (2.9). It should be noted that the RV model can be

3[Online]. Available: http://www.privateline.com/imode/MPEG_ 4_ CODEC. pdf



30

Table 2.4. BER model simulation parameters

Channel Model Spatial Channel Model (SCM) - Casell, Vehicular A
Channel Bandwidth SMHz

SNR(dB) 0-40

FFT Size 512 points

Channel coding 1,2/3,1/2,1/3

Modulation Schemes BPSK, 4QAM, 16QAM, 64QAM

Antenna Configuration | STM: 1X1, 2X2, 3X3, 4X4, STBC: 2X1, 2X2
MIMO Decoding Zero Forcing, K-Best

Channel Decoding Viterbi Decoding

used to estimate battery levels of rechargeable lithium ion batteries with different battery
voltage and capacities (battery specific parameters required by the battery model are
obtained by running discharge tests with constant battery load [28], [33]). This implies
that the proposed video download techniques can be evaluated on mobile devices of
varying form factors and battery capacities. Moreover, the proposed techniques are not
battery model specific and can be used with any model that gives the battery level in

response to the battery load.

2.4.2 BER Model

As elaborated in Section 2.3.1, given the channel condition, BER values of
transceiver modes are required by MoDS to ensure that desired BER is maintained. We
have developed a BER model by using MATLAB to simulate different modes under
different channel (SNR) conditions and obtain BER values which are stored in the BER-
SNR look up table (LUT). The simulation parameters used to generate the BER-SNR
LUT are listed in Table 2.4, including the modulation schemes, antenna configurations,
MIMO decoding and channel decoding algorithms. Using the specified channel model,
carrier bandwidth and FFT size, the SNR is varied to obtain the BER values of all the

modes constituting the reconfiguration space.
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2.4.3 User Experience Model

User experience for video download is primarily determined by the video quality
and any stalling in video playback. Video quality of received video is affected by
adaptation of video characteristics such as video resolution, bit rate, and frame rate, and
any packet losses that may occur due to BER during transmission. Since the original
video resolution, bit rate, and frame rate are not changed by HTTP-PD, EERA or MoDS,
the video quality is not affected. Further, by choosing a very low application BER,
BER,, (<3- 1073, [30], [31]) and carrying out mode selection so as to meet the desired
application BER requirements (107 in our experiments), no loss in PSNR and thereby
video quality due to packet loss is ensured. Hence, the only user experience impairment in
the case of video download techniques to be compared here is stalling. Consequently, the
user experience model uses the stalling—MOS relationship developed in [40] to map the
number and duration of stalling events recorded (by the simulation framework developed)

to MOS scores.

2.4.4 Simulation Framework

The simulation framework for video download techniques consists of power,
battery and BER models along with the video download algorithm/technique and sim-
ulation time counter. When video download is initiated, the simulation time counter is
started. The simulation step is equal to the download epoch duration Dp,,;sq, and in
our experiments it is fixed at 2s, though it can be made longer or shorter. In case of
the proposed battery aware video download technique, the MoDS algorithm determines
the battery efficient mode and download rate depending on the current buffer level and
channel condition (SNR) for each simulation step.

For the energy efficient rate adaptation (EERA) technique [20], the EERA algo-

rithm determines the energy efficient mode and the download rate depending on the video
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bit rate and channel condition. While simulating the conventional HTTP-PD technique
implemented using the download mechanism (consisting of initial phase and throttle
phase) in [41], we fix the desired download rate to maximum value determined using
(2.20) in the initial phase and to that which will allow a constant average rate of 1.25
times the video encoding rate when data is sent in bursts of 64KB in the throttle phase.
We select the mode that satisfies the download rate and BER requirement and if no such
mode exists, then the mode that gives highest download rate (lower than the desired rate)
at the given SNR and BER value is chosen. For all the aforementioned techniques, the
BER-SNR LUT (Section 2.4.2) is used to ascertain whether the BER of the selected
mode satisfies the BERy,,. The download power and playback power are calculated
using the power model (Section 2.4.1) and the resulting battery load is input to the
battery model (Section 2.4.1) to estimate the battery level. It should be noted that for
MoDS, the power consumed due to information (1.14mW, see Section 2.3.3) and control
data exchange (2.2uW, see Section 2.3.3) and RF component switching power (100mW
for Sus, see Section 2.3.3) is also added to the download power and playback power
before determining battery load. The simulation framework also records the number and
duration of stalls (buffer underflow/overflow) if any and uses the user experience model
(Section 2.4.3) to quantify the user experience in terms of MOS value.

If the viewer switches to a new video or current video is completely downloaded,
new video download begins. This continues till battery is completely drained. The
simulation counter at this instant gives the battery lifetime for downloading and watching
the chosen video sequence under simulated channel conditions and quality requirements.
It should be noted that while battery lifetime is a cumulative result of multiple video
download and viewing sessions, user experience is assessed for each session.

Table 2.5 lists the simulation parameters used in our experiments. Video charac-

teristics specify the video bit rate used to encode the video and the sequence of videos
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Table 2.5. Video download simulation parameters

Video Bit Rate Vgg =4.12Mb/s

Video Sequence 1: {184s, 226s, 195s, 197s,
226s, 257s, 274s, 231s, 200s, 224s, 298s, 235s,
285s, 198s, 233s, 291s, 298s, 236s, 221s, 205s}
Video Buffer Size Bu fs;,. = 300s

Playback Load (Decoder + Display) Ipjaypack =
34mA

RF Component Switching Power = 100mW

RF Component Switching Time = 5us
Constant SR=1

Variable SR: {0.5, 0.1, 0.97, 0.43, 0.27, 0.93,
0.22,0.19, 0.28, 0.67, 0.6, 0.39, 0.93, 0.82, 0.05,
0.82, 0.38, 0.45, 0.01, 0.28}

Algorithm Parameters Minimum Buffer Level Bu fy;i, = 10s

SNR(dB) High:40, Low:9, Variable: In the range 0-40
BER Application BER BERy,,, = 107°

Video Characteristics

Client Characteristics

User Characteristics

watched. Client characteristics enumerate buffer size, playback current, switching power
and switching time specifications of RF components (antennas). In our experiments, we
also consider the increasingly prevalent “video snacking” user viewing pattern wherein
the user begins to watch a video and then switches to a new video without finishing
the current video. This pattern is modeled by randomly generated values of snacking
ratio (SR) which is the ratio of the duration of the video viewed by the user to the
actual duration of the video. In other words, each snacking ratio value specified in user
characteristics indicates how much of the corresponding video in the video sequence the
user will watch. The value of the algorithm parameter, minimum buffer level Bu fysi,
used to determine DR in (2.22) is also listed in Table 2.5. Table 2.5 lists the channel
conditions based on measurements of cellular network (high, low and variable) and the
application BER requirement that ensures high quality (Section 2.3.1, [30], [31]). Note
the resolution of temporal variation in channel condition is assumed to be comparable to

the simulation step.
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2.4.5 Experimental Results

Next, we present results obtained by simulating video download under different
channel conditions and snacking ratios (and low BER/high video quality requirement)
shown in Table 2.5. Figs. 2.6 and 2.7 show the effects on download rate, battery load,
level, and lifetime while using HTTP Progressive Download (HTTP-PD, shown as red
dot-dash line/red bar) [41], the energy efficient rate adaptation technique (EERA, shown
as blue dashed line/blue bar) [20] and our proposed battery aware download technique
(MoDS, shown as green solid line/green bar).

We will first describe the download characteristics of each of the techniques and
then discuss their impact on battery consumption under different snacking ratio values
and SNR conditions. HTTP-PD delivers video at maximum download rate in the initial
phase followed by constant average download rate in the throttle phase [41] without
attempting to choose battery efficient modes in both phases resulting in maximum battery
drain during video download. However, the above factors contribute to reduced download
duration and extended playback only period after download during which significant
charge recovery takes place as battery load is reduced to only playback load. EERA
reduces battery drain by selecting energy efficient modes; however it downloads at the
video encoding bit rate (4.12 Mb/s) which not only extends the download duration but
also does not fill the buffer and thereby can neither vary download rate nor download
idle to achieve additional battery savings. On the other hand, MoDS selects modes that
maximize battery level and battery load is further reduced by selecting download idling
whenever playback time available is greater than Bu fy;;, [as in (2.22)].

We will first examine the scenario when the mobile device is experiencing good
network condition (high SNR). The download rates selected while downloading and

viewing a single 184s video with SR = 1 (video viewed completely), and the resulting
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battery load, are shown in Figs. 2.6a and 2.6b respectively. The green solid line shows the
effect of MoDS performing download idling. Fig. 2.6¢c shows the effect on battery level,
when the simulation is started with battery level of 0.2. Note that for MoDS, download
idle followed by transmission results in alternate fall and rise in load with corresponding
rise and fall in battery level clearly indicating that battery recovers charge as a result
of idling. HTTP-PD results in maximum battery drain (as explained above) till video
download is complete at r = 125s. Subsequently, it recovers significant charge during
the playback only period lasting about 59s as shown in Fig. 2.6¢c. This explains how
HTTP-PD reduces most of the gains achieved by MoDS through selection of battery
efficient modes and idling. At the end of video duration (184s), we can see that EERA
causes maximum decrease in battery level, followed by HTTP-PD and finally by MoDS,
the latter reducing degradation in battery level significantly compared to EERA but only
marginally compared to HTTP-PD. On the other hand, if we consider SR = 0.5, then
video download and playback will stop at r = 92s indicated by vertical line in Fig. 2.6c.
In this case, HTTP-PD cannot utilize the playback only period to recover charge, hence
it causes maximum battery drain (about 3.6%) followed by EERA and then MoDS.
Figs. 2.7a and 2.7b show the impact on battery lifetime when video sequence
1 is seen with SR = 1 and variable SR respectively and with a starting battery level of
0.2. For SR =1 [Fig. 2.7a], even though HTTP-PD recovers charge at the end of single
video as elaborated above, subsequently, as download progresses, the high download load
depletes the battery more during download than that can be recovered during playback
period. This widens the gap in battery levels between HTTP-PD and MoDS with the
lower download load and idling for MoDS further extending the battery lifetime to result
in overall gain of 16%. For EERA, the maximum battery drain for single video continues
for subsequent videos resulting in 46% lower battery lifetime compared to MoDS. For

variable SR [Fig. 2.7b], HTTP-PD cannot recover charge in the playback only period
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unless SR is comparable to 1. On the other hand, as EERA extends download time and
does not vary download rate or idle, variable SR has negligible effect on its performance.
MoDS which reduces battery load right from the outset, gains about 71.5% and 43% in
battery lifetime over HTTP-PD and EERA respectively. As no stalling is recorded for
either of the techniques with either SR = 1 or SR = 0.5 or variable SR, user experience is
same for HTTP-PD, EERA and MoDS and MOS is 5 [40]. It should be noted that the
MOS values are the average of the MOS values of videos downloaded and viewed.
Next we will discuss the scenario when mobile device experiences bad channel
condition (low SNR). Low SNR condition does not allow filling up the buffer as fast
resulting in shorter playback period for HTTP-PD. On the other hand, the selection of
modes that minimize battery load by MoDS under low SNR conditions results in reduced
download rates (higher download rates require power intensive modes to maintain BER)
that not only extend duration of download but also do not allow idling. As can be seen
in Fig. 2.7¢c, for MoDS, this results in loss of about 6.6% over HTTP-PD when SR = 1.
However, it gains by about 9% in battery lifetime compared to EERA which stalls for
380s (31%) as it attempts to download at video bit rate by selecting battery efficient
modes which under low SNR conditions does not allow buffer to fill and avoid stalling.
HTTP-PD and MoDS do not result in stalling, hence result in the same user experience
(average M OS =5 [40]). On the other hand, EERA on an average (1210s battery lifetime
corresponds to approximately 6 videos of video sequence 1 and 380s stalling corresponds
to about 63s of stalling per video) results in MOS score below 2 [40]. From Fig. 2.7c,
one can see that for variable SR, MoDS gains by 7.7% over HTTP-PD. With no video
stalling, MOS = 5 for both HTTP-PD and MoDS. Though EERA gains by 1.4% over
MoDS, it stalls for 258s (878s, 9 videos, 29s of stalling per video) resulting in MOS
below 2. Under variable SNR conditions, gains under high SNR offset the loss under low

SNR to result in net gain in battery lifetime for MoDS. In this case, the combination of
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power intensive modes under low SNR and battery inefficient modes under high SNR
reduces the gain due to charge recovery for HTTP-PD. It can be seen from Fig. 2.7d
that when SR = 1, a gain of 24% over HTTP-PD and 41% over EERA is possible when
MoDS is used. HTTP-PD and MoDS achieve MOS = 5 with no stalling whereas EERA
results in an average of 6s of stalling per video (1610s, 7 videos, 45s stalling) resulting in
a MOS score of about 2 [40]. For variable SR [Fig. 2.7d], the above gains for MoDS are
extended to 99% and 51% over HTTP-PD and EERA respectively. As with SR = 1, no
stalling results in MOS =5 for both HTTP-PD and MoDS whereas EERA results in an
average of 2.1s stalling per video (1220s, 11 videos, 24s of stalling) resulting in MOS
value of 3.5.

Studies conducted in [42] and [43] show that the average video completion rate is
as low as 15% on smartphones and slightly higher on Tablets and that 80% of YouTube
sessions are less than half of the video duration indicating that video snacking is highly
prevalent among users. With reference to these statistics, variable SR values less than
1 is more realistic than constant SR equal to 1. From the above results, it can be seen
that MoDS significantly increases battery lifetime in the realistic scenario of variable SR.
With respect to SNR, the statistics presented in [33] for signal strength (SNR) experienced
by users shows that variable SNR conditions are most prevalent and also that low SNR
conditions throughout video download are less likely to occur. Again, the above results
show that MoDS performs best under the most prevalent case of variable SNR conditions
while the loss or nominal gains under low SNR conditions are less likely to occur.

In the next section, we will present battery aware techniques for DASH video that
add to the battery savings achieved by download rate and mode reconfiguration while

ensuring minimum desired video quality.
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2.5 Bit Rate, Download Rate, and Mode Selection

As explained in Section 2.2.3, adapting the video bit rate may offer the opportu-
nity for further battery savings beyond download rate and transceiver mode adaptation.
However, bit rate adaptation may also affect video quality. When the mobile device is
battery constrained limiting the longevity of watching video, the overall user experience
may be enhanced by considering bit rate adaptation to elongate the battery lifetime and
hence the viewing experience even with some acceptable degradation in video quality.
In this section, we explore the potential additional benefit of video bit rate adaptation,
along with download rate and mode adaptation, to increase the battery lifetime and
thereby the video viewing experience, while ensuring an acceptable video quality. We
first formulate the optimization problem formally, and then present algorithm developed
namely BR-MoDS which uses optimization solver to solve the optimization problem. We
then extend the formulation to consider battery level while selecting bit rate and present
the B2R-MoDS algorithm that solves the extended optimization problem. We conclude
the section by defining the new Video Experience Longevity metric which quantifies the
performance of DASH based techniques in terms of battery lifetime (longevity of video

experience) and quality of video experience.

2.5.1 Maximization of Battery Lifetime with Acceptable Quality

The objective of video bit rate, download rate and mode selection is maximization
of battery lifetime during adaptive video streaming subject to bit rate, download rate
and user experience constraints. In adaptive bit rate streaming, the video is fragmented
in to equally sized segments, each segment encoded using the set of discrete bit rates
available [15]. A segment download can be viewed as a two tiered process wherein first

the bit rate for the segment and subsequently, download rate and mode is selected. It
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should be noted that the download rate and mode selection may need to be done multiple
times during a segment download; in other words each segment may consist of one or
more ‘download epochs’ during which download rate and mode selection is carried out.
This implies that battery lifetime maximization is achieved at two levels, namely at the
segment level and at the download epoch level and hence, we will adopt a two tiered
approach towards selecting a battery efficient combination of bit rate, download rate and
mode. Selections made at either segment or download epoch level maximize battery
level and the cumulative result of these selections maximizes battery lifetime. Therefore,
henceforth we will refer to maximization of battery level instead of battery lifetime as
the objective of bit rate, download rate and mode selection.

First we will formulate the sub-problem that maximizes battery level by choosing
bit rate for each segment subject to bit rate and user experience constraints. We consider
segments of duration Segrin. encoded using bit rates belonging to set ng Ig’fge . lower
bounded by Vpg_uyin and upper bounded by Vpgr_p14.. The amount of data downloaded
Segpata, for a segment is given by the product of Segr;,. and bit rate chosen Vpp.
Choosing lower bit rates reduces the amount of data downloaded which in turn reduces
battery load and/or duration of load thereby maximizing battery level (as elaborated
in Section 2.2.3). However, as bit rate selection affects video quality VQ, it has to be
done in a manner that the VQ exceeds a certain threshold VQ7j, in order to ensure user
experience. In addition to video quality, maintaining user experience also requires that
Vpr does not exceed the network throughput NWrp,; in order to avoid video stalling.
Hence bit rate selection to maximize battery level can be viewed as minimizing Segpa:q

subject to bit rate, video quality and network throughput constraints as shown in (2.23).

min Seng-me * VBR (223)
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Subject to: Ver—min < Vr < VBR-Max (2.24)
VOrn <VQ (2.25)
Ver < NWrpy, (2.26)

Video quality VQ is measured in terms of average MOS value, M OSXé‘;eO.
M OSXL‘;"’O defined in (2.27) is the average of MOS values corresponding to bit rates
of previously downloaded N segments and the bit rate to be selected using (2.23) for
the current N + 17" segment. As MOS value corresponding to Veg—prax, MOS(VBr-max)
represents maximum video quality, we define the lower bound on video quality VQrj,,
as reduced by the factor VQg.s which specifies the acceptable loss in video quality due

to battery aware DASH techniques. VQ7j, is given by (2.28).

MOSSggI +..+ MOSSegN + ]V[OSSe‘g,\,JrI (Var)

Video _
MOSYide = e 2.27)
VQThr = VQRedMOS(VBR—Max)aO < VQRed <1 (228)

Network throughput given by (2.29) is the ratio of Segp.s, and segment download
duration Segpr. Segpara and Segpr used to estimate NWrp,; corresponds to the N th
segment, that is the network load conditions experienced during the download of the
previous segment influences the selection of bit rate of the current segment. It should
be noted that Segpr may be lesser than, equal to or greater Segr;,. than depending on

network load and channel conditions.

S €8Data

NWrpy: =
Segpr

(2.29)

A feasible solution to (2.23) may not always exist. In case NWrp,, is lesser
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than Vpg_prin, then Vpg_yiy 1s selected which may lead to video stalling and violation
of VOrn-. When both NWrp,, and VQry, constraints cannot be satisfied, bit rate which
satisfies the NWrp,; is selected to avoid video stalling and leads to violation of VQrj,.
Subsequent to bit rate selection, we will now formulate the download rate and
mode selection sub-problem for all the download epochs that constitute the segment
download. We use the problem formulation given by (2.6) and elaborated in Section
2.3.2, except that upper bound on DR is the amount of segment data that needs to be
downloaded and not amount of data needed to fill the buffer [as in (2.20)] and lower
bound ensures that playback time is at least equal to segment time and not minimum
buffer level Bu fyin, [as in (2.22)]. DRMax corresponding to any download epoch in a
segment cannot exceed the difference of total segment data Segp,;, and segment data
downloaded so far, the latter being the sum of the products of duration of each download
epoch Dp,,ioq and download rate DR chosen for the epoch. On the other hand, DRMin
is zero when the playback time available PBT exceeds Segrim.. When PBT available
is less than Segrime, DRM™" corresponds to the deficit required to increase PBT to at
least Segrime to ensure that buffer contains enough data to playback the segment without
stalling. Hence the bounds on download rate are now defined as shown in (2.30) and

(2.31).

N ] ]
SegTimeVBR - Zi:l D;’eriodDRl
N+1
Period

DRMH)C —

(2.30)

Mi 0, PBT > SegT,-me
DR"'" = (2.31)

(SegTime - PBT)VBRa PBT < SegTime
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Figure 2.8. Bit Rate, Mode and Download Rate Selection (BR-MoDS) algorithm

2.5.2 Bit Rate, Mode, and Download Rate Selection (BR-MoDS)
Algorithm

In this section we will describe BR-MoDS algorithm that adopts the two tiered
problem formulation elaborated in the previous subsection to search the bit rate space
and transceiver configuration space (Tables 2.1 and 2.2). Fig. 2.8 shows the inputs, two
phases and outputs of BR-MoDS algorithm. As shown in Fig. 2.8, phase 1 involves
selecting bit rate VL’? &7 that minimizes the Segpa;q given the bit rate, video quality and
network throughput constraints. If Vl? };p " does not belong to Vg I?fge ;» 1t is rounded off to

the nearest higher valid bit rate Vg by adding € such that the resulting bit rate does not

violate the network throughput constraints. It should be noted that the rounding off of bit
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rate does not violate the video quality threshold as a higher bit rate is chosen. The output
of phase 1, Vg along with Bufi.,, Batr.,, SNR and Dp,,;,q form the inputs to MoDS
algorithm (Section 2.3.3, Fig. 2.5). As elaborated in the previous subsection, the bounds
on download rate constraint used by the MoDS algorithm are defined by (2.30) to (2.31)
instead of (2.20) to (2.22). The MoDS algorithm is iteratively called, with iterations
corresponding to download epochs, till the aggregate of the segment data downloaded is
equal to Segparq as shown in phase 2, Fig. 2.8. The output of MoDS is the mode M and
download rate used in that epoch.

