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In the paradigm of Internet-of-Things (IoT), smart devices will proliferate our living and working

spaces. The recent decade has already witnessed an explosive growth of smartphones and wearable

devices. A plethora of newer and even more powerful systems are emerging. IoT will enable more

fluid human-computer interaction and immersive experiences in smart homes. IoT will facilitate

rich sensing and actuating in intelligent warehousing and manufacturing. IoT will also empower

fast and accurate perception and decision making in autonomous vehicles. The paradigm has el-

evated the role of the devices that constitute the edge of the network. Because of the sensitive

nature and the sheer volume of the data generated by those devices, edge computing becomes a

more effective and efficient option. While it brings better privacy protection and latency reduction

in applications, edge computing is associated with various constraints. For the sizable list of de-

vices that are operating on batteries, their sustainable operation usually calls for extremely efficient

and judicious use of energy. Further, the inherent vulnerability accompanying the deployment in

unsafe environments requires extra layers of security.

In this dissertation, we study the energy and security problems of edge computing in the con-

text of machine learning. We present various learning-based techniques for improving energy

efficiency. In contrast to the traditional resource allocation mechanisms that typically adopt hand-

crafted rules and heuristics, we adopt a framework where we use machine learning learn to create

ii



online resource allocation strategies from optimal offline solutions. We demonstrate the effective-

ness of the framework in applications and scenarios including DVFS, computation offloading and

sensor networks. Our machine learning enabled strategies have approximated optimal solutions

with an average of 2% error and achieved 40% in energy savings. In an increasing number of edge

computing applications, machine learning algorithms themselves constitute the core and the major

workload. Many of those applications have high energy consumption and are vulnerable to secu-

rity issues such as intellectual property theft. To solve the problems, we derive techniques directly

from the machine learning processes. We present computer vision-oriented adaptive subsampling

strategies for image sensors, deep neural network pruning and customization, and deep neural net-

work watermarking for intellectual property protection. With little to no loss in the performance,

we improve the energy efficiency and security machine learning systems.
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CHAPTER 1

Introduction

1.1 Internet of Things and Edge Computing

Since its conception at the turn of the century [6], Internet of Things (IoT) has gained tremen-

dous traction in both the academia and the industry. As its name suggests, the paradigm of IoT

is established upon the prevalence and interconnectedness of smart agents or “things”. Through

communication, sensing and actuating, they collectively undertake ambitious tasks. The concept

has been adapted and applied to a wide range of industries, including manufacturing, transporta-

tion, surveillance, healthcare, environment, and home automation. It is estimated that there will be

over 75 billion connected devices worldwide by 2025 [7], and by then the market is expected to

reach $ 1.1 trillion [8]. IoT constitutes an even larger ecosystem if we take into consideration the

trillion-dollar PC and smartphone industries, both of which are crucial parts of the paradigm. The

paradigm of IoT promises to enable applications that transform business and people’s lives.

IoT systems run a diverse range of workloads. To begin with, communication is the funda-

mental need of IoT systems. The ability to seamlessly integrate with smartphones over low power

Bluetooth make wearable devices best-selling gadgets. The ad hoc communication channels allow

massive sensor networks to be deployed in the field [9]. Secondly, sensing is one of the most

important components. Systems that require sensing range from surveillance cameras in smart

homes, to automated production line in smart factories. The sensing task can be as simple as read-

ing a temperature sensor. It can also be as complex as encoding and decoding videos [10]. Lastly,

recent advances in artificial intelligence have also pushed the boundaries of IoT systems. Machine

learning (ML), in particular, stands out as a practical and effective method to supply IoT devices

with autonomy and machine intelligence. Machine learning has been applied to infer activity from
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smartphone sensor data [11] [12]. ML-based speech recognition has allowed smooth and natu-

ral conversations with smart home devices [13]. Autonomous vehicles heavily rely on computer

vision algorithms that are based on deep convolutional neural networks [14]. Executing machine

learning models have become a unique type of workload on modern IoT devices.

To accommodate the workload, edge computing has emerged as the preferred computation

model in the paradigm of IoT [15]. As opposed to cloud computing, where computation occurs in

the centralized cloud servers, edge computing defines a framework where computation is carried

out on the edge of the network. The edge can refer to a gateway or a cloudlet with computing

capabilities. More often, it refers to the “things” themselves. The motivations for adopting edge

computing are manifold. Most importantly, with their growing sensing capabilities, the edge will

generate an increasingly large amount of data. In many applications, edge devices can process

data with much better energy efficiency. Fitted with engines that carry 5000 sensors, a single

Bombardier C Series jetliner generates 844 TB of data during a 12-hour flight [16]. Consumer

electronics are also equipped with ever-evolving sensing capabilities. One second of a raw 30 FPS

4K video, which many of today’s smartphone cameras are capable of producing [17], amounts to

over 600 MB of data. Uploading such a large amount of data to the cloud for processing is ex-

tremely inefficient, if not infeasible. Secondly, edge computing safeguards users’ privacy. Smart

home devices such as the Amazon Echo series [18] and the Google Home/Nest series [19], have

gradually found their way into households. Due to their ability to collect data through microphones

and cameras, they have been under strict public scrutiny [20]. Companies have established rules to

ban the compromising act of transferring sensitive data to the cloud. As a result, edge computing

remains the only viable option for data processing. Finally, edge computing induces much lower

latency compared to cloud-based solutions. Applications such autonomous vehicles require data

to be processed in real time. Today’s mobile network on average takes over 100 ms for a round trip

from the device to the cloud [21], and it is far from satisfying latency requirements of those appli-

cations. Only computing on the edge will be able to satisfy the stringent requirements in latency. It

has become clear that IoT devices are transforming from data consumers to data producers. Edge

computing is going to play a more important role as the devices undergo the transition.
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1.2 Challenges and Motivation

The realization of the IoT and edge computing vision is subject to a different set of constraints

comparing to those from the PC and internet era. In particular, energy and security are among the

most important constraints.

Many IoT devices are battery-powered and face energy constraints. The most relatable ex-

ample might be the various wearable devices that people today carry in their daily lives [22].

Smartphones are also an integral part of the loop by serving as a central information hub connect-

ing the devices. Without an exception, the devices mentioned above are all powered by batteries.

Although various energy-saving features have been built in, the battery life is still extremely lim-

ited, in some cases as low as an hour [23]. Autonomous vehicles are also powerful moving IoT

nodes that are powered by batteries. While vehicles are using the batteries of a much higher cal-

iber than those of wearable devices, energy efficiency remains an important issue for them. The

intensive computation required for the perception and control components makes the autonomous

vehicles extremely power hungry. It is reported that sensing and computation consume around

2500 watts of power [24], at which rate the commercial electric car batteries will be drained in

hours even without the user driving it [25]. In addition, IoT has brought automation to what used

to be labor-intensive industries such as farming and environmental monitoring. For example, agri-

culture technology companies are using battery-powered drones to monitor crop growth [26]. Even

in remote areas where no infrastructure exists to provide with electric power, IoT is playing a role.

Researchers have long envisioned the large scale deployment of environmentally powered sensor

networks [27]. The initiative is slowly coming into fruition with the commercialization efforts

such as the deployment of solar-powered devices in the ocean [28]. We are convinced that energy

efficiency is a crucial requirement of the IoT systems. Reducing the energy consumption of such

systems is thus widely recognized as an active research field.

Another important desideratum of IoT systems is security. Tasked with connecting the physi-

cal world, such systems are bound to encounter diverse operating environments. Unlike PCs and

servers, which are safely harbored in offices or data centers, edge devices are exposed to attacks

that range from the physical layer, computation, and communication layer, to the semantic layer. In
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one incident, an attacker was able to control other connected devices through a hack that involves

physical access to a Nest thermostat [29]. Many other incidents involve cameras being attacked

remotely over the internet [30]. The complexity of the security issues with IoT is not only reflected

by the diverse ways of attack, but also the target of the attack. Information from both the user and

the developer may be compromised. One critical type of attacks that target developers is intellec-

tual property (IP) theft. With physical access to compromised devices, it is easier for attackers to

steal proprietary data and conduct software piracy than in the cloud or web-based setting. IP is

usually considered one of the most important competitive advantage of a tech company. IP theft

will incur a considerable loss to the developers and harm the health of the ecosystem.

To improve the energy efficiency and security of different types of workloads in IoT systems,

we adopt different strategies. The communication and sensing workload in IoT systems sometimes

depend on the external factors. Congestion on the Internet, like many other things in the world that

adhere to our society’s schedule, follows a periodic pattern. It is only wise for IoT systems to

avoid busy periods in order to save resources. As another example, the amount of computation

needed to process data, e.g. decode a video, can be dependent on the data itself. It is unclear

how much computational power to allocate in order to process the data timely and efficiently. All

of the examples above more or less involve a prediction problem. We need to predict how much

resources we need before we allocate them efficiently. Simple heuristics often fail to capture the

complex nature of the situations. This is when we need the help of machine learning. There are

challenges associated with using machine learning to solve the prediction problem. To begin with,

we usually don’t have the labeled data which is crucial to training a machine learning model. In

addition, it is never easy to design lightweight models that are able to predict with high accuracy.

But if we are able to create models with high performance, the potential benefits we can bring to

the systems are huge.

The third type of workload is machine learning. While we could treat the machine learning

models as black boxes as any other workloads, it is not the most effective approach. Many machine

learning models are complex non-linear functions. Methods that improve the energy efficiency

and security of machine learning applications should align with, if not be part of, the optimization

process of models. Deep neural networks, for instance, are typically trained with gradient descent
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Non-ML Applications ML Applications

Energy

Efficiency

• Code Offloading with Resource-

Constrained Cloud (Ch. 2)

• Learning-Based DVFS (Ch. 3)

• Sustainable Operation of Environ-

mentally Powered WSN (Ch. 4)

• Adaptive Image Sensor Subsampling

for Computer Vision (Ch. 5)

• Customized On-Device DNN

Pruning (Ch. 6)

Security

• Secure DNN Watermarking for

IP Protection (Ch. 7)

• DNN Watermarking with Improved

Robustness (Ch. 7)

Table 1.1: Major contributions and organization of the dissertation.

algorithms. The neurons in the model are the result of a fragile co-adaptation [31]. As a result,

any subtle changes in the weights may have huge effects on the inference results. If we should

like to reduce the model size or modify the model to incorporate security features, we will need

a method to negate such effects. Finding a proper method is a challenge, especially given the

unique constraints posed by different scenarios. In addition, many peripheral components that

are interdependent with machine learning models should also be treated in a similar manner. For

instance, any changes to the sensor that provides data to machine learning models should be made

in such a way that minimizes the impact on the models. In summary, we need to design a method

that can be integrated with the machine learning process in order to make it more energy efficient

and secure.

1.3 Contributions and Organization

This thesis addresses the energy and security issues of edge computing systems by examining a

handful of popular applications. Table 1.1 summarizes the contributions and the organization of

the thesis. As different workloads require different methods, we categorize the applications into

ML-based and non-ML-based ones. The set of methods we present in Chapter 5, Chapter 6, and
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Chapter 7 fall into the ML-based category. Chapter 2, Chapter 4, and Chapter 3 describe learning-

based techniques designed for various non-ML applications.

We begin the thesis by presenting methods to improve energy consumption for mobile of-

floading, dynamic voltage and frequency scaling (DVFS), and environmentally powered sensor

networks. Code offloading refers to the frameworks where parts of the program are migrated from

the IoT devices to the cloud in order to reduce energy consumption. When the cloud does not have

an infinite amount of resources, it should prioritize programs that are most effective in bringing

energy savings. In Chapter 2, we propose scheduling techniques and a machine learning-based

offloading algorithm to further to address the issue. In Chapter 3, we focus on the energy manage-

ment technique called dynamic voltage and frequency scaling (DVFS). The power consumption of

a circuit is proportional to the square of the operation voltage. DVFS saves energy consumption

by assigning a lower CPU voltage and lowering the frequency and slowing the execution when

there is a smaller workload. Without application-level semantic information, it is inherently hard

to find a suitable CPU frequency. Using video decoding as an example, we propose to use machine

learning for CPU frequency prediction and improve the effectiveness of DVFS. Chapter 4 offers

a case study of an environmentally powered sensor network. We analyze the energy harvested

by each sensing and message forwarding node and propose a routing and operation schedule that

maximizes the lifetime of the entire sensor network. The chapters follow a unified procedure.

We first design offline algorithms that find optimal or near-optimal solutions. Then we learn to

approximate such solutions and derive our online learning-based strategies.

Next, we introduce a set of techniques to improve the energy efficiency of programs that center

around machine learning. In Chapter 5, we aim to bridge the gap between the ultra-high resolution

of commercial image sensors and the low resolution needed for computer vision algorithms. In-

stead of sampling the entire pixel array of the image sensor, which is extremely inefficient in terms

of energy, we propose an adaptive subsampling strategy that reduces the number of pixels needed

to create an image. The strategy is designed to maintain the performance of computer vision al-

gorithms when the sampled images are used as inputs. Modern computer vision pipelines usually

include stages that range from image sensing to inference using machine learning. Following

the work on image sensing, we present the energy consumption optimization of machine learning
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models in Chapter 6. In particular, we prune channels from convolution neural networks to create

faster, energy efficient and customized models. The approaches we introduce are closely coupled

with the intrinsic characteristics of the machine learning models and provide unique insights into

their respective problems.

Finally, we discuss techniques to improve the security of IoT systems. In Chapter 7, we focus

on the problem of IP protection in the wake of massive commercialization of deep neural networks.

The problem is especially prominent when attackers have complete access to the IoT devices and

may be able to steal the intellectual property with various attacks. In order to protect the IP right

of the model owners, we propose to embed watermarks in the deep neural network models to en-

able identification and proof of ownership. We first layout a method where we place the owner’s

signature onto regular inputs to create the “trigger set”, a type of inputs used to trigger a specific

behavior of the neural network. By showing the disproportionally low probability of such behavior

occurring naturally, the owner identifies and proves his ownership. After that, we describe an evo-

lutionary algorithm-based technique to improve the robustness of the method against fine-tuning

attacks. We integrate the proposed framework in the training processing of the neural network in

order to make the watermark effective.
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CHAPTER 2

Learning-Based Code Offloading under Cloud Resource

Constraints

Energy is one of the biggest constraints for the development of edge computing. In recent years,

researchers have proposed various frameworks that enable offloading applications to the cloud as a

way of saving energy. Cuervo et al. [32] introduced MAUI in 2010, a code offloading framework

that makes fine-grained offloading decisions at run time. Chun et al. [33] also approach the same

problem with a VM based offloading framework, where an image of the mobile system is set up in

the cloud so that minimal effort is needed to modify the original program. Kosta et al. [34] takes

the same approach a step further by enabling scalable parallel execution in the cloud. Even though

these systems are in the early stages of development, we believe that offloading can be a viable

solution to the energy problem.

Though researchers have used mobile cloud computing to denote the new paradigm [35], there

are key differences between offloading in edge computing systems and traditional cloud computing

systems. First, the location of execution(i.e. locally or in the cloud) is flexible. A task can be

executed in the cloud if in such way energy can be saved. Or the task can be executed locally

if the offloading overhead outweighs the benefit. Traditional cloud computing systems put heavy

emphasis on reliability and availability because of the all-or-nothing style service they offer. When

a web server is down, the website cannot be accessed until the outage is over. Similarly, users of

EC2 would not expect the service to be unavailable and prepare a ready-to-run local version. In

the offloading settings, however, tasks always have the option to be executed locally. Therefore,

a better definition for offloading is a cloud-based augmentation [36]. It is intrinsically a bonus

feature that enhances user experience. Second, offloading frameworks provide accurate profiling

of tasks. The profiling is usually done as part of the run-time optimization engine. In MAUI,
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for example, program profiles consist of software states and data, CPU cycles and execution time

[32]. The MAUI solver takes into account network condition and program profile and solves for a

program partitioning strategy that minimizes the smart phone’s energy consumption under latency

constraints. Such fine-grained profiling of programs provides prior knowledge of heterogeneous

tasks, which is not accessible in the traditional cloud computing environment. This allows for fine-

grained task scheduling in the data center. It also enables the evaluation of tasks in terms of their

efficiency in saving energy.

Those characteristics provide new opportunities for data centers as well. The data center nowa-

days is characterized by over-provisioning. A typical data center uses only 10-50% of its com-

puting power for most of the time [37]. Given poor energy-proportionality [38], a large cost is

incurred not only by the one-time purchase of hardware but also by the energy consumption of the

under-utilized node. Sophisticated load prediction techniques [39] [40] may be able to alleviate the

overhead. However, such cost is intrinsically caused by the availability requirement of the cloud,

or requirement that cloud service being on-demand self-service [41]. The problem can only be al-

leviated rather than solved. A data center targeting offloading applications, on the other hand, has

the potential to change the picture. We envision a cost-aware data center that provides constrained

resources for offloading. In the face of resource shortage, the data center becomes selective in

scheduling tasks such that the maximum amount of energy is saved globally. The fine-grained task

profiles enable the selection of tasks. The flexibility of offloading frameworks allows some tasks to

be executed locally. The efficiency of energy saving and the low cost will justify the system design

as a service. Overall, we believe such data center design is well justified and suited for offloading

scenarios.

The difficulty in designing such systems mainly involves solving an optimization problem:

given data center resource constraints, how can we schedule tasks such that the global energy

savings are maximized. The key is to design a solution that solves the optimization problem

with low overhead. In particular, the system is desired to be localized, i.e., an optimal offloading

decision should be made by mobile devices without communicating with the data center to avoid

unnecessary energy overhead. Another aspect to consider is the fairness of the shared system.

There is a trade-off between the maximization of energy savings and a fair share of the resources.
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Only a few frameworks have been proposed that seek to optimally allocate resources when mul-

tiple users offload simultaneously. Shu et al. modeled the system as a queuing network, and studied

the global energy consumption and delay tradeoff [42]. Yet the system is not localized as they as-

sume tasks are from a single mobile client. Barbarossa et al. targeted multiple users collocated at a

small cell base station, and proposed an algorithm that jointly optimizes the computation resources

and radio power through the formulation of a convex function [43]. The algorithm again requires a

centralized system, and wireless channel contention in their problem might not be valid in a more

general setting. In the same collocated mobile clients problem setting, Chen proposed localized

game theory based solution under wireless communication channel resource constraints [44]. In

conclusion, existing works on resource allocation either a) target specific scenarios and lack gen-

erality, or b) rely on centralized schemes, which increase communication overhead. In addition,

no work has considered the fairness issue yet.

Our solution is a framework where the system learns online localized decisions from offline

centralized solutions. In the offline phase, all task information is given as prior knowledge, and the

data center needs to obtain a near-optimal solution that maximizes energy savings. We formulate

the offline problem as a scheduling problem and obtain upper bounds through Linear Programming

(LP). We propose a probability-based algorithm that is able to obtain an approximate solution in

polynomial time. The results are then used to train a logistic regression classifier. In the online

phase, mobile clients use the classifier to make localized real-time decisions on offloading, thereby

avoiding sending out inefficient tasks. When considering fairness, the users allows a probability for

the tasks to be offloaded without going through decision making by the classifier. The data center

uses a proportional fair scheduler and achieves fairness among offloaded tasks while maintaining

relatively high performance. The system workflow is shown in Figure 2.1. Based on simulation

using real-life workload traces, we observe that our offline algorithm produces a near-optimal solu-

tion, and the classifier-based online approach yields result close to the offline while outperforming

baselines by a large margin.

Our contributions are multi-fold. First, to the best of our knowledge, we are the first to pro-

pose a learning-based localized solution to the resource allocation problem in offloading systems.

Second, we propose a novel time-efficient offline scheduling algorithm that, compared with the
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Figure 2.1: System workflow of code offloading

derived upper bounds, achieves near-optimal results. Third, we are the first to consider the fairness

of the data center resource allocation problem in the offloading scenario. Lastly, we use real-life

work load traces to build realistic simulation of the offloading system.

The rest of the chapter is organized as follows. Section 2.1 analyzes real-life traces, introduces

the models we use for simulation and formulates the problem. Section 2.2 introduces the details

of each parts of the framework: Section 2.2.1 covers offline scheduling problem and our approxi-

mation algorithm, Section 2.2.2 describes classifier and feature selection, Section 2.2.3 introduces

fairness and proposes mechanisms for fairness in the framework, and Section 2.2.4 shows how the

system work in simulation. Section 2.3 evaluates the system: Section 2.3.1 introduces the simu-

lation setup and analyzes the synthetic workload to provide background knowledge, Section 2.3.2

evaluates the performance of the offline scheduling algorithm, classification, as well as overall per-

formance in energy saving, Section 2.3.3 shows the effect of various system parameters have on

performance and Section 2.3.4 shows the trade-off between performance and fairness.
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2.1 Preliminaries

Consider a scenario where various mobile clients offload tasks to the cloud for remote execution.

The mobile clients neither communicate nor interfere with each other. The tasks have a release time

as well as a deadline and are also characterized by a set of parameters derived from computation,

network, and energy models. The tasks can either run locally or be executed remotely in the cloud.

2.1.1 System Model

In this subsection, we define the model we use for the chapter. We describe various parameters

of the tasks in terms of computation and network, from which we derive per task-based energy

models.

2.1.1.1 Computation

Let f l represent the CPU frequency of the mobile device, and f c the CPU frequency of the data

center1. If the task runs in the data center, there’s an additional speedup ratio of r due to additional

memory [45]. Consider a task T that takes c clock cycles to run, requiring τ l = c/f l seconds to

execute locally. The time required to execute the task in the cloud is τ c = τ l ·f l/(rf c). We assume

the data center has a fixed number of machines, represented by the capacity, C, each can only run

one task at a time. We assume that tasks can be executed immediately after it arrives. In addition,

the scheduling of tasks is non-preemptive, i.e. once the data center makes the commitment to

schedule a task, the execution of the task cannot be interrupted and resume later.

2.1.1.2 Network

The mobile network is intrinsically unpredictable and hard to model. We resort to a simple model

where the mobile client knows the average bandwidth of nb of its network. Assume that task T has

a data size of nd bytes, then it takes τ t = nd/nb seconds to transmit the data over to the data center.

1We use superscripts to denote the ”type” of a variable so that subscripts can be reserved for the numbering of
individuals
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We assume that the data center has sufficient network bandwidth. Thus the offloading processes

will not experience any bottleneck in data transmission.

2.1.1.3 Energy

We adopt a simple energy model where the mobile device operates in one of the three states:

computing state with power P c, transmitting state with power P tr, and idle state with power P i

[45]. The energy for local execution is P cτ l, the energy for transmission is P trτ t, and the energy

spent waiting for remote execution results is P iτw, where τw ≥ τ c is the waiting time. Notice that

the waiting time can be longer than the time of execution.

One interesting fact reported by the authors of [33] is that the benefit from offloading grows

more than linearly as computation size increases. It is due to the fact that larger energy savings will

amortize the fixed ”start-up” cost of various components triggered by the code migrating process.

For example, there are costs associated to power up the radio, to save program states, etc., which

are a roughly fixed cost and do not grow with program sizes. We accommodate this aspect in our

model by adopting a fixed term in the calculation of migration energy cost.

Tasks will be in one of the three states: successfully offloaded and executed in the cloud,

offloaded yet not scheduled due to resource limits, and locally executed (without being offloaded).

We denote the states by remote, offloaded, and local, respectively. The energy savings

∆E of different states are:

∆E =



El − Ec if remote

−Ec if offloaded

0 if local

(2.1)

2.1.1.4 Task

The final task model is listed in Table 2.1. We choose to consolidate the task parameters into a

simpler abstraction consisting of two categories, time and energy. The table also shows how the

parameters are derived, where the additional parameters involved (as we show in the following
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Parameter Explanation Derivation

τ l Local exec. time c/f l

τ c Cloud exec. time τ lf l/(rf c)

τ t Transmission time nd/nb

El Local exec. energy P cτ l

Ec Offload energy overhead P trτ t + P iτw

tr Release time

td Deadline

Table 2.1: Code offloading task parameters

section) are generated with reference to real-life models. Notice that for convenience we define

tr to be the time when tasks can start execution in the cloud. The actual offload decision is made

earlier. We further define a few variables that are useful in our algorithms and discussion. Benefit,

b refers to the efficiency of energy saving of a task, i.e. b = ∆E ′/τ c. Since ∆E is not known in

advance, we use the estimated energy savings, ∆E ′ = El − Ec. Slack defined by td − tr − τ c, is

the period that a task can afford to wait before its deadline is reached. We test our model in the

simulation and it shows accordance with experimental results from the offloading frameworks [33]

[34].

In building the system model, we carefully seek a balance between simplicity and fidelity

of the model. The scheduling problem lies on an extremely simple abstraction, where only a

single type of resources is studied. On the other hand, the model for data center often involves

sophisticated modeling of CPU, memory, I/O, network, etc. [46]. To resolve the conflict, we rely

on the following observations. First, tasks in offloading are more computation intensive than data-

intensive, as demonstrated in the typical applications like a chess game, face recognition, etc [32].

Given the limited network bandwidth of cellular networks and energy constraints, only a relatively

small amount of data can be offloaded (as compared to generic cloud applications). Thus CPU

is more likely to be the single bottleneck in resource allocation. Second, task execution is not

distributed among multiple machines. Researchers have shown that parallel execution does not

improve the performance linearly with an increasing number of machines used [34]. Thus we
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assume tasks will be running only in a single container (physical machine or VM, denoted by

machine for the rest of the chapter). Thus unlike the situation for modeling MapReduce tasks, the

I/O bandwidth of machines in our case is not of much concern. Those observations justify our

approach to attribute execution time cost only to computation and using the abstraction that each

task runs on a single machine.

2.1.2 Generating System Parameters

Since no offloading systems exist in full production, there is currently limited available real usage

data. We can only assume the similarity between some aspects of existing systems that target mo-

bile computing systems and the offloading scenario. The answer to the following three questions

are of particular importance to our study:

1. what is the distribution of computation resource usage of offloading tasks;

2. how can we characterize the arrival of requests;

3. how the usage is distributed among users.

To answer the first question, we examined the traces of Google computing clusters [47], with

the assumption that the distribution of computational resource usage of tasks in the generic cloud

computing environment is similar to that in the mobile cloud computing environment. To answer

the second question, we use the cellular network access traces of a cellular network provider in

the US, with the assumption that the network access data reflects the behavior of mobile users,

especially in terms of usage as a function of time. We found that the CPU usage follows a power

law distribution while the disk usage follows a log-normal distribution. The generation of the rest

of the parameters is described in Section 2.3.1.1. To answer the third question, which is critical

for the study of fairness, we use mobile network usage data. The network usage reflects different

users’ frequency and habits of using mobile internet. We assume that it bears a similarity with the

frequency of offloading with different users.
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2.1.2.1 Distribution of CPU and Data Size

The Google cluster traces provide a month-long workloads traces of 12,000 machines. Researchers

have studied the characteristic traces [48] and some even proposed ways to synthesize data center

workload based on these traces [49]. In our project, we are only interested in the high-level dis-

tribution of task sizes. Typically the tasks we use are MapReduce type tasks. We aggregated the

CPU usage overall jobs that belong to one task to obtain per-task total CPU usage. The distribution

of CPU usage is shown in Figure 2.2(a). The linearity in the logarithmic scale implies that distri-

bution follows a power law distribution. The distribution of disk usage as a function of CPU usage

is shown in Figure 2.2(b). Figure 2.2(c) extracts tasks with CPU usage in a small range and plot

their disk usage. We observe that the distribution of disk usage is log-normal to the corresponding

CPU usage of the task.

