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ABSTRACT OF THE DISSERTATION

A Mathematical Explication of Human Psychology

By

Gregory E. Alexander

Doctor of Philosophy in Psychology

University of California, Irvine, 2017

Professor William H. Batchelder, Chair

Our scientific knowledge of human behavior has taken great leaps with the formalization of

quantitative psychology. This dissertation is an amalgamation of mathematical models in

the field of psychology, specifically as it pertains to higher order cognition. The goal is to

provide a variety of useful contributions to psychology in three unique areas of the field.

The first focuses on Signal Processing Models in recognition memory. I begin by outlining

the two most popular models and describing their mathematical properties. This is done

to promote both models usefulness as measurement tools, regardless of their mathematical

differences. I continue by developing a novel extension for each model to further elucidate

their usefulness in psychology.

The second area of research discussed in this dissertation moves away from purely theoretical

applications of mathematical models towards real-world applications of a stochastic system.

Here, we develop and explore a Hidden Markov Model for memory deficits, with the goal

of understanding dementia. Since clinical trials contain a variety of memory tests, a second

paper devoted to further understanding memory decay in Alzheimers is provided.

Finally, the last two chapters of this dissertation focus on decision making as it applies to

information pooling techniques. We utilize the mathematical concepts developed throughout

xiv



the dissertation in order to identify an area of improvement for models in current use, and

offer an innovative new interpretation of existing theory. The final paper explores a natural

extension to the theory for continuous-type responses, and outlines further opportunities for

additional research in this area.
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Chapter 1

Likelihood Analysis of the Signal

Detection and Double High Threshold

In the study of recognition memory, two prominent mathematical theories that have thus far

stood the test of time have been Signal Detection theory and Threshold theory. Recent work

on these models has demonstrated that the basic versions of each model are statistically

equivalent and has called for other scientifically motivated methods to differentiate the two.

The focus of this paper is to demonstrate that differences between the models can be revealed

from a mathematical approach. In this spirit, we evaluate the likelihood functions of each

model and the corresponding Fisher Information.

1



1.1 Introduction

In this paper the likelihood functions of two popular models for Yes/No recognition memory

experiments are compared. The models are the Signal Detection theory (SDT) model with

Gaussian familiarity distributions (Mcmillan, 2004), and the Double High-Threshold (2HT)

model (Snodgrass, 1988) that is a member of the class Multinomial Processing Tree (MPT)

models. Each parametric model provides an account of select complex human memory

processes believed to be involved in recognition memory. With the ever growing literature

on these two models researchers have opined as to their preferred theory regardless of the

fact that the exact tally of latent processes involved in human memory is unknown and quite

possibly unknowable.

Naturally as the number of papers dedicated to proving one model superior to the other

increases, so do the model selection techniques. Within this ever growing literature, mathe-

matical techniques have evolved from simply a goodness of fit measure (usually denoted by

minus twice the log likelihood), to techniques such as the Akaiki Information Criterion (AIC),

Bayesian Information Criterion (BIC), Normalized Maximum Likelihood (NML), and finally

Bayes Factors which account for model flexibility. For example, AIC accounts for model

flexibility by the number of parameters a model has, whereas BIC penalizes a model by the

sample size. Since neither account for the functional form of the model, researchers have

turned to NML which denotes model flexibility as all possible data patterns a specific model

can account for. While all of these techniques have demonstrated support for a particular

model on selected experimental results no distinct winner has emerged. Instead, this vacil-

lation of methodology has led the scientific community to be torn between what we consider

equally suitable explanations in light of obvious limitations.

It is possible that neither model emerges as a clear winner despite these more complex model

selection techniques because these two models are more alike than previously understood.
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For instance, the basic SDT and 2HT models each have two free parameters, so measures

such as the AIC will not be able to differentiate the models, and since both are tested on

the same sample BIC may not help either. Furthermore, the two models are statistically

equivalent (Alexander & Batchelder, 2013) so both entail the same probability distributions,

and thus NML will not show a difference.

For techniques aimed at testing the different theories, the likelihood function stands as a

pivotal measure. This dependency on the likelihood function warrants a closer look at the

relationship each model has to a normative set of probability distributions. More specifically,

a particular model’s likelihood function will have no solution on any set of observable values

outside the predictive region, and thus the model will inherently fall short of fitting the data

by any measure. Therefore, this paper will focus on the models’ likelihood functions and

their implicit solutions. For example, since the two basic forms of each theory are statistically

indistinguishable, a more mathematical approach may elucidate differences.

Our goal is not to argue that one of these models is better than the other, but instead to

compare and contrast the two models. In this comparison, we first consider these models on

purely statistical grounds. We find that the models are statistically equivalent, namely in

that they both entail exactly the same set of probability distributions over the sample space

for the Yes/No recognition memory experiment.

We will begin by defining the models and their prediction space, followed by a study of their

nth order partial derivative, from which the maximum likelihood estimators are found. Next,

the amount of information extracted from the random variables for each model is calculated

using Fisher’s Information. Two useful results emerge from the Fisher’s Information: 1) The

inverse Fisher’s Information details the precision for which a parameter can be estimated, 2)

we obtain the necessary number of samples for an acceptable degree of error. Finally, issues

of numerical instability are explored through a parameter sensitivity test.
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1.2 Signal Detection Model

The one-dimensional SDT model (e.g. Macmillan & Creelman, 2005) for recognition memory

assumes a recognition judgment is derived from the familiarity strength of an item on a

continuum of memory states. Familiarity strength is conceptualized as a continuous random

variable on a familiarity axis. For each class of items, there is a probability distribution

over the familiarity axis. While all items have some degree of familiarity, the role of the

study phase is to increase familiarity with a predetermined set of target items. Generally,

the amount of overlap between the distributions of two classes of items, (e.g. old/new),

indicates the discriminability level between them, and extra experimental manipulations such

as word repetition or word saliency can have an effect on the amount of overlap between the

distribution of the two classes of items.

Within this framework it is not possible to know exactly whether an item is old or new, so

SDT postulates that a decision maker (DM) is only aware of an item’s familiarity strength

relative to an established criterion. Thus in order to decide the class membership of the

item, a threshold, τ , is predetermined1 by the DM. When an item’s familiarity strength is

above the pre-established threshold on the familiarity axis, the DM responds in favor of the

strengthened class of items. In an old/new recognition memory task, a familiarity strength

above τ is considered old and thus a DM responds ’old’ and items with familiarity strengths

that fail to surpass the threshold are judged ’new’.

To this date, the most common distributional assumption of the latent familiarity index for

each class of items is a Gaussian distribution. The use of a Gaussian distribution greatly

simplifies the problem since the distribution is completely characterized by two parameters.

We retain this distributional assumption and allow {µo , σo}, and, {µn , σn}, to be the

parameters for the old and new class of items, respectively. Since the role of the study phase

1While it is generally accepted that DMs utilize a threshold to determine an item’s membership, there
seems to be no mention about the construction of this threshold.
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is to increase the familiarity levels of old items, we expect that on average the old class of

items will elicit a greater degree of familiarity expressed as µo ≥ µn. Of course, the standard

deviations are measures of the variability of the class of items so they are σo > 0 and σn > 0.

As it stands, the model exemplifies the theoretical assumptions of SDT thus permitting one

to draw conclusions of psychological variables using the parameters. Now the difficulty of

solving for the parameters rests on methodological limitations concerned with the availabil-

ity of sufficient information. With only two degrees of freedom in an old/new recognition

experiment the model parameters cannot be uniquely identified. To avoid the identifiability

problem caused when a model has more parameters than degrees of freedom (d.f.) (Bamber,

D., & van Santen, J. P. H. 2000), we reduce the number of free parameters to only two by

fixing the values of prespecified parameters. Without loss of generality, µo = d′/2, µn =

-d′/2, where d′ ∈ [0,∞), σo = 1, and σN = 1 and τ ∈ (−∞,∞). A pictorial account of this

can be found in Figure 1.

New Stimuli Old Stimuli

BA

d’

2

− d’

   2

C

τ

D

Figure 1.1: Equal-Variance Signal Detection Model; A- Correct Rejection; B- Hit Rate; C-
Miss; D- False Alarm

The two remaining free-to-vary parameters are d′ and τ , where parameter d′ is known as

the discrimination index and indicates the strength of the signal distribution in contrast
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to the noise distribution, and τ represents the pre-established threshold mentioned above.

Under strictly controlled experimental conditions, the simplified model is sufficient for an

experimenter to identify the model’s latent variables in an old/new recognition memory

experiment. However, the requirement of strict experimental conditions is not always met,

so it has been advocated that the model be modified to allow unequal variance Gaussian

distributions (Wixted 2007a).

1.3 Basic High Threshold Model

Unlike the continuous nature of SDT, 2HT assumes that a recognition judgment is based on

an item’s membership to one of three discrete memory states achieved by two high thresholds.

The three states are Detect, Discriminate, and Guessing states, which correspond to different

levels of information classes. The mutually exclusive states form the basis of all judgments

by fully describing the state of memory for a test item. The role of the study trial is to

facilitate a transition away from a guessing state characterized by a complete lack2 of sensory

information pertaining to the item. Within this guessing state, items are judged based on

a probabilistic process denoted by γ, where γ ∈ [0, 1]. Since no pertinent information is

assumed to exist within this state, a response is often viewed as a outcome from a purely

guessing process.

Similarly to SDT, threshold models assume that during a learning trial, items are reinforced,

but unlike SDT, the item is posited to enter a decisive state where knowledge of an item’s

true classification is known. The occurrence of such an event happens by exceeding one of

two thresholds captured by the probabilities Do and Dn, for old and new items, respectively,

where Do ∈ [0, 1] and Dn ∈ [0, 1] . Once an item is situated in either the detect or discrimi-

2In a old/new recognition memory task episodic memory is studied, thus a lack of sensory information is
meant as a mnemonic device to disambiguate items that hold no meaning to the task rather than to describe
novel stimuli.
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nate state a judgment on the test will always correspond to the state’s identity. Naturally,

the model predicts a DM is capable of knowing that an item belongs to the old (studied)

or new (unstudied) set of items. In fact, it is easy to see that if an experiment involves the

presentation of a single item on the study phase and is tested against a single distractor on

the test, the DM would certainly ’know’ which item was old, presumably without the need

of forming a decision criterion. While the gedankenexperiment may be too simplistic, it

reveals a fundamental unexplored issue of when exactly a DM becomes incapable of knowing

an item’s true assignment and is therefore forced to rely on a generated decision criterion as

predicted by SDT.

Signal

D

γ

Yes No

γ

Yes No

Noise

B

NoYes

1−D 1−B

1−γ1−γ

Figure 1.2: Basic Double High Threshold Model. Tree structure of 2HT model with two
parameters. Paths down the tree diagram of figure 2 show the possible ways of producing
an ’old’ or ’new’ response for the item class.

Once again, methodological difficulties create limitations when attempting to solve the pre-

cise and well-formulated mathematical problem of estimating parameter values of the model.

Thus the 2HT, just as the SDT model, has to make some limiting assumptions in order to

reduce the three free varying parameters down to two. Researchers normally accomplish
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this by equating Do and Dn. Support for collapsing the two free parameters to one comes

from the mirror effect in recognition memory (Adams, 1985). The mirror effect reflects the

phenomena often found in recognition memory experiments, that when the hit rate (H) in-

creases, the false alarm rate (FA) decreases, and when H decreases FA increases. Although

the reduction in free parameters is a necessary step for model identifiability, it poses problems

of its own. By coalescing the two parameters, we are forced to assume that the probability

of detecting an old item, which is dependent on the amount of information stored during the

study trial, is the same as the probability of discriminating a new item. Proponents of the

2HT model have therefore sought methods that would allow for Do and Dn to differ.

1.4 Mathematical Comparison

Let X and Y be two independent Bernoulli random variables with success probabilities

{p, q}. Denote the marginal probability distributions of a single Bernoulli event x1 and y1

as fX(x1) = px1(1 − p)(1−x1) and fY (y1) = qy1(1 − q)(1−y1) and the joint probability of M1

and M2 independent Bernoulli trials X1, . . . , XM1 and Y1, . . . , YM2 as

fX(x1, . . . , xM1) =

M1∏
pxi(1− p)(1−xi) = px̄(1− p)(M1−x̄)

and

fY (y1, . . . , yM2) =

M2∏
qyj(1− q)(1−yj) = qȳ(1− q)(M2−ȳ)

where x̄ =
∑
xi and ȳ =

∑
yj.

Parametric models, such as SDT and 2HT, redefine the parameters {p, q} of the marginal

probability distribution for each random variable X and Y . In particular, psychological

models map latent properties (i.e. parameters) to behavior or outcomes (i.e. instances of
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the random variables X and Y ). Unable to directly observe the latent properties of interest,

we rely on statistical methods such as maximum likelihood to explore the data generating

process. We begin by defining the parametric models and analyzing the likelihood functions

for a comprehensive analysis of the models.

Definition 1.a Let X, Y be discrete independent bivariate random vectors, with X repre-

senting the scored response for an old item, and Y representing the scored response for a

new item, and let the likelihood function L(ΘSDT |X, Y ) be defined on the cross product

M1 ×M2 = {(x̄, ȳ) : x̄ ∈M1, ȳ ∈M2}, as:

L(ΘSDT |X, Y ) =


M1∏
i

fΘSDT (xi) = Φ(d
′

2
− τ)x̄Φ(−d′

2
+ τ)M1−x̄ (1)

M2∏
j

fΘSDT (yj) = Φ(−d′

2
− τ)ȳΦ(d

′

2
+ τ)M2−ȳ (2)

Definition 1.b Let X, Y be discrete independent bivariate random vectors, with X rep-

resenting the scored response for an old item, and Y representing the scored response for

a new item, and let the likelihood function L(Θ2HT |X, Y ) be defined on the cross product

M1 ×M2 = {(x̄, ȳ) : x̄ ∈M1, ȳ ∈M2}, as:

L(Θ2HT |X, Y ) =


M1∏
i

fΘ2HT
(xi) = (D + (1−D)γ)x̄((1−D)γ)M1−x̄ (3)

M2∏
j

fΘ2HT
(yj) = (D + (1−D)(1− γ))ȳ((1−D)γ)M2−ȳ (4)

Note, the two Bernoulli random variables should not be confused as bivariate Bernoulli

random variables that take values from (0, 0), (1, 0), (0, 1) and (1, 1) in the Cartesian product
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space {0, 1}2. Doing so would confuse the reader into mistakenly assuming the random

vectors are inseparable and thus analysis on the likelihood function may be done improperly

on the joint probability distribution rather than on each separately. We have expressed the

likelihood functions above as piece-wise functions to more clearly elucidate this distinction.

1.5 Jacobian and Hessian

The definitions above are obtained straight from the theoretical assumptions made by each

model on a particular set of data for an individual. Given the likelihood functions we are

now able to obtain the corresponding maximum likelihood estimators and their range over

the cross-product. Since it is easier to work with the log likelihood we move forward with

taking the nth-order partial derivative of the log likelihood function. In order to condense our

notation, when referring to the likelihood function, LX,Y (Θ), we mean the log(L(Θ|X, Y )).

Proposition 1.a There exists a unique ΘSDT = {d′, τ} ∈ ΩSDT where ΩSDT = {(d′, τ) :

d′ ∈ [0,∞), τ ∈ (−∞,∞)} ∀ x̄, ȳ if and only if x̄ > 0, ȳ > 0, in C = {(x̄, ȳ) : x̄− ȳ > 0}

Proof. Using definition 1.a and letting LX,Y (ΘSDT ) be the likelihood function differentiable

on ΘSDT :

∂

∂d′
LX,Y (Θ) =


∂
∂d′
log(fΘSDT (x̄))

∂
∂d′
log(fΘSDT (ȳ))
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∂

∂τ
LX,Y (Θ) =


∂
∂τ
log(fΘSDT (x̄))

∂
∂τ
log(fΘSDT (ȳ))

then deriving the score functions and setting them to zero we obtain :

=


[M1Φ(d

′

2
− τ)− x̄] = 0

[M2Φ(−d
′

2
− τ)− ȳ] = 0

Now, solving the above for d′ and τ gives:

d̂′ = Φ−1(
x̄

M1

)− Φ−1(
ȳ

M2

) (1.1)

τ̂ = −1

2
[Φ−1(

x̄

M1

) + Φ−1(
ȳ

M2

)] (1.2)

where Φ−1 is the inverse of the normal distribution function and is equivalent to a z trans-

formation.

Proposition 1.b There exists a unique Θ2HT = {D, γ} ∈ Ω2HT where Ω2HT = {(D, γ) :

D ∈ [0, 1], γ ∈ [0, 1]} ∀ x̄, ȳ if and only if x̄ > 0, ȳ > 0, in C = {(x̄, ȳ) : x̄− ȳ > 0}
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Proof. Using definition 1.b and letting LX,Y (Θ2HT ) be the likelihood function differentiable

on Θ2HT :

∂

∂D
LX,Y (Θ) =


∂
∂D
log(fΘ2HT

(x̄))

∂
∂D
log(fΘ2HT

(ȳ))

∂

∂γ
LX,Y (Θ) =


∂
∂γ
log(fΘ2HT

(x̄))

∂
∂γ
log(fΘ2HT

(ȳ))

then the score functions are (respectively):

=


(D(−1 + γ)M1 − γM1 + x̄) = 0

((−1 +D)γM2 + ȳ) = 0

=


(x̄−DM1 − γM1 +DγM1) = 0

(ȳ − γM2 +DγM2) = 0

Solving (9) and (10) for D and γ gives:

D̂ =
x̄

M1

− ȳ

M2

(1.3)
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ĝ =

ȳ
M2

1− ( x̄
M1

) + ( ȳ
M2

)
(1.4)

The solutions above are unique and thus we have presented that there exists an extremum in

the interior which is specified by setting the first derivative to zero. However, it may be the

case that the inflection points found are for a minimum and furthermore it is even possible

the solution is only a local extremum and not a global extremum. To determine whether we

have found a global maximum, we rely on the second-order partial derivative test using the

eigenvalues of the function’s Hessian matrix at the critical point. While this test provides

evidence for the direction of the curvature of the function at the critical point (minimum v.s.

maximum) it does not determine whether the inflection point represents a global or local

extremum; a test to check if they are also global points will follow.

Observation: If LX,Y (ΘSDT ) is twice differentiable at the critical points ΘSDT = {d′, τ}

over C then the Hessian Matrices H of LX,Y (ΘSDT ) are H(LX(ΘSDT )) and H(LY (ΘSDT ))

3:

H(LX(ΘSDT )) =

 ∂2

∂d′2
LX(ΘSDT ) ∂2

∂d′∂τ
LX(ΘSDT )

∂2

∂τ∂d′
LX(ΘSDT ) ∂2

∂τ2
LX(ΘSDT )

 (1.5)

H(LY (ΘSDT )) =

 ∂2

∂d′2
LY (ΘSDT ) ∂2

∂d′∂τ
LY (ΘSDT )

∂2

∂τ∂d′
LY (ΘSDT ) ∂2

∂τ2
LY (ΘSDT )

 (1.6)

3Once again all operations are done on the individual functions since X,Y are independent.
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where the resulting matrix is symmetric, ∂2

∂d′∂τ
L(ΘSDT ) = ∂2

∂τ∂d′
L(ΘSDT ) and since from

Clairaut’s theorem the order of diffferentiation does not matter if the second-order partial

derivatives of L are continuous we solve for one of the diagonal second-order partial deriva-

tives.

For the Hessian matrix of the function of X, let A1 = e(−d′2/8), B1 = e(−τ2/2), C1 = e((d′τ)/2),

D1 = e
(−(

(d′−2τ)

(2
√
2)

)2)
, ΦX = Φ(d

′

2
− τ)

∂2

∂d′2
L(ΘSDT |X) =

− A1B1C1(
√

2π(Φ(ΦX − 1)ΦX(d′ − 2τ)(ΦXM1 − 1) + 2(2ΦXM1 − 2)))

16π(ΦX − 1)2ΦX

∂2

∂d′∂τ
LX(ΘSDT ) =

∂2

∂τ∂d′
LX(ΘSDT ) =

A1B1C1(
√

2π(ΦX − 1)ΦX(d′ − 2τ)(ΦXM1 − 1) + 2(2ΦXM1 − 2))

8π(ΦX − 1)2ΦX

∂2

∂τ 2
LX(ΘSDT ) =

− A1B1C1(
√

2π(ΦX − 1)ΦX(d′ − 2τ)(ΦXM1 − 1) + 2(2ΦXM1 − 2))

4π(ΦX − 1)2ΦX

For the Hessian matrix of the function of Y , let A2 = e(−2(d′/4+τ/2)2), B2 = e(−(d′/2+τ)2/2) and

ΦY = Φ(d
′

2
+ τ)

∂2

∂d′2
LY (ΘSDT ) =

− B2(2A2(ΦY − 1)2M2 + (2ΦY − 1)ȳ +
√

2π(ΦY − 1)ΦY (d+ 2τ)((ΦY − 1)M2 + ȳ))

16π(ΦY − 1)2Φ2
Y
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∂2

∂d′∂τ
LY (ΘSDT ) =

∂2

∂τ∂d′
LY (ΘSDT ) =

− B2(2A2(ΦY − 1)2M2 + (2ΦY − 1− 1)y +
√

2π(ΦY − 1− 1)ΦY − 1(d′ + 2τ)((ΦY − 1)M2 + y)

8π(ΦY − 1− 1)2ΦY − 12

∂2

∂τ 2
LY (ΘSDT ) =

− B2(2A2(ΦY − 1)2M2 + (2ΦY − 1− 1)y +
√

2π(ΦY − 1− 1)ΦY − 1(d′ + 2τ)((ΦY − 1− 1)M2 + y)

4π(ΦY − 1− 1)2ΦY − 12

Now, since the determinant of a matrix is the product of the eigenvalues of that matrix,

we calculate the determinant of the Hessian matrix first for each Hessian matrix. If the

results are positive, it means that the matrix is either positive definite or negative defi-

nite and thus either a minimum or maximum, respectively, has been found. If, however,

the results are negative or zero, the test will show that we have reached a saddle point

or that it is inconclusive, respectively. In our case, the Hessian matrix is singular so

det(H(LX(ΘSDT ))) = det(H(LY (ΘSDT ))) = 0 so this test is inconclusive, meaning that

we may have found a minimum, maximum, or saddle point. We will explore this further

when checking to see if the MLEs are global extremums.

Observation: If LX,Y (Θ2HT ) is twice differentiable at the critical points Θ2HT = {D, γ}

over C then the Hessian Matrix H can also be analyzed separately for each random variable:

H(LX(Θ2HT )) =

 ∂2

∂D2LX(Θ2HT ) ∂2

∂D∂γ
LX(Θ2HT )

∂2

∂γ∂D
LX(Θ2HT ) ∂2

∂γ2
LX(Θ2HT )

 (1.7)
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H(LY (Θ2HT )) =

 ∂2

∂D2LY (Θ2HT ) ∂2

∂D∂γ
LY (Θ2HT )

∂2

∂γ∂D
LY (Θ2HT ) ∂2

∂γ2
LY (Θ2HT )

 (1.8)

again the resulting matrix is symmetric, ∂2

∂D∂γ
L(Θ2HT ) = ∂2

∂γ∂D
L(Θ2HT ):

∂2

∂D2
LX(Θ2HT ) =

1−M1

(D − 1)2
− (g − 1)2

(D + (1−D)γ)2

∂2

∂D∂γ
LX(Θ2HT ) =

∂2

∂γ∂D
LX(Θ2HT ) =

1

(D + (1−D)γ)2

∂2

∂γ2
LX(Θ2HT ) =

1−M1

(D − 1)2
− (D − 1)2

(D + (1−D)γ)2

and the elements in the second Hessian matrix are:

∂2

∂D2
LY (Θ2HT ) = − ȳ

(D − 1)2
− g2(M2 − ȳ)

(1 + (D − 1)γ)2

∂2

∂D∂γ
LY (Θ2HT ) =

∂2

∂γ∂D
LY (Θ2HT ) =

M2 − ȳ
(1 + (D − 1)γ)2

∂2

∂γ2
LY (Θ2HT ) = − ȳ

γ2
− (D − 1)2(M2 − ȳ)

(1 + (D − 1)γ)2

The results show that both det(H(L(Θ2HT|X))) > 0; and det(H(L(Θ2HT|Y))) > 0 thus our

results for the 2HT are either maximum or minumum points and not saddle points. Finding

the eigenvalues of each matrix reveals that the Hessian matrix is negative definite; thus we

have found maximums.

To verify that the MLE is the global maximum we test the end points {x, y} are either {0, 0}

or {M1,M2}.
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L(SDT ) =



M1ln(Φ(− d̂′

2
+ τ̂)) +M2ln(Φ( d̂

′

2
+ τ̂)) if x = 0 and y = 0

M1ln(Φ( d̂
′

2
− τ̂)) +M2ln(Φ( d̂

′

2
+ τ)) if x = M1 and y = 0

M1ln(Φ(− d̂′

2
+ τ̂)) +M2ln(Φ(− d̂′

2
− τ̂)) if x = 0 and y = M2

M1ln(Φ( d̂
′

2
− τ̂)) +M2ln(Φ(− d̂′

2
− τ̂)) if x = M1 and y = M2

L(2HT ) =



M1ln((1− D̂)(1− ˆ̂γ)) +M2ln(D̂ + (1− D̂)(1− γ̂)) if x = 0 and y = 0

M1ln(D̂ + (1− D̂)γ̂) +M2ln(D̂ + (1− D̂)(1− γ̂)) if x = M1 and y = 0

M1ln((1− D̂)(1− γ̂)) +M2ln((1− D̂)γ̂) if x = 0 and y = M2

M1ln(D̂ + (1− D̂)γ) +M2ln((1− D̂)γ̂) if x = M1 and y = M2

It is easily seen that the first set of functions do not readily converge. The difficulty lies in

the function Φ−1 (contained in the MLE’s of SDT) such that whenever the input is either

{0, 0} or {M1,M2}, the result is either −∞ or ∞, respectively. Restricting the range to the

open interval (0, 1) fixes this problem and allows us to see that the earlier result was a local

maximum. As for the second set of functions, it is straightforward to verify that the MLE’s

of 2HT still produce a maximum in each case. Thus the maximum found for the 2HT model

is global. For the remainder we will assume global maximums for both models within the

restricted open interval (0, 1) in order to proceed with our comparisons.

17



1.6 Fisher’s Information

Now that we have shown where the MLEs are maximums, and have defined their probability

space we turn to exploring more about the parameters themselves starting with calculat-

ing Fisher’s Information. Fisher’s Information is prescribed as a method of quantifying a

measure of information from an observation of a random variable X about a parameter θ.

Theoretically examining this methodology we find that the information obtained is defined

as a measure of the variance of the score function. Formally4

IXY (Θ) = IX(Θ) + IY (Θ)

= E[
∂

∂θ
logf(X, θ)2|θ] + E[

∂

∂θ
logf(Y, θ)2|θ]

Since we have seen that the log likelihood is twice differentiable with respect to the param-

etersfor the models under consideration (SDT and 2HT), we choose to use the alternative

form:

IXY (Θ) = IX(Θ) + IY (Θ)

= −E[
∂2

∂Θ2
logf(X,Θ)|θ] +−E[

∂2

∂Θ2
logf(Y,Θ)|θ]

For the current models we can write the Fisher’s Information as the expected value of the

corresponding Hessian matrix given the parameters:

4Note, since X and Y are independent, the Fisher’s Information of the combined likelihood function is
the sum of the individual Fisher’s Information since information is additive.
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IXY (Θ)jj′ = IX(Θ)jj′ + IY (Θ)jj′

= −E[H(LX(Θ))|Θ] +−E[H(LY (Θ))|Θ]

where j = 1, . . . , K and K is the number of parameters in the model.

We begin with the Fisher’s Information matrices for signal detection theory. Let A3 =

e(−d′2/4), B3 = e(−τ2), C3 = e(d′τ), D3 = e(−d′τ) then:

IX(ΘSDT) =

− A3B3C3M1

2π((2ΦX−1)2−1)
A3B3C3M1

π((2ΦX−1)2−1)

A3B3C3M1

π((2ΦX−1)2−1)
− 2A3B3C3M1

π((2ΦX−1)2−1)

 (1.9)

IY(ΘSDT) =

− A3B3D3M2

2π((2ΦY −1)2−1)
− A3B3D3M2

π((2ΦY −1)2−1)

− A3B3D3M2

π((2ΦY −1)2−1)
− 2A3B3D3M2

π((2ΦY −1)2−1)

 (1.10)

The Fisher’s Information for the double high threshold model is:

IX(Θ2HT) =

 (1−g)M1

(1−D)(D+(1−D)g)
M1

D+(1−D)g

M1

D+(1−D)g
(1−D)M1

(−D−(1−D)g)(−1+g)

 (1.11)

IY(Θ2HT) =

− gM2

(D−1)(1−(1−D)g)
− M2

1+(D−1)g

− M2

1+(D−1)g
(1−D)M2

(g(1+(D−1)g)

 (1.12)
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The Fisher’s Information for each of the models is then the sum of the two independent

Fisher’s Information matrices. The solutions provide us with the amount of information

each random variable carries about the parameters of the model.