Having discussed in detail the framework and algorithm developed to maximize
battery lifetime during DASH streaming, we next discuss an approach to jointly maximize

both battery lifetime and video quality.

2.5.3 Joint Maximization of Battery Lifetime and Video Quality

The BR-MoDS algorithm described above selects the minimum (optimal) bit rate
that satisfies the video quality and network throughput constraints even though battery
level and network conditions may allow selection of higher bit rate as it aims to maximize
only battery lifetime and not aggregate video quality. On the other hand, aggregate video
quality can be potentially enhanced by choosing a higher video quality threshold VQrp,,
which will result in choosing higher bit rates, but will decrease battery savings. This
implies that joint maximization of battery savings and aggregate video quality is required
to balance the battery lifetime—video quality tradeoff achieved by bit rate adaptation.
However, while bit rate impacts video quality directly, it has an indirect relationship with
battery lifetime. Bit rate determines the amount of data to be downloaded, which in turn
(along with battery and buffer levels, channel and network load) determines the mode
and download rate and hence battery lifetime. This indirect relationship does not lend

itself naturally to a joint battery lifetime—aggregate video quality maximization formu-
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lation. Hence in this section, we propose a heuristic approach which uses information
about battery level and network conditions during bit rate selection to opportunistically
maximize both battery lifetime and aggregate video quality.

One possible way of utilizing battery level information during bit rate selection is
to scale bit rate with battery level. The basis for this approach is that when battery level
is high, battery can support higher drain due to higher bit rates whereas when battery
level is low, lower bit rates have to be chosen because higher bit rates will deplete the
battery to a greater extent than when battery level is high. However, though the choice of
low bit rates when battery level is low will conserve battery and extend video viewing
time, it will also result in consistently low video quality and may not meet the video
quality constraint. A better approach will be scaling bit rate with the ratio of battery level
Batp ., to the starting battery level Baty,,—j,i;. Using the ratio ensures that scaling of bit
rate and rate of increase in scaling during a session is lesser when Batp ., is higher, and
much more when Bat; ., is lower. For instance, consider the two cases when battery level
reduces by 0.05 and 0.1, the ratio values are 0.95 and 0.9 respectively when Baty .- i
is 1 and 0.75 and 0.5 when is 0.2. This results in wider range of bit rates selected during
a session when Baty,, is low with higher bit rates boosting quality and lower bit rates
offsetting the drain due to higher bit rates. It should be noted that whenever the bit rate
selected exceeds NWrp,;, it is set to NWrp,, in order to avoid buffer underflow. As the
bit rate selection stated in (2.23) selects the minimum bit rate that satisfies the constraints,
based on the above observations, we modify the lower bound on bit rate Vgg_psi, to a

battery level dependent bit rate VI% given by (2.32).

Vo = Ver_min + BatreyBaty ), (VBR-Max — VBR-Min) (2.32)

This implies that the lower bound on bit rate shifts higher or lower depending on
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Baty ., thereby using battery level information for bit rate selection. The modified bit
rate selection problem is same as that stated in (2.23) except that Vgr_psin 1s replaced by
VBBI?‘ The new algorithm termed Battery Level Aware BR-MoDS, B?R-MoDS is same as
BR-MoDS except that phase 1 is modified to reflect the above change. The computational
complexity of BR-MoDS and B?R-MoDS which use nonlinear optimization solver ‘nlopt’

to determine the minimum bit rate Vg‘ = is presented in the Appendix A.1.

2.5.4 Battery Aware Video Streaming - Framework

In our proposed framework, the execution of BR-MoDS B?R-MoDS algorithms
is distributed as the bit rate selection is mobile device driven (like any DASH based
technique) and download rate and mode selection carried out by MoDS is base station
driven. The framework is the same as that elaborated in Appendix A.2 except that the
bit rate is sent by the mobile device prior to each segment download. Also, the initial
information conveyed by mobile device at the beginning of video session consists of
VBR-Max> VBR-Min, maximum PBT possible and also the segment time Segriu.. Sub-
sequently, for each of the download epoch that constitutes the segment download, the
information exchange between base station and mobile device is as explained in Appendix
A.2. However, the buffer status update is used to calculate DRMax and DRM" defined in

(2.30) and (2.31).

2.5.5 Video Experience Longevity (VEL) Metric

In this section, we develop the Video Experience Longevity (VEL) metric to
quantify the performance of the proposed battery aware bit rate adaptation techniques
in terms of both the longevity of video experience and the quality of video experience
as compared to alternative DASH based techniques. In this chapter, for comparison we

consider the non-battery aware rate adaptation algorithm proposed in [22] for DASH [44]
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(termed RA-DASH) and the battery aware rate adaptation technique (termed BaSe-AMy)
proposed in [27]. The VEL metric is developed to compare performances of the differ-
ent techniques for the most demanding scenario when the mobile device continuously
downloads and watches videos till the battery gets exhausted. In this scenario, note that
the longevity of video experience Exprin. is the same as battery lifetime Baty; ferime
minus any stalling time Stallr;,, during the video sessions, as given by (2.33) below.
However, even in other user scenarios, a DASH technique with higher VEL score than
another technique can be considered more efficient in terms of battery lifetime and/or
video experience. While modeling of the quality of video experience VE continues to be
an active area of research, in this chapter we model V E as shown in (2.36) as a weighted
sum of video spatial quality measured by the M OS%; defined in (2.34) as the average
of M OSXLZeO [defined in (2.27)] of all the K videos streamed till the battery dies, and
video temporal quality reflected by a term NStally,,n, defined in (2.35), which measures
how free the video experience is from stalls/jitter. The weights wy;os and wyssq in
(2.36) reflect relative priority for spatial quality versus stall-free video in determining
user experience. Note that we normalize NStally,yp, to S in line with MOS score so we
can consider both of them in VE; when there is no stalling, the value is 5, while in the

extreme case that no video playback is possible at all due to stalling, the value is 0.
Extrime = BatLifetime — Stallrime (2.33)

Videoy Videos Videog
MOSAvg +MOSAVg +..+M0SAvg

MOS0 = e

(2.34)

SExpr:
NStallyyyy = ——2PTime_ (2.35)
BatLifetime
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VE =wyosM OSE;“I +WrsiattNStallyorm, 0 < wayros, Wsran < 1 (2.36)

Next we define the VEL metric in (2.37) to quantify the joint gain/loss in ex-
perience longevity and quality of video experience achieved by the proposed battery
aware DASH techniques over DASH techniques used for comparison. The ratio increases
(decreases) when there is gain (loss) in experience longevity relative to gain (loss) in

video experience.

VEL = 1 +AEXPTime
1-AVE

(2.37)
AExprime defined in (2.38) and AV E defined in (2.39) represent the gain/loss in
experience longevity and video experience respectively achieved by the proposed battery

aware DASH (BA-DASH) techniques (BR-MoDS and B2R-MoDS) over other DASH

techniques (non-battery aware [22] and battery aware [27]).

ExpTimeBA_DASH - ExpTimé’DASH

VEL =

(2.38)
ExpTimeDASH

VEga- -VE
AVE = LEBA-DASH DASH (2.39)

VEpasH

Note that AExprim. and AVE for technique used for comparison (RA-DASH or
BaSe-AMy) are zero, implying VEL value of 1. VEL for the proposed techniques can be
greater than or lesser than 1 depending on values of AExpri,. and AVE. If a proposed
technique has VEL greater than 1, it is more efficient than the DASH technique used for

comparison in terms of experience longevity and/or video experience.
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2.6 Simulation Framework and Results

In this section, we describe the simulation framework developed to adaptively
stream different video sequences under varying channel and network load conditions and
video quality requirements. We will then discuss the experimental results obtained using
the proposed battery aware DASH techniques, as compared to using the conventional

RA-DASH technique and battery aware rate adaptation technique, BaSe-AMy.

2.6.1 Simulation Framework

In this section, we will elaborate on the modifications made to the simulation
framework developed in Section 2.4 to estimate battery consumption during adaptive bit
rate streaming and playback. As rate adaptation techniques for DASH adapt video bit
rate under challenging channel conditions and network load, we extend the simulation
framework developed in Section 2.4 to simulate varying network load (equivalent to
varying number of users) by modulating the peak throughput available to a particular
user while downloading video. Also in the framework, MoDS algorithm is replaced by
BR-MoDS and B’R-MoDS algorithms. When video download is initiated, the simulation
time counter is started. As before, in our experiments, simulation step is fixed at 2s. In the
simulation step that marks the beginning of segment download, BR-MoDS/B*R-MoDS
determines the bit rate of the segment. For all the subsequent simulation steps that
download this segment data, MoDS algorithm (Sections 2.3.3 and 2.4.4) determines
the mode and corresponding download rate. The simulation counter when the battery
is fully drained gives battery lifetime when user downloads and watches chosen video
sequence under simulated channel and network load conditions and quality requirements.
In order to capture the effect of bit rate adaptation on user experience, we modify the

User Experience Model (Section 2.4.3) to include the MOS corresponding to the bit rate
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Table 2.6. Simulation parameters for DASH streaming

Video Bit Rate Vj"9(Mb/s):{4.5, 3.75, 3.125,
2.6,2.17,1.81, 1.51}

Video Characteristics MOS Values: {4.8, 4.6, 4.49, 4.35, 4.2, 4.02,
3.9}

Segment Time Segrime = 10s

Video Sequence 2: {404s, 1942s, 124s, 360s,
526s, 190s, 757s, 738s, 360s, 255s, 232s, 396s,
181s, 219s, 319s, 139s, 348s, 408s}

Video Buffer Size Bu fs;;. = 50s

Playback Load (Decoder + Display) Ipjaypack =
34mA

Quality Threshold VQr7j,= 4.32 (VQReqa=0.9,
10% degradation from highest MOS value of
4.8)

Network Level Variable, Peak Throughput = 2.52-8.4Mb/s

Client Characteristics

Video Quality Require-
ments

selected. We use the bit rate—MOS model [45] to map the bit rate of each segment to a
MOS value and calculate the average MOS value for the video streamed using (2.27).
Given these MOS values and stalling measurements, the video experience VE of the user
is measured using (2.36).

To allow comparison, we use the same framework to simulate the RA-DASH and
BaSe-AMy, except that, instead of using BR-MoDS/B?R-MoDS, we use the algorithm
implemented in [22] and [27] respectively to determine bit rate. For RA-DASH and
BaSe-AMy, the download rate is determined by (2.30), and mode that satisfies the
download rate and BER requirement is selected. It should be noted that if download rate
determined by BR-MoDS/B?R-MoDS or for RA-DASH/BaSe-AMy exceeds the peak
throughput, then the base station limits download rate to the peak throughput rate. The
user characteristics, channel conditions and application BER requirements are identical
to those in Table 2.5.

Table 2.6 lists the other required simulation parameters used in our DASH stream-

ing experiments. The video characteristics consist of the set of video bit rates available
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for selection, the corresponding MOS values (derived from the video bit rate-MOS
mapping for VGA screen resolution presented in [45]), duration of segments and the

video sequence viewed. Each of the videos in video sequence 2 are available in segments

VValid

BR-se Client char-

of duration Segri,. and each of these segments are encoded using
acteristics enumerate buffer size and playback current requirements. The video quality
requirements specify the maximum quality reduction acceptable VQg.s and the quality

threshold VQrj, that must be satisfied. Table 2.6 also lists the peak throughput under

variable network load conditions.

2.6.2 Experimental Results

In this section, we will present the experimental results obtained by simulating
adaptive bit rate streaming of video under variable network load conditions and different
channel conditions. In all the experiments reported below, we set the weights wy;os and
wnstarr 10 (2.36) to 0.5, giving equal priority to spatial quality and stall-free video.

Fig. 2.9 shows the selection of bit rate (shown as green solid line) and download
rate (shown as blue pluses) while streaming a video of 200s duration using RA-DASH,
and our proposed BR-MoDS and B>R-MoDS techniques, under variable network load
(shown as red dashed line representing the variation in peak throughput) and variable
channel conditions. For lack of space, we do not illustrate the same for BaSe-AMy
technique. The 200s video has the same bit rate/MOS characteristics shown in Table
2.6. Fig. 2.9a shows that RA-DASH attempts to track the network throughput while
selecting bit rates, and downloads at the highest rate possible during each download
epoch. From Fig. 2.9b, it can be seen that BR-MoDS chooses the lowest bit rate possible
initially, followed by higher bit rates (in order to boost MOS4,, and satisfy the video
quality constraint) and also lowest download rates possible. Fig. 2.9c shows that B

R-MoDS, as designed, chooses bit rates higher than that selected by BR-MoDS (except
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Table 2.8. VEL metric values for RA-DASH, BaSe-AMy, BR-MoDS and B2-MoDS

VEL
RA-DASH | BR-MoDS | BZR-MoDS
SNR-Variable 1 1.42 1.33
SNR-High 1 1.56 1.40
SNR-Low 1 1.29 1.19
BaSe-AMy | BR-MoDs | B’R-MoDS
SNR-Variable 1 1.5 1.41
SNR-High 1 1.54 1.39
SNR-Low 1 1.4 1.3

when BR-MoDS selects higher bit rates to boost MOSy,,,), with the bit rate selected
going down as it tracks battery level ratio which decreases as download progresses.
However, like BR-MoDS, it also selects the lowest download rate possible. Though we
do not illustrate the bit rate selection carried out by BaSe-AMyj, it should be noted that
BaSe-AMy always selects the highest bit rate possible. BaSe-AMy lowers the bit rate
only when battery lifetime remaining is lesser than that required to completely stream
the video and the battery level is below a certain threshold.

Next we report on the effect of the DASH based techniques on battery level and
quality of video experience. Assuming the battery level is 0.2 at the start of the 200s
video download, the battery level reduces by 16.1%, 17.34%, 10.45%, and 12% for
RA-DASH, BaSe-AMy, BR-MoDS and B2R-MoDS respectively while achieving a video
experience of 4.83, 4.76, 4.66, and 4.793. This shows that the proposed battery aware
DASH techniques result in more battery efficient video streaming than the conventional
RA-DASH and BaSe-AMy techniques. We also see that BR-MoDS can be more battery
efficient than B2R-MoDS as it uses lower bit rates, while BZR-MoDS can achieve higher
video experience.

In the next set of experiments, we simulate the video snacking behavior (variable

snacking ratio, Table 2.5) by the mobile device downloading video sequence 2 (Table
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2.6), starting with battery level 0.2 till the battery gets exhausted, giving the battery
lifetime. We report in Tables 2.7 and 2.8 values for Experience Longevity Exprime,
quality of Video Experience VE and V E L metric respectively obtained by RA-DASH
and BaSe-AMy when streaming video sequence 2 under variable network load (red
dashed line in Fig. 2.9) and variable, high, and low SNR conditions. Also reported in
Tables 2.7 and 2.8 are the percentage gains (loss) over RA-DASH and BaSe-AMy in
Experience Longevity AE xprin,. and Video Experience %AV E, as well as VEL values,
when using BR-MoDS and BZR-MoDS. From Table 2.7 we observe that for variable
SNR conditions (row 1), the experience longevity is significantly increased by using
BR-MoDS and B’R-MoDS; 46.2% and 34.8% compared to RA-DASH and 53.2% and
41.3% compared to BaSe-AMy. In terms of video experience, BR-MoDS loses 3% and
1.7% compared to RA-DASH and BaSe-AMy while B R-MoDS loses 1.9% and gains
0.29% compared to RA-DASH and BaSe-AMy respectively. As can be expected from
the Yo AE xprime and %AV E results, BR-MoDS and B2R-MoDS show significant gains
in VEL compared to both RA-DASH and BaSe-AMy as shown in Table 2.8.

Under high SNR conditions, the longevity of video experience is higher than under
variable SNR conditions for all the techniques, including RA-DASH and BaSe-AMy, as
less power consuming modes can be used to achieve the required BER. It can be seen
from Table 2.7 that by using BR-MoDS and B?R-MoDS, experience longevity increases
by 61.1% and 41.4% compared to RA-DASH and by 57.8% and 38.5% compared to
BaSe-AMy. In terms of video experience, BR-MoDS loses 3.2% and 2% compared
to RA-DASH and BaSe-AMy while B R-MoDS loses 0.4% and gains 0.7% compared
to RA-DASH and BaSe-AMy respectively. As expected, BR-MoDS and B?’R-MoDS
outperform RA-DASH and BaSe-AMy in terms of VEL values (Table 2.8).

Lastly, when channel conditions are bad (low SNR), all the DASH techniques

achieve lower battery lifetime compared to high and variable SNR conditions as more
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power intensive modes have to be used to meet BER requirements resulting in lower
battery lifetime. BR-MoDS and B’R-MoDS extend experience longevity by 32% and
20.2% compared to RA-DASH and 36.9% and 24.6% compared to BaSe-AMy. In terms
of video experience, BR-MoDS and B>R-MoDS lose 2.4% and 0.78% compared to
RA-DASH and 2.35% and 0.66% compared to BaSe-AMy. As before, both BR-MoDS
and B’R-MoDS outperform RA-DASH and BaSe-AMy in terms of VEL metric as shown
in Table 2.8.

In this chapter, we developed techniques for increasing battery lifetime of mobile
devices during video download while ensuring no degradation in user experience. In the
forthcoming chapters, we will focus on increasing the power efficiency of base stations

in the cellular networks.

2.7 Summary

In this chapter, we presented novel battery aware HTTP video delivery schemes.
First, we proposed battery aware video progressive download techniques that dynamically
adapt video download rate and transceiver configurations to reduce battery consumption
while ensuring user experience. Next, we presented battery aware DASH streaming
techniques that aim to maximize both battery lifetime and video quality while ensuring
minimum desired video quality by adapting video bit rate in addition to download rate
and transceiver configuration. Lastly, we proposed the Video Experience Longevity
metric that quantifies the performance of the proposed battery aware DASH techniques in
terms of experience longevity and video experience. Our simulation results demonstrated
the ability of the proposed techniques to achieve significant increase in battery lifetime,
no more than the desired (video quality threshold) loss in video experience and high VEL
values as compared to conventional non-battery aware techniques and other battery aware

techniques.
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While the proposed battery aware video delivery techniques focus on increasing
battery lifetime, in future, we aim to investigate techniques that jointly reduce the
power consumption at the base station and battery consumption of mobile device while
downloading mobile video. We would also like to extend our techniques to explore

battery savings when video is streamed and uploaded from mobile devices.
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Chapter 3

Dynamic Cell Reconfiguration Frame-
work for Energy Conservation in Cellu-
lar Networks

3.1 Introduction

With the explosive growth in wireless communication usage and infrastructure,
energy use of cellular wireless networks has lately become a critical issue [46]-[47].
Designers of communication and networking algorithms and protocols have traditionally
put less weight on the complexity and power consumption at base stations (BSs) than
improving energy efficiency to prolong battery life-time of user equipments (UEs).
Today, however, the situation has changed. Pushed by ever increasing energy costs and
environmental concerns, all information and communications technology (ICT) industries
are seeking ways to reduce energy consumption. In particular, improving the energy
efficiency of BSs has become as important as UEs because the BSs have been identified to
be the most power consuming equipment, e.g., 60—80% of the total energy consumption
in current cellular networks [48].

Energy efficiency with respect to BSs has been considered in many dimensions,
spanning from hardware component improvements to network-level solutions. A number

of these efforts have focused on novel hardware design and manufacture, e.g., energy-

59
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efficient power amplifiers, fanless coolers. Others also considered collocating BSs with
renewable energy sources [49]. In the domain of network-level solutions, there are many
recent papers, including, for example, the smart deployment at the stage of network
planning [SO0]-[51] by using micro BSs or relays, load-aware dynamic BS switching
on/off [52], [48], [53]-[54], and resource management schemes [55]-[56] such as power
control and energy-aware user association, etc.

The focus of this chapter is to present network-level solution with emphasis on

three energy-saving techniques operating on different control time scales.

e Active BS selection: BSs are typically deployed on the basis of peak traffic volume
and stay always-on irrespective of traffic load. Recent temporal traffic trace reports
that BSs are largely underutilized during low traffic periods such as nighttime
[48]. The active BS selection technique operating on a slow time scale (e.g., order
of hour or so) allows the system to entirely turn off some underutilized BSs and

transfer the imposed loads to neighboring BSs, which leads to huge energy savings.

o Transmit power budget adaptation: A typical macro BS spends a small amount of
total operational power on the transmit power. However, when the BS reduces its
transmit power, a considerable overall energy saving! is expected due to its exerting
influence on the operational power [58]. The transmit power budget adaptation is a
technique in a fast time scale (e.g., order of minutes), which fine tunes the transmit

power of BS according to its current cell loading for further energy savings.

e User association: The last technique, which determines a proper BS for each user,
is necessary to fully exploit the amount of energy savings. The time scale of user

association is apparently faster than the above two techniques because some UEs

'1For example, the BS power consumption model in [57] showed that a macro BS can reduce the total
power consumption from 766 W to 532 W (i.e., 234 W savings) just by reducing its transmit power from
20W to 10W. Refer to Section 3.2.3 for more details on our power consumption model.
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may need to be associated with another BS when a set of active BSs and/or their
transmit powers change. Of course, it should be performed whenever a new user

arrives.