Along with the observation, we generate the number of CPU cycles c from a power-law distri-

bution, and data size nd in a corresponding log-normal distribution.

2.1.2.2 Arrival Model

Workload prediction of data centers has been a difficult research problem. In this chapter, we hold

the assumption that the workload of offloading bears similarity with that of mobile phone users

visiting the Internet. We believe the variance and unpredictability of the offloading workload can

be characterized by the fluctuation of cellular network record.

It’s long been shown that Internet traffic is ”bursty” at all time scales or self-similar [50].

Recently, Han et al. also showed that the requests arrival process in the cloud is self-similar

[40]. Self-similarity is characterized by a series X having the same correlation function with its

”aggregated” version X(m). The aggregated series is defined by the following equation

X(m)(t) =
1

m

tm∑
i=(t−1)m+1

X(i)

The autocorrelation function over the series, r(k) = E((X(t) − µ)(X(t + k) − µ))/σ2, exhibits

a power law decay over a long range: r(k) k−β as k →∞. This is called long-range dependence.

The Hurst parameter H = 1− β/2, measures the decay of such dependence over range. Thus it’s
16
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Figure 2.2: Characteristics of Google cluster traces: (a) shows the distribution of CPU usage; (b)

shows the distribution of disk usage against the distribution of CPU usage; (c) shows distribution

of disk usage of tasks with CPU usage between a small range
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Figure 2.3: Sample of cellular network usage traces

also used as an indicator of the degree of self-independence. Basically, self-similarity implies the

fact that bursts and spikes on the second’s scale also exist in tens of seconds or minutes scale. Thus

such an arrival process is intrinsically hard to predict.

Self-similarity alone is not enough for the arrival model. In addition to burstiness, traffic also

contains a cyclic element that characterizes the change in people’s activities. Many researchers

have observed workloads daily, weekly, and seasonal cyclic patterns in data center [37] [39].

We conclude that it is both easier and more convincing to use realistic traces. We thereby turn

to real life traces of cellular network, which contains both cyclic and bursty behavior, as shown

in Figure 2.3. Notice usage in the sample is measured in sessions, which is defined as a period

of semi-continuous network activity of a single user over a span of time. To utilize the traces, we

define our model in discrete time slots (e.g. 10 seconds). The number of tasks that arrive at a

particular time slot will be scaled from the number of sessions in the corresponding time slot in the

traces.

2.1.2.3 Distribution of Usage

Figure 2.4 shows the distribution of network traffic of different users in bytes. Both axes are in log

scale. It’s clear that the distribution follows a power law.
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Figure 2.4: Distribution of network traffic of users

2.1.3 Problem Formulation

Now that the system model has been described, we proceed to formulate our problem. Define

Dl
i(t) ∈ {1, 0} to be the local decision on whether task Ti is offloaded to the cloud at time slot

t, and Dc
i (t) to be whether the data center executes Ti at time slot t. Under data center resources

constraints, some of the tasks may be offloaded and others may not be. Among the offloaded tasks,

only part of them may be executed in the cloud. The energy savings of Ti, ∆Ei, will then be either

of the three cases described in Section 2.1.1.3 depending on whether the task is offloaded and

whether it is executed in the data center. Our goal is to find an online localized decision process

for Dl
i(t) and Dc

i (t) such that the overall energy savings
∑

i ∆Ei is near-maximal.

2.2 Method

To solve the optimization problem, we first examine it in an offline environment. We formulated

our problem as a scheduling problem and showed upper bounds of the solution to the problem.

We then proposed a probabilistic algorithm that is able to achieve near-optimal results. The infor-

mation from offline scheduling is extracted by classification, where features are selected through

regularization. We introduce the classification to local mobile clients, which enable them to make

a localized real-time online decision for offloading. The algorithms for fairness scheduling is also
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introduced in this section. An overview of the algorithms we used is listed in Table 2.2.

2.2.1 Offline Scheduling

The offline phase aims at finding a near-optimal solution to the assignment of tasks, by assuming

centralized control and the knowledge of all the tasks. Despite the complicated models and proce-

dures, the core task of the offline phase is equivalent of the following: we want to decide which

tasks to be scheduled locally and which in the cloud, such that the energy is maximized. Thus

offline problem can be simplified to a scheduling problem described in the following sections. The

solution of the scheduling problem represents an ideal state of the execution of all the tasks. The

tasks should all be in state local or state remote, and it should not matter what Dl
i(t) and Dc

i (t)

is as long as there’s one final conclusion for each task on whether and when it’s executed in the

data center, denoted by Di(t). For simplicity, we also ignore the cost of waiting. It remains an

open question on how to solve the scheduling problem when the weight is varying.

Offline Alg. Summary

Upper bound
Relax the problem to a linear program and obtain an

optimal solution

Baseline: deadline Schedule the task with earlies deadline first

Baseline: greedy Schedule the task with highest benefit (of all tasks) first

Probabilistic The proposed approximation algorithm

Online Alg. Summary

Baseline: FCFS The First-Come-First-Serve scheduling

Baseline: greedy Schedule tasks with highest benefit (in the queue) first

Proportional fair
Schedule the user with the highest task benefit divided

cumulative energy savings

Table 2.2: Overview of the scheduling algorithms for offloaded tasks
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2.2.1.1 The Scheduling Problem

Scheduling problems have been exhaustively studied in the past. According to the survey [51], our

problem falls in the category of minimizing the number of weighted tardy jobs, P ||
∑
wU . In the

problem representation, P stands for identical parallel machines, where the number of machines

corresponds to data center resources C in our model; w stands for the weight, which corresponds

to the energy savings ∆E ; U stands for the unit penalty, where U = 1 if the task is not scheduled

within deadline (referred to as tardy job), and 0 otherwise. By minimizing the energy savings

”lost” with unscheduled tasks, i.e.
∑
wU , it is effectively achieving our goal to maximize energy

savings of scheduled tasks.

The aforementioned scheduling problem is NP-hard [51]. There exists a dynamic programming

based pseudo polynomial solution [52] [53], but it takes O(mn(maxj{dj})m to solve, where n is

the number of tasks, dj is the deadline and m is the number of machines [51]. It is apparently

not feasible to obtain the optimal results even in the offline settings. Bar-Noy et al. proposed an

approximation algorithm using relaxation from a linear programming upper bound [54]. Yet the

linear programming problem is time-consuming to solve. Therefore, we propose a polynomial

near-optimal algorithm to tackle the problem.

2.2.1.2 Bounds and Baselines

Bar-Noy et al. provided an non-preemptive upper bound which was claimed to be the best possible

upper bound achievable [54]. Yet in our problem, their approach proved too time-consuming.

We thus provide a running-time optimized linear programming (LP) based upper bound. The LP

relaxes the problem by a) allowing preemptive scheduling; and b) allowing a fraction of a task to

be scheduled in such time slots. For any task, the sum of the fractions should be no more than the

original execution time. At any time slot, the sum of all fractions should not exceed the number of

machines. We thereby define xit to be the fraction for each task Ti at each time slot t. Note that xit

is 0 for t 6∈ [tri , t
d
i ). The formulation of LP is as follows:
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maximize
xit

N∑
i=1

tdi−1∑
t=tri

bi · xit

subject to

tdi−1∑
t=tri

xit ≤ τ ci , for each i

N∑
i=0

xit ≤ C, for each t

0 ≤ xit ≤ 1

We compare the two upper bounds in Table 2.5.

We use two baseline algorithms: schedule by the earliest deadline and a greedy algorithm. The

earliest deadline algorithm is proved to be optimal in unweighted scheduling problems. The greedy

algorithm schedules orders tasks according to their benefit b and schedules each task at the earliest

time slot available. The results of algorithm performance are shown in Table 2.7.

2.2.1.3 The Probabilistic Approach

The proposed offline algorithm builds upon the greedy algorithm, which seeks to schedule as

many high benefit tasks as possible, but it takes a step further by first “shifting” the tasks to the

less congested area so as to schedule as many tasks as possible. The difficulty encountered when

shifting a task, however, is that we have to consider the probability of another task being shifted

to the same slot later. We thus come up with the method of shifting based on a probabilistic

profile, where each task has a probability to be in all the time slots available to it. With the

probabilistic profile, we can achieve the goal of reducing congestion by shifting each task just

once, thus achieving linear complexity.

Now we define our approach in more details. Let n be the number of possible schedules for a

task T , where n = td − tr − τ c + 1, thus each schedule takes probability 1/n. The probability of

the task at a particular time slot is the sum of the probabilities of all the schedules that cover that

slot. Figure 2.5 shows the probabilistic distribution of two example tasks. Both tasks have tr = 0

22



Pr(t) 
𝟏

𝟒
 
𝟐

𝟒
 
𝟑

𝟒
 
𝟑

𝟒
 
𝟐

𝟒
 
𝟏

𝟒
 0 

t 0 1 2 3 4 5 6 

Pr(t) 
𝟏

𝟑
 
𝟐

𝟑
 
𝟑

𝟑
 
𝟑

𝟑
 
𝟐

𝟑
 
𝟏

𝟑
 0 

t 0 1 2 3 4 5 6 

Task 

3
 P

o
s
s
ib

le
  

S
c
h
e
d
u
le

s
 

Figure 2.5: The probabilistic distribution of two example offloading tasks

and td = 6, while τ c equals 3 and 4 respectively. Consider the first task, where one schedule covers

slot 0, thus yielding a probability of 1/4; two schedules cover slot 2, thus yielding a probability of

2/4, etc. Let tt = min(tr + τ c − 1, td − τ c). The probability can be defined by Equation 2.2.

Pr(t) =



t−tr+1
n

if tr ≤ t < tt

min(n,τc)
n

if tt ≤ t < td − τ c

td−t
n

if td − τ c ≤ t < td

0 otherwise

(2.2)

Algorithm 1 describes the procedure of probabilistic shifting. The algorithm iteratively finds

the least congested slot and shifts a task in the slot to a position with the minimum average proba-

bilistic congestion. With bounded tdi − tdr , the algorithm execute in O(N) time. After the shifting,

we then apply the greedy scheduling algorithm to obtain the final offline results. Figure 2.6 shows

a demo of our algorithm. In the figure, the load at the middle congested region is successfully

shifted to the side.

2.2.2 Classification

In the classification phase, we train local offload decisionDl
i(t) based on the offline solutionDi(t).

The idea is to enable local mobile clients to be able to assess the quality of tasks, and thus avoid
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Figure 2.6: Demonstration of the probabilistic scheduling algorithm

Algorithm 1 Probabilistic Shifting Algorithm
1: pc(t)← probabilistic congestion at time slot t

2: while not all t marked explored do

3: tmin ← argmin
t

pc(t)

4: T = {Ti|tri ≤ tmin < tdi , Ti is not explored }

5: if T == ∅ then

6: mark tmin as explored

7: else

8: select Ti ∈ T

9: remove Ti from pc

10: tr′i ← argmin
tr′i

1
tdi−tr′i

(
tdi∑

t=tr′i

pc(t) + τ ci · 1

)
11: mark Ti as explored

12: update pc(t) where t ∈ [tr′i , t
d
i )

13: end if

14: end while

offloading inefficient tasks that are unlikely to be scheduled by the data center. In short, if a similar

task is scheduled in the optimal solution, then it’s likely to be offloaded to the data center.
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2.2.2.1 Selecting Classifier

We use L1 regularized Logistic Regression classifier for classification. The reason for choosing

logistic regression are as follows. First, we favor classifiers that are simple in terms of represen-

tation. We envision that in an actual system, the data center will occasionally (e.g. every month)

update parameters sets w of the model. It is beneficial for the update to contain as little data as

possible, and thus our requirement to use classifiers that are ”lightweight”. Thereby we rule out

instance-based approaches. Second, the regression model fits more conceptually with the prob-

lem. The underlying relationships between features are continuous, and that no causal relationship

exists between any of the features. Thus we do not consider the choice of rule-based or Bayesian

approaches. We thus choose logistic regression, which is a viable and simple method.

2.2.2.2 Selecting Features

Table 2.3 shows the list of features and the performance with different strengths of regularization

(λ). The +/− are the sign of the parameters of selected features. The feature that is most relevant

to the offloading decision is benefit, which essentially represents the energy efficiency of the task.

Following it is slack, another positively weighted feature which represents the flexibility of the

task. If a task has high flexibility, it can wait longer in the queue and thus have a higher chance

to arrive at a situation where the rest of the tasks in the queue are not as competitive as it is. The

rest of the features are relevant but are not independent of each other, and thus the information

they provide is redundant. We confirm in our experiment that adding more features do not improve

performance significantly. Our final choice for regularization strength is λ2, which selects benefit

and slack as features.

2.2.2.3 Training

The training set is the offline solution {(xi, Di(t)), i = 1, . . . , n}, where each task Ti has a feature

vector xi, and class label (1: scheduled , 0: not scheduled). The logistic regression model estimates

the probability of Pr(D = 1|X = x) = 1/(1 + exp(−wTx)), where w refers to the parameters

of the model. We use L1 regularization, which penalizes the model with an additional term λ||w||,
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Feature Explanation λ1 λ2 λ3

τ l Local Exec. Time

τ c Cloud Exec. Time −

τ t Transmission Time

τ s Slack + +

El Local Exec. Energy

Ec Offload Energy Overhead

∆E ′ Projected Energy Saving

b Benefit + + +

Table 2.3: Feature selection for logistic regression

for feature selection and avoidance of over-fitting.

Notice that the term Di(t) depends on the time of the decision t. The traffic volume varies at

different times of the day, and thus the parameters w(t) should be a function of t. For simplicity,

we choose w(t) to be a discrete function, where there is a set of parameters for each predefined

period (e.g. 1 hour). The logistic regression classifier is also susceptible to bias when the training

set is unbalanced (e.g. too many 0 class). Thus in selecting training sets Di(t) from the offline

solution, we use t = release time for unscheduled tasks, t = scheduled start time for scheduled

tasks, and carefully keep number balanced. We demonstrate the results of training parameters with

different granularity in Section 2.3.

2.2.3 Fairness

So far our method has been aggressively pursuing performance, i.e. energy saving of the system.

Under the assumption that the system resources are shared by all the users, however, fairness is

another important issue to address. In recent years, the concept of fairness is also studied in the

context of data center [55] [46]. Our problem differs from them in two aspects: 1) The target of

the system is the maximization of a global utility (energy savings). Thus there’s an unavoidable

trade-off between performance and fairness. 2) The objective of the user is to save energy. Thus
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the fairness should also be measured in terms of energy.

The rest of this subsection first study two fairness definition, and the algorithmic implementa-

tion. We define fairness with respect to energy savings using the two definitions correspondingly.

We describe a way to quantify fairness. Finally, we show how fairness may be incorporated into

our system. The comparison of the fairness definitions and a trade-off between performance and

fairness is demonstrated in Section 2.3.4.

2.2.3.1 Max-min Fairness

One of the most adopted definition for fairness is max-min fairness [56]. It is defined over a

resource allocation vector x, each xi in the vector representing a rate allocated to a particular user.

x is max-min fair if it is feasible, and that any xi cannot be increased without decreasing some

other xj < xi. A simple algorithm to achieve max-min fairness is fair-queuing [57]. In the context

of our framework, each queue represents a user. Whenever there is an open slot in the data center,

the task corresponding to the user with the least energy saved will be served.

2.2.3.2 Proportional Fairness

Using the same terminology, an allocation x is proportional fair if for any other allocation vector

x∗,
∑

(x∗i − xi)/xi < 0 [58]. Compared to max-min fairness, proportional flow does not stress

empathetically on the one with the lowest allocation. As we show later in Section 2.3.4, it provides

performance gains over max-min fairness because of such property.

An algorithm that realizes proportional fairness exists for wireless downlink packet scheduling

scenarios [59]. One of the essential characteristics of a wireless channel is the constant variation in

transmission rate µ over different links. Thus according to the algorithm, the link with the largest

µ/r is always scheduled next for transmission, where r stands for throughput. It is proved that

when all queues are infinitely backlogged, the algorithm can enforce proportional fairness [60]. In

the context of our framework, the policy is defined as follows. The data center always schedules
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the task from the user with the largest ratio of benefit over energy saved

b

∆E0 +
∑

∆E

where ∆E0 is a term with an arbitrarily small value that will simplify the case where
∑

∆E = 0.

The same form is adopted in [60].

2.2.3.3 Measurement of Fairness

To study the trade-off between performance and fairness, we need to have a quantitative measure

of fairness. A widely accepted measure of fairness is the Index of Fairness proposed by Jain et.

al [61]. The fairness index measures the equality of resource allocation xi among all n users by:

(
n∑
i=1

xi)
2

n
n∑
i=1

x2
i

If the resource allocation is absolutely equal among all users, the fairness index is 1; otherwise the

larger the disparity, the closer the index is to 0.

Notice that this fairness index is not in total alignment with the fairness definitions. It has been

proved that proportional fairness equivalent to the maximization of the utility function
∑

log(xi).

Consider a case where two users each has 2 resource requests of {50, 47} and {3, 1} respectively.

a total of 100 unit resource is available, or if the system can satisfy 3 requests, then the max-min

fairness (and also the solution with the highest fairness index) will schedule {50} for the first use

and {3, 1} for the second user. However, the answer from proportional fairness will be {50, 47}

for the first user and {3} for the second user. In more general cases, though, the concavity of a log

function makes sure that equal share will have a higher value for the utility function. Thus we still

use this fairness index for quantitative fairness measure of our framework.

2.2.3.4 Fairness in the Framework

In order to incorporate fairness into the framework, we need to trade-off performance. We assume

that the data center can use fair scheduling algorithms to ensure fairness if all the tasks are of-

floaded. The key performance gain in our framework, however, is achieved by using the localized
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classifier to avoid offloading inefficient tasks. Thus, we perform the trade-off in the following man-

ner: there’s a probability Prdirect for tasks to be offloaded directly without passing the classifier.

A higher probability induces more fairness, while a lower value induces more energy savings. We

discuss the trade-off in Section 2.3.4.

2.2.4 Online Scheduling

We describe the online procedure in this section. At any time t, the mobile users may choose to

offload a task Ti based on the local decisionDl
i(t). If the decision is to execute locally, then the task

stays at state local; otherwise, the task will be offloaded. The data center always keeps a queue

of tasks that are waiting to be executed. At any time t, the data center will make a decision for

each of the task in the queue Dc
i (t), indicating whether it will execute the task at t. We define two

ways selecting tasks: first come first serve (FCFS) and greedy (i.e. benefit b). If a task approaches

its deadline, i.e. t + τ ci = tdi , then the task will be removed from the queue, and executed locally.

That task will be in the state offloaded, where the energy cost is accounted for both offloading

and local execution. The procedure is shown in Algorithm 2.

2.3 Evaulation

In this section, we evaluate our method. We begin by discussion the preliminaries of the results.

We then present the performance of our method, before we proceed with discussions.

2.3.1 Preliminaries

In this subsection, we first discuss the experimental setup and then we present some analysis of the

dataset that we use for the simulation.

2.3.1.1 Simulation Setup

We assume the mobile clients contain 1.4GHz single-core processors; the data center machines use

4 core 2.8GHz processors, with an additional 3x speed-up, providing an overall 24x processing
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Algorithm 2 Online Procedure
1: procedure USER(t)

2: if Selected according to Prdirect then . Fairness

3: offload

4: else

5: Dl
i(t)← Classification result

6: if Dl
i(t) == 1 then offload

7: else execute locally

8: end if

9: end if

10: end procedure

11: procedure DATACENTER(t)

12: for all Ti in the queue do

13: if t+ τ c = td then remove task

14: else Dc
i (t)← FCFS / greedy / fair scheduler

15: end if

16: end for

17: end procedure

speed-up if a task is executed remotely. Tasks are in a power law distribution with a maximum

local execution time of 30,000s and a minimum of 300s. We assume task data sizes are log-

normal with respect to amount computation, and the parameters are such that the data sizes fall in

a range between 500 KB to 150 MB. We set the network bandwidth to be uniformly distributed

between 800Kbps and 8Mbps. For power consumption, we use the data in [45], where the power

for transmission state, computing state and idle state are 1.3W, 0.9W and 0.3W respectively. Note

that the power consumption for a task with maximum local execution time and average data size

is 1500 mAh, which is roughly the battery size of today’s mobile phones. We generate slack τ s

using a uniform distribution, with an arbitrarily picked a maximum of 50 seconds. In addition,

the slack cannot be so long that waiting for costs amortizes the energy savings of offloading, i.e.

P i · ts < ∆E ′. We choose τ s to be the minimum between the two, and the value is in turn used to
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produce deadline td. We discuss different choices of slack in more details in Section 2.3.3.

We simulate a system with around 100,000 tasks at a granularity of 10 seconds per time slot

over the period of a day. Unless otherwise noted, we use one-day traces and train parameters with

1-hour granularity. The tasks at the end of the traces will ”cycle” back to the beginning as we

assume daily cyclic behavior. The amount of data center resource is set such that around 70% of

the tasks can be scheduled with the naive approach. We discuss the data center capacity in more

detail later in this section.

2.3.1.2 Characteristics of Synthetic Workload

Table 2.4 shows some of the statistical properties of the workload. We obtained these results

by evaluating a half-day period trace are with a relatively high number of requests. It roughly

corresponds to the waking hours of the day.

We analyzed the mobile network traces and obtained the Hurst parameter, or the degree of

similarity of the mobile network traces. To obtain an estimation of the Hurst parameter, we applied

the R/S method, which is available in the fArma package in R [62]. A series with H in the range

(0.5, 1) is considered a self-similar series with long-range dependence [50]. The larger H is the

more self-similarity the series exhibits. The analysis yields an H of 0.675. It’s clear that the traces

we use exhibits strong self-similarity and long-range dependency.

We use congestion to denote the amount of resource (number of machines) requested by mobile

clients. The congestion does not exhibit high variation as we expected, with a standard deviation

of around 15% of the mean. Yet there are extreme cases or spikes where the number of requests

almost doubles the mean.

2.3.2 Performance

In this subsection, we present the performance of the offline probabilistic shifting algorithm, the

classification model and the online system.
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Variable Value

Hurst parameter 0.675 ± 0.075

Maximum congestion / # of machines 163

Mean of congestion / # of machines 99.5

Std. of congestion / # of machines 14.5

Table 2.4: Statistical properties of the synthetic workload

Algorithm Energy Saved / % Ratio Running Time/s

Preempt. Upperbnd. 0.768 4.30x 3452

Non-preempt. Upperbnd. [54] 0.764 4.23x 46347

Probabilistic 0.761 4.18x 153

Table 2.5: Offline performance compared with upper bounds

2.3.2.1 Offline Algorithm Performance

We compare the offline algorithm against the two upper bounds, the non-preemptive upper bound

proposed in [54] and the preemptive version. The results are shown in Table 2.5. The total energy

is defined by the energy consumption when all tasks are run locally, and the ratio is defined by the

total energy divided by actual energy consumption. The ”All” method schedules all the tasks in

the data center assuming no resource constraints. We observe that the offline algorithm, denoted

by ”Probabilistic”, performs reasonably close to the upper bounds while gaining a 300x speed-up

in running time compared to the non-preemptive upper bound.

2.3.2.2 Classification

We implement the classifier using Scikit-Learn package in Python [63]. We obtain precision and

recall of logistic regression by 10-fold cross-validation. Table 2.6 shows the precision and recall

of the classification of tasks in a 1 hour period.

To further characterize the results of the classifier, we study the distribution of the output of

logistic regression, which can be interpreted as the probability that a particular task will be sched-
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Precision Recall

0.956 ± 0.050 0.964 ± 0.064

Table 2.6: Evaluation of logistic regression classifier

uled. The distribution is shown in Figure 2.7(a). Interestingly, a substantial proportion of tasks that

have a probability smaller than 0.1. Tasks that are smaller in size tend to have relatively less benefit

because of the fixed term in energy overhead; small tasks also tend to have smaller slack, since they

cannot afford to wait too long for energy savings to be amortized. In the power law distribution,

a large portion of the tasks are small in size, many of which will have a low probability of being

scheduled.

Notice that the ultimate goal of adopting the classifier is not for achieving high classification

accuracy. Rather, it is an auxiliary tool to improve the energy efficiency of the system. Thus the

observation above prompts us to test the energy savings with different threshold, and the results

are shown in Figure 2.7(b). There’s a tradeoff in choosing threshold: if the threshold is too high

(e.g. equal to 0.5), it maintained the information from learning, yet it sometimes leaves resources

unoccupied; if the threshold is too low, too many tasks are offloaded, ending up wasting much

energy.

2.3.2.3 Overall Performance

Table 2.7 documents the results from 10 runs of experiments. We observe that our offline algorithm

is almost as good as the upper bound, while the online algorithm performs close to the offline

algorithm while outperforming the baselines. The results also demonstrate the stability of our

algorithm, as we see a relatively narrow confidence interval.

Notice that among the earliest deadline, greedy, and probabilistic algorithm, the number of

tasks scheduled decreases yet the energy savings increases. This is due to the fact that tasks that

are efficient in terms of saving energy are often larger tasks, in accordance with the observation

in [33]. Thus, an increasing number of beneficial tasks are assigned, leading to better efficiency in

data center resources utilization. Furthermore, this demonstrates that by the probabilistic profiling
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Figure 2.7: Characteristics of logistic regression for code offloading decision: (a) shows the dis-

tribution of probability produced by logistic regression; (b) shows the online performance with

different threshold for the logistic regression classifier

Offline Alg. Tasks Scheduled /% Energy Saved /% Ratio

All 100 90.6 ± 0.1 10.63x

Preempt. Upperbnd N/A 78.0 ± 1.2 4.545x

Deadline 74.9 ± 1.8 73.3 ± 1.3 3.751x

Greedy 64.9 ± 2.1 76.7 ± 1.3 4.295x

Probabilistic 63.5 ± 2.2 77.2 ± 1.2 4.395x

Online Alg. Tasks Scheduled /% Energy Saved /% Ratio

Naive 75.5 ± 1.7 69.5 ± 1.6 3.281x

Greedy 62.7 ± 2.2 71.3 ± 1.6 3.488x

Trained 60.1 ± 2.2 75.2 ± 1.3 4.039x

Table 2.7: Overall performance of offline and online algorithms

tasks, we are able to more optimally utilize the resources in the data center, and achieve even better

results than the Greedy approach.
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Figure 2.8: Performance with different data center resource ratios

2.3.3 Discussion on Performance

In this subsection, we discuss the trade-offs of key parameters in the system.

2.3.3.1 Data Center Resources

Given the near optimal solution to the optimization problem, we should now examine the re-

source provisioning of the data center. To characterize the the amount of resources we define

resource ratio, a term relative to the resources requested.

resource ratio =
datacenter resources

total resource demand

The amount of resource for the data center is obtained by multiplying resource limit C by

the total period of time; similarly, the resource requests are calculated by aggregating the cloud

execution period τ ci of all the tasks. We ran experiments for different values of the resource ratio

and obtain Figure 2.8. In our simulation setup, a resource ratio of 1 corresponds to 73 machines.

Notice that even when the resource ratio is 1, not all tasks can be scheduled. This is due to the

fact that most of the requests arrive during the waking hours of people, causing congestion in the

data center. For the rest of the time, the resource can be underutilized. Further, we observe that
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Figure 2.9: Details on the performance with different data center resource ratios: (a) shows the

utilization of data center (b) shows the efficiency of the data center, defined by energy savings per

machine

a ratio of 1.6 (117 machines) would be sufficient to satisfy the resource requests, a number way

below the peak number of requests. The slacks of tasks naturally provide a buffer where the spike

can be smoothed out.

Figure 2.9 shows the utilization and efficiency (defined by energy savings per machine) of

the system. It’s clear that when the data center is extremely small, the classifier tends to be too

selective, resulting in underutilization high efficiency. The curve converges when the resource ratio

increases.