1.6.1 Parameter Variances

The precision to which we can estimate the parameters can be calculated by an inverse

transformation on the Fisher’s Information. For example, with one parameter:

V (θ̂) ≥ 1

I(θ)

However, this transformation for more than one parameter is not always simply the inverse

of the individual diagonal elements in the Fisher’s Information matrix (e.g. when the param-

eters in the model are not orthogonal). Instead, we invert the Fisher’s Information matrix

and take results from the diagonal elements of the inverted matrix for the corresponding

parameters of interest. Formally:

Cov(Θ̂) ≥ I(Θ)−1
jj′ (1.13)

The resulting matrix is a matrix with parameter variances on the main diagonal and covari-

ances on the off-diagonal elements.
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For the SDT model, the variances and covariances are:

V ar(d̂′) = −(2π((−1 +G)GM2e
1/4(d−2t)2 + (−1 + E)EM1e

1/4(d+2t)2))

M1M2

(1.14)

V ar(τ̂) = −(π((−1 +G)GM2e
1/4(d−2τ)2 + (−1 + E)EM1e

1/4(d+2τ)2))

2M1M2

(1.15)

cov(d̂′, τ̂) = cov(τ̂ , d̂′) =
π((−1 +G)GM2e

1/4(d−2t)2 − (−1 + E)EM1e
1/4(d+2t)2)

M1M2

For the 2HT model the variances and covariances are:

V ar(D̂) = −(−1 +D)(−(−1 + γ)γ(M2 +M1) +D((−1 + γ)2M2 + γ2M1))

M1M2

(1.16)

V ar(γ̂) =
(−1 + γ)γ(M1 − 2γM1 −D(−1 + γ)γ(M1 +M2) + γ2(M1 +M2))

((M1M2(D − 1)))
(1.17)

Cov(D̂, γ̂) = Cov(γ̂, D̂) =
(−1 + γ)γ(M1 − γ(M1 +M2) +D((−1 + γ)M2 + γM1))

(M1M2)
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The results reveal that the variances of both parameters of the 2HT model are much smaller

than for the parameters of SDT. With the variances of the estimators in hand, testing

consistency is possible by examining the limiting properties of the variance as M1 and M2

go to infinity. The general form is:

lim
M1→∞

lim
M2→∞

V ar(θ̂) (1.18)

The results show the estimators as being consistent such that when both M1 and M2 go to

infinity the variance decreases to zero for both models.

1.7 Parameter sensitivity and predictions

Often the predictions made by the model parameters are put into question through selective

influence studies that vary a particular aspect of an experiment to show the sensitivity of the

parameters to changes in behavior. Many times the rigorous testing of parameters and their

predictions leads to an understanding of psychological phenomena. However, the data gath-

ered by psychologists often contain systematic errors that can have unwanted consequences,

such as numerical instability where small changes in the data may have an outsized effect

on our resulting conclusions.

To calculate the effect small changes in the data may have on the parameter estimates, we

make the assumption that the data is measured with some error, εx and εy for each random

variable X and Y respectively. The new likelihood function that expresses this belief is

L(Θ|X + εx, Y + εy). We would expect the new MLEs to be close to the uncorrected MLEs

when εx and εy are small.
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The MLEs for the SDT parameters are:

d̄′ = Φ−1(
x̄+ εx
M1

)− Φ−1(
ȳ + εy
M2

) (1.19)

τ̄ = −1

2
[Φ−1(

x̄+ εx
M1

) + Φ−1(
ȳ + εy
M2

)] (1.20)

The MLEs for the 2HT parameters are:

D̄ =
x̄+ εx
M1

− ȳ + εy
M2

(1.21)

ḡ =

ȳ+εy
M2

1− ( x̄+εx
M1

) + ( ȳ+εy
M2

)
(1.22)

The new MLEs are very similar to those above, except they now include the error variable.

If we posit that errors in the data are small, i.e. εx = 1 and εy = 1, we can plot the expected

value in such a way that would show us how the parameters vary for all x̄ and ȳ. In order

to simplify the graphical display we limit our exploration to the recursive relation:

x̄t = x̄t−1 + εx (1.23)

ȳt = ȳt−1 + εy (1.24)

such that when x̄0 = 1 and ȳ0 = 0 the difference is 1. By adding a constant error value of

1 to each iteration, it is obvious that the resulting x̄t and ȳt will retain a difference of 1.
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Figure 3 is obtained by replacing (1.23) and (1.24) into equations 1.19-1.22 with an arbitrary

sample size of M1 = M2 = 50.
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Figure 1.3: Parameter Sensitivity Test (Cross Section)

Figure 3 shows the cross-section of how sensitive the parameters are across the possible

success quantities when the error is held fixed at 1. For example, the figure shows how

sensitive d′ is to small and large values of x̄ and ȳ compared to middle values. Unlike d′, D

shows no change with small changes in the data.

Now, a point of contention by proponents of SDT is the mistrust of threshold models being

used as measurement models regardless of their validity as psychological models (Pazzaglia,

Dube, and Rotello, 2013). In an effort to discredit threshold models, Pazzaglia et al. argued

that disagreement between the models may arise and can often lead researchers to misin-

terpret data. However, the disagreement in question comes from misidentifying the latent

variables associated with one model, such as memory ability, as the leading difference be-

tween data from two groups of subjects [Harvey; Kinshla]. When analyzing each group with
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the two models, it is noted that a change in memory sensitivity is predicted by one model

while the other reports it as a change in bias.

Thus far we have looked at the models when a single data set from one person has been

collected. Although this has generally given researchers sufficient information to apply the

models for the study of memory, it limits the types of model comparison tests. The discrep-

ancies reported by Pazzaglia et al., if true, constitute an important finding for the goal of

determining the best model for psychological theories of memory. While that is not our goal

here, we explore the comparison between predictions made by each model for two subjects

with different response patterns. This is akin to the well-known between subject studies.

Let X(1), X(2), Y (1) and Y (2) be discrete independent bivariate random vectors from two

subjects with success probabilities {p(1), p(2), q(1), q(2)}, corresponding to four sequences of

independent Bernoulli trials with lengths M . Denote the quadruple product space for the

number of success trials as ΩE = {(x̄I , x̄II , ȳI , ȳII) : x̄I ∈ A(1), x̄II ∈ A(2), ȳI ∈ B(1), ȳII ∈

B(2)} where A(1) ⊂ N, A(2) ⊂ N, B(1) ⊂ N, and B(2) ⊂ N. Then the complete sample space

ΩE can be partitioned into four sets of equal cardinality by:

ΩE1 = {(x̄I , x̄II , ȳI , ȳII) : x̄I ≥ x̄II , ȳI ≤ ȳII}

ΩE2 = {(x̄I , x̄II , ȳI , ȳII) : x̄I ≤ x̄II , ȳI ≥ ȳII}

ΩE3 = {(x̄I , x̄II , ȳI , ȳII) : x̄I ≥ x̄II , ȳI ≥ ȳII}

ΩE4 = {(x̄I , x̄II , ȳI , ȳII) : x̄I ≤ x̄II , ȳI ≤ ȳII}

The first two sets, ΩE1 and ΩE2 , characterized by linear inequalities on the sample space ΩE,

describe the well-known mirror effect and account for a majority of the psychological data

gathered for two group experiments (Iverson, Glanzer et al.). The other two sets are not

frequently observed in psychological studies, and we will show that disagreement between

the models lies within these regions.
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Theorem 1.1. For any quadruple from the sets ΩE1 and ΩE2 the following differences

D(1,2) = D(1) − D(2) and d′(1,2) = d′(1) − d′(2) have the same parity. Furthermore, for any

quadruple from the sets ΩE3 and ΩE4 the following differences D(1,2) = D(1) − D(2) and

d′(1,2) = d′(1) − d′(2) contain instances with opposite parity.

Proof. First, assume a probability quartet, {p(1), p(2), q(1), q(2)}, satisfying the linear inequal-

ities from ΩE1 . Then from Definition 1 and without loss of generality:

p(1) > p(2) = Φ(
d′(1)

2
− τ (1)) > Φ(

d′(2)

2
− τ (2))

=
d′(1)

2
− τ (1) >

d′(2)

2
− τ (2)

d′(1)

2
− d′(2)

2
> τ (1) − τ (2) (1.25)

q(1) < q(2) = Φ(−d
′(1)

2
− τ (1)) < Φ(−d

′(2)

2
− τ (2))

=
−d′(1)

2
− τ (1) <

−d′(2)

2
− τ (2)

d′(1)

2
− d′(2)

2
> τ (2) − τ (1) (1.26)

and by Definition 2:

p(1) > p(2) = D(1) + (1−D(1))γ(1) > D(2) + (1−D(2))γ(2)
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D(1) −D(2) > (1−D(2))γ(2) − (1−D(1))γ(1) (1.27)

q(1) < q(2) = (1−D(1))γ(1) < (1−D(2))γ(2)

(1−D(2))γ(2) − (1−D(1))γ(1) > 0 (1.28)

Next, assume a probability quartet, {p(1), p(2), q(1), q(2)}, satisfying the linear inequalities

from ΩE3 . Once again from Definition 1 and without loss of generality:

p(1) > p(2) = Φ(
d′(1)

2
− τ (1)) > Φ(

d′(2)

2
− τ (2))

=
d′(1)

2
− τ (1) >

d′(2)

2
− τ (2)

d′(1)

2
− d′(2)

2
> τ (1) − τ (2) (1.29)

q(1) > q(2) = Φ(−d
′(1)

2
− τ (1)) > Φ(−d

′(2)

2
− τ (2))

=
−d′(1)

2
− τ (1) >

−d′(2)

2
− τ (2)
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d′(2)

2
− d′(1)

2
> τ (1) − τ (2) (1.30)

(2HT)

p(1) > p(2) = D(1) + (1−D(1))γ(1) > D(2) + (1−D(2))γ(2)

D(1) −D(2) > (1−D(2))γ(2) − (1−D(1))γ(1) (1.31)

q(1) > q(2) = (1−D(1))γ(1) > (1−D(2))γ(2)

0 > (1−D(2))γ(2) − (1−D(1))γ(1) (1.32)

It follows from solutions 1.25 and 1.26, d′(1) > d′(2) and by solutions 1.27 and 1.28, D(1) >

D(2), therefore D(1,2) and d′(1,2) have the same parity. Furthermore, it is easy to see that

when the inequalities are reversed, all the while retaining the mirror effect as in the subset

ΩE2 , the results hold. Now, by equations 1.29 and 1.30, d′(1) may be larger or smaller than

d′(1). Similarly, by equations 1.31 and 1.32, D(1) may be larger or smaller than D(2). Under

the current results, it is not justifiable to assume falsification of one model may be found in

a two group study.

To further ascertain when the two models are in discord, we obtain all hit rates and false
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alarm rates for two groups, {P (1)
o1 , P

(1)
n1 } and {P (2)

o1 ,P
(2)
n1 }, using the same sample sizes as

before. The simulated probabilities have the same property as those obtained using a two

group experimental design, if all data patterns were to be observed. We first calculate a

pair of parameters {Di, Dj} and {d′i, d′j} where i 6= j, from a common set of observation

probabilities and compare their differences for consistency using a sign test. For every

probability distribution in each group, the parameters D and d′ are calculated from their

closed form expressions. Agreement is met when Di−Dj > 0 and d′i−d′j > 0 or Di−Dj < 0

and d′i − d′j < 0. Furthermore, we explore the cases when the data values are restricted

within (1− a, a) where a = 1, .9, and.8.

Table 1.1: Agreement

N a = 1 a = .9 a = .8
25 92.83% 95.67 % 95.71%
50 92.46% 96.53% 97.78%
100 92.14% 96.69% 98.29%
200 91.94% 96.73% 98.44%

Results of the sign test are presented in Table 1 and it shows agreement between the param-

eters at over 90% for the four sample sizes. Moreover, when Po and Pn rates are restricted

to non-extreme values, the agreement increases to over 98%. Although the disagreement

is small between the models, it cannot be ignored. It must be noted that the psycholog-

ical predictions are not necessarily predicting different psychological outcomes but rather,

because the parameters are not 1-to-1 functions of each other, their psychological interpre-

tation cannot be either. For example, whenever d′ is greater in one group, it means that

their memory strength is greater compared to the noise distribution, while a smaller D for

that group does not mean a diminished memory strength, but rather a diminished ability to

detect that memory signal.
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1.7.1 Coinciding Likelihoods

We conclude our comparison of the two models by showing that although the two have

very different analytical forms and theoretical descriptions their likelihood functions coin-

cide. First it is easy to see that without the inequality constraint, x̄ ≥ ȳ, neither model

would have valid MLE estimates within their respective theoretical distributions. While

these constraints are a product of theoretical assumptions rather than mathematical restric-

tions, propositions 1.a and 1.b demonstrate that both models entail the same exact set of

probability distributions, C, on the sample space of the data. In other words, the two mod-

els are statistically equivalent or statistically indistinguishable in a product binomial data

structure (Batchelder & Alexander, 2013).

To further illustrate this fact, we evoke the invariance property of MLEs such that: If Θ̂

is the MLE of Θ, then for any function T (Θ) = η the MLE of T (Θ) is T (Θ̂) and thus the

induced likelihood function, L∗(η|x) is defined by:

L∗(η|x) = sup
{Θ:T (Θ)=η}

L(Θ|x)

Lemma 1.1. For any x > 0, y > 0, in C = {(x, y) : x − y > 0}, and ΘSDT = (d′, τ)

where ΘSDT ∈ ΩSDT , there exists a pair of functions T = {h, g} such that h(ΘSDT ) =

Φ(d
′

2
−τ)−Φ(−d′

2
−τ) = ηD and g(ΘSDT ) =

Φ(− d
′
2
−τ)

1−Φ( d
′
2
−τ)+Φ(− d′

2
−τ)

= ηγ. Then ηSDT = {ηD, ηγ}

where the maxima of the induced likelihood function, L∗(ηSDT |x, y) and profile likelihood

L(ΘSDT |x, y) coincide. Thus:

L∗(η̂SDT |x, y) = L∗(T (Θ̂SDT )|x, y)

Proof. Let η̂SDT denote the values that maximize L∗(ηSDT |x, y) and by the definition of the
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induced likelihood;

L∗(η̂SDT |x, y) = sup
ηSDT

sup
{ΘSDT :T (ΘSDT )=ηSDT }

L(ΘSDT |x, y)

= sup
ΘSDT

L(ΘSDT |x, y)

= L(Θ̂SDT |x, y)

Furthermore,

L(Θ̂SDT |x, y) = sup
{ΘSDT :T (ΘSDT )=T (Θ̂SDT )}

L(ΘSDT |x, y)

= L∗(T (Θ̂SDT )|x, y)

Therefore, L∗(η̂SDT |x, y) = L∗(T (Θ̂SDT )|x, y)

Lemma 1.2. For any x > 0, y > 0, in C = {(x, y) : x − y > 0}, and Θ2HT = (D, γ) where

Θ2HT ∈ Ω2HT , there exists a pair of functions T = {h, g} such that h(Θ2HT ) = Φ−1(D +

(1−D)γ)−Φ−1((1−D)γ) = ηd′ and g(Θ2HT ) = 1
2
Φ−1(D+ (1−D)γ) + Φ−1((1−D)γ) = ητ

and η2HT = {ηd′ , ητ} where the maxima of the induced likelihood function, L∗(η2HT |x, y) and

profile likelihood L(Θ2HT |x, y) coincide. Thus:

L∗(η̂2HT |x, y) = L∗(T (Θ̂2HT )|x, y)

Proof. Let η̂2HT denote the values that maximizes L∗(η2HT |x, y) and by the definition of the
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induced likelihood.

L∗(η̂2HT |x, y) = sup
η2HT

sup
{Θ2HT :T (Θ2HT )=η2HT }

L(ΘSDT |x, y)

= sup
Θ2HT

L(Θ2HT |x, y)

= L(Θ̂2HT |x, y)

Furthermore,

L(Θ̂2HT |x, y) = sup
{Θ2HT :T (Θ2HT )=T (Θ̂2HT )}

L(Θ2HT |x, y)

= L∗(T (Θ̂2HT )|x, y)

Therefore, L∗(η̂2HT |x, y) = L∗(T (Θ̂2HT )|x, y)

Theorem 1.2. For any x > 0, y > 0, in C = {(x, y) : x − y > 0}, the maxima of

L(ΘSDT |x, y) and L(Θ2HT |x, y) coincide.

Proof. It is easy to see from Lemma 1 that the maxima of L(Θ̂SDT |x, y) and L∗(T (Θ̂SDT )|x, y)

coincide. To show that the maxima of L(ΘSDT |x, y) and L(Θ2HT |x, y) are the same for any

(x, y) ∈ C we first consider the values that maximize L∗(T (Θ̂SDT )|x, y).

From Lemma 1:

η̂D = Φ(
d̂′

2
− τ̂)− Φ(− d̂

′

2
− τ̂) (1.33)

η̂γ =
Φ(− d̂′

2
− τ̂)

1− Φ( d̂
′

2
− τ̂) + Φ(− d̂′

2
− τ)

(1.34)
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Substituting {d̂′, τ̂} with equations 7 and 8 yields:

η̂D = H − FA (1.35)

η̂γ =
FA

1−HR + FA
. (1.36)

Thus we find that the values that maximize L∗(T (Θ̂SDT )|x, y) are equivalent to those in

L(Θ̂2HT |x, y) so L∗(ηSDT |x, y) = L(Θ2HT |x, y).

Now, from Lemma 2 we see that the maxima of L(Θ̂2HT |x, y) and L∗(T (Θ̂2HT )|x, y) coincide

as well. Therefore, consider the values that maximize L∗(T (Θ̂2HT )|x, y)

η̂d′ = Φ−1(D̂ + (1− D̂)γ̂)− Φ−1((1− D̂)γ̂) (1.37)

η̂τ =
1

2
Φ−1(D̂ + (1− D̂)γ̂) + Φ−1((1− D̂)γ̂) (1.38)

Substituting {D̂, γ̂} with equations 11 and 12 yields:

η̂D = Φ−1(H)− Φ−1(FA) (1.39)

η̂γ = −1

2
[Φ−1(H) + Φ−1(FA)] (1.40)
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We find that the values that maximize L∗(T (Θ̂2HT )|x, y) are equivalent to those in L(Θ̂SDT |x, y)

thus L∗(η2HT |x, y) = L(ΘSDT |x, y).

Therefore, for any x > 0, y > 0, in C = {(x, y) : x− y > 0} maximizing either L(ΘSDT |x, y)

or L(Θ2HT |x, y) will yield the same answer.

We can see from the relationship above that the two models are statistically indistinguishable

and any comparison between the basic models leading to positive support using methods

such as AIC, NML and goodness of fit measures that utilize the fit of the model through

the likelihood function will differ only as a result of a penalty term5 for added complexity.

Note, the model complexity term is a function of the parameters and their distributions;

it is thus important to be cautious when implementing parametric constraints since the

decision to impose theoretical constraints on the parameters as is the case for isosensitivity

manipulations will increase the chance of worse fit. Furthermore, it is wise to be careful in the

choice of prior distributions for the parameters because it is possible to bias the comparison

by assigning improper priors to one model.

1.8 Conclusions

In this paper we sought to formalize the SDT and 2HT models using mathematical convention

and succeeded in showing the inner workings of each model. An important property of each

model is their likelihood function, for which we are able to compute the maximum likelihood

estimators, utilize Bayesian inference techniques, and measure the fit. In our analysis we

have shown that the two likelihood functions coincide on every point in the probability

5Note, the penalty term does not improve the overall fit of the model but rather it reduces the fit of a
model. This means that for any model, the goodness of fit measured by the maximized likelihood function
is the best fit attainable by the model.
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distribution space and thus show the two models fit the data equally well.

Since the two models are statistically equivalent and methods constructed to compare the

two models often involve statistical inference techniques, we did not expect to find differences

between the two models at the basic level of goodness of fit. However, mathematically the

two models are distinct, an obvious fact from looking at each model’s functional form, and

from this we hypothesized that differences between the models must exist. From the Hessian

matrix, we were able to detail the limitations concerning global maximums and calculate the

Fisher’s Information measure. The results of this measure instantiated our beliefs that the

amount of information each parameter describes for the random variables are outstandingly

different. While these results are interesting at a theoretical level, we made an effort to

demonstrate the pragmatic value of these results for experimenters.

Finally, parameter sensitivity is an important mathematical analysis for testing numerical

instability. Issues of numerical instability are detrimental for research relying on sensitive

measures needed to adjudicate the precise treatment. Our results show that SDT parameters

are extremely sensitive to small perturbations in the data and thus may lead to misrepre-

senting the severity of memory deficits.
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Chapter 2

Statistical Development and

Comparison of two Recognition

Memory Models

It has been fifty plus years since James P. Egan (1958) wrote his famous technical report,

Recognition Memory and Operating Characteristics, and yet recognition memory modelers

are still debating over the correct theory of recognition memory. We believe all recognition

models are wrong, but several of them have been very useful in such areas as medical science,

ethnography, forensic psychology, memory and psychophysics. In particular, we believe the

process underlying recognition memory is more complex than has historically been described

given the few degrees of freedom available to a modeler. In this spirit, we take a new look at

the Gaussian Signal Detection model (SDT) and the Double High-Threshold (2HT) models

for old/new recognition memory data. Advocates of SDT do not like the restriction of equal

variance for old and new items, and advocates of the 2HT model do not like the assumption

that the detection probabilities for old and new items are equal. We add a third response

option, Uncertain, and modify both models accordingly. The new models are saturated with
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four parameters in a product trinomial data structure, but either one or both models cannot

fit many possible data tables. To handle the sampling assumptions we develop Bayesian

hierarchical versions of both models, and we fit both models to data allowing heterogeneity

in both subjects and items. Our focus is not on proving one of the models is better than the

other, but instead we focus on when both models give similar stories about sensitivity and

bias.

2.1 Introduction

For the better part of the 20th century and start of the 21st century, many psychologists

have demonstrated an uncanny devotion to the search of finding the correct scientific model

of recognition memory by contending between two classes of models. The first and most

influential is the Signal Detection Theory (SDT) model with origins tracing back to en-

gineering in signal processing, and later adopted in psychology through its application to

psychophysics of vision and audition by Swets, Tanner, & Birdsall (1955) and Green, Swets

(1966). The second and often preferred model stems from threshold theory, with the most

prominent example being the Double-High Threshold (2HT) model with origins tracing back

to Blackwell’s work on correcting for guessing, and later formalized by Snodgrass (1988).

From an early start, efforts aimed at dissociating the models have mainly revolved around

each theory’s prediction of the receiver operator characteristics (ROC; e.g. Egan, 1958).

In fact, the perennial debate continues today (see Yonilinas, 2002, for review), using com-

plex model comparison techniques for fitting the predicted ROC curves. While the precise

shape of the ROC function is hotly debated, one persistent finding is that the shape of the

ROC (whether rectilinear or curvelinear) depends more on the choice of task used by the

experimenter than on a fundamental property of memory. In our view, some of this recent

work has lost sight of the usefulness of both model families as measurement tools and thus
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appears to us to be in service of selecting the scientifically correct model family with very

little evidence to suggest this is statistically justifiable.

In a typical recognition memory experiment, N items are sequentially presented to a decision

maker (DM) during a controlled study phase. After a predetermined delay, the DM is

presented with a list containing previously studied items along with new distractor items.

The presentation order is randomized to ensure an even distribution of old and new items.

The DM is tasked to respond to each item on a test trial with a ”yes” if the item was

presented in the study phase, or ”no” otherwise. To avoid missing data, participants are

usually asked to provide their best guess before proceeding to the next item on the test

phase. Variations of this simple Yes-No experimental design account for a majority of the

comparisons between the two models.

The experimental design limits the DM to two response alternatives, forcing the DM to either

guess at random or bias their response when they do not have sufficient evidence. Effects of

forced guessing have been reported in the learning literature as exacerbating misinformation

and partial information effects, thus reducing the unbiased memory characteristics measured

by the models. To reduce the effects on the measurement of memory ability caused by

forcing a DM to respond, we augment the set of possible response alternatives to include an

additional response category (e.g. “Uncertain”). A consequence of adding another response

category is to increase the degrees of freedom available for modeling which we utilize to

further explore the two models.

In this paper we start by briefly comparing the simplest versions of the SDT model and the

2HT model and show that both are describing very similar properties of the data. Following

this introduction we extend the data structure to allow a third option giving a DM the

freedom to express their confidence. With this new data structure we introduce two new

models, one under aegis of SDT and the other within the scope of 2HT theory. These two

new extant models provide a chance for the exploration of additional parameters that both
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SDT and 2HT theorists would like to see. We show that parameters in both models aim at

describing similar mental processes similar to their basic model prototypes. Furthermore,

we compare these models using a classical approach and a Bayesian framework and show

that neither model is the correct model of recognition memory but rather both are useful

statistical tools for specific data sets.

In the next section we extend the two choice recognition memory experiment to allow for an

extra response. This addition increases the degrees of freedom (d.f.) to allow the estimation

of two extra parameters for each class of models. The SDT model is extended to include

a variance parameter for the signal trials and the 2HT is extended to include a different

ability parameter for the noise distributions. Additionally, the data structure can be seen as

a three-point confidence interval whose structure is similar to ROC data. Although the fit

of ROC data is not the focus of this paper, the statistical structure of both extended models

will be explored.

These models are designed for experimental situations where a participant is exposed to a

list of words on a study trial, and then on a test trial the participant is exposed to a mix of

old studied words and new distractor words. Usually words are presented one at a time and

both the study words and test words are chosen to be semantically unrelated and drawn from

some narrow range in such indices as word frequency and concreteness. For each presented

test word, the subject says “Yes” if they think it is an old studied word, “No” if they think

the test word is a new distractor, and “Uncertain” if they are unsure whether the word

appeared in the studied list or not.

The goal of adding one additional response option is to extend the models in a simple

nontrivial way to allow a precise study of the mathematical structures observed in more

complicated versions of the two theories. Research on ROC curves obtained from recognition

memory experiments have shown there to be an asymmetry not fully described by the simple

two parameter versions of the models. Mainly the asymmetry found from studies suggest that
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an additional process may be underlying memory in a recognition study that is independent

of memory sensitivity already measured. To account for such irregularities researchers have

suggested using an unequal-variances version of the standard SDT model along with an

additional threshold for the high threshold models.

We begin by expanding the standard experimental conditions to include a third response

category. The additional response category is sufficient to allow the estimation of two more

parameters for each model. We will examine the effect of the new models on the well-

established experimental word frequency effect (WFE), which is a counterintuitive effect

resulting from varying linguistic frequency conditions, in order to gain additional insight into

the latent memory processes involved by using these more complete quantitative models.

2.2 Ternary response data

Consider the data for a single group, ternary-response recognition memory experiment, where

M participants are asked to study a set of N1 items during a study phase. Afterwards, each

participant is tested on the old set of N1 items along with N2 = N − N1 distractor items.

On the test trial, three response options are available to the participant to choose from. The

first two are the basic yes-no responses, and the last is an ”uncertain” response. Formally,

the two independent trichotomous random variables, X1 for a response to an old test item

and X2 for a response to a new test item are defined as:

Xi =


1 if “Yes”

0 if “Uncertain”

−1 if “No”

(2.1)
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For conciseness, we will define the marginal probability functions as po,1 to indicate Pr(Xik =

1|Signal), where the o is for old stimulus and the number 1 corresponds to the response a

subject indicated. By continuing this notation, we can see that Pr(Xik = 1|Noise) can be

written as pn,1 and the notation for the rest of the conditional probabilities can be seen in

Table 1.

Table 2.1: Conditional Probabilities

”Old” ”Uncertain” ”New”
Signal po,1 po,2 po,3
Noise pn,1 pn,2 pn,3

Any statistical model developed for the two trichotomous random variables will inevitably

induce a partition on the probability space given a particular model’s parameters specifica-

tions. In other words, parametric models specify a partition on the probability space,

π = {(po,1, po,3, pn,1, pn,3) : 0 < po,1 < 1, 0 < po,3 < 1, 0 < pn,1 < 1, 0 < pn,3 < 1}. (2.2)

where Π is the space of all possible marginal probabilities in a ternary-response recognition

memory experiment. While the chosen probabilities do provide the required information, it

is important to note that any other pair (e.g. {po,2, po,3} and {pn,2, pn,3}) for a given random

variable is equally informative since they all sum to 1.

2.3 Signal Detection Model

The first proposed model is a version of the unequal variance SDT (UVSDT), updated to

reflect a third response category of ”uncertain” (referred to hereafter as 3R-SDT). Evidence
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from multiple studies has encouraged the use of unequal variance by fixing the variance, σo,

of the signal distribution to 1.25. For our purposes, we allow σo to be free to vary in [1,∞)

such that that it allows the standard deviation of the signal distribution to be different than

the standard deviation of the noise distribution. We begin by making the assumption that

familiarity of each item presented during the test trial is a draw from one of two Gaussian

distributions on the continuum with means {µo, µs} and variances {σo, σn} corresponding to

each class of items. A decision for one of the three response categories is determined by two

partitions to the familiarity continuum.

The mutually exclusive and exhaustive partitions to the familiarity axis become apparent

with the two decision criteria such that items above the first threshold, τ1, are judged old,

and items that are below a second threshold, τ2 are judged new. The area between these two

decision criteria represents a region of uncertainty; where items within this critical interval

fail to elicit sufficient evidence for a decisive judgment. Though 3R-SDT does not focus

on the interval between the two criteria, it has been previously studied for remember-know

judgments (Donaldson, 1996).

0 d’τ
1

τ
2

> 1σ

P
O,1

P
N,3

P
N,1

P
O,3

P
N,2

P
O,2

New Item Distribution Old Item Distribution

Figure 2.1: 3R- Signal Detection Theory Model. Here the ”new” stimuli distribution repre-
sents noise.

As it stands, the model exemplifies the theoretical assumptions of SDT thus permitting one

to draw conclusions of psychological variables using the parameters. With the additional

response we are able to relax the equal variance assumption usually instantiated for two
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response recognition memory caused by a lack of degrees of freedom. Figure 2.1 displays the

model’s two Gaussian distributions along with the two criteria. It is important to point out

the σ located within the signal distribution. The parameter σ is the standard deviation of the

old stimuli distribution. Since the theory assumes that each signal observation contributes

to the variance of the signal density function, σ must be greater than 1 (Wixted, 1992).

Once again parametric models define a particular set of probability distributions over the two

random variables in Equation 1 for each possible parameter combination. The SDT model

is specified by parameters Θ = (d′, σ, τ1, τ2) where ΩΘ = {(d′, σ, τ1, τ2) : d′ ∈ [0,∞), σ ∈

[1,∞), τ1 ∈ (−∞,∞), τ2 ∈ (−∞,∞)}. An important thing to note here is that when the

SDT model is extended to a UVSDT model, the assumption of a curvilinear receiver operator

characteristic (ROC) curve is no longer valid (Swets, & Tanner, & Birdsall (1961)).

2.4 Basic High Threshold Model

The second model proposed in this paper is based on the double high threshold theory.

As seen in Figure 4, the subject either detects the signal observation (with probability D),

or does not (with probability 1 − D). When a subject does not detect the observation as

belonging to the signal state structure, then the subject makes a decision of whether or not

to guess. The subject chooses to guess with probability α, and if the subject chooses not to

guess (with probability 1−α), then the subject will respond with ”uncertain”. If the subject

chooses to guess then the response would be either ”yes” (with probability γ), or ”no” (with

probability 1− γ). A pictorial representation of this new model can be seen in Figure 4.