In this chapter, we consider a problem of minimizing the total power consumption
in BSs while satisfying the quality of service (QoS) requirements for all users in the
network. To this end, we develop a novel unified framework for energy conservation,
called dynamic cell reconfiguration (DCR), linking the above three techniques together

into one.

3.1.1 Related Work

Basic concepts of dynamic BS operation, turning BSs on/off based on the temporal
and spatial traffic load, have been addressed in [48], [53]-[54]. The authors in [59], [51]
also investigated a joint operation and deployment problem to determine where, how
many and which type (macro/micro/pico/femto) of BSs need to be deployed in an energy-
efficient manner. However, some of the preliminary works [48], [54] did not capture
the effect of the signal strength degradation when traffic loads are transferred from the
switched-off BS to neighboring BSs. Rather than developing an actual working algorithm,
some [48], [51], [53] simply attempted to see how much energy savings can be expected
under the deterministic traffic variation over time and moreover, sometimes in a simple
network model such as hexagonal or Manhattan model. In order to overcome these
weaknesses, we adopt a more sophisticated channel model based on signal to interference
plus noise ratio (SINR) reflecting the effect of signal degradation and validate our
framework based on a real dataset of BS topology and utilization.

Another piece of technique we investigate in this chapter is the power control,
which has been widely studied in literature (see [60] and the references therein). The

power control is usually employed to combat the near-far problem in uplink [61] or to
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maximize user throughput in downlink by exploiting the variation of time and frequency
channel (i.e., multi-user diversity) as well as mitigating inter-cell interference. The main
purpose of our approach, different from the conventional algorithms, is to reduce the
total energy consumption of BSs by adjusting the transmit power budget. Our algorithm
is concerned about the entire budget but does not care about how the budget would be
actually utilized for multiple users across time/frequency resource in a cell. In this sense,
we call it the transmit power budget adaptation. We would like to highlight that it can be
superimposed over any power allocation algorithms (e.g., water-filling). For example,
once it first adapts the power budget according to the current traffic load, an underlying
algorithm distributes power to users within the budget.

There are a few prior works [55]-[62] studying the power control for the purpose
of BS energy conservation in slightly different settings. In [55], the authors proposed
short- and long-term power controls to exploit the traffic fluctuation, but their analysis
was still in a single-cell setting. In [63], the greening effect of interference management
with combinations of spatial and temporal power budget sharing is investigated. Niu et
al. [62] presented an idea of cell zooming that dynamically adjusts the cell size though
BS cooperation, relaying or physical antenna tilt. Our work fills the voids of the previous
work in that: We not only propose a practical algorithm in a multi-cell setting, but also
address the problem of jointly optimizing the power budget in conjunction with active BS
selection and user association. The rest of this chapter is organized as follows. Section
3.2 formally describes our system model and general problem. In Section 3.3, we propose
a dynamic cell reconfiguration framework and discuss some of practical implementation
issues. In Section 3.4, we present simulation results. In Section 3.5, we conclude the

chapter with our notes and observations.
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3.2 System Model
3.2.1 Network and Channel Model

Let us consider a cellular wireless network with a set of BSs 8. Let x denote a
user location lying in the two-dimensional area £ and i € B be the index of the i’ BS.
We assume the same frequency band with bandwidth W in all cells (i.e., reuse factor
one) and concentrate on downlink communication that is a primary usage mode for
mobile Internet, i.e., from BSs to UEs. However, we would like to mention that some
aspects of our work (e.g., user association and active BS selection) can be applied to the
uplink scenario as well with a slight modification. Following Shannon’s formula, the

transmission rate [bits] of a user at location x when associated to BS i, is given by:

gi(X)pi
bes,\ (i} 8i(X)pp+ 02

ci(x)=Wlog, [ 1+ (3.1

2 is noise power and p; [or p;] is the transmit power of BS i [or BS 5],

where o
gi(x) [or g»(x)] denotes the channel gain from BS i [or BS /] to location x, including
path loss attenuation, shadowing and other factors if any. Note that the transmission

rate ¢;(x) depends not only on the set of active BSs B, but also on their transmit power

pP= (PI»PZ, ’p|’3|)
3.2.2 Traffic Demand and BS Utilization

We assume that a user at location x has a certain traffic demand, which requires

v(x)[bits]. To guarantee the QoS of the user, the fraction of radio resource blocks (i.e.,

time or frequency) need to be allocated by BS i would be z((fc))

We now define an association probability 7;(x), which specifies the probability
that the user at location x is routed to BS i. As can be seen later in subsection 3.3.1,

the optimal 7;(x) would be either two extremes O or 1. The BS utilization, the average
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occupied fraction of the BS resource blocks, can be defined as follows:

L[
P = /1; () dx (3.2)

ci(x)
Definition 3.1. (Feasible Set): When the set of active BSs B,, and their transmit power

p are given, the set F (Bon, p) of feasible utilization p can be defined as follows:

F(Bonp) =p = (P1,-08,,) | 0< p < 1, (3.3)
Vxe £,0<a(x) <1, (3.4)
Vxe L) m(x)=1, (3.5)
i€B
Vxe LVie B\B,, (3.6)
i(x) =0 3.7)

where we use “<” to denote element-wise inequality for the vectors. Note that the
feasible BS utilization p has the associated probability vector n(x) = (71(x), ..., mg|(x))

forall x € L.

3.2.3 Power Consumption Model

Now let us consider the modeling of the total BS operational power consumption
T; that can capture both dynamic power and static power as follows. The former is
proportional to BS’s utilization. On the other hand, the latter is the fixed amount of power
that a BS dissipates irrespective of its utilization. It is worthwhile mentioning that the

static portion of power consumption can be conserved only if the BS is completely shut
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off.
T; =(1-q)piPi+ qiP; (3.8)
———— — —
dynamic static

where ¢; € [0, 1] is the portion of the static power consumption for BS i, and P;
is the maximum power consumption when it is fully utilized with the transmit power
pi- According to [6], P; is again a function of the transmit power p; with nonnegative

coefficients a; and b;:

P; = ap; + bl' (39)

where the coefficient a; accounts for the power consumption that scales with the
average transmit power and b; is the offset site power which is consumed independently
of the average transmit power. We would like to emphasize that our model given in (3.8)

is general enough to grasp a variety of BS power consumption.

e Energy-proportional BS with ¢g; = 0: Assuming ideally equipped with energy-
proportional equipment, the BS does not consume any power when idle, and

proportionally consumes more power as its utilization increases.

e Non-energy-proportional BS with ¢; > 0: In practice, several hardware devices
inside a BS dissipate standby power even though the BS does not serve any traffic.
In an extreme case of ¢; = 1, the model becomes a constant consumption, which

has been widely used in many works in literature [48], [64].

3.2.4 General Problem Statement

We consider a general problem that minimizes the total BS power consumption
while all user traffic requirements are guaranteed to be served, in other words, maintaining

the BS utilization within the feasible set.



66

[GP]minT; (3.10)
i€B,n
Subject to:B,, C B, 3.11)
p < p", (3.12)
P € F(Bonp) (3.13)

Our ultimate goal is to develop a framework for BS energy conservation that
encompasses (i) active BS selection, (i1) user association, and (iii) transmit power budget
adaptation. As a first step towards this goal, our own prior work [52] focused on building
solutions for the first two sub-problems assuming all BSs are operating at the maximum
transmit power, i.e., p = p”*** without the constraint (3.12).

The active BS selection algorithm presented in this chapter looks similar to GON
in [65] because they have been built based on the same system model. However, from
the problem formulation standpoint, their objective functions are different (e.g., total
power consumption vs. cost minimization with the flow-level performance and the
energy consumption), so are their final algorithms. In addition to that by further relaxing
the maximum transmit power assumption made in [65], we are able to investigate the

interaction between active BS selection and transmit power budget adaptation.

3.3 Dynamic Cell Reconfiguration Framework

In this section, we present details on our framework, called dynamic cell recon-
figuration (DCR), that includes the user association, active BS selection, and transmit

power budget adaptation algorithms.
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3.3.1 User Association

We shall start by considering a given set of active BSs 8,,, and their fixed transmit
power p. In this setting, the static power consumption term can be ignored. So the
induced sub-problem of [GP] is to determine which BS each user should be associated

to, or equivalently, to find an optimal BS utilization p.

[UA=P] ) [(1=a)Pipi + Li(py)] (3.14)
i€B,n
Subject to:p € F(Bon, P) (3.15)

where L;(p;) is a convex penalty function we intentionally introduce. By adding
the penalty into the objective, we can allow the system to balance the traffic load among
BSs and avoid a cell getting too congested. Though there may be other methods of
penalizing the congested cell for the purpose of load balancing, the work presented in

this chapter uses the following penalty function with three configurable parameters.

0, 0i < prn
Li(pi) = (3.16)

Linax (5=222)
where L, > 0 is the maximum penalty value and p,j, € [0, 1] is the BS utilization
threshold from which we start penalizing the BSs; 5 > 1 controls the sharpness of
the penalty function. It is noteworthy that the modified problem given in (3.14) is
asymptotically equivalent to the original sub-problem without the penalty function L;

in any of the following conditions: As L,,,, goes to zero, p;, goes to one, or S goes to

infinity.

Lemma 3.2. The Feasible set (B, p) in (3.3) is convex.
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Proof. The proof is straightforward by definition of convex set. We refer to [65] for the

full proof. o

Theorem 3.3. When the problem given in (3.14) is feasible, the optimal policy is for user

at location x to associate with BS i*(x), given by

User association algorithm:

i*(x) = argmax  ¢i(x)[(1 - )P+ L(p})]™ (3.17)

i€Bon
where p* is the optimal BS utilization
Please refer to Appendix B for the optimality proof.

Remark 1. But the subtlety is that the optimal policy in (3.17) has a chicken-and-egg
dilemma. It requires the optimal utilization p* in advance to calculate the metric for the
optimal policy. However, we were able to prove that a distributed algorithm that achieves
the global optimum without knowing p* in an iterative manner. A sketch of the proof is
given as follows. First we show that the optimal BS utilization p* is the fixed point of
a certain mapping. Next we show that the following algorithm (or mapping) produces
a descent direction at the current BS utilization p*! (i.e., minimizing the inner-product
with the gradient). Thus, it will eventually converge to the global optimal point. The full

proof can be obtained via a slight modification of the convergence proof in [66].

3.3.2 Active BS Selection

In this section, we investigate another piece of subproblem in DCR, namely,
active BS selection, where we assume that all active BSs are operating at the maximum
transmit power, i.e., p = p™**. This assumption will be relaxed and the adaptation of

transmit power will be covered in the forthcoming section. By solving this problem, we
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will be able to answer which BSs need to remain active to guarantee the QoS level of

users and the others to be turned off for minimizing energy consumption in the network.

[BS ~ P1] min UA(8,,) + > 4P

i€B,n

where UA(B,,) = pef(%},inl,lpm“x) 2ies,,(1=qi)piP; which is the optimal objective value of
user association problem.

There is a technical challenge in solving this problem because it can be reduced
from a vertex cover problem which is theoretically known as NP-complete [67]. In order
to overcome such a high computational complexity, we consider the design of an efficient

heuristic algorithm in this section. To that end, we move the static power consumption

term in the objective to the constraint with a nonnegative budget Z.

[BS — P2] min UA(B,») (3.18)
BonCB
subject to " giP; < z (3.19)
i€Bon A

As can be easily noticed, there is a close relationship between [BS-P1] and
[BS-P2] as primal/dual problems with a Lagrangian multiplier A. In order to further
convert [BS-P2], let us introduce a diminishing returns property on a set function that is

formalized by the concept of submodularity [68].

Definition 3.4. (Feasible Set): For a real-valued set function H, we define the discrete
derivative at A C S in direction s € S as dg(A) = H(AU{s})— H(A). The H is said to

be submodular if
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A CAHA CS = dANs e S\ Ae (3.20)

Similarly, H is supermodular if —H is submodular.

We rewrite [BS-P2] in the standard form of submodular maximization problem

as follows.

BS—P3 H 3.21
[ | max. (A) (3.21)
subject toc(A) — Z ¢ <C (3.22)
ieC

where A = B,,, \ Binir» Binir 18 an any initial BS set, H(A) = UA(Binir)
—~UA(Binig UA), c(i) = qiP,and C =2 =3, (i)

It is worthwhile mentioning that there exists an intuitive yet efficient greedy
algorithm for [BS-P3] only if H is a non-decreasing submodular. It works as follows:
Starting from the empty set A = 0, it iteratively adds the element with the highest value of
metric (H(AUi)—H(A))/c(i) while the total cost is within the budget C. Mathematically,
it has been shown in [68], [69] that this greedy heuristic can give a suboptimal solution
with an approximation factor of (1 —1/e).

Though it is quite difficult to prove the submodularity of H in general cases, it is
indeed possible under some reasonable assumptions. We first assume that all BSs have
the same ¢; and P; values for mathematical simplicity and ignore the penalty function

Li(p;) artificially introduced earlier. Then, the user association given in (3.17) becomes

i"(x) =argmax c¢;(x) (3.23)

i€Bon

where the decision is purely based on the transmission rate (or SINR).We further
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make an assumption of marginal interference as follows.

Assumption 1. Adding (resp. removing) one BS has marginal impact on the total amount
of interference. In other words, the increment (resp. decrement) of interference is almost

negligible to users.

Theorem 3.5. Under Assumption 1, a set function H(A) is nondecreasing and submod-

ular.

Proof. By the definition of H(:A), the other terms not having p; can be ignored since
they are either constant or irrelevant to the set A. Hence, the proof of Theorem 3.5 is

equivalent to proving the following two statements.
1. Xes,, pi is montonically decreasing as B,, increases.
2. Yies,, pi is supermodular as a function of B,,,.
Please refer to Appendix B for the full proof. O

The implication of Theorem 3 is that the greedy heuristic mentioned earlier would
also work well to solve our active BS selection problem. After some tweaks to suit the
problem [BS-P1] better, we propose the following active BS selection algorithm that
borrows the metric (i.e., the decrement per unit cost when removing BS i) from the greedy

heuristic.

Our proposed algorithm starts from the point where all BSs are turned on and
finds the best BS candidate which will yield the maximum energy savings when turned
off. Note that the denominator is the amount of static power consumption saving from
turning off BS i. On the other hand, the numerator is the increment of dynamic power
consumption, which comes from the fact that UEs originally associated with the switched-

off BS would see possibly lower transmission rate ¢;(x) due to father distance to the
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Table 3.1. Active BS selection algorithm

1. Initialize B,,, = B
2: Repeat:

UA(Bon\{i})-UA(Bon)
qiPi

3: Find i* = argmin
i€Bon

4. UA(Bou \{i}) —UA(Bon) < qiP;, then B,, — B, — {i*}

S: Else, go to Finish

6: Finish: B,, is the set of active BSs

new serving BS. In line 4, the algorithm checks whether there is a net energy saving (in
other words, the decrement in static power consumption is larger than the increment in
dynamic power consumption). If so, we shut off BS i and repeat the loop. Otherwise, we

stop the algorithm.

3.3.3 Transmit Power Budget Adaptation

After the active BS selection finds and turns on the minimum number of BSs
(operating at their maximum transmit power p = p™“*), there is still room for further
energy reduction. There may be a scenario where some of active BSs has light traffic load
(i.e., clearly p; < psn), but it is not possible2 to turn off any of those BSs since reducing
the set of active BSs will lead to QoS violation. In this section, we will discuss the last
DCR technique, i.e., transmit power budget adaptation, which is a finer level tuning than
the coarse BS on/off control. Given 8B,,, we decompose the original problem into the
intra-cell problem as follows, in which each BS locally controls the transmit power based

on its own traffic load.

[TX - P] min T; =(1-gi)piP;i+qiP; (3.24)
pe<pyte*
Subject to:p; < psp (3.25)

2If possible, it should have been done in the stage of active BS selection.
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Plugging (3.9) into (3.24), the total BS operational power consumption can be

rewritten as:

T; = (aipi + b)[(1 - gi)p+q;] (3.26)

There are a couple of important observations from (3.26). Looking at the term
inside the first parentheses (a linear relationship with p;), we can notice that reducing
pi will have positive impact towards energy savings. However, on the other hand, it has
negative impact in the term inside the second parentheses because the BS utilization p;
will increase due to the reduced transmission rate (see (3.1) and (3.2) for the definitions).
Thus, it should be mentioned that it is not always beneficial to keep reducing the transmit
power. In addition, there will exist the minimum transmit power level to meet the
constraint (3.25).

We shall start by deriving how much the transmit power budget each BS can
reduce providing that the interference from other BSs are fixed. Later we will relax this
fixed interference condition in our final algorithm. In general, since ¢;(x) is a concave

function of transmit power p;(x), the following equality holds:

pi(pa>s;)l-(pb>-]’% forany pa < pp (3.27)
a

Note that equality holds if ¢;(x) is a linear function of p;(x) (i.e., low SINR
regime), which has been assumed to derive rate/power control algorithms in some
references [70].

After we substitute p, — p; satisfying p;(p;) = p;p and pp — pi"®* into (3.27), we
have the following minimum transmit power level p to meet the constraint (3.25).

PP

pi > P, =p (3.28)
Pth -
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Now we find the optimal transmit power level to minimize the total BS operational
power consumption. As discussed earlier, reducing the transmit power is not always
beneficial. We will see shortly that the total power consumption is upper bounded by
a convex function of the transmit power, so there exists a minimizer. Applying the

inequality (3.27) again to the total power consumption (3.26), we have

T; <ai(1—-q)pi(p] )P ™" + biq; + aiqp;

+bi(1=q)pi(p™ )P | pi (3.29)

The right-hand side of inequality is convex because it is the weighted summation
of an affine function of p; and another convex function 1/p;. This can be also confirmed
by its second order with respect to p;, i.e., 2b;(1 — q(i),oi(pf"‘”‘)p;."‘”‘pl._3 > (0. Thus, a

minimizer p is given by

bl 1_ 1 l max max
i \/ (1-g)pi(p)p! 530,

aiqi
Together with the maximum transmit power p?"** and the minimum transmit

power in (3.28), we can obtain a suboptimal solution p* (optimal when the equality holds

in (3.27)).

p* = min[max[p, p], p/***] (3.31)

Remark 2. When g = 1 (constant BS power consumption), the solution becomes p* = p.

max
l‘ )

On the other extreme case of q = 0 (energy-proportional BS), the solution is p* = p

which implies that no power adaptation is required.

So far we have considered one-shot power adjustment starting from p"** . If each



75

Table 3.2. Transmit power budget adaptation algorithm

1. Initialize k = 0 and p;[0] = p/"**

2: Repeat:

3: Update the interference from neighboring BS j # i
4: ﬁ_)pl[k] p_) PL(P) pandp_) bi(l—g;';/ioi@)ﬁ

pilk+1] — mm[max[p,p, Pl

5: If | T[k]-Ti[k+1]|> 6.k > k+1
6: Else, go to Finish
7: Finish: p;[k + 1] is a suboptimal transmit power budget

BS reduces its transmit power, then the users will experience different SINR. They will
usually see higher SINR due to reduced interference from neighboring BSs, but it is also
possible to see lower SINR depending on the power reduction ratio between the home
BS (the users are associated with) and the other BSs.

This offers an opportunity to further adjust the transmit power. In other words,
the power adaptation needs to be iteratively carried out with the updated interference
till there is no further savings in terms of the total power consumption. This is the basic
principle of our transmit power budget adaptation algorithm.

Our algorithm is shown in Table 3.2 works as follows. Starting from its maximum
transmit power (step 1), each active BS i adjusts its transmit power based on p, p, and p
(step 4). If the reduction of total operational power consumption in this iteration is greater
than a small constant € > 0 (step 5), then the BS i updates interference from other BSs
based on pj[k + 1] for j # i and repeat the loop. Otherwise, the transmit power budget
adaptation algorithm stops (step 6).

In Fig. 3.1, we provide an example to illustrate how the proposed algorithm adapts
the transmit power in a network topology of 4.5x4.5km? (see Section 3.4 for detailed
parameter settings and Fig. 3.3 for the layout of BSs). For this particular example, we

have considered that only four BSs are active, each of which has the maximum transmit
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power pi*

= 20W. Figs. 3.1a and b show the transmit power adaptation of the BSs and
their utilizations, respectively, and Fig. 3.1c shows the resulting total BS operational
power consumption. After the first iteration, the transmit power of the least utilized BS 2
is reduced by about 8W whereas BSs 3 and 4 reduce the power about 4W. The reduction
of the transmit power naturally leads to the increase in the BS utilization, however, it is
still a way lower than our threshold p;;, = 0.7. The changes are nominal in subsequent
iterations 2 or 3, and the algorithm exits in the next iteration since there is no further
saving in total power consumption.