2.3.3.2 Granularity of Training

One of the essential question regarding our system is the granularity of training, or how many sets

of parameters we need in a day in order to guarantee good performance. One parameter set per

day or one set per hour can differ by a large margin in terms of performance. 2.10(a) answers that

question. Notice that in this case, we use the same training set (and thus the parameters) for all the

experiments, i.e. the same logistic regression model is used for all experiments (thus the offline

results does not have a confidence interval). As shown in the figure, if we have a small number of

sets, the model is too coarse-grained and the performance is close to greedy; if we have too many
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training sets, the system will over-fit and thus performance begins to drop again. We see a great

increase in from 2(12 hour period) to 3 sets (8 hour period), and it starts to become steady around

using 8 sets (3 hour period).

2.3.3.3 α in Power Law Distribution

The power law distribution describes the distribution with probability density function p(x) =

Cx−α. Given the minimum and maximum value, the α determines the shape of the curve, and thus

the frequency of different sized tasks: the bigger the α, the rarer the large values.

In the Google cluster traces, the α is close to 1. It is unclear to us, however, what the value

would be for mobile applications. Thus, in Figure 2.10(b) we demonstrate results from experiments

with various values of α. The relative performance between various methods is consistent with

different distributions. Notice that the amount of energy saved drops as α increases. This is due

to the fact that larger α produces a larger portion of small-sized tasks that do not save energy as

efficiently.

2.3.3.4 Slack

The deadlines of tasks can be another parameter that is hard to characterize. The slack that a task

may have can be from the requirement of the program, or from the service level agreement. Figure

2.10(c) shows the results using different values for maximum slack. The offline system performs

well when more tasks have larger slack, because of an increased room for tasks to be “shifted”. Our

trained online algorithm can thereby benefit from it. The FCFS method can also gain significantly

from the extension of the deadline, as it allows beneficial tasks to wait and then be scheduled.

2.3.4 Fairness

In this subsection, we present results regarding the fairness of the system. We aim to answer the

following two questions:

1. Which fairness scheduling algorithm should we use?
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2. How much can we improve fairness in our proposed performance oriented framework?

The rest of the subsection will answer the two questions respectively.

2.3.4.1 Comparing Fairness Algorithms

We first study the two fairness definition and the corresponding algorithms. In this scenario, we

do not adopt any classification(i.e. all tasks are offloaded). As we showed earlier, Jain’s fairness

measures the equality of resource allocation. The power law distribution of demands clearly cannot

give rise to equal resource shares. In order to measure the fairness quantitatively using the index,

we randomly assign tasks to users such that they have a similar amount of demand for the system.

We measure the energy savings as well as Jain’s fairness index when users have a different number

of tasks, and the results are shown in Figure 2.11. Recall that a fairness index of 1 represents

perfect equal allocation. The closer to 0, the more discrepancy exists in the allocation of resources.

As shown in Figure 2.11(a), the proportional fair scheduling algorithm achieves better system

performance than the progressive filling. This is expected, as the proportional fair algorithm takes

a more opportunistic approach in task scheduling. It considers the efficiency of the task when

a user offloads it in addition to how many shares of resources the user already. However, as

shown in Figure 2.11(b), such opportunistic task scheduling only affects fairness by a small margin.

When the number of tasks per user is small, user demands vary to a large extent due to the large

discrepancy among the energy savings of tasks. The fairness index is thus very low. When the

number grows, as we can observe, the fairness index rises and approximates 1 when each user

has an average of 100 tasks. In the process, the fairness index of proportional fair scheduling

algorithm tightly follows that of the progressive filling algorithm. On the other hand, the fairness

index of original method stays relatively low. Such difference can result from the difference in the

definition of fairness, as proportional fairness maximizes
∑

log(xi), while the max-min fairness

stresses on absolute equal allocation. Still, even from the absolute view of fairness, the proportional

fair scheduling algorithm performs very well.

An interesting characteristic we observe is the convex shape of the curve. When the number

of tasks per user is smaller, users have less ”history” to compare with each other. Thus, it’s closer
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Figure 2.11: Comparison between the algorithms for max-min fairness and proportional fairness

with randomly assigned tasks: (a) shows energy savings of two algorithms with different number

of tasks per user; (b) shows the corresponding measurement of Jain’s fairness index

to the ”Greedy” method we used as the baseline. Notice that the two methods are equal if each

user is mapped with precisely one task. As the number of tasks grows, the energy penalty of

fairness becomes more visible. Yet when the number of tasks keeps growing, the performance-

wise efficiency of the proportional fair scheduling algorithm manifests itself as the energy saving

gap between the two algorithms enlarges. It’s because the energy savings per user more or less

sum up to similar values, and thus tasks can be scheduled based more on benefit.

2.3.4.2 Fairness in the Framework

To evaluate how much fairness can be improved in our framework, we also use Jain’s fairness in-

dex. Recall that we assign a probability for users to offload tasks without being classified. Thus

tasks are still randomly assigned to users rather than in a power-law-distributed fashion. We arbi-

trarily set an average of 10 tasks per user. The results are shown in Figure 2.12.

Figure 2.12(a) shows that the fairness index grows almost linearly with the probability Prdirect.

Figure 2.12(b) demonstrates the trade-off between the fairness index and energy savings. As ex-

pected, an overall negative correlation is shown between absolute fairness and energy saving.
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Figure 2.12: Performance and fairness trade-off with randomly assigned tasks: (a) shows Jain’s

fairness index obtained with different probability Prdirect to offload without classification; (b) plots

the energy savings against different Jain’s fairness indices

Figure 2.13 shows the results for the realistic scenario where the number of tasks per user

follows a power law distribution. By analyzing the distribution of mobile network traffic, we pick

α = 0.75. Since the distribution of tasks is extremely unequal among users by nature, the Jain’s

fairness index is not a meaningful measure for proportional fairness. Instead, we looked at the

percentage of demand satisfied for users with different demands. Nevertheless, we have already

shown how the approach in previous results.

As shown in Figure 2.13(a), energy saving is similar to the previous case, where tasks are

assigned randomly. When mobile phones strictly follow the classifier, and the vast majority of

inefficient tasks are not scheduled, only a small energy penalty is incurred by fairness. On the

other extreme, when all the tasks are offloaded, the performance is below the Greedy baseline.

Figure 2.13(b) provides an intuitive understanding of how fairness is functioning. The users are

ranked by their demands in energy savings and then divided into equally numbered groups marked

from 1 (with most demands) to 10(with least demands). In the case of the highest level of propor-

tional fairness achievable, demands from groups with larger group number are almost all satisfied.

Because of proportionality, though, they are not 100% satisfied. The first group has the lowest

percentage of demand satisfaction rate. It to an extent reflects the power law distribution, where
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Figure 2.13: Performance and fairness trade-off with tasks assigned in power law distribution: (a)

plots the energy savings against different probability Prdirect to offload directly without classifica-

tion; (b) shows the percentage of demand satisfied of different user groups. Groups are created by

equally dividing users ranked from high to low according to their demand

a majority of contribution comes from the ”head” of the distribution. As we relax the fairness

constraint for performance, the disparity between user groups narrows.

2.4 Conclusion

In this chapter, we introduce a learning-based localized solution to the resource allocation prob-

lem in the offloading system. We propose a novel time-efficient offline scheduling algorithm that

achieves near-optimal solution compared to upper bounds. The classifier-based online algorithm

shown performance close to offline algorithms under simulation using realistic workload traces.

The trade-off between performance and fairness is also studied.
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CHAPTER 3

Learning-Based DVFS for Video Decoding

In the last chapter, we discussed saving the energy of edge devices through code offloading. To

prolong the lifetime of those battery-operated edge devices, dynamic voltage and frequency scaling

(DVFS) is a well-known and widely adopted [64] [65]. In practice, OS and lower level DVFS

policies are widely used in today’s edge computing systems, with the representative example of

Android’s CPUFreq governors inherited mostly from Linux [5] [66].

For example, the Nexus 4 Android smartphone supports the following 5 governors: powersave,

performance, ondemand, interactive and userspace, with ondemand governor be-

ing the default option. Aside from the userspace governor, which is merely an interface for

the user to change the CPU frequency, the rest are controlled by the kernel. The powersave

governor simply enforces the use of the lowest frequency. Similarly, the performance governor

simply configures the CPU to use the highest frequency. The ondemand governor samples the

CPU usage every tens of milliseconds (in Nexus 4’s case, 50 milliseconds) and adjusts the voltage

and frequency level according to the usage statistics. The interactive is an improved version

of ondemand governor tuned for interactive workloads. Since the operating system is unaware of

the application level workload, the only way to manage energy CPU frequency is to ”guess” the

future workload based on the sampling results. On the one hand, if the sampling rate is too low, the

CPU might not adjust to change in workload fast enough. On the other hand, if we have too high

a sampling rate, it will incur a huge overhead considering the transition latency in CPU frequency

switching. Thus, the sampling rate mentioned above must have been carefully tuned by the engi-

neers to maximize the effectiveness of the DVFS policy. As a result, with those speculative, but

frequent decisions, our operating system is able to correct itself on the brink of mistakes, providing

us with just about the reasonable level of quality of service.
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In recent years, as smartphones become more prevalent, new problems are exposed and more

researchers start to look beyond the operating system to higher levels. From the revelation of en-

ergy bugs found on the application level [67] to the proposal of application sensitivity to in order

to save energy while preserving user experience [68], application and even user-level semantics

provide an increasingly important role in improving system energy efficiency. It is also our firm

belief that by leveraging the information available at higher levels, the energy management deci-

sions will be much more targeted and precise. For many applications, making DVFS decisions at

the application level promises to yield a significant improvement in energy consumption.

However, there are practical constraints for managing DVFS at the application level. The

userspace governor allows setting CPU frequency through an interface in the file system often

referred to as the in-memory sysfs [69] [70]. Yet that interface is not as efficient as we expect it

to be. Researchers have shown that it takes an average of 1.7 milliseconds for the voltage change

to take place on certain embedded platforms due to various operating system level overhead [71].

It means that if a new policy is to be designed to take advantage of application-level semantics,

frequency adjustments can only happen with an interval much larger than tens of milliseconds.

After all, if the ondemand governor already samples at intervals of 50 milliseconds, we should be

able to sample at even lower rates and achieve reasonable energy savings given application level

semantics,

In this chapter, we target the DVFS policy for the application of video decoding considering the

new constraint. Video decoding is a common but computationally challenging task for IoT systems.

We raise two key questions: can we accurately predict the most efficient voltage and frequency

using application-level semantics? Can DVFS with a lower rate provide desirable energy savings?

In other words, we first want to show that it is possible to predict the choice of CPU frequency

with application-level information. Further, we aim at demonstrating that, frequency adjustment

can happen at intervals of one or several seconds while still maintaining a high level of energy

saving.

In our method, we utilize a decoding buffer already exist in most of the decoders, so that whole

video segments are stored first in the buffer before being displayed. The use of buffer smooths

out the variation in frame-level decoding computation so that the CPU frequency does not have
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to reflect the change from decoding I-frames to B-frames or P-frame. However, the buffer alone

is not sufficient to allow our coarse-grained DVFS to meet real-time system requirements. The

key enabler is an accurate prediction model for future CPU frequencies. The intuition behind our

prediction model is that both the estimation of the next video segment and the progress of decoding

the current segment should be considered when we determine the future voltage and frequency. If

the system is behind the schedule, voltage and frequency should be increased. On the other hand,

if the system is ahead of schedule, the system should lower the voltage and frequency. Based on

offline system statistics, including the decoding workload and buffer status, we build a prediction

model using machine learning. With the model, we are able to achieve near-optimal energy savings

online.

The novelties of our methods and analysis are as follows. First, to the best of our knowledge,

we are the first to propose a machine learning-based prediction model using both workload esti-

mation and decoding progress as features. Second, different from previous works where DVFS

for video decoding usually operates on the frame or group-of-pictures (GOP) level [72] [73] [74],

our proposed method considers frequency adjust rate constraints and switches frequency for every

video segment of 1 second or longer. We argue that by taking advantage of buffers and our pre-

diction model, even operating at coarse time granularity, DVFS could still produce desired energy

savings. Further, we show that there is a law of diminishing return with respect to energy savings

when we use finer and finer time granularity of DVFS. At one point the energy savings stops in-

creasing as we use higher adjustment frequencies. Not only can our per-segment DVFS method be

decoupled from the decoding software, enabling effortless implementation, but it can also tolerate

the practical constraints imposed by existing operating systems.

The rest of the chapter is organized in the following order. Section 3.2 outlines the model we

use and the assumptions we make about the system. Section 3.3 details the method proposed.

Section 3.4 evaluates the performance of the system. Section 3.1 briefly surveys past effort on

DVFS for multimedia applications.
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3.1 Related Work

In this section, we present the related work in DVFS and video decoding energy management.

3.1.1 DVFS on Edge Devices

As edge devices are becoming more and more prevalent, many researchers are identifying and solv-

ing practical problems that exist in off-the-shelf products. Carrol et al. studied the integration of

core offlining and DVFS using the latest smartphone platforms [75]. Kim et al. identifies problems

in existing DVFS based thermal management schemes, and proposed a new temperature-aware

DVFS algorithm [76]. To solve the same problem of thermal management, Das et al. proposed a

reinforcement learning based algorithm which integrates not only the frequency management but

also the core mapping in a real multicore system [77].

3.1.2 Energy Management for Video Decoding

Many previous works have been done to explore the optimal strategy of saving energy for video

decoding using DVFS. However, none of the work listed in this subsection considered the practical

constraint of the rate of voltage and frequency change in Android. We categorize these efforts into

three broad categories: content aware, workload predicting and buffer assisted.

Content Aware. Techniques such as slack reclaiming have been proposed in the past for

dynamic energy management for real-time system [78]. Several researchers proposed to use the

execution time distribution obtained from offline profiling to guide Dynamic Voltage Scaling such

that the system meets the expected requirement [79] [80] [81].

A more straightforward way is to annotate the content. Chung et al. proposed a content

provider-assisted lower-energy video decoding system, where the authors assumed the server would

provide the per frame worst-case execution time (WCET) [82]. Using machine learning, Hamers

et al. were able to categorize scenes in videos into classes, and the server would then annotate

scenarios before delivering to the client [74]. Ma et al. built linear models for each complexity

unit, and assumed decoder could use parameters embedded in videos to predict computation [73].
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In all these cases, a clear difference from our proposal is that they all require some type of offline

knowledge, either the WCET or annotations from servers. In our model, however, we assume the

system is completely unaware of the decoding complexity of the video that it is about to decode.

Workload Predicting. Various methods have been proposed to predict decoding workload.

One of the most straightforward ideas is to use the time series related techniques. Choi et al. are

among the first researchers to propose workload prediction for better energy management for video

decoding [72]. Specifically, they separated the decoding computation into a frame-dependent part

and a frame-independent part, and apply moving or weighted averages to predict the frame-level

workload of decoding the frame-independent part. We borrow their idea of workload prediction,

but we conduct the prediction on the video segment level due to newer system constraints. A

similar approach was adopted by Kumar et al. [83].

Buffer Assisted. Im et al. proposed to add buffers in order to fully utilize idle CPUs cycles,

although they assumed periodic tasks and derived analytic solutions based on WCET [84]. Lu et

al. developed a strategy where the system inserts buffers between different stages of application

execution in order to enable frequency scaling and smooth execution [85]. Maxiaguine et al.

addressed the problem of DVFS with constrained buffer by taking into account both the offline

workload bounds and the execution history at runtime.

3.2 Preliminaries

We consider a system where videos exist in the form of a collection of small segments, as in most

cases of internet video streaming. We assume that a single CPU core is responsible for decoding the

videos. Note that although GPU is present in most of today’s smartphones, CPU still undertakes

the video decoding workload in many cases. Such observation is validated in a recent energy

consumption analysis of popular apps [86]. In our model, the CPU core is capable of performing

DVFS, and the voltage and frequency adjustments happen in every video segment. After video

segments are decoded, they are stored in a decoding buffer. The decoding buffer has a fixed size,

and once the buffer is full, the extra work done for decoding video segments will be wasted. After

video segments are decoded and stored in the buffer, they will be fetched in order and passed to
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graphics hardware for displaying. Figure 3.1 shows an overview of our model.

Decoding Buffer

seg seg seg seg

Video Playback

seg

seg seg

seg seg

CPU

Encoded Video Segments

Frequency 
Adjustment

Figure 3.1: Video playback system model.

Consider a video that consists ofN video segments, where each segment is of length T seconds.

We denote the computational workload (number of CPU cycles) required to decode segment i as

Ci. We define a CPU frequency assignment F to be a list of supported CPU frequencies used

to decode the corresponding video segments, F = (f1, f2, . . . , fN), where fi represents the CPU

frequency for decoding the ith video segment. Thus the execution time τi of the particular segment

i is given by τi = Ci · fi. The resulting energy consumed is denoted as Ei.

In our definition, a feasible frequency assignment is defined to be one that meets the following

two conditions: a) the decoding buffer does not underflow; b) the decoding buffer does not over-

flow. Underflow happens when a video segment finishes playing while the decoding of the next

segment has not been completed. Overflow happens when the system decodes too many video

segments ahead of time and the video buffer cannot hold the decoded content. The optimal CPU

assignment is the feasible assignment that consumes the minimal overall decoding energy
∑

iEi.
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3.3 Method

Figure 3.2 shows the workflow of the proposed method. In the offline phase, we obtain the optimal

frequency assignment on the training dataset. Using the statistics generated offline, we train our

frequency prediction model that is based on the workload estimation and the progress of decoding

(quantified by the slack time). When we test our performance online, we use the workload estima-

tion module to project the computation of the next segment. We use that projection together with

the online buffer status to predict next CPU frequency. The following subsection details the steps

in this workflow.

Frequency 

Prediction Model

Online

Offline Optimal Frequency 

Assignment

Workload 

Estimation
Online Decoding

Train

Predict Slack

Figure 3.2: System workflow of learning-based DVFS for video decoding.

3.3.1 Workload Estimation

An important assumption we have about our problem is that we can estimate the decoding com-

plexity of the next segment given the computation it takes to decode the current segment. The as-

sumption is based on an observation we make when we experiment with our video dataset. Figure

3.3 shows some exemplary computational workload of video decoding, featuring four exemplary

videos that are widely used in studies. The y axis shows the decoding workload in the number of

cycles, and the x axis shows the sequence number of the segments. In this experiment, videos are
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split into 1-second segments1. In our limited number of test videos, the computational workload

for decoding neighboring video segments falls in a small range. On average, we observe a 10.2%

difference in computation between the current and the next segment. Figure 3.3 shows 4 exem-

plary traces. The video akiyo, which shows a news anchor, has constantly small workload due to

limited inter-frame changes. On the other end of the spectrum is the video mobile calender

(denoted as mobile), featuring close-range footage of a moving toy train. The video pamphlet,

despite having relatively large variations in decoding workload, is still not comparable to videos

such as stefan and mobile calendar in terms of decoding complexity. Part of the reason

for this consistency, as we mentioned earlier, is because using segment as a unit has smoothed out

the variances on the frame level. With that said, we argue that it is feasible to infer the approximate

range of, if not accurately predict, the computational workload of decoding future segments in the

same video given the history of decoding its past segments.
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Figure 3.3: Examples of video segment decoding workload.

Apparently, we are not the first to analyze the video decoding computation with regard to

the temporal relationship among decoding units. In [72], the authors used the weighted average

smoothing algorithm to estimate the computational complexity of decoding the next frame

Ci+1 = α

i∑
n=0

(1− α)nCi−n

1Unless otherwise indicated, the segment length in our experiment is 1 second throughout the chapter
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However, we show here that such characteristics persist when we zoom out from frame level to

segment level. The method mentioned above is well suited for our purposes and we adopted it as

our estimation method, although instead of predicting with frames, we predict with video segments.

One of the concerns regarding the workload estimation method is whether our dataset is rep-

resentative and that if the method will perform well in the face of another dataset. Admittedly,

our dataset can never be large enough to reflect all of the variability in the multimedia contents on

today’s internet. Yet the uncertainty can always be addressed by using a larger decoding buffer.

More importantly, we by no means rely only on the estimation in predicting the CPU voltage and

frequency level for decoding the coming video segment. The progress in decoding the current

video segment also plays an equally important role.

3.3.2 Offline Frequency Assignment

Recall that our goal for energy management is to find the best CPU frequency for decoding each

video segment. The key task in the offline phase is to search for that optimal solution for a given

video, under the condition that the decoding workload for each segment is known in advance. To

deal with that problem, we propose an algorithm and it is outlined in Algorithm 3. In short, we do

an exhaustive search in all the feasible solution space and use dynamic programming to reduce the

amount of search needed to be done. For each feasible frequency assignment Fj to decoding video

segments up until segmentM , where Fj = (f1j, f2j, · · · , fMj), we inspect the corresponding tuple

that contains the energy and time spent so far (
∑M

i=1Eij,
∑M

i=1 τij). Among all the tuples, we only

retain the Pareto optimal ones. In other words, for any Fj , if there exist another Fj′ that consumes

both less time and less energy, we discard the former. Then for segment M + 1, we do not need

to worry about the solutions before segment M . We could start searching from the Pareto optimal

subset of the solution at the time and thus reducing the amount of search needed. In the step of

obtaining the Pareto optimal set of solutions, we perform optimization by sorting all the tuples on

energy and keep track of the smallest accumulated decoding time so far as we traverse the list of

tuples in ascending order of energy. In that way, if we meet any tuple that has a larger accumulated

time than the smallest value in the record, we discard that tuple. At the end of the sequence of video

51



Algorithm 3 Offline Frequency Assignment
1: for each video segment i do

2: for each previous assignment Fj = [f1j, . . . , f(i−1)j] do

3: for each frequency f do

4: F ′ ← new assignment [f1j, . . . , f(i−1)j, f ]

5: [E ′, τ ′]← accumulated energy consumption and time [
∑i

n=1En,
∑i

n=1 fijCi]

6: if τ ′ exceeds deadline then

7: Discard F ′

8: end if

9: end for

10: end for

11: Sort the list of F ′ by E ′ in ascending order

12: for each new assignment F ′k do

13: if τ ′k >= τ ′min then

14: Discard F ′k

15: else

16: τ ′min ← τ ′k

17: end if

18: end for

19: end for

20: Calculate idle energy for all F ′ and update E ′

21: Foptimal ← {Fk| arg mink Ek}
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segments, the frequency assignment that consumes the least energy will be the optimal frequency

assignment.

3.3.3 Frequency Prediction

Figure 3.4 shows an example of optimal frequency assignment. The solid line shows the compu-

tational complexity of each segment, measured by the number of CPU cycles. The shaded bars

represent the actual computation with different CPU frequency, the width of which indicates the

time τi it takes to decode ith the segment. According to our “no underflow” rule, the decoding of

a segment should always finish before the time point at which it is to be played, in this case, the

vertical grid lines. As marked in the figure, we use slack, ∆τ to refer to the extra time left before

that deadline.
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Figure 3.4: Sample optimal CPU frequency assignment and the corresponding decoding process.

Notice that at time t = 5s, even though the decoding workload drops by over 10%, the CPU

frequency stays the same. The reason is that the slack left in that particular moment is fairly

small, and the system would need a higher speed to catch up with the progress. It is precisely

the points like this that provide the most precious information about how we should manage the

CPU frequencies. If the next segment is predicted to have a high computational workload or the

decoding buffer about to be empty, then we should switch to a higher frequency, and vice versa.

To visualize the intuition, we plot the relationship between the decoding computation of the
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Figure 3.5: Relationship between the decoding progress, the computational workload and the op-

timal CPU frequency assignment of the next segment. Points with darker colors are closer to the

reader and those with lighter colors are further away.

coming segment, slack and the actual frequency assigned to that coming segment in the optimal

solution. The plot is shown as Figure 3.5. Clearly shown in the figure, the training points align

well in a plane. Those points that are away from the plane are a result of the discrete frequency

levels. We imagine that if there were to be more fine-grained frequency adjustment, the points

would have fit even better on a plane.

Given the almost linear relationship shown in Figure 3.5, we decide to use linear regression as

our target prediction model. With input XT = (1, X1, X2, . . . , Xp), linear regression predicts the

output Y using the model

Ŷ = XTβ

In our case, we have a simple feature vector X which consists of two feature: the amount of

computation of the segment Cpred, and the slack ∆τ . Thus, our prediction model would be in the
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following form:

ˆfpred = β1Cpred + β2∆τ + β0

The training data for our linear regression model consists of the statistics from the offline

optimal solution. We run the solution and, for each video segment, collect computation workload,

the slack it has when the decoding first began and the final choice of frequency in the optimal

solution.

3.3.4 Online

In the online scenario, our assumptions for the system are the following. In the video playback

system, there is a component that keeps monitoring the progress of decoding. It also keeps the

records of the decoding workload of past video segments. Before we start the decoding of the

next segment, we first use the method described in Section 3.3.1 to predict the computation next

segment. Then, based on the model in Section 3.3.3, we obtain a estimated value of the frequency

ˆfpred. Notice that ˆfpred will be a continuous variable, but the actual system only allows a few

discrete levels of frequencies. Therefore, we choose a conservative approach where we round up

the frequency to the nearest available frequency

fpred = min{f > ˆfpred|f ∈ avaiablefreq}

Once the frequency is selected, we adjust the system CPU frequency settings and wait until the

decoding of the segment finishes. Then we repeat the same procedure for the following segment.

3.4 Evaluation

In this section, we present the evaluation of our method. We first present the experimental setup.

We discuss the choice of video segment lengths in a separate section. Then we present the offline

classification performance and the online system performance.
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Volt. (mV) 750 825 900 975 1000 1050 1100

Freq. (MHz) 314 456 608 760 817 912 1000

Table 3.1: CPU voltage and frequency table [5]

3.4.1 Experimental Setup

With GEM5 [87], we are able to do cycle-accurate simulations of an ARMv7-A out-of-order pro-

cessor with 32KB L1 instruction and data cache and 256KB L2 cache. Shown in table 3.1 is the

voltage and frequency table of a similar processor (NVIDIA Tegra 2 2, with ARM Cortex A9 CPU)

that we obtained from the Linux kernel driver code [5]. The energy consumption is derived using

McPAT [88].

We collect 50 videos that are widely used in the multimedia community to form the dataset

[89]. The videos are all encoded in H.264 format with a scale of 640x480 and a frame rate of 30

frames/second.

3.4.2 Optimal Frequency Assignment

Average Best Case

Optimal 1.00x 1.00x

Static 1.18x 1.37x

Nominal Speed 1.67x 2.23x

Table 3.2: Offline normalized energy consumption

Table 3.2 shows the normalized energy consumption obtained using the optimal frequency

assignment, and we compare it against two offline baseline methods. Here “static” refers to the

method where we choose the lowest voltage possible that decodes all the segments in time, and

keep the same voltage throughout all the segments. The “nominal speed” refers to the method we

use the nominal speed (1000 MHz) to decode and stay idle if the buffer is full. As we observed

2The GEM5 simulator cannot simulate a CPU that is exactly the same as an off-the-shelf CPU such as Tegra 2,
whose frequency table we are using.
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earlier, decoding workload of segments tends to stay within a small range. Thus, compared with

the ”static” method, we have not achieved an impressive improvement. In the cases where the

decoding workload is highly variable among segments, assigning static frequency costs 37% more

energy consumption. When we rush to finish decoding, the processor consumes up to 123% more

energy. Since we have different assumptions about the system, we are not comparing our results

with existing work in this section.