This image also shows that a subject uses a new threshold, B, for noise observations. When

a noise trial is presented to a subject, the model would allow the subject to discriminate

that occurrence from the other signal or noise trials stored in memory, (with probability B).
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Figure 2.2: New Double High Threshold Model

If the subject does not discriminate the new item as new, then with the probability α the

subject would guess or with probability 1− α the subject may choose not guess.

Using only one α and one γ for both state trees assumes that their guessing threshold is the

same when they are either in the detect signal state or discriminate noise state. Essentially,

when a subject is not able to correctly detect a signal observation or correctly discriminate

a noise observation then the subject will revert back to the same process of guessing.

The new 3R-2HT model is specified by parameters ∆ = {D,B, γ, α}, with parameter space

Ω∆ = {(D,B, γ α) : D ∈ [0, 1], B ∈ [0, 1], γ ∈ [0, 1], α ∈ [0, 1]}. Once again the direction of

this paper is not to introduce new theories of recognition memory, nor to create new models

with the goal of finding the correct model of recognition. Rather, the aim is to develop new

measurement tools for data that may include an unknown response.

2.5 Comparing both new models

In this section we compare the two new models with three response options designed for

an episodic memory task. The comparison is not intended to support a particular model,
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rather, we aim to describe the two models statistically.

The problem of calculating the closed form expressions remains tractable with a product

trinomial likelihood function. For the sake of brevity, the likelihood functions are here

omitted for these models; however, the reader who wishes to work with the analytical forms

may derive the likelihood functions by substituting terms introduced in Observations 3-4.

The closed form expressions for the four 3R-SDT model parameters are:

d̂′ =
Φ−1(po,1)Φ−1(pn,3)− Φ−1(pn,1)Φ−1(po,3)

Φ−1(po,1) + Φ−1(po,3)
(2.3)

σ̂ =
Φ−1(pn,1) + Φ−1(pn,3)

Φ−1(po,1) + Φ−1(po,3)
(2.4)

τ̂1 =
−2Φ−1(po,1)Φ−1(pn,1)− Φ−1(po,1)Φ−1(pn,3)− Φ−1(po,3)Φ−1(pn,1)

2[Φ−1(po,1) + Φ−1(po,3)]
(2.5)

τ̂2 =
Φ−1(po,1)Φ−1(pn,3)− Φ−1(po,3)Φ−1((pn,1) + 2Φ−1(pn,3))

2[Φ−1(po,1) + Φ−1(po,3)]
(2.6)

where, d̂′ > 0, σ̂ ≥ 1, τ̂2 < τ̂1 and Φ(.) is the quantile function of the Gaussian cumulative

distribution function. We can see that as Po,1 → 1 and Pn,3 → 1, as in the case where

discriminability is increased to obtain near perfect judgments, d′ →∞ and σo → 1.
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The MLE’s for the new 3R-2HT model parameters are:

D̂ =
po,1pn,2 − po,2pn,1

pn,2
(2.7)

B̂ =
po,2pn,3 − po,3pn,2

po,2
(2.8)

γ̂ =
po,2pn,1

po,3pn,2 + po,2pn,1
(2.9)

α̂ =
po,3pn,2 + po,2pn,1

po,2pn,2 + po,3pn,2 + po,2pn,1
(2.10)

where 0 < (D̂, B̂, γ̂, α̂) < 1

Again, constraints on the product trinomial space of the data are imposed out of concern

that the parameters in each model remain within their respective distributions. Formally:
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Observation 3. Φ−1(po,1) + Φ−1(po,3) > Φ−1(pn,1) + Φ−1(pn,3) and Φ−1(pn,1) + Φ−1(po,3) >

Φ−1(po,1) + Φ−1(pn,3) if and only if there is a unique {d′, σ, τ1, τ2} ∈ Ω3R−SDT with

Po,1 = Φ(
d
2

′−τ1
σ

) Pn,1 = Φ(−d
2

′ − τ1)

Po,2 = Φ(
d
2

′−τ2
σ

)− Φ(
d
2

′−τ1
σ

) Pn,2 = Φ(−d
2

′ − τ2)− Φ(−d
2

′ − τ1)

Po,3 = Φ(
τ2− d2

′

σ
) Pn,3 = Φ(d

2

′
+ τ2)

Observation 4. po,1 >
po,2pn,1
pn,2

and pn,3 >
po,3pn,2
p0,2

if and only if there is a unique {D,B, α, γ} ∈

Ω3R−2HT with

Po,1 = D + (1−D)αγ Pn,1 = (1−B)αγ
Po,2 = (1−D)(1− α) Pn,2 = (1−B)(1− α)
Po,3 = (1−D)α(1− γ) Pn,3 = B + (1−B)(1− γ)α

Clearly the demarcations do not partition the sample space of the data equally for both

models. Generally the model with the larger prediction space is considered too flexible and

in model selection techniques such as the normalized maximum likelihood, it is penalized.

The shared constraints permitted each model the same a priori probability of fitting a pair

{Po, Pn} in the sample space of the data. In return, the correspondence between the model

parameters proved to be essential in showing them to be statistically equivalent. Now, the

current models require stricter boundary conditions on ΩData, which may yield different

a priori probabilities of fit for each model. In fact, we can numerically check the polarity

between the two models on ΩData. To see this, a full grid is used to find every combination of

the product trinomial distribution for different sample sizes. Then, the boundary conditions

imposed on the data space for each model are used to find the region in ΩData that can be fit

by each model. Once again, we find every combination of the product trinomial distribution

using four experimentally convenient sample sizes.

Table 2.3 shows that 3R-SDT can evaluate a larger number of possible data patterns than

3R-2HT. However, a serious problem that is often overlooked is what Green and Swets (1966)
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Table 2.2: The sampled regions pertaining to one, both, or neither model.

N 3R-SDT Only 3R-2HT Only Both Neither
25 14,270 (11.58%) 10,558 (8.57%) 8,462 (6.87%) 89,911(72.98%)
50 247,315 (14.07%) 153,697 (8.74%) 132,991 (7.56%) 1,224,273 (69.63%)
100 4,071,648 (15.35%) 2,288,685 (8.63%) 2,106,780 (7.94%) 18,065,688 (68.09%)
200 66,000,188 (16.01%) 35,109,704 (8.52%) 33,467,041 (8.12%) 277,553,668 (67.35%)

called the knotty theoretical problem in SDT. A lack of monotonicity in the likelihood ratio

can lead to higher FA rates than H rates and lower CR than M rates. This translates to

having more area under the signal distribution to the left of the criterion when compared

to the same region of the noise distribution and is prone to occur when σo > 1. In fact, it

is easy to show that the point, z∗, at which the rate of saying ’new’ to old items is greater

than the rate of saying ’new’ to new items is approached rapidly. Equating the area to the

left of an arbitrary point z∗ for both the new and old distribution we get,
z∗− d

′
2

σo
= z∗ + d′

2

and solving for z∗ we get:

z∗ =
d′

2

1 + σo
1− σo

(2.11)

Solving (11) when d′ = 1 and σo = 2 we see that z∗ = −1.5 which is only 1 standard deviation

away from the mean of the noise distribution. An observation made by Roberts and Pashler

(2000) and evident in our results is that overly flexible models that are able to fit many

different data sets tend to include data sets seen as inconsistent with core assumptions. So

to discard these inconsistencies we reanalyze the complete sample space, ΩData, with the

additional constraint Po1 > Pn1 and Po3 < Pn3.

The permissible number of data patterns available from the complete set is reduced to one

third of its original size. No change in the area of best fit was detected for the 3R-2HT
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and a reduction of about one half to the 3R-SDT’s measurable space. While the models

are not quite the same in their number of best fitted data patterns, there still remains the

question of which data patterns are best fitted by one model alone. Since this question may

be answered through psychological experiments, we will return to it in the next section.

2.5.1 Correlation

With the information provided so far, it is of interest to ascertain whether the parameters

in these new models correlate like those in the basic models. In order to do this we found

the constraints on the data for each model. Without the use of constraints on the data, the

estimated parameters D̂, B̂, d̂′, and σ̂ would not be within the correct range. The theory of

signal detection assumes that the parameter d̂′ has to be greater than 0 otherwise there would

be no information available on a subject’s discrimination index. The theory also assumes

that each signal observation contributes to the variance of signal distribution. Over time this

accumulation of variance should make the parameter σ greater than the standard deviation

of the noise distribution, which is commonly set at 1. To account for these two assumptions

the following equations are the constraints needed:

Table 2.3: Correlation for expanded models

D̂ B̂ γ̂ α̂ d̂′ σ̂ τ̂1 τ̂2 τ̂1 − τ̂2

D̂ 1

B̂ .1543 1
γ̂ .2225 -.3719 1
α̂ .0132 -.0705 -.0410 1

d̂′ .7823 .3013 -.1923 -.0954 1
σ̂ .4218 .0442 -.4543 .1768 .7053 1
τ̂1 -.1176 .4482 -.7975 -.4113 .3056 .3849 1
τ̂2 .0118 .7554 -.6576 .5291 .2073 .3211 .4287 1

τ̂1 − τ̂2 -.1246 -.2044 -.1824 -.8740 .1100 .0847 .5842 -.4827 1

The area between the two thresholds mentioned above, shown as τ1 − τ2, is also used in
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the correlation test. The reason for this is that this area of uncertainty is analogous to the

probability that the subject enters the guess state or not in the threshold model because in

both cases there is not enough information to make a correct judgment. This interpretation

is supported by the strong correlation found in Table 2.4.

It is interesting to note that the correlation found between D and d′ is strong but not as

strong as the basic model comparison. The drop in correlation can be attributed to the

inclusion of the parameter B because the latent measure D represented both the instance

when old items were correctly identified as old and when new items were correctly identified

as new. Now, this conglomeration of latent abilities has been separated, thus reducing the

relationship with the SDT model’s discrimination parameter. Another aspect of this table

that is interesting is the correlation between the B parameter and τ2; by referring back to

Figure 2.1 one can note that the τ2 cut-point is located closest to the noise distribution.

Thus whenever a subject passes the uncertainty threshold towards correctly identifying a

noise stimuli, this is similar to the B parameter that gives the probability a subject is able

to discriminate the noise stimuli from the rest of the signal stimuli.

2.5.2 Hierarchical Model Framework

A hierarchical modeling framework is adopted to allow for individual differences among

the parameters of each model. The hierarchical framework provides an intuitive method of

including person-specific latent variables by defining population distributions on the parame-

ters. The choice of population distributions reflects important theoretical assumptions made

by each model, and must be consistent with the range set forth by model specifications. We

begin by defining the population distributions and their hyperparameters for the 3R-SDT

followed by the 3R-2HT.

For the new 3R-SDT, the Gamma distribution function is assigned as the population distri-
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bution for the memory sensitivity parameter, d′i ∈ [0,∞). The gamma distribution function

is parameterized by a shape parameter αd′ and rate parameter, (i.e inverse scale parameter)

βd′ both of which are expressed on R+ and are not subject dependent. The population

probability density function for d′i is:

f(d′i, αd′ , βd′) =
β
αd′
d′

Γ(αd′)
d
′αd′−1
i e−βd′d

′
i

where Γ is the gamma function i.e. Γ(n) = (n− 1)! and e is Euler’s number.

For our purpose, characteristics of the population such as the mean, µd′ and variance σ2
d′ are

more meaningful. These statistics are functions of αd′ and βd′ such that:

µd′ =
αd′

βd′

σ2
d′ =

αd′

β2
d′

By rearranging the terms and substituting them into the gamma distribution function, we

arrive at:

d′i ∼ Gamma(
(µd′)

2

σ2
d′

,
µd′

σ2
d′

) (2.12)

Given that the inverse-gamma distribution is known to be the conjugate prior of the variance

parameter of a normal distribution, we assign the signal distribution’s standard deviation,
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σoi ∈ [1,∞), an inverse-gamma distribution function.

f(σ′i;ασ, βσ) =
βασσ

Γ(ασ)
σ−ασ−1
i e

−βσ
σi + 1

The function is shifted to the right by one to satisfy model specifications posed by the theory

of 3R-SDT. Again, the mean and variance of the distribution is calculated and solved for

the inverse gamma distribution parameters:

µσo =
βσ
ασ

varσo =
β2
σ

(ασ − 1)2(ασ − 2)

σoi ∼ Inverse-Gamma(
(µσ)2

σ2
σ

,
µσ
σ2
σ

) (2.13)

To include person specific model parameters for the 3R-SDT model’s two threshold param-

eters, we must consider the range over the R permissible for each criterion. Since the theory

does not restrict the thresholds to a closed interval, the values are drawn from two Gaussian
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distributions with {µτ1 , µτ2} and {στ1 , στ2}.

τ1i ∼ Gaussian(µτ1 , στ1)T(τ2,∞) (2.14)

τ2i ∼ Gaussian(µτ2 , στ2) (2.15)

Model specifications restrict the values of τ1 > τ2 so T is used to truncate τ1’s distribution

to values greater than τ2.

A long-standing property of threshold models is the unit interval distribution on the param-

eters. The beta distribution function is a reasonable choice so long as the desired analysis

does not include correlation between the parameters. However, a simplifying assumption has

been to coalesce Di and Bi into a single ability parameter without loss of generality. Here

we test this by means of Pearson’s r correlation to show the strength of a linear relationship

between the two parameters. To remove the need for a two step approach of estimating the

parameters followed by correlating them to each other, the hierarchical approach provides

a natural method of involving covariate information in the model. In order to avoid prob-

lems of overestimation caused by using the beta probability distribution (Oravatz, Anders,

Batchelder, 2013), we use the bivariate Gaussian probability distribution function.

This is possible since the integral transform theorem proves that any continuous normal

probability distribution with mean and variance, {µ, σ2}, respectively, can be converted to

a uniform distribution in [0,1]. This is usually done with a link function such as the logit or

probit. To remain consistent, we chose the quantile function associated with the Gaussian
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probability distribution function.

Φ−1(Di)

Φ−1(Bi)

 ∼ Bivariate-Normal(µ(D,B),Σ(D,B)) (2.16)

where Σ(Di,Bi) is the covariance matrix of person-specific ability parameters (Di, Bi) and

Φ−1(·) is the inverse cumulative Gaussian distribution function, i.e., the probit function.

The remaining parameters of the new 2HT are not assumed to covary, so the choice for their

probability distributions functions is simply:

Φ−1(γi) ∼ Normal(µγ, σγ) (2.17)

Φ−1(αi) ∼ Normal(µα, σα) (2.18)

where once again Φ−1(·) is the quantile function of the cumulative Gaussian distribution

function (i.e. the probit function).

2.6 Experiment

The discussion so far has focused on describing the new models and their relationship to

each other. To relate these model predictions to psychology we collected data from two
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experiments. A well-documented result of recognition memory testing is the counterintuitive

mirror effect with varying linguistic frequency conditions. The mirror effect refers to results

obtained from varying extra-experimental conditions such as word frequency, where the hit

rate increases and the false alarm rate decreases due to a change in one condition.

While the effect has been noted using other experimental manipulations (Glanzer & Glanzer;

Stretch & Wixted, 1998), we will focus on results obtained from a change in linguistic

frequency and refer to it as the word frequency effect (WFE). The WFE is characterized

by better performance of low linguistic frequency (LF) words than high linguistic frequency

(HF) words (Gorman, 1961; Shepard, 1967). This result has been observed so frequently

it has been described as an empirical regularity of recognition memory (Glanzer, Adams,

Iverson, & Kim, 1993).

Many theoretical explanations have been proposed for the WFE. For example, Shiffrin &

Styevers, (1997) proposed that HF words may be made up of less distinctive lexical features

which presumably adversely affects the memorability of a word. This assumption was tested

by Malberg et al. 2002, when they examined the responses of a yes-no recognition memory

test designed to vary a low order measure of orthographic features. Malberg et al reported

that words composed of less frequently used letters were better recalled than words containing

more frequently used, letters as predicted by Shiffrin & Styevers (1997). However, Malberg

et al. also noted that when orthographic features were controlled in LF and HF words, the

mirror effect was still evident, suggesting that orthographic features may not sufficiently

account for the phenomenon.

Our interest in WFE is not to contribute to the ever expanding list of theoretical explana-

tions, rather it is to attain some insight into latent memory processes underlying the WFE

by using more complete quantitative models. We begin by expanding the standard exper-

imental conditions to include a third response category. The additional response category

is sufficient to allow the estimation of two more parameters for each model, as previously
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described.

2.6.1 Subjects

Forty-nine college-aged undergraduates from the University of California, Irvine were re-

cruited from the university’s psychology department subject pool. Subjects received course

credit in exchange for their participation in the experiment. All 49 subjects participated in

two experiments 1.A and 1.B.

2.6.2 Design

The study consisted of a within subject design where each subject studied, for later testing,

both low frequency words and high frequency words. Neither the researcher nor the subject

were made aware of which frequency list would be presented first. For each subject a random

subset of words from each list was chosen to be used for the study list. No two subjects

studied the same list of words.

2.6.3 Stimuli

Two word lists (low and high frequency word lists) were taken from the MRC psycholinguistic

database (Coltheart 1981). Each list consisted of 80 nouns with each word containing five

to eight letters. The average written frequency of the lists was 4.125 and 36.425 for the low

frequency and high frequency word lists, respectively (Kucera and Francis 1967). Forty words

from each list were randomly sampled and assigned to each subject without replacement for

the studied list and the remaining 40 were assigned as lures for the same cycle.
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2.6.4 Procedure

At the beginning of the experiment each subject was instructed to sit in front of a computer

monitor approximately 2 ft away. At the start of the experiment subjects were told that

during the study phase a single word would appear in the middle of the screen. The partici-

pant had as much time as they needed with each word. In order to move onto the next word,

every subject was told to press the space bar. As a precaution, the program was designed

to lock the keyboard keys for one second after the presentation of the word. This was the

same for all 40 words in both study phases.

On the test phase, subjects were presented with 80 words. Each randomly chosen word was

situated in the middle of the screen until the subject pressed a key on the keyboard. Each

subject was asked to indicate whether the word being presented belonged to the study list

by pressing the V key on the keyboard. If the word was not previously seen, they were asked

to press the N key. Finally, the subjects were informed that if they were uncertain a word

was previously presented, they where allowed to indicate ”don’t know” by pressing the B

key on the keyboard. A notecard was placed in front of each subject with these key codes

for response types. The test phase did not have the 1 second restriction placed on the keys

in the study phase. After finishing the first study-test phase, subjects took 5-minute break

before returning back for the second recognition test.

2.6.5 Bayesian Estimation Inference

The data is analyzed using the hierarchical models with a Bayesian Estimation inference

approach. In the last decade it has become an increasingly popular approach to estimating

hierarchical cognitive models, e.g. Lee & Wagenmakers (2014). The contemporary approach

is adopted to facilitate the estimation of model parameters from the hierarchical frame-

work. While classical approaches such as maximum likelihood exist, the statistical inference
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techniques do not provide a straight forward method of estimating the parameters of a hi-

erarchical model. In fact, as noted earlier, not all integrals over the data have closed-form

solutions so the results would require the use of finite sums.

The advantage of using Bayesian Estimation techniques is the avoidance of high-dimensional

integration over many random-effect distributions. Furthermore, information about the pos-

terior distributions of the parameters is readily available thus adding a greater degree of

confidence by providing credible intervals. Careful consideration for the choice of each pa-

rameter distribution was outlined earlier, using differing boundary conditions on the sample

space to avoid biasing model comparison measures in favor of one over the other.

The hierarchical structure becomes transparent with the designation of hyperprior-distributions

for each model parameter’s distribution. We begin once again by defining the hyperpriors

and their distributions for the 3R-SDT model followed by the 3R-2HT model.

The following hyperprior distributions correspond the the 3R-SDT parameters1:

{µd, µσ, µτ1 , µτ2} ∼ Normal(0, 1)

{σd, σσ, στ1 , στ2} ∼ Inverse-Gamma(1, 1)

The inverse Gamma function is the conjugate prior for variance parameters so we assign the

Gamma function to the variance parameter. The hyperprior distribution is uninformative in

the sense that no a priori information is imposed on the parameters (Gelman 2004).

The bivariate normal population distribution is parameterized by the mean vector µ(D,B)

and the covariance matrix Σ(D,B). We fix the µ(D,B) vector at ([0, 0]) and the covariance

1The priors are not indexed by subject or item since the person-specific parameters are draws from the
population distribution.
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matrix is modeled using the inverse-Wishart function.

Σ(D,B) ∼ Inverse-Wishart(I,df)

where I is the identity matrix.

The remaining hyperpriors are normally distributed with mean zero and variance 1. The

model code used in JAGS for both models is in the appendix.

2.7 Results

The average response proportions obtained for the LF and HF conditions are presented in

Table 6. Along with response proportions, the p-values of t-tests are presented on the far

right column. The t-test was conducted without controlling for multiple comparisons. The

response proportions show the expected patterns for the mirror effect: the probability of

correctly identifying an old word for the LF condition is higher than for the HF condition

and the probability of incorrectly identifying a new HF word is higher than for the LF

condition.

Table 2.4: Average Response Proportions for LF and HF Words (SD).

Low Frequency High Frequency p
po,1 0.7574 (0.1344) 0.7144 (0.1445) 0.0100
po,2 0.0761 (0.0894) 0.0830 (0.0780) 0.4269
po,3 0.1665 (0.1260) 0.2027 (0.1464) 0.0199
pn,1 0.0936 (0.0914) 0.1106 (0.0923) 0.2027
pn,2 0.1277 (0.1448) 0.1537 (0.1573) 0.1553
pn,3 0.7787 (0.1696) 0.7356 (0.1774) 0.0658
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A test of individual differences was conducted to confirm the move towards using a hier-

archical version of the model. It is standard practice to aggregate subject responses if the

assumption of homogeneity is met so to check this, we use a permutation test for individ-

ual differences (Smith & Batchelder, 2008). The chi-square test of independence for both

data sets are: χ2(df=48,.01) and χ2(df=48,.01). The results indicate strong evidence against

aggregating participant responses.

2.8 Conclusions

Recognition memory experiments based on varying degrees of linguistic frequency often show

a paradoxical finding that HF words are less likely to be recognized than LF words. This

finding was replicated in our experiments using three response categories rather than the

usual two. Although the difference in misidentification of new words was not significant, the

data exhibited the quintessential mirror effect pattern. The purpose for the experiment was

to allow the updated versions of both theories to provide insight into the latent processes

occurring for both low and high frequency lists and to showcase the similarities between them.

A finding shared by both models is that the mirror effect is not a function of individual bias

but rather a function of the memory sensitivity.

The 3R-2HT model demonstrated that a change in linguistic frequency did not greatly

alter a subject’s bias to respond old or new. Thus any bias held by a subject on the first

experimental condition remained the same on the second condition. Now, in the study by

McCormack & Swenson (1972), SDT was used to determine if their data agreed to normality

and homogeneity properties of SDT. In their analysis, they found that for both linguistic

frequency conditions the signal distribution was more variable than the noise distribution.

Although they relied on the model with two (rather than three) parameters, they were able

to find this result by checking the slopes of the memory operator characteristics. In our
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current version of 3R-SDT, we also find that the two conditions are best represented with

different variances on the signal distributions.

Using a signal detection theory (SDT) model, Stretch & Wixted (1997) examined through

a series of five experiments the hypothesis that a change in criterion is responsible for the

differences in response characteristics between LF and HF, and determined this hypothesis

was not supported. Stretch and Wixted concluded that an increase in incorrect recognition

of new HF words might be caused by a higher sense of familiarity as predicted by Glanzer

& Bowles (1976). A look at Stretch & Wixted’s experimental procedure reveals that their

design involved presenting the two different list of words at the same time in both the study

and test phase. It is possible that by combining the two lists, a participant may be using the

same fixed criterion. In order to account for this possibility, the current experiment presents

the lists separately to participants.

Whether a person’s ability of detecting a signal is caused by interference of highly associated

words, such as those in the high frequency list, cannot be extrapolated from Do. The

reason for this is that the memory traces stored during the study are either interfering

with each other, or the scope of common words embedded in our memory itself is causing

interference. If the words stored during the study trial are interfering with each other’s

chance of being detected then the discrimination of new words should not be affected by word

frequency. If, however, HF words share higher associations with other common words then

the discrimination of new words should show an effect contingent on linguistic frequency. The

results show a lower ability to discriminate new HF words. This suggests that interference

is not based on the commonality between HF words in the list but rather the relationships

rooted in our memory for common words.

Furthermore, the standard deviation parameter in SDT does not readily provide information

about the latent processes without assumption, but paired with the d′ parameter, it can show

a more succinct story. The signal distribution pertaining to low linguistic frequency words
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is centered on the mean much closer than the signal distribution for the high linguistic

frequency list. The larger variance in the signal distribution for the FH list and smaller d′

value suggests that it is harder to differentiate the signal from the noise for high frequency

words compared to words with low frequency. Note that this difficulty does not mean that the

strength of the memory trace is diminished with increased linguistic frequency. Instead, SDT

limits the comparison to relative strengths of the signal distribution to the noise distribution

across conditions.

A common feature of these proposals is that familiarity of HF words negatively impacts

recognition performance. It is conceivable that a decrease in recognition performance for

common words depends on a decision process adopted by our memory system. An immediate

consequence of this notion is the possibility that a decision for LF and HF words depend on

two distinct decision criteria.

Although it is not feasible to measure the level of familiarity each word has in episodic

memory, it possible to analyze recognition performance using two quantitative models often

used in conjunction with episodic memory experiments. By using an augmented 2HT model,

we can test the assumption that performance on foil HF words, independent of performance

of old HF words, is influenced by greater familiarity of HF words. Support would be shown if

a greater reduction in the independent recognition performance of new words were to occur

for HF words compared to LF words. As mentioned above, the SDT model has been used to

test the hypothesis that a change in criterion is responsible for the mirror effect. While the

hypothesis was not supported, it is possible that a decrease in performance for old HF words

is a result of greater episodic familiarity of old HF words. With an augmented SDT model,

we can test the assumption that a broader range of familiarity strengths negatively influences

recognition of old HF words. If so, the results should show a more diffuse distribution of old

HF words in addition to a smaller discrimination index, rather than a criterion shift.
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Chapter 3

A Cognitive Psychometric Model for

the Psychodiagnostic Assessment of

Memory-Related Deficits

Clinical tests used for psychodiagnostic purposes, such as the well-known Alzheimer’s Disease

Assessment Scale, cognitive sub-scale (ADAS-Cog), include a free recall task. The free recall

task taps into latent cognitive processes associated with learning and memory components of

human cognition, any of which might be impaired with the progression of Alzheimer’s disease.

A Hidden Markov Model of free recall is developed to measure latent cognitive processes used

during the free recall task. In return these cognitive measurements give us insight into the

degree to which normal cognitive functions are differentially impaired by medical conditions

such as Alzheimers disease and related disorders. The model is used to analyze the free

recall data obtained from healthy elderly participants, participants diagnosed as having mild

cognitive impairment, and participants diagnosed with early AD. The model is specified

hierarchically to handle item differences due to the serial position curve in free recall as well

as within group individual differences in participants recall abilities. Bayesian hierarchical
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inference is used to estimate the model. The model analysis suggests that the impaired

patients have: 1) long-term memory encoding deficits; 2) short-term memory retrieval deficits

for all but very short time intervals; 3) poorer transfer into long-term memory for items

successfully retrieved from short-term memory; and 4) poorer retention of items encoded

into long-term memory after longer delays. Yet, impaired patients appear to have no deficit

in immediate recall of encoded words in long-term memory or for very short time intervals

in short term memory.

3.1 Introduction

The most notable symptoms associated with Alzheimer disease (AD) are the impairment

of memory related cognitive functions (Hodges, Salmon, & Butters, 1992; Nebes, 1992).

Often these symptoms go unreported until those suffering from AD are either pressured

by family into getting tested or their level of impairment causes disruptions in their daily

lives. Unfortunately, by the time the impairment has affected their daily lives there is little

chance of improvement, making early detection of AD much more crucial. To assess memory

related cognitive functions clinicians have adopted the use of cognitive tests developed by

memory researchers. In return these cognitive tests have given clinicians the opportunity of

diagnosing earlier stages of AD, which allow for early interventions that afford patients more

control over the progression of AD.

A prominent cognitive test used by medical doctors to measure memory related deficits is a

free recall task. The design of the task involves a study trial, where words are sequentially

presented to the participant; followed by a test trial where the participant is asked to recall as

many of the presented words as they can. Despite its simplicity, the free recall task provides

a way to test the strength of a participants episodic memory for familiar words presented

on a study trial. A U-shaped serial position curve is often observed from the recall behavior

68



in a free recall paradigm, where words presented at the beginning and end of the study-list

have a higher probability of being recalled than words in the middle of the list (Murdock,

1962). The two peeks of the U-shape are commonly referred to as the primacy and recency

effects, respectively.

Generally, two different cognitive processes are assumed to underlie these effects. For the

primacy effect, the increased recall probability is assumed to be due to an additional amount

of rehearsal time allotted for encoding into a long-term episodic memory (LTM) system

(Rundus, 1971). During this additional time, words presented at the beginning of the study

list have fewer competitors to rehearse and encode than words presented later in the study

list. Additionally a shared characteristic of words that are successfully encoded into LTM is

a recall probability that decays slowly over time. As for the recency effect, words toward the

end of the study list do not have the extra time available for rehearsal before the test-trial is

administered, so the augmentation in their recall probability is thought to be a function of

a different system. Namely, words toward the end of the study list may be in a temporary

memory system that affords direct access for recall. This system is often referred to as the

short-term memory (STM) storage, and words in the STM have recall probabilities that

decay rapidly with time. Thus in the STM, words whose proximity is closest to the test

trial are more likely to be recalled than items further away from the test trial. Therefore,

the recency effect is thought to be a function of STM (Howard & Kahana, 2001). This

interpretation is supported by studies where the period between study and test is occupied

with a distracting task (Bjork & Whitten, 1974). In this case, words at the end of the study

list do not show a recency effect and may result with lower recall probabilities than for words

presented earlier in the list.