Based on our empirical data, we would like to highlight that the transmit power
budget adaptation algorithm converges quickly. Even in different configurations (with
a different number of active BSs), we could observe similar a convergence trend, e.g.,
typically within a few iterations. As can be seen in Fig. 3.1c, transmit power budget
adaptation brings about 10% of the total power savings (from 2,131 W to 1,936 W) by
the fine-tuning of transmit power.

The iterative transmit power adaptation algorithm performs well when the traffic
load is fixed or decreases over time as active BSs keep reducing the transmit powers
until the convergence. However, in general scenarios where there exists a mixture of
load-increasing and decreasing BSs with respect to time, some BSs have to increase their
transmit powers. As a result, it would bring more interference to users in other cells,
which also makes neighboring BSs increase the power to meet the QoS requirement of
users. This can lead to oscillatory behavior and pose a technical challenge in terms of
convergence. Additionally, since the transmit power adaptation might not suffice to cater
for the temporal/spatial-varying load, balancing the traffic load via changing the user
association and/or turning on additional BSs (or a different set of active BSs) may be

required.
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3.3.4 Integrated Approach: Dynamic Cell Reconfiguration (DCR)

So far we have developed three pieces of energy saving techniques (i.e., active
BS selection, transmit power budget adaptation and user association) in a static scenario.
To tackle the challenge of time-varying traffic with a mixture of load-increasing and
decreasing BSs mentioned above, this section presents an integrated DCR framework.
This framework jointly optimizes all of our techniques developed so far in a systematic
way towards a single goal, i.e., energy savings while ensuring that the QoS requirements
of all users are met. In the proposed DCR, three techniques with different control time
scales interact with each other as follows. Please see the flowchart in Fig. 3.2 for a
pictorial description.

The active BS selection algorithm described in Section 3.3.2 periodically (every
T, time units, e.g., half hour in our simulations’) determines a minimal set of BSs to
remain active and turns off the other BSs, followed by the user association update. For
each active BS i € B,,, if p; does not exceed p,;,, the transmit power budget adaptation
described in subsection 3.3.3 can play a role in reducing further power consumption. On
a much faster time scale than the active BS selection, the BS adapts its transmit power
according to the current BS utilization p;. We would like to mention that the transmit
power adaptation is carried out in a manner transparent to the users, in other words,
it does not change user association unless the BS utilization reaches p;;,. In this way,
unnecessary handover can be avoided.

As time goes on, BS i may experience high cell loading p; > p;; due to the
increased traffic. In this case, the transmit power is immediately reset to pi*®*, i.e., a

fast fallback to continue guaranteeing the QoS. After increasing the transmit power

3Many measurement studies (e.g., [48]) reported that the traffic load clearly varies over time (as well as
space) but could be assumed almost constant during a certain period of time, e.g., typically one hour. Since
the time scale for determining the set of active BSs would be similar to the order of traffic changing, its
period is set at half hour in our DCR framework.
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Figure 3.2. Flowchart of the integrated DCR framework
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to its maximum, if the BS utilization p; goes down below the threshold p;;, then the
power adaptation can now be carried out. Otherwise (even the maximum transmit power
cannot lower the utilization enough), we recall the active BS selection algorithm to find a
different set of active BSs to be switched on. To this end, we reset B,,, = B to consider the
entire BS set as candidate active BSs, which allows us to have a wider choice of selection
and may lead to a more energy-efficient solution. Lastly, there is an underlying user

association algorithm, which is performed whenever a new user arrives to the network.

3.3.5 Discussion on the implementation of DCR

Complexity: It is worth analyzing the applicability of the proposed framework
in terms of computational complexity. In particular, we concentrate on the active BS

selection since it is relatively more complex than the other two techniques. Given the

18]

N ) possible combinations to choose n active

number of candidate BSs | B |, there are (

BSs. The total complexity of an optimal algorithm that finds the best set of BSs through
18|

N ), which grows exponentially with the number of BSs, i.e.,

exhaustive search is Z'ﬁ'l (
0(2'3 |). On the other hand, however, the proposed active BS selection algorithm only
requires O(| B |?) (i.e., see the pseudo code in subsection 3.3.2: linear complexity in
the line 4x the number of iterations at most | B |), which makes it much easier to be
implemented in practice. This linear complexity is because the proposed algorithm turns
off the BS with a given metric one by one until there is a net energy saving.

Our framework assumes a centralized network controller for running a centralized
piece of DCR framework, i.e., active BS selection. Such a centralized controller can be
radio network controller (RNC) in the 3G universal mobile telecommunications system
(UMTS) access network or mobility management entity (MME) in the 4G long term

evolution (LTE) access network. Each RNC or MME, running one instance of the active

BS selection, is responsible for controlling the BSs (nodeB in UMTS or enodeB in LTE)
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that are connected to it. In practical systems, the typical number of BSs connected to the
RNC or MME is a couple of dozen. This would give an idea of how much complexity
reduction our algorithm offers. For instance, 0(2%° ~ 10”) vs. 0(900) when | B |= 30.

Group handover: When a BS is turned off for energy-saving purpose, UEs served
by the BS need to be transferred to one of its neighboring BSs according to the user
association algorithm presented in Section 3.3. This procedure is nothing new compared
to the conventional handover except the fact that many UEs should be handed over
simultaneously which implies a lot of control signalling.

There have been some studies done on the group handover [71], originally targeted
to support passengers on mass transportation such as buses or trains. If this type of
technique is used together with our framework, then, it would help reducing the possible

performance degradation due to excessive control overhead.

3.4 Simulation Results

We evaluate the performance of the proposed DCR framework though simulations.
Typical maximum transmit power for macro BSs and their maximum operational power
are considered to be pi"®* = 20W and P;"** = 865W (with the coefficients ¢; = 22.7 and
b; =411) according to [58], respectively. The static power portion g; is assumed to be 0.5,
but we will examine the effect of varying this parameter in subsection 3.4.4. In generating
the user traffic, all intersection points on a rectangular grid with 30 m in the network
are considered as a set of candidate locations for the user arrival. Each user arrives at
location x following a Poisson point process with arrival rate A(x) and generates one file
request with mean 1/u(x) = 100Kbyte. We vary the traffic demand y(x) = A(x)/u(x)
[bits] by changing its arrival rate A(x). Other parameters including channel modeling for

the simulations follow the urban macro model as presented in the 3GPP technical report

[72].
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Figure 3.3. Snapshots of coverage: the maximum penalty Ly, = };c pmax and sharpness
of the penalty function 8 = 2: (a) Without penalty (p,, = 1) and (b) with penalty (o, =
0.5)

3.4.1 Load Balancing via Penalty-based User Association

We shall start by demonstrating the effectiveness of the proposed user association
algorithm. A simple network composed of five active BSs in 2x2km? and the spatially
heterogeneous traffic load are considered, i.e., the required rate y(x) o< (max(r) —r)’
where r is the distance from the center. So the area in the center, mostly covered by BS 1,
can be interpreted as hotspot. In order to see how the proposed user association algorithm
balances traffic loads, we plot Fig. 3.3 illustrating snapshots of BSs’ coverage areas
for the cases (a) without and (b) with penalty function. We can easily notice the effect
of introducing the penalty function L; into the reconfiguration algorithm by comparing
the two figures. With penalty, some users leave the congested BS 1, as indicated by the
shrinking of cell 1 in Fig. 3.3, and associate with neighboring BSs 2-5, which are actually
under-utilized.

Such a load balancing comes at the cost of slight increase in dynamic power

consumption. In order to show this tradeoff, we manually calculate the delay performance
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Figure 3.4. Tradeoff between delay and total power consumption by varying the BS
utilization threshold p;; from 0.5 to 1.0

as a yardstick of load balancing by assuming M /M /1PS queue * In Fig. 3.4, the average
delay is the average performance of these five cells and the worst delay is the highest
delay among five cells (usually, happens in the hot spot cell covered by BS 1). The less
delay means the less congestion (i.e., the more effective load balancing). As shown in
Fig. 3.4, the power cost is marginal compared to the delay benefit we can expect. For
example, in the case of p;;, = 0.7, there are 39% and 47% reductions in the average and
worst delay, with 0.56% (2,838 W to 2,854 W) increase in power consumption. Note that
this tradeoff graph may also be used to choose p;j, in practice based on the maximum
tolerable delay. In the rest of simulation study, we set p;;, = 0.7 as it gives the most of

benefits from load balancing with minimal power cost.

“Under M /M /1 processor sharing (PS) queue, the expected number of flows in cell i is p;(1 — p;).
With the help of Little’s law, dividing it by the system arrival rate that is the integration over A(x) over its
coverage area, we can obtain the expected per flow delay in the cell.
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3.4.2 Power Savings Under Static Traffic Load Scenario

Effectiveness of active BS selection: Let us first investigate the performance
of active BS selection together with the user association (i.e., UA-BS). To have more
realistic results, a topology with fifteen BSs in 4.5x4.5km?, a part of 3G network in
metropolitan area [73], is adopted (see Fig. 3.5). For comparison, we also consider three

other schemes:
e All-on (conventional scheme): always turning on all BSs.

e Util-based: turning off the least utilized BS one by one which is shown to be an

effective heuristic in [65].
e Exhaustive: finding an optimal set of BSs through an exhaustive search.

Fig. 3.5 shows snapshots of the active BSs and their coverage areas at the
normalized traffic load® = 0.3 for different schemes. All-on keeps all BSs turned on at
such a low load, which naturally leads to energy inefficiency. However, the proposed
active BS selection algorithm (with linear complexity) and exhaustive scheme (with
exponential complexity) turn off eight and nine BSs for energy conservation, respectively.
As a consequence, the remaining BSs dynamically reconfigure their cells (i.e., cell
zooming).

In our simulations under various configurations, the proposed algorithm often
finds a near-optimal solution that has the same number of active BSs as exhaustive and
just one or two more in the worst case. It is also worthwhile investigating the static
and dynamic power consumption breakdown: UA-BS (4.46kW = 3.03kW +1.43kW)

vs. exhaustive (4.25kW = 2.60kW + 1.65kW). US-BA consumes more static power

5In our simulation, the normalized traffic load [no unit] is the traffic load normalized by the traffic load
at peak time.
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Figure 3.6. Total power consumption with different schemes under static traffic load: (a)
Uniform traffic distribution and (b) non-uniform traffic distribution

than exhaustive scheme due to the higher number of active BSs, while it consumes less
dynamic power.

The total power consumption of the cellular network as a function of the static
normalized traffic load in both (a) uniform and (b) non-uniform® traffic distribution
is evaluated in Fig. 3.6. Our results show that a brute-force util-based works well
in the uniform environment, but not in non-uniform environment. However, UA-BS
always outperforms util-based, and moreover its performance is very close to that of the
exhaustive search solution. Compared to the static All-on scheme, it yields the potential
energy savings of 10-60% depending on the amount of traffic and its spatial distribution.

Further from Fig. 3.6, we can see that UA-BS can clearly reduce more power
consumption compared to All-on and util-based in non-uniform environment than uniform
environment. This is because the non-uniform environment has more spatial variations
(e.g., extremely under-utilized BSs and high-utilized BSs in different areas at the same
time), which allows the active BS selection algorithm to turn more BSs off in sparse

areas, as opposed to the environment where all BSs have a similar level of utilization.

A linearly decreasing traffic along the diagonal direction from left top to right bottom in Fig. 3.5 is
considered to generate non-uniform environment.
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Effectiveness of transmit power budget adaptation: We will now validate the
performance of another piece of our energy-saving techniques, which is the transmit
power budget adaptation coupled with user association (i.e., UA-TX). In order to see the
pure benefit of adapting transmit power, we do not consider turning off BSs here, but
the other simulation environment remains the same. In Fig. 3.6, the dotted line shows
the total power consumption with the transmit power budget adaptation. As can be seen,
compared to All-on operating at maximum transmit power, the proposed algorithm can
reduce the total power consumption by 1.37 kW (when normalized traffic load = 1) =
2.53 kW (when normalized traffic load = 0.1) under uniform environment, and by 1.95
kW= 2.79 kW under non-uniform environment, respectively.

We will next the compare the two proposed algorithms, UA-TX and UA-BS.
Under uniform environment, we see that the performance gap between the two schemes
is much lower than that under non-uniform load conditions. This is due to the difference
of utilization levels under uniform and non-uniform traffic distributions, which allows
less or more opportunity for UA-BS to switch off BSs as explained in the previous
subsection. Above a certain traffic load condition, it is not easy for UA-TX to get more
savings. This is mainly because we cannot turn off a BS unless we can ensure its traffic
to be transferred to neighboring BSs. On the other hand, however, UA-TX can get some
savings (even if little) as long as there is any unused power budget. This explains why
UA-TX outperforms or performs comparably to UA-BS as the load increases.

We will conclude the comparison with a note on the overheads introduced by
switching off BSs in UA-BS and transmit power adaptation in UA-TX. The user associ-
ation adaptation is common to both the algorithms and overhead due to user handover
is discussed in subsection 3.3.5. Another overhead is the exchange of message/control
information. UA-BS primarily requires utilization information whereas UA-TX mainly

relies on interference information from neighboring BSs. The amount of information
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Figure 3.7. A sample real-traffic trace during 48 hours

would not be a big deal and may be considered to be marginal compared to the large
volume of data traffic. However, the frequency of information exchange could be costly,
especially in UA-TX, as transmit power adaptation is carried out at much faster time
scales (e.g., an order of minutes) than switching off BSs (e.g., an order of hour or so). In
order to implement the algorithm in practice, more attention needs to be devoted to this

kind of overhead problem.

3.4.3 DCR Framework Under Dynamic Traffic Load Scenario

In this section, we will discuss the performance of the whole DCR framework
including user association, active BS selection and transmit power budget adaptation.
In order to have more realistic results and at the same time to examine the potential
savings in response to time-varying load, we adopt a sample traffic trace [48] shown
in Fig. 3.7. The trace, originally obtained from an anonymous cellular operator, gives
the variation of BS utilization with a temporal granularity of 10 min across 48 hin a
metropolitan area. The other simulation settings, such as the network topology, channel

and power consumption modeling, are exactly the same as the ones used in previous



89

16—

2]
[0}
A
@
i
©
I
B
o]
o
S
=0
2 e [ AlOn
: f f : || =— UA-BS-TX, Uniform
O oefremrbersesioest | == JA-BS-TX, Non-Uniform]
0 4 8 12 16 20 24 28 32 36 40 44 48
Time [Hr]

Figure 3.8. Number of active BSs

sections. For performance comparison, we consider All-on as a baseline, and we compare
its performance with (i) active BS selection technique used in conjunction with user
association (i.e., UA-BS) and (ii) the integrated DCR framework including all algorithms
we have proposed so far (i.e., UA-BS-TX).

Fig. 3.8 shows the number of active BSs selected by UA-BS-TX under uniform
and non-uniform environment. For reference, we also plot the number of active BSs
for All-on, which is always equal to the total number of BSs. As the transmit power
adaptation is carried out based on B, given by active BS selection, UA-BS-TX and
UA-BS have the identical number of active BSs. Therefore, we illustrate only the result of
UA-BS-TX here. As can be seen in Fig. 3.8, there is room to turn off some BSs most of
the time except at peak time. For example, under the uniform (resp. non-uniform) traffic
distribution, up to 8 (resp. 12) BSs can be turned off during low traffic periods for energy
conservation by the proposed UA-BS-TX. This is in contrast to the energy-inefficient
scheme, all-on, which turns on all the 15 BSs at all times irrespective of the distribution
and the amount of load.

Fig. 3.9 shows the total power consumption of the cellular network in response
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Table 3.3a. Total energy use of different schemes and energy savings compared to All-on
scheme in different hours for the uniform environment

Overall Peak Off-Peak
All-On 367.80 kWh | 143.98 kWh | 109.59 kWh
UA-BS 281.63 kWh | 134.26 kWh | 59.29 kWh

(23.43%) (6.75%) (45.90%)
UA-BS-TX | 238.09 kWh | 118.95 kWh | 45.59 kWh

(35.27%) (17.38%) (58.40%)

Table 3.3b. Total energy use of different schemes and energy savings compared to All-on
scheme in different hours for the non-uniform environment

Overall Peak Off-Peak
All-On 337.37 kWh | 123.47 kWh | 107.63 kWh
UA-BS 185.06 kWh | 91.56 kWh | 36.04 kWh

(45.15%) (25.84%) (66.51%)
UA-BS-TX | 157.97 kWh | 79.56 kWh | 30.16 kWh
(53.18%) (35.56%) (71.98%)

to the time varying load. As expected, All-on scheme consumes the highest total power
for all load conditions. UA-BS achieves lower total power consumption than All-on
as it switches on/off BSs dynamically depending on the traffic load. However, since
it operates at p = p™“4*, its total power consumption is higher than that of UA-BS-TX,
which additionally adapts the transmit power as well.

Tables 3.3a and 3.3b summarizes the total energy use of different schemes in
different hours: Overall (during 48 h), peak times (2-10 and 26-34 h) and non-peak times
(14-22 and 38-46 h). The numbers in parentheses represent the percentage of energy
savings compared to All-on scheme. In overall, UA-BS-TX can provide a significant
amount of energy savings, e.g., 35.27%and 53.18% under uniform and non-uniform
traffic distribution. The energy savings are mostly obtained from turning some BSs off
and the transmit power adaptation contributes to about 10% extra savings. More savings
under the non-uniform environment is due to less number of active BSs than the uniform

environment as shown in Fig. 3.8.
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Figure 3.10. Effect of static power portion ¢g; on maximum energy savings

It is also worthwhile mentioning that the transmit power control relatively be-
comes dominant at peak times in terms of the percentage of the energy savings. For
instance, in the case of uniform traffic distribution, more than half of the energy savings

comes from adapting the transmit power.

3.4.4 Effect of the Portion of Static Power Consumption g;

Fig. 3.10 illustrates the effect of varying the static power consumption weight g;
on maximum power savings possible (at a low load = 0.2) over All-on. As expected, there
is no gain at ¢; = 0 because energy-proportional BSs have no standby power dissipation.
The savings achieved by UA-BS is always better than UA-TX but the performance gap
decreases as the contribution of static power increases (i.e., g; value increases). For
example, at g; = 1, nearly 50% savings for either UA-BS or UA-TX are possible while the
integrated DCR framework including all three energy saving techniques (i.e., UA-BS-TX)
can obtain more than 70% savings. Given that current and near future BSs are operating

in the high ¢; range, the proposed DCR energy saving techniques would bring huge

benefit to the cellular networks.
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3.5 Summary

In this chapter, we proposed a novel dynamic cell reconfiguration framework
for BS energy saving that encompasses active BS selection, transmit power budget
adaptation and user association in cellular wireless networks. Through analytical and
simulation studies, we demonstrate the effectiveness of our DCR framework. The
proposed framework can achieve significant savings during periods of low traffic such as
at night and provide considerable savings even at peak time. We also made an interesting
observation that high savings are expected, especially, when the portion of static power
consumption of BSs is high. The proposed framework brings many interesting research
opportunities, for example, we are currently investigating the impacts presented by DCR
on the cellular uplink.

Though the DCR techniques developed result in significant savings in cellular
network power consumption, the underlying operation of BS on/off requires tens of
minutes for completion and will not be able to respond to finer time scale variation
in BS load. This could potentially lead to coverage holes and thereby degradation in
user experience. We address this in the next chapter by developing dynamic RF chain
switching techniques that minimize the power consumption of cellular networks while

ensuring that there are no coverage holes in the cellular networks.
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Chapter 4

User QoS-aware Adaptive RF Chain
Switching for Power Efficient Coopera-
tive Base Stations

4.1 Introduction

By 2022, the expected number of mobile subscriptions and the resulting mobile
traffic is expected to reach 8.9 billion subscriptions and 69 Ebytes respectively [74]. To
cater to the explosive growth in mobile data subscriptions and traffic, it is estimated
that the total number of base stations (BSs) in cellular networks all over the world
will grow to 11.2 million by 2020 [3], a 47% increase compared to the number of BSs
deployed in 2014. Further, deployment of massive number of antennas at BSs is seen
as a promising paradigm to increase data rates [4]. This is expected to increase the
electricity consumption and thereby, decrease the energy efficiency of cellular networks
[4]. Specifically, the electricity consumption of BSs which constitutes 80% of electricity
consumption of cellular networks is estimated to increase from 84TWh to 109TWh
by 2020 (38% increase from 2014) if measures are not taken to reduce the power
consumption of BSs. The increasing electricity consumption has two effects - (a) the
carbon equivalent emissions is estimated to increase to 235 Mto CO,. by 2020 (a 37%

increase from 2014) [3] and (b) the electricity bill which currently contributes to 10-15%

95
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of the operating expenses in developed markets and about 50% [5] in developing markets
will further increase. Hence, increasing the power efficiency of base stations becomes a
critical requirement to reduce growing operating cost for mobile operators and to comply
with the trending global desire to reduce energy consumption and carbon footprint, and
increase sustainability.