3.4.3 Diminishing Returns
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Figure 3.6: Normalized energy consumption of video decoding using optimal frequency assign-

ment with different segment lengths.

Figure 3.6 demonstrates the point of diminishing returns. In the figure, we plot the offline

optimal energy consumption when we use different segmentation length, and normalized it against

the energy consumption obtained using the nominal speed (constant regardless of segment lengths).

As we can see, using a longer segment length, the energy consumption tends to be higher. Yet the

difference in energy consumption between different segment length becomes smaller and smaller

as the segments get shorter. It clearly shows the law of diminishing returns apply here: there is

no need to shrink segment sizes excessively as it does not provide more benefit in terms of energy

consumption.

We believe one of the contributing factors behind the findings is the limited number of sup-
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ported frequency levels. Consider the extreme case where there is only one segment, and we only

use one frequency throughout the whole segment. Surely there will be one optimal frequency for

this scenario, but the frequency is unlikely to be among the list of supported frequencies. On the

other hand, if shorter segments are used, we can approximate the optimal frequency by hopping

among different frequency levels. In this sense, once we achieve the time granularity enough to

approximate the frequency, there is no need for shorter segments.

3.4.4 Frequency Assignment Prediction

Mean Absolute Error 59.5 MHz

Freq. Level Prediction Accuracy 0.847

Table 3.3: CPU frequency assignment prediction

We performed a random train-test split of all the videos with a ratio of 7:3, and tested the

performance of the linear regression model. Since the point of this experiment is to show the

ability to predict, the features of both the training and testing sets are derived from the statistics

running the optimal frequency assignment. The prediction accuracy is shown in Table 3.3. We

measured the mean absolute error of the predicted frequency (in the continuous space) and the

actual frequency assigned (in the discrete space). After we round the frequency to the nearest

frequency level, we treat the results as that of a classifier and calculated the prediction accuracy.

Notice that the absolute error is only around 5.95% of the highest frequency and around 18.9% of

the lowest. The level prediction accuracy is 84.7%.

3.4.5 Online Results

In the online experiment, we still test the performance using the testing video set from the train-

test split, but all the predictions are performed online as the decoding is going on. There are two

important aspects that we should evaluate. First, how do the energy savings in the online scenario

compare with the offline optimal results? Second, will the energy savings affect user experience?

In other words, we want to make sure that we don’t miss the deadlines for decoding in our method.
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Average Best Case

Optimal 1.00x 1.00x

Our Approach 1.02x 1.00x

Nominal Speed 1.69x 2.09x

Table 3.4: Normalized online energy consumption

To answer the first question, Table 3.4 shows the normalized energy consumption, compared

with a few baselines. The “optimal” refers to using the offline optimal frequency and “nominal

speed” refers to using the nominal speed throughout the decoding process. Our approach is able to

achieve near-optimal energy savings on average, with the best case being 100% correct prediction

and producing the same amount of energy savings as the optimal one. Note that since we use

different datasets in training and testing, sometimes the relative performance to nominal speed is

even better than the offline results.

Buffer Underflow Rate Buffer Overflow Rate

0.00523 0

Table 3.5: Decoding deadline miss rate

To answer the second question, we list the buffer underflow and overflow rate in Table 3.5.

Recall that a buffer underflow will result in video segment not being ready when needed, thus

harming the user experience. A buffer overflow will result in unnecessary CPU idle period, causing

low energy efficiency. The experimental results show that our system only misses deadlines of

0.523% of all the video segments, and it never overflows the decoding buffer.

To more intuitively understand how the proposed system performs in the online scenario, we

show a few case studies in the next subsection.

3.4.6 Case Studies

Figure 3.7 shows the 4 typical cases of online frequency assignment. Similar to the previous

figures, the dotted line represents the decoding workload, the bar with the dashed edge is the

optimal frequency assignment and the solid line represents the predicted frequency assignment.
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Since the predictions happen online and are sensitive to the previous state, it is highly unlikely

that the predicted frequencies are the same as the original optimal frequencies. However, our

predictions show overall similar patterns to the original ones: if the optimal solution uses a higher

frequency at t, then the predicted solution is very likely to switch to higher frequencies at the

vicinity of t (e.g. t − 1 or t + 1). Aside from the similarity, these cases each represents a specific

scenario. Now we will discuss them separately.

Figure 3.7(a) shows the online decoding process of the video carphone and is one of the

cases where the prediction is very close to the actual optimal solution. The video features a man

talking while driving in a car. Notice that the 6th segment has a noticeably higher requirement for

computation. This is due to a background scenario change outside of the car. However since we

already built up some decoding buffer earlier (notice at the end of the 3rd second, we are further

ahead than the optimal solution), our prediction module chose to stay with the same frequency.

Figure 3.7(b) shows the online solution for video waterfall. An interesting fact that we

noticed here is that the frequency of the last segment is usually mispredicted. Our predictor is not

smart enough to know that it is the last segment and it has the freedom to use up all the slack time

available. Thus, the predicted solution usually ends earlier, resulting in a small portion of energy

waste. In this case, the online solution consumes about 1.040 times the energy of the optimal

solution (the average case being 1.02x).

The video tempete has rather high amount of variations in the decoding workload, as shown

in Figure 3.7(c). The hard part comes when we have a sudden rise in the amount of computation,

which is what happens when we try to decode segment number 6 and 8. In the optimal solution,

we see two distinct peaks at the corresponding video segments. In our online solution, what the

system reacted in response to the peaks are the two very high CPU frequencies used right after the

peak. Recall that our frequency prediction is based on the estimated computation. The estimated

computation is high after the given peak in computation. In addition, we have a relatively small

buffer by the end of the peak, especially in the second case. Because of those reasons, the system

decides to use very high voltage for the decoding of the next segment. Notice that we nearly missed

the deadline for the second peak. But fortunately, as we have over half second slack time in our

buffer, we were able to avoid missing the deadline.
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The last case showed in Figure 3.7(d) involves the decoding of a video where there is a sudden

drop in decoding workload. It actually corresponds to the video pamphlet shown in Figure 3.3.

Fortunately, a drop in computation is much easier to handle than the previous case. The response

of the system is that for segment number 6, a mistakenly high frequency is predicted, resulting in

huge slack time. However, we ended up not suffering too much from that single misprediction.

The overall online system energy consumption is 1.026 times of the optimal solution.

3.5 Conclusion

In this chapter, we discussed an application level DVFS method for video decoding. We prose a

machine learning based prediction model for CPU frequency selection using the estimated work-

load and decoding progress as its features. We show that with application semantics, the system

is able to perform DVFS at a low rate that satisfies constraints imposed by existing operating sys-

tems while saving an average of 40.1% energy consumption compared with execution at nominal

speed.
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CHAPTER 4

Sustainable Operation of Environmentally-Powered WSNs

Sensor networks are an emerging technology for collecting and transmitting information about

an environment, and it is one of the most representative systems of IoT and edge computing [9].

One notable application of sensor networks is to measure the various environmental parameters

in buildings, such as lighting, temperature, and humidity, in order to enable smart control of the

heating, ventilating, and air conditioning (HVAC) systems. A sensor network usually consists of

dozens or even hundreds of small, wireless connected sensing devices which until recently used

batteries as their energy source. However, the reliance on batteries imposes limitations on where

and how these sensor networks can be used. The number of nodes in the network and the placement

of these nodes, among other things, are limited by the feasibility of replacing exhausted batteries

over the working lifetime of the network.

As such, energy-harvesting nodes have emerged as a way to maintain a sensor network with

little or no human intervention. Depending on the application, nodes can harvest solar, wind,

piezoelectric, or other external energy, and either store or immediately use the harvested energy.

With battery-powered nodes, the challenge is how to minimize energy use to delay the next battery

replacement. With energy-harvesting nodes, the challenge becomes how to adapt network function

in the face of uncertain or changing energy availability such that the network could sustain itself

indefinitely.

In this chapter, we consider a stationary (non-mobile) indoor sensor network that harvests solar

power from its environment using small solar panels. Nodes use the harvested energy to sense

their environment and wirelessly transmit the collected data, in a multi-hop fashion, to a sink node

(e.g. desktop computer). We design a routing strategy for a sensor network which not only is

energy-neutral but which maintains sensing quality even in periods where external energy is not
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readily available for harvesting (e.g., overnight).

We begin the discussion of our self-sustainable sensor communication strategy by identifying

our major goals.

• “Sustainability”: the sustainability of the sensor network is guaranteed. In other words, the

energy consumed by each sensor node should always be less than the energy harvested.

• “Maximized performance”: the performance of the sensor network is maximized under the

premise of network sustainability. In our work, we use the sensor sampling frequency to

measure system performance.

Our key strategy for achieving both goals is to adopt a dynamic network routing and operation

strategy. Two key observations motivate our strategy design. The first is that at different times of

day, different nodes harvest the most/least amount of energy. For example, during the daytime,

the sensors near windows harvest the most energy while during the night, the sensors that are

close to indoor lighting harvest the most energy. The second is that with different routes, the

communication cost of the same sensor node varies drastically. In the multi-hop network, a node

could have multiple alternative next hops. Thus when routes vary, different amounts of data are

routed through the nodes, causing significant variations in energy consumption. Combining these

two observations, the core idea of our routing strategy is to adjust the routes in such a way that

the sensor nodes that harvest more energy take on more routine tasks, and the sensor nodes that

harvest little energy take on fewer routing tasks. Therefore, all the sensor nodes in the network are

more “sustainable” while still maintaining high system performance.

Compared to previous work which usually emphasizes a static routing algorithm, our major

contribution is that we have split a single day into multiple segments and adaptively select a routing

strategy for each segment. The routes are adjusted in such a way that the nodes which harvest

more energy in the current segment take on more routine tasks. In this way, we effectively avoid

the situation where nodes that harvest little energy become the energy bottleneck of the system.

In addition, such a strategy ensures that the routes adapt to available energy and promote energy

neutrality.
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Another major contribution is our method of deriving the parameters for various system opera-

tions. For one, we decouple the derivation of routing and sampling frequency and apply optimiza-

tion techniques separately, conquering an otherwise complex problem. In addition, we are able to

obtain a unified solution despite the uncertainty of energy harvesting among different days. Using

our system configuration, the network neither spends too much energy, leaving itself unsustainable

during the cloudy days with poor energy harvest; nor is it too conservative, wasting the energy

harvested during days with more light availability.

4.1 Related Work

In this section, we present the related work in energy harvesting, self-sustainable sensor networks

as well as dynamic routing in sensor networks.

4.1.1 Energy Harvesting

Various energy harvesting technologies have been proposed in the past. Notable examples in-

clude solar cell, vibrational, biochemical, and motion-based [90] [91] [92]. More recently, radio

frequency energy harvesting has emerged as a promising technique to supply energy to wireless

networks with high energy efficiency [93].

Among the various harvesting modalities, solar energy harvesting normally employs the high-

est power density [94]. It is a promising renewable resource considering its high output efficiency

and ability to be utilized in a variety of locations. Photovoltaic production has been doubling every

2 years, increasing by an average of 48% each year since 2002, making it the world’s fastest-

growing energy technology [95] [96]. Many manufacturers produce low power photovoltaic de-

vices to converting solar energy into direct current electricity, including EnOcean [97], G24i [98],

IXYS [99], and Panasonic [90]. In our work, we examine solar cell based harvest technology to

power the sensor network.
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4.1.2 Self-sustainable Sensor Networks

Self-sustainable sensor networks rely upon energy harvesting technologies for its operations, re-

sulting longer lifetime than their battery-operated counterparts. Varies aspects of sensor network

energy harvesting have previously been studied. Paradiso et al. discussed the performance of

energy scavenging for wireless electronics with different harvesting technologies [100]. Srivas-

tava et al. proposed the power management design consideration for energy harvesting devices.

Compared to the battery-based systems, instead of minimizing the total energy consumption, en-

ergy harvesting devices operate in such a way that the energy used is always less than the energy

harvested while maximizing the system performance [27]. An energy-aware routing protocol on

the energy scavenging ad hoc sensor networks are discussed by Shah et al [101]. Royer et al.

have reviewed routing protocols for resource-limited ad hoc wireless sensor networks [102]. More

recently, Xu et al. proposed energy saving schemes for medical sensor networks using sensor se-

lection [103] [104]. Eventually, a few implementations of solar energy harvesting sensor nodes are

proposed including Prometheus [105], HydroWatch [106], Heliomote [107], and Ambimax [108].

While these self-sustainable sensor networks focus on designing and implementing only a sin-

gle routing algorithm on the network to maximize system performance, our design emphases on

dynamically changing and adopting different routing algorithms according to the amount of energy

harvested in different periods of a day. We compare and present the performance of our dynamic

routing scheme compared to the static routing scheme on our tested dataset in Section 4.7.1.

4.1.3 Dynamic Routing for Sensor Networks

Many previous works on dynamic routing algorithms target sensor networks that are spatially

dynamic (i.e. have moving nodes) rather than temporally dynamic (i.e. have nodes with changing

the level of harvested). Examples of algorithms in this category include Dynamic Source Routing

[109], Dynamic Proxy Tree-Based Data Dissemination [110], etc.

Only a few researchers have studied the adaptive routing algorithms for environmentally pow-

ered sensor networks. Zhang et al. proposed a network utility function based optimization method

that jointly optimizes data gathering and data transmission [111] in rechargeable sensor networks.
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Comparing to their approach, we used a different method where the system parameters are obtained

through offline training and applied online to achieve the objective.

4.2 Overview

Our method consists of three steps as shown in Figure 4.1. The first step is to partition a day

into multiple segments assuming that the optimal routing algorithm will be recomputed for each

segment. A new segment should be created when the relative energy harvested by each sensor node

changes dramatically. Our second step is to find an optimal system configuration which contains

two parts, route selection, and sampling frequency selection. For route selection, our goal is to

create a customized routing algorithm for each segment based on the amount of energy harvested

by each sensor node. It is motivated by the maxflow algorithm and is designed in such a way that

the sensor nodes that harvest more energy take more routine tasks. For the sampling frequency

selection, the objective is to select an optimal sampling frequency for each segment such that the

sensor network achieves good overall performance (high sampling frequency) while maintaining a

high probability of sustainability.

We execute our method on the training data and obtain a system configuration (the specific

routes and sampling frequency corresponding to each segment). We then apply the system config-

uration to testing data to validate our method.

4.3 System Model

In this section, we present the network model, the energy model and the dataset we used for the

experiments.

4.3.1 Network Model

We consider a multi-hop network model with a single sink node. We assume that the sink node’s

energy and bandwidth are unlimited. Each sensor node acts both as a sensor and a router for other
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Segment Partition

System Configuration

Sampling Frequency

Routing

Figure 4.1: System workflow of the sustainable operation of the solar powered sensor network.
sensor nodes when transmitting information. In our model, each sensor node can transmit data up

to a threshold distance, since the connectivity between sensor nodes drops dramatically past the

threshold. Therefore, each sensor node must choose a path through the routers (sensors) to transmit

its data to the sink node.

Figure 4.2 shows an example network model with ten sensors. It traces the paths from the four

nodes at the bottom of the figure to the sink node. Note that each sensor not only needs to transmit

its own data to the sink node but also possibly may be used as a router by another sensor node.

Specifically, the sensors nodes that are close to the sink node will normally take more responsibility

to route than the nodes that are far from the sink node.

4.3.2 Energy Model

Our system energy model can be classified into four subcategories.

• Energy harvesting model. Each sensor attaches to a solar cell to harvest energy. The har-

vested power Ph is proportional to the intensity of light lh received by the sensor’s solar cell,

Ph = α ∗ lh.

• Energy leakage model. The energy storage of each sensor node leaks at a constant rate.

Assume the leakage power is Pl.
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Figure 4.2: An example network model with 10 sensors. Arrows represent paths from nodes to

the sink node. Intermediate nodes are responsible for their own data as well as that of other nodes

farther away.

• Sensing energy model. Each sensor powers up and obtains readings of environmental vari-

ables (temperature, light, and humidity) for time period ts with active power Ps.

• Communication energy model. when two sensors communicate, the transmitter and the re-

ceiver wake up and talk for time period tc. The power consumed by transmission is Pct and

the power consumed by receiving is Pcr.

We assume that every time a sensor takes a reading, it must transmit the collected data to

the sink node. We also assume that all the sensors in the network have the same sensing and

communication frequency F since all the locations in the space should be monitored equally. Then

the performance of the sensor network can be measured with F , as a higher frequency indicates

the environment is being monitored more accurately.

However, correspondingly, a higher frequency incurs a larger energy cost to a sensor. In order to

build a sustainable network, for each sensor node i, the following equation must hold. In Equation

4.1, we consider time period t1 to t2. The left side of the equation indicates the amount of energy
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harvested (
∫ t2
t1
Ph) minus the amount of leakage energy (

∫ t2
t1
Pl), thus it represents the upper bound

of the amount of energy for sensor i to spend. The right side of the equation has two terms. The first

term represents the energy spent for sensing (
∫ t2
t1
FPsts) and the energy spent for communication

(
∫ t2
t1
FPcttc) for sensor i at frequency F . The second term represents the energy spent by sensor i

to be used as the router by other sensors, and we assume it is used by β times. Since as a router, the

sensor needs to be used first as a receiver, then as a transmitter, the total energy spent as a router is

β
∫ t2
t1
F (Pct + Pcr)tc.

∫ t2

t1

Ph − Pl >
∫ t2

t1

F (Psts + Pcttc) + β

∫ t2

t1

F (Pct + Pcr)tc (4.1)

4.3.3 Dataset

The Intel Berkeley Lab’s public dataset provides light availability in a real-life environment [1].

The data is obtained by a 54-node wireless sensor network that collected light, humidity, and

voltage measurements roughly every 30 seconds over a period of three weeks. The sensors, called

motes, were battery-powered and statically arranged in the indoor lab space of the Intel Berkeley

Lab at the University of California, Berkeley. There are in total over two million timestamped

temperature, light, and humidity readings in the dataset.

The sensor placement is showed in Figure 4.3. In order to measure the whole lab environment

precisely, sensors are evenly distributed in all the locations in the Research lab. Some of them are

in the corner, such as sensor 42, sensor 16 and sensor 24. Others are in the office, such as sensor

54. Together these sensors provide a wide variety of indoor lighting conditions.

Before applying our algorithms, we need to preprocess the data due to missing epochs and

asynchronous measurements. Our approach is to split the days into time slots. Each time slot is

two minutes. If sensor i has more than 1 measurement during that time slot, we take the average of

those measurements. If sensor i has no measurement on time slot t1, we go backward and find the

first time slot t2 (t2 < t1) that has a measurement. Otherwise, we go forward and find the first time

slot t3 (t3 > t1) that has a measurement, then calculate the weighted average for t1. The equation

is showed in equation 4.2. Ti,t1 represent the temperature for sensor i at time slot t1.
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Figure 4.3: The 54 sensors placement of Intel Berkeley Lab [1].

Ti,t1 = [Ti,t2 ∗ (t3 − t1) + Ti,t3 ∗ (t1 − t2)]/(t3 − t2) (4.2)

4.4 Segment Partition

Our adaptive routing and sensing strategy rely crucially on ensuring that all nodes have sufficient

energy to fulfill sensing and routing obligations. Nodes receive varying amounts of light during the

day. Furthermore, because nodes are distributed throughout an indoor space, the amount of light

that one node receives in relation to another is subject to change throughout the day.

For example, a node located near an east-facing window will receive strong light in the morning

and relatively less in the afternoon, while a node located far from any windows will receive a

steady amount of light throughout the day. We might want to use a different routing strategy in

the afternoon to account for the now much lower energy availability of the window-adjacent node.

Thus, every 24-hour period is segmented into blocks to account for the changing relationship of

light availability among nodes. Each day is split into n segments; a low number of n is chosen to

avoid the cost of switching the routing strategy too frequently.

By considering the light measurement of each node at an instant of time as a point in n-

dimensional space, where n is the number of nodes, we can consider the centered Pearson cor-
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relation coefficient between any two time points as a measure of similarity between the timepoints.

The correlation coefficient, in this case, represents the cosine of the angle between rays from the

origin to each of the two points in the n-dimensional space. Because our aim is to change the

routing strategy only when the relationships between nodes’ access to energy change, we set seg-

ment boundaries when the average similarity among points in a segment falls below a particular

threshold.

Overall light availability patterns will be similar from one day to the next; our segmentation

algorithm, therefore, considers light vectors collected at the same time of day across different days

as belonging to the same time point. The start time is set corresponding to the end of the previous

segment (the choice of initial start time is discussed below); the average similarity between every

pair of time points from the start time to an incremented end time is then calculated until the

average similarity falls below a threshold. The end of the segment is then set to the last timepoint

before the subthreshold dissimilarity occurs. The algorithmic flow to pick the start and the end

point of each segment are shown in Algorithm 4.

Because segment boundaries depend in part on other time points in the segment, the initial

segment boundary must be carefully selected. Since there are relatively few time points, we select

the initial segment boundary by partitioning based on all possible starting time points. Out of the

24 possible partitions (corresponding to a partition starting at each of the 24 hours of the day), we

determine which partition gives the desired number of segments at the lowest threshold. If there

are multiple such partitions, we choose the partition that starts at a stable timepoint, i.e., a time

point at which most or all of the partitions place a segment boundary.

4.5 Routing Algorithm

Based on the above partition, the next step of our optimization is to select a routing algorithm for

each segment. Our algorithm design is motivated by the maxflow problem with edge constraints.

We first create a directed graph G = (V,E) where each node v ∈ V represents a sensor node or

a sink node and each edge e ∈ E represents the wireless link between sensor nodes or between a

sensor node and a sink node. Each node in the graph has an attribute capacity which describes the
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Algorithm 4 Segmentation Algorithm
Input: luxdata, hourly n-dimensional vectors of light measurements from n nodes over d days;

thresh, similarity threshold; t0, the start point of the 24-hour period

Output: segments, (start, end) pairs corresponding to the start and end of the segments

1: hours ← ordered sequence of hours in the 24 hours following t0; segments ← [ ];

lastbreak ← 0

2: for each hour h in hours since lastbreak do

3: similarities← []

4: for each pair of hours t1, t2 in lastbreak toh do

5: Add Pearson correlation of each vector in luxdata at t1 with each vector in luxdata at

t2 to similarities

6: if min(similarities) < threshold then

7: Add (lastbreak, h− 1) to segments

8: lastbreak ← h− 1

9: end if

10: end for

11: end for

12: Add (lastbreak, t0) to segments return segments
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amount of energy available for that node. Each edge (from node i to node j) also has the capacity

attribute which represents the amount of energy spent to transmit data from node i to node j.

To be consistent with the traditional maxflow algorithm model which only has capacity con-

straints for edges, we convert our graph to G′ = (V ′, E ′), where each node v in the original graph

breaks down to two nodes v1, v2, as well as an edge from v1 to v2 which carries the original ca-

pacity of node v in graph G. After this, the node capacities are converted to edge capacities. The

maxflow algorithm also requires a source node and a sink node. We virtually add a source node

which has an edge connecting to all the non-sink nodes, where each edge has capacity∞. All the

data flow eventually goes to the sink node.

Figure 4.4 shows a four-node sensor network with maxflow graph G and the graph G′ that it is

converted to. Ci is the capacity for the ith sensor node in the graph, and the capacities of all solid

edges are ∞. Note that the edges between the sensor nodes are mutual in the sense that node A

can send data to node B while node B can also send data back to node A as long as the two nodes

are within the threshold distance of one another.

node3

sink

node1 node2

node3

node1 node2

node4

node4

source

sink

source

node1 node2

node3 node4

c1 c2

c3 c4

c1 c2

c3 c4

Figure 4.4: An example of maxflow graph G and its converted form G′.

In our model, we assume that all the sensors share the same sensing and communication fre-

74



quency F as shown in Equation 4.1. The goal of our modified maxflow algorithm is to find a

maximized F and the corresponding routing algorithm for each sensor node. Firstly, as different

nodes harvest a different amount of energy, the capacity Ci of each sensor node is different from

each other. Maxflow assigns more routing traffic to the nodes that harvest more energy. Thus, it

uses as much energy as possible. Secondly, we have specifically applied the maxflow algorithm

with edge constraints to ensure the energy flow that goes through each sensor node is beyond a

certain threshold. Note that the energy flow of node i is proportional to the frequency F .

The core idea behind maxflow algorithm with edge constraints is that each edge e not only has

a capacity c(e) as the upper bound of flow f(e), but also a capacity d(e) as the lower bound such

that d(e) ≤ f(e) ≤ c(e). We have modified and applied it to our model. Before explaining the

detail of our algorithm, we define the following two notations as shown in Equation 4.3. Estart

denotes the energy spent on node i to sense and to send messages while Erouter denotes the energy

that is spent on each router nodes that routes the message from node i.

Estart(F ) : F

∫ t2

t1

(Psts + Pcttc)

Erouter(F ) : F

∫ t2

t1

(Pct + Pcr)tc

(4.3)

Our routing algorithm is shown in Algorithm 5. In order to calculate the largest possible F , our

algorithm has three main steps. The first two steps are to modify the graph, and the last step is to

apply the maxflow algorithm with constraints. We first update the original capacity Ci for sensor

node i with Ci − Estart(F ) + Erouter(F ) with the goal of allocating the sensing cost for each

sensor node first. We intentionally add the router cost Erouter to the modified capacity because, in

the next step, the maxflow algorithm will deduce Erouter(F ) for all the nodes in the routing path

including the node i itself. The added Erouter(F ) compensates for it. Then in the second step, we

set the edge constraints. We only put constraints on edges that connect the source to each sensor

node. Assume an edge e connects the source with node i. Then the constraint for edge e is set to

Erouter(F ) ≤ f(e) ≤ ∞. This guarantees that there exists a flow of at least Erouter(F ) from node i

to the sink node. The sensing message from sensor node i can thus be transferred to the sink node.

The third step is simply to run the maxflow algorithm with edge constraints. In our case, we have
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applied the algorithm from [112] on our modified sensor network graph. Finally, combined with

all the three steps described above, we also apply a binary search to find the maximum F that can

be supported by the sensor network.

Algorithm 5 Routing Algorithm
Input: Graph G′ = (V ′, E ′). Each sensor node i maps to nodes ni, n′i and edge ei(ni → n′i) in G′.

The original capacity of ei is ci. According to Equation 4.1, ci =
∫ t2
t1
P i
h − Pl. The source node is

s, and the sink node is t.

Output: Maximum frequency F , routing algorithm S.

1: S = ∅, F = 0, F ′ = 0.

2: for sensor node ni in V ′ do

3: 0 ≤ f(ni → n′i) ≤ ci − Estart(F )

4: Erouter(F ) ≤ f(s→ ni) ≤ ∞

5: S ← Routing corresponding to maxflow for G′ with current constraints

6: end for

7: if maxflow can be found then

8: F ′ = binary search(F + ∆F, Fmax)

9: else

10: F ′ = binary search(Fmin, F −∆F )

11: end if

12: if |F − F ′| <= ∆F then

13: Return F, S.

14: else

15: F = F ′, go back to step 2.

16: end if
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4.6 System Configuration

Our primary goal is to derive a strategy where the sensor nodes sample as much as possible while

maintaining sustainability. That strategy can be characterized by two components: the best set

of routes Si for each segment i in a day; and the sampling frequency fi and the corresponding

communication frequency for each segment. Our routing algorithm produces one set of routes for

each node and a corresponding maximum sampling frequency, given the amount of energy stored

by each node. But we cannot plug in the expected energy harvested and use the output directly as

our strategy. For one, there is variability in energy harvested among different days. For another,

the set of routes that maximizes energy consumption for the current segment does not necessarily

benefit the subsequent segments. The ideal strategy achieves the best results over all the segments.