A widely used test to assess AD related deficits is the Alzheimer’s Disease Assessment Scale:

Cognitive subscale (ADAS-Cog; Chu et al., 2000; Graham et al., 2004). The ADAS-Cog

includes a free recall subtest administered to patients as part of their assessment. The goal of
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this paper is to provide a new, model-based assessment method to analyze data in the ADAS-

Cog free recall task. For this purpose, the paper develops a cognitively grounded Hidden

Markov Model (HMM). The remainder of the paper will be as follows. The next section will

review a few operationally defined methods that clinicians have used for analyzing specific

latent memory processes in free recall with the progression of AD. This review prompts

the need to establish a formal cognitive psychometric model that combines known memory

theory to assess the latent processes associated with the free recall task. To do so, the next

section will provide specifications and predictions of our model. Next, a method section

will provide a description of the research design and data gathered from three groups of

participants by the Alzheimers Disease Neuroimaging Initiative (ADNI) using the ADAS-

Cog free recall task. In the same section, estimation theory of our model will be presented.

Following these sections, preliminary results will provide evidence showing the need for a

modification of the model to further facilitate its use in clinical assessment. Finally, there is

a discussion of the results and conclusion.

3.2 Clinical Assessment Using Free Recall Data

An important aspect of using the free recall paradigm in populations showing memory deficits

is the finding that serial position effects are sensitive in differentiating healthy participants

and those suffering from dementia (Egli et al., 2014; Howieson et al., 2011). For example,

testing patients with AD related deficits has revealed significant decline in the primacy

effect (Capitani et al., 1992; Gibson, 1981). This decline is supported by known LTM

deficits associated with the progression of AD and is thought to be due to an impairment

of encoding items into LTM. A standard operational method used to measure LTM related

processes from the primacy effect is simply to calculate the proportion correct on the first

few items in a study list. Researchers are then able to test whether there is a significant
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difference between healthy and AD participants using conventional statistics such as the

analysis of variance (ANOVA).

While the proportion correct for some items at the beginning of the list has been used as a

proxy for LTM strength, other methods have been proposed. A systematic approach using a

Selective Reminding Test involves measuring LTM by counting the number of words contin-

ually retrieved without further presentation (Buschke, 1973). While this method involves an

experimental manipulation different from that of the ADAS-Cog, there have been cognitive

models for the Selective Reminding Test (Kraemer et al., 1983; Wenger et al, 2012). Another

method of measuring LTM abilities stems from studies of STM on the recency effect. Waugh

and Norman (1965) proposed a method that uses performance on the middle words of the

list as a proxy of LTM ability, with the assumption that STM processes do not influence

the words in the middle serial positions. Regardless of the methodology used, overwhelming

evidence for deficits in LTM is reported for patients showing symptomatology of AD (see

Carlesimo & Oscar-Berman, 1992, for a review).

The second latent memory process associated with the serial position curve is retrieval from

a short-term memory system. Similar to the primacy effect, the recency effect is measured

by calculating the proportion correct for a pre-specified number of words at the end of the

study list (Tulving & Patterson, 1968). Unlike the primacy effect, clear evidence of recency

impairment in AD is not always demonstrated. For example, Martin et al. (1985) and Miller

(1971) reported finding a significant reduction in the recency effect for participants with AD

etiology. However a study by Spinnler et al. (1988) found normal levels of the recency effect

for patients showing signs of AD progression when restricting the analysis of the recency

effect to only the last five words. Similarly, Bayley et al. (2000) reported normal recency

effects in AD patients when the analysis only included the last two words. On balance, no

definitive conclusion can be made about the decline in the primacy effect in AD.

Other, more sensitive, methods have been proposed to measure the latent memory processes
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associated with the recency effect. For example, Tulving and Colotla (1970) proposed mea-

suring STM using the performance scores of items with a relatively small distance between

the presentation at study and a recall during the test phase. Results using this procedure

show comparable STM ability for AD patients and healthy participants for the last 2-3 items

in the study list with a significant reduction in STM ability for AD patients on items further

away from the test (Carlesimo et al., 1996, Wilson et al., 1983). Methodological differences

and severity differences may be the reasons behind the variability in results. However, with-

out a standardized procedure, measurement of these latent memory processes is dependent

on the number of words a researcher deems to be part of the primacy or recency effects. By

employing formal cognitive models, cognitive psychologists have focused on modeling latent

memory structures and processes to improve clinical measures of free recall (e.g. Batchelder

et al., 1997; Brainerd et al., 2014). For instance, Batchelder et al. (1997) developed a cog-

nitive model that identified differing cognitive processes underlying the free recall task of

the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD; Fillenbaum et al.,

2008). Batchelder et al. (1997) demonstrated that it was possible with the model to mea-

sure differences between AD and cerebrovascular etiologies using the immediate free recall

portion of the task. Successful applications of other cognitive models for psychodiagnostic

purposes are evident with the many publications of articles in special issues of Psychologi-

cal Assessment (Neufeld, 1998), Journal of Mathematical Psychology (Neufeld & Townsend,

2010), and chapters in special books on clinical modeling (e.g. Neufeld, 2007).

Although improvement has been made using memory based measurement tools for clini-

cal assessment, often clinical tests used for psychodiagnostic assessments use different task

designs that are at variance from those normally used to study memory processes by ex-

perimental psychologists. As discussed in Batchelder (1998), the design of assessment tests,

like the ADAS-Cog free recall task, is structured so that all participants receive exactly the

same test and testing procedure. In contrast, psychological experiments generally control

for possible confounding variables known to cause spurious results since episodic memory is
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sensitive to experimental design. For example, to avoid item effects, words are chosen to be

unrelated to each other and their presentation order on any given study-trial is randomized

over participants. On the other hand, the ADAS-Cog free recall subtest is similar to many

other clinical tests in that every participant receives the same set of ten words over the same

three fixed shuffled order study-trials. The added complexity can be problematic for formal

cognitive models attempting to quantify the latent memory processes in the ADAS-Cog free

recall test. Any model attempting to analyze such data would have to distinguish between

underlying signals from noise created by experimental conditions that do not control for

confounding variables.

One solution often used by clinicians is to assume that the added noise occurring from

methodology is constant across all participants and thus the true cognitive ability of a person

can be approximated by a statistic of their observed responses (e.g. normally the number

of correct recalls). In fact, the manual for ADAS-Cog provides scoring rules that create an

aggregate summary score for the free recall subtest to diagnose patients showing early signs of

AD. With the summary score, researchers can then take advantage of statistical models such

as ANOVA to analyze the differences between participant groups. In the results section,

we provide a between group repeated measures ANOVA analysis of ADAS-Cog data (see

Table 2) on the observed recall behavior to show results using a standard statistical method.

Our inclusion of this analysis is designed to point out that summary scores used to quantify

behavior on the ADAS-Cog free recall task not only fail to tap into much of the signal in

the data, but also do not measure the latent cognitive processes underlying the behavior

of those tested on the ADAS-Cog. Instead of analyzing aggregate performance scores, this

paper develops and applies a formal modeling based approach that combines known memory

theory for a more complete assessment of latent memory processes associated with the free

recall task.
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3.3 A Hidden Markov Model for Free Recall

The framework for the model in this paper can be traced back to established cognitive mod-

els designed for list memory experiments. These memory models stem from the class of

models called Hidden Markov Models (HMMs) whose structure involves latent (unobserv-

able) cognitive memory states and observable response sequences. Starting in the 1960s,

HMMs became a popular approach to cognitive modeling that led to a number of models

that successfully fit data in simple memory paradigms such as paired-associate learning and

free recall, (e.g. Greeno & Bjork, 1973; Wickens, 1982). In these memory models, learning

is represented as a function of storage and retrieval processes from latent memory encoding

states.

In the case of a multi-trial memory task such as the free recall task, a HMM model postulates

that on any trial a to-be-remembered item occupies one of a small set of memory states.

Associated with each memory state is a retrieval parameter representing the probability of

a correct recall for any item occupying that state on a test-trial. The role of the study-

trials is to prompt transitions among the memory states through a network of state-to-state

transition probabilities specified in terms of the model parameters. Such a model is called a

HMM because the observable recall/not-recall response sequence for an item over test-trials

does not uniquely identify (hides) the sequence of underlying latent memory states behind

the observed response sequence. For example, an error on a test trial could come from

any of several memory states. The term Markov comes from a class of stochastic processes

where transition probabilities between the states depend only on the current state and not

on previous state transitions.
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3.4 Basic Model Assumptions

The proposed HMM for the ADAS-Cog recall task postulates three memory states corre-

sponding to different levels of episodic memory storage. The first cognitive state is the

Unlearned state (U-State) that represents a state where the participant has not yet encoded

a word into episodic memory. The second cognitive state is the Intermediate state (I-State).

The I-State is analogous to STM. It is a state where a word is encoded at a shallow level,

and the probability of retrieval from that state is expected to decrease rapidly since the oc-

currence of encoding. The third and final state is the Learned state (L-State). The L-State

can be thought of as LTM because it represents a state where an item is fully encoded into

episodic memory and it is expected that the recall probability of words in the L-State is

subject to slow decay.

It is common practice to display a HMM as a graphical representation of nodes and connec-

tions between nodes. The nodes represent model states and the directed connections between

nodes represent transition probabilities. The model is represented pictorially in Figure 1.

The parameter r is the probability that a word in the U-State is encoded into the L-State on

any study-trial. If some encoding occurred but did not result in a transition into the L-State

then, with probability (1 r)a, the word transitions into the I-State. If no transition from

the U-State is made into either of these states then, with probability (1 r)(1 a), the word

remains in the U-State. Now if a word is in the I-State at the start of a study trial it has

probability of making a transition to the L-State, and with probability it remains in the

I-State. Finally once a word is in the L-State, it does not make any further transitions.

The observation recall sequence for the model is the compilation of the recall performance on

each item across the four test-trials of the free recall task. These recall events are generated

probabilistically as a function of the state an item is in on a test-trial. In Figure 1, the recall

probabilities are written inside the nodes for each state. If an item is in the U-State on a
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test-trial there is a zero probability of recall, if in the I-State the recall probability is t for

immediate test trials, and if in the L-State it is l. The model as currently specified has five

parameters, r, a, v, t, and l1, that represent various transition and recall probabilities.

3.5 Adapting the HMM to the ADAS-Cog Task

To adapt the model in Figure 1 to the ADAS-Cog free recall task, three important additional

specifications of the model are needed. First, if an item is in the L-State on any of the three

immediate test-trials, the recall probability is l1; and if an item in the L-State is recalled on

a delayed trial (the fourth test-trial), it has a probability l2 of doing so. Having two recall

probabilities for the L-State stems from memory research showing that a memory trace in

the LTM decays after a delay (e.g. Burgess & Hitch, 2006). Naturally one would expect that

l2 ¡ l1 because of memory decay during the delay before the fourth test trial. Unlike the L-

State, the I-State is a short-term memory system with rapidly decreasing recall probability,

so it is assumed that there is a zero probability of recall on the delayed test trial. Thus the

model assumes that only items in the L-State have a chance to be recalled on the delayed

test trial.

Second, in addition to the transitions made possible during the study-trial, depicted in Figure

1, there is one other way that a state transition can occur in the model. In particular, if an

item is in the I-State on any of the first three study-trials and if, with probability t, it is

successfully recalled on the following test-trial, then a transition to the L-State during the

test trial is possible with probability b, and with probability (1-b) the item remains in the

I-State. This additional transition parameter represents the possibility of learning during

the test-trial which is related to the Testing Effect (Goldstein, 2010) and memory research

in paired associate learning has shown that learning can occur during a test-trial for both

healthy and memory impaired participants (e.g. Bozoki et al., 2006).
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The third additional specification of the model concerns how the parameters are tied to the

presentation order on a study-trial. When models like the one in Figure 1 are applied to

many list memory experiments, a convenient assumption has been to apply the cognitive

processes envisioned by the model to each item independently and with identical values

of the model parameters. The assumption of identical model parameters regardless of the

location of an item in the study list is directly inconsistent with known results provided by

the serial position curve. Consequently, our third modification of the model is to adapt the

model to the variable study list orders by associating the state-to-state transition parameters

and state recall probabilities in Figure 1 with each possible word order position on a study

list. Thus the transition and recall probabilities that apply to any word on a particular

study- or test-trial depend on the location of that word in the study order for that trial.

Since the serial positions for each word change across the study-trials, it follows that any

given word will have different state-to-state transition probabilities on each study-trial and

different recall probabilities on each test-trial depending on its study list position.

This modification means that for each parameter type in the model, with two exceptions,

there is an associated set of ten different parameters, each corresponding to one of the ten

study order positions in the 10-word study list. The two exceptions are on the b parameter

(learning on a test trial) and l2 (delayed recall from the L-State) because neither parameter

is tied to the study list order. However, because the parameter b is a measure of possible

learning effects of each item on a test trial, the parameter is indexed by item rather than

list order. Consequently there are also ten possible values for the parameter b. The purpose

of these generalizations of the model in Figure 1 is to allow the storage probabilities and

recall probabilities to reflect the cognitive processes behind the serial position curve discussed

earlier. For example, we would expect the r parameter for storage in the L-State in Figure

1 to be higher for a word presented in a position at the beginning of the study list than at

the end because of the extra amount of encoding time. Additionally, we would expect the

recall probability t from the I-State to be higher for words studied at the end of the list due
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to their proximity to the test-phase.

3.6 Methods

Data used in the preparation of this article come from the Alzheimers Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 by the National

Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-private partnership. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission

tomography, other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and early AD.

For current information, see www.adni-info.org.

3.6.1 Participants

ADNIs first longitudinal study (ADNI-1) recruited 744 participants from 50 sites in the

United States and Canada. Participants enrolled in ADNI-1 were between 55 and 90 years

of age. Normal control participants, (N = 205), had no memory complaints, a Mini-Mental

State Exam (MMSE; Folstein, Folstein, & McHugh, 1975) of 24-30, a Clinical Dementia

Rating (CDR) of zero, non-depressed, non-MCI, and non-demented. MCI participants, (N

= 362), have had a memory complaint by the participant or their partner, MMSE 24-

30, objective memory loss based on education adjusted scores on the Wechsler Memory

Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other

cognitive domains, preserved activities of daily living, and non-demented as determined

by the site physician at the time of screening. Mild AD participants, (N = 177), had
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MMSE scores between 20-26, CDR of 0.5 or 1.0, and met the criteria established by the

National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and

the Alzheimers Disease and Related Disorders Association (ADRDA) known as the NINCDS-

ADRDA criteria for probable AD.

3.6.2 Materials and Procedure

ADAS-Cog was developed in 1983 (Mohs, Rosen, & Davis, 1983) and revised in 1997 (Mohs,

et al., 1997) in order for trained personnel to assess cognitive functions affected during the

dementia stage of AD using a single, aggregate summary score. The 11 subsections used

by ADNI-1 (in no particular order) are: 1) orientation to date and time; 2) constructional

praxis; 3) following commands; 4) following multistep instructions; 5) object naming; 6)

ideational praxis; 7) spoken language; 8) word finding; 9) word recognition; 10) immediate

and delayed free recall; and 11) delayed recognition memory. The data obtained from a

10-word list immediate and delayed free recall tasks is used for the current analysis.

The immediate free recall task has three study-trials where ten words are presented to the

participant one at a time on a white index card. During the first study-trial, participants

were instructed to read each individual word and to repeat it aloud. After the ten words

were studied, the participants were asked to recall the words just presented to them, in any

order, within a 2-minute window. The administrator of the ADAS-Cog would then record

each word correctly recalled by the participant. This procedure was repeated two more

times with the same ten words but with different presentation orders. Each participant

received the same instructions and the same material. See Table 1 for the list of ten words

and their presentation order on the three study-trials. After the three study-test trials, two

intervening tasks were administered followed by the Delayed Recall task. The two intervening

tasks tested the participants ability to follow commands and constructional praxis. Neither
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Order Trial 1 Trial 2 Trial 3
1 Butter Pole Shore
2 Arm Letter Letter
3 Shore Butter Arm
4 Letter Queen Cabin
5 Queen Arm Pole
6 Cabin Shore Ticket
7 Pole Grass Engine
8 Ticket Cabin Grass
9 Grass Ticket Butter

10 Engine Engine Queen

Table 3.1: Studied Words in the Order Presented to the Participants on Each of the Three
Study Trials

intervening task had any common elements with the word recall task. The Delayed Word

Recall task tested the participants ability to recall words after intervening tasks. The task

required that each participant recall the ten words studied during the three study-trials after

a delay of approximately five minutes.

3.6.3 HMM Equations

Discrete trial HMMs are traditionally specified with matrices representing state-to-state

transition probabilities, an initial starting state probability vector, and a vector representing

state-to-observable response probabilities (e.g. Wickens, 1982). For our current model, two

transition operators are required for the proposed design. The first transition matrix, , in

equation 1, designates the possible transitions on a study-trial from one of the row states

into one of the column states.

The subscript, i, on the parameters refers to the ith study list position on a study-trial,

since there are different transition probabilities for each study list order position. Without

the study list order subscripts, the transition matrix in equation 1 is just another way of

representing the transition probabilities in Figure 1. Note that we have added a column
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vector of recall probabilities, given the row state, to the right of the transition matrix, . The

two recall probabilities in the L-State correspond to the immediate test and the delayed test.

The second state-to-state transition matrix, Γ, found in Equation 2, is used to account for

the possibility of learning on a test trial.

Unlike the first transition matrix, T , which covers transitions on any one of the three study-

trials, Γ covers possible transitions during any one of the three immediate test-trials. Such

test-trial transitions are only possible when an item is in the I-State at the beginning of a

test-trial, and with probability tibk the word k at position i transitions into the L-State after

the test phase. This probability represents the joint probability of recalling an item located

in the I-State and transitioning to the L-State on the test-trial. In the proposed HMM, this

is the only process that results in learning during the test trial.

To complete the HMM and obtain the equations needed for statistical inference using the

likelihood function of the model we designate the initial start vector of state probabilities

before the first study trial as Λ = [0, 0, 1], which indicates that every item is assumed to be
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Figure 3.1: Hidden Markov model with the state-to-state transition and state recall over the
three latent memory states. State-to-state transition probabilities are written next to the
arrows and recall probabilities are written in the circles that represent states.

in the U-State before the first study trial. Now, it is a property of the HMM structure that

the probabilities of every sequence of observable responses (recall success or failure) can be

obtained by suitable matrix operations on the start vector, transition matrices, and recall

vector, e.g. Wickens (1982). There are sixteen possible sequences of observable responses for

each of the ten words. For example, it is possible for a participant to fail to correctly recall

a word on all four test-trials (0000) or recall that word for all four trials (1111), or anything

in between. The observed recall performance sequence for each participant and each word

constitutes the basic data that will be used to estimate the parameters of the model.

3.6.4 Hierarchical Bayesian Inference

A central task of psychological assessment focuses on the evaluation of the individual pa-

tient’s performance or lack thereof. While many cognitive based models are in the service of

studying memory related functions at the group level (see Batchelder, 1998, for a review), a

resolution towards analyzing individual performances is needed for psychodiagnostic assess-

ments. One standard method to augment a statistical model to handle individual differences

is to make it hierarchical. The approach makes the assumption that every participant’s pa-

rameters are a sample from a hierarchical population distribution with its own parameters
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that provide a mean and variance. Given a group of people classified with similar sympto-

mology, estimation of population level latent variables can shed some light on the disorder.

For example, given the three groups of participants in the current study, clinicians may be

interested in knowing the average latent ability associated with encoding into a long-term

storage system for each stage of memory impairment. In addition, the approach of making

the model hierarchical allows the analysis for individual participants within a group.

The use of Bayesian based inference for parameter estimation in hierarchical models is an

established practice in statistics, e.g. Bernardo and Smith (2000). In the last decade it

has become an increasingly popular approach to estimating hierarchical cognitive models,

e.g. Lee and Wagenmakers (2013). The advantages over classical likelihood based analysis

are both practical and conceptual (Gelman, et al., 2013). From a pragmatic point of view,

easily available software such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) and

JAGS (Plummer, 2011) allows users to estimate complex cognitive models with relative ease.

At the conceptual level, Bayesian statistical inference facilitates the augmentation of formal

mathematical models to include hierarchical assumptions to estimate participant parameters.

By augmenting the model to include hierarchical assumptions and adopting the Bayesian

statistical inference framework, we sidestep many problems posed by classical likelihood

methods such as the assumption that the data constitute a large sample of independent and

identically distributed observations.

In order to apply hierarchical Bayesian estimation to the HMM, we augment each parameter

to have a hierarchical distribution, where individual participant parameters are drawn from

a population distribution specific to each parameter. A popular hierarchical population

distribution used by statisticians is the Gaussian distribution with mean µ and precision

1/σ2 hyperparameters. Of course, values sampled from the Gaussian distribution are on

the real line, so for our application values drawn from a Gaussian distribution will require

a transformation to the probability space of (0,1). A common transformation that takes

83



values on the real line to values in probability space is the inverse-probit transformation

(Gowans, et al., 1989). A graphical model of the hierarchical HMM is presented in Figure

2. Graphical models are helpful to conceptualize the hierarchical structure of the model

using nodes and edges corresponding to random variables and their statistical relationship

to each other, respectively (Lee & Wagenmakers, 2013). Typically, square nodes indicate

discrete variables and circular nodes represent continuous variables. A single border on a

node represents stochastic variables and nodes with a double border are deterministic. The

shaded nodes represent observed values and replications of portions of the graph structure

are enclosed within rectangles.

For the current application, draws from a distribution for the mean and precision of the

Gaussian hierarchical distributions are on the real line and on the positive half, respectively.

We selected the hyperprior for the mean, , to be normally distributed with the mean and

precision set at 0 and 1, respectively. This hyperprior is exactly the distribution of the probit

of an uninformative uniform distribution on the probability space (0,1). For the precision

hyperparameter, a Gamma distribution is used with scale and shape hyperpriors set at 5 and

5, respectively. The use of uninformative hyperparameter distributions is selected so that

before evidence of the data, no parameter value is expected to be more likely than any other

value, thus allowing the data to drive the posterior parameter distributions rather than our

prior beliefs.

The supplementary material provides the equations for the sixteen response patterns for each

of the ten words along with the model likelihood function written in terms of JAG’s code.

The analysis of the hierarchical model in JAGS used 4 chains of 1,000 samples each with

a burn-in of 500 samples. A collective total of 2,000 samples were retained for the current

analysis. For a detailed explanation of MCMC sampling, see Gelman et al., (2013). In the

results, the reported means over participants of each parameter will be presented in the

figures on the natural probability scale rather than on the real line. To obtain the mean of a
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particular parameter in (0,1), first an inverse probit is taken of each draw for that parameter

from the hierarchical Gaussian, and then the posterior mean and standard deviation of these

transformed draws are presented in the figures.

3.7 Results

Before analyzing the recall data with the HMM, it is useful to inspect several aspects of the

data. Figure 3 provides the group average recall probabilities for each of the ten words and

four test-trials in each of the three groups. The most obvious fact about these plots is that

performance decreases across the three study groups. In addition the bar plots for Trial 1

in Figure 3 tend to reveal the expected form of the serial position curve. The remaining bar

plots in Figure 3 for the other trials illustrate the effects of the staggered order of words in

the study-trials. For all three participant groups, the U-shaped serial position curve is not

evident after the first test trial. By changing the presentation order of the words in the study

list for the second and third trials as shown in Table 1, words may no longer be governed by

the same STM and LTM processes affecting them on the first trial. Consequently, there is

no reason to expect the U-shaped serial position curve on those trials.

Although the bar plots for Trial 1 tend to show the expected serial position curve, there are

noticeable exceptions, with the largest being in position seven. The word ‘Pole’ in position

seven on the first study-trial has consistently higher recall probabilities than its neighbors

for all three-study groups. For some reason, ‘Pole’ is more memorial than its neighbors in

the context of the particular words and word orders that are fixed for all participants in

the ADAS-Cog task. Violations of the expected serial position curve such as for item 7

are a likely consequence of the fact that the ADAS-Cog task does not counterbalance the

assignment of words to study positions as is done in most experimental studies of free recall.

This is an example of one of the difficulties in applying cognitive models to data from clinical
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Figure 3.2: The aggregate recall probability for (A) healthy, (B) mild cognitive impairment
(MCI), and (C) Alzheimers disease (AD) participants for each word over the four trials. The
words are positioned to reflect their assignment during the three study trials, and the fourth
trial matches the first trial order.

assessment batteries (see Batchelder, 1998). Then if every participant receives the same set

of words in the same order, like in the ADAS-Cog test, specific item effects may become

evident such as the word ‘Pole’ in the ADNI data.

3.7.1 Standard ADAS-Cog Analysis

Next we examine the recall data by employing standard statistical tests on the aspects of the

data that are suggested by the ADAS-Cog manual. Table 4 shows the results of a split-plot

repeated measures ANOVA (Kirk, 1968, pp. 248-251). The repeated measures factor was

the recall trials for the Healthy, MCI and AD groups, and the dependent variable was the

number of correctly recalled words. Group and trial main effects and group trial interac-

tion effect significantly influenced word recall performance (p ¡ .01), such that increasing
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Source SS df MS F Prob ¿ F
Between subjects 12718.29 743 – – –

Group 5878.33 2 2939.16 318.41 ¡0.01
Subjects w/in Groups (error) 6839.96 741 9.23 – –

Within subjects 6266.26 2232 – – –
Trial 3115.31 3 1038.44 869.13 ¡0.01

Group Trial 495.00 6 82.50 69.05 ¡0.01
Trial Subjects w/in Groups (error) 2655.95 2223 1.19 – –

Total 18984.54 2975 6.38 – –

Table 3.2: Split-Plot Repeated Measures Analysis of Variance (ANOVA) of the Number of
Words Recalled in Each of the Four Trials by Impairment Group

severity results in lower numbers of correctly recalled words; especially on the delayed recall

trial. The effect size for Group was calculated using eta-squared, , which by conventional

standards is considered large. One difficulty with this type of analysis is with the aggrega-

tion of word recall into a single score. Aggregate scores do not offer much insight into the

psychological differences underlying the three groups. While the ANOVA model provides

useful information, it does not indicate whether normal aging, MCI or AD differentially in-

fluences particular cognitive processes that underlie the performance on different words in

the aggregate score.

3.7.2 Participant Heterogeneity

To test participant heterogeneity in light of possible item heterogeneity, a nonparametric

Monte Carlo permutation test in Smith & Batchelder (2008) was employed. In that article,

their test was applied to free recall data obtained from a study similar to the ADAS-Cog free

recall task. The test calculates the variance of the participants performance scores on each

of the four test-trials. The permutation test obtains a distribution of these variances under

permutations of the performance data across participants, and this distribution represents

the variability of this statistic under the null hypothesis of participant homogeneity within

a study group. The current application tests the null hypothesis that subject variability
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for the ADAS-Cog data on each trial is what would be expected from random error. A

sample of 100,000 permutations provided a distribution of possible variances of participants

performance scores on each trial under the null hypothesis of participant homogeneity. The

observed variance for each group across the 4 trials and the 95-percentile distribution of

possible variances under the null hypothesis is provided in Table 3. The null hypothesis

of participant homogeneity was rejected because the p-values were outside the .05-level (2-

tailed) for all four trials for all three-study groups, with the exception of the first trial of the

Healthy participant group. The results indicate that it is important to utilize an estimation

method for the HMM that handles random effects on the parameters due to participant

heterogeneity within a study group. The hierarchical Bayesian inference discussed earlier is

ideal for accomplishing this purpose.

3.7.3 Preliminary Results of the HMM

The presence of several defining characteristics from memory theory was discovered in an

initial application of the model to the ADAS-Cog data. Two psychological phenomena in

free recall described previously were the primacy and recency effects. As mentioned before,

memory theory dictates that the primacy effect is reflected by a system responsible for

encoding words into long-term episodic memory storage. In the current HMM, encoding

into a long-term memory storage system corresponds to the r parameter, which indicates the

transition probability into the L-State from the U-State. Figure 3 shows the mean parameter

estimates on the probability scale for each serial position averaged over all participants along

with a one standard deviation bar from the Bayesian analysis for the Healthy, MCI, and AD

participants. Figure 3.A reveals the pattern suggested by memory theory, namely parameter

r estimates belonging to the beginning of the list tend to be larger than those towards the

end of the list for all three participant groups. Additionally there are large drops in the r

parameter with increasing levels of dementia, especially for the early study list positions.
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It is important to emphasize that these results, suggesting a primacy effect in parameter r,

were in no way forced by the methodology used to estimate the parameters.
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Figure 3.3: (A) The mean r storage parameters (error bar: 1 SD) for the 10 serial positions
for healthy, mild cognitive impairment (MCI), and Alzheimers disease (AD) groups, obtained
from the posterior distributions. (B) The mean t retrieval parameters (error bars: 1 SD) of
the 10 word list positions, for healthy, MCI, and AD groups, obtained from the posterior
distributions. (C) The mean l1 retrieval parameters (error bars: 1 SD) of the 10 word list
positions for healthy, MCI, and AD groups, obtained from the posterior distributions. (D)
The mean l2 retrieval parameter (error bars: 1 SD) for the healthy, MCI, and AD groups.

Figure 3.A does have exceptions to the strictly decreasing pattern one would expect to see for

the primacy effect. The most prominent exception is in position seven of parameter r for the

three participant groups. As noted earlier there is some inherent unsystematic noise in the

data shown in Figure 2 that can be attributed to experimental procedures. Unfortunately,

this inherent noise now seems to be carried over into the parameter estimates of the model

showing that the words in positions seven have a higher probability of entering LTM than

expected by the amount of rehearsal time allotted to those positions. While no model can
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Group Trial 1 Trial 2 Trial 3 Trial 4
Healthy 2.355 (1.7466, 2.5212) 2.500*(1.4610, 2.1081) 2.353 *(1.2059, 1.7452) 3.457 *(1.6136, 2.3390)

MCI 2.667 *(1.7419, 2.2959) 3.326 *(1.9578, 2.5838) 3.497 *(1.8186, 2.3892) 5.399 *(1.9745, 2.6006)
AD 2.253 *(1.3100, 1.9349) 2.805 *(1.7137, 2.5432) 3.636 *(1.7036, 2.5447) 2.358 *(0.9260, 1.3805)

Table 3.3: Permutation test (and 95% Confidence Intervals) for the Three Groups

be assumed to be completely correct, for the purpose of understanding the latent memory

processes, an evidenced-based revision of our model will be proposed to control for effects

that may arise from the use of testing procedures that do not counterbalance items and their

order.

Now the recency effect is thought to be based on a systematic retrieval process from STM.