Amongst many components of the BS, the power amplifier (PA) in RF chain
consumes about 65% [75] of the total power consumption in the BS. Further, multi-input
multi-output (MIMO) BS providing high data rates and enhanced coverage uses multiple
RF chains which increase the contribution of RF chain power consumption. Consequently,
to reduce BS power consumption, it is vital to develop techniques that can lower RF
chain power consumption.

The total power consumption due to RF chains is determined by the number of
active RF chains, transmission power, transmission bandwidth and duration of transmis-
sion required to satisfy the Quality of Service (QoS) i.e., throughput and block error
rate (BLER) requirements of the users. Given the user association (UA), there may exist
multiple combinations of the above-mentioned BS resources that satisfy the users’ QoS
requirements and which result in varying levels of BS resource utilization and RF chain
power consumption [76].

Moving from single BS to cluster of BSs which have overlapping coverage
areas, there may be multiple users located in the coverage area of more than one BS.
This implies that there may exist multiple combinations of UA across the cluster BSs
which will satisfy the QoS requirements of all the users associated with the cluster BSs.
Different combinations of UA can result in different BS resource utilizations and hence
RF chain power consumption.

In this chapter, we propose a cooperative adaptive RF chain switching technique

which explores the BS resource and UA spaces to maximize the number of RF chains
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Figure 4.1. Comparison of related work with the proposed Co-RFSnooze technique

that can be switched off to minimize RF chain power consumption and thereby power
consumption of the BSs in the cluster. While trying to adapt the BS resources and UA,
the proposed technique ensures that individual BS utilization constraints are not violated

and QoS requirements of all the users in the cluster are satisfied.

4.1.1 Related Work

In this section, we will briefly describe prior work related to BS resource and UA
adaptation to achieve adaptive RF chain switching (RFS) and power efficient operation
of cellular networks. The relevant techniques are grouped in to three categories based
on (a) the number of BSs considered for applying the BS on/off, BS resource and UA
adaptation techniques and (b) the use of coordinated multi-point (CoMP) transmission.
Note that, though BS on/off switches RF chains, it is not adaptive as BS on/off either
switches on or off all RF chains. Further, in each category, techniques are distinguished
based on time scale of operation. We will refer to time scales of milliseconds to minutes

as short time scale and tens of minutes to hours as long time scale. The above described
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grouping is shown in Fig. 4.1.

We will first discuss the techniques applicable to a single BS as shown in the
bottom row of Fig. 4.1. The technique (termed Min-Cost in [76] and RFSnooze in this
chapter) proposed in the preliminary version of this work [76] adapts the number of RF
chains, time slots and frequency blocks while satisfying both the users’ throughput and
BLER requirements as well as BS utilization constraints. Authors in [77] propose data
rate, power, RF chain and subcarrier allocation in a manner that maximizes the energy
efficiency of data transmission of a single BS. The technique proposed in [78] jointly
maximizes transmitter and receiver energy efficiency of a single BS and associated users.
In contrast to the above single BS techniques, the proposed short time scale Co-RFSnooze
technique is applicable to cluster of cooperating BSs. It extends [76] to jointly adapt
the individual BS resources as well as the UA of all the cluster users (Section 4.3.4) to
maximize the number of RF chains that can be switched off in the entire cluster and
minimize the cluster power consumption. We will next discuss the techniques which are
applicable to a cluster of cooperating BSs that do not use CoMP transmission (middle
row, Fig. 4.1).

Dynamic BS on (active)/off (inactive) techniques switch BSs on or off based on
number of associated users [79] and the estimated savings in power consumption due to
switching off of BSs [80]. The above techniques switch off all the components of a BS
which takes tens of minutes and can be classified as a long time scale operation. Though
short time scale operations of BS resource and UA adaptation are applied to the subset of
active BSs, long time scale switching off of BSs could potentially lead to coverage holes.
Coverage holes are a major concern for the operators as a user in the coverage hole will
not receive coverage. In contrast, our proposed approach adapts BS resources and UA on
a short time scale enabling finer tracking of the BS load and finer control on BS power

consumption without degrading coverage capabilities.
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The Co-Nap technique proposed in [81] implements short time scale BS on/off
by adapting the number of “nap” (sleep) time slots for the cluster BSs in a coordinated
manner. As all the BS RF chains are switched off in the "nap” time slots, it reduces BS
power consumption. Unlike the Co-Nap strategy which adapts only the on/off pattern
of BSs, the proposed Co-RFSnooze technique jointly adapts BS resources and UA to
achieve adaptive RFS. We will demonstrate in Section 4.4.2 that this joint adaptation
achieves higher power efficiency compared to Co-Nap.

Next, we will discuss techniques that are applicable to cluster of cooperating
BSs using CoMP transmission (top row, Fig. 4.1). The long time scale technique in
[82] determines the BS and RF chain on/off pattern, UA and power allocation and the
short time scale technique in [83] exploits the varying delay tolerance of users to enable
time slot based BS sleep. The throughput requirements of the users associated with
the inactive BS in [82]-[83] are met through CoMP transmission by the active BSs
in the cluster. The authors in [84] propose a resource allocation algorithm for full-
duplex, distributed antenna, multi-user communication network that minimizes the power
consumption of cluster of BSs by dynamically switching off RF chains while satisfying
the QoS requirements of downlink and uplink users. The above techniques require
sharing of the channel state information (CSI) and data of all the users in the cluster via
the backhaul to compute the multi-cell precoding matrix to perform CoMP transmission.
The proposed Co-RFSnooze technique does not utilize CoMP transmission and instead
proposes novel heuristics and combination of centralized-decentralized framework that
requires sharing of only the user QoS and association information to significantly reduce
the communication via the backhaul. As shown in Fig. 4.5b (Section 4.4.2), there are
270 users in the cluster during high load and the techniques [82]-[84] will require sharing
CSI information and data of all the 270 users whereas the proposed technique requires

user QoS and association information of only 35 users (users transferred shown in Fig.
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4.6b).

The technique proposed in [85] determines the BS-user association for CoMP
transmission and performs joint spectrum and power allocation to minimize the total
cluster transmission power. However, [85] does not dynamically switch off RF chains
and always maintains them in the on state. In contrast, the proposed Co-RFSnooze
technique performs BS resource and UA adaptation to dynamically switch off RF chains
in the cluster. This can potentially result in higher power savings compared to [85]
which always switches on all the RF chains (demonstrated in Section 4.4.2 by significant
savings compared to All-On/Co-Nap which switches on all RF chains)

From the above description of the prior art, to the best of our knowledge, this is

the first work

e that dynamically switches RF chains in a cluster of cooperating BSs by jointly
adapting BS resources and UA on a short time scale to minimize the average cluster

power consumption in a transmission frame.

e that jointly adapts BS resources and cluster UA in a manner that the cluster user’s

QoS requirements and the BS resource utilization constraints are satisfied.

e that does not require BS switching and expensive CoOMP data transfer and matrix

computations to adaptively switch RF chains in a cluster of cooperating BSs.

The rest of the chapter is organized as follows. Table 4.1a summarizes the
notations used. Section 4.2 describes the system model and the optimization problem.
In Section 4.3, we propose a heuristic algorithm to solve the optimization problem. In
Section 4.4, we provide simulation results under a practical configuration. Finally, we

conclude the chapter in Section 4.5.
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Table 4.1a. Summary of notations

B, BW Set of BSs in the network, Transmission bandwidth of BS b € 8
S,R Maximum number of RF chains at BS and user
P}, PMex | Transmit power and maximum transmit power of BS b
tf Duration of frame
7 TATI Number of time slots in a frame, Number of active and idle time
7 slots in a frame
[0 4Sw Duration over which all RF chains are off in a frame, RF chain
’ switching duration in a frame
gA GO gSw Number of active and off RF chains in time slot ¢, Number of RF
tomre chains switching state in a frame
L Number of frequency blocks in time slot # € T', Frequency utiliza-
st tion of RF chain s in time slot ¢
m,M Transmission mode and set of all transmission modes
s15(m) Number of BS RF chains allocated by BS b to the i" user for mode
m
Number of RF chains allocated by i/ user associated with BS b
rip(im) for mode m
diy(m) Number of independent data streams received by i’" user associated
with BS b for mode m
rn | Throughput requirement of i’ user, Upper bound on BLER re-
Yis BLE Ri . .th
quirement of i'" user
H. SINR. Channel matrix between i’ user and BS b, Signal to interference
ib> i | noise received by i'" user from BS b
TPy BLER; Throughput provided by BS b to i’ user, BLER provided by BS b

to i user




Table 4.1b. Summary of notations - continued
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Ip Set of users associated with BS b
I ;,VT, IbT Zet of non-transferable and transferable users associated with BS
T~ Subset of I users associated with BS b that require the same set
b of RF chains and time slots as users / ]17\/ T
P!, PO, PS5 | 1dle and off power consumption of BS, PA switching power
Ap Power gradient
PP Average power consumption of BS b in a frame, Average cluster
hoc power consumption in a frame
G, |C| Set of cluster BSs and number of cluster BSs in cluster C
~NT 7 | Setof users in cluster C, Set of non-transferable and transferable
Ic, 127, 1 el
users in cluster C
BS-user matrix of size |C|x|I¢|, entry in BSU matrix of BS b for
BSU, kpi | .41
i'" user
E; Set of BSs that satisfy i user’s mode SINR threshold
g E Transferor BS, set of transferee BSs
RFU Number of active RF chains to users ratio

4.2 System Model and Problem Formulation

4.2.1 Network, Channel and User QoS Models

Consider the downlink communication in MIMO-Orthogonal Frequency Division
Multiple Access (OFDMA) cellular network with set of BSs 8 as shown in Fig. 4.2.
The overall bandwidth BW is divided in to J equally sized frequency blocks and the
transmission frame of duration 7 is divided in to T equally spaced time slots, each
of duration % The maximum number of RF chains that can be active at BS b € 8
and each user device are S and R respectively. We will define a transmission mode m
as m = (s(m),r(m),d(m)) where s(m) € [1,S] is the number of BS RF chains required
for mode m, r(m) € [1, R] is the number of RF chains required at the user device and
d(m) = min(s(m),r(m)) is the number of independent data streams transmitted by mode

m.
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BS

@ Non-Transferrable user
M Transferrable user

BS Cluster € = {B1,B2,B3,B4} € B 7
T ‘ BWH H H H BS RF Chains and
TR R 51_52}53_54 Bandwidth
T1 T2 T10 § = {s1,52,53,54
YT = (U3,Us) L !
By TN
User RF
TLT2  T0 Ey={BS51.852} A 234 |chains
I = (U2,U6} — (r1 7253 74
1T = (U8, U9} Y% bsa !;I EI il . = {Tzﬁlir,‘zfra"r‘ﬂ
N T10 TR T
EEB _ {{i‘?; ‘g‘z,?} ug =g TiT2 T |Number of time slots
9 4 =1 T and frame duration
E, = {BS2,BS3)
I?T:{U‘l’}” | | Hz “di if
I3={) g . s1s 1L 12 IMode myp, = {Sip, Tip dip}
L s;p = {s1,52} Tip = (1,72}

BS — User Signal

(SINR,,, TP, BLER,, ! 1

Figure 4.2. System block diagram

We assume single-input single-output (SISO) and Single User-MIMO (SU-
MIMO) including spatial multiplexing (SM) and spatial diversity (SD) modes for trans-
mission. We will denote the set of all possible transmission modes as M. In the work
presented in this chapter, mode selection is done once every transmission frame and the
mode m;;, € M selected for the i’ user by BS b does not change within time slots of a
frame. Hence, the number of RF chains s;;,(m) allocated by BS b to the i’ user, number
of RF chains r;,(m) allocated by the i" user device and the number of independent data
streams d,(m) received by the i’ user remains identical for all the active time slots of
the frame.

Let I;, denote the set of users associated with BS b/ and IZ C I denote the subset of
‘transferable’ users who are in coverage area of BSs b~ € 8\ b in addition to being in the
coverage area of BS b. For cooperative RF chain switching, we propose to adapt the UA
of such transferable users which lie in the coverage areas of multiple BSs. This motivates
us to consider group or cluster of BSs C € 8 having overlapping areas of coverage

enabling cooperation and UA adaptation. In the work presented in this chapter, we adopt
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the network centric clustering of BSs wherein BSs are grouped together statically based
on network planning considerations [86]. Like used extensively in related research [81]
and [87], we assume that the set B can be divided in to disjoint clusters of BSs and the
size of each cluster is |C| where |X| denotes the cardinality of set X. We also assume
that all the BSs in the cooperative cluster can communicate with each other via the X2
interface.

We assume block fading channel between BS b and the i user over the entire
bandwidth (J frequency blocks) in a frame (7 time slots) represented by the complex
channel matrix H;p € C"**%i* of rank A < d;;,. The noise at each user’s receiver is assumed
to be additive white Gaussian with zero mean and variance o->. We assume that the user’s
channel state information (CSI) including channel quality information (CQI) and Rank
Indicator (RI) is available at the BS.

Assuming that the transmit power PZ" of BS b is equally divided over all fre-
quency blocks and transmit antennas, the signal to interference-noise ratio (SINR) re-

ceived by the i user is

P} H;,H]]
SINR;, = . T 7 4.1)
Tsiv Lpe\p Py Hip-Hip + 072
The throughput T P;;, from BS b to i'" user is given by
Tip
BW
TPy =— ; Tiplog,[det{I,, +SINR;}] (4.2)

where Tj, is the number of time slots and J;;;, is the number of frequency blocks

assigned in time slot ¢ € [1,T;] by BS b to the i’ user and 1,

rp 18 @ ripxr;p 1dentity matrix.
The BLER;;, achieved for the i"" user depends on the BS transmit power PI*, channel

H;j, and the mode m;p,.
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BLER;, = f(P} ", H;p, mjp) (4.3)

In Section 4.3.2, we elaborate how a look up table can be used in lieu of the
function in (4.3). Henceforth, user QoS will refer to the user’s throughput and BLER

requirements.

4.2.2 BS Power Consumption Model

The RF chain consists of PA and RF chain transceiver circuitry. PA is the major
contributor to BS power and has four states of operation namely, off, idle, active and
switching states [88]. PA is switched off in the off state, and it is on but not transmitting in
the idle state. PA transmits in the active state and the power consumption comprises of the
idle power and transmission power. The transmission power consumption depends on PA
efficiency, transmit power (assumed constant), bandwidth and duration of transmission.
The switching power is comparable to idle power, however, the switching duration is
much lower than time slot duration. Hence, the contribution of switching power is
much lower than that of idle power when power consumption is averaged over the frame
duration.

The baseband signal processing, DC-DC conversion, AC-DC conversion and
cooling modules of the BS contribute significantly to BS power consumption. As
they cannot be switched at the time scale of PA, the power consumption of the above
modules has a baseline component independent of the PA state and an additional power
component which scales with bandwidth of transmission when PA is transmitting. We
adopt the model presented in [89] which captures the characteristics of BS module power
consumption described above. The model in [89] is extended to include the off and
switching power of PA and is briefly described below.

The frequency utilization ¢, of RF chain s € [1,S] in time slot # € [1,T] due to
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| I, | users is

% lelz”ﬂ Jsi, 1f PA is in active state
Vst = (4.4)
0, if PA i1s in idle or off state

where Jy;; is the number of frequency blocks assigned on RF chain s € [1, 5]
in time slot ¢ € [1,7] to the i"" user. As in LTE systems, we consider frequency block
allocation on a per time slot basis in a frame [90] to determine 5,. The number of active
RF chains in a time slot  is SA =| {s : ¥; > 0} |. The number of active and idle time
slots in a frame is given by 74 =| {t: SA >0} |, T/ =| {t : SA=0A3s € [1,5] : sis on} |.
Denoting the duration of PA switching as 5" and the number of RF chains switching
in a frame as S°%, the duration of all the RF chains in the off state in a frame is t¢ =
tF = C(TA+ T - 5755w,

Using the above definitions, the average power consumption of BS b with § RF

chains in a frame with 7 time slots is

| W Sib, 11|
Py = t—F(Z(S;;)PI F AP NN Wit
=1 s=1 i=1 (4.5)

(S=83)P?) +STLP") + St0 PO + 5,1, PS"

In the model above, P is the BS power consumption when the PA is switched
off and includes the idle power consumption of all components excluding the PA and the
off state power consumption of PA. The load independent term P’ represents the idle
power of PA and the other components. The BS power consumption in the active time
slots includes the baseline idle power component given by S;}?P’ and the active power
due to transmission modeled as the load dependent term A, PY4*. The load dependent
term Apl/lstPM %% increases linearly with only frequency utilization ¢, as power gradient

(slope) A, and maximum transmit power PM“* are maintained constant. In the proposed
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technique, PA is either in the active, off or switching state. Henceforth, 7/P! is not
a contributor to Py. Defining S = {S/ : 7 € [T} and ¢y, = {¢si : s € [1,S])1 €
[1, Tl’;‘],i € [1,| Ip |]}, the average cluster power consumption in a frame is given by

IC]
Pc= ) Py=f{(pT}.Spun) : beCh) (4.6)
b=1

4.2.3 Problem Formulation

We can infer from (4.2-4.3, 4.5) that the QoS requirements and channel conditions
of I, users determine the aggregate BS resource utilization and P,. At the individual
BSs, given I, the BS resource space formed by number of RF chains S, time slots 7" and
frequency blocks J can be explored during user mode selection to minimize Pj. At the
cluster level, adapting the association of users I¢c = Upeclp will adapt the aggregate BS
resource utilization and P;,. However, the association of all the users I,Vb € C cannot be
adapted. This is because for every b € C, there may exist a set of non-transferable users
1 11)\' T'C I, that lie in the coverage area of only BS b and cannot be transferred to any other
BS b~ € C\ b (see Fig. 4.2). The association of set of transferable users IZ =1\ IéVT
can be adapted as they lie in the coverage area of at least one more BS b~ € C \ b and
can be transferred to BSs {»~}. From the above description of / ;)V T and IZ, we can see
that lz)v T'n IZ = (QVb € C. Further, assuming that a user is associated with no more than
one BS, I N1, = 0 even though useri € Il{ is located in the coverage area of BS b™.
Using the above, the set of cluster users is given Ic = INT UIL where IV = Upec I’ and
Ig =V bechT is the set of non-transferable and transferable cluster users respectively. The
sets Ig and C together form the UA space that can be explored to adapt the set of users
associated with BSs b € C and affect the individual BS resource utilization.

The objective of the BS and UA resource adaptation is to maximize the number
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of RF chains that can be switched off in the cluster to minimize P¢ while satisfying the
QoS requirements in (4.2-4.3) for all the cluster users and not exceeding the BS resource
utilization limits. The objective and constraints form the optimization problem stated
below. Note, a single cluster C and associated users /¢ is considered unless otherwise

mentioned.

IC| s i, 11|

min )’ tiF(Z(S;,‘,P’ F AP NN Wit (4.7)

b=1 t=1 s=1 i=1

(S=S4)P?))+ Sty PO + 8. 1" P>

Subject to: TP;, > y;, Vi € Ic 4.8)
BLER;, < BLER!" Vi€ I¢ (4.9)
lF

- LS <tfvbeC (4.10)
SA <SVte[l, T}, VbeC (4.11)
Wap < LVs € [1,851, Ve € [LLTA Vb e C (4.12)

To minimize (4.7), the optimization variables are the sets 1. = Upecl, and
{le‘, {S;Z}, {Yspt:beC,te [I,Té“],s € [I,SZ/Z]}. The idle power and transmission power
of the BS due to active RF chains (first and second terms in the summation over TbA in
(4.7)) are the dominant components of Pj, (Section 4.2.2) and thereby, Pc. On the other
hand, the off power due to inactive RF chains given by the third term in the summation
over TbA is much lower than the static and dynamic powers and hence contributes less
to the BS power consumption. This implies that the number of active RF chains will
have priority in the optimization to minimize Pc. Minimizing the number of RF chains
will result in minimizing the first and second terms of the summation over TbA while

maximizing the third term in the summation over TbA. Further, minimizing the number
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of active RF chains in time slots to zero will maximize the RF chain off duration (¢©)
and minimize the number of active time slots TbA. This will minimize the first term
(entire summation over TbA) in (4.7) and maximize the second term (power consumption
when all RF chains are off). Therefore, minimizing Pc can be considered equivalent
to minimizing (maximizing) the number of active (off) chains. Constraints (4.8-4.9)
respectively ensure that the throughput 7' P;;, and the BLE R;;, provided by BS b satisfies
the i’ user’s required rate y; and upper BLER bound BLE Rl.Th. Constraint (4.10) ensures
that the sum of duration of transmission and switching is upper bounded by t*. The
number of active RF chains in an active time slot is upper bounded by S in (4.11). The
last constraint (4.12) specifies the upper bound on the frequency utilization of every
active RF chain. An important point to note here is that satisfying the constraints (4.8-4.9)
ensures that every cluster user is associated with a BS and therefore explicit constraints
to ensure the same are not required. Henceforth, the optimization will be carried out with

the transmission frame as reference.