To deal with the difficulties mentioned above, we start by generating different sets of routes for

each segment in a day. We exhaustively run all combinations of different routes on a week’s worth

of data and select the best set of routes based on the maximum sampling frequency they allow for.

After that, with a fixed set of routes, we use an iterative Monte Carlo method to determine the best

sampling frequency. In that way, we are able to select a strategy that yields the highest sampling

frequency while being able to self-sustain.

4.6.1 Route Selection

. In the routing algorithm identification phase, we will discover a set of routes (S1, S2, . . . , SM)

for each segment in the day (for M segments per day). As we observe from the dataset, the

relative amount of energy harvested among nodes changes over different time segments. Thus, an

inconsequential node in the current time segment might become indispensable in the next, thereby

requiring us to save its energy for the benefit of the following segment. Therefore, an optimal

maxflow solution given the current time segment may not be optimal when we look at the global

picture. To deal with the problem, we need to consider different solutions to the maxflow problem,

and experimentally determine the best way to route the nodes. In practice, by randomly picking

nodes and shrinking their capacityN times, we are able to produce different approximate solutions

to the same maxflow problem, denoted by Si = {Si1, Si2, . . . , SiN}. In these different solutions,
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the various “alternative routes” of the maxflow problem are explored.

After running the algorithm for each segment, we will have N different sets of routes for each

segment. We then exhaustively combine them into a set of solutions

{(S1, S2, . . . , SM)|Si ∈ Si}We test all the solutions with the expected energy harvest, and the one

that produces the maximum overall sampling frequencies will be selected.

4.6.2 Sampling Frequency Selection

In the sampling frequency selection phase, we decide the sampling frequencies (f1, f2, . . . , fM) for

each segment in the day (for M segments per day). The difficulty in selecting sampling frequency

lies in the variability in the energy harvested. The self-sustainable sampling frequency on one day

may not be self-sustainable on another day. Yet if we simply set as standard the days with the least

harvested energy, we would be too pessimistic as we ignore the energy left over from days where

more energy is harvested.

We find this sweet spot by adopting an iterative Monte Carlo method. In the method, we

maintain a set of “points” at each iteration t, Pt = {pt1, pt2, . . . , ptN}, where each point refers to one

set of possible sampling frequencies,

ptj = (f t1j, f
t
2j, . . . , f

t
Mj). We initialize f 0

ij by sampling from a normal distribution N (f̄i, σ(fi)).
1 We discard points (sampling frequencies) under which the system cannot self-sustain. Then we

increase the weight wj on those points that produce more samples per day before normalizing all

the weights. At each subsequent iteration t, we create a new set of points Pt+1, where f t+1
ij of each

point pt+1
j comes from sampling the Gaussian mixture model

∑
j wjN (f tij, σ(fi)). The points are

then re-weighted following the same procedure as described before. In our experiment, the best

point (the one with the highest overall sampling frequency) converges quickly. We will apply that

best set of sampling frequencies as the settings for each of the segments.

1f̄i and σ(fi) come from the previous step, where we select routing algorithms.
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Sampling Frequency (Hz) 7am-4pm 4pm-6pm 6pm-7am

Shortest Path 0.184 0.0743 0.0104

Static Routes (1st) 0.369 0.167 0.0113

Static Routes (2nd) 0.285 0.134 0.0113

Static Routes (3rd) 0.204 0.0584 0.0207

Dynamic Routes (ours) 0.369 0.134 0.0207

Table 4.1: Comparison of system sampling frequency with different routing strategies.

4.7 Evaluation

Based on the sensor topology and data collected in [1], combined with the network and energy

model described in Section 4.3, we built a simulation to validate our algorithms. We first test the

routing algorithm independently to show the effectiveness of the dynamic adjustment. Then we

consider the whole system and show the offline optimal results used as the training set. Finally, we

test the configuration obtained through training in an online setting and show the sustainability as

well as the performance of the system.

4.7.1 Routing Algorithms

Table 4.1 describes the maximum sampling frequency given different routing algorithms. Using

the segment partition algorithm, we split a day into three segments, respectively 7am − 4pm,

4pm − 6pm, and 6pm − 7am. We evaluated five routing strategies. The shortest-path method,

where we always route the packet along the shortest path from the node to the sink, serves as the

naive example. When we use static route methods, we do not dynamically change the routing for

different segments. Instead, we compute the optimal routing algorithm on one of the segments

(1st, 2nd, or 3rd), and apply it to all three segments. Our approach, which we call dynamic

routes, achieves the highest overall sampling frequencies in all the segments.
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Figure 4.5: The greedy and optimal sampling frequencies derived in training.

4.7.2 Training

As mentioned before, we first train the system using a week’s worth of data. Figure 4.5 shows the

results. The dotted line represents the mean power of energy harvested from all the nodes. The

solid line represents the corresponding sampling frequency we derive for each segment with our

approach. The dashed lines represent the sampling frequency achieved by running the max flow

algorithm on every segment. We refer to it as the “greedy” approach, as it always finds the locally

maximum sampling frequency given the energy harvested in that segment. Apparently, the greedy

approach varies from day to day. Noticeably, for the last two days, the sampling rate during the

night is far below that of our approach. The reason for the variability is that some of the nodes

that are bottlenecks in the communication chain did not receive as much energy as expected. Thus

the overall performance is limited by those bottlenecks. In our approach, on the other hand, we

execute the same strategy, derived by considering both the good and the bad days.

4.7.3 Testing

Figure 4.6 shows the results testing our approach on a different set of days. The dotted line shows

the mean harvested power over all nodes, and the solid lines are sampling frequencies obtained

from training. We also apply the same set of sampling frequencies in the greedy training scenario

here. The bar below shows the sustainability of the corresponding segments, where the colored
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Figure 4.6: Sampling frequencies and corresponding segment sustainability in testing.

segments are able to self-sustain and the non-colored segments are not. Apparently, using the

greedy sampling frequencies from training, more than half of the segments weren’t self-sustainable

as indicated by the upper part of the bar chart (9 out of 21 segments are sustainable); our approach

(the lower part of the bar chart) is able to sustain through almost all the segments (20 out 21

segments) 2. The one segment that is not self-sustainable also suffered from a bottleneck node

with unusual behavior. Interestingly, although the energy harvested in the last day fluctuated, both

methods are still able to sustain. A possible reason for this is that most of the bottleneck nodes are

far from windows while nodes near the windows are most likely to have sufficient energy supply.

Thus, although the day may have been cloudy, and the nodes near windows have fluctuating energy

availability, the true bottleneck nodes are not affected, therefore delivering expected service.

2Once a node fails, we assume the whole network resets at the start of the next time segment
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4.8 Conclusion

We proposed a routing and operation strategy for an environmentally powered sensor network.

Our approach enables the maximum workload (sensing and communicating) for the sensor net-

work while guaranteeing the network can sustain on harvested solar energy with high probability.

Our routing strategy is designed in such a way that the routing algorithm is dynamically adjusted

according to the amount of harvested energy by each sensor node. We have specifically addressed

our optimization flow with three steps: segment partition, routing algorithm identification, and con-

figuration selection. Our results indicate that our dynamic routing algorithms on different segments

enable the largest overall sampling frequency compared to the other routing algorithms while it can

sustain 20 out of the 21 segments in our test set.
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CHAPTER 5

Adaptive Image Sensor Subsampling for Computer Vision

Starting from this chapter, we shift our focus to machine learning-based applications. We begin

with by discussing the energy efficiency of image sensors, which consist of the first step in the

computer vision pipeline on edge devices.

High-resolution cameras are prevalent today. Apple’s iPhone X is equipped with a 12-megapixel

camera [113] and the latest Sony Xperia XZ has a dazzling 23-megapixel camera [114]. While the

increasing consumer demand for high-quality photography justifies the need for a high-resolution

camera, image sensors with over 10 million pixels are usually an overkill for many computer vision

tasks. Take image classification as an example. For the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [115], a popular 1000-class classification competition, competitors usually

resize input images to 224×224. For simpler problems, such as the CIFAR-10 10-class classifi-

cation problem [116], state-of-the-art classifiers achieve over 95% accuracy with input images of

size 32×32. As the amount of computation required for a convolutional neural network (CNN) will

roughly quadruple if the input image doubles its height and width, it is likely that the input sizes

of classifiers will be kept as small as possible. That being said, a 5500×4200 image produced by

a 23-megapixel appears disproportionately big compared to what we need for common computer

vision tasks.

The question then becomes how do we obtain images a with relatively low resolution from

these over-sized image sensors. A straightforward way is to take the full image and interpolate to

create a smooth downsized image. However, energy-wise it is not the best solution. There exists

an approximately linear relationship between the energy consumption of the image sensor and the

number of pixels it samples [117]. Unlike cloud-based DNN applications [118], applications on

mobile devices call for low energy consumption. As a result, it is desired to sample a few pixels
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as possible. But how much should we subsample? If we undersample, the aliasing effect causes

distortions that might lead to degraded performances of the computer vision algorithms. If we

oversample, we risk wasting energy by sampling unnecessary pixels. It is an important question

to hardware and system designers, as it mandates the type of features and APIs that are exposed to

application developers. It is also an important question to computer vision app developers, as its

answer instructs them on how best to utilize the camera for the overall energy efficiency of mobile

computer vision systems.

To bridge the gap between image sensor hardware and DNN-based image classification al-

gorithms, we analyze the cause of errors when we subsample and propose clear and practical

strategies to improve it. In particular, we show that subsampling, when done right, does bring

about tremendous energy saving with negligible loss of accuracy. We do not intend to provide an

exact answer to how much we should subsample. Instead, we show that by studying the perfor-

mance degradation of just a few classifiers with subsampled input images, we can get a reasonable

estimate of the performance degradation of image classification in general. To further reduce the

energy consumption of the image sensor, we propose a minimal hardware modification to off-

the-shelf image sensors. AdaSkip, the proposed enhancement, adaptively subsamples parts of the

image based on the complexity. We show that the proposed method can achieve even better energy

accuracy trade-offs than plain subsampling.

Our contribution is neither proposing new image sensor architecture nor building more efficient

computer vision algorithms. Rather, we take existing and widely-used designs from both sides

and optimize from a system’s perspective. To the best of our knowledge, we are the first to a)

systematically study the relationship between subsampling and performance degradation of DNN-

based image classification; b) propose a low-footprint hardware extension to off-the-shelf CMOS

image sensors for more efficient subsampling in the context of efficient image classification.

We organize the rest of the chapter as follows. Section 5.1 introduces prior art from the images

sensor and deep DNN optimization communities. Section 5.2 briefly describes the operation of

CMOS image sensors and our energy model. Section 5.3 analyzes the negative effect subsampling

has on DNNs and motivates the problem. Section 5.4 details both of our proposed methods. The

experimental setup is described in Section 5.5 and the results in Section 5.6.
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Figure 5.1: CMOS image sensor operation with rolling shutter.

5.1 Related Work

CMOS Image Sensors. It is well known that the analog readout chain consumes a significant

amount of energy. Thus there has been a continuous effort in creating specialized image sensors

that take reduced amount of sampling. Notable approaches include the use of DCT proposed by

Kawahito et al. [119], predictive coding proposed by Leon-Salas et al. [120], Quadtree Decompo-

sition algorithm proposed by Artyomov et al. [121], and compressive sensing proposed by Oike

et al. [122]. Kemeny et al. also proposed an image sensor that allows programmable readout

of pixels at arbitrary locations and various resolutions [123]. LiKamwa et al. studied the en-

ergy proportionality of off-the-shelf image sensors and proposed optimization strategies for simple

computer vision tasks [117].

In our work, we look at the effect of subsampling on the particular computer vision task of im-

age classification rather than image quality. To reduce sensor energy consumption in vision tasks,

one way is to derive a separate image sensor pipeline alongside the normal one [124]. Instead, we

base our techniques solely on subsampling by skipping pixels, a feature that is widely available on

today’s mobile image sensors.

Neural Network Design. DNNs are extremely power hungry. Pruning, quantization, and factor-

ization have already become widely adopted techniques to improve efficiency [125] [126]. Mean-

85



while, the quadratic relationship between computation and input size can also play a critical role,

as evident in the multi-scale Densenet architecture [127]. Other researchers have also proposed

to reduce the computation of neural networks by using different image sensor designs. Chen et

al. have proposed to approximate the first layer of CNNs using image sensors with angle sensitive

pixels [128]. LiKamwa et al. proposed to move early layers in CNNs to the analog domain to save

energy [129].

In comparison to the designs mentioned above, our work targets a broader audience. We base

our experiments on generic neural network models. And the main target of our study is how the

most widely used image sensor architecture could best be utilized in order to serve the need for

neural networks.

5.2 CMOS Image Sensors

In this section, we describe the architecture and operation of the most commonly used mobile

CMOS image sensors. We then describe the model based on previous energy characterizations of

off-the-shelf units [117].

5.2.1 Architecture and Operation

Today’s mobile CMOS image sensors usually consist of pixel arrays, an analog signal chain, and

various digital processing and I/O logic. The analog chain contains ADCs, amplifiers, and bias

adjusting circuits and it is known to be the major source of energy consumption. A common

design choice for image sensors is to use column-parallel readout, where one pixel column share

one signal chain. In this architecture, the pixels are usually read out row by row.

Rolling electronic shutters are widely used to control the exposure. During the operation of a

rolling shutter, only one row or column of pixels read out at a time. The operation fits nicely with

the column-parallel readout architecture. When one row finished exposure, the readout logic starts

the processing of that row. At the same time, the subsequent row is in the process of exposure,

waiting for its turn for pixel readout. The whole process is depicted in Figure 5.1.
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There are usually two supported modes of subsampling: skipping and binning. In skipping

mode, the sensor skips the entire pixel readout chain of pixels at certain locations. In binning

mode, pixel values are averaged before output. We mainly consider the skipping mode, since it is

the mode that enables the most energy savings.

5.2.2 Energy Model

We mainly use LiKamWa et al.’s energy characterization on commercial image sensors [117].

They proposed to estimate the energy consumption of image sensors using the following equation:

E = Pidletidle + Pactivetactive

Pidle and tidle represents the power and time when no pixel readout is occurring, i.e. when the first

row is going through exposure. Once the pixel readout starts, the system switches to the active

mode with higher power consumption. The length of the readout tactive is linear to the number of

pixels sampled.

5.3 Problems with Subsampling

Given a neural network that requires inputs of size H × W , it is most desirable if we directly

subsample the pixel arrays to create a H ×W image. However, images naturally contain a variety

of high-frequency components in their original form. Subsampling images can easily give rise to

strong aliasing effect. Neural networks have very unpredictable behaviors when they encounter

input data derived from distributions that are different from what they are trained on, as in the case

of adversarial examples [130]. From the neural networks’ perspective, the process of subsampling

creates input data of a slightly different distribution. It is thus likely that neural networks do not

behave correctly in these situations.

To verify our conjecture, we tested direct subsampling on 10-class image classifiers with two

different input sizes. Section 5.5 explains the experimental setup in more details. To create an

image of the target input size, we directly subsample (by skipping pixels) from a 512× 512 image.

Then we feed it to 10 different classifiers, with classification accuracies averaging 86.9% and
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Subsampling method Accuracy loss (%)

32× 32, Direct subsampling -48.6 ± 6.4

32× 32, Smoothed (radius=0.3) -36.6 ± 5.9

32× 32, Smoothed (radius=0.65 ) -9.3 ± 1.3

32× 32, Smoothed (radius=0.9 ) -50.2 ± 5.8

64× 64, Direct subsampling -31.7 ± 8.3

64× 64, Smoothed (radius=0.55) -6.1 ± 1.3

Table 5.1: Effects of direct subsampling on 10-class classifiers with different input sizes

90.6% for 32 × 32 and 64 × 64 classifiers respectively. Fearing that the extreme variation in

neighboring pixels might be adversely affecting the performance of the classifiers, we further added

a low pass Gaussian filter to smooth out the images. We used a binary search to find a radius that

performs relatively well. Table 5.1 shows the mean accuracies and corresponding 95% confidence

intervals. We observe substantial accuracy drop when direct subsampling is applied. Smoothing

helps, but in the best case, we still see an average of 9.3% accuracy drop for 32×32 classifiers and

6.1% accuracy drop for 64× 64 classifiers.

To further study the reasons behind the misclassifications, we study the effect each pixel has

on the final loss function. To quantify the effect, we define the following measurement given loss

function L, bilinearly resampled image X and smoothed subsampled image X′:

I =
∂L

∂X′
� (X′ −X)

∂L
∂X′ represents how sensitive the loss function to the change of an individual pixel. It could be

positive or negative, where increasing pixel value causes loss increase or decrease, respectively. �

is the Hadamard (element-wise) product. (X′−X) represents the change from the standard image

to the subsampled. Intuitively, large changes in the sensitive pixels will inflate the loss and cause

the classifier to misclassify.

We studied many misclassified samples and selected an example image of a bus as shown

in Figure 5.2. Although area inside the windshield in the subsampled image appears somewhat

jagged, it is not contributing much in terms of error. It is the edge of the windshield, where the
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(a) (b)

(c) (d)

Figure 5.2: Errors caused by subsampling. (a) The original image of a bus; (b) 32× 32 resampled

image using bilinear kernel; (c) visualized source of error I in channel “R”. Red dots are pixels that

increase loss, and blue dots are those that decrease loss. The less transparent the color, the larger

impact a pixel has; (d) 32× 32 smoothed subsampled image.
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color abruptly changes, that is contributing the most to the classification error. Apparently failing

to sample the right color during subsampling distorted the appearance of the window frame and

caused the classifier to misclassify. Above is a typical example where smoothing cannot recover

the information lost during subsampling. The only way to mitigate the problem is to sample at a

higher resolution to include more information.

Remark 1 Subsampling may distort key features that image classifiers use, causing unrecoverable

classification performance degradation.

5.4 Proposed Method

To avoid confusion, we are going to use the term ”two-step subsampling” to describe the process

of subsampling to create input images of specific sizes for a classifier. We formally define this

process in the next subsection. Following the definition, we describe our proposed adaptive sam-

pling strategy, AdaSkip. AdaSkip requires minimal hardware support. We discuss an alternative

hardware design in the last subsection.

5.4.1 Two-Step Subsampling

Let Ho ×Wo be the resolution of the image sensor. The image sensor also supports a list of K

subsampling steps, S = {s1, s2, . . . ,

sK}, where si represents the number of pixels among which one is sampled. We use subsample(X, s)

to represent the process of sampling with step s, both horizontally and vertically. X is of size

Ho ×Wo, so the resulting image is of size Ho

s
× Wo

s
. Instead of of subsampling the whole image

X, we use the same expression to represent the subsampling of one row x, subsample(x, s).

To subsample to create images of specific size Ht ×Wt, we first command the image sensor

to subsample with step s, where Ho

s
> Ht,

Wo

s
> Wt. Then, taking the output from the sensor, we

apply resampling (in software) using kernel function f resample(x, f) to create image of the

target size. We use bilinear kernel in our experiments.
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5.4.2 AdaSkip

Since undersampling distorts essential image features, we should sample at a rate that is high

enough to keep the features intact. However, not all parts of the image need a high sampling rate.

It’s more desirable to adaptively change the rate of sampling. The process of progressive exposure

and readout in rolling shutters creates slacks after each row. We could use the slacks for making

decisions on the step size used for the subsequent rows, based on the information that we obtain

from the current row. Using this information, we could speculate on whether to sample them using

high resolution or low resolution. With the varying granularity within one frame, the resulting

image will look very undesirable aesthetically. However, deep learning algorithms might be able

to look at the resulting image in a different light. Since the process of deciding what resolution to

sample is adaptive, we coined the name AdaSkip, which stands for adaptively skipping rows.

In computer vision, the gradient of an image is a very fundamental element in feature engi-

neering. It is usually defined in two terms, the gradient along the x direction Gx and the gradient

along the y direction Gy.

Gx(X) = |∂X
∂x
|

Gy(X) = |∂X
∂y
|

Image gradients have an extensive range of usages. For one, it is commonly used as building

blocks for edge features. As a direct feature, it is also used to determine the complexity of different

parts of the images in seam carving. As a simple indicator of the complexity of the images, it is

adopted in our algorithm to decide the sampling resolution. However, since we only have the

information about the current row sampled, we will only use the gradient along the x-direction

Gx. Algorithm 6 provides more details of the AdaSkip algorithm. We use Gx(xi) to represent the

gradient in the row xi.

The high-level idea of the algorithm is extremely straightforward: use a lower resolution if

the current row is not complex, else use a higher resolution. There are a few details that are not

reflected in the algorithm. First, in order to make sure that the thd is the same for two resolutions

(two rows of different sizes), the denser row should be subsampled in the calculation of Gx(xi) to

match the sparser one. Second, since the subsampled rows are of different lengths, we duplicate
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Algorithm 6 The AdaSkip algorithm
Input: X, the original image, of size Ho ×Wo; sh, sl, the number of pixels to skip, sh < sl; thd,

the threshold to determine which subsampling mode to use;

Output: X′, the image of desired size Ht ×Wt

1: step← sh

2: Initialize counter

3: for each row x′i do . The main algorithm in hardware

4: if counter = step then . Sample and decide resolution

5: xi
′ ← subsample(xi, step)

6: counter ← 1

7: if max(Gx(xi
′)) > thd then

8: step← sh

9: else

10: step← sl

11: end if

12: else . Skip the row

13: counter ← counter + 1

14: end if

15: end for

16: X′ ← collections of rows xi

17: return X′
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pixels in rows with the lower resolution to create rows of equal lengths. Those rows are later

duplicated to fill in the skipped row in order to retain the aspect ratio.

5.4.3 AdaSkip Hardware Extension

Since the AdaSkip algorithm varies the sampling rate per row, it can only be implemented as part

of the images sensor hardware. The core logic is relatively simple, and it mainly involves line

7 in Algorithm 6. The calculation of gradient involves adders and converting two’s complement

representations. Comparators are next for finding the maximum value. Both components are

already present in the current image sensor design. Adders exist in digital gain adjustment circuits,

and comparators in SAR based ADCs. To reduce the energy of the design, we could simply lower

the comparator precision by taking the most significant bits (in our case 4 bits) of the pixel value.

5.5 Experimental Setup

The ImageNet dataset used for Large Scale Visual Recognition Challenge (ILSVRC) contains

1,461,406 images from 1000 classes [115]. It contains object classes of very different nature

and granularity, including classes ranging from ”warplane” to a specific dog breed called ”Irish

water spaniel”. The median number of pixels in the images is around 200,000. Due to resolution

limitations of the dataset, it is not possible to conduct experiments to reflect the performance on

today’s high-resolution cameras. We decide to simulate the behavior of an image sensor with a

resolution of 512 × 512. Images are bilinear resampled and reshaped to the resolution, and we

assume that each pixel in the reshaped image corresponds to a sensor pixel. For subsampling, we

assume that when the supported skip steps are s =1, 2, 4 and 8. For simplicity, we simulate outdoor

scenarios with relatively less exposure time and thus less tidle [117]. In this case, the majority of

energy consumption occurs during the active mode. The image sensor energy is estimated based

on the model described in Section 5.2.2.

To reenact a reasonable ratio between the image sensor resolution and classifier input size, we

experiment on classifiers with 32 × 32, 48 × 48, and 64 × 64 input images. The resized images
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Input size # Classes Quantity Accuracy (%)

32× 32 10 10 86.9 ± 3.3

32× 32 20 10 81.1 ± 2.0

32× 32 30 5 78.9 ± 2.3

48× 48 10 10 87.3 ± 4.2

48× 48 20 5 86.0 ± 3.3

48× 48 30 5 84.9 ± 2.7

64× 64 10 10 90.6 ± 2.1

64× 64 20 5 88.0 ± 3.5

Table 5.2: Classifiers used in our experiments

Classifier

Energy saved

(step)
56.0×

(s = 8)

15.5×

(s = 4)

3.97×

(s = 2)

32× 32, 10-class −1.6± 0.6 −0.1± 0.2 0

32× 32, 20-class −1.3± 0.4 −0.1± 0.1 0

32× 32, 30-class −2.7± 0.4 −0.0± 0.2 0

48× 48, 10-class -3.0± 0.9 −0.4± 0.3 0.0± 0.1

48× 48, 20-class -4.4± 1.8 −0.2± 0.1 0

48× 48, 30-class -4.1± 0.7 −0.4± 0.3 0

64× 64, 10-class -30.5± 9.0 −0.2± 0.2 0

64× 64, 20-class -36.5± 9.5 −0.4± 0.5 0

Table 5.3: Accuracy loss caused by two-step subsampling with different step sizes on different

classifiers
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are created using bilinear resampling1. We randomly select 10, 20 or 30 classes from the 1000

classes, and train 5 or 10 classifiers to form the population of classifiers with the corresponding

configuration. The randomly sampled classes have varying levels of semantic similarities. Using

these classifiers of very different nature as well as using different input sizes are all parts of our

efforts to make our conclusions more generalizable.

All of the classifiers use the ResNet34 architecture [131], trained with over 150 epochs on an

Nvidia GTX 1080Ti. We use SGD with a momentum of 0.9. The learning rate starts at 0.1 and

is reduced to 1/10 the value every 50 epochs. Table 5.2 lists the classifiers. In addition, we filter

out images with an original confidence score below 0.8 when we compare different subsampling

methods 2.

5.6 Evaluation

We start the evaluation by presenting the performance characteristics of all our classifiers when

two-step subsampling is used. Next, we demonstrate the AdaSkip algorithm by first visualizing it,

and then show its performance with respect to energy and accuracy.

5.6.1 Two-Step Subsampling

Table 5.3 shows the accuracy loss using different steps s for subsampling. Different columns

represent different step sizes and on the top row, we also showed the relative energy savings. The

italic values represent cases where after subsampling, the image is less than twice (in both width

and height) the size of the required input. Comparing to Table 5.1, even just doubling the sampling

rate substantially reduces the accuracy loss. Further, we observe that the accuracy loss is correlated

much more with the step size than with what classifier it is. It appears that as long it is at least

2× larger than the target resolution of the classifiers, the same resolution after subsampling causes

1To our knowledge, all of today’s classifiers are use smooth natural and smooth images that are interpolated at
least linearly when downsizing. In our experience, classifiers trained on images with strong aliasing suffer more from
overfitting and exhibit inferior performance.

2In these cases, the class scores before the softmax layer are almost uniformly distributed. A small change in the
input may trigger an arbitrary change in the prediction. These predictions are usually discarded in a practical setting.
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similar accuracy loss to all classifiers. These findings echo with the analysis from Section 5.3,

where we argue that information loss at the subsampling step plays a crucial role in determining

the performance degradation of image classifiers.

This characteristic has an interesting implication for system designers. Given a subsampling

step size s, one could estimate the accuracy loss of potentially all classifiers using just a few of

them. Based on these characteristics, hardware providers, for example, could present guidelines to

app developers on the best subsampling strategy to use for different target image sizes needed by

classifiers.

Remark 2 Regardless of what classifier it is, the performance degradation of a classifier given

subsampled input images is largely decided by the subsampling step size.

5.6.2 AdaSkip Subsampling

5.6.2.1 Visualization

Figure 5.3 visualizes the simulated subsampling procedure of the AdaSkip algorithm. The image

belongs to the class black stork. For AdaSkip, we set the threshold for switching between

the higher resolution sh = 4 (equivalent to resolution 128 × 128), the lower resolution sl = 8

(equivalent to resolution 64 × 64), and threshold to 96 3. To visualize the effect of using different

subsampling resolutions, we resort to using grayscale and colored parts. As a result, as shown in

Figure 5.3(b), a few rows on the top depicting grass and roughly the entire lower half are sampled

using the lower resolution. Figure 5.3(c) depicts the output image from a two-step subsampling

procedure. The first step is the hardware subsampling with s = 4 (resulting in a 128× 128 image),

and the second step is software bilinear resampling. Figure 5.3(d) shows the results from bilinear

resampling the image in 5.3(b). Comparing 5.3(d) with 5.3(c), we barely see any difference. The

resulting image is indeed correctly classified by the classifier.