Figure 3.B provides the mean value from the population posterior distribution for the t

parameters on the probability scale along with one standard deviation bars for each study

list position corresponding to the Healthy, MCI, and AD participants. The parameter t

represents a retrieval probability from the I-State, which our model assumes is a short-

term storage system with a rapidly decaying memory trace similar to the theoretical STM.

This suggests that retrieval from this memory storage should reflect the memory theoretic

predictions of the recency effect. Figure 3.B shows that the estimates of t tend to increase

with proximity to the test phase for all three-participant groups. Furthermore, there is

evidence that the overall recall probability from the I-State decreases with levels of dementia

further away from the end of the list. It can be noted that there exists some deviations from

an expected recency effect; in particular it appears that the parameters for serial positions

at the beginning of the list have slightly higher recall probabilities relative to positions in

the middle of the list than might be expected from memory theory. Again, a revision of the

model will be introduced to standardize the signal from the unsystematic noise.

The final psychological phenomena discovered in the analysis of the HMM is found in the

L-State retrieval parameter. Figure 3.C presents the mean l1 values for each serial position

with one standard deviation bars on the probability scale. As a reminder, parameter l1 is the

90



probability of recalling a word from the L-State on a test-trial presented immediately after

a study-trial. Memory theory suggests that when words have been encoded into a long-term

episodic memory system, the recall probabilities would not have a rapid decay. Consequently,

it is consistent with memory theory to expect that the recall probability l1 would not show

a presentation order effect because the time between study and test is relatively short for

each study list position. This property is found in the estimates of the recall parameter for

the L-State, shown in Figure 3.C. In particular, values of l1 are similar across different word

positions for the three groups of participants.

An additional characteristic of the estimates of l1 is the lack of a sharp decline in the MCI

and AD groups as found for the other parameters. This is interesting because it shows that

not all latent cognitive processes specified in the model have equivalent amounts of deficit

across various levels of cognitive impairment. However, the level of retrieval from the L-State

after a delay, measured by l2, shows the difference a time delay can have on different levels

of deficits. Comparing Figures 4.C and 4.D shows that there is a relatively small decline in

retrieval from the L-State for the healthy participants as expected from memory theory, while

also revealing a large drop in retrieval ability from the L-State for the AD patients. As for

the remaining parameters, no discernable trend was observed across the ten serial positions.

Table 4 displays the means of each of these parameters averaged over the10 serial positions

along with one standard deviation obtained from the average posterior distributions of each

participant parameter. Differences between groups are seen in the parameters, a, and v but

not in b.

In summary, the analysis of the ADAS-Cog data with our model has revealed patterns in

the parameters r, t, l1, and l2 that are consistent with memory theory, which provides some

construct validity for the model and indicates that it may be useful for interpreting the

differences in the groups as shown by the simple ANOVA in Table 2. Of course the patterns

of these estimates were not in perfect accord with expectations from memory theory, and
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Variable Healthy MCI AD
a 0.6967 (.1630) 0.6240 (.2043) 0.4934 (.1790)
v 0.3457 (0.1785) 0.1641 (0.0844) 0.1465 (0.0803)
b 0.3986 (0.1439) 0.3377 (0.1818) 0.3552 (0.2223)

Table 3.4: Average Parameter Values for a, v, and b

we attribute this to a combination of ordinary random variability as well as a result of the

experimental design, where all participants had the same list of words in the same set of trial-

to-trial orders. Modifications to the model in the next section will focus on strengthening

the signal and eliminating noise produced by the experimental procedures.

3.7.4 Evidence-Based Revision of HMM

The goal of the preliminary analysis in the previous subsection was two-fold. The first

goal of the analysis was to accentuate the similarities between memory theory and the

results obtained by analyzing the data with the model. In this way, evidence for construct

validity of interpreting the parameters as tapping latent cognitive process was obtained. The

second goal, assuming success of the first, was to discover which latent cognitive processes

are affected by increasing levels of impairment. To complete the second goal, it would be

beneficial if the cognitive measurements were less affected by the fixed structure of the ADAS-

Cog experimental design. To do this the relationship between memory theory and our model

parameters is explored and further strengthened by adding constraints on the parameters

to match known psychological phenomena. By adjusting our model’s parameters to match

memory theory assumptions, we create a cognitive psychometric model whose application

gives more interpretable measurements of the latent processes that are affected by increasing

levels of impairment.

For the current data we will modify three parameters in order to get more interpretable

results. Based on the patterns discernable in Figures 3, we add parameter specifications to
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r and t by requiring the underlying parameters to satisfy weak order constraints. The order

constraints on both r and t are as follows: if j ¡ k then rj rk and tj tk. Imposing these order

constraints on r and t does not reduce the number of parameters just their relationships to

each other. This approach has been used in another cognitive psychometric models applied

to special clinical populations, (e.g. Riefer et al., 2002) . The third modification will be on

parameter l1. The modification of the parameter l1 is based on the findings in Figure 3.C

that show little difference across the ten l1 parameters. As a consequence we equate the ten l1

parameters within each study group over the study list positions. The remaining parameters

that reflect study list positions, a and v, showed no discernible patterns so we imposed no

constraints on them, and in addition the parameters b and l2 were not constrained.

The hyperparameter distributions of the unconstrained parameters (ai, vi , bk, l2) in the

model are set as before to be drawn from independent Gaussian distributions with mean 0

and precision 1, as is the single l1 parameter in the constrained model. These draws for each

participant are transformed via an inverse probit as before, and then for the figures they

are averaged to create values on the probability scale. In the case of the order constrained

parameters r and t, one addition to the sampling scheme for the unconstrained HMM is

needed to impose the order constrains. Order statistics (David & Nagaraja, 2003) on pa-

rameters r and t are applied after the inverse probit transforms. In particular, an inverse

probit is applied to each participants set of draws for the ten t parameters, and then they

are ordered from smallest to largest. The means in the figures are based on the participants

means of these ordered draws. This approach in essence assumes a uniform distribution on

all ordered sequences 0 ≤ t1 ≤ . . . ≤ t1 ≤ 1 making them equiprobable. The same approach

generated the distribution of the ten r parameters, except the study position subscripts are

reversed. The likelihood function for the modified model has the same functional form as

the original model, but its domain is restricted to parameters that satisfy the constraints

of the modified model. In other words, it is the restriction on the hierarchical population

distribution samples that assures that the posterior distribution of the modified parameters
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will satisfy the model constraints. The modified model is analyzed with JAGS and the model

code can be found in the supplementary section of this paper. For the following figures, the

parameter value reported is obtained from the average posterior distribution means of each

participants individual model parameters. One standard deviation bars will be presented to

indicate the dispersion of parameter values across participants for each group in the current

study.

3.7.5 Results of Modified HMM
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Figure 3.4: (A) The mean r storage parameters (error bars: 1 SD) of the 10 serial positions for
healthy, mild cognitive impairment (MCI), and Alzheimers disease (AD) groups, obtained
from the posterior distributions of the order constraint model. (B) The mean t retrieval
parameters (error bars: 1 SD) of the 10 word list positions for healthy, MCI, and AD
groups, obtained from the posterior distributions of the order constraint model. The mean
l1 (C) and l2 (D) retrieval parameters (error bars: 1 SD) for healthy, MCI, and AD groups,
obtained from the posterior distributions of the order constraint model.
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Figure 4 provides the results of applying the modified model to the data. The first result

concerns the parameter r. Figure 4.A reveals that words located at the beginning of the

study list have a higher probability of being stored into the L-State than words presented at

the end of the list, which of course reflects the effect of imposing order constraints. What is

of interest is the difference in the r parameters between the three participant groups. Figure

4.A shows that the Healthy group has the highest value of the r parameters followed by the

MCI group and then the AD group. It appears that the decline in ability to transition a word

into the L-State for the MCI participants is closer to the Healthy group for the beginning two

positions and after the third position it drops to similar levels as for the AD participants.

The first retrieval probability of interest is the probability of recalling a word from the I-

State, namely the parameter t. The probability of recalling a word from this temporary

storage state for each position for the order-constrained model is in Figure 4.B. Again we

see the imposed order effect on the parameter t. Figure 4.B shows that words in the last two

serial positions are about equally likely to be recalled by a participant in any of the three

groups. The groups begin to diverge in their recall ability at position 7. The recollection by

AD participants was the first to drop at the 7th position followed by MCI participants at

the 6th position. The Healthy participants probabilities of recall from the I-State remained

above the MCI and AD group for the preceding positions.

The two retrieval parameters governing the recall probability from the L-State are presented

in Figure 4.C and 4.D. The immediate recall from the L-State during the study-test portion

of the task, l1, shows that the three groups have similar rates of retrieval in the L-State as was

also seen in the unmodified model. The difference between the three groups shows that not

all the cognitive processes are affected by the progression of dementia. The largest difference

between the three groups on any parameter is shown in Figure 4.D for the parameter l2,

which represents the probability of recalling a word from the L-State on the delayed test.

The recall proportion after the delay is much lower for the AD group than the MCI group.
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Now, when a word is not encoded and stored into the L-State from the U-State, the system

allows encoding to occur by three other processes. The first process is conditional on the word

not being encoded into L-State, in this case with probability a the word can be encoded into

the I-State. No discernible patterns were noticed across the ten positions for any particular

group, however, the estimates showed a difference between the groups. Table 5 presents the

average value of the ten a parameters for each of the three groups. This shows a decreasing

pattern across the three groups in ability of encoding into the I-State. A second method of

encoding a word into the L-State is through the parameter v that encodes a word from the I-

State into the L-State during a study-trial. Once again, no detectable patterns were observed

in each group across the ten serial list positions; however, MCI and AD participants showed

a decreased probability compared to the Healthy group. Finally, the b parameter in Table

5 represents the third way a word can be encoded into the L-State from the I-State. The

transition is only possible during a correct recall of a word from the I-State on the test-trial

with probability b. The result in Table 5 for parameter b shows that learning during the

test-trial is not reduced for the MCI and AD groups. As a generalization, it is noteworthy

that the results for these parameters in Table 4 match those of the modified model in Table

5.

3.7.6 Discussion of Model Results

Analysis of the ADAS-Cog free recall data with the HMM revealed several interesting ex-

planations behind the significant differences between the three participants groups found in

the ANOVA test. The measurement model revealed that, compared to Healthy participants,

MCI participants show an impairment in some but not all of the latent memory processes.

Furthermore, the latent memory processes found to be impaired in the MCI group, showed

a greater degree of impairment for the AD group. The remainder of this section will be

devoted at discussing the differences between the MCI group and the AD group.
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Variable Healthy MCI AD
a 0.6645 (0.1617) 0.5925 (0.2194) 0.5452 (0.2369)
v 0.3921 (0.1939) 0.1905 (0.1218) 0.1940 (0.1165)
b 0.4581 (0.2176 ) 0.4535 (0.1885) 0.4419 (0.2842)

Table 3.5: Average Parameter Values for a, v, and b for the Modified Model

By operationally defining latent variables, previous research has shown that encoding into a

long-term episodic memory system is impaired with the progression of AD. In our current

analysis using a cognitive model, we observe the same decline with the progression of AD.

This is important because the model unlike the operational approach of calculating recall

proportions for various items combines interacting memory processes that are simultaneously

at play during the free recall experiment. A comparison between the three groups reveals

a progressive decline in a patients ability to encode information into a long-term storage

system. Although the decline is most notable for the AD group, the MCI group does not

show an equivalent ability of encoding as the healthy participants. It seems that the encoding

process is affected at an early stage of AD such that the system responsible for encoding

items into LTM shows a marked decline for words in later serial positions compared to

words at the beginning of the study-list. In other words, MCI participants appear to be able

to encode information into their episodic LTM provided that few items are competing for

encoding.

As for words not encoded into LTM by the MCI group, their conditional transition into the

STM as measured by a is nearly has high as the Healthy participants. This finding suggests

that a person diagnosed with MCI can still store information into a short-term memory

state as well as Healthy participants. However, with a fast decay rate in the STM it seems

necessary that the memory trace be encoded into a longer, more permanent system in order

to have a greater chance at remembering at a later time. To see if this is indeed the case, we

can look at the v parameter in the model, which corresponds to a transition from STM to

LTM. It appears that for the MCI group that words encoded into STM are no more likely
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to transition into the LTM as in the AD group. This result suggests that the cognitive

process used to encode words into the LTM from the STM is hindered during early stages

of AD. As outlined by Gauthier et al. (2006), MCI is defined as the prodromal stage of AD

where participants are classified by an inability to recall conversations or recent events. This

matches the current finding of a large drop in ability to encode words into a more permanent

memory structure from a temporary one. Mainly, if the memory trace of a conversation or

recent event cannot be encoded into the LTM, the chances of retrieving that conversation

or recent event is quite low after some time has lapsed.

The final encoding parameter described by the model that allows participants to encode a

word into LTM is the parameter b. The parameter b is an item specific parameter that

shows that storage for salient items may occur if they were recalled during the test phase.

Similarly, patterns across the first trial for the three groups in Figure 2 showed that certain

items were more likely to be recalled across the three groups, such as the word Pole. This

suggests that memorable words are as likely to be recalled for healthy participants as for

AD patients. The parameter b shows similar values across the three groups, suggesting that

encoding during the test phase may be item dependent, and not completely impaired in the

progression of AD.

Next we focus our discussion on the recall probabilities of the latent memory states. While

overall there is a decline in t with impairment, it is not evident either for MCI or AD

participants in t for words at the end of the study list whose proximity to the test phase

is closest. One possibility for this result is that even with increasing levels of cognitive

impairment, words in STM presented right before recall are still resonating in the STM

and compete equally well for recall with other memory traces for all three groups. This

interpretation is consistent with the findings of Bayley (2000) and Carlesimo et al. (1996)

showing that the last 2-3 items are equally recallable. STM impairment in the progression

of AD can be viewed as an inability to retain words further away from the end of the list. In
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other words, for MCI and AD participants, memory is subject to a faster rate of forgetting

in STM as shown by a large drop in retrieval ability for words further away from the list.

Despite the deficits in recall outlined so far, not every cognitive processes is immediately di-

minished in MCI and AD participants. The result for the parameter l1, reflecting immediate

recall from the L-State, is quite interesting. Basically, using both the original and revised

HMM, it was shown that recall probabilities from the LTM on immediate test trials were

independent of serial position. In addition, there did not seem to be any noticeable effect

of impairment level on l1, and if this result holds up in other applications of the model, it

represents a new finding about episodic memory deficits. In particular, even though there

is considerable impairment in achieving a long-term episodic memory trace as measured by

r and v, there is no deficit in the ability of that trace to support recall when the recall test

occurs soon after the encoding.

In contrast, the parameter l2 that measures the delayed recall probability of the L-State,

shows a large decline with increasing levels of impairment. This finding shows that after

approximately five minutes AD participants ability to recall from LTM diminishes very fast.

It seems that as a patients impairment level increases their ability to retain information

is no longer aided by what should be a long-term and slow decaying memory state. This

interpretation of the L-state comes from the results of the healthy group, showing a small

decline in their retrieval ability. While the relatively short time span between an initial

measure of LTM retrieval ability and the delayed retrieval measure should not warrant such

a decrease, it has been noted that forgetting occurs fastest after short time lag for AD

participants (Hart et al., 1987).
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Groups Trial 1 Trial 2 Trial 3 Trial 4 Total sum
Healthy M1 0.9610 0.9024 0.8244 0.9220 0.9463

M2 0.9707 0.9024 0.8293 0.9220 0.9659
MCI M1 0.9641 0.9392 0.9088 0.9807 0.9448

M2 0.9696 0.9696 0.9503 0.9807 0.9614
AD M1 0.9548 0.9887 0.9266 1.000 0.9379

M2 0.9718 0.9887 0.9887 1.000 0.9774

Table 3.6: Proportion of Bayesian p-Value’s within the Corresponding 95% Credible Interval

3.7.7 Assessing Model Adequacy

The new constrained HMM reflects knowledge of the latent cognitive processes based on

psychological theory. To test whether the modifications do not limit the ability of the model

to fit the observed data, we test the fit of the unconstrained model and the constrained

model. To test each hierarchical model with the data, we use a Bayesian p-value (Gelman

et al., 2014) on the posterior predictive distributions. First one selects a statistic of the data

that is deemed important. Then a distribution of this statistic is generated from various

parameter sets obtained from samples during the Markov Chain Monte Carlo runs. Each

such sampled parameter set is used to simulate a data set from the model, and from each such

data set the value of the chosen statistic is obtained. A distribution made of these samples

constitutes the posterior predictive distribution of the statistic, and it can be thought of

as the distribution of future data conditioned on the model posterior parameters. Then a

p-value for the statistic is obtained by referring the observed value of the statistic to this

distribution.

A testable statistic that is often used for free recall is the number of correctly recalled words

over the 4 trials. For example, as mentioned the ADAS-Cog manual recommends analyzing

the number of correctly recalled words for each participant on each trial. For the current

test, the fit of each model will be evaluated on these statistics for each participant. Thus

distributions of replicated values predicted by each model for the number of correctly recalled

words on each trial and the total number correct across all trials were computed for each
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participant. Then the p-value for each participant and trial is the location of the observed

data in the distribution of posterior predictive replicated values (Gelman, Meng, & Stern,

1996). Table 6 shows the proportion of participants whose p-values lie within the 95%

probability interval of the distribution of replicated values, which is known as the predictive

concordance of the model. Support for a model is indicated when this value is near to 95%

(Gelfand, 1996). Both models performed fairly well using this test since the total sum values

are not far from the desired value of .95, which shows that the modifications did not impair

the models ability to fit the data. In the current study, the goal of the comparison is not to

deem one model version to be better than other; rather, in any particular application one

can decide whether the original model or the order-constrained version is the better way to

analyze the data. The modification of the model is motivated by psychological theory and

the check of fit to the observed data shows that the changes do not create a worse fit. By

focusing on model fit, the Bayesian p-value can be used to measure the discrepancy as a

measure of model adequacy (Meng, 1994).

Now that the hierarchical model has shown the ability to account for the observed aggregate

recall scores, it is of interest to see if certain individual model parameters can perform well

in explaining variations across participants within a study group in the observed scores. Of

course there are many model parameters that the model combines to achieve the fits reported

in Table 6, so we selected two central parameters as candidates to study, namely l1 and l2.

In addition we selected the proportion of correct recalls on the first three test trials (score

between 0 and 30) and the proportion correct on the delayed trial (score between 0 and 10).

Table 7 presents the Pearson product-moment correlation coefficients of three comparisons.

It is noted in Table 7 that the correlations between l2 and trial 4 performance scores are

highest in each group. The model assumes that correct recall is possible on the delayed trial

only if the item has reached the L-State, so this is a nice predictive result for the model.

Note, performance on a delayed recall test has been shown to be sensitive in differentiating
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Group ρ(l1, l2) ρ(l1, T1−3) ρ(l2, T4)
Healthy .3970* .6328* .8281*

MCI .2395* .4811* .8970*
AD .3004* .7245* .9530*

Table 3.7: Pearson Product-Moment Correlation Coefficients Between Long-Term Memory
(LTM) Retrieval parameters L1 and L2 and Performance Scores on the First Three Trials

AD and Healthy participants (Welsh et al., 1992), so l2 may help explain the differences

between the groups. Now, the correlations between l1 and the first three test trials are

lower. Since performance on the first three test trials can come about both from the I-State

and the L-State, one would not expect that l1 would be able to explain as much variance

in the first three trials as does l2 for the delayed trial. The correlation between l1 and

l2 is consistent with the model assumption that l1 has decayed during the delayed test.

Consequently participants with a larger l1 are more likely to have a larger value of l2 after

the delay regardless of their group assignment.

3.8 Conclusion

Early detection of AD is quite important to clinicians and families of those with the disease.

An advantage that clinicians have is their use of cognitive tests to classify the likelihood a

person is impaired. These cognitive tests are similar to the experimental procedures used

to develop cognitive models to measure latent memory processes. For this reason it makes

sense to attempt to apply cognitive models rather than simple statistical analyses to data

obtained from the cognitive tests used by clinicians. By combining a formal cognitive model

with established psychological theory, we are able to measure a few latent cognitive processes

associated with learning and memory from the behavioral measures collected by clinicians

using the ADAS-Cog free recall task. Doing so allows a more complete picture of which

cognitive processes are affected by the progression of dementia.

102



The class of Hidden Markov models is adopted to accomplish our purposes. Our HMM

demonstrates that with a simple two memory storage state system the primacy and recency

effects are a byproduct of underlying latent cognitive processes extrapolated from behavioral

measures gathered using a variable order study list. Support for the two memory systems

has been provided by both memory theory and neuropsychological studies showing different

memory disorders associated with deficits in performance for early and later parts of the

study-list (Basso et al., 1982; Baddeley & Warrington, 1970).

The result of the analysis demonstrates that by using a mathematical model, we are able to

circumvent potential problems caused by having to estimate where the primacy effect ends

and where the recency effect begins. An immediate consequence of this can be seen with

the measurement of the recency effect. The result of our model supports the findings that,

although AD participants show a decline in recall from STM, their problem arises from an

inability to recall earlier items but not the last items in the study list. In effect, reducing

the STM capacity of storage, possibly causing a diminished ability found in the recency

effect. Another finding, after application of the model, was seen in the retrieval process

in the long-term storage state, showing similarity to the hypothesized LTM. Further, the

retrieval characteristics of this state, as measured by the Healthy group, indicated a level of

forgetting consistent with a slow decaying process. The rapid forgetting measured for the

AD group indicates that AD patients ability to hold on to memory rapidly declines after an

initial storage (Hart et al., 1987). The comparison between Healthy and AD was possible

because of similar initial immediate recall abilities from LTM, as measured by the parameter

l1. The effects of this decline is possibly the reason behind the low performance on delayed

trials and may be the reason why the delayed recall task is sometimes used as a proxy for

measuring LTM (Welsh et al., 1992).

One motivation for the current application of the model to the three groups was to establish

the utility of standardizing measures of cognitive function in the progression of AD, any of
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which might be impaired with the progression of AD (Nebes, 1992). Other applications of

our model can prove useful, for example, by quantifying the latent variables, clinicians may

be able to use the model for assessing changes, if any, in psychological processes with certain

drug interventions. Other applications of the model can include the study of memory dis-

orders, such as vascular dementia; to understand what latent processes are affected by their

disorder. By broadening the scope of the models application to other memory disorders, a

comparison across memory disorders can then be attainable. Doing so may reveal additional

benefits such as assessing which psychological processes are helped by certain prophylactics.

In addition by making the model hierarchical it becomes possible to use it to detect par-

ticipants that might be misclassified by physicians since the Bayesian hierarchical inference

of the model returns posterior distributions of each parameter for each participant. Never-

theless the estimation theory for the model may have to be augmented to allow it to better

classify individual participants. One idea for future work would be to construct an empirical

Bayesian prior based on a large sample of participants who enter a clinic and are tested.

Such a prior would be highly informed unlike the priors that were used to analyze the HMM.

Batchelder (1998) describes how a data bank of this sort could be constructed based on a

cognitive model and used to classify individuals.
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Chapter 4

Retention as a Function of Retrieval

in long-term Memory

4.1 Introduction

Among the most important consequences of learning is the formation of lasting memories.

Efforts to increase retention levels against the normal course of forgetting often focus on

promoting an active involvement, whether by means of rehearsal or testing. While these

two interventions are different in many regards, they share the common goal of developing

a lasting representation in a long-term memory (LTM) storage system. Unfortunately the

preponderance of memory impairments in disorders such as dementia and Alzheimers dis-

ease is typically characterized by an abnormal course of forgetting. To mitigate memory

impairments caused by dementia, clinicians have relied on a wide range of treatments that

include the use of prophylactics to cognitive training procedures.

Before such treatments can be applied, clinical studies are conducted for early detection of

memory loss. A prominent psychological test designed to study human episodic memory and
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commonly used in conjunction with clinical batteries that assess memory related deficits is

the multi-trial item free recall task. The task involves a study phase where participants

study a list of words and a test phase where participants are asked to recall the studied

words aloud in any order. After several of these study-test phases, recall is again measured

after a long delay. While successful recall of the studied items relies on a memory system

capable of storing and retrieving information, a precise description of the structure of human

memory is unknown. However, certain characteristics have been observed using the free recall

paradigm, and in return these reveal some functionality of the latent dynamical system.

Furthermore, there is evidence that cognitive decline in dementia-related illnesses is system-

atically manifested through progressively declining performance scores on tasks designed to

study episodic memory. For example, a problem often associated with memory deficits in

Alzheimers disease (AD) is that a residual memory trace is often weaker when compared to

healthy controls on tests that were administered after a prolonged period of time from the

last encoding phase. The loss of retrievable information from LTM is generally characterized

by an initial accelerated forgetting rate, tapering off after a longer period of time (Hart et

al, 1987). Results from an application of a hidden Markov model (HMM) to data collected

from AD patients have corroborated previous findings that residual memory trace decay

may be occurring at a faster rate compared to healthy controls after a five minute delay trial

(Alexander et al. 2015).

The purpose of this paper is to further understand retention of memory as a function of overt

recall behavior. The target of this study is to find potential treatments capable of improving

retention for those suffering from dementia. Using data from a large corpus collected by

clinicians for a comprehensive multi-trial free recall task, we focus our efforts on assessing

the cognitive processes associated with learning and memory with a hidden Markov model

(Alexander et al.). Modifications to the model are needed to resolve dynamic changes that

arise from a multi-trial cognitive based test not predicted by linear learning models. Using
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deterministic trend-stationarity techniques ensures that the stochastic process underlying

the changes in response outputs across trials is identifiable.

The remainder of the paper is organized as follows: First, we introduce the learning model

and its properties. Second, the clinical test and data is presented. Following the result

section, we discuss our findings in the conclusion section.

4.2 Learning Model

Consider a 3 state HMM for a multi-trial free recall task where only a portion of the obser-

vation (test) trials come after a study session. The states space, S, of this discrete HMM

model is the set of episodic memory states, S = {U, I, L} (defined below) with distinct re-

trieval characteristics. Let M be the number of items in a study list, Ns the number of

trails that immediately follow a study session, ND the number of trials that do not have an

immediately preceding study session and N be the total number of test trials. A test item,

k, where k = {1, . . . ,M} is assumed to be in exactly one of the three states as a result of

the study.

The first of the three states is an unlearned state (U -State) characterized by a failure to

encode retrievable information resulting in an inability to correctly recall test items on the

test trial. The next transient state represents a temporary storage state referred to as the

intermediate state (I-State). Following a study trial, information stored in the I-State is

retrievable with an increasing probability rate favoring items towards the end of the study

list. The third and final state is the learned state (L-State) and represents a state where an

item is fully encoded into episodic memory. This absorbing state retains information for the

remainder of the experiment so it is natural to assume that successful recall on a delayed

test is achieved for items stored in the L-state.
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A central feature of HMMs is the dependence between states, such that on any study trial,

an item follows a Markov process. This process is expressed as the transition operator, where

k is the index by test item, as follows:

T =

Ln

In

Un

Ln+1 In+1 Un+1
1 0 0

vk (1− vk) 0

rk (1− rk)ak (1− rk)(1− ak)

 .

The index applies a corresponding matrix operator to each individual item in a study list

with the assumption that the memory states are states of all items.

The ijth term of the row stochastic lower Hessenberg matrix with rank 3 corresponds to

the probability of an item transitioning from a current state i on study trial n to state

j on the next study trial, n + 1, where Sn = i, j ∈ {U, I, L}. Beginning from the lower

left, the probability of transitioning from U -State to L-State from trial n to n + 1 is rk. A

failure to transition into L-State from U -State during a study trial but where information

is successfully encoded into the I-State is (1 − rk)ak. If no transition from the U -State is

made into either of these states then, with probability (1− rk)(1− ak), the word remains in

the U -State. From the I-State an item can transition into the L-State with probability vk if

there remains a residual trace of the item during the previous study trial, or with probability

(1 − vk) the item remains in the I-State. Finally, once a word is in the absorbing L-State,

no further transitions are made.

The state-response mapping is given by the response operator, with lk giving the probability

of recall from the L state, and tk giving the probability of recall from the I state, as follows:

R =


lk

tk

0
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An important distinction between the memory states in the model is the retention interval

governing the successful retrieval of a test item after encoding. Aside from the U -State,

the response characteristics for each state are probabilistic and subject to temporal changes.

The I-State is representative of a short-term memory storage process, thus the successful

retrieval of information is inversely related to the interval from encoding to retrieval. The

weak storage of the I-State suggests very little resistance to forgetting so the parameter t is

indexed by k. Note, index k is appropriate when items do not change positions in a study

list across multiple study trials; however, if the items are shuffled then the index represents

list position (see Alexander et al, 2015).

Now the L-State, being analogous to long-term memory, does not suffer from the same

limitations as the I-State. Rather, once an item is encoded into the L-State, retrieval is the

same for each item in the list regardless of its position in the list. Although the retention

interval is longer, it is not limitless. We may show this by indexing the retrieval probability

with kd where kd = 0 for test trials following a study trial and kd = {1, · · · , Nd} for Nd

delayed test trials. Retrieval from the U -State and I-State during a delay is set at zero.

Finally, to complete the description of the model the start vector is π = [0 0 1]. The

assignment that at the start of an experiment all items begin in the U -State is made to

reflect the fact that before the task, no item is more likely to be part of the study list.

Thus far, the memory model for a multi-trial free recall task is a reparameterization of

a two-stage model previously applied to clinical data (Shankle, Batchelder, 1997). The

reparameterization decouples the conditional relationship between a general transition out

of the U -State and into the L-State. This is done to emphasize a difference in learning

as a process of leaving the U -State versus learning as a directed operation into different

memory states. Therefore, the transition into L-State from U -State does not depend on the

probability of a transition into the I-State.
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4.2.1 Multiple Operators

There are two additional aspects of the model that are not revealed by T. Evidence by Bjork

has shown that when participants are tested, learning is not limited to the study sessions

alone. Instead, information is not only retrieved on a test trial but is subsequently enhanced

for future recall. Thus, in a repeated measures experiment, success on subsequent trials can

be due to an inadvertent enhancement as a result of successfully recalling a word on the

previous trial. Termed as the testing effect, the process has a different effect on words that

are successfully retrieved from those that fail be to be recalled. To include the testing effect,

a separate transition operator is applied that depends on a successful retrieval from I-State.