4.3 Co-RFSnooze Algorithm
4.3.1 Multiple Multidimensional Knapsack Problem

The problem in (4.7-4.12) belongs to the class of Multiple Multidimensional
Knapsack Problem (MMKP) as described below. Let the set of cluster users /¢ and set of
cluster BSs C denote the set of items and knapsacks respectively. UA is equivalent to
assigning items to knapsacks and BS resource utilization is equivalent to utilizing the
knapsack capacity. The profit of assigning user (item) i € I¢ to BS b € C (knapsack) is
the throughput 7'P;, and the achievable BLE R;;, provided by BS b to user i. The number
of BS RF chains S denotes the number of dimensions of the knapsack and the capacity

of BS b in dimension s € [1, 5] is JT, the total number of frequency blocks in a frame.
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The weight of user i € I¢ in dimension s € S is the total number of frequency blocks
assigned to the user in the frame given by > ;.7 Jsi. The BS resource and UA adaptation
to minimize average cluster power consumption can be seen as MMKP with minimizing
the total BS resource utilization, maximizing the users’ throughput and minimizing the
users’ BLER as the criteria for optimization. The problem stated in (4.7-4.12) is a variant
of the above multi-criteria MMKP which minimizes BS resource utilization subject to
lower bound on throughput provided and upper bound on achieved BLER. As MMKP is
a NP-Hard problem [91], we propose a heuristic algorithm that integrates BS resource

and UA adaptation heuristics to solve (4.7-4.12).

4.3.2 BS Resource Adaptation - Heuristics and Algorithm

Consider the set of users [, associated with BS b and let I =| I}, |. For brevity of
notation, we will drop the subscript b in this subsection. Selection of mode m; € M for
the user i € I, utilizes T; active time slots, s;Vt € [1,T;] active RF chains and J;Vs €
[1,s4],t € [1,T;] frequency blocks. The mode selection for individual users impacts the

overall BS utilization as follows.(i) T4 = max;=;__; T;, (ii) SA = max;=1, s 5., ¥Vt € [1,T;]

and (iii) ¥g = le J}”’ Vee|l,T;],s €[, StA]. From the above, it can be inferred that T4, S,A
and ¢, can be minimized if each is minimized for every user. However, minimizing each
of the BS resource in isolation for every user will lead to an increase in the other BS
resources because (a) decreasing 7; increases s;; and Jy;;, (b) decreasing s;; increases T;
and Jy;; and (c) decreasing J;; increases T; and s;; in order to satisfy the QoS of the user.
Therefore, joint adaptation of resources allocated to every user is required to minimize
BS utilization and Py,

The RFSnooze (Min-Cost in [76]) algorithm shown in Table 4.2 jointly adapts

the BS resources to minimize BS utilization and Pp,. The inputs to the algorithm are

the required throughput y; and BLER threshold BLERT", the rank indicator RI; and
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Table 4.2. RFSnooze algorithm

Input: Iy, {yi, BLERT", RI;, COI., H; : i € [1,1]},S,J,R,T
Output: T4, {SA : t € [1,TA)}, {wy : 5 € [1,84),t € [1,TA]}
1. Forall users i € [1,1]

2: Initialize M/S = 0, Ji(m) = 0, T;(m) =0,Ym € M

3: For all modes m € M

4: Scheduler updates T;(m) = max,e[1,r1{t : Jii > 0},
Jim) = 2 J(m) i€ TPy (m, Ji(m), Ti(m)) 2 7,

5: Determine BLE R;(P"*, H;,m) using CQI; entry in LUT

6: If BLER;(P"™*,H;,m) < BLER!",d;(m) < RIi(m),Ty(m) < T,J;; < JT,
then update M5 = M5 um

7: Compute P;(m) using (4.13)

8: Find mode m™ = argminmeMlpsP,-(m)

9: Update T; = Ti(m?). 51 = s(m )\ hyri = I~ J(m? ) Vs € [Losii]. V1 € [LT3]
10: Determine T4 = maxe(1,nT;

11: For all time slots ¢ = 1,.., T4

12: Determine StA = max;e(1,1)

13: Determine off RF chains S© = § — A

14: Determine ¢/, = J~' 31| Jyi, Vs € [1,84]; 005 = 0,Vs € [1,5°]

the channel quality indicator CQJ; sent as periodic feedback by all the users i € [1,7]
[92], the channel matrix H;, the BS and user device resource upper bounds S,7,J and R.
The steps of the algorithm are explained briefly below. The reader can refer to [76] for
detailed explanation of the algorithm.

In step 4, the output of iterative frequency domain scheduler [93] is extended to
allocate 7;(m) time slots, s;(m) RF chains, J;(m) frequency blocks for all modes m € M
in a frame for all users i € [1,/]. The BLER in step 5 is determined using the CQI and RI
measurements and the Look Up Table (LUT) in [94] (used in lieu of BLER function in
(4.3)) that specifies for different CQI values, the SINR threshold SINR”"(m) required for
every mode m € M toresultin BLER < 0.1. For all permissible modes {m : d;(m) < RI;},
if SINR; > SINR""(m) (SINR; is given by (4.1)), then BLER;(m) = BLER!", else
BLER;(m) is set to value greater than BLER™".

In step 6, the set of feasible modes Ml.F $ C M is updated with modes m that
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satisfies the throughput, BLER, and upper bounds on frequency and time utilization.
From (4.5), the power consumption due to feasible mode m € M is given by

. Max Ti(m)
ﬂﬁyl—Zme (4.13)

Pim) = - (Tim)si(m)P' +
=1

The power consumption is calculated for every mode m € MI.F 5 in step 7 and the
mode m’ that results in minimum power consumption is chosen in step 8. The number
of active time slots T4, active RF chains {S/ : t € [1,T74]}, the frequency utilization
{¥s s €[1,84),¢ € [1,T4]} are the algorithm outputs determined in steps 10-14.

From Table 4.2, the complexity of RFSnooze to determine the combination of
modes is given by | M | O(I) and is linear in /. In comparison, complexity of exhaustive

search given by O(| M |!) is exponential in 1.

4.3.3 UA Adaptation - Heuristics

SINR threshold for a mode m is defined as the threshold below which the BLER
due to mode m, BLER(m) > BLERT" and can be determined as outlined in [94]. BS b
that can provide SINR greater than the minimum of the SINR thresholds of all modes
m € M can service the i’" user as there exists at least one mode m for which SINR;, >
SINR™"(m). Let E; denote the set of BSs that can service the i user. We assume that
the cluster users send the CQI and RI information for every BS b € C to the entire cluster
[95]. Using this information, the BS-user assignment matrix BSU = [kp;]|c|x|1o| With
elements kp; € [0,] C |] is maintained at all BSs b € C. The value kj; = 0 indicates that
BS b ¢ E; as it does not satisfy the minimum of mode SINR thresholds for the i’” user.
Sorting the BSs b € E; in the decreasing order of SINR, the values k;; = 1 indicates that
BS b provides the highest SINR, k;; = 2 indicates that BS b provides the second highest

SINR to the i user and so on. Using the BSU matrix, the 1N and I7 users associated
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Table 4.3. Illustration of BSU matrix with | C |=4 and | I¢ |= 10

BS-User |12 (3|4|5/6|7[8]|9 10
1 O|4(1]0[1|3[1]0]2 0
2 1/3[({0[{0|0(4(2]|0/|3 2
3 21210]1(0(2(3/0]0 0
4 O|1({0]0|0|1]4]1]|1 1
Modified BSU matrix after restricting E; = {b: kp; € [1,2]}
1 0O/0|1]0f1]0[1|0]2 0
2 1/0/]0]0(0]0[2|0]0 2
3 21210]1(0(2(010]0 0
4 O|1({0]0|O0O|1]0]1]|1 1
with BS b can be defined as
DN ={i:kp=1NE ={b} A {v:ky >2}=0} (4.14)
ID={i:kp=1AE; =bU{v:k,>2}} (4.15)

Table 4.3 shows the BSU matrix for a cluster of size | C |=4 and | I¢ |=
10. Using (4.14-4.15), the sets I)'" and I] for BSs b = 1,2,3,4 can be written as:
N ={U3,Us}LI] = {UTh:L7T = 0.0 = {U1L:L7T = (U4}, 1] = 0:1)" = {U8}.I] =
{U2,U6,U9,U10}. Note, for BS2, as IN'" = 0 all the RF chains can be switched off by
transferring U1. We will next discuss heuristics for allocating BS resources to / ZJ?V T and
IbT users. Without loss of generality, we will consider BS b € C for the discussion and
drop the subscript b for brevity.

From (4.5), the utilization of BS resources is the aggregate utilization due to

INT

INT U IT. By allocating resources first to IN7 and subsequently to I7, we can rewrite

(4.5) as

NT ~
TNT Max St [INTUI™™ |

P:%(;(S,NTPHA"PTZ D T

s=1 i=1
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TA A PMax SrA
D (S =sP e—
J
t=TA-TNT +] s=SA-SNT 11
VEAVE T4
Z Joii) + Z(S - S,A)PO) +10SPO + 15w gSw pSw (4.16)
i=1 =1
where TN and StN T are the number of active time slots and RF chains in time

slot ¢ € [1,TNT] required to satisfy the QoS requirements of /¥ and 17" C I” users.
This implies that S;“ - S,N T RF chains can be switched off in time slots {r € [1,74] :
SA - SlN T'> 0} if [ IT\IT" | users are transferred to feasible cluster BSs. The subset of
transferable users I’ are updated as non-transferable users as their QoS requirements

TNT

are satisfied by allocating no more than S’ RF chains in time slots allocated to

I users. The possibility of reducing | I | and complexity of UA is the motivation to
allocate BS resources first to V7 users and subsequently to I” users. Next, we will select
the “transferor” BS g which will transfer users and the “transferee” BSs E to transfer
users to.

Higher the number of RF chains S#* — SM that can be switched off, higher the
savings in transferor BS power consumption. However, as the number of users | I \ 17 |
that are transferred increases, the number of users that receive less than maximum SINR
and the transferee BS power consumption also increases. To maximize S/ — SNT while

minimizing | I7 \ I”" | and the increase in transferee BS power consumption, the RF

chain-user ratio RF U is defined as

1=TA-TNT 4]

AV

piv = 2 SosT

(4.17)

Larger the RF U ratio, higher will be the savings in transferor BS power consump-
tion and lower will be the number of users receiving less than maximum SINR. Also,

large RF U ratio will result in lower increase in transferee BS power consumption. Hence,
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the BS with the largest RF'U ratio is nominated as the transferor BS g.

Amongst the multiple BSs which cover useri € I] \ I7 , the selection of transferee
BS is restricted to that subset of BSs b € E; with k;; = 2 in the BSU matrix. This has
a two-fold effect of reducing (a) the impact on QoS of the useri € [, g \ 7 ; " and (b) the
complexity of UA. The set of transferee BSs corresponding to / g \ IgT~ is denoted as E.

The above selection criterion is applied to Table 4.3 resulting in replacing all the
entries with kp; > 2 with kp; = 0 to indicate that BS & is not a transferee BS for the "
user. The bottom portion of Table 4.3 shows the modified BSU matrix. This reduces
| E; | for i" user and also minimizes the impact on the user QoS. For instance the set of
transferee BSs for U7 is reduced from E7 = {BS1,BS2,BS3,BS4} to E7 = {BS1,BS2}.

We will now discuss the three feasibility conditions that have to be satisfied for
transferring users. The first condition is that the QoS requirements of transferrable users
of transferor BS and the users of transferee BS have to be satisfied by the transferee BS

after the transfer.

C1 : satisfy constraints (4.8-4.9)Ve € E,i € I, U Ig \ IgTN (4.18)

Let us denote the number of active time slots, active RF chains and frequency
utilization of BS b before user transfer as T,;“, Sg‘, Y, and after user transfer as Tl;“*, Sg‘*, zﬁz.
The second condition is that BS resource utilization of transferee BS e after transfer

TA*, S4*, ¥ should satisfy (4.10-4.12).

C?2 : satisfy constraints (4.10-4.12)Ve € E 4.19)

Denoting the power consumption of BSs after user transfer as P*, the third
condition is that the difference in cluster power consumption before and after transfer

should be positive.
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|E]

C3: (Pgug, TSt Ue)+ ) Pelle TS 0e) - PN UL,
e=1
|E|
Ax oAx  * * ~ Ax oAx %
T S8 we) = Y iU U\ ) I T S2, 00 | > 0 (4.20)
e=1

4.3.4 Co-RFSnooze Algorithm

The Co-RFSnooze algorithm adopts a bottom-up iterative approach which adapts
BS resources at individual cluster BSs and adapts UA at cluster level in an iterative
manner. An iteration consists of two key interlinked steps explained below. The first key
step is that the Co-RFSnooze algorithm applies the RFSnooze algorithm at each cluster
BS to INT and subsequently to I” users and determines the RFU ratio. This step (a)
minimizes the number of RF chains required to satisfy the QoS requirements of I¥7 users
at the individual BS level, (b) reduces the cardinality of the I” (Section 4.3.3) to prune
the UA space at the cluster level and (c) determines the BS resources required to satisfy
the QoS requirements of the I7 \ 7~ users using which the RFU ratio is calculated. The
RFU ratio guides the choice of transferor BS and is the crucial link between individual
BS resource adaptation and cluster level UA adaptation.

The second key step is the selection of transferor and transferee BSs. The BS
with highest RFU ratio is selected as the transferor BS to maximize the savings in power
consumption due to switching off RF chains and minimize the impact on users’ received
SINR. The set of transferee BSs is restricted to BSs that provide the second highest SINR
to IT\ IT" of transferor BS to reduce UA space. The above two key steps are carried out
iteratively by Co-RFSnooze algorithm as described below.

The Co-RFSnooze algorithm is shown in Table 4.4. The algorithm inputs are the

set of cluster users, their QoS requirements and the channel state information, the BS
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Table 4.4. Co-RFSnooze algorithm

Input: {1, 17 : be[1,| C N}, {y. BLER!" :i € [1,| Ic |}.{RIip, COI;p,
Hiyp i€l Ic|}beli| C|]}S, L RT

Output: {1, T/, {S5 ). {Wsn} : s € [1,S5 ]t € [LT/ b € [1]| C ]}

1. Initialize set of poss1ble transferor BSs G = C, set of transferee BSs E = {},
transferor BS g = {}

2. ForallBSsbe C
3: Initialize IN T and IT using (4.14) and (4.15)
4: Apply RFSnooze to I} to determine BS resource allocation for I\
5 Apply RFSnooze to IZ to determine BS resource allocation for Il{
6 Determine I} ~ C I that require no additional time slots
and RF chains as compared to 7, NT
7 Update INT INTUIT~ IT IT\ITN, update BSU,, with k,; =0,Ve € C\ b
8: Calculate Py, using (4. 5) and RF U,y using (4.17)
9: If G = {}, then go to step 27, Else
10: Select transferor BS with highest RFU ratio g = maxpcgRF U,
11: Update G =G\ g
12: Determine subset of BSs E = {e: Ji € IgT \ IgT~ Nkei =2}

to which BS g can transfer users IgT \1 gT -

13:Forall BSse € E

14: Update I = I} U{i i € I\ 1]~ Akei =2}

15: Apply RFSnooze to I to determlne BS resource allocation for 7N
16: Apply RFSnooze to 1 z to determine BS resource allocation for 17
17: Determine P, using (4.5) and AP, = P, — P,

18: If transfer feasibility condition C1 or C2 is violated

19: Then set P, = 0o, AP, = o0

20: Apply RFSnooze to é,v T users of transferor BS g to determine
BS resource allocation

21: Determine P; using (4.5) and AP, = P, — P;

22: If transfer feasibility condition C3 is true, then for all users i € I gT \ 1T~
forall BSse e E

23: Update the BSU matrix kg; = 0,k,; =1
24: Else for all usersi € Ig \ I~ forall BSs e € E
25: Update the BSU matrix k,; =0

26: Go to step 2

27: Forall BSsbe C
28: Iy ={i : ki = DATAASS Y A} - s € [1,S 10 € [LTA} -
Output of step 4
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resource upper bounds for the cluster BSs. The algorithm outputs are the set of users
associated with each of the cluster BSs and corresponding resource utilization of the BS.

Starting with the set of transferor BSs G = C and set of transferee BSs E = (), the
algorithm iterates till the set of transferor BSs G = (. Each iteration starts by allocating
individual BS resources first to / 1];\’ T users in step 4 and subsequently to IZ users in step
5. The set of users IZ~ that can be serviced in Tév T time slots with St]ZT,t € [1,Tév T] RF
chains is obtained from step 6. The sets / l])\’ T and IZ are updated in step 7 and the power
consumption Pj and the RFU ratio are calculated in step 8.

Using the RFU ratio, steps 10-11 selects the transferor BS g and updates the
set of transferor BSs G to exclude the selected BS g. The set of transferee BSs E is
selected in step 12 and the corresponding sets of INT, Ve € E are updated in step 14 to
include the transferable users Ig \ I; ~ of BS g. The update of G and of I} Ve € E is of
particular importance. By updating the set G = G \ g in the current iteration eliminates
the selection of BS g as transferor BS in any subsequent iterations. This reduces the
cardinality of set of possible transferor BSs G for subsequent iterations and ensures
convergence of the algorithm in at most | C | iterations. The update I;'" = INT UIT \ 1T~
categorizes IgT \ IgT ~ of BS g as non-transferable users of BS e. This will not allow
oscillatory behavior wherein the users / g \ IgTN are assigned back to the transferor BS g
in subsequent iterations in which transferee BS e may be selected as transferor BS and
BS g as transferee BS.

The BS resource allocation taking in to account the transferred users is determined
in steps 15-16 following which the transfer feasibility conditions C1, C2 and C3 (Section
4.3.3) are tested in steps 18-22. Note that condition C1 is implicitly satisfied by the
RFSnooze algorithm as it selects feasible modes which satisfies the constraints (4.8-4.9)

for each user. Iterative allocation of resources to users as explained in Section 4.3.2, [76]

ensures that the BS resource utilization constraints (4.10 -4.12) are satisfied. Given the
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resource utilization of BSs g and E, C3 is evaluated using (4.20). If conditions C1, C2
and C3 hold, then the BSU matrix entries for users /7 \ I7~ are updated in step 23 to
reflect the disassociation from transferor BS g (ky; = 1 to kg; = 0) and association with
the transferee BS e (k.; = 2 to k,; = 1). If the conditions do not hold, then the BSU matrix
is updated in step 25 to reflect that the users Ig \ IgTN are non-transferable users of BS g
(kei =2 to kej = 0). In addition the power consumption of all transferee BSs is set to an
arbitrarily large number to indicate that the transfer is not feasible. This is carried out for
implementation purposes as elaborated in the next subsection. With the updated UA and
set of possible transferor BSs G, the next iteration is initiated in step 26.

The iterations terminate when there are no more candidates for transferring users,
i.e., G = 0. In the final iteration, steps 2-8 are executed, however, since there are no more
transferable users, the BS resource allocation obtained in step 4 is the final BS resource
allocation. The check in step 9 is true for the final iteration and the algorithm terminates
by executing steps 27-28. The outputs of the algorithm are the UA obtained from the
BSU matrix and the corresponding BS resource utilization of the cluster BSs.

We will use the example in Table 4.3 (bottom portion) with cluster of size | C |= 4
and | Ic |= 10 users to run through the algorithm steps with the aid of Fig. 4.3. The
rows of Fig. 4.3 illustrate the BS resource utilization for each BS at the beginning of
an iteration and lists the subsequent steps. The BS resource utilization is shown for one
time slot of a transmission frame with J = 24 frequency blocks available on each of S =4
RF chains (S, .., S4). The maximum number of user RF chains is R = 4. The frequency
blocks allocated to users are indicated by the color used for the user. Due to lack of space,
we have omitted showing multiple time slots in the transmission frame. For each user, the
modes m € Ml.F 5 and the corresponding allocation of time slots and frequency blocks are
listed in the legend using a 5-tuple - (s;,r, d;, J;, T;). The I T of each BS are differentiated

by two vertical black colored lines placed on the BS resources allocated. For instance,
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Figure 4.3. Application of Co-RFSnooze algorithm to example in Table 4.3
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1" = {U7} for BS1 and two black lines are placed on the yellow blocks on S; RF chain.

Initially G = {BS1, BS2, BS3, BS4}, E = (). The top row of Fig. 4.3 shows the set
of feasible modes M5 (Section I1IB) and the minimum power mode m (indicated by the
tick mark) selected for IV7 and I” of BSs BS1, BS2, BS3, BS4 in steps 4 and 5 of iteration
1. The outputs of steps 1-28 for iteration 1 are listed below the BS resource utilization
illustration. At the end of iteration 1, the RF chain requirements at BS1 = {S}, S», 53,54},
BS2 =0, BS3 ={S1,5%} and BS4 = {51, $2,53,54}. Due to transfer of U1 from BS2 to
BS3, 2 RF chains are switched off at BS2 in iteration 1. This is the initial BS resource
utilization of iteration 2 shown in second row of Fig. 4.3. The steps 4-26 of iteration
2 result in transfer of U2, U9 from BS4 to BSs BS1, BS3 and switching off RF chains
$2, 83,84 of BS4. This is shown in the third row of Fig. 4.3. The algorithm terminates
with the third iteration as RFU ratios RFU, =0,RFU, = 0,RFU; =0,RFU4 =0. We
can see that Co-RFSnooze reduces the number of active RF chains from 12 to 7 in the

cluster by iteratively applying the RFSnooze algorithm and UA adaptation heuristics.