3In our algorithm the threshold does not vary with respect to images.
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(a) (b)

(c) (d)

Figure 5.3: Visualization of AdaSkip-based subsampling. (a) The original 512×512 image; (b) the

output of the AdaSkip algorithm, where the greyscale parts are rows sampled with sl = 8 and the

colored part are rows sampled with sh = 4; (c) 32× 32 output images from two-step subsampling

with s = 4 and bilinear resampling; (d) 32× 32 images obtained by bilinear resampling the output

in (b).
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Figure 5.4: Energy accuracy trade-offs using AdaSkip. (a) 32× 32 classifiers with sl = 8, sh = 4;

(b) 48× 48 classifiers with sl = 4, sh = 2

5.6.2.2 Hardware Energy Consumption

We assume our hardware support is an auxiliary to an existing image sensor. Our implementa-

tion on a Spartan-6 LX45 field-programmable-gate-array (FPGA) shows the power overhead of

the 128-pixel (sl = 4) AdaSkip hardware support is approximately 13.5 mW. We claim that this

overhead can be significantly reduced if AdaSkip hardware support is implemented on ASIC or

co-optimized with the image sensor. Kuon et al. estimate the power gap between ASIC and FPGA

implementations of logic only designs could be as large as 5.7 × −52× [132]. We estimate the

power consumption of AdaSkip hardware support to be 2.4 mW or lower on ASIC, indicating less

than 1% additional power in our energy model comparing to an image sensor without AdaSkip. In

an actual image sensor, we argue that there is no need for more than 600-pixel AdaSkip support,

as rarely will a classification problem need that large of a resolution. Without considering the pos-

sibility of using memory and serializing, that amounts to less than 5% of additional power. We use

that as the overhead in the following discussion of energy.
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5.6.2.3 Energy Accuracy Trade-Off

Simply by two-step subsampling, we already saved a significant amount of energy. To take a step

further, we apply AdaSkip in this setting. Figure 5.4 shows the accuracy changes using different

thresholds in AdaSkip. In the figure, the y-axis is the accuracy change, and the x-axis is the relative

energy consumption. Blue dots represent the results from AdaSkip, where each point represents a

threshold (multiples of 32). Red square represents the baselines using two-step subsampling for sl

(left) and sh(right) respectively.

When the threshold is 0, AdaSkip degrades to two-step but with additional hardware overhead,

thus falls below the baseline. However, for almost all the other points, AdaSkip constantly achieves

better energy accuracy trade-offs. In the case of Figure 5.4(b), sampling at s = 2 sustained an

average of 0 accuracy lost. That is equivalent to 4× energy savings. Using AdaSkip, we can boost

the energy savings to around 7× without losing any accuracy.

5.7 Conclusion

We present a study on how subsampling affects the performance of DNN-based image classifiers.

We first demonstrate that one could achieve over 15× energy savings just by subsampling while

suffering almost no accuracy lost. Then we empirically show that the accuracy lost can be pre-

dicted as an approximate function of subsampling step size, regardless of what classifier it is. To

achieve better accuracy when subsampling aggressively, we propose the AdaSkip algorithm. We

implement AdaSkip on an FPGA and estimate the overhead in a real image sensor to be less than

5%.
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CHAPTER 6

Customized On-Device Deep Neural Networks Pruning

In the previous chapter, we discussed a method to save energy in image sensors. Now we move

further down the computer vision pipeline to discuss the energy efficiency of machine learning

models. In recent years, CNNs kept outperforming traditional machine learning models in com-

puter vision [133] [134] [135] [136] [131]. However, the exceptionally high computation and

memory requirements of these models hinder their massive deployment on mobile and embedded

devices.

To tackle the problem, researchers proposed various ways to prune convolutional neural net-

works in order to reduce the computation and memory requirements of the models. A big body

of works have focused on pruning parameters from fully connected layers [137] [138] [139]. Al-

though a large number of parameters are needed to compute fully connected layers, it is the con-

volution layers that are dominating the computation [140]. Realizing this, researchers started to

propose filter-level pruning methods with the aim to reduce computation requirements in convo-

lutional operations [141] [142] [140]. Nevertheless, the procedures in all of the methods above

follow similar patterns: examine which parameters/filters have less impact on the final outputs,

prune the parameters/filters, retrain the network to regain classification. In this chapter, however,

we examine pruning in a different light.

In today’s deep learning application development workflow, developers usually train one model

on the servers and ship the same model to all end users. It is intrinsically hard for developers to

cater to the diversified needs of different users. To satisfy the needs of all the users, the model has

to be a universal one that includes different capabilities needed by different groups of users. In

that case, the model will inevitably include some of the unnecessary capabilities which a particular

user does not need. In the case of classification, for example, the model might be able to identify
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Figure 6.1: Once the neural network models are trained and shipped to users, each user will run a

local program to prune the model according to their needs.

more classes than what a user would need it to. Evidently, an increase in the number of classes

that the model could classify is accompanied by an increase in the model size and computational

costs. Therefore, resources are wasted for a user when s/he is running inference using a model

more powerful than needed.

To tackle the problem, one might think of training different, smaller models for different users.

However, the extremely high computational cost of training a model prevents that from being

feasible. A more desired approach would be to prune unneeded classes and the parts associated

with those classes from the existing model. The procedure should be so lightweight that users

could run it on their own mobile devices. We will later refer to it as ”on-device customization”.

An on-device customization method would enable a new workflow of application development, as

shown in Figure 6.1. In the new workflow, developers still train one model, albeit a comprehensive

one that is endowed with all the possible capabilities. Then the users use a lightweight program

that prunes the model locally on the phone to the extent that only the capabilities that the users

want are left. After that, the user could run faster and more energy efficient inference using the

smaller pruned model.

In this chapter, we propose a method that enables on-device customization of neural network

models without the requirement for retraining. The key idea of the proposed method follows two
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steps: pruning and compensation. We first identify and remove the parts of the network that do

not contribute as much in distinguishing between the target subset of classes. Then we utilize

the remaining filters to compensate for the pruned filters. Aside from a few parameters that have

to be pre-calculated before shipping the model, the whole procedure incurs little overhead. We

have developed the method and tested it on the Network-in-Network(NIN) model with CIFAR-10

dataset implemented on an off-the-shelf smartphone using TensorFlow mobile support [143]. Since

the proposed method only prunes filters related to certain unneeded classes, it could potentially be

applied in parallel to the aforementioned pruning methods as a client-side counterpart.

The rest of the chapter is organized in the following manner. Section 6.1 reviews related work.

Section 6.2 lists the notations that we will use later to describe the proposed method. Section

6.5 outlines the method on a conceptual level. Section 6.5 explains how the method can be im-

plemented by directly modifying existing models in an online fashion. Section 6.6 evaluates the

method through classification accuracy tests as well as energy and wall-clock time measurements.

6.1 Related Work

Researchers have proposed various methods to speed up the computation of deep neural networks.

One straight forward approach is to reduce the precision of computation. Notable examples include

weight quantization (weight sharing) [144] and binary neural networks [145]. Other researchers

proposed to take advantage of the redundancies in the weight by adopting matrix/tensor decompo-

sition techniques [146] [147].

Our work is more concerned with the third category of methods that involves pruning neural

networks. Le Cun et al. was one for the first researchers to introduce the idea of pruning neural net-

works, where he pruned parameters that analytically has less effect when perturbed [137]. Hassibi

et al. proposed to use second order derivative to determine which parameters to prune [138]. Han

et al. proposed to remove weights with magnitudes smaller than a threshold, and retrain the net-

work to regain accuracy. [139]. Specifically for reducing the size convolutional neural networks,

various researchers have proposed methods that prune the model at higher levels than individual

neurons. Polyak et al. used the variance in the activation to estimate the importance of feature
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maps [141]. In comparison, Li et al. used the sum of absolute weights of each filter as the crite-

ria [140]. Anwar et al. pruned models at different levels and used a particle filter to decide the best

filters to prune [142].

6.2 Preliminaries
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Figure 6.2: Demonstration of the unrolled convolution operation.

In almost all of today’s machine learning frameworks, the computation of convolution opera-

tion is unrolled into a matrix multiplication, as shown in Figure 6.2. Let hf and wf be the height

and width of the filter in a convolution layer with cout number of filters and with inputs of shape

h × w × cin. Then before computing the convolution, the image patches with shape hf × wf for

each channel cin are unrolled into vectors, which make up for the rows in the matrix on the left in

Figure 6.2(b). The weights for each of the cout output channels are unrolled to form the columns

in the matrix on the right.

When we involve parameters or variables from convolution layers in this chapter, we are im-

plicitly referring to those from the unrolled matrix multiplication form of convolution. In most

cases, we are dealing with only one channel, the jth channel of the input. In these cases, the input
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feature map of ith sample is:

XXX ij =



xxxᵀij1

xxxᵀij2
...

xxxᵀijH


XXX ij is of height H = ((h − hf )/sh + 1) · ((w − wf )/sw + 1) and width W = wf · hf , where sh

and sw are strides. We use wwwjk to represent the unrolled weights vector for the jth input channel

and kth output channel.

When it comes to pruning, we use Ytarget = {y1, y2, . . . , yM ′} to represent the subset of M ′

classes that the specialist model targets.

The program for on-device customization can be represented as a function f that takes in the

original model together some parameters, and returns a smaller model: pruned model = f(

original model, parameters). The parameters mentioned here are a list of pre-computed

values needed for pruning and compensation. This function requires a relatively small footprint,

can run on mobile devices and does not require retraining and fine-tuning of the original model.

90

prune filters with low impacts 

compensate pruned filters using 
the rest of the filters

parameters original_model

pruned_model

Figure 6.3: System workflow of our customized DNN pruning method.

Figure 6.3 shows an overview of f. The function operates in 2 major steps. It first identifies

and removes filters in convolution layers that are less important in distinguishing between the

target subset of classes. Those filters are determined to be low-impact filters and we could thus

tolerate some amount of errors in calculating them. In the next step, we use a linear combination
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of the rest of the filters to approximate and replace the filters we removed. Both steps require some

pre-calculated parameters to finish.

6.3 Pruning Filters

Recent works in visualizing convolution neural networks have shed light on the role that different

layers in the network play [148]. It is now widely accepted that different filters in a convolution

layer represent different features. The filters in earlier layers represent lower level features, while

the filters in later layers represent higher-level features.

Given the interpretation above, we have the following assumption: while some features might

be universal, others are associated closely with certain classes. If we are to target a certain subset

of classes and remove the rest, we only need the features that are associated with the target classes.

We could remove the rest without severely damaging the core feature extraction abilities of the

model. The errors introduced by pruning can be relatively easily compensated.

While pruning filters accord with our interpretation of filters as features, there are other merits

in this way of pruning convolution operations. Pruning entire filters in a convolution layer is

effectively creating another convolution layer with a different (smaller) set of weights. It can be

easily implemented on any existing machine learning frameworks. Thus pruning filters is a great

fit to our proposal.

We now introduce our approach to pruning filters. We introduce our way of determining which

filters to prune, the Filter Sensitivity Analysis method. Then we show how we apply the method to

determine which filters to prune.

6.3.1 Filter Sensitivity Analysis

To determine which filters to prune, researchers have proposed to use criteria such as variances in

the channel activation [141] and the sum of absolute weights [140]. For our particular use case, we

need a method that could tie the criterion closely to particular classes. In other words, we want to

prune filters that are less useful to the subset of the classes that are targeted in the specialist model.
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To achieve that objective, we propose Filter Sensitivity Analysis.

In traditional sensitivity analysis methods, usually, only one variable is at play. In the case

of analyzing the impact of a channel on certain classes, we have h × w number of variables to

examine. Apparently, we need to find a way to represent the feature map as a whole.

Our proposed method approaches this problem by assigning a weight variable ωj = 1 for each

channel j of a layer and shifting our attention to the weight variable instead of the feature map

itself. Suppose a sample produces a feature map XXXj at channel j (now effectively ωjXXXj after we

added the weight), and py is the score/probability corresponding to the class y that the sample

belongs to, then the impact Ijy of that channel j has on class y is defined as

Ijy =
∂py
∂ωj

In this chapter, the impact is obtained by applying a small perturbation ∆ωf to the weight. We

measure the difference in the output of the score ∆py and calculate the impact by Ijy = ∆Py/∆ωf .

We average the impact values for every single sample to obtain the final impact.

To intuitively interpret the method, we can view ωj as a variable that controls how much we

want to strengthen or weaken the feature that the channel j represents. If we strengthen that feature

by increasing ωj , the more the class score changes, the more the feature is associated with the class.

Thus the impact serves as a good indicator of whether we should remove a filter: if the channel that

the filter produces has a high impact value on / is not closely associated with the class we need,

then we should prune that channel.

6.3.2 Selecting Which Filters to Prune

Given the measure of a filter’s impact on a particular class, we now describe the filter selection

process. We set a threshold Ithreshold, and prune filter j if j satisfies

max{Ijy|y ∈ Ytarget} < Ithreshold

. The threshold can be pre-computed given the target percentage of removal ∆c. If we want

to remove ∆c = 50% of, then we calculate max{Ijy|y ∈ Ytarget} for each j, and set the 50th

percentile as the threshold Ithreshold.
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6.4 Compensation

Once the filters are pruned, traditional methods will resort to retraining the network to regain

accuracy. Early works reported 2x more time spent on retraining than training [139]. Until recently

it still took 20-40 epochs of retraining for a pruned specialist model to regain accuracy [140]. If the

desired objective is to create a model that classifies on a subset of labels for every ad hoc situation,

a method that requires retraining is equivalent to training a new model every time. It is certainly

inefficient and most likely infeasible. Therefore, an online method that requires no retraining is

desired in this setting. This is where the process of what we call compensation comes into play.

The objective of compensation is to restore activation of the filters that are pruned away from the

model. The closer the restore values are to the original ones, the closer the more accurate our

network will be.

We adopted three ways of compensation. The first way is to simply use the mean of the feature

map. The second is to use the feature map of the most similar filter. The third is compensate using

a linear combination of the rest of the filters.

6.4.1 Compensation with Mean

Since we are compensating for only a subset of classes, when we are calculating the mean of

feature maps, we should only select the the samples that belong the the subset of classes Ytarget.

The mean of activation for jth channel X̄XXj is calculated by:

X̄XXj =
1

|{i|yi ∈ Ytarget}|
∑

{i|yi∈Ytarget}

XXX ij

Once we obtain X̄XXj , we use it as the feature map for channel j whatever the input data is.

6.4.2 Compensation with Correlated Filters

The first step of this method is to find the most correlated channel for all the channels to be pruned.

To obtain the correlation measurement, we unroll the feature map of every channel into a vector.

Let Ci(j′, j) represent the Pearson correlation of the vectors of channel j′ and j given input sample
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i. The correlation between channel j′ and j is calculated by averaging the correlation of individual

samples that belong to the target subset of classes:

C(j′, j) =
1

|{i|yi ∈ Ytarget}|
∑

{i|yi∈Ytarget}

Ci(j′, j)

To compensate for the channel j that is to be pruned, we choose a channel j′ that bears the

highest correlation value C(j
′, j).

When we compensate channel j using the feature map of another channel j′, we are effectively

calculating the convolution on channel j′ twice: the first time using its own weights wwwj′k, the

second time using the weights for the pruned channel wwwjk. Inevitably there are errors caused by

such replacement. However, there is no easy way of modifying the new feature map such that the

values are closer to the original feature map. By easy, we mean that it could be implemented using

operations existing in convolution neural networks. One workaround is to adjust the weights such

that the next convolution layer will produce closer results.

Consulting the notation in Section 6.2, let XXXj′ represent the feature map of the replacement

channel that compensates XXXj , and www′jk is used to represent the new set of weights for output

channel k that we want to analytically solve for. We set our objective to be minimizing the mean

square error after we use the new feature map to calculate the convolution:

argmin
www′

jk

L(www′jk) =
∑

{i|yi∈Ytarget}

H∑
h=1

(xxxᵀijhwwwjk − xxxij′h
ᵀwww′jk)

2

By setting the derivative of the loss function to 0,

∂L(www′jk)

∂www′jk

=− 2
∑

{i|yi∈Ytarget}

H∑
h=1

(xxxᵀijhwwwjk − xxxij′h
ᵀwww′jk)xxxij′h

=0

We will haveW equations for the vectorwww′jk withW elements. We could solve for the new weights

www′jk using techniques that solve standard linear equations.
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6.4.3 Compensating with Linear Combination of Filters

Approximating the output of filter j with a linear combination of the rest of the filter is expressed

as follows

x̂xxj =
N∑
k=1

zkβkjxxxk

here zk ∈ {0, 1} represents whether or not filter k is to be pruned (zk = 0 means that filter k will

be pruned), N is the total number of filters, and βkj is the coefficient in the linear combination. We

can solve for the best set of coefficients by minimizing the Mean Squared Error (MSE) over the

subset of samples belonging to target classes

argmin
βjk

∑
{i|yi∈Ytarget}

N∑
j=1

(1− zj) · ||
N∑
k=1

zkβjkxxxik − xxxij||22 (6.1)

Intuitively, the expression represents the difference between xxxj and x̂xxj . Further, we only take

into consideration samples from the classes that we care about. This minimization can be easily

solved by taking the derivatives of the MSE. The seemingly complex process can actually be pre-

computed. We will talk more about it in Section 6.5.1.

6.5 Implementation

Till now we have elaborated our method on a conceptual level. In this section, we will explain how

we can implement the method by making modifications to an existing network model. Thus, we

are essentially presenting a function f that takes in the original model together some parameters,

and returns a smaller model:

pruned model = f(original model, parameters)

This function requires a relatively small footprint, can run online on mobile devices and does

not require retraining and fine-tuning of the original model.

Similar to the previous section, we will introduce the procedures for pruning and compensation

in separate subsections in the respective order.
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Figure 6.4: Implementation of pruning and compensation for convolution N.

To illustrate the procedure of pruning and compensation, we will focus on a dummy convo-

lution layer called Convolution N , as shown in Figure 6.4. After computing convolution on its

input, the convolution N layer adds bias to the results, and runs them through a ReLu layer and a

MaxPool layer before the next convolution layer Convolution N + 1 takes them as its input.
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6.5.1 Pruning

The implementation of pruning is straight forward. We simply need to remove the weights that are

corresponding to the pruned channels from the previous layer and the current layer. Suppose the

weight in the current convolution layer iswww with shape hf×wf×cin×cout (for every channel among

the cout output channels, there is a hf × wf filter for every channel among cin input channels). If

we prune ∆cin percent of channels from previous layer and ∆cout percent from the current layer,

which makes c′in = (1 − ∆cin)cin and c′out = (1 − ∆cout)cout. Then the new weights will be in

shape hf × wf × c′in × c′out.

6.5.2 Compensation

In this subsection, discuss the different compensation methods.

6.5.2.1 Compensation with Mean

Implementing the compensation with the mean feature map is actually more tricky than it might

appear. The key difficulty is that when we run the pruned specialist model, the network structure

has already changed. Not only will the channels be removed, the weights that are originally used

for these channels in the next convolution layer will no longer exist as well. There is no way of

placing the compensation around the layer where the channels are pruned.

To deal with the problem, we place the compensation at the next convolution layer. The idea

is to look at the contributions of those pruned channels on the next convolution layer and try to

compensate for their contributions. We first fill the feature maps of the channels to be removed

with their mean values and set the rest to 0. Then we run inference to obtain the feature maps at

the next convolution layer. The values in those feature maps consist only of the contribution of the

pruned channels. We save the values as a constant and add these constants to the next layer at run

time.
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6.5.2.2 Compensation with Correlated Channels

As we explained earlier, when replacing a pruned channel j with another channel j′, we are effec-

tively computing a convolution on the replace channel j′ using weights for the pruned channel j.

Since any output channel, k is the sum of convolutions on all input channels, we simply add the

adjusted weights of channel j that we mentioned in Section 6.4.2 to the existing weights of channel

j′:

www′j′k = wwwj′k +www′jk

If a channel is used to compensate for multiple pruned channels, we can add all the adjusted

weights together.

6.5.3 Compensation with Linear Combination of Filters

The linear nature of convolution allows us to implement our compensation method through direct

modifications of the weight tensors. Suppose filter j is pruned, then the weight tensor of the next

convolution layer should be modified for compensation. Specifically, letWWW of shape C×H×W×

N be the weight tensor of the next convolution layer. We use WWW (j, :, :, :) to represent the weights

for the jth input channel (the channel pruned). For any filter k that is not pruned, its new weight

tensor should be its original weight tensor plus the weights for the pruned channels multiplied by

the corresponding coefficients

WWW ′(k, :, :, :) = WWW (k, :, :, :) +
N∑
j=1

zjβkj ·WWW (j, :, :, :) (6.2)

The added weights effectively represent separate convolution operations for the purpose of com-

pensating the pruned channels. But since the convolution operation is linear, we can just add them

to the existing weights. Once the pruning described in Section 6.5.1 is done, the weight tensor will

only contain the channels with updated weightsWWW ′.

6.5.4 Deployment and Computation Reduction

Throughout the chapter we have been stressing one of the key advantages of this pruning and

compensation method: it can be run online. Running online involves doing calculations with some
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pre-computed values. There are mainly four sets of values that we need to pre-compute:

1. The impacts each filter has on different classes Ijy, described in Section 6.3.1;

2. The mean of feature maps X̄XXj , described in Section 6.4.1;

3. The pairwise correlations C(j′, j), described in Section 6.4.2;

4. The element wise product among pairs of channels feature maps used to compute the adjust

weightwww′jk in Section 6.4.2.

These values can be pre-computed before the deployment of the model. When any user wants to

prune a model, the procedure involves:

• Using 1 to determine which filters to prune;

• Using 3 to determine how pruned channels can be replaced by other channels, and 4 to

recreate a new set of weights that accounts for the replacements;

• Using 2 to create the constant bias that are for the channels to be compensated by their mean

values.

The computation can be done before the model is shipped to the users, and the parameters can

be sent over to the users upon request. The pre-computed data totals about 20MB for the NIN

model that we experiment within this chapter. Depending on which classes to remove, we only

need the relevant portion of the data

Algorithm 7 describes the overall procedure. The main source of computation is from line 17,

where one matrix inversion and one multiplication are involved for solving the linear equations for

each one of the pruned filters. Combining the cost of transmitting the pre-computed parameters,

the total overhead of our method should be within reasonable limits.

As we mentioned in Section 6.5.1. For a pruned convolution layer, the number of weights

reduced from hf ×wf × cin× cout to hf ×wf × (1−∆cin)cin× (1−∆cout)cout. That amounts to

a (1− (1−∆cin)(1−∆cout)) reduction in the number of parameters and amount of computation.
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Algorithm 7 Pruning and Compensating a Model
Input: (i) Ytarget: the target subset of classes (ii) ∆N : the target removal rate (iii) the original

model. WWW l of shape Cl × Hl ×Wl × Nl is the weight tensor of the lth convolution layer (iv) the

pre-computed parameters

Output: (i)the pruned model. W ′W ′W ′
l represents new the new weight tensor

1: zj , βkj = 1

2: for each convolution layer l do

3: . update weights using z and β from the last layer

4: for k := 1 : Cl do

5: WWW ′(k, :, :, :) = WWW (k, :, :, :) +
∑N

j=1 zjβkj ·WWW (j, :, :, :) . Equation 6.2

6: end for

7: RemoveWWW ′
l(j, :, :, :) if zj = 0

8: . update z and β for the next layer

9: for j := 1 : Nl do

10: Ij :=
∑
{y∈Ytarget} Ijy . using the pre-computed impacts Ijy

11: end for

12: Ithreshold := ∆N th percentile of {Ij}

13: for j := 1 : Nl do

14: zj := Ij < Ithreshold

15: end for

16: Obtain βkj by solving Equation 6.1 . using the pre-computed pairwise products

17: RemoveWWW ′
l(:, :, :, j) if zj = 0

18: end for
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TensorFlow uses a protocol buffer class called GraphDef to serialize the model structure and

weights into language independent binaries. The current version of TensorFlow Android support

requires loading protocol buffer based models and invoking Java Native Interface (JNI) for running

the C-based TensorFlow inference library. The original model and the pruned model that

we mentioned in Section 6.2 are in reality serialized GraphDef protocol buffers. The function we

implemented directly operates on the GraphDef models to carry out pruning and compensation.

6.6 Evaluation

In the evaluation section, we report early results from experiments done on the Network-in-Network

(NIN) model [134]. Since our method targets convolution operations, we chose a model that does

not include any fully connected layers. We’ve seen some very encouraging results from these early

experiments, and it would certainly be interesting to investigate how this method applies to more

complex models and larger datasets.

We first present a case study to provide a high-level understanding of our pruning process.

Then we present detailed evaluations on classification accuracy, energy consumption, and latency

respectively. We also discuss how our proposed pruning criteria compares to existing methods.

Note that

6.6.1 Case Study

To clearly illustrate our approach, we present a pruned 5-class NIN model as a case study. The

architecture of the model is shown in the Table 6.1. The structure can be roughly described as

groups of 5 × 5 convolution layers (CONV) followed by 1 × 1 convolution layers (which the

authors called cascaded cross-channel parametric pooling (CCCP) layer). The last CCCP layer

outputs a total of 10 channels, each corresponding to one class in the CIFAR-10 dataset. The score

for each class is produced from a global average pooling layer on the lat CCCP layer.

Table 6.1 further demonstrates how the model is pruned. It is compensated using the linear

combination of filters. During our experiments, we found out that the first convolution layer
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produces universal features, and is indispensable to later layers. Thus we empirically decide

to leave the first layer intact while pruning the rest of the layers, from which we uniformly

remove ∆N = 30% of the filters. As we discussed in Section 6.5.1, that corresponds to a

(1 − (1 − ∆C)(1 − ∆N)) reduction in the number of parameters and amount of computation

except for the first and last layer. We prune 5 out of 10 filters, corresponding to the 5 pruned

classes in the last layer.

6.6.2 Classification Accuracy

6.6.2.1 Compensation with Mean and Correlated Filters

Table 6.2 shows the classification accuracy on CIFAR-10 dataset with the NIN model pruned at

different levels. The values with a dark grey background are equal or higher than the accuracy of

the original 10-class model. Those with a light gray background are within 6% of the standard ac-

curacy. The columns represent the level of pruning measured in FLOPs, with values ranging from

reducing 57.8% to ”None”, which represent the original network. The rows represent networks

pruned for subsets of classes of different sizes. For each level of pruning (except for the original

network), we randomly pick 10 different combinations of classes to make up for a subset and test

the pruned network against the test set to obtain the mean and the 95% confidence interval of the

classification accuracy. For the original network, the results are obtained after removing unneeded

classes from the SoftMax output.

To make more sense of the different levels for pruning, we have to use Section 6.6.1 as a refer-

ence. The different level of pruning is achieved by removing different portions of all the channels

from layer CCCP2 to CCCP6. As shown in the case study, 38.9% is achieved by removing 30%

from the aforementioned list of channels. Similarly, 57.8%, 48.6%, 27.9%, and 14.3% reduction

rates are achieved by reducing 50%, 40%, 20% and 10% of the channels respectively. These reduc-

tion rates are referred to as levels of pruning throughout the chapter. As described in the subsection

above, CCCP6, the last convolution layer of the network, has different channel counts given the

size of the target subset of classes. For models with the same level of pruning but target a different

number of classes, only the last layer will be different. Since the last layer only contributes to
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0.05% of the total number of FLOPs, we ignore the differences and consider models with the same

level of pruning share the same computation requirements.