Formally, if k ∈ I-State at ns and Pr( xns =1 | I-State ) = t, then Pr(Sns+1 = L-State |

Sns = I-State ) = b and Pr(Sns+1 = I-State | Sns = I-State ) = 1− b. Remember that the

subscript ns indicates trials in which the test trial occurs immediately after a study trial.

In addition to transitioning into L-State from the I-State during the test trial, the transient

state has a susceptibility of failing to encode residual information into an absorbing state.

Failure to sufficiently condition residual information into an absorbing state is indicative of

a forgetting process. A transition back into the U -State during the study phase is counter

intuitive mainly because the learning phase provides an opportunity for an item to transition

through memory states. To resolve this, we include a transition back into the U -State after

a failure to correctly recall an item from the I-State. More formally, if k ∈ I-State at ns

and Pr( xns =0 | I-State ) = 1− t, then Pr(Sns+1 = U -State | Sns = I-State ) = 1− θ and

Pr(Sns+1 = I-State | Sns = I-State ) = θ.

Both additions represent a transformation too complex for the current model space. For

reasons of mathematical convenience the I-State and L-State are split to reflect a single

response outcome from each state bifurcation. Altogether the model is comprised of 5 states

with 2 states corresponding to successful recall labeled with an asterisk. Using the expanded
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matrix notation, the additional transition operator conditioned on the subject response is:

Γ =

L∗n

Ln

I∗n

In

Un

L∗n+1 Ln+1 I∗n+1 In+1 Un+1

1 0 0 0 0

0 1 0 0 0

bi 0 (1− bi) 0 0

0 0 0 θi 1− θi

0 0 0 0 1


.

The change embeds the 3 dimensional model into a 5 dimensional space without changing

the transition process, resulting in a matrix operator that includes the response mapping

into the Markov chain. The change creates an unambiguous representation of the complete

stochastic process as the single matrix:

T̃ =

L∗

L

I∗

I

U

L∗ L I∗ I U

l∗i (1−l∗i ) 0 0 0

li (1−li) 0 0 0

vili+(1−vi)tibi vi(1−li) (1−vi)ti(1−bi) (1−vi)(1−ti)θi (1−vi)(1−ti)(1−θi)

vili+(1−v)tibi vi(1−li) (1−vi)ti(1−bi) (1−vi)(1−ti)θi (1−vi)(1−ti)(1−θi)

rili+(1−ri)aitibi ri(1−li) (1−ri)aiti(1−bi) (1−ri)ai(1−ti)θi (1−ri)(1−ai)+(1−ri)ai(1−tivi)(1−θi)


.

The rank of the expanded matrix T̃ does not change, and since the transformation constitutes

only a change in basis one can go from T̃ to T (see Appendix). One desirable consequence

of splitting the states in this fashion is that the otherwise difficult to obtain conditional

probability of correctly recalling a word from L-State given a previous successful retrieval,

i.e. Pr(Xi(n + 1) = 1|Xi(n) = 1,L), becomes trivial. Thus the probability of retention as a

function of previous successful recall from the L-State is given by the piecewise function:
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Pr(Xi(n+ 1) = 1|Xi(n) = 1,L) = Pr(L∗n+1|L∗n) =


l∗ if n ≤ Ns

l∗k else

Note that successful retrieval probabilities on delay trials are indexed by the corresponding

delay trial. Once again, only items encoded into a strong episodic memory state have a

resistance to forgetting. By differentiating retrieval probabilities based on past recall, we

can monitor sustainability of memory as a function of past response behavior.

4.3 AVLT DATA

To accomplish the proposed project, I will use a new set of data collected from a unique

version of the free recall task used in the Rey Auditory Verbal Learning Test (AVLT). Along

with the new data, I will augment the cognitive model developed for a previous clinical free

recall task to handle the new data obtained using the AVLT free recall task.

4.3.1 Methods

The data were collected by the Mayo Clinic Aging Study, and contained scores from 178

normal and 131 AD subjects. The AVLT free recall task is composed of five study-test

trials and two delay tests on a 15 word list. During the first study-trial, participants were

instructed to read each individual word and to repeat it aloud. After the words were studied,

the participants were asked to recall the words previously presented to them, in any order,

within a 2-minute window. The administrator would then record each word correctly recalled

by the participant. This procedure was repeated four more times with the same 15 words
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and with the same presentation order for each of the five study trials.

4.3.2 Procedures

Each participant received the same instructions and the same material. After the five study-

test trials, an intervening task was administered followed by the first delayed recall task.

The first delayed task tested the participant’s ability to recall the words after a five minute

intervening task having no common elements with the word recall task. Following this 6th

test trial, participants completed other unrelated intervening tasks delaying the final recall

test by one hour. In total, participant scores to five immediate test trials and two delayed

test trials were collected for each of the fifteen items.

The AVLT data set differs from the previous design used to construct our HMM in three

important ways. The first difference is that patients are asked to memorize 15 items rather

than 10. The increased list size is generally more difficult, so the second modification to

the data was to involve 2 more study-test trials, totaling 5 study-test trials. The third

modification is the inclusion of another test after a one hour delay. These changes are

significant to the augmentation of the new model (e.g., the recall probabilities are negatively

influenced by list length). The data for the model are observation sequences of correct and

incorrect recall for each of the 15 words. Each word has 2T possible response sequences

where T is the total number of trials. Thus the number of observation sequences for the new

set of data is 128 for each item in the study list.

Model Equations

Consider the observed data vector xn of a learning task where the vector denotes objects

either remembered or not {1, 0} and the subscript n indicates discrete time in a sequence,
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t = 1, · · · , N . The data consists of O = {x1, . . . , xN} and sequential dependencies are

modeled using a hidden Markov model where the x′ns are stochastic functions of a hidden

Markov chain, Q, where qn is a discrete random variable taking one of E possible values.

The stochastic system for the HMM is a probabilistic process where transition probabilities

dictate the next state of the system from step n to step n + 1 depending only on the current

state of the system. Such a model is called “hidden” because the observable recall/not-recall

response sequence for an item over test trials does not uniquely identify (hides) the sequence

of underlying latent memory states behind the response sequence. For example an error on

a test trial could come from any memory state.

Given an observation sequence (O) of correct or incorrect recall on a fixed number of test

trials N , we would like to calculate the probability of such a sequence given the model. Note

with a large N it is not feasible to obtain the expressions in closed form; however, with 7

trials the 128 category probabilities will be delineated1.

First, we enumerate the state sequences,

Q = q1, q2, . . . , qN

where qn is one of the three states i.e. U, I, or L on trial n. The sequence is determined by

psychological theory; e.g., once an item is in L-State, it is not possible for the item to return

to U-State, and further after the fifth study-test trial there are no further changes in state.

Next, we obtain the probability of an observation sequence given a state sequence2 is:

1Although it is feasible, it is also extensive, for example when N = 4, as in Alexander et al., 2015, there
are 16 observation sequences that require 136 lines of code for a collective 6 pages of equations.

2In order to study the maintenance of memory in the L-State as a function of previous retrieval,
P (On|qn,M) must be modified to reflect a dependency between observations on the subsequent test from the
L-state with whether or not the word was correctly recalled on the previous test trial while in the L-State,
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P (O|Q,M) =
N∏
n=1

P (On|qn,M)

and the probability of the state sequence Q is:

P (Q|M) = πq1

N∏
n=2

P (qn|qn−1)

where πq1 is determined by the start vector and P (qn|qn−1) is a transition probability from

state qn−1 to qn. Finally, the probability of an observation sequence is given by summing

over all possible state sequences of the joint probability:

P (O|M) =
∑
all Q

P (O|Q,M)P (Q|M) (4.1)

The result obtained from equation 1 provides the probability of a single observation sequence

out of the 128 mutually exclusive and exhaustive observation sequences. By continuing this

process, the remaining probabilities are found, and are quite useful for parameter estimation

as we will see in the estimation theory section.

Model Predictions

A central property of learning models is their ability to derive predictions about the rela-

tionship between events across trials. Statistics describing the dependency between events

i.e., P (On|qn,M, On−1).

123



fall under the class of sequential response probabilities which often provide the strongest test

of where a model breaks down. Let En be the event of an error on trial n, and En+1 be an

error on trial n+ 1, then:

For the current model and most learning models Pr(En+1|En) decreases monotonically as n

increases.
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Figure 4.1: Conditional probability of an error on trial n + 1, given an error on trial n.
Top line represents data for AD participants, while bottom line represents data for healthy
participants.

Figure 1 shows the conditional error probabilities for the two participant groups on the first

5 study-test trials. The data shows a violation of monotonicity as predicted by learning

models. Perturbations of this sort are particularly important to the study of memory using

HMM type models since it suggests a nonstationarity problem not easily resolved without

the addition of many more states with corresponding theoretical assumptions. Presupposing

that the addition of more states can be theoretically defended, methodological problems

such as estimating the increased number of independent model parameters would require an

unfeasible increase in data. However, since the addition of an unknown number of memory
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states is unfounded in theory paired with the methodological issues, another approach at

modeling the changes in time is adopted.

While effects of insufficient pre-training mapped by Markov models have been previously

observed in research of paired-associate learning (see Kintsch 1963), no suitable solution has

been proposed. The problem is further complicated by trying to understand whether the

dynamic changes over error rates are a result of changing encoding rates or the result of

varying retrieval rates. In other words, the changes may occur because either the retrieval

system requires training to acclimate to the more difficult task of retrieving fifteen words, or

the process of learning to learn where participants are learning to perform on a novel type

of test. The difference is analogous to anchoring either the response operator over time and

allowing the transition operator to vary over time, or vice-versa.

One solution that avoids the previously stated problem is to segment the recall events into

J subsets of the overall response trials. While this solution may be intuitive, an unequivocal

partition of the observation sequences is not possible without increasing the number of

parameters exponentially by KJ where K is the number of model parameters. The apparent

difficulty of the former solution is tantamount to complications of over-parameterizations

which lead to identifiablility problems that result in the misclassification of the relative

strengths of cognitive abilities as measured by the model parameters (Bamber & Van Santen,

1985).

Another solution that does not require that we segment trials is to assume the existence of

a time-homogenous Markov chain in the strictest sense, i.e., having a stationary transition

operator and to systematically appropriate the influence of the operator at every time step
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with a deterministic function on time. This is expressed as:

T̃n = T̃ + ∆(n) (4.2)

where ∆ is a matrix of equal size to T̃ .

Each transition parameter of the model is assumed to have a separate deterministic function

on time.

θi,n = Φ(δn + θ̂i) (4.3)

where δ, −∞ < δ < ∞ and Φ is the cumulative Gaussian function. The probability dis-

tribution δ is normal with mean 0 and variance 1. This solution increases the number of

parameters by a multiplicative constant.

The application of these additional parameters does not necessarily indicate a fundamental

part of the data generating process, but rather is used as an alternative to a more complicated

process and unknown function. Furthermore, we do not assume a stochastic trend; instead,

a deterministic trend is used since the parameter’s variance is not assumed to change across

time. If variance is permitted to change across time, the estimates do not converge to

a stationary distribution. To test the viability of the additional parameters, the Ruben-

Gelman criteria of convergence is obtained for each parameter [CITATION]. The diagnostic

criteria often referred to as the rhat statistic evaluates the convergence of the sampling

distribution by comparing multiple chains with different starting points for each parameter.
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4.3.3 Estimation Theory

There are various methods traditionally used to fit an HMM to data, such as the expectation-

maximization algorithm and maximized log-likelihood methods. While both methods are

suitable for the current model, the approach we take here is to evaluate the likelihood

function using Bayesian inference techniques. The use of Bayesian estimation procedures

greatly simplifies the difficulties of obtaining parameter values compared to maximization

procedures. Software such as WinBugs (Lunn, Thomas, Best, & Spiegelhalter, 2000) and

JAGS (Plummer, 2011) facilitate the matter even further by offering intuitive modeling

options.

The likelihood function for the current model takes the form of a multinomial probability

distribution. It is easy to see that the probabilities for the 128 mutually exclusive and ex-

haustive observation sequences obtained by equation 1 can be denoted as the probabilities

in a multinomial probability distribution and the observations themselves as the observed

outcomes of an experiment. Thus the count for each category probability is obtained from

performance scores of each subject for each item. The likelihood function without the mul-

tiplicative constant is then:

L(O,M) =
Ss∏
α

OS∏
β

M∏
k

P (Oλ,k|M)Oλ,k (4.4)

where α = [1, . . . , Ss] are the subjects, β = [1, . . . , OS] are the 128 observation sequences

and k = [1, . . . ,M ] are the items in a list.

Along with the likelihood function, specification of the parameter prior distributions allows

us to complete the model for Bayesian inference. In Alexander et al. order statistics were

applied to a subset of the parameters and their distributions of the model to reflect knowl-
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edge about psychological theory. Although the constraints added to the model were at the

parameter level, Knapp and Batchelder have shown that this is statistically equivalent to

a reparameterization of the model. For the sake of consistency we left the constraints on

the parameters used in Alexander et al., The transition probabilities do not depend on item

position.

The prior transition probabilities are set to be Gaussian with mean 0 and variance 1. The

response probabilities, the prior distributions are set to be uniform between the closed in-

terval [0,1]. This was accomplished with the Beta distribution with shape parameters set at

1,1.

θ ∼ dnorm(0, 1) (4.5)

θ̂ ∼ dnorm(0, 1) (4.6)

ω ∼ dbeta(1, 1) (4.7)

The analysis of the model in JAGS consisted of 4 chains of 500 samples each with a burn-in

of 500 samples with a total of 2,000 samples. The means over participants of each parameter

will be presented on the natural probability scale rather than on the real line. To obtain

the mean of a particular parameter in (0,1), first an inverse-probit is taken of each draw for

that parameter from the hierarchical Gaussian, and then the posterior mean and standard

deviation of these transformed draws are obtained.
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4.4 Results

Prior to evaluating the model, a split-plot repeated measures analysis of variance (ANOVA)

comparing average performance scores between the two groups was conducted. The repeated

measures factors for the analysis of variance are as follows:

Source SS df MS F Prob. >F
Trials 75128.8 6 12521.5 19.05 <.01
Group 678533.2 1 678533.2 61.59 <.01
Interaction 27145.6 6 4524.3 6.88 <.01
Subjects (matching) 308464.4 28 11016.6 16.76 <.01
Error 110430.4 168 657.3
Total 1199702.4 209

The statistical test comparing performance scores across the groups is a good measure of

group differences but does not distinguish successful retrieval from short term memory and

long term memory.

We found no evidence that the state response parameters changed across study trials, so we

only report time dependent parameters for the transition probabilities.

Healthy Alzheimer
Item a b r t v y a b r t v y

1 0.3509 0.1836 0.9855 0.2585 0.058 0.8688 0.1466 0.0071 0.9446 0.156 0.0013 0.5631
2 0.3888 0.5097 0.8316 0.2971 0.1775 0.6976 0.2013 0.0691 0.672 0.2082 0.0081 0.2651
3 0.3347 0.6342 0.5756 0.3338 0.6563 0.2686 0.1785 0.1215 0.3668 0.2542 0.0295 0.0266
4 0.1519 0.1814 0.4983 0.358 0.2981 0.9012 0.0777 0.0137 0.3318 0.3006 0.0543 0.5574
5 0.8896 0.8678 0.4539 0.3782 0.5831 0.497 0.6579 0.6932 0.2854 0.3331 0.2411 0.0432
6 0.2567 0.3253 0.4159 0.3937 0.7344 0.8974 0.1425 0.0225 0.2503 0.3471 0.3927 0.5865
7 0.1739 0.0949 0.3472 0.406 0.4297 0.8258 0.0954 0.0069 0.196 0.359 0.1885 0.4961
8 0.2312 0.2585 0.3104 0.4183 0.7235 0.5477 0.1342 0.023 0.1711 0.3693 0.4482 0.2494
9 0.1774 0.3099 0.2887 0.4323 0.3946 0.7069 0.0987 0.0412 0.1578 0.3806 0.1078 0.3571
10 0.5758 0.8313 0.2706 0.4726 0.6984 0.5198 0.3955 0.628 0.1426 0.4115 0.2788 0.1589
11 0.2875 0.28 0.2516 0.5001 0.4202 0.7517 0.1758 0.0444 0.1313 0.4397 0.1449 0.4211
12 0.7391 0.454 0.2121 0.6803 0.2236 0.0486 0.5986 0.2811 0.1008 0.6388 0.0446 0.0017
13 0.2645 0.0334 0.1625 0.687 0.2808 0.3415 0.163 0.0011 0.07 0.6463 0.0976 0.1183
14 0.746 0.3821 0.0859 0.8144 0.1433 0.0667 0.6179 0.2222 0.0153 0.7811 0.0168 0.0029
15 0.8137 0.496 0.0308 0.9195 0.1214 0.1061 0.6909 0.325 0.0013 0.8919 0.0106 0.0041
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Figure 4.2: Retrieval probabilities conditioned on past recall behavior. Solid lines indicate
the probability of retrieving an item from L-State given successful retrieval on previous trial.
Dotted lines indicate the probability of retrieving an item from L-State given unsuccessful
retrieval on previous trial.
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4.5 Conclusion

The prevalence of memory related impairments in dementia patients has given rise to efforts

aimed at mitigating the effects of memory decline. With the help of tasks such as those

found in clinical batteries we can shed light on the properties often promoted as aiding the

retention of information. The active learning task administered to AD patients and healthy

controls reveals the benefits of intentional encoding.

While the initial application of the model in Alexander et al. tackled the problem posed by

the staggered presentation order used in the ADAS-Cog free recall task the current analysis

of the model focused on the generalizing the application to different versions of the same

task. In the current application of the model, a non-stationarity effect was discovered and

corrected by making the applied parameters functions of time.

Retrieving information from short-term memory acts as a misguided deterrent to continue

to strengthen memory. The performance scores show that items situated at the end of the

list are less likely to be remembered after a delay. The model shows that those items are

recalled with higher probability from short-term memory and are more likely to be returned

to the U-State.

Both the design of the task and the circumstances for taking the task invite a person to take

the task of learning the material seriously. Thus the responses recorded can shed light on

the effects of learning and retention much more than testing college students.

The results show that the successful retrieval of information is not impervious to decay rates.

Furthermore, the rapid decay often exhibited by AD participants is unaffected by the success

of their encoding.

It is interesting to note that the probability of retrieval from L-State on no delay trials is

high and decreases very rapidly, suggesting that machinery used to retrieve information is
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uninhibited but the retention of information is damaged.

Future implementation of this model for the data would benefit from a larger sample size.
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Chapter 5

Knowledge Gradient Consensus

”The one thing that does not abide by majority rule is a persons conscience.” - Atticus, To

kill a mockingbird.

The purpose of the paper is to utilize methodological and mathematical axioms from an es-

tablished formal modeling approach to data fusion called Cultural Consensus Theory (CCT)

in order to extract a more veridical representation of cultural knowledge. CCT was created

in the mid-1980s with the combined efforts of scientists in the fields of Anthropology and

Mathematical Psychology. The theory relies on the notion that specific cultural knowledge

can be studied by asking relevant test items to informants who share that knowledge. Thus

far CCT models have assumed that each informant has a unique but measurable competency

to correctly answer questions regarding their cultural knowledge. A consequence of this is

that if one informant has a higher competency than another about some aspect of their cul-

ture, then they are assumed to exceed the other in competency for all aspects of the culture.

A more realistic assumption is that there is a division of labor, where each informant has

high levels of knowledge in some areas of their shared culture, but not in all areas. The

novel extension will create new specifications of CCT models that allow the estimation of
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heterogeneous clusters of items and their relationship to corresponding clusters of expert

informants. By identifying informant sets corresponding to areas of cultural knowledge, we

may be able to better understand the taxonomy of knowledge in a particular culture as well

as to reduce uncertainty in the estimation of overall cultural knowledge.

5.1 Introduction

Since Galton’s famous prediction of an ox’s weight using central tendency measures of in-

dividual opinions, scientists have been interested in finding unequivocal procedures to help

elucidate the transient nature of truth. While Galton demonstrated it is possible to better

approximate the truth using an average response over any individual response, information

pooling techniques, such as the majority rule, often employ overly simplified assumptions.

Usually, to provide an informed prediction, a researcher (such as Galton) weighs each in-

dividual’s response equally. In other words, every informant’s response is equally likely to

be correct regardless of individual differences in expertise. The distribution of knowledge in

this work is therefore in a sense uniformly distributed across all informants. However, there

are times when a more veridical approximation to the ground truth is critical, for example

when deciding which medical intervention to apply in a given situation.

In response to this demand, Cultural Consensus Theory (CCT) was developed in the mid-

1980s through the combined efforts of scientists in the fields of Anthropology and Mathe-

matical Psychology ( Batchelder & Romney, 1989). CCT is a data fusion technique aimed at

constructing an answer key to questions with no known answers, with the help of naturally

occurring differences that arise amongst informants. The theory exemplifies the notion that

shared knowledge can be objectively measured through the unverified responses of individ-

uals in a culture. Thus, with the additional theoretical sophistication of CCT, researchers

are able to correctly infer objective truths from individual responses even when there exists
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no clear plurality, as in the case when each response alternative has an equal proportion of

votes.

In recent years, an increasing number of papers using CCT have emerged in many fields such

as anthropology, sociology, and psychology (e.g. Anders, et al. 2014; Oravecz et al. 2015). So

far, each mathematical model developed for CCT has assumed that each informant contains a

unique but quantifiable competency to all knowledge within their respective culture, known

as item monotonocity (Batchelder & Romney 1989). A consequence of this is that if an

informant is considered to know more than another about some aspect of their culture,

they are then assumed to know more about all aspects of the culture. A more realistic

assumption is that there is a division of labour, where each informant may have high levels

of knowledge in some areas, but not all. Clearly, the need for such a distinction can be avoided

by generating questions specific to a particular domain. However, as Bradlow, Wainer, &

Wang, (1999) pointed out, this introduces a strong relationship between test items which

leads to a violation of conditional independence assumed by the model. To include the new

assumptions and avoid violations of conditional independent we present a new methodological

framework which we call Knowledge Gradient Consensus Model (KGCM).

We begin by reviewing the first CCT model, known as the General Condercet Model (GCM),

and explore properties generated from its axioms. Following this, we propose a new modified

version of the model that relies on hierarchical assumptions in order to reduce the number

of free parameters. Furthermore, the requirement for prior knowledge of item membership

to a subset is relaxed and will be explored using a latent mixture model after establishing

the utility of such an augmentation. Therefore the new model proposed here assumes there

exists quantifiable differences between informants with knowledge about a subset of items

from those with knowledge about some other partition of the complete item set.
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5.2 Standard GCM

A standard mathematical model for dichotomous data under the aegis of CCT is the GCM.

GCM builds upon the assumption that unverified dichotomous responses can be modeled

using methodologies in signal detection theory (Anders & Batchelder, 2012). While the usual

application of signal detection theory is reserved for cases in which an experimenter contains

information about an item and focuses on latent variables underlying the observed behavior,

GCM relaxes the requirement of prior item-specific information. In doing so, it becomes

apparent that the GCM is a modification of the signal detection theory framework; where

instead of assuming knowledge of an item’s membership to a signal or noise distribution, it

generates an item’s membership from the theoretical variables associated with each individual

in a culture (Batchelder & Romney, 1988).

Formally, let the response profile matrix be X = (Xi,k)N×M where N is the number of

informants and M is the number of items. The GCM is fully delineated through the following

axioms:

Axiom 1. (Cultural Truth). There exists a single answer key shared by all informants, Z.

Axiom 2. (Conditional Independence). The response Profile matrix satisfies conditional

independence given by: Pr[X = (xi,k)N×M |Z,H,F]

=
N∏
i=1

M∏
k=1

Pr(Xi,k = xi,k|Zk, Hi, Fi) (5.1)

for all possible realizations (xi,k) of the response profile matrix.

Axiom 3. (Marginal Probabilities). The marginal probabilities (2) are given by Pr(Xi,k =

xi,k|Zk, Hi, Fi)

Axiom 4. (Double High Threshold). Hit and false alarm parameters for each informant are
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reparameterized by

∀i,Hi = Di + (1−Di)gi, (5.2)

Fi = (1−Di)gi. (5.3)

The four axioms above formalize the GCM and set testable assumptions needed for the

application of the model. From an early start, GCM’s success has relied on linear combi-

nations of informant specific competency and bias parameters. In fact, an early method

for estimating the parameter values of the model came from minimizing the residuals using

methods such as minimum residuals (Batchelder & Romney, 1989) which is a method for

finding a numerical solution of a system of linear equations by approximating a solution with

minimal residuals. Further studies on factor analysis procedures proposed later as a method

for discovering multiple cultures was developed (Batchelder & Anders, 2012).

However, these previous interpretation of the factor-analytic approach to the response profile

matrix decomposition has been governed by the belief that the correlation between infor-

mants is indicative of cultural membership. While this belief has aided the development of

culturally specific answer keys, alternative interpretations of the latent factors underlying the

correlation between individuals may help us elucidate a more robust conceptual framework

in which to more fully explore additional enhancements to the model. For example, we may

reinterpret the correlation between individuals to represent a clustering of responses based

on varying levels of ability at the item-specific level.

First, this may represent a more natural psychological way of thinking about the relationship
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between informants for an item, where higher levels of agreement between informants may

indicate a property of their individual competency rather than attributing all differences in

knowledge to a broader cultural membership. Second, this alternative conceptualization may

lead to insights concerning additional model enhancements which improve overall model ac-

curacy. When individuals are assumed to have varying abilities for responses on an item, we

can see that the abilities in use for a correct response represents knowledge which is declar-

ative in nature, i.e. the individual is able to directly indicate this knowledge in responding

to the question. However, this leads to the possibility that an individual may also have

some implicit level of knowledge regarding a subject, which is not inherently declarative and

therefore may not be evident in the correct response scenario. This implicit knowledge may

influence the individual’s guessing ability for a given item. The first point will be important

when choosing the number of informant clusters and the second point will be explored below

in the next section.

5.2.1 Asymmetric Bias Effect

Now, an important contribution of CCT is not just that its mathematical models are able to

reconstruct a cultural truth, since majority rule is capable of the same feat, rather the the-

ory’s focus on constructing a truth value for an item from informant specific latent measures

derived from their response profile. Thus by procuring information from each individual in-

formant in a culture, CCT is able to quantify the degree of agreement across commonalities

using their responses to a set of items (Batchelder, 1989). Furthermore, since CCT concerns

itself with the prediction of a culturally true answer key from unscored responses it is natural

to explore possible predictions made by the theory.

One otherwise unexplored prediction of the model is the posterior probability that the truth

value of item k is ”yes” given an informant said ”yes,” i.e. P (Z = 1|X = 1). The conditional
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probability Pr(Z = 1|X = 1) reveals the influence of a particular informant on the answer

key. Bayes theorem is used to derive the posterior probability of an items truth value

conditioned on the informants response.

Pr(Z = z|X = x) =
Pr(X = x|Z = z)Pr(Z = z)

Pr(X = x)

If π is regarded as the prior probability of an item answered ”yes,” then by substituting

terms into the Bayes formula we derive the posterior probability that the truth value of item

k is ”true” given an informant response ”yes.”

Pr(Z = 1|X = 1) =
πp1i

πp1i + (1− π)p0i

(5.4)

Now, substituting the terms in eq. 3 with those from eq. 1:2 we get:

Pr(Z = 1|X = 1) =
π(Di + (1−Di)gi)

π(Di + (1−Di)gi) + (1− π)(1−Di)gi
(5.5)

Figure 5.1 shows how each parameter in the model differentially acts upon the probability of

a latent truth value. More importantly, the plot shows an asymmetric bias effect (ABE) on

the conditional probability in favor of an informant with g = .1 over an unbiased informant,

i.e. g = .5, regardless of ability. ABE is a systematic shift in parametric influence to

the construction of a latent answer key and it characterizes a redistribution of predictive

power towards the bias parameter. Thus, GCM’s generating mechanism may disregard the
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Figure 5.1: The probability of Z, given X (i.e. P (Z = z|X = x)) given each parameter of
GCM.

influence of expertise in favor of a purely guessing strategy. Basically, the GCM’s strategy

for constructing an answer key is afflicted with an ABE that obfuscates the influence of

expertise.

While the propensity for errors is greatly increased when ABE is not controlled for, most

GCM models have either fixed the bias parameter g to .5 or have when Bayesian estima-

tion techniques are applied, the prior probability distribution has been centered around .5

(Batchelder & Ander, 2012). Restricting the distribution of the bias parameter to be near .5

reduces the possibility that any single informant with a low ability would influence the an-

swer key over an informant with greater ability. Such control would restrict the model from

preferring an inexperts biased response over an experts unbiased response when constructing

the answer key.

An astute observer may find that a strong bias towards an answer would indicate a higher
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degree of commitment to one response choice. Thus reducing the number of trials on which

a single response from the biased informant may influence the answer key recovery over a

competent informant. Consider the probability of an informant responding yes, i.e. P (X =

1). This can be expressed using conditional probabilities, such that:

P (X = 1) = πP (X = 1|Z = 1) + (1− π)P (X = 1|Z = 0).

Substituting the conditional probabilities with parameters found in Axiom 3, we get:

P (X = 1) = π[D + (1−D)g] + (1− π)(1−D)g. (5.6)

To see the specific influence of parameter g, we generate a sample of marginal probabilities

give a range of parameters. First we set the prior probability that an item is one (i.e.

P (Z = 1)) at π = .5 and obtain a set of values between [0,1] for D and g. Figure 2 shows

the probability an informant response “Yes,” (i.e. P(X=1))
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Figure 5.2: The probability of x (i.e. P (X = 1)) given each parameter of GCM.
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The figure reveals that as an informants ability increases, their response converges to their

prior belief probability, regardless of guessing. Although this prior belief drives an informants

response, it does so only when D = 1, however, less competent informant will rely more

on their guessing bias. Therefore, the informants response relies heavily on both their prior

belief and their guessing bias. Thus an informants ability, D, acts as an informant regulation

system on a guessing bias in favor of their prior belief.

In order to taper of this models dependency on the relative association to an individuals bias

we link the distributional assumptions of g to the item in question. Thus if an individual

where to rely on guessing, it may do so along with everyone else for each item. Under this new

model, the guessing bias is a function of the item. For this to work, without clearly including

an unyielding number of parameters to the model, we rely on hierarchical distributions. The

following section will describe the new model in more detail.