4.3.5 Complexity Analysis

As exhaustive search of UA space evaluates | C ||I£| combinations, the complexity
of UA adaptation is O(| C ||](T?|). For each UA combination, the exhaustive search of the
BS resource space has to evaluate | M |l +..+ | M |icil combinations. Therefore, the
complexity of joint search of BS resource spaces and UA spaces is given by O(| C ||Ig|
(| M "M .+ | M |Micily). The Co-RFSnooze algorithm evaluates a single combination
of UA in an iteration and the maximum number of iterations for convergence of Co-
RFSnooze is | C |. The complexity of UA space search is O(| C |). In each iteration, the
RFSnooze algorithm is executed at most twice for the entire cluster (steps 4-5, 15-16 and

20 in Table 4.4). The number of operations when RFSnooze algorithm (Section 4.3.2)

applied to the every BS of entire cluster is ZLCJL | M || I, |=| M || I¢ |. The complexity of
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Figure 4.4. Implementation of Co-RFSnooze algorithm

the Co-RFSnooze algorithm for determining the BS resource allocation and UA in | C |
iterations is given by 2 | C || M | O(] I¢ |) where | C | and | M | are constants for a given
cluster and BS resource configurations. Hence, Co-RFSnooze algorithm achieves linear

complexity compared to the exponential complexity of exhaustive search.

4.3.6 Co-RFSnooze Framework

We propose a combination of the centralized approach [96] and the decentralized
approach in [95] for the Co-RFSnooze framework to minimize the exchange of user QoS,
channel state information (CSI) and control information between the cluster BSs to adapt
UA.

The cluster BSs send training sequences to all the cluster users periodically [92].
In response, as implemented in decentralized approach in [95], the users estimate the
CSI for each of the BS in the cluster and then send | C | CSI estimates as feedback to
every BS in the cluster. In this manner, the cluster BSs have the information about the
SINR received by i’ user from every cluster BS b € C. This enables the BSs to build and

maintain a copy of the BSU matrix locally denoted as BSU,,. With the aid of Table 4.4
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and Fig. 4.4, we will next discuss information exchange required for the Co-RFSnooze
iterations.

With the inputs required and BSU matrix available at the BSs, steps 2-7 (Table
4.4) are run at every BS b € C for updating I7. Subsequently, the BSs broadcast their
RFU values to all the other cluster BSs. The BS with highest RFU ratio selects itself
as the transferor BS with the other BSs implicitly getting this information from the
broadcasted RFU values. Using the updated local copy of BSU matrix, the transferor BS
g determines the set of transferee BSs E as in step 12. The above operations are listed in
boxes in Fig. 4.4.

We adopt the cooperation protocol in [96] to set up the communication interface
between BS g and BSs e € E shown in Fig. 4.4. The BS g sends the "Transferor Request”
to BSs e € E which in turn sends the “Transferee Ack” response to complete the coopera-
tion setup. The BS g transmits to each BS e € E, the row k.. € BSU, corresponding to BS
e. Note that the row k.. € BSU, transmitted by BS g is identical to the row k.. € BSU,
(local copy of BSU matrix at BS e) except for the entries corresponding to i € IgTN for
which k,; = 0, k.; € BSU, (as updated in step 7, Table 4.4) and k,; = 2, k.; € BSU,. This
difference indicates to BS e the reduced set of users IgT \ IgT ~ required for steps 13-19.
The QoS requirements (y;, BLER;) of the users {i : i € I] \ I~} required as input to
RFSnooze algorithm in steps 15-16 are transmitted to the transferee BS. Execution of
RFSnooze algorithm in steps 15-16 will implicitly evaluate conditions C1 and C2, which
if violated will set the difference power consumption AP, to an arbitrarily large value.
The AP, is conveyed to BS g by all BSs e € E which evaluates condition C3. The BSU,
matrix is updated as per step 23 or step 25 depending on evaluation of condition C3. The
updated rows k.. € BSU, are transmitted to BSs e € E and the current iteration ends. The
c'" iteration consists of the operations indicated by the boxes and information exchange

shown in Fig. 4.4. After a cluster BS has been selected as transferor BS, in subsequent
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iterations, it broadcasts RFU = 0 value. In terms of implementation, when all the BSs
broadcast RFU = 0, the algorithm terminates. Subsequently, the cluster BSs use the
updated local BSU matrices to service the associated users.

The overhead due to information exchange among the cluster BSs is as follows.
A byte each for mantissa and exponent is sufficient to represent RFU values. The size
of BSU row given by [(log, | C |)] | Ic | depends on the cluster size and number of
cluster users. Two bytes are sufficient to convey the QoS requirements of each of the
users i € IgT \ IgT ~. The AP, values can be expressed using a byte each for mantissa
and exponent. Analysis in [87] shows that the gains due to adding a BS to the cluster
significantly decreases when | C |> 4. Assuming | C |=4 and | I¢ |= 300, the BSU row,
RFU byte, AP, value and QoS information will account for 600+ 8 + 16 + 16 | Ig \ 1 gT ~
bits. Assuming 0.5uW [83] is consumed for every bit transmitted over the backhaul,
number of iterations is | C |= 4 and total number of users transferred | Ig \ Ig ~ |=35 (Fig.
4.6b, high load), then the overhead due to information exchange for Co-RFSnooze is
2.368mW. Note that the overhead due to information exchange in iterations has been
accounted in the calculation of P¢ for the Co-RFSnooze algorithm in Section 4.4.2.

The time scale of BS resource allocation is of the order of milliseconds as
current LTE standards allows BS resource allocation every time slot (Ims duration) in a
transmission frame. UA adaptation requires user transfer/handover from the transferor
BS to the transferee BS. In the work presented in this chapter, it is assumed that the
cluster BSs are connected via X2 interface and X2 handovers can be used to achieve the
user transfer. Experiments in [97] show that the X2 handovers can take up to 100ms.
Therefore, the time required for BS resource adaptation is about f times (f = 10 with the
values considered) lesser than that required for UA adaptation and results in a two time
scale system. The Co-RFSnooze algorithm accommodates the two time scale requirement

as follows. Steps 4-5 in Table 4.4 are carried out at periodicity of pgg at individual BSs
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Table 4.5. Simulation parameters

Power gradient A, 4.2
Off power P, Idle Power P! | 82.75W, 186W

. . SW
PA‘ sztchlng Slivower P>, 100W, 35us
switching time ¢
yﬁﬁimum transmit power A0W
Bandwidth BW, Number of 20MHz, 100
frequency blocks J
Duration of frame ¥, Number

. 10ms, 10
of time slots T
Number of RF chains at BS S
) 4,4
and user device R
{(1,1,1) (SISO), (2,2,2) (SM), (2,2,1)
Set of modes M, | M | (SD), (4,1,1) (SD), (4,4,4) (SM), (4,2,2)
(SM-SD)}, 6

Size of cluster | C | 4
Maximum number of cluster 300
users
BLERT" for all cluster users | 0.1
Simulation time 24 hours

to adapt BS resource utilization. At periodicity f - pgr > ppr, all the iterations of the
algorithm executing all the steps in Table 4.4 are carried out to determine the BS resource
allocation and UA of cluster BSs. In Section 4.4.2, we evaluate the performance of Co-
RFSnooze algorithm at a single time scale using the sample load trace from anonymous
operator with granularity of 1 minute. We have chosen a single time scale of 1 minute
(f - ppr) as it satisfies the time scale requirements of both the adaptations as well reduces
the overhead due to user transfer and allows evaluation of the Co-RFSnooze performance
in its entirety, i.e, execute all the iterations at every point of the trace. Note, however, the

evaluation can be easily extended to show the two time scale operation of Co-RFSnooze.
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4.4 Simulation Framework and Results
4.4.1 Simulation Framework

In this section, we describe the simulation framework developed and the simula-
tion parameters listed in Table 4.5. We adopt the topology with 15 BSs in 4.5x4.5km?
[98], a part of 3G network in urban environment. The inter-cell distance is 0.5km. The
cluster size | C | is set to 4 and a 16" BS is randomly placed in the considered 15 BS
topology to obtain 4 clusters. Without loss of generality, we consider one of the four clus-
ters to evaluate the proposed Co-RFSnooze algorithm. The BS power model presented
in Section 4.3.2 is used to estimate the average BS and cluster power consumption in a
frame. The BS power consumption parameters are specified in [89] and [88] and listed
in Table 4.5. The users (maximum 300) are uniformly and randomly distributed in the
cluster. The traffic load is assumed to be spatially heterogeneous with user’s required rate
y o (max(d) — d*) where d is the distance between the user and BS. The BLER LUT
table in [94] is extended to include the modes (4,4,1) and (4,4,4) and used to determine
the BLER of users as explained in Section 4.3.2. Other parameters for the simulations
follow the suggestions in the LTE specifications [90]. We consider the COST-231 HATA
model for the path loss between the BS and user [99].

For comparing the performance of Co-RFSnooze algorithm, we consider the

following algorithm/schemes (Section 4.1.1):

e All-On (conventional scheme): turns on all BS RF chains in active time slots and

turns off in off slots.

e RFSnooze [76]: adapts number of active RF chains, time slots and frequency
blocks at individual BSs in an uncoordinated manner. RFSnooze [76] has been

extended to Co-RFSnooze algorithm in this work.
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e Co-Nap [81]: adapts the on/off pattern of the cluster BSs and turns off all BS RF
chains to switch off BSs. The short time scale operation of BS switching effected
by switching on/off all RF chains in a cooperative manner without using CoMP

transmission makes Co-Nap the most relevant prior art technique for comparison.

e Exhaustive Search: yields the combination that switches off the optimal number of

RF chains

We will now discuss the implementation details of All-On and Co-Nap. The UA
rule for All-On and Co-Nap schemes is that the user is associated with that BS which
provides the highest SINR. The scheduling algorithm [93] (Section 4.3.2, [76]) is used to
determine the feasible set of modes M*S. As all the RF chains are switched on during
the active time slots for All-On and Co-Nap, the mode that utilizes all the RF chains and
satisfies the minimum throughput and BLER constraints is selected from the feasible
mode set. If the QoS constraints are not satisfied by modes utilizing all the RF chains,
then the mode with next highest number of RF chains that satisfies the QoS constraints
is selected. The dominant operation in mode selection is determination of M and is
carried out as explained in Section 4.3.2, [1] for All-On, Co-Nap and RFSnooze. Hence,
the the complexity of mode selection for All-On and Co-Nap is given by | M | O(| I¢ |)
(Section 4.3.2).

In case of All-On and Co-Nap, RF chains that are not transmitting in active time
slots (in a frame) are in the idle state and by the UA rule, the set I] = 0,1, = I)Vb e C.
Incorporating the above in to (4.5), the BS average power consumption in a frame is

A, pMax 31T
= —(Z SP! + Z Z Joi) +10SPO 4.21)
s=1 i=1

All-On does not adapt switching of BSs and RF chains. In contrast, Co-Nap

adaptively switches on/off BSs and impacts the average power consumption of the
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cluster as briefly explained below. Co-Nap divides the transmission time into discrete
transmission cycles comprising of | C | number of blocks. The BS on/off (flickering)
pattern determines the active and inactive (napping) blocks for all the BSs in every
transmission cycle. The BS resource allocation is carried out for all the active blocks
in a manner that the user QoS requirements are satisfied. Assuming that a block spans
over multiple frames, Pj in a frame in an active time block is given by (4.21). For a
frame in an inactive block (BS off), (4.21) reduces to SP? (as t° = tF). For Co-Nap, the
complexity of determining the on/off (1/0) pattern for | C | BSs in | C | blocks and BS

resource allocation for | I¢ | cluster users is given by | C | 0QIh+ | M | O(| I¢ ).

4.4.2 Simulation Results

We will now present the experimental results obtained using the simulation
framework described above. In order to evaluate the performance of the comparison
schemes and the proposed algorithm in a practical setting, we adopt the sample traffic
trace shown in Fig. 4.5a. The sample traffic trace is the normalized BS utilization
measured by an anonymous operator in [100] for 24 hours with granularity of 1 minute.
The simulation step is fixed as 1 minute, however, our simulation framework supports
simulation step lesser than or greater than 1 minute. Fig. 4.5b shows the number of users
in a simulation step. It is given by the product of value of the sample trace and maximum
number of cluster users (Table 4.5). Assuming that the number of users and their
requirements do not change over the simulation step, the comparison schemes/algorithms
and Co-RFSnooze algorithm is run once in every simulation step to determine the BS
resource allocation for all the frames and in case of Co-RFSnooze, additionally, the
updated UA. The P¢ in a simulation step is the power consumption averaged over all the
frames in a simulation step and is estimated using (4.6) for the proposed algorithms and

using (4.21) in (4.6) for All-On.
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Figure 4.5. (a) Sample traffic trace, (b) number of cluster users

For Co-Nap, the simulation step is equivalent to the transmission cycle and
consists of | C |= 4 blocks of equal duration. Co-Nap is run once every simulation step to
determine the number of active blocks and resource allocation for all the frames in the
active blocks. The P¢ in a simulation step is equal to the power consumption averaged
over the four blocks.

Fig. 4.6a shows the average power consumption of the cluster in a frame P¢ for
All-On (shown in red), RFSnooze (shown in blue) and Co-RFSnooze (shown in green).
All-On consumes higher power than proposed algorithms because, regardless of the load,
all the RF chains are on in the active time slots. This increases total RF chain power
consumption due to (a) frequency utilization of each active RF chain and (b) idle power
of the RF chain transceiver circuitry as all RF chains are either in active or idle state.
Joint adaptation of number of active RF chains, frequency and time utilization reduces
the cluster power consumption for RFSnooze. The green plot in Fig. 4.6a shows that the
savings due to RFSnooze is further extended by Co-RFSnooze. This increase in power
savings validates our extension of RFSnooze to Co-RFSnooze which, as elaborated
in Section 4.3.4, integrates BS resource adaptation and UA to maximize the number

of cluster RF chains that can be switched off. Under high load conditions, RFSnooze
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achieves up to 35% gains (635" minute) and Co-RFSnooze achieves up to 56% gains
(382" minute) compared to All-On. RESnooze achieves up to 42% gains (11517 minute)
and Co-RFSnooze achieves 49% gains (960'" minute) compared to All-On under low
load conditions. Note that we refer to the savings in average cluster power consumption
as the gains achieved.

We will now compare the performance of RFSnooze and Co-RFSnooze using
Figs. 4.6a and 4.6b. Fig. 4.6b shows the number of users transferred by Co-RFSnooze
during UA adaptation. Under high load conditions, Fig. 4.6b shows that higher number
of users is transferred (up to 35) and Fig. 4.6a shows that Co-RFSnooze achieves up
to 43% savings (382"¢ minute) compared to RFSnooze because higher number of user
transfers allows switching off of additional RF chains (Section IIIB,C). Under low load
conditions, Co-RFSnooze achieves lower savings of up to 29% (960" minute) because
(a) higher number of RF chains are switched off at individual BSs by RFSnooze (b) the
number of cluster users (Fig. 4.5b) and transferred users is lower as shown in Fig. 4.6b
and (c) higher incidence of instances when no users are transferred resulting in identical
performance of RFSnooze and Co-RFSnooze as indicated by corresponding instances in
Fig. 4.6a.

Fig. 4.6¢c shows the P¢c due to Co-Nap (shown in red), RFSnooze (shown in
blue) and Co-RFSnooze (shown in green). Under high load, Co-Nap performance is
comparable to All-On as it is unable to allow BSs to nap and satisfy the QoS constraints.
RFSnooze achieves up to 35% gains (635" minute) and Co-RFSnooze achieves up to
56% gains (382"¢ minute) compared to Co-Nap under high load conditions. During
transition from high load to low load and vice versa, Fig. 4.6¢c shows the dips in power
consumption for Co-Nap (for instance between 50" and 150'" minute) as lower load
allows napping of BSs. RFSnooze and Co-RFSnooze outperform Co-Nap even in the

transition regions by adapting BS resources and jointly adapting BS resources and UA
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Figure 4.7. Comparison of number of cluster active RF chains of RFSnooze and
Co-RFSnooze with (a) All-On, and (b) Co-Nap

respectively. The percentage of gains is lower compared to that under high load conditions
at 22% (140" minute) for RFSnooze and 38% (72" minute) for Co-RFSnooze. Under
low load, Co-Nap outperforms RFSnooze as it is able to aggressively nap BSs and satisfy
the QoS constraints. Co-RFSnooze outperforms Co-Nap whenever user transfers are
possible which allows it to switch off additional RF chains. However, as explained earlier,
whenever user transfers are not possible, Co-Nap outperforms Co-RFSnooze. The above
behavior of Co-RFSnooze compared to Co-Nap is shown in the inset (zoomed-in section
between 900" and 1200"" minute) of Fig. 4.6c wherein the green curve repeatedly
goes above and below the red curve. Also, due to the bulk of the savings coming from
RFSnooze under low load, which underperforms Co-Nap, Co-RFSnooze achieves up to
11% (960" minute) compared to Co-Nap.

Next, we will compare the number of cluster active RF chains used by the
proposed algorithms with that used by All-On and Co-Nap in Figs. 4.7a and 4.7b
respectively. The number of cluster active RF chains in (a) a frame is the sum of the
active RF chains used at individual BSs and (b) a simulation step is the number of cluster

active RF chains averaged over all the frames in the simulation step.
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Table 4.6. Average percentage savings in P¢ of RFSnooze and Co-RFSnooze

Low Load | High Load | Total
RFSnooze vs All-On 32.74% 26.21% 30%
Co-RFSnooze vs All-On 41.5% 4738% | 44.67%

RFSnooze vs Co-Nap -16.1% 26% 7.68%
Co-RFSnooze vs Co-Nap | -0.86% 47.25% | 25.52%

In Fig. 4.7a, all the cluster BS RF chains are active for All-On under high load
whereas RFSnooze uses lesser number of RF chains and the least number are used by
Co-RFSnooze. Under low load conditions, there are dips in the number of BS RF chains
for All-On because there are no users associated with certain BSs in that instance and
we see corresponding dips for RFSnooze and Co-RFSnooze as well. Fig. 4.7b shows
that all the cluster RF chains are active for Co-Nap when the load is high as napping of
BSs is not possible. Under low load, Co-Nap aggressively reduces the number of RF
chains and thereby the power consumption as observed in Fig. 4.6c. RFSnooze consumes
higher power than Co-Nap under low load conditions because it uses higher number of
RF chains, as is evident from Fig. 4.7b. Further, we can see that the number of active
RF chains used by Co-RFSnooze repeatedly goes above and below the number of RF
chains used by Co-Nap. This results in similar pattern of Pc of Co-RFSnooze in Fig.
4.6¢. During the transition from low load to high load and vice versa, the number of RF
chains for RFSnooze and Co-RFSnooze is lower than that of Co-Nap. This is the cause
for the trend of P¢ of Co-Nap, RFSnooze and Co-RFSnooze during transition periods as
seen in Fig. 4.6¢.

Table 4.6 presents the percentage of savings in P¢, averaged over 24 hours, for
the proposed algorithms with respect to All-On and Co-Nap. Co-RFSnooze outperforms
both All-On and Co-Nap when the savings are averaged over 24 hours which includes
periods of low, medium and high loads.

We conclude the results by presenting the comparison of Co-RFSnooze and
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Table 4.7. Average percentage savings in Pc of Co-RFSnooze compared to Exhaustive
Search

Low Load | Medium Load | High Load
Co-RFSnooze vs 0% -13% -18%
Exhaustive Search

exhaustive search in Table 4.7. The simulation framework and parameters used is
identical to that used for the remaining experiments except the following two changes.
As the computational complexity of exhaustive search is exponential in | /¢ | (Section
4.3.5), to keep the simulation time tractable, we have chosen (a) the number of cluster
users | I¢ |= 100 and (b) low, medium and high load points of 0.1,0.5,0.8 of the sample
trace in Fig. 4.5a and the resulting number of users are 10,50, 80. We have conducted
three runs of Co-RFSnooze and Exhaustive search for each of the load points and report
the average percentage savings in Pc of Co-RFSnooze compared to exhaustive search in
Table 4.7. The deviation of the Co-RFSnooze P¢ from the optimal value achieved by

exhaustive search is at most 18% at high load.

4.5 Summary

In this chapter, we presented novel RF switching technique to minimize the
average power consumption of a cluster of BSs in a transmission frame while satisfying
the cluster users’ QoS requirements and BS utilization constraints. Simulation results
indicate that the proposed algorithms significantly outperform the conventional All-
On scheme while Co-RFSnooze significantly gains over time slot based adaptive BS
switching scheme Co-Nap under high and medium loads while being comparable under
low load conditions.