Note that the accuracies of some of the pruned specialist models are the same as or even higher

than the original 10-class classifier. The reasons behind it stem from our problem setting of ”prun-

ing classes”. Given our definition of the problem, the test set only contains samples of the chosen

subset of the classes, and thus the problem space is smaller.

One problem that we observe in our experiments is that models for different subsets of classes

with the same level of pruning vary in prediction accuracy. This problem is especially prominent

when we prune larger portions of the network. For example, pruning half of the filters for some

combination of two classes produces an accuracy of merely 0.624, while for other combinations

it produces an accuracy as high as 0.923. We believe it has to do with the fact that different

subsets of classes have a stronger dependency on different subsets of filters at each layer. Some

classes depend on more features than others and thus need more channels at each layer. Some

combination of classes could share similar sets of features and are more ”compatible” with each

other in a combination. In our approach, we prune a uniform percentage of filters across all layers

and for all subset of classes. That approach is clearly problematic. We have yet to devise a method

that could compare the normalized impact of one filter (in any layer) on each of the class. We

believe such a method could drastically improve the accuracy of the pruned networks.

6.6.2.2 Compensation with Linear Combination of Filters

Figure 6.5(a) shows the classification accuracy with the model pruned at different levels. The y-

axis shows classification accuracy, and the x-axis shows the percentage of filters pruned (except

the first convolution layer and the last layer). In particular, 0% shows the prediction accuracy using

highest-scoring predictions from the original model after the unneeded classes are removed. For

each experiment done with a different number of target classes, we randomly pick 10 different

combinations of classes to make up for a subset and test the pruned network against the test set

to obtain the mean and the 95% confidence interval of the classification accuracy. As we can see

from the figure, even if we aggressively prune half of the filters, 2 and 3-class models on average
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Figure 6.5: Performance evaluations of the method using NIN on CIFAR-10 dataset with different

percentage of filters pruned 1.
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still achieve a higher classification accuracy than 10-class classifiers. 2-class models achieve an

average accuracy of 95.5%, compared to the 98.5% of the unpruned model. When pruning 30%

of the filters from 5-class models, the accuracy changed from 94.2% to 91.2%. For 10-classes

models, apparently, the accuracy is always below the original accuracy if we do any pruning. If we

prune 10% of the filters, we lose 1.4% in accuracy.

6.6.3 Energy Consumption and Latency

We now report energy consumption and latency measurements obtained from running inference on

a Google Nexus 4 Android Smartphone. The energy is measured using a Monsoon power monitor.

To calculate the amount of energy spent on inference, we separately measured the energy spent on

loading data and idle power and deduct them from the total energy consumption.

Figure 6.5(b) shows the average energy consumption and latency running inference on one data

sample. Note that the only difference between models targeting a different subset of classes (say a

2-class model and a 7-class model), is the last CCCP layer. But since the last layer only contributes

to 0.05% of the total number of FLOPs, we ignore the differences and consider that the models take

the same amount of energy and time to run. For 2-class classifiers, we can aggressively prune 50%

of the filters while losing only 3% in accuracy. That brings 2.30× in energy savings and 1.45× in

latency improvements. For 5-class classifiers, we can prune 30% of the filters while loosing 3% in

accuracy (while still achieve higher accuracy than the original 10-class classifier). We will, in turn,

get 1.63× in energy savings and 1.24× in latency improvements.

6.6.4 Different Pruning Criteria

Figure 6.6 compares different pruning criteria with the proposed impact based criterion. ”Mag-

nitude” refers to pruning filters with the lowest absolute weights, a method used in [140], and

”random” refers to pruning filters randomly. Similarly, all the accurate measurements are the av-

erage of 10 repeated experiments. For a fair comparison, the 10 subsets of classes are the same

for all these criteria. Apparently random pruning results in inferior performance. Our method

can achieve better results when fewer filters are pruned, or when more classes are pruned, com-

121



0% 10% 20% 30% 40% 50%
Filters Pruned

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

proposed,2-class
proposed,5-class
magnitude,2-class
magnitude,5-class
random,2-class
random,5-class

Figure 6.6: Comparison among different pruning criteria.

pared with the magnitude based method. One intuitive explanation would be that our impact based

criteria can clearly identify the irrelevant filters. However, when more filters are pruned, we are

inevitably touching relevant filters (filters that is important to at least one class). In that case, it

is questionable whether our sum of impact criteria described earlier would be the best measure of

relevance.

6.7 Conclusion

In this chapter, we propose a lightweight customization method that allows users to prune the

unneeded classes and filters from CNNs. The method could be seen as a client-side counterpart

to the existing pruning methods which do not address the customization needs from users. In the

proposed method, we first identify and remove the low-impact filters. Then we use a different

way to compensate for the pruned filters. The whole procedure can be efficiently run on-device

with little overhead. Pruning unneeded classes not only brings about more targeted and accurate

classification but also reduces computation costs. We observe a substantial reduction in energy

consumption and latency from early experiments running the NIN model on CIFAR-10 dataset on
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an off-the-shelf smartphone.
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CHAPTER 7

Watermarking Deep Neural Networks for IP Protection

In the previous chapter, we have discussed the wide adoption of deep neural networks. Notwith-

standing the fact that DNNs are widely used, the IP protection of DNNs is rarely discussed. Much

like how we protect circuits and software, we need a mechanism to prove the authorship of a DNN

in order to protect the IP [149] [150] [151] [152]. In the specific case of watermarking DNNs for

embedded systems, the IP owners should be able to detect whether their libraries are used without

proper authorization. The scenario is depicted in Figure 7.1. Since most embedded systems and

applications allow very limited access, the watermarking method should support black-box detec-

tion. But unlike cloud-based MLaaS that usually charge users based on the number of queries

made, there is no cost associated with querying embedded systems. Thus we do not need to limit

the number of inputs in designing a rigorous detection framework. Only a handful of watermark-

ing methods for DNNs have been proposed so far [153] [154] [2]. However, the existing methods

either fail to meet the requirements in the embedded systems setting, incur an unnecessary cost in

the proof of authorship, or they are susceptible to attacks of various forms.

To this end, we propose a new DNN watermarking framework that is suitable for watermarking

DNNs for embedded systems. In our proposed framework, we train a watermarked DNN on both

the original dataset and the dataset where each image is modified according to our signature. The

modified images consist of a trigger set of unlimited size. The watermarked DNN should behave

differently when a sample embedded with our signature is encountered. Otherwise, it should act

normally with minimal loss of performance. Under the generic framework, we implement a simple

version of the framework and empirically verify its performance against various criteria. Our

approach has a number of benefits. First, it operates completely in a black-box manner. Only

a set of test images are needed to verify the existence of the watermark, making the verification
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Figure 7.1: Watermarking DNNs that are intended for embedded devices.

process compatible with the embedded systems setting. Second, the process of proving authorship

is straightforward and self-contained. Other than samples from the intended input space, we do

require any other supplementary materials. It not only simplifies the process of the proof but also

improves the robustness against attacks. Third, we are able to resist various forms of attacks that

are effective on existing watermarking methods.

Further, we studied and compared different ways to produce trigger sets and improved existing

methods. We propose a differential evolution-based framework to determine how any given trigger

pattern should be added to the image such that false positive detections are reduced while the ro-

bustness of the watermark is maintained. With our framework, trigger pattern-based watermarking

adds the model functionality to its equation, while still keeping ownership proofs simple.

The rest of the chapter is organized in the following fashion. We begin by surveying some of the

existing watermarking techniques in Section 7.1. Section 7.2 outlines the general watermarking

framework. We also discuss the criteria we use to evaluate a watermarking system. A minimal

and straightforward example that implements our framework is given in Section 7.3. Section 7.4

describes techniques to further improve the watermark trigger set. We then proceed to evaluate the

given example on models in Section 7.5.
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7.1 Related Work

Watermarking has been an extensively studied subject for multimedia. There are also various

pieces of work that discuss watermarking in the context of algorithm, software, and circuit design.

In this section, we first introduce the aforementioned traditional watermarking approaches. Then

we introduce a few recent works on watermarking DNNs.

7.1.1 Multimedia Watermarking

To enable discrete watermarking where watermarks are imperceptible, correlation-based water-

mark detection methods are used [155]. In this method, one has to compute the correlation be-

tween the image and a set of orthogonal reference marks in order to extract hidden watermarks.

The correlation-based approach has been applied in the spatial domain and in a transform do-

main such as the wavelet domain [156]. We refer interested readers to the textbook for further

information [157]. Our method described in Section 7.3 was partially inspired by the traditional

multimedia watermarking methods. Instead of making small modifications to images that are not

detectable by human eyes, we make small modifications to images that are not distinguishable by

models without watermarks. Further, the way information is encoded in image watermarking can

be used for DNN watermarking. Due to the page limits, we do not discuss the issue and resort to

using a rather naive encoding method in Section 7.3 of this paper.

7.1.2 Circuit, Software, and Algorithm Watermarking

In the sense that circuits, software, and algorithms are functional entities, their corresponding

watermarking approaches have a closer tie to DNN watermarking. For watermarking integrated

circuits, Kahng et al. proposed to add additional constraints in the place and route procedure [150].

Oliveria proposed to create unique state transition graphs as a way to watermark sequential circuits

[158]. In terms of software, the survey by Collberg et al. categorized watermarking methods into

static ones and dynamic ones, where the former refers to embedding watermarks as strings in the

code or binary, and the latter includes those triggered by specific inputs. In the case of algorithms,
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Qu et al. proposed to add additional edges which force vertices to have the same color in the graph

coloring problem solutions [149].

Many of the approaches mentioned above follow a common pattern. They first identify the

logic and sequences of a system that can be a) altered without changing the functionality of the

system, or b) extended to include additional functionality. Then they impose additional constraints

that reflect the unique signature of the author to the logic and sequences to make them unique,

thus proving the authorship. The idea can be applied to the problem of watermarking any machine

learning problems. For classification problems, in particular, classifying an input to the right class

is the natural constraint of a classifier. Extending the capabilities of the classifier to include ad-

ditional inputs that are outside of the distribution of the natural input set can be thought of as an

additional constraint imposed. We can embed our signature in the classifier’s ability to classify

those additional inputs.

7.1.3 DNN Watermarking

Due to their demands for computational power, high-quality dataset, and human expertise, DNNs

naturally possess a high intellectual property value. Recently, many researchers are proposing

methods to watermark DNNs to protect the rights of IP owners. Uchida et al. proposed to regu-

larize the mean of weights such that a linear projection of that mean can be mapped to a signa-

ture [153]. To extract the signature, they require that one first examines the mean of the weights in

certain layers of the model. Then one multiplies the mean weights with a given matrix to obtain

the signature. The method has multiple drawbacks. An obvious one is that they require white-box

access to the model, which renders the method unfeasible in our setting. In addition, the approach

is vulnerable to the ghost signature and tampering attacks. Lastly, it is possible to transpose weight

matrices to distort the original order of the weights, which is critical in this method. Similar to

other DNN watermarking methods, we discuss the vulnerabilities in Section 7.2.3.

Various zero-bit black-box watermarking approaches have also been proposed. Le Merrer et

al. proposed to fine-tune the model to behave correctly in the face of certain adversarial examples

and use the correct behavior as the evidence for authorship [154]. In DeepSign [159], besides the
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white-box watermarks, the authors also drew inputs from the statistically unused space to serve as

the trigger set. Adi et al. proposed to assign labels to abstract images and train DNNs to classify

them [2]. One clear drawback of all of the aforementioned approaches is the difficulty to associate

abstract images with the author’s identity. Inevitably, it leads to the watermark’s vulnerability to

ghost signature attacks. Only Adi et al. has an answer to the problem. Their answer is to use

a complex cryptographic commitment scheme to bind the trigger set to the author’s identity and

safely store it in a third party. It is unclear to us the exact form of the commitment in practice, but

it will unavoidably incur a lot of overhead to the proof of authorship.

The method from Zhang et al. is by far the closest to our method [3]. They proposed to add

various patterns and symbols to the images to create trigger sets [3]. Their method mitigates the

ownership proof problem slightly by allowing owners to add logs to the trigger set. But they did

not address the false positive rate of watermarking. Regular models may also be triggered by

accidentally classifying an image with a conspicuous symbol to a different class. By more and

more trigger inputs for testing, the false positive rate of previous black-box watermarking methods

may asymptotically approach zero. But judging from the absolute values, our method is among the

lowest.

7.2 The General Method

In this section, we first describe our proposed approach for watermarking neural networks by

hiding signatures in the training dataset. Then we discuss criteria for evaluation and the security

of watermarking.

7.2.1 Watermark Embedding and Detection

Our general strategy is to map the author’s signature to the modifications of a portion of the dataset.

A DNN fine-tuned on that particular dataset (i.e. a watermarked DNN) will behave disproportion-

ately differently than an otherwise trained DNN (a regular DNN) when it encounters data modified

according to the author’s signature. Such fine-tuning can be regarded as imposing additional con-
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straints to the neural network that otherwise would not be present. The usual over-parameterization

of DNN models ensures that there will be enough model capacity to tolerate such constraints [160].

Now we lay out the generic watermarking and signature verification procedure. To facilitate

our description, we will use the standard “Alice and Bob” scenario, where Alice uses watermarking

to protect her model and Bob tries to attack the watermark.

7.2.1.1 Generic Watermark Embedding Procedure

Alice wishes to protect some DNN. She first trains a fully functioning regular model without any

additional constraints. Then she selects a portion of the dataset and adds certain modifications

according to her signature. In this step, Alice should be aware of the behavior of the regular model

when given the modified dataset. For example, the modifications could be designed to make the

regular model behave in certain patterns. She should also show that such behavior generalizes

to other regular models 1. Then she fine-tunes the initial model (using the existing weights as

initialization), possibly with both the original dataset and the modified dataset. The behavior of the

fine-tuned watermarked model is disproportionately different from that of regular models. Note

that Alice needs not to tell anyone which modifications she made to the dataset.

7.2.1.2 Generic Watermark Detection and Verification Procedure

To demonstrate that a DNN is watermarked Alice must draw a set of samples from the intended

input space. She must demonstrate that both the original model and the watermarked model works

reasonably well on the original samples. Then compares the behavior of the original model and the

watermarked model on inputs that are modified. By demonstrating the extremely small probability

of a regular model having the behavior corresponding to her signature, Alice can verify that her

signature is present. Note that Alice has to reveal her signature and how it leads to the modification

of the dataset in order to prove her authorship.

1In practice, we relax the requirement to empirically showing that different models would behave similarly.
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Criterion Explanation

Effectiveness
The watermarking method can prove ownership

in different DNNs and datasets

Fidelity
The watermark does not significantly affect the

performance of the model

False PositiveRate
The watermark detection method will not be

triggered when there is no watermark

Robustness The watermark is robust against attacks

Table 7.1: Criteria for evaluating DNN watermarks.

7.2.2 Criteria for Evaluation

We borrow existing conventions in judging watermarking systems and discuss them in the context

of DNNs. In particular, we’d like to discuss effectiveness and fidelity with regard to embedding

watermarks, and false positive rate with regard to decoding watermarks [157]. In addition, the

security aspect should be considered, we which will discuss in more details in the next subsection.

7.2.2.1 Effectiveness

Effectiveness refers to the success rate of watermark embedding. In the context DNN watermark-

ing, we need to make sure that watermarks can be embedded and extracted regardless of inputs and

model architecture.

7.2.2.2 Fidelity

In image watermarking, fidelity represents the perceptual similarity between the images before and

after adding watermarks. In our context, fidelity represents the performance of DNN on the test set

without trigger patterns embedded.
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7.2.2.3 False Positive Rate

In image watermarking, the false positive rate refers to the probability of detecting a watermark

is detected from images that do not contain it. In our context, a false positive may refer to a

watermarked DNN exhibit the desired behavior for a trigger sample when given a regular sample.

7.2.3 Security and Threat Model

In this subsection, we introduce our notion of robustness by defining our threat model. We assume

that Bob has white-box access to the model, but does not have access to the training set. Instead,

Bob has access to some proprietary test data (i.e. a subset of test set). We argue that proprietary

data is one of the most important competitive advantages of Alice, and an IP pirate Bob by no

means should have access to it. Otherwise, with the training data and the model, he might as well

train a new model on his own, especially when he has the ability to carry out sophisticated attacks

such as fine-tuning. On the other hand, it is a reasonable assumption that the attacker may have

white-box access to the model architecture and parameters. In the case of cloud ML service, Bob

can be a malicious service platform. In the case of software ML libraries, Bob can be a hacker.

In both cases, Bob would have the full white-box access to the model. We also assume that Alice

only has black-box access to the model. In addition, Alice will have direct access to input to the

model. There are no preprocessing stages between Alice’s input and the input of the model. We

now layout two possible attacks that are feasible within our threat model.

Finding Ghost Signatures. Bob wishes to claim Alice’s model as his own. He knows that Al-

ice’s model is watermarked and proceeds to claim that the model also contains his own watermark.

Bob thus attempts to find a ghost signature, namely, a fake signature that coincidentally makes

model behave like it is real. In the framework proposed in [153], this can easily be done by finding

Bob’s own linear projection that leads to his desired output by solving a system of linear equations.

In the approach proposed by Adi et al. [2] since the space of any abstract images are so large, one

can easily find another set of images that coincides with another signature. Genetic algorithms are

a good candidate for finding such images [161]. In our approach, however, Bob has to find one

way to modify any input such that it coincides with the behavior of the watermarked model. Since
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both the modification and the behavior of the model are produced using Alice’s signature, Bob has

to reverse the cryptographically secure functions or brutal force.

Tampering. Bob knows Alice has embedded her watermark in the model. He doesn’t know

how to find it but wishes to remove Alice’s signature by tampering with the model. With the

approach proposed in [153], Bob can achieve it by switching the position of neurons, as DNNs

are linear within a layer. In order for the linear projection to still produce the desired results, the

projection matrix has to be changed in order to map the coefficients to the original model weights.

But Alice would not have known that Bob switched the position of neurons. We do not have this

problem in our proposed framework because we prove the ownership based on the output. We do

not consider other types of tampering of DNNs as valid, because neural networks are known to

have fragile co-adapted features between layers [31]. Changing the weights on one layer, albeit a

small amount, may cause significant malfunctioning of whole modal.

Fine-tune. With some test data and the model, Bob may fine-tune the model to produce a

slightly different version of it. That is called the fine-tune attack. After the fine-tune attack, Alice’s

watermark should still exist. Some researchers also discussed overwrite attacks, where Bob tries

to embed his own watermark using the same procedure on Alice’s model. It is indeed a very

reasonable attack scenario.

7.2.4 Notation

Let Dtrain and Dtest represent the training set and the test set respectively, and Xi be a sample

with label yi. In this example, X will be an image of shape H × W × C (e.g. 32 × 32 × 3),

and y ∈ {1, 2, . . . , K} will be an integer representing a class. Alice would like to embed a trigger

pattern m (of the same dimension as X) representing her signature into X and also map the label

to a different one as our way to indicate the watermark detection. m can have different magnitudes,

denoted by α. The resulting sample and label are denoted as φX(X) and φy(y). We sometimes refer

to a sample embedded with the trigger pattern as a trigger sample or trigger input for short, and a

sample without one as a “regular sample”. We use subscripts on the dataset symbol to indicate the

embedding of a trigger pattern. Dtrainαm represents a trigger pattern m of magnitude α is embedded
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to all of the samples inDtrain. A DNN is denoted as f and a watermarked DNN as fWMK. In the case

of classifying trigger samples, we say φX(Xi) is correctly classified if fWMK(φX(Xi)) = φy(yi). So

if when φX(Xi) is classified to its original label yi, the classification is incorrect.

We use ε to represent the classification error rate of the models. We refer to a model with the

classification error rate of at most ε as a ε-accurate model. Obvious it only makes sense to define

such a model over its performance on any inputs drawn from the input distribution. Thus the ε in

this paper refers to the test accuracy of models. For detecting the watermarks, we will use a set

of N test samples. We allow at most ∆ errors in the classification to confirm the existence of our

watermark.

7.2.5 Proof of Ownership

A watermarking method’s ability to prove ownership mainly relies on its low false positive rate.

The ownership is established based on the fact that Pr is disproportionately small for a non-

watermarked neural network. If a watermarking method incurs a high false positive rate (a high ρ

for non-watermarked models), then Pr is no longer small and that the proof of ownership will be

inconclusive at best.

After adding the trigger pattern m to the dataset, a watermarked model fWMK can achieve an

error rate of εw error rate while a regular unwatermarked model f have an error rate of εr. Note

that we define accuracy in the latter case to be classifying a trigger input φX(X) to the remapped

label φy(y). In that case, εw � εr. Suppose we have N test samples {X1, X2, . . . , XN} with labels

{y1, y2, . . . , yN}. The probability of classifying Xi to yi is 1 − εo. The probability of classifying

φX(X) to φy(y) is 1− εw and 1− εr respectively.

The probability for fWMK to classify all N test samples correctly is (1 − εo)N(1 − εw)N . The

probability for f to classify all N test samples correctly is (1− εo)N(1− εr)N . Apparently, even a

well-trained model cannot guarantee to classify all samples correctly if N is large. Thus we lower

the requirement to allow at most ∆ errors. The probability for fWMK to classify at least N − ∆
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samples correctly (for samples both with and without trigger patterns) is given by the following:

(
∆∑
δ=0

(
N

δ

)
(1− εw)N−δεδw) (7.1)

Similarly, we have the probability for f :

(
∆∑
δ=0

(
N

δ

)
(1− εr)N−δεδr)

7.3 Watermarking using Imperceptible Trigger Patterns
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Figure 7.2: Overview of the proposed example watermarking technique on DNN based image

classifiers.

In this section, we show an exemplary approach to watermarking DNN image classifiers. Our

approach is by no means the best under the proposed framework. In designing this approach, we

put straightforwardness as our top priority. That said, a high-level description of the approach is as

follows. Alice creates a trigger pattern of the same size of the input images using her signature and

embedded it into images. The trigger pattern is so imperceptible that regular DNNs will classify

the image to its true class regardless of whether the trigger pattern has been added. A DNN
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watermarked by Alice, however, is able to recognize images embedded with the trigger pattern and

classify them to a different class than the original true class. Figure 7.2 depicts the idea.

Now we explain the method in more details. We start by introducing the procedure for both

embedding a watermark and detecting a watermark. Then we break down the embedding procedure

and present them respectively.

7.3.1 Workflow

To embed a watermark, the model owner Alice would need to do the following:

1. Create an n-bit signature.

2. Create trigger pattern m of suitable magnitude α based on the n-bit signature

3. Calculate the mapping for class labels based on the n-bit signature

4. Fine-tune an existing model f . While fine-tuning, we use, with an equal probability, both

the original dataset and the dataset containing trigger images and remapped labels.

After the training converges, the resulting model will classify an input image added with trigger

patterns to a different label according to the mapping.

To detect a watermark, the model owner Alice would need to do the following:

1. Take a set of images.

2. Create trigger patternm of magnitude α based on the n-bit signature. Add the trigger pattern

to all the images.

3. Calculate the mapping for class labels based on the n-bit signature

4. Take the watermarked model fWMK, and run classification on images both with and without

the trigger pattern m.

If the fWMK classifies original images to the correct label, and trigger images to the correctly mapped

label within a certain margin of error, then we show that fWMK is indeed our watermarked model.
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7.3.2 Trigger Pattern Creation

In this approach, Alice has an n-bit signature which will be embedded into n pixels in the images.

Alice generates the signature by hashing a message that proves her as the author. The next step

is to use the signature as the key to a pseudorandom random permutation (PRP) that remap label

k to any of the remaining K − 1 labels. This is referred to as the mapping of the classes φy(y).

After that, the signature is used as the key to select the location of the n pixels. The signature

will be directly added to the pixels. A positive one indicates a “1” in the signature, and a negative

one indicates a “0” in the signature. The resulting pattern is essentially the trigger pattern m. The

procedure of embedding can be described as φX(X) = X + αm where α is referred to as the

magnitude of the trigger pattern.

7.3.3 Optimal Trigger Pattern Magnitude

Recall that Alice wants to add m to test images so that regular models would still correct classify

them but the watermarked model would not. Given a signature, if the magnitude is too large, then

regular models would classify them incorrectly. If a watermark is too small, then the training won’t

be able to converge on both the embedded dataset and the regular dataset. In this subsection, we

discuss the effect of message length (number of bits) and watermark magnitude on the performance

of regular models. Further, we show an algorithm to search for the optimal magnitude given the

length of m.

Figure 7.3 shows a study based on a VGG16 model [162] trained on the CIFAR10 dataset [116].

We add trigger patterns of different length and magnitude to the training set. Then we test the

classification accuracy of the model which originally achieves 99.97% accuracy on the training

set. The x-axis shows the length of the message in the number of bits, and the y-axis shows the

magnitude normalized by the standard deviation of all the pixels in the dataset. Each accuracy

drop value is the mean of 5 independent experiments. As expected, shorter messages can tolerate

larger magnitude. Given a certain length m, it is natural that larger magnitudes are easier for a

watermarked model to recognize. Empirically we do find that if the trigger pattern is too small,

the watermarked model won’t be able to converge in training. Therefore, given a certain message
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Figure 7.3: Classification accuracy drop of a regular VGG16 model when trigger patterns of dif-

ferent lengths and magnitudes are added to the CIFAR10 training set.
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length, it would be desired to find the largest possible magnitude α that is not detectable by a

regular model.

We now lay out our binary search based algorithm to search for the optimal magnitude αopt. We

define αopt as the largest possible magnitude to be added to the dataset such that the classification

accuracy of the regular model f drops by no more than ∆A. Algorithm 8 describes the algorithm

in more details.

Algorithm 8 Get Optimal Trigger Pattern Magnitude Using Binary Search
Input: regular DNN f , trigger pattern m, training set Dtrain, resolution ∆α, accuracy drop ∆A

Output: optimal trigger pattern αopt

1: Initialize αmin and αmax

2: A0 ← classification accuracy of f on Dtrain

3: α′ ← αmin, α← αmax

4: while α′ − α > ∆α do

5: A← classification accuracy of f on Dtrainαm

6: if A0 − A < ∆A then

7: α′ ← α, αmin ← α

8: αopt ← α

9: α← α+αmax

2

10: else

11: α′ ← α, αmax ← α

12: α← α+αmin

2

13: end if

14: end while

15: return αopt
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(a) (b) (c)

Figure 7.4: Examples of trigger inputs. (a) a random out-of-distrbution image [2], (b) a regular

image with a logo [3], (c) a regular image with a color-coded key not perceptible by the eye [4].

7.3.4 Training Model

Once we obtain the desired magnitude α and trigger pattern m, we are ready for the final water-

marked model fWMK. To obtain the watermarked model fWMK, we start by fine-tuning the existing

model f . With a 50% chance, we embed the trigger pattern to any of the training samples during

fine-tuning.

7.4 Improving the Trigger Patterns

In this section, we provide the definition of trigger set generation. Next, we provide a high-level

overview of the DE framework. Then we delve deeper to provide some algorithmic details that are

crucial to the convergence of DE.

7.4.1 Motivation

Based on the characteristics of their trigger sets, existing black-box watermarking methods can be

split into two categories. The first category of methods curates a finite set of special trigger images.