5.3 Knowledge Gradient Consensus Model

The principle reason for developing the new model, Knowledge Gradient Consensus (KGCM),

stems from a desire to represent individual knowledge across a set of items in a more veridical

fashion. It was seen in the above section that bias plays an important role in how an infor-

mant responds and though it was controlled for in other papers, it seems more appropriate

to allow g to represent a systematic bias conditioned on an item. We rely on hierarchical

distributions out of concern that the number of parameter may be too great for proper

identification.

Axiom 1. (Cultural Truth). There exists a single answer key shared by all informants, Z.

Axiom 2. (Conditional Independence). The response profile matrix satisfies conditional
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independence given by: Pr[X = (xi,k)N×M |Z,H,F]

=
N∏
i=1

M∏
k=1

Pr(Xi,k = xi,k|Zk, Hi,k, Fi,k) (5.7)

for all possible realizations (xi,k) of the response profile matrix.

Axiom 3. (Marginal Probabilities). The marginal probabilities (2) are given by Pr(Xi,k =

xi,k|Zk, Hi, Fi)

Axiom 4. (Double High Threshold). Hit and false alarm parameters for each informant are

reparameterized by

∀i,∀kHi,k = Di,k + (1−Di,k)gi,k, (5.8)

Fi,k = (1−Di,k)gi,k. (5.9)

Axiom 5.a. (Informant Ability and item difficulty). Each informants ability is a draw from a

hierarchical probability distribution centered around µD(i, k) with variance σD(i, k) for each

individual item.

Di,k ∼ PDF (µD(i, k), σD(i, k)) (5.10)

Axiom 5.b. (Conditional guessing). Each informant bias is a draw from a hierarchical
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probability distribution function with mean µg(k) and variance σg(k) for each individual

item.

gi,k ∼ PDF (µg(k), σg(k)) (5.11)

The first 4 axioms of the new model are alike to those in the original GCM; however, we

have added the assumption that the model parameters are now dependent on item in the

Axiom 5. Axiom 5.1 focuses on the ability parameter and it makes the general assumption

that each informant’s ability parameter depends on a particular item. This extension of

the model is not novel, see Anders and Batchelder 2012; however instead of using a Rasch

model like that in Anders and Batchelder’s paper, we assume that each ability parameter

value is drawn from a joint distribution centered around mui,k and with a covariance matrix

Sigmai,k.

Although this dependency is crucial in the new way of conceptualizing the model, it creates

an estimation problem due to the limited number of degree’s of freedom. In order to alleviate

some of the strain of estimating more parameters than degrees of freedom, we set the off-

diagonal elements of the covariance matrix to zero. Next, we focus on reducing the number

of hyperpriors by instead of having a separate hyperparameter for each item and informant

we will only have parameters that focus on relevant groups of each. To do this, we rely on

hierarchical distributional methods combined with a latent mixture model (LMM). LMM’s

are probabilistic models used to represent subpopulations from within an overall population.

In our application of LMM’s, we use them to identify subgroups within informants and items.

By representing the probability distribution of observations in the overall population as a

mixture distribution, we can focus on only the parameters responsible for delineating each

distribution. This has the effect of reducing the number of free parameters required for the
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model to only a few important hyperpriors for each hierarchical probability distributions

associated with each subgroup.

We begin by applying the following probability distributions on each parameter:

Zt ∼ Bernoulli(πk)

Di,k ∼ Beta(µD[Γ(i),Ω(k)]τD[Γ(i),Ω(k)], (1− µD[Γ(i),Ω(k)])τD[Γ(i),Ω(k)])

gi,k ∼ Beta(µg[Ω(k)]τg[Ω(k)], (1− µg[Ω(k)])τg[Ω(k)])

Γ(i) ∼ Categorical(λi)

Ω(k) ∼ Categorical(λk)

The Beta distribution is commonly used for variables within [0, 1] and since we are interested

in the means of each of the distributions, we modify the shape parameters to reflect our needs.

The following hyperpriors were used:

π ∼ Beta(1, 1)

µD(i, k) ∼ dbeta(1, 1)

µg(k) ∼ dbeta(4, 4)

τD(i, k) ∼ dgamma(1, 1)

τg(k) ∼ dgamma(1, 1)

λi ∼ Dirichlet(I), I = (1)1×T

λk ∼ Dirichlet(K), I = (1)1×P

where T is determined from a scree plot test and P is prespecified.
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5.4 Study 1

The first questionnaire was created to study individual differences by focusing on possible

areas of knowledge an undergraduate student may have encountered through their academic

studies. The goal here is to allow for natural academic interests to yield different expertise

among the informants.

5.4.1 Methods

A questionnaire containing 10 questions pertaining to each of the following topics; History,

Statistics and English, was administered to participants.

The analysis of the model was conducted using JAGS and the results reported are from a

run of 1000 samples with no burnin but with thinning set at 10. Both the standard GCM

and modified model are used to analyze the data and their results are reported below.

Since the results are draws from a Bayesian sampler there exists a problem in determining the

membership of an individual and only collecting samples from the appropriate distribution

without retaining any samples gathered from the other distribution during the sampling

procedure. For example, my contribution to CCT is the assumption that an informant does

not have the same ability of answering all questions in a questionnaire rather there are some

questions an informant is more likely to answer correctly than others. In this case, lets assume

there are 3 categories with 10 questions each for which an informant is differentially capable

of answering correctly. We can assign for each informant 3 different ability parameters for

questions pertaining to each category.

However, in practice we are unaware of the precise number of categories and their proportion

of questions in the questionnaire. Therefore we turned to latent mixture models as a possible
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solution to finding the membership of each item and in return estimate an informants ability

parameters. Again to keep things simple, lets assume there are 3 categories and so we want

to estimate 3 different ability parameters for each informant. Now, during the sampling

procedure, a value for an informants ability for a given question is taken from one of three

distributions depending on the assignment of the question. Naturally, one would expect

to obtain the same ability parameter values for all questions associated with one category.

Unfortunately since the questions membership is unknown, the informants ability for each

question is then a mixture of 3 distributions. So instead of getting the same ability parameter

values for all questions within a category we get 10 different ability values for the 10 questions

within a category.

Basically the posterior distribution of any given informants ability parameter for a question

is a combination of 3 distributions depending on the number of times in the simulation that

question was associated with each category. Obviously this is not what we want. So to fix

this, we post-process the results based on the indicator variable posterior samples to select

out the posterior values of the group-specific parameters.

Now, there are multiple methods to do this, for example, for a set M items, it is possible

to categorize the results based on the category variable using the mode assignment for each

item individually. Or, we can take the mode assignment of the complete list of items and

post-process the results. In our analysis, we found that the two gave the same results.

5.4.2 Informants

N = 29 informants were sampled from Social Science subject pool at the University of

California.
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DIC Deviance
GCM 1100.13452 1074.61226

KGCM 731.581246 621.267123

Table 5.1: Deviance Information Criterion for GCM and KGCM on Experiment 1

5.4.3 Procedures

This questionnaire can be found in the Appendix under chapter 5.

5.4.4 Results 1

Table 5.1 shows the Deviance Information Criterion (DIC) calculated for both the GCM and

KGCM.

Table 5.2 displays each item’s predicted truth value given by each model along with the

ground truth and the average response given by all informants. The values inside the paren-

thesis are the unrounded probabilities. The averaged response correctly predicted 70 % of

the items, GCM correctly predicted 66.66% of the items and KGCM correctly predicted

76.66 % of the items.

5.4.5 Discussion 1

Note, mean responses successfully reconstructed the answer key with 20 correct. This was

the same using the GCM model, however, using the new model, we were able to correctly

reconstruct the answer key with 23 correct.
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GT Average GCM KGCM
1 1 (0.8276) 1 (1) 1 (1)
1 0 (0.4138) 0 (0.031) 0 (0)
1 1 (0.5862) 1 (0.997) 0 (0.1975)
0 1 (0.931) 1 (1) 1 (1)
1 1 (0.6552) 1 (0.999) 1 (0.9797)
1 1 (0.5517) 1 (0.981) 1 (0.7418)
1 1 (0.8276) 1 (1) 1 (0.9949)
1 1 (0.6552) 1 (0.999) 1 (0.7519)
0 1 (0.6207) 1 (0.974) 1 (1)
0 0 (0.4138) 0 (0.172) 0 (0.0608)
1 1 (0.5862) 1 (0.995) 1 (0.7468)
1 0 (0.4483) 0 (0.151) 1 (1)
1 1 (0.5172) 1 (0.856) 1 (1)
1 1 (0.6897) 1 (0.999) 1 (1)
0 0 (0.4828) 1 (0.576) 1 (0.5392)
1 1 (0.6897) 1 (1) 1 (0.719)
1 1 (0.8276) 1 (1) 1 (1)
1 0 (0.4828) 0 (0.413) 1 (0.6101)
0 1 (0.8621) 1 (1) 1 (1)
0 0 (0.0345) 0 (0) 0 (0)
0 1 (0.5862) 1 (0.994) 0 (0.481)
0 1 (0.6552) 1 (0.999) 1 (0.9797)
0 0 (0.1034) 0 (0) 0 (0)
0 0 (0.4138) 0 (0.079) 0 (0)
0 0 (0.2414) 0 (0) 0 (0.0025)
1 1 (0.7241) 1 (1) 1 (0.957)
0 0 (0.1034) 0 (0) 0 (0)
0 1 (0.5517) 1 (0.975) 0 (0.2456)
1 1 (0.6207) 1 (0.998) 1 (1)
1 1 (0.7241) 1 (1) 1 (0.9671)

Table 5.2: Predicted Answers keys by GCM and KGCM where GT = ground truth
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5.5 Study 2

The second questionnaire was created to study individual differences pertaining to cultural

knowledge The focus here is to find groups of expertise more naturally found in the pop-

ulation. While the last experiment explored information often taught formally, this new

experiment, attempts to discover differences in knowledge transmitted through cultural set-

tings.

5.5.1 Methods

The questionnaire created tests knowledge about; film, literature, and sports. Each topic has

10 questions, and three version of this questionnaire was made with three different ordering

of the questions to control for

The analysis of the model was conducted using JAGS and the results reported are from a

run of 1000 samples with no burnin but with thinning set at 10. Both the standard GCM

and modified model are used to analyze the data and their results are reported below.

5.5.2 Informants

80 informants in a psychology class at the University of California, Irvine were administered

the questionnaire. Of the 80, 3 did not complete the questionnaire completely, so we omitted

their response for the analysis.

5.5.3 Procedures

This questionnaire can be found in the Appendix under chapter 5.
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DIC Deviance
GCM 2914.85328 2858.81164

KGCM 2277.91716 2039.68858

Table 5.3: Deviance Information Criterion for GCM and KGCM on Experiment 2

5.5.4 Results 2

Table 5.3 shows the DIC results for the GCM and KGCM model.

Table 5.4 shows the average response, GCM, and KGCM answer key predictions along with

each unrounded probability in parenthesis. The averaged response correctly predicted 70 %

of the items, GCM correctly predicted 73.33% of the items and KGCM correctly predicted

83 % of the items.

5.5.5 Discussion 2

The results provided above have shown that the two models outperform the average, however,

it is easy to see that KGCM’s predicted answer key approaches the ground truth on three

more items than the GCM.

5.6 Conclusion

Cultural Consensus Theory has provided a useful framework for conceptualizing preexist-

ing differences present within a group of people as a means towards scientifically verifiable

knowledge. In the past, CCT was almost exclusively used to further an Anthropological

hypothetical deductivistic pursuit as a quantifiable tool for theorists looking to employ for-

malized measures. More recently this theory has broadened its scope, permitting a greater

appreciation of the theories applicability across different domains. However, most mathe-
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GT Average GCM KGCM
1 0 (0.4935) 1 (0.993) 1 (1)
1 1 (0.6494) 1 (0.998) 1 (1)
0 1 (0.5065) 0 (0.001) 0 (0.3039)
1 1 (0.6753) 1 (1) 1 (1)
1 1 (0.5974) 1 (0.997) 1 (1)
0 0 (0.4156) 0 (0) 0 (0)
1 1 (0.5974) 1 (0.997) 1 (1)
0 1 (0.5325) 1 (0.929) 1 (0.8469)
1 1 (0.6104) 1 (0.997) 1 (1)
1 1 (0.6104) 1 (0.996) 1 (1)
0 0 (0.3117) 0 (0) 0 (0)
0 0 (0.3377) 0 (0) 0 (0)
0 0 (0.4416) 0 (0) 0 (0)
0 0 (0.4675) 0 (0) 0 (0)
1 1 (0.5844) 1 (0.994) 1 (1)
0 0 (0.4935) 0 (0.001) 0 (0.0348)
0 0 (0.4156) 0 (0) 0 (0)
1 1 (0.6494) 1 (0.996) 1 (1)
0 1 (0.6104) 1 (0.998) 1 (1)
1 1 (0.5455) 1 (0.994) 1 (1)
1 1 (0.6883) 1 (1) 1 (1)
0 1 (0.5195) 1 (0.993) 1 (0.8886)
0 1 (0.5714) 1 (0.996) 1 (1)
0 0 (0.4286) 0 (0) 0 (0)
0 1 (0.5325) 1 (0.994) 0 (0.0847)
1 1 (0.5065) 0 (0.498) 1 (1)
1 1 (0.5325) 1 (0.994) 1 (1)
1 0 (0.4805) 0 (0.073) 1 (0.6218)
0 1 (0.5974) 1 (0.995) 1 (1)
1 1 (0.5714) 1 (0.997) 1 (1)

Table 5.4: Predicted Answers keys by GCM and KGCM where GT = ground truth
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matical models in connection with this theory have relied solely on an informants expertise

to enumerate an unknown answer key. In light of existing research on expertise, (Weiss),

leverage provided by ability alone may focus too heavily on incomplete conceptualization of

pertinent latent information.

The current paper has further explored the nature of each individual parameter of the most

commonly used CCT model, the General Condercet Model. In our analysis of the model

parameters, an asymmetric bias effect was shown to negatively influence the construction of

an answer key. More specifically, when this effect is not controlled for, model specification

errors may lead to a misattribution of parameter influence. In turn, the estimated parameter

value of the latent answer key becomes less accurate. Therefore, it is important to for

scientific accuracy to modify the models to control
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Chapter 6

Metric CCT

The goal is to construct a general continuous model of CCT for distance data. Cultural

consensus theory (CCT) is an information pooling technique that utilizes natural differences

that arise amongst informants to construct a culturally viable answer key to questions with

no known answers. One area of otherwise unexplored cultural knowledge using CCT models

is that of multidimensional data such as distance predictions. While research on distances

between geographical locations has benefited from other methodologies such as multidimen-

sional scaling techniques, it has done so without the help of cognitively based variables that

allow us to quantify the degree of knowledge in a collection of informants.

This paper will present a metric response CCT model that will take individual performance

abilities along with item difficulty measures into account when constructing distances be-

tween objects that satisfy the triangle inequality.
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6.1 Introduction

Cultural consensus theory (CCT) is an information pooling technique for reconstructing

unknown answers shared by a group of informants. At the basic level, CCT utilizes natural

differences that arise amongst informants to construct a culturally viable answer key to

questions with no known answers. This is especially useful when clear consensus between

informants is otherwise unattainable from aggregation methods such as the majority rule.

For example, when there is no clear plurality between alternatives, such that each response

alternative has an equal proportion of votes, central measures such as the mean or mode

utilized for methods such as the majority rule will not provide a solution. Although CCT is

not the only model that will resolve this issue, (e.g. Lee, 2001), it formalizes the solution by

weighting each informant’s response through axiomatized latent measures such as cognitive

ability and systematic bias. These person specific latent variables along with the unknown

answer key can be obtained for a variety of scale families.

One otherwise unexplored cultural knowledge with CCT models is that of unbounded psy-

chophysical measures characterized by a complex set of attributes on a continuum shared by

informants. Metric based judgments are ubiquitous across the field of psychology where a

purely objective quantitative measurement of the degree of similarity between items is un-

known. While research on psychological spaces has benefited greatly from both parametric

and non-parametric methodologies, it has done so without much help from cognitively based

variables shown to quantify the degree of knowledge from a collection of informants and

item difficulty. Person specific dimensionality weights have been included to account for in-

dividual differences (INDSCAL; Carol and Chang, 1970), however, they have not been used

to differentially weight each informant’s response with the goal of constructing a culturally

accepted stimuli structure.

Psychophysical models come in a variety of forms, such models have been studied on values
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of similarity judgments between psychologically motivated objects with known relational

attributes through ratings on a scale or triadic comparison (Romney, Brewer, & Batchelder,

1993). These responses are then mapped onto an orthonormal vector space shared by each

informant. More recently, MDS type data has become increasingly popular in the field of

marketing.

This paper aims at constructing a metric response CCT model that will give the user infor-

mation about each informant’s cognitive measures along with a culturally appropriate view

on the structure of the items1 in a multidimensional space. The reason for working with dis-

tances is to study person specific weights used for reconstructing an actual map with known

dimensions. Thus providing us with the opportunity to validate the model’s parameters

as meaningful cognitive variables for known dimensions. After the introduction, the paper

will introduce the new model and its properties. Following this, we introduce the data and

analyze it using standard individual differences MDS. Afterwards the model is applied and

compared to the previous analysis to showcase the increased extraction of information from

subject data.

There are two models in question when building a psychophysical model of distances. the first

is a spatial model and the second is a distance model. Multidimensional scaling techniques

require a certain linear combination of known

6.2 Distance and Spatial model

Generally, when attempting to model psychophysical data one must decide upon a distance

model and a spatial model. The first, a distance model, specifically models a subject’s

stated belief of a distance or similarity between two items. Unless otherwise stated, a distance

1Here items is defined as the objects for which an experimenter is interested in, instead of each question
asked to the informant.
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model provides the necessary framework to predict subject responses to psychophysical data.

The second, maps these predicted distances as distances between points in some unknown

multidimensional space, known as the spatial model. A choice of the spatial model is left

to the researchers discretion so long as it is a formulation of a metric with a corresponding

metric space. The two work in concert to yield an appropriate representation of the data.

To date, a common choice for each model has been what Torgerson (1958) calls, deterministic

models. These type of models have the distinction that all the variation in the data is

accounted for by the informant and item. The models take no further steps to account for

systematic error so the viability of the model is left to how well it can approximate the data.

Multidimensional scaling techniques such as MDS, INSCAL, etc. all fall under this general

framework. In recent years, progress on probabilistic techniques has revitalized the use of

psychometric models with the goal of utilizing these techniques for parameter estimation of

deterministic models (Michael Lee, Rouder). Although focus has been on using Bayesian

assumptions in estimation of the parameters posed by the deterministic model, it requires

the modeler to allow for systematic error. In doing so, the models are no longer deterministic

but rather, probabilistic.

While this particular distinction between models was first outlined by Torgerson (1958), the

problem of misattribution of error between the spatial and distance models was not suspected

when probabilistic assumptions are applied to deterministic models. Generally the issue is

side swept by redirecting the error so that it falls on the parameters of the spatial model,

while ignoring the source of the variation as belonging to the distance estimates.

This has been done with michael lee’s and styvers models, possibly also, Rouder. CHeck.

While this relationship has not been fully explored, possibly due to the fact that any distance

models can be combined with an ever growing list of spatial models, a clear choice is made

in this paper between the spatial and distance model. For mathematical ease, we decide to
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use a Euclid’s metric system.

6.3 CCT Continuous Model

CCT models developed to account for continuous truth response data commonly assume

that an informant draws a latent appraisal2, Yik, characterized as deviating from a cultural

truth Zk by some amount determined by εik. The error random variables are distributed

with mean zero and standard deviation σik. Furthermore, an assumption is made that each

observed response is a function of an informant’s competency Ei and item difficulty λk thus

σik = Eiλk. Finally, the model includes response bias parameters that account for differences

in the observed response from each informants latent appraisal. Thus the observed response,

Xik, is a function of two bias parameters that transform the latent appraisal, Yik, by a scaling

bias, ai and shifting bias bi, i.e Xik = aiYik + bi.

It is rather easy to see that the latent appraisals, Yik, and shared truth, Zk, lie on the

open interval, (−∞,∞), and although the observed responses are not limited to values on

the same interval, greater methodological success was reported using Gaussian distributions

(Anders & Batchelder, 2014). In fact, it is possible to transform the observed response on

the real line to the unit interval using an inverse logit function or from the unit interval to

the real line with the logit function. This subtlety allows one to work with a wider range of

data sets given the breadth of research with continuous response profiles.

As it stands, the current continuous response model in CCT involves a linear transformation

unto [0, 1] where each response in the data set is divided by the largest value. Followed by

a transformation unto the R, usually by the logit link function. The first transformation

standardizes the distance values to a more manageable range for the second transformation.

2Note, the latent appraisal is not observed rather it is an approach adapted from classical test theory
(Lord & Novick, 1968).
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Unfortunately, it is known that by standardizing values, the dispersion is also adjusted, and

thus any information relying on the data variance is lost. The second transformation yields

problematic assumptions that cannot be easily reconciled for latent distance approximations.

The more important of these problems is the fact that distances are never negative and

must satisfy the triangle inequality. Thus these transformations do not help in obtaining

an appropriate estimate of true distances since the resulting distribution involves sampling

values in (−∞,∞). Therefore, any models attempting to find an agreed upon solution

between informants that corresponds to the ground truth must make an effort to model the

data as it is.

6.4 Metric CCT Model

Assume that each of the N informants provides a continuous estimate on R+. The random

variables, Xi,j,j′ , represents the ith informant’s response about two stimuli-objects, where

j, j′ ∈ Ω and j 6= j′ and Ω is the set of M stimuli-objects. Alternatively X = (Xi,j,j′)N×M×M

can be viewed as the response profile matrix obtained from each informant. Naturally, the

true distance between points is assumed to lie on the positive real line therefore the latent

answer key, Zj,j′ ∈ R+. The resulting symmetric distance matrix, Z = (Zj,j′)M×M conve-

niently consolidates the data for the pairwise comparisons between M cities.

Axiom 1 (Cultural Truth). There is a single answer key, Z = (zj,j′), applicable to all infor-

mants. The distance matrix, Z, is symmetric, non-negative, hollow and satisfies the triangle

inequality.

Axiom 2 (Latent Appraisal). Each informant draws a latent distance appraisal Y, from
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latent coordinate pair {x, y}, for each city such that, Y =
√

(x1 − x2)2 + (y1 − y2)2 + εi,k

satisfies the triangle inequality on a Euclidean plane for each point.

Axiom 3 (Conditional Independence). The εik are mutually independent thus the joint

distribution of the latent appraisal is given by:

h[(yik|(Zk), (σik)] =
∏
i

∏
k

f(yik|Zk, σik) (6.1)

Axiom 4 (Precision). There are knowledge competency parameters E = (Ei)1×N , where

Ei > 0. An informants standard appraisal error in the assessment of each is defined as:

σij = Eiλk (6.2)

Axiom 5.a (Dimension Specific Response Bias). There are dimension specific bias param-

eters that act on the latent position of an item.

Xi,j,j′ = aiYj,j′ =

√√√√ R∑
r

ai,r(xj,r − xj′,r)2 (6.3)

Axiom 5.b (Translation Response Bias) For each informant, there exists a translation
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parameter B = (bi)1×N where −∞ < bi <∞

Xi,j,j′ =

√√√√ R∑
r

ai,r(xj,r − xj′,r)2 + bi (6.4)

For every distance response, we are provided with information about the relationship be-

tween two stimuli-objects from each participant and usually this is represented by a square

symmetric matrix. Axiom 1 of this model generalizes Axiom 1 of (AZB) to include single

cultural truths between pairs of objects. This first axiom characterizes the basic assumption

of CCT, that there exists an answer-key unknown to the researcher that applies to any in-

formant completing the test/questionnaire. Axiom 2 introduces an error term that is doubly

indexed by item and informant applied to the objective answer-key from Axiom 1. Further-

more, while there are other metric functions, we have selected to use Euclid’s equation as

commonly used in MDS. An advantage of using this equation is that it satisfies the triangle

inequality requirement while still allowing us to specify CCT parameters. Axiom 3 is typical

for IRT type models that conditions the latent appraisals by the model parameters. Axiom 4

makes the competency parameter be a function of both informant and item. Axiom 5.a and

5.b relates the latent appraisal to the observed response through two linear transformations

on the latent truth. The five Axioms delineate the MCCT model in a very similar fashion

to the continuous CCT model of (Anders, Zita, & Batchelder, 2013). In fact, if we eliminate

the additional, j, j′ subscripts on the variables in the four axioms, MCCT reduces to the

Continuous CCT model.

Axiom 5.a splits the bias scale parameter so that it can be measured independently for

differences dimensions, e.g. North/South or West/East. Albeit the solution does not readily

conform to Anders et al. (2014) continuous paper assumptions since that paper suggests a

transformation from [0,∞) to [0, 1] then to (−∞,∞) which does not lend itself to a tractable

164



solution of distances that are positive and that satisfy the triangle inequality.

6.5 Potential Avenues for MCCT

A potential problem for the current model may be found in the bias parameters. One

possibility is that if a diffuse prior is assumed for the bias parameters, the shared distances

(i.e. Z) as calculated by the euclidean distance equation will not approach the ground

truth. The solution is to then assign highly informative priors so that the distances are not

underestimated. While this approach has been used by Anders et al. (2014), the problem

lies in trying to interpret the results.

In order to understand the problem we take a classical approach of finding maximum like-

lihood estimators for the parameters in the model. We being by defining the likelihood

function as:

L(a, b, Z, λ|X) =
∏
i

∏
k

1√
2πaiEiλk

exp[
−(xik − (aiZk + bi))

2

2a2
iE

2
i λ

2
k

] (6.5)

The score function of Z

∂L

∂Z
= −

∑
i

bi−xik+aiZk
aiE2

i λ
2
k

λ4
k

∏
i

aiEi
exp[

∑
i

−(bi − xik − aiZk)2

2a2
iE

2
i λ

2
k

] (6.6)

Setting, ∂L
∂Z

= 0, and solving for Zk we get:

Ẑk = −

∑
i

bi−xik
aiE2

i λ
2
k∑

i

1
E2
i λ

2
k

(6.7)
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The score function of b

∂L

∂b
= −

∑
k

b− xik + aZk
E2λ2

ka
2

exp(
∑
k

−(b− xik + aZk)
2

(2E2Λ2
ka

2)
) (6.8)

Setting, ∂L
∂b

= 0, and solving for bi we get:

b̂i =

∑
k

(xk−aZk)

(E2λ2ka
2)∑

k

( 1
(E2λ2ka

2)

(6.9)

Setting, ∂L
∂a

= 0, and solving for ai we get:

âi =

∑
k
−b+x
E2λ2T∑

1
E2λ2

(6.10)

CRM assumes that an informant’s competency is a measure of how close their estimate

fits with the shared truth, Z. After individual bias has been included this assumption

might not really hold since it is known that consistency is not necessary nor sufficient for

competency (e.g. a person can be consistently wrong) (David Weiss). This suggests that we

look elsewhere when allocating the competency parameter to the model, but so far in the

current set up of the model the response distribution’s variance is a function of competency

and item difficulty.
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6.6 Conclusion

Work aimed at understanding the parameters and their influence on reconstructing an ac-

cepted representation in a multidimensional space is still needed. Most notably, the distinc-

tion between a spatial model and a distance model must be made in order to assign the

variance appropriately.

This paper has proposed a method for a metric based model, and though more work is needed,

the potential benefits of this work may be widespread, as seen through the application of

MDS in fields such as marketing and psychology.
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Appendix A

Appendix Title

A.1 Chapter 2 Appendix

Unequal Variance Signal Detection Hierarchical Model

model {

for (i in 1:n) {

HR[i,1:3] ~ dmulti(h[i,1:3],N)

FA[i,1:3] ~ dmulti(f[i,1:3],N)

}

for (i in 1:n) {

h[i,1] <- phi(((d[i]/2) - c[i,1])/tau[i])

h[i,2] <- phi(((d[i]/2)-c[i,2])/tau[i])-phi(((d[i]/2)-c[i,1])/tau[i])

h[i,3] <- phi((c[i,2] - (d[i]/2))/tau[i])

f[i,1] <- phi((-d[i]/2) - c[i,1])

f[i,2] <- phi((-d[i]/2) - c[i,2]) - phi((-d[i]/2)-c[i,1])

f[i,3] <- phi((d[i]/2) + c[i,2])

}

for (i in 1:n) {

c[i,1] ~ dnorm(muc1,sigmac1)T(c[i,2],)

169



c[i,2] ~ dnorm(muc2,sigmac2)

d[i] ~ dgamma(mud^2/sigmad, mud/sigmad)

tau[i] <- 1/tmp[i] +1

tmp[i] ~ dgamma(mut, 1/sigmat)

}

# dprime hyperpriors

mud ~ dgamma(1,1)

#sigmad ~ dgamma(1,1)

lambdad ~ dgamma(1,1)

sigmad <- 1/sqrt(lambdad)

# sigma hyperpriors

mut ~ dgamma(1,1)

lambdat ~ dgamma(1,1)

sigmat <- 1/sqrt(lambdat)

#sigmat ~ dgamma(1,1)

# 1st criterion hyperpriors

muc1 ~ dnorm(0,1)

lambdac1 ~ dgamma(1,1)

sigmac1 <- 1/sqrt(lambdac1)

# 2st criterion hyperpriors

muc2 ~ dnorm(0,1)

lambdac2 ~ dgamma(1,1)

sigmac2 <- 1/sqrt(lambdac2)

}

Double High Threshold Hierarchical Model

model {

for (i in 1:n) {

HR[i,1:3] ~ dmulti(h[i,1:3],N)

FA[i,1:3] ~ dmulti(f[i,1:3],N)

}
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for (i in 1:n) {

h[i,1] <- theta[i,1] + (1-theta[i,1]) * alpha[i] * g[i]

h[i,2] <- (1-theta[i,1]) * (1-alpha[i])

h[i,3] <- (1-theta[i,1]) * alpha[i] * (1-g[i])

f[i,1] <- (1-theta[i,2]) * alpha[i] * g[i]

f[i,2] <- (1-theta[i,2]) * (1-alpha[i])

f[i,3] <- theta[i,2] + (1-theta[i,2]) * alpha[i] * (1-g[i])

}

for (i in 1:n) {

# Probit transformation

for(jk in 1:P){

logit(theta[i,jk]) <- theta.probit[i,jk]

theta.probit[i,jk] <- mu[jk] + xi[jk]*delta[i,jk]

}

# Prior for unscaled participant effects

delta[i,1:P] ~ dmnorm(mudelta[1:P],Tprec[1:P,1:P])

logit(g[i]) <- pg[i]

pg[i] ~ dnorm(meanpg,precpg)

logit(alpha[i]) <- palpha[i]

palpha[i] ~ dnorm(meanpalpha,precpalpha)

}

# Hyperpriors

for(jk in 1:P){

mudelta[jk] <- 0

mu[jk] ~ dnorm(0,1)

xi[jk] ~ dunif(0,100)

}

Tprec[1:P,1:P] ~ dwish(W[1:P,1:P],df)

df <- P+1

T[1:P,1:P] <- inverse(Tprec[1:P,1:P])

# Scale sigma’s and compute parameter correlations

for(jk in 1:P){

for(prme in 1:P){

# Off-diagonal elements of S

rho[jk,prme] <- T[jk,prme]/sqrt(T[jk,jk]*T[prme,prme])
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}

# Diagonal elements of S

sigma[jk] <- xi[jk]*sqrt(T[jk,jk])

}

meanpg ~ dnorm(0,.1)

meanpalpha ~ dnorm(0,.1)

SSA ~ dgamma(1,1)

precpalpha <- 1/sqrt(SSA)

SSG ~ dgamma(1,1)

precpg <- 1/sqrt(SSG)

}
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A.2 Chapter 3 Appendix

The equations for the sixteen response patterns given the model are a sum of products over

the parameters of the model. This is because the model fits into the class of Multinomial

Processing Tree (MPT) models (Batchelder et al 1997) and a defining property of MPT

models is that the expressions for the sixteen category probabilities, for any word, are a sum

of products over the parameters of the model (Batchelder & Riefer, 1999; Hu and Batchelder,

1994). In summary the sum of products over the parameters of the model is composed of

enumerated state sequences and their associated retrieval parameters for a given response

pattern. The thirteen state sequences are: UUUU, UUII, UUIL, UULL, UIII, UIIL, UILL,

ULLL, IIII, IIIL, IILL, ILLL, and LLLL. The equations for the sixteen response patterns are

obtained by first enumerating the thirteen possible sequences of states over the four trials.