In the next chapter, we conclude the thesis with future directions for the work

carried out.
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Chapter 5

Conclusion

Cellular networks and mobile devices continue to evolve to offer high bit rates, ex-
tensive coverage and processing advanced multimedia applications. Anytime-anywhere
connectivity with high data rates and capability to process advanced multimedia applica-
tions have revolutionized important sectors of the society and become an integral part
of lifestyle of urban and rural populations across the world. The result of the advances
in cellular networks and mobile devices is a continued explosive growth in number of
mobile subscriptions and volume of mobile data. In this dissertation, we address the
challenges in effective and efficient utilization of power/energy resources required to
cater to the explosive growth in number of subscriptions and volume of mobile data in an
economically and environmentally sustainable manner.

Mobile video is the leading multimedia application and contributes to about
two thirds of mobile data traffic. Also, it is a data and compute intensive application
which results in significant demands on the components involved in video download
and processing the video data. It is shown that the components involved in download
consume higher energy than that required for processing. While there is a strong body of
research which address the energy consumption due to processing of video data, there
is a little research which aims to minimize the battery drain due to video download. In

Chapter 2, we developed battery aware techniques for video download and streaming.
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We provided discussion on the power models of base station components involved in
video transmission and mobile device components involved in video download as well as
playback. Also, included in the discussion are bit error rate, channel and user experience
and consumption models and battery models to complete the modeling of the ecosystem
of video transmission and video download and playback. We proposed two techniques
(BR-MoDS and B?R-MoDS) that are applicable for mobile video download and video
streaming. Further, we also proposed novel Video Experience Longevity metric which
quantifies the gain in battery lifetime and user experience compared to non-battery aware
video download and streaming techniques. Experiments showed that the proposed battery
aware video download and streaming techniques offer significant savings in battery
lifetime compared to non-battery aware video download and streaming techniques with
comparable user experience. Further, higher VEL metrics for the proposed BR-MoDS
and B?R-MoDS techniques demonstrate that there exists gain in battery lifetime as well
as video experience compared to the non-battery aware techniques.

It would be interesting to extend the mobile battery aware techniques to jointly op-
timize the BS power consumption during video transmission and the battery consumption
of mobile devices during video download. Further, such techniques can enable the video
consumer to set the priority levels for prioritizing battery drain versus the user experience.
On the same lines, a guarantee on battery drain extent can be an extra dimension in
pricing of data plans by the video content providers.

Moving from the mobile devices to cellular networks, we identified that reducing
power consumption of BSs at the system level is critical for energy efficient operation of
cellular networks. In Chapter 3, we developed the an integrated framework for dynamic
cell reconfiguration for minimizing the power consumption of cellular networks while
satisfying the user Quality of Service (QoS). The dynamic cell reconfiguration framework

integrates three techniques namely, BS switch off/on, user association and transmit power
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budget adaptation. We discussed user QoS, network, channel and BS power consumption
models followed by algorithm presentation. We evaluated the proposed dynamic cell
reconfiguration techniques and framework for static and dynamic traffic load conditions
using actual measurements of BS power consumption and real world traces of BS
load. Experiments show that the proposed framework significantly reduces the power
consumption of cellular networks while satisfying the QoS requirements of associated
users.

An important extension to the work would be the joint optimization of set of active
BSs, user association and transmit power budget allocation and energy consumption of
the mobile devices. This would result in an end-end framework for energy efficiency of
cellular networks and mobile devices. Further, by exploiting the heterogeneity of macro,
micro and pico base stations, coverage holes created by switching off macro BSs can
be alleviated by offloading users to micro and pico base stations. Such user association
presents interesting challenges in tradeoff between increase in power consumption of
micro and pico base stations, decrease in macro BS power consumption and satisfying
user QoS requirements.

Lastly, we identified that reduction of power consumption of BSs at the compo-
nent level enables adaptation to load variations on time scale of seconds and minutes.
In chapter 4, we discuss the component level BS power consumption model which is
centered around the various states of power amplifies in the radio frequency (RF) chain
and its impact on the power consumption of other components of the BS. The channel,
network and user QoS models were also presented to model the cellular network and
associated users interaction and resulting BS power consumption. We first proposed the
RFSnooze technique which adapts the number of RF chains, time slots and frequency
blocks to minimize the number of active RF chains and thereby, the BS power con-

sumption. The RFSnooze technique achieves the objective while ensuring that the BS
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resource utilization bounds and user QoS requirements are satisfied. We extended the
RFSnooze technique to Co-RFSnooze technique which adapts the number of Rf chains
in a cluster of cooperating base stations to minimize the power consumption of cluster of
BSs. Co-RFSnooze technique achieves the above by jointly adapting the individual BS
resources and user association of users in the cluster of BSs while ensuring that the BS
resource utilization bounds and cluster user QoS requirements are satisfied. Experiments
using measurements from actual BS component power consumption and real world traces
of BS load demonstrate that the proposed Co-RFSnooze technique achieves significant
savings in cluster power consumption with no degradation in user QoS levels.
Adaptive RF chain switching to minimize the number of active RF chains can
be extended to minimize the number of RF chains in massive MIMO systems which
have been identified as one of the key enablers of the 5G cellular networks. Further, the
optimization of BS resource utilization and cluster user association presents interesting
research problems when the ecosystem includes renewable energy and energy storage

systems.



Appendix A

Battery Aware Video Download Tech-
niques

A.1 Battery Efficient Video Download - Framework

The overall framework for information and control data exchange between base
station and mobile device, mode selection and reconfiguration during battery efficient
video download is shown in Fig. A.1. Each download epoch, 7; consists of the following
events, represented by the time duration; (a) Ty;q., - video data transmission by the base
station, (b) T’s;4:4s - channel condition and buffer level status update sent by mobile device,
(¢) Tarode-ser - mode selection performed by base station (executing MoDS algorithm)
based on mobile device status update, (d) Tjs,4. - mode selected communicated by base
station and (€) Tyode—config - Teconfiguration of RF and base band components of base
station and mobile device according to the mode selected. The mobile device status
update, mode selection and communication and mode reconfiguration are carried out
in advance in the current download epoch 7; for the next download epoch 7;.;. This
ensures that video is transmitted continuously except during Tayode, Trode-Config and
when MoDS selects download idle. We will next discuss the mobile device status update
and base station mode update in detail. The Buffer Status Report (BSR) [90] used to

report the uplink buffer level reports the mobile device buffer level during download
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Figure A.1. Overall Framework for battery efficient video download

(downlink) as described below. When the video download session is initiated, Long
Buffer Status Report (L-BSR, 3 bytes) conveys video bit rate (Vpgr) and Short BSR (S-
BSR, 1 byte) conveys the mobile device buffer size. As S-BSR is insufficient to report the
buffer size in bytes, the buffer size is reported in terms of maximum playback time PBT
possible which is the ratio of buffer size, Bu fs;,. to Var. As Vpg and Bu fs;,. are constant
for a given video, this information is sent one time at the beginning of the download
session. Subsequently, for each download epoch, the buffer level is reported in terms
of available PBT calculated using (17) using periodic S-BSR. The MoDS algorithm
uses the Vg, But fsize and PBT information obtained from the BSR to calculate DRM™"
and DRM%* The periodic Channel Quality Indicator (CQI) [90] reports the channel
condition required to obtain the BER values for the modes. Finally, the mode selected
is communicated by the base station to the mobile device using the Downlink Control
Information (DCI, format 1A, 2A, about 8 bytes) [90]. It should be noted that CQI
and DCI information exchange is currently carried out as part of the LTE specifications
[90] and the additional data transmitted for buffer levels is nominal — a byte resulting in

1.14mW of power consumption [101] and imposes no more than 0.4% of power overhead
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even when the mode (1x1, BPSK, CR=1, ZF) is selected. On the other hand, receiving 8
bytes of DCI results in about 2.22uW of power consumption when the mode (1x1, BPSK,
CR=1, ZF) is used.

A.2 Scalability Analysis for MoDS under Multi - Client
Scenario

In our proposed approach each base station has an instance of MoDS. At the
network level, as the number of clients in a network using MoDS grows, they will be
geographically distributed across multiple cells of the network, hence will use multiple
instances of MoDS associated with the corresponding base station. At the base station
level, empirical evidence suggests that the number of clients streaming video concurrently
will be rather limited. For example, the study conducted by Motorola in [101] indicates
that even with LTE networks, no more than 8 video clients can be supported while
downloading video with bit rate of 3.5Mb/s (the high bit rate per video stream reflecting
the growing trend of watching higher resolution videos).

As elaborated in Appendix A.1 and shown in Fig. A.1, mode selection time,
Trode-ser 1s the time taken by MoDS to select mode for each user in every download
epoch of duration, 7; and by studying how Tsp4.—s; Varies with number of concurrent
video clients, we can analyze the performance of a single instance of MoDS running on a
single base station serving multiple concurrent video clients. We next present experiments
devised to measure Tys,40—se1, fOr each user in the presence of increasing number of
concurrent video clients that the base station has to service. We simulate each concurrent
user streaming the same video of 183s duration encoded using bit rate of 4.1Mb/s and a
snacking ratio of 0.5, under variable SNR conditions (Table 2.5, Section 2.4.4). Note we
assume all the users downloading the same video to remove any variability that could

arise because of video characteristics, but the experiments can be easily conducted with



143

Table A.1. Ty;,4.—se; for each video client in the multi-client scenario

Number of concurrent | Maximum "| Mean - Tyyoge_ge/(ms)
video clients Trmode-sel(ms) e
1 186.6 148.3

2 371.1 302.7

3 540.7 416.7

4 752.6 590.5

5 857.7 685.3

6 1039.3 819.5

7 1228.9 1074.5

8 1403.7 1289.7

9 1620.9 1447.1

10 1731.3 1636.5

11 1918.3 1784.1

12 2114 1959.6

concurrent users streaming arbitrarily different videos as well. Table T1 below shows
the maximum and mean values of Tys,4.—s.; When number of concurrent video clients is
varied from 1 to 6, with the MoDS algorithm running on an Intel Core 17-3632QM CPU
operating at 2.2GHz. As expected the time taken by MoDS for each client increases with
increasing number of clients. The number of concurrent clients that can be served by a
single CPU will be limited by what can be the allowable value for Ty ,g4.—ser, Which as
shown by Fig. A.1, Appendix A.1 is upper-bounded by the duration of each download
epoch 7; minus time needed to send status update from the mobile device, Ts;4sys, time
needed to send the selected mode to the mobile device, Tis,4. and time needed for
mode reconfiguration, Ty ode—config- FOr example, since the download epoch duration
value used for the experiment results reported Section 2.4.5 is 2s, it is reasonable to say
Trode-ser can be up to 1400ms, which means up to 8 concurrent video clients ([102]
shows that LTE networks can support up to 8 concurrent video clients) can be served by
each Intel Core 17-3632QM CPU, thus requiring 1 such CPU to support 8 concurrent

users (at a list price of under $400 per base station).
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A.3 Computational Complexity Analysis and Compari-
son — Video Download Techniques

In order to compare the computational complexity of the three video download
techniques, namely, HTTP-PD, EERA and MoDS (considered in Section 2.4.5), we
will first analyze computational complexity of each technique in terms of the mode
parameters and dimension of the configuration space. As listed in Table 2.4, the mode
parameters are channel coding rate, CR, modulation schemes Mod, MIMO encoding
rate MIMOgyc—Rrate, Number of transmit antennas Ny, number of receive antennas N,
MIMO decoding algorithms MIMOp,. and channel decoding algorithms Chp,... We
denote the number of choices available for coding rate, modulation, MIMO encod-
ing rate, MIMO decoding algorithms and channel decoding algorithms as Ncg, Nyroa,
Nyimo-Encs Nmimo-pec and Ncp—pec respectively. For HTTP-PD, the entire search
space is traversed for the mode that satisfies the maximum download rate, DR™%* and ap-
plication BER, BER,,, with computational complexity O(Ncg - Nyvod - NmMiMO-Enc -
N7 - Ng - Nyimo-pec - Nch-pec)-  As elaborated in Section 2.3.3, the computational

complexity of MoDS is O(Nuipmo-gnc - Nuimo-pec * Nen-pec - I - 1S3,

) where Iy,
denotes the number of iterations required by the optimization tool “nlopt” to deter-
mine the mode that imposes minimum load on battery while satisfying the down-
load rate and application BER constraints and 7Sp;,, denotes the dimension of inner
space (consisting of CR, Mod, Nr and Ng). It should be noted that the dimension
of inner space is constant and is equal to 4 and from our experiments; we have ob-
served that the typical value of Ij; is 5. The computational complexity of EERA is
O(log(Ncr - Nmod) - Nuimo-Enc - Nr - Nuimo-pec - Nch-pec) [20]. From the above dis-

cussion, we can see that the computational complexities for the three techniques have

certain similar and also different factors; hence it will be difficult to completely compare
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the complexities. However, when we consider typical values for the parameters as fol-
lows, Ncg =16 [103], Nyroa =4, Nuimo-gnc = 14 [103], Nr =8, Nr =8, Nyimopec = 2,
Ncihpee =2, ISpim =4 and Iy = 5 and compare the complexities for MoDS and EERA,
we can see that number of steps required for MoDS 1s 17920 and that for EERA is 1863.

We can therefore conclude that MoDS has higher computational complexity than EERA.

A.4 Computational Complexity Analysis and Compari-
son — ABR Streaming Techniques

In order to compare the computational complexity of the ABR streaming tech-
niques, namely, ABR-DASH, BaSe-AMy, BR-MoDS and B2R-MoDS, we will first
analyze computational complexity of bit rate selection followed by that of download
rate and mode selection. Bit rate adaptation by all the techniques considered involves
selecting a bit rate version based on certain conditions from a list of ‘n’ bit rates (n=7 and
is the same as the cardinality of the set Vpgr_yaiiaser in our experiments). The reference
ABR-DASH technique proposed in [21] uses a multiplicative factor (determined using
certain heuristics) to scale down/up the bit rate of the current segment and determine
the approximate bit rate for the next segment. BR-MoDS and B’R-MoDS select the
approximate bit rate for the next segment depending on the constraints specified in (2.23)
and (2.32) and require Igg (number of iterations required by the solver to determine
the approximate bit rate, Section 2.5.3) steps. Note that from our experiments, we have
observed that Ipr has a maximum value of 2. Given the approximate bit rate determined
by ABR-DASH, BR-MoDS and B2R-MoDS, selection of valid bit rate from Vzg_varidse:
(Table 2.6) requires [ogn steps resulting in computational complexity of O(logn) for
ABR-DASH and O(Ig +logn) for BR-MoDS and B?R-MoDS. BaSe-AMy on the other
hand has constant complexity (O(1)) as it uses certain logic to select either the bit rate

positioned above or below the bit rate of the current segment in Vgg_vaiiase: and does
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not require to traverse the entire Vpr_vaiigse:- We can therefore conclude that for bit rate
selection, BaSe-AMy has lowest computational complexity followed by ABR-DASH
and then BR-MoDS and B?R-MoDS. Subsequent to bit rate selection, download rate
and mode is selected for every download epoch constituting the segment and we will
next discuss the computational complexity of mode selection for all the techniques. For
ABR-DASH and BaSe-AMy, the entire search space is traversed to find the mode that
satisfies the maximum download rate, DR™%* and application BER, BE Ry, with com-
putational complexity O(Ncg - Nytod - Nuiso-Enc * N1 - NR - Nuimo-pec * Nch-Dec)- As
BR-MoDS and B’R-MoDS uses MoDS for mode selection, the computational complex-
ity is O(Nyimo-Enc - Nmimo-pec - Nch-pec - In - 1S3, ) (Section 2.3.3). From the above
discussion, we can infer that the BR-MoDS and BZR-MoDS have lower computational
complexity for mode selection than ABR-DASH and BaSe-AMy as BR-MoDS and B?R-
MoDS do not have to traverse the entire configuration space. Also, given that n typically
has values in the range 7-10 [104] - [105] and the mode selection parameters have values
in the range 2-16 (Appendix A.2), we can infer that the computational complexity of
mode selection (for instance, the number of steps computed for BR-MoDS using the
parameters values in Appendix A.2 is 17920) is significantly higher than that of bit rate
selection (for instance BR-MoDS requires 2-log7 = 2.98steps). Therefore the ascending
order of the techniques in terms of their computational complexities is BR-MoDS and

B2R-MoDS, BaSe-AMy and ABR-DASH.



Appendix B

Dynamic Cell Reconfiguration Frame-
work

B.1 Proof of Theorem 3.3

Proof. The problem given in (3.14) is a convex optimization because its feasible set
F (B, p) is convex (from Lemma 3.2) and the objective function is also convex (due
to the summation of the linear function of p; and convex function L;(p;)). Hence, it is

sufficient to show that,

(V((1=gqi)Pipi+ Li(pi),p—p*) =0 (B.1)

for all p € F(B,4 p). Let p;(x) and p?(x) be the associated probability vectors
for p and p*, respectively. Then, (3.17) generates the deterministic cell coverage, and

thus the association rule is given by

7 (x) = l{i =argmax <) } (B.2)

j€Bon (1=q)Pj+L(p]

and then the inner product (B.1) can be computed as

147
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D (A =g)Pi+ L7 () pi = p}) =

i€B,n
> =+ 1) [ Lm0 - (s
i€B,n
1-qg;)P;+ L7 (p;
/ yoo 3 E WP LD (e (B.3)
& ci(x)

It is clear that the inequality

Z (1 _Qi)Pi+L,'~(P;'k)7r.(x) . Z (1-gi)P;+ L (p)

ci(x) l = ci(x)

m*(x)
i€B,n
holds from B.2. Substituting this inequality into (B.3) yields the condition in (B.1), which

completes the proof. O

B.2 Proof of Theorem 3.5

Lemma B.1. },cg p;i is monotonically decreasing as B,, increases. g, pi >

on

2ieB,,uip} Pi holds

Proof. When we additionally turn on a BS b € 8\ B,,,, some of users will change their
association to the new BS b. Let £, denote the coverage area of BS b. For those users
x € L, according to (3.23), each users will have higher transmission rate ¢;(x) (or better
SINR) than before turning on BS b. If not, it should have not switched to the BS b. On
the other hand, for the other users x € £\ £, the association will remain unchanged.
Thus, each user will have the same signal strength g;(x) - p; and at the same time will see
the same amount of interference based on Assumption III.1. Consequently, there is no

change in their transmission rate ¢;(x)
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Recall the definition of BS utilization P in subsection 3.2.2 that >, p; is equal
to the summation of A(x)/c;(x) for all users x € L. As discussed above, c;(x) is higher
than (for users x € L) or equal to (for users x € L\ £;) before turning on BS b. Note
that A(x) is given and fixed. Hence, Y;cg,, 0i > Xiegu(p} £i holds, which completes the

proof. O
Lemma B.2. };cg p; is supermodular as a function of B,,

Proof. According to the equivalent definitions of sub/ supermodular set function (see
Proposition 2.1 in [68]), it is sufficient to show that the following inequality holds for all

be B\ (BonU{k}).

db(Bon) 2 db(Bon U {k}) (B4)

where dy(A) = Yicq Pi — Zieau(p) Pi that is a reduction in the summation of BS
utilization by adding BS b.

Let us consider two different sets of active BSs 8,,, and B, U {k} and then
investigate how the user association will change in each case when an additional BS b is
turned on. For the two different sets, the coverage area of BS b is denoted by £L;(8,,,) and
Ly(B,, U{k}), respectively. Since the association is based on the best the transmission
rate, the former area is a superset of the latter, i.e., Ly(Bon) 2 Lp(Bon U{k}).

Note that there are two types of area: (i) Common area L.,ym = Lp(Bon) N
Lp(B,nN{k}), where the users switched to BS b for both starting sets, and (ii) difference
area Lgirr = Lp(Bon) \ Lp(Bon U {k}), where the users could not be switched to BS b
because BS k provides better SINR than BS b.

We rewrite the summation from the perspective of users.
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db(Bon) - db(Bon U {k}) (BS)
_ Yy y(x)
) e a0
y(x) y(x)
- — d B.6
/xeﬁ[ie max (o) iegﬁ}ﬂ?k,b}cf@] g (8.0

It is enough to consider the two areas Le.omm and Lgirr since y(x)/c;(x) is

unchanged in the other area. Thus, the difference can be computed as follows.

[,
 JxeLoomm maxci(x)  c(x)

on
+/
xeLdiff

y(x) y(x) ] i

maxc;(x) B cp(x)
i€B,n

B / re ol yix))]dx (B.7)
x€Lcomm ieé{}ﬁ}{k}cl xX) cplx

/ [ y(x) ™) ] I
x€Loomm glaxci(x) max ¢;(x)

B{m iEBunU{k}
+ / SR C)) ]dx (B.8)
xeLairf [félélXC,'(x) cp(x)

The first integral is non-negative because maxc;(x) < max ¢;(x) holds. The

i€Bon i€Bon
second integral is also non-negative because maxc;(x) < c¢p(x) holds for all users x €
i€Bon

Lirr. This completes the proof. =
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