The special images can be completely random [2], samples derived from unused hidden space

[163], or adversarial examples [154]. Another category of methods maintain trigger patterns and

add them to natural input images to create trigger sets. The trigger patterns are usually meaningful

patterns that can serve as a proof of the owner’s identity, such as the logos [3] and color-coded
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keys described in this chapter. Some sample trigger images are shown in Figure 7.4.

The motivation for designing the trigger sets are different between those two categories of

methods. The first is focused on the functionality of the model. They aim to create trigger sets

such that watermarking is as orthogonal to the normal functionality of the model as possible. The

second, on the other hand, is more focused on the watermarking extraction procedure. Associat-

ing the owner’s identity with the trigger set makes detection and proof of ownership much more

straightforward. The evident drawback of the first category is the difficulty to establish a connec-

tion between the trigger set and the owner. To solve that problem, researchers went as far as to

use complex cryptographic tools [2]. Further, the limited size of the trigger set weakens the proof

of ownership. The drawback of the second category lies in an inevitable trade-off between the ro-

bustness of the watermark and potential of false positive watermark detection. If a trigger pattern

is too prominent, then it risks triggering false positives in other neural networks. On the other, if a

pattern is too inconspicuous, it may be easily removed during fine-tune attacks.

7.4.2 Problem Definition

A DNN for classification is a function f : Rd → [0, 1]L. Given an input X ∈ Rd, it is desired that

the function classifies it correctly to its label y, f(X) = y.

A pattern P ∈ Rd has the same dimensions as X but is much more sparse. In its image

form, P ’s non-zero entries can be considered as a set of K pixels with explicitly designed values

and coordinate {vk, cxk, c
y
k}K . P is tightly coupled with the identity of the model owner. And the

absolute and relative coordinates of the pixels may or may not contribute to P ’s ability to carry

information. The pattern can be embedded on any input X from the intended data distribution

to convert it into a trigger input through a function g(X,P ) 2. A watermarked DNN will be

trained to classify g(X,P ) to y′i 6= yi. The fact that a DNN model classifies the trigger inputs

disproportionally correctly can serve as a unique proof of the owner’s identity.

We consider two alternative approaches to create trigger patterns. In the method proposed by

Guo et al. (shown in Figure 7.4(c)), a color-coded key serves as the trigger pattern [4]. They embed

2For convenience, we sometimes write the function as g(Xi, {vk, cxk, c
y
k}K).
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the pattern by offsetting the pixel values of the input, g(X,P ) = X + P . Since the information

is mainly ingrained in the pixel values, we consider the pixel locations cxk, c
y
k to be flexible. We

use Key throughout the chapter to denote this trigger pattern. The second approach we consider is

proposed by Zhang et al., and shown in Figure 7.4(b) [3]. The information is obviously contained

in the geometrical shape of the logo and the pixels have to remain in a relatively fixed to each other.

Thus its location can be represented by its top left corner cx, cy. The author did not explicitly say

how they embed the logo, but we interpret it as blending with the input, g(X,P ) = (1−α)X+αP .

We denote the second type of trigger pattern as Logo.

Our main goal is to find the P = {cxk, c
y
k}K such that the probability of a non-watermarked

DNN f0 classifying a trigger input to its original labels is maximized. The main motivation behind

the goal is to minimize false positive watermark detection. Empirically, given dataset D, then the

goal can be expressed as follows.

argmax
{cxk ,c

y
k}K
|{X|f0(g(X, {vk, cxk, c

y
k}

K)) = y,X, y ∈ D}| (7.2)

We have found that larger vk leads to more robust watermarking, although it leads to higher

false positives. In the Key-related experiments, vk is given. But we can also integrate vk into the

optimization landscape as follows. The Logo-related experiments use this objective function.

argmax
{vk,cxk ,c

y
k}K
|{X|f0(g(X, {vk, cxk, c

y
k}

K)) = y,

X, y ∈ D}|+ δ
∑
k

vk

(7.3)

7.4.3 Differential Evolution

To find the pattern P , the first methods that came up to us were the gradient-based methods com-

monly used for finding adversarial samples [164] [165] [166]. A key difference between our prob-

lem and theirs is that our pattern P is universal. Therefore, finding the gradient of individual

inputs hardly helps our situation. The family of evolutionary algorithms is among the most promi-
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Algorithm 9 Differential Evolution
Input: dataset D, non-watermarked DNN model f0, populartion N , number of generations G

Output: best candidate P after evolution

1: Randomly intialize, ith candidate Pi = {vik, cxik, c
y
ik}K

2: for generation g = 1, . . . , G do

3: for each candidate Pi do

4: Randomly pick 0 ≤ j, k, l < N where j 6= k 6= l

5: P ′i ← EVOLVE(Pj , Pk, Pl)

6: if FITNESS(P ′i , f0,D) > FITNESS(Pi, f0,D) then

7: Pi ← P ′i

8: end if

9: end for

10: end for

11: return argmaxPi
FITNESS(Pi, f0,D)

nent non-gradient-based optimization methods. We initially relied on the generic evolutionary

algorithm (EA), but we were unable to find a reasonable set of parameters to make the algorithm

converge. That is when differential evolution (DE) presented itself as an alternative.

DE is a meta-heuristic search algorithm that optimizes a given objective by evolving a popu-

lation of candidates in parallel [167]. It follows the concept of generic EAs where a population

of candidates evolves, and the candidates that are fittest will survive in each iteration. However,

DE is simpler and it is known to facilitate faster convergence to the global optimum. Instead of

using mutations and crossover between two parents, candidates DE evolve over a triplet. A new

candidate is created by adding a weighted difference between two candidates to the third.

P = P0 + F × (P1 − P2) (7.4)

Algorithm 9 presents the high-level procedure of using DE to solve our problem. The main

idea is to generate 1) new pixel coordinates 2) pixel values of P using the differential variation

operation described in Equation 7.4. The FITNESS function can be either of the two objective

functions described in Section 7.4.2. The EVOLVE function, on the other hand, is more complex.
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We describe more details of the function in the next subsection.

7.4.4 Optimization for DE

We use two different variants of EVOLVE functions for the two existing trigger patterns, Key and

Logo. For Logo, the EVOLVE function is straightforward. We use the top left pixel of the logo

as the anchor, and each candidate can be represented by a simple triplet (v, cx, cy). We use DE to

evolve and select the location of the logo as well as its pixel values. We use a different approach

for Key. Since pixel locations are al flexible, the candidate will be an array of K tuples {cxk, c
y
k}K .

When we evolve using three candidates, each with K pixels, which pixels should pair up and

evolve becomes an important question. If pixels are randomly paired up, it is likely that the pixels

will engage in a Brownian motion-like movement across different generations. Consequently, as

we empirical show later, the evolution will not converge. If our goal is to evolve the pixels into

optimal locations, then it makes sense to induce the evolution in such a way that pixels nearest

to an optimal location will move toward that location. To that end, we propose an algorithm to

pair closest pixels together to evolve. The most efficient implementation is to store all pairwise

distances in heaps and always pair available pixels with the smallest distances. Algorithm 10

describes implementation in more details. The time complexity of the algorithm is O(K2log(K),

where K is the number of pixels.

Figure 7.5 shows the fitness of the best candidate over the different generations. The FITNESS

function is simply the accuracy of the subset. The proposed method, closest triplet evolve function,

converged much faster than the evolve function where pixels are randomly paired together. In fact

in the latter case, the fitness plateau at around 0.89 and it is unclear whether it will converge at all.

7.5 Evaluation

In this section, we present the performance evaluation of our methods. We first discuss the original

imperceptible trigger pattern method. Then we discuss the DE-based optimization of the trigger

pattern.

143



Algorithm 10 Evolve with Closest Triplet
Input: 3 candidates, each containing K pixel coordinates: {cx1k, c

y
1k}K , {cx2k, c

y
2k}K , {cx3k, c

y
3k}K ,

differential weight F

Output: pixel coordinates of a new candidate, {cxk, c
y
k}K

1: procedure PAIR({cx1k, c
y
1k}K , {cx2k, c

y
2k}K)

2: Initialize heap

3: for each {cx1i, c
y
1i} do . Calculate pairwise distances

4: for each {cx2j, c
y
2j} do

5: Push distance({cx1i, c
y
1i}, {cx2j, c

y
2j}) in heap

6: end for

7: end for

8: while heap is not empty do . Pair by distance

9: distance, {cx1i, c
y
1i}, {cx2j, c

y
2j} ← Pop from heap

10: if Neither {cx1i, c
y
1i} or {cx2j, c

y
2j} is paired then

11: Pair ({cx1i, c
y
1i} with {cx2j, c

y
2j})

12: end if

13: end while

14: end procedure

15: PAIR({cx1k, c
y
1k}K , {cx2k, c

y
2k}K)

16: PAIR({cx1k, c
y
1k}K , {cx3k, c

y
3k}K)

17: for each {cx2i, c
y
2i}K {cx3j, c

y
3j}K paired with {cx1k, c

y
1k}K do

18: cxk ← cx1k + F × (cx2i − cx3j)

19: cyk ← cy1k + F × (cy2i − c
y
3j)

20: end for

21: return {cxk, c
y
k}K
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Figure 7.5: Best fitness of the population across the generations.

7.5.1 Imperceptible Trigger Patterns

In Section 7.2, we discussed the evaluation metrics for DNN watermarking. We followed the

metrics and evaluated our method on various neural network models and datasets. The results are

presented in this section.

7.5.1.1 Experimental Setup

We test our method on two widely used datasets: the MNIST dataset which contains 60,000 28×28

black and white images on hand written digits [168], and the CIFAR-10 dataset which contains

60,000 32 × 32 color images in 10 classes [116]. We trained and tested LeNet [168] on MNIST,

and VGG-16 [162], ResNet-50 [131] and DenseNet-121 [169] on CIFAR-10.

Before we move on to individual metrics, we’d like to discuss the generalizability of the be-

havior of one regular DNN to other regular DNNs. Table 7.2 evaluates the classification accuracy

of a regular and a watermarked model on regular datasets and on datasets embedded with trigger

pattern. Note the datasets are embedded with the same 128-bit trigger pattern, and the magnitude
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Dataset Model Dtrain Dtest Dtrainαm

MNIST
LeNet 99.17 98.99 0.10 (99.17) 1

LeNetWMK 98.41 98.48 98.38 ( 0.20)

CIFAR-10

VGG 99.97 93.07 0.0060 (99.93)

VGGWMK 99.96 92.86 99.94 (0.0020)

ResNet 100 94.53 0.022 (99.75)

ResNetWMK 99.99 94.25 99.98 (0)

DenseNet 100 94.73 0.022 (99.76)

DenseNetWMK 99.98 94.23 99.97 (0.0080)

Table 7.2: Performance of the example watermarking method on different models and datasets.

The classification results are obtained from regular training set (Dtrain ), test set (Dtest) and training

set embedded with trigger pattern (Dtrainαm ).

1 The accuracy is based on remapped labels φy(y) after adding trigger pattern. The value in parentheses gives the

percentage that the predicted class matches the true label y.

of which is obtained using our Algorithm 8 using VGG16 and target accuracy drop of 0.5%. Note

that for the classification accuracy of Dtrainαm , the accuracy is calculated using the φy(y) as the cor-

rect label. The classification accuracy of the regular model on the embedded samples are below 0.1

% in all three CIFAR-10 models. We see this as the evidence that the behavior of the one regular

DNN generalizes to other regular DNNs. But we are yet to come up with methods to estimate the

discrepancies among different models under different conditions.

7.5.1.2 Effectiveness

Effectiveness indicates the success rate of the watermarking method when applied to different

models and different problems. Table 7.2 shows the experimental results. The watermarked models

that we present are all able to fit the training set embedded with trigger patterns. The LeNet model

might seem to lag behind in the accuracy numbers. It is due to the huge model capacity difference

between LeNet and the rest of the models. LeNet only has 2 convolution layers with 6 and 16
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Model Train Train w/ Marks

VGG 99.97 0.018 ± 0.065 (99.63 ± 0.95)

VGGWMKs 99.89 ± 0.08 99.87 ± 0.10 ( 0.032 ± 0.078)

Model Test Test w/ Marks

VGG 93.07 0.85 ± 0.25 (92.50 ± 1.81)

VGGWMKs 92.32 ± 0.39 92.20 ± 0.67 (0.83 ± 0.24)

Table 7.3: Confidence intervals of classification accuracy of watermarked VGG16 models on CI-

FAR-10 obtained from 5 watermarking experiments.

channels respectively, in contrast to the hundreds of channel and tens of layers present in the rest

of the models.

Table 7.3 shows that the effectiveness is consistent if we repeat the experiment multiple times

using different trigger patterns of the same strength. We achieved an accuracy of 99.87± 0.10%

on the training sets with different trigger patterns Dtrainαmk
. We could also achieve an accuracy of

92.20± 0.67% on test sets embedded with signatures. The relatively narrow confidence interval

shows that success persists across different sets of experiments. In Section 7.2.5, we described a

form of “ownership test”. We further analyze the aforementioned results later in Section 7.5.1.4 in

the context of that test.

7.5.1.3 Fidelity

Fidelity is measured by the performance on the regular test set. In our experiment, all of the

accuracy drops of a watermarked DNN regular on test sets are within 1%. In the best case, we

achieve a drop of only 0.23%, as shown in Table 7.2.

In Table 7.3, we show that the the the watermarked models can achieve a comparable accuracy

on the test set Dtest. What is more, after adding trigger patterns to the test set to create Dtestαm , the

watermarked model performs equally well. On the contrary, a regular model will still classify the

images to their original class labels. It shows that a) by creating Dtrainαm , we successfully carved

areas from the input space that are not previously occupied by any of the natural input data and
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Figure 7.6: Probability of passing the ownership test with different test sizes and margins of error.

designated those areas for the purpose of watermarking; b) the neural network is able to generalize

what it learns about watermarking and apply it to data that it has not seen before (Dtestαm ); and c) the

additional capability has negligible on the model’s performance on regular inputs, thus the fidelity

requirement is met.

7.5.1.4 False Positive Rate

This method is explicitly designed for low false positive rates. The false positive rates can be

evaluated using the watermarked models’ performance on regular training sets and test sets. Both

Table 7.2 and Table 7.3 show accuracy close to that of a regular model. We take this result as an

indication of a low false positive rate of our watermarking technique.

For a strong proof of ownership, we need to show the probability of fWMK and f exhibiting the

expected behavior on a set of test input. We will conduct the ownership test described in Section

7.2.5 on a set of N = 32 test images with the maximum number of error ∆ = 6. Based on the

classification accuracy on test sets in Table 7.3, the probability of fWMK passing the test is 0.990,

while the probability of f passing the test is only 1.26 × 10−48. If we tolerate more errors by

setting ∆ = 8, the probabilities become 0.999 and 1.99× 10−43 respectively. Figure 7.6 shows the

huge disparity. We selected a set of Ns and the corresponding ∆s such that we have a probability
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m1 m2 m3 m4 m5

VGGWMK #1 99.84 0.23 0.19 0.92 0.23

VGGWMK #2 0.54 99.91 10.36 0.37 2.29

VGGWMK #3 4.04 9.19 99.45 5.48 2.97

VGGWMK #4 1.74 0.41 5.86 99.88 1.16

VGGWMK #5 0.56 0.33 0.20 0.29 99.94

Table 7.4: Classification accuracy of VGG models on CIFAR-10 training sets embedded with

different trigger patterns. The model VGGWMK#k is trained on the training set embedded with mk.

of at least 0.999 to pass the ownership test. As we use a larger and larger trigger set for the test,

the compounding effect weights in. When we have a set that’s large enough, there will have an

astronomically small probability for false positive triggers.

7.5.1.5 Security

Defending Against Tampering. Since our approach uses black-box based detection, switching

the orders of channels would not affect the validity of our watermark. The watermark is deeply

embedded in the fundamental functionality of the model. Any other manual adjustment will either

a) damage the watermark as well as the classification ability of the model, b) has little impact on

both. Thus, given our threat model, we consider our approach robust against tampering.

Defending Against Ghost Signature Attacks. Note that we made sure the uniqueness of

our class mapping by adopting a PRG with our signature as the key. There is a probability of
1

(K−1)K
for an attacker Bob. In the case of the CIFAR-10 dataset, the probability is 2.87 × 10−10.

In the extremely rare case where the attacker Bob happens to be able to find his signature that

produces the same class mapping in our example, then we need to check the probability of our

model classifying samples with Bob’s signatures correctly. If we do, then Bob may be able to find

a ghost signature. Table 7.4 shows classification accuracy obtained from DNN models trained with

different trigger patterns of the same length and strength. As we can see, the worst case happens

when model VGGWMK #2 is trying to classify trigger pattern m3, which achieved an accuracy of
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10.36%. A possible cause of the reason might be the similarity between m2 and m3, as VGGWMK

#3 also classifies samples with m2 with a pretty high accuracy. Yet, even if we consider the

worst case, with N = 32 and ∆ = 6 (see Section 7.5.1.2), Bob still only stands a chance of

3.89 × 10−20. It is a small enough probability to be considered a successful defense. One of the

key assumptions is that we allow repetitively feeding inputs. The more inputs we compute, the

bigger the gap will be between the watermarked model and the regular model. Since this is only an

example implementation, we used the simplest possible way to express the uniqueness. We could

also resort to more sophisticated methods, such as force the class scores to some distribution that

encodes more information.

7.5.2 Improved Trigger Patterns

In this subsection, we report the performance evaluations of the DE-based optimization. We first

describe the implementation details of the watermarking procedure and the DE algorithm. Then we

evaluate the effectiveness, fidelity, false positive rate and robustness of the watermark in following

subsections. Since neither Logo nor Key is an original idea from this chapter, we omit many

repetitive experiments for brevity. The key is to demonstrate the ability of our DE algorithm to

reduce false positive while maintaining the robustness of the watermark. It is worth noting that all

of our trigger sets are built from test data that has not been used during training.

7.5.2.1 Differential Evolution

We applied our DE-based approach on both Logo and Key trigger pattern generation. We use

Equation 7.3 as the fitness function for Logo, where both pixel locations and values are optimized.

The weight β is set such that a maximum v constitutes 5% of the fitness score. With the Key

pattern, we only optimize the pixel locations. In the fitness functions of both DE algorithms, we

evaluate the accuracy of candidates on a random set of 640 training images. The model and dataset

are described in the next subsection.

We carried out experiments on both the MNIST dataset and the CIFAR-10 dataset, and trigger

patterns and trigger set images output by the DE algorithm is shown in Figure 7.7. To create Logo
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(a) (b) (c)

(d) (e) (f)

Figure 7.7: Output of our DE algorithm. (a) The Key trigger pattern on CIFAR-10, (b) the Logo

trigger pattern on CIFAR-10, (c) the Key trigger pattern on MNIST, (d) a sample using the trigger

pattern in (a), (e) a sample using the trigger pattern in (b), (f) a sample using the trigger pattern in

(c).
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patterns on the CIFAR-10 dataset, we replicated the experiments by Zhang et al. [3]. Surprisingly,

the optimal location to put the logo isn’t at one of the 4 corners as one would intuitively think. In

DE, we set vk = 255 searched the coefficient for blending α instead, which yielded an optimal

value of 0.4019.

Like the original method, we encoded the message in the pixel values of the Key trigger pattern.

The CIFAR-10 variant includes 64 pixels and encodes 128 bits of information. Every pixel in the

RGB color space with vk = ±100 encodes 2 bits, and the message can be decoded by reading

the pixels from left to right, top to bottom. The MNIST variant includes 192 pixels and encodes

192-bit information, with vk = 100, 200 to encode 0 and 1 respectively. In both cases, pixels in

the Key pattern gravitate towards the edge of the images. Clearly, the DE algorithm is rewarding

pixel locations that do not overlap with the objects, which tend to occupy the center of the image.

The new pixel locations form patterns in a way that has minimal impacts on the classification of an

object. Because of that, even we added patterns with large pixel values, the resulting images still

didn’t trigger regular models.

To test the capacity of our algorithm, we intentionally used patterns that have a lot more com-

plexity in our experiments on the MNIST dataset. Images in MNIST dataset has a lot more empty

space to take advantage of, while pixels blindly accumulate at the edge may cause misclassifi-

cation. Through our algorithm, the probability Pr(f0(g(Xi, P )) = yi) increased from as low as

83.30% (during random initialization) to 99.27%. The probability is measured over the entire trig-

ger set, and the classification accuracy on the regular test set with the exact same images is 99.46.

It clearly shows the algorithm’s ability to learn to reduce false positive detections of the water-

mark. To test our DE algorithm’s ability to converge, we repeated the MNIST/CIFAR10 ”key” on

8 different parameter sets (number of pixels in the pattern, etc.), 5 experiments per set. Eat set

all converged to solutions that produce extremely similar fitness scores, with an average standard

deviation of 0.0060.
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Dataset Regular Watermarked

CIFAR-10

ResNet-18

Test 94.13 93.49

Trigger (Key) 1.08 93.67

Test 94.13 93.76

Trigger (Logo) 1.27 93.49

MNIST

4 CONV-2 FC

Test 99.46 99.38

Trigger (Key) 0.25 99.26

Table 7.5: Classification accuracy of watermarked models on test sets and trigger tests. The trigger

sets are derived from the test sets using the Key / Logo method.

7.5.2.2 Effectiveness and Fidelity

It has been demonstrated in all previous works that DNNs can be trained to successfully recognize

the triggers sets. In addition, Adi et al. also showed the significance of starting training from

scratch in creating a robust watermark [2]. We followed the same procedure. Table 7.5 shows the

classification accuracy of both non-watermarked and watermarked models on the regular test set

and the trigger set.

In light of the fidelity criterion, the classification accuracy of the watermarked model on the

regular test set is slightly lower compared to the regular non-watermarked model. It is expected as

watermarking makes the classification problem much harder. In light of the effectiveness criterion,

the ability of the watermarked model to recognize the trigger set is as good as its ability to classify

regular images.

7.5.2.3 False Positives

Figure 7.8 shows the false positive rate of different trigger patterns. The false positive rate here

is measured by the probability that a non-watermarked model classifies a trigger image into its

re-assigned class Pr(f0(g(Xi, P ) = y′i). We used four different non-watermarked DNN trained

on the regular CIFAR-10 dataset: ResNet-18, ResNet-50, DenseNet-121, VGG-16. The fitness

function in DE used to obtain the trigger pattern only involves the ResNet-18 model. The results
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Figure 7.8: False positive rates of different CIFAR-10 trigger sets. It is the probability of a non-wa-

termarked DNN getting falsely triggered. The lower the false positive rate the better.

show that what our DE learns from one model generalizes well to other models as well. We tested

the generalizability further using the same pattern on 5 newly trained VGG-13s and obtained a

95% confidence interval of 1.15%± 0.06%.

We used two baselines for comparison. To compare with the DE-based Key pattern, we used

a Key pattern with random {xk, yk}K but the same vk. We see drastic improvements with up to

10× reduction in the false positive rate. Note that the trigger pattern proposed by Guo et al. is also

based on random location [4]. But they explicitly selected vk such that the pattern is imperceptible,

resulting in a lower false positive rate. But as we see later, they achieved that at the cost of

robustness. To compare with the DE-based Logo, we use Logo trigger pattern used Zhang et

al. [3]. We achieve about 2× improvement in false positive rate.

Another way to measure the false positive detection is through the ownership test in Section

Section 7.2.5. Figure 7.9 transforms the false positive rate in Figure 7.8 into probabilities of passing

the ownership test. With ∆ = 5, N = 20, even 2× reduction in false positive rate translates to over

25000× lower probability.
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Figure 7.9: Normalized probability of a regular model passing the ownership test (∆ = 5, N = 20).

The lower the probability the better.

7.5.2.4 Robustness

We measure the robustness of the watermarking methods through their resistance against fine-tune

attacks. Table 7.6 reports trigger set classification accuracy loss after we fine-tuned a watermarked

model. Unlike some of the earlier approaches that based their attack on the training set, we used

1000 test images and applied various data augmentation techniques. The model watermarked using

the original key method suffered a significant drop in accuracy. The accuracy drop was almost

entirely eliminated when we switch to our key method. Both of the logo method were resilient

against the fine-tune attack.

Images superimposed with our pattern are sufficiently different from the normal input dis-

tribution. Because of that, a watermarked model’s ability to recognize those patterns is largely

orthogonal to its ability to classify objects and is, therefore, harder to remove during a fine-tune

attack.
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Method Accuracy loss (%)

Key, DE -0.29

Key, [4] -73.97

Logo, DE -1.01

Logo, [3] -0.97

Table 7.6: Classification accuracy of watermarked models on corresponding CIFAR-10 trigger sets

after fine-tune attacks. The less the accuracy loss, the more robust the method is.

7.5.2.5 Discussions

Gradient-free methods do exist in the world of adversarial learning, most notably in the sub-

problem of black-box attacks, where the attackers don’t have access to the gradient informa-

tion [161] [170] [171] [172]. Those methods again focus on individual samples and are essentially

solving a different problem than ours. It is worth noting that the work from Moosavi-Dezfooli et

al. aims at creating universal adversarial perturbations [173]. Their proposal to reduce the search

space to a subset of the input provided invaluable insights.

Due to the limited scope of this paper, the parameter vk isn’t systematically studied. It is

more a heuristic and manually selected in many situations. It would be valuable to study how it

systematically affects the robustness of the watermarking methods.

7.6 Conclusion

In this chapter, we analyzed the scenario of watermarking DNNs for embedded devices. We pro-

pose a black-box watermarking framework, where we embed signatures by modifying the training

set of the DNN. We can build a strong proof of ownership by repeatedly test the model using

any input combined our signature. We demonstrate an example implementation of the framework

and evaluate it using popular image classification datasets. The method is effective across multi-

ple datasets and DNN architectures and has a negligible negative impact on performance. Given

our threat model, it is also able to resist ghost signature attack and tampering attack. Further, we
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propose a novel differential evolution-based framework to optimize the generation of such trigger

patterns. Compared to the prior arts, our method demonstrates significant improvement in false

positive rate and robustness in experiments on popular models and datasets.
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CHAPTER 8

Concluding Remarks

The emergence and rapid evolution of the Internet of Things have drastically changed people’s

work and lives. It is accompanied by a paradigm shift in computing that moved data processing

to the edge of the network. While edge computing promises to solve many of IoT’s problems,

challenges still remain. A significant portion of edge devices are resource-constrained and battery-

powered. Thus there is a great need for improving the energy efficiency of the devices. In addition,

edge devices can operate in a diverse set of environments, exposing them to various types of threats.

Ensuring the security of the devices is also of paramount importance.

In this thesis, we introduced a set of learning-based techniques that address the energy and

security challenges in IoT systems. We began by presenting a framework that learns from historical

data and predicts optimal resource allocation in order to save energy consumption. We learned to

predict whether or not to offload code to a resource-constrained data center. We learned to predict

the CPU frequency used for the upcoming workload. We also learned to sustainably operate an

environmentally powered sensor network.

We then proceeded to discuss the energy-saving techniques in machine learning applications in

the context of edge computing. We focused on the typical computer vision pipeline and studied two

of its most important components, sensing and the machine learning models for perception. Guided

by the objective of the machine learning models, we proposed an adaptive image subsampling

algorithm that reduces the energy consumption of the image sensor. We also developed model

pruning and customization techniques to improve the energy efficiency and latency of the machine

learning model.

Lastly, we discussed the security aspects of edge computing. In particular, we focused on in-

tellectual property protection, a security problem that is of great commercial value yet far from
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solved. In particular, we introduced a watermarking framework to protect the IP right of the ma-

chine learning model owners. We integrated the framework with the training of the models. The

resulting watermarking framework is very effective, has low false positive rates, and only requires

black-box access to the model. We also derived algorithms to make the watermarks more robust.
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