For example, the state sequence UUII is represented by the transition probabilities: (1 – rx

)(1 – ax)(1 – ry)(1 – ay)(1 – rz)az [ (1 – tz) + tz(1 – bi)] . The parameters are indexed

by x , y , and z to illustrate the fact that the parameters used to calculate the probability

of a response sequence, given the model for a word, depend on where that word is in the

study list for each study trial. The product of the terms inside the first four parenthesis

represents the probability the word remains in the U-State for the first two study trials, and

the remaining terms give the probability that the word transitions to the I-State on the third

study trial and then fails to make the transition to the L-State on the third test trial.

Each one of these thirteen state sequences is associated with several possible response

patterns. For example, the state sequence UULL can result in the response sequences 0000,

0001, 0010, 0011, with recall probabilities, [(1 – l1,z )(1 – l2 )], [(1 – l1,z )l2 ], [l1,z (1 –

l2 )], [l1,z l2 ], respectively. For a given response sequence, each of the thirteen enumerated

state sequences generates a probability of that sequence and these are summed to give the

probability of that response sequence in terms of the model’s parameters. Note there are

instances where not all of the thirteen state sequences can produce a particular observed

173



response pattern, for example the sequence UULL cannot result in the response sequence 1111

and there are also instances where some state sequences are repeated such as UULL occurs

twice in the response sequence 0011. In such cases, the sum includes only the appropriate

state patterns. The likelihood function (e.g Riefer & Batchelder 1988) for the model is

a product-multinomial distribution, with a sixteen term multinomial for each of the ten

words with category probabilities represented by the expression corresponding to the possible

response sequences. The likelihood function gives the probability of the obtained data as

a function of variations in the parameters of the model, and it is a necessary component

of various classical and Bayesian inference procedures used to estimate the parameters of a

model.

model {

for (i in 1:N) {

for (j in 1:Subj) {

XX[i,1:16,j] ˜ dmulti(PP[i,1:16,j],1)

}}

# --------------Posterior Predictive ---------------------------------

for (i in 1:N) {

for (j in 1:Subj) {

PPXX[i,1:16,j] ˜ dmulti(PP[i,1:16,j],1)

}}

# -------------- Pr(Data | Model ) ---------------------------------

for (i in 1:N) {

for (j in 1:Subj) {

PP[i,1,j] <- (1−l1[x[i], j])∗(1−l1[y[i], j])∗(1−l1[z[i], j])∗(1−l2[j])∗r[x[i], j]+ (1−r[x[i], j])∗
a[x[i], j]∗(1−t[x[i], j])∗v[y[i], j]∗(1− l1[y[i], j])∗(1− l1[z[i], j])∗(1− l2[j])+ (1−r[x[i], j])∗
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a[x[i], j]∗(1−t[x[i], j])∗(1−v[y[i], j])∗(1−t[y[i], j])∗v[z[i], j]∗(1−l1[z[i], j])∗(1−l2[j])+(1−
r[x[i], j])∗(1−a[x[i], j])∗r[y[i], j]∗(1−l1[y[i], j])∗(1−l1[z[i], j])∗(1−l2[j])+ (1−r[x[i], j])∗
(1−a[x[i], j])∗(1−r[y[i], j])∗a[y[i], j]∗(1−t[y[i], j])∗v[z[i], j]∗(1−l1[z[i], j])∗(1−l2[j])+ (1−
r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗a[y[i], j]∗(1−t[y[i], j])∗(1−v[z[i], j])∗(1−t[z[i], j])+
(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗(1−a[y[i], j])∗(1−r[z[i], j])∗(1−a[z[i], j])+ (1−
r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗(1−a[y[i], j])∗(1−r[z[i], j])∗a[z[i], j]∗(1−t[z[i], j])+
(1−r[x[i], j])∗a[x[i], j]∗(1−t[x[i], j])∗(1−v[y[i], j])∗(1−t[y[i], j])∗(1−v[z[i], j])∗(1−t[z[i], j])+
(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗(1−a[y[i], j])∗r[z[i], j]∗(1−l1[z[i], j])∗(1−l2[j])

PP[i,2,j] <- (1− l1[x[i], j])∗ (1− l1[y[i], j])∗ l1[z[i], j]∗ (1− l2[j])∗r[x[i], j]+ (1−r[x[i], j])∗
a[x[i], j] ∗ (1 − t[x[i], j]) ∗ v[y[i], j] ∗ (1 − l1[y[i], j]) ∗ l1[z[i], j] ∗ (1 − l2[j]) + 1 − r[x[i], j]) ∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ (1− l2[j]) + (1−
r[x[i], j])∗a[x[i], j]∗(1−t[x[i], j])∗(1−v[y[i], j])∗(1−t[y[i], j])∗(1−v[z[i], j])∗t[z[i], j]∗b[i, j]∗
(1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ r[y[i], j] ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ (1− l2[j]) +
(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗a[y[i], j]∗(1−t[y[i], j])∗v[z[i], j]∗ l1[z[i], j]∗(1−
l2[j])+ (1− r[x[i], j])∗ (1−a[x[i], j])∗ (1− r[y[i], j])∗a[y[i], j]∗ (1− t[y[i], j])∗ (1−v[z[i], j])∗
t[z[i], j] ∗ b[i, j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ (1−
t[y[i], j])∗ (1−v[z[i], j])∗ t[z[i], j]∗ (1− b[i, j])+ 1−r[x[i], j])∗ (1−a[x[i], j])∗ (1−r[y[i], j])∗
(1−a[y[i], j]) ∗ (1− r[z[i], j]) ∗a[z[i], j] ∗ t[z[i], j] ∗ (1− b[i, j]) + (1− r[x[i], j]) ∗a[x[i], j] ∗ (1−
t[x[i], j])∗ (1−v[y[i], j])∗ (1− t[y[i], j])∗ (1−v[z[i], j])∗ t[z[i], j]∗ (1− b[i, j])+(1− r[x[i], j])∗
(1−a[x[i], j])∗ (1− r[y[i], j])∗ (1−a[y[i], j])∗ r[z[i], j]∗ l1[z[i], j]∗ (1− l2[j])+(1− r[x[i], j])∗
(1−a[x[i], j])∗(1−r[y[i], j])∗(1−a[y[i], j])∗(1−r[z[i], j])∗a[z[i], j]∗t[z[i], j]∗b[i, j]∗(1−l2[j])

PP[i,3,j] <- (1− l1[x[i], j])∗ l1[y[i], j]∗ (1− l1[z[i], j])∗ (1− l2[j])∗r[x[i], j]+ (1−r[x[i], j])∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ v[y[i], j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) + (1− r[x[i], j]) ∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ b[i, j] ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) + (1−
r[x[i], j]) ∗ a[x[i], j] ∗ (1 − t[x[i], j]) ∗ (1 − v[y[i], j]) ∗ t[y[i], j] ∗ (1 − b[i, j]) ∗ v[z[i], j] ∗ (1 −
l1[z[i], j]) ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ r[y[i], j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗
(1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗ b[i, j] ∗ (1−
l1[z[i], j]) ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗
(1 − b[i, j]) ∗ v[z[i], j] ∗ (1 − l1[z[i], j]) ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗ (1 − a[x[i], j]) ∗ (1 −
r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ (1− t[z[i], j]) + (1− r[x[i], j]) ∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ (1− t[z[i], j])

PP[i,4,j] <- (1 − l1[x[i], j]) ∗ l1[y[i], j] ∗ l1[z[i], j] ∗ (1 − l2[j]) ∗ r[x[i], j] + (1 − r[x[i], j]) ∗
a[x[i], j]∗ (1− t[x[i], j])∗ v[y[i], j]∗ l1[y[i], j]∗ l1[z[i], j]∗ (1− l2[j]) + (1− r[x[i], j])∗a[x[i], j]∗
(1− t[x[i], j])∗ (1−v[y[i], j])∗ t[y[i], j]∗b[i, j]∗ l1[z[i], j]∗ (1− l2[j])+(1−r[x[i], j])∗a[x[i], j]∗
(1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ (1− l2[j]) + (1−
r[x[i], j]) ∗ a[x[i], j] ∗ (1 − t[x[i], j]) ∗ (1 − v[y[i], j]) ∗ t[y[i], j] ∗ (1 − b[i, j]) ∗ (1 − v[z[i], j]) ∗
t[z[i], j]∗b[i, j]∗ (1− l2[j])+(1−r[x[i], j])∗ (1−a[x[i], j])∗r[y[i], j]∗ l1[y[i], j]∗ l1[z[i], j]∗ (1−
l2[j])+(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗a[y[i], j]∗ t[y[i], j]∗b[i, j]∗ l1[z[i], j]∗(1−
l2[j])+(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗a[y[i], j]∗ t[y[i], j]∗(1−b[i, j])∗v[z[i], j]∗
l1[z[i], j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗ (1−
b[i, j])∗(1−v[z[i], j])∗t[z[i], j]∗b[i, j]∗(1−l2[j])+(1−r[x[i], j])∗(1−a[x[i], j])∗(1−r[y[i], j])∗
a[y[i], j]∗ t[y[i], j]∗(1−b[i, j])∗(1−v[z[i], j])∗ t[z[i], j]∗(1−b[i, j])+(1−r[x[i], j])∗a[x[i], j]∗
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(1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ t[z[i], j] ∗ (1− b[i, j])

PP[i,5,j] <- (1− l1[x[i], j])∗ (1− l1[y[i], j])∗ (1− l1[z[i], j])∗ l2[j]∗r[x[i], j]+ (1−r[x[i], j])∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ v[y[i], j] ∗ (1− l1[y[i], j]) ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗
a[x[i], j] ∗ (1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1−
r[x[i], j]) ∗ (1− a[x[i], j]) ∗ r[y[i], j] ∗ (1− l1[y[i], j]) ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗
(1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ (1− t[y[i], j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1−
r[x[i], j]) ∗ (1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ (1− a[y[i], j]) ∗ r[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j]

PP[i,6,j] <- (1− l1[x[i], j]) ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ l2[j] ∗ r[x[i], j] + (1− r[x[i], j]) ∗
a[x[i], j]∗(1−t[x[i], j])∗v[y[i], j]∗(1−l1[y[i], j])∗l1[z[i], j]∗l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗(1−
t[x[i], j])∗(1−v[y[i], j])∗(1−t[y[i], j])∗v[z[i], j]∗l1[z[i], j]∗l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗(1−
t[x[i], j])∗(1−v[y[i], j])∗(1−t[y[i], j])∗(1−v[z[i], j])∗t[z[i], j]∗b[i, j]∗ l2[j]+ (1−r[x[i], j])∗
(1−a[x[i], j])∗r[y[i], j]∗(1− l1[y[i], j])∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗(1−a[x[i], j])∗(1−
r[y[i], j])∗a[y[i], j]∗ (1− t[y[i], j])∗v[z[i], j]∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗ (1−a[x[i], j])∗
(1−r[y[i], j])∗a[y[i], j]∗(1− t[y[i], j])∗(1−v[z[i], j])∗ t[z[i], j]∗b[i, j]∗ l2[j]+ (1−r[x[i], j])∗
(1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ (1− a[y[i], j]) ∗ r[z[i], j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗
(1− a[x[i], j]) ∗ (1− r[y[i], j]) ∗ (1− a[y[i], j]) ∗ (1− r[z[i], j]) ∗ a[z[i], j] ∗ t[z[i], j] ∗ b[i, j] ∗ l2[j]

PP[i,7,j] <- (1− l1[x[i], j]) ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] ∗ r[x[i], j] + (1− r[x[i], j]) ∗
a[x[i], j]∗ (1− t[x[i], j])∗v[y[i], j]∗ l1[y[i], j]∗ (1− l1[z[i], j])∗ l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗
(1−t[x[i], j])∗(1−v[y[i], j])∗t[y[i], j]∗b[i, j]∗(1− l1[z[i], j])∗ l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗
(1− t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1−
r[x[i], j]) ∗ (1− a[x[i], j]) ∗ r[y[i], j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗ (1−
a[x[i], j]) ∗ (1− r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗ b[i, j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗
(1−a[x[i], j]) ∗ (1− r[y[i], j]) ∗a[y[i], j] ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j]

PP[i,8,j] <- (1− l1[x[i], j])∗ l1[y[i], j]∗ l1[z[i], j]∗ l2[j]∗r[x[i], j]+ (1−r[x[i], j])∗a[x[i], j]∗
(1− t[x[i], j])∗v[y[i], j]∗ l1[y[i], j]∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗ (1− t[x[i], j])∗
(1−v[y[i], j])∗ t[y[i], j]∗b[i, j]∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗a[x[i], j]∗(1− t[x[i], j])∗(1−
v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ (1−
t[x[i], j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ t[z[i], j] ∗ b[i, j] ∗ l2[j] + (1−
r[x[i], j])∗(1−a[x[i], j])∗r[y[i], j]∗ l1[y[i], j]∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗(1−a[x[i], j])∗
(1− r[y[i], j]) ∗ a[y[i], j] ∗ t[y[i], j] ∗ b[i, j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ (1− a[x[i], j]) ∗
(1−r[y[i], j])∗a[y[i], j]∗ t[y[i], j]∗(1−b[i, j])∗v[z[i], j]∗ l1[z[i], j]∗ l2[j]+ (1−r[x[i], j])∗(1−
a[x[i], j])∗ (1−r[y[i], j])∗a[y[i], j]∗ t[y[i], j]∗ (1−b[i, j])∗ (1−v[z[i], j])∗ t[z[i], j]∗b[i, j]∗ l2[j]

PP[i,9,j] <- l1[x[i], j]∗(1− l1[y[i], j])∗(1− l1[z[i], j])∗(1− l2[j])∗r[x[i], j]+ (1−r[x[i], j])∗
a[x[i], j] ∗ t[x[i], j] ∗ b[i, j] ∗ (1 − l1[y[i], j]) ∗ (1 − l1[z[i], j]) ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ v[y[i], j] ∗ (1− l1[y[i], j]) ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) + (1−
r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1 − b[i, j]) ∗ (1 − v[y[i], j]) ∗ (1 − t[y[i], j]) ∗ v[z[i], j] ∗ (1 −
l1[z[i], j]) ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1 − b[i, j]) ∗ (1 − v[y[i], j]) ∗
(1− t[y[i], j]) ∗ (1− v[z[i], j]) ∗ (1− t[z[i], j])

PP[i,10,j] <- l1[x[i], j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) ∗ r[x[i], j] + (1− r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ b[i, j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗
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t[x[i], j] ∗ (1 − b[i, j]) ∗ v[y[i], j] ∗ l1[y[i], j] ∗ (1 − l1[z[i], j]) ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ b[i, j] ∗ (1− l1[z[i], j]) ∗ (1− l2[j]) +
(1−r[x[i], j])∗a[x[i], j]∗ t[x[i], j]∗ (1−b[i, j])∗ (1−v[y[i], j])∗ t[y[i], j]∗ (1−b[i, j])∗v[z[i], j]∗
(1− l1[z[i], j]) ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗
t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ (1− t[z[i], j])

PP[i,11,j] <- l1[x[i], j] ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ (1− l2[j]) ∗ r[x[i], j] + (1− r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ b[i, j] ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j] ∗ (1 − b[i, j]) ∗ v[y[i], j] ∗ (1 − l1[y[i], j]) ∗ l1[z[i], j] ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ (1 − b[i, j]) ∗ (1 − v[y[i], j]) ∗ (1 − t[y[i], j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ (1 −
l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ (1−
v[z[i], j]) ∗ t[z[i], j] ∗ b[i, j] ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1 − b[i, j]) ∗
(1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ (1− v[z[i], j]) ∗ t[z[i], j] ∗ (1− b[i, j])

PP[i,12,j] <- l1[x[i], j]∗ l1[y[i], j]∗ l1[z[i], j]∗(1− l2[j])∗r[x[i], j]+ (1−r[x[i], j])∗a[x[i], j]∗
t[x[i], j] ∗ b[i, j] ∗ l1[y[i], j] ∗ l1[z[i], j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ v[y[i], j] ∗ l1[y[i], j] ∗ l1[z[i], j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ (1 − v[y[i], j]) ∗ t[y[i], j] ∗ b[i, j] ∗ l1[z[i], j] ∗ (1 − l2[j]) + (1 − r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ (1− l2[j]) +
(1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1−
v[z[i], j]) ∗ t[z[i], j] ∗ b[i, j] ∗ (1− l2[j]) + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1−
v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ (1− v[z[i], j]) ∗ t[z[i], j] ∗ (1− b[i, j])

PP[i,13,j] <- l1[x[i], j] ∗ (1− l1[y[i], j]) ∗ (1− l1[z[i], j]) ∗ l2[j] ∗ r[x[i], j] + (1− r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ b[i, j] ∗ (1− l1[y[i], j]) ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j] ∗ (1 − b[i, j]) ∗ v[y[i], j] ∗ (1 − l1[y[i], j]) ∗ (1 − l1[z[i], j]) ∗ l2[j] + (1 − r[x[i], j]) ∗
a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j]

PP[i,14,j] <- l1[x[i], j]∗ l1[y[i], j]∗(1− l1[z[i], j])∗ l2[j]∗r[x[i], j]+ (1−r[x[i], j])∗a[x[i], j]∗
t[x[i], j] ∗ b[i, j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ v[y[i], j] ∗ l1[y[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ (1 − v[y[i], j]) ∗ t[y[i], j] ∗ b[i, j] ∗ (1 − l1[z[i], j]) ∗ l2[j] + (1 − r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ (1− l1[z[i], j]) ∗ l2[j]

PP[i,15,j] <- l1[x[i], j]∗(1− l1[y[i], j])∗ l1[z[i], j]∗ l2[j]∗r[x[i], j]+ (1−r[x[i], j])∗a[x[i], j]∗
t[x[i], j] ∗ b[i, j] ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ v[y[i], j] ∗ (1− l1[y[i], j]) ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1−
b[i, j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j] ∗ (1− b[i, j]) ∗ (1− v[y[i], j]) ∗ (1− t[y[i], j]) ∗ (1− v[z[i], j]) ∗ t[z[i], j] ∗ b[i, j] ∗ l2[j]

PP[i,16,j] <- l1[x[i], j] ∗ l1[y[i], j] ∗ l1[z[i], j] ∗ l2[j] ∗ r[x[i], j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j]∗ b[i, j]∗ l1[y[i], j]∗ l1[z[i], j]∗ l2[j] + (1− r[x[i], j])∗a[x[i], j]∗ t[x[i], j]∗ (1− b[i, j])∗
v[y[i], j] ∗ l1[y[i], j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗ (1−
v[y[i], j]) ∗ t[y[i], j] ∗ b[i, j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗ t[x[i], j] ∗ (1− b[i, j]) ∗
(1− v[y[i], j]) ∗ t[y[i], j] ∗ (1− b[i, j]) ∗ v[z[i], j] ∗ l1[z[i], j] ∗ l2[j] + (1− r[x[i], j]) ∗ a[x[i], j] ∗
t[x[i], j]∗(1−b[i, j])∗(1−v[y[i], j])∗t[y[i], j]∗(1−b[i, j])∗(1−v[z[i], j])∗t[z[i], j]∗b[i, j]∗ l2[j]
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}}

# ---- Hierarchical Parameter Distributions With Order Statistics ------------------

for (i in 1:N) {

for (j in 1:Subj) {

r[i,j] <- r3[11-i,j]

}}

for (j in 1:Subj) {

r3[1:10,j] <- sort(r2[1:10,j])

t[1:10,j] <- sort(t2[1:10,j])

}

for (i in 1:N) {

for (j in 1:Subj) {

probit(a[i,j]) <- AA[i,j]

probit(b[i,j]) <- BB[i,j]

probit(r2[i,j]) <- r1[i,j]

probit(t2[i,j]) <- t1[i,j]

probit(l1[i,j]) <- LL1[j]

probit(v[i,j]) <- VV[i,j]

}}

for (j in 1:Subj) {

probit(l2[j]) <- LL2[j]

}

for (i in 1:N) {

for (j in 1:Subj) {

AA[i,j] ˜ dnorm(muAA[i], sigmaAA[i])
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BB[i,j] ˜ dnorm(muBB[i], sigmaBB[i])

r1[i,j] ˜ dnorm(muRR[i], sigmaRR[i])

t1[i,j] ˜ dnorm(muTT[i], sigmaTT[i])

VV[i,j] ˜ dnorm(muVV[i], sigmaVV[i])

}}

for (j in 1:Subj) {

LL1[j] ˜ dnorm(muL1,sigmaL1)

LL2[j] ˜ dnorm(muL2,sigmaL2)

}

for (i in 1:N) {

muAA[i] ˜ dnorm(0,1)

muBB[i] ˜ dnorm(0,1)

muRR[i] ˜ dnorm(0,1)

muTT[i] ˜ dnorm(0,1)

muVV[i] ˜ dnorm(0,1)

lambdaAA[i] ˜ dgamma(5,5)

lambdaBB[i] ˜ dgamma(5,5)

lambdaRR[i] ˜ dgamma(5,5)

lambdaTT[i] ˜ dgamma(5,5)

lambdaVV[i] ˜ dgamma(5,5)

sigmaAA[i] <- 1/sqrt(lambdaAA[i])

sigmaBB[i] <- 1/sqrt(lambdaBB[i])

sigmaRR[i] <- 1/sqrt(lambdaRR[i])

sigmaTT[i] <- 1/sqrt(lambdaTT[i])

sigmaVV[i] <- 1/sqrt(lambdaVV[i])
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}

muL1 ˜ dnorm(0,1)

lambdaL1 ˜ dgamma(5,5)

sigmaL1 <- 1/sqrt(lambdaL1)

muL2 ˜ dnorm(0,1)

lambdaL2 ˜ dgamma(5,5)

sigmaL2 <- 1/sqrt(lambdaL2)

}
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A.3 Chapter 4 Appendix

The expanded model maintains the same rank as the model in the smaller space. Since the
transformation does not change the model it is possible to go from the expanded model back
to the original model.

Λ =

1 1 0 0 0

0 0 1 1 0

0 0 0 0 1



Σ =

 l (1− l) 0 0 0

0 0 t (1− t) 0

0 0 0 0 1



T = ΣT̃Γ−1Λ−1 (A.1)

Proof:

T = ΣΛ−1TΣΓΓ−1Λ (A.2)

since ΣΛ−1 = I. Where I is the identity matrix.

T = ITΣIΛ (A.3)

T = ITII (A.4)

T = T (A.5)
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A.4 Chapter 5 Appendix

A.4.1 Questionnaire 1

English ; History ; Statistics

True/False Questions

1 The Northwest Ordinance laid out the requirements for western territories to become
states.

2 The binominal distribution assumes that the random variable is the result of counting.

3 The main verb and the direct object are not normally separated in a sentence.

4 When the fighting began during the American Revolution, most Americans wanted the
colonies to be independent from Great Britain.

5 Adverbs can modify adjectives.

6 Some adjectives end with -ly.

7 During the first half of the nineteenth century, the United States grew more rapidly in
population than Britain or Europe.

8 We normally use an object pronoun after a preposition.

9 The graph of a discrete distribution is a smooth curve.

10 Two events that are mutually exclusive events, are also complements of each other.

11 Artisans, displaced by the factory system, formed the first American labor unions.

12 If two nonempty sets are independent, they cannot be disjoint.

13 In the newly created states, the privileges that churches enjoyed in the colonial era were
largely stripped away.

14 Those elements are not in Set A are called the complement of A.

15 The set of all basic outcomes of an experiment is called the union of the experimental set.

16 The mean, median and the mode will all be equal when the distribution is symmetric.

17 The sample standard deviation is a point estimate for the population standard deviation

18 Many adjectives ending -ible/able can come either before or after a noun
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19 The number of cars that go passed the drive-in window at a local bank each hour is an
example of a continuous random variable.

20 The past tense of ”must” is ”musted”.

21 Questions always use an auxiliary verb.

22 England’s first experience with colonization was in Virginia.

23 The median is the value that occurs most often in a sample data.

24 As a result of the Treaty of Paris of 1783, the new American nation’s westward boundary
was the Blue Ridge Mountains.

25 Native Americans were pleased with the outcome of the Revolution because it reduced
the desire of colonists for western land.

26 An attributive adjective comes before a noun.

27 ”Used to doing” and ”used to do” mean approximately the same thing.

28 The shortest possible sentence contains a subject, a verb and an object.

29 The first Europeans to settle in the Hudson River Valley were the Dutch.

30 The English Reformation began with a political dispute between king and pope not with
a religious dispute over matters of theology.

A.4.2 Questionnaire 2

Literature ; Sports ; Film T/F Question

1 Director Tim Burton frequently collaborates with composer Danny Elfman, such as in
1985’s Pee-wee’s Big Adventure and 1988’s Beetlejuice.

2 Steven King is famous for writing horror novels

3 The long sword is a type of sword used in fencing contests

4 To Kill a Mocking Bird was a novel written by Harper Lee

5 Charles Dickens wrote the novel titled A Tale of Two Cities

6 Mary Shelley wrote the horror novel Dracula

7 The Good, the Bad, and the Ugly (1966), Dirty Harry (1971), and Gran Torino (2008) all
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star Clint Eastwood.

8 Martin Scorsese directed The Godfather (1972).

9 The Golden State Warriors won the National Basketball Association championship in 2015

10 Star Wars: The Force Awakens (2015) currently holds the record for the biggest opening
weekend at the domestic box office.

11 In Agatha Christies series of detective novels, the start detective was Mike Hammer

12 The Lord of the Rings was written by Robert Jordan

13 In racquetball only the receiver of a serve can win a point

14 The Martian (2015) won ”Best Picture” at the Academy Awards this year.

15 Germany was the winner of the World Cup Soccer Championship in 2014

16 Casablanca (1942) takes place during the American Civil War.

17 A professional baseball game can end in a tie

18 Alfred Hitchcock is famous for directing psychological thrillers, such as Rear Window
(1954), Vertigo (1958), and Psycho (1960).

19 Nathaniel Hawthorne was a famous 19th century novelist from England

20 A safety in American football is a scoring play worth 2 points

21 The Indianapolis 500 is an annual auto race

22 Ping Pong is a sport contested in the Summer Olympics

23 The Wizard of Oz (1939) was the first film in full color.

24 Ezra Pound wrote the famous poem titled The Love Song of J. Alfred Prufrock

25 The curveball and cannon blast are names for types of pitches in baseball

26 The novel, Madame Bovery was written by Gustave Flaubert

27 Robert Louis Stevenson wrote the novel Treasure Island

28 Beauty and the Beast (1991) was the first animated feature film to be nominated for
”Best Picture” at the Academy Awards.

29 The Friday the 13th horror film franchise features Freddy Krueger.

184



30 The world record in the high jump is over 8 feet.

A.4.3 Model Code

model {

for (i in 1:N) {

for (k in 1:M){

pY[i,k] <- (D[i,k] * z[k]) + ((1-D[i,k]) * g[i,k])

Y[i,k] ~ dbern(pY[i,k])

}

}

for (i in 1:N){

for (k in 1:M){

D[i,k] ~ dbeta(dmu[e2[i],e[k]]*dth[e2[i],e[k]],(1-dmu[e2[i],e[k]])*dth[e2[i],e[k]])

g[i,k] ~ dbeta(gmu[e[k]]*gth[e[k]],(1-gmu[e[k]])*gth[e[k]])

}

}

# -------- Answer Key Parameters -----------------------------------------

for (k in 1:M){

z[k] ~ dbern(p[k])

p[k] ~ dbeta(1,1)

}

# -------- Classifies the different clusters of items/informants -------

for (k in 1:M){

e[k] ~ dcat(pe[])

}

for (i in 1:N){

e2[i] ~ dcat(pe2[])

}

pe[1:P] ~ ddirch(alpha)

pe2[1:T] ~ ddirch(alpha2)

# -------- Hierarchical Hyperpriors -----------------------------------------

for (j in 1:T){
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gmu[j] ~ dbeta(4,4) # <- centered around .5

gth[j] ~ dgamma(1,1) # <- Diffuse Gamma

for (k in 1:P){

dmu[j,k] ~ dbeta(1,1) # <- Uniform Distribution

dth[j,k] ~ dgamma(1,1) # <- Diffuse Gamma

}

}

for (j in 1:P){

alpha[j] <- 1

}

for (j in 1:T){

alpha2[j] <- 1

}

}
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