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Abstract

Sparse Inverse Problems: The Mathematics of Precision Measurement

by

Geoffrey Robert Schiebinger

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Benjamin Recht, Chair

The interplay between theory and experiment is the key to progress in the natural sciences.
This thesis develops the mathematics of distilling knowledge from measurement. Specifically,
we consider the inverse problem of recovering the input to a measurement apparatus from the
observed output. We present separate analyses for two different models of input signals. The
first setup is superresolution. Here, the input is a collection of continuously parameterized
sources, and we observe a weighted superposition of signals from all of the sources. The
second setup is unsupervised classification. The input is a collection of categories, and the
output is an unlabeled set of objects from the different categories. In Chapter 1 we introduce
these measurement modalities in greater detail and place them in a common framework.

Chapter 2 provides a theoretical analysis of diffraction-limited superresolution, demon-
strating that arbitrarily close point sources can be resolved in ideal situations. Precisely,
we assume that the incoming signal is a linear combination of M shifted copies of a known
waveform with unknown shifts and amplitudes, and one only observes a finite collection of
evaluations of this signal. We characterize properties of the base waveform such that the
exact translations and amplitudes can be recovered from 2M+1 observations. This recovery
can be achieved by solving a weighted version of basis pursuit over a continuous dictionary.
Our analysis shows that `1-based methods enjoy the same separation-free recovery guar-
antees as polynomial root finding techniques such as Prony’s method or Vetterli’s method
for signals of finite rate of innovation. Our proof techniques combine classical polynomial
interpolation techniques with contemporary tools from compressed sensing.

In Chapter 3 we propose a variant of the classical conditional gradient method (CGM) for
superresolution problems with differentiable measurement models. Our algorithm combines
nonconvex and convex optimization techniques: we propose global conditional gradient steps
alternating with nonconvex local search exploiting the differentiable observation model. This
hybridization gives the theoretical global optimality guarantees and stopping conditions of
convex optimization along with the performance and modeling flexibility associated with
nonconvex optimization. Our experiments demonstrate that our technique achieves state-
of-the-art results in several applications.

Chapter 4 focuses on unsupervised classification. Clustering of data sets is a standard
problem in many areas of science and engineering. The method of spectral clustering is
based on embedding the data set using a kernel function, and using the top eigenvectors of
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the normalized Laplacian to recover the connected components. We study the performance
of spectral clustering in recovering the latent labels of i.i.d. samples from a finite mixture
of nonparametric distributions. The difficulty of this label recovery problem depends on the
overlap between mixture components and how easily a mixture component is divided into two
nonoverlapping components. When the overlap is small compared to the indivisibility of the
mixture components, the principal eigenspace of the population-level normalized Laplacian
operator is approximately spanned by the square-root kernelized component densities. In
the finite sample setting, and under the same assumption, embedded samples from different
components are approximately orthogonal with high probability when the sample size is
large. As a corollary we control the fraction of samples mislabeled by spectral clustering
under finite mixtures with nonparametric components.
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Chapter 1

Introduction

What can we learn by observing nature? How can we understand and predict natural
phenomena? Progress in the natural and mathematical sciences is typically made through a
synergistic collaboration between experimental efforts to generate new data and theoretical
efforts to distill knowledge from measurements. In this thesis we analyze the measurement
process itself. In particular, we develop mathematical theory to answer the experimentalist’s
question:

What was the input to our measurement apparatus that generated this output?

We analyze the statistical difficulty of this inverse problem and solve specific instances with
provable guarantees.

Our starting point is an information theoretic prior of parsimony: we assume the input
signal is simple, with low information content. We do acknowledge that the true nature of the
measured phenomenon may not even be finitely describable. It may be infinitely complex!
However, since the output is only recorded with finite precision, the best we can do is produce
more complex descriptions of the measured signal as we have more data available. This is
why we search for a simple signal that matches the output of our measurement apparatus.

We impose simplicity on the input by assuming that it can be described by a small
number of sources, and the overall measurement is the superposition of the measurement of
each source. Hence, the measured signal has a sparse additive decomposition of the form

f =
M∑
i=1

wifi.

Here each fi describes the measurement of a single source, wi is a real number (typically
positive) that weighs the contribution of the ith source, and M is the number of sources.
The term sparse refers to the fact that M is small.

We study two different measurement models in which the fi take distinct mathematical
forms. The first setup is superresolution. Here, the input is a collection of continuously
parameterized sources, and we observe a weighted superposition of signals from all of the
sources. The second setup is unsupervised classification. The input is a collection of cate-
gories, and the output is an unlabeled set of objects from the different categories. To build
intuition, we introduce each measurement model with an example.
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1. In the first setup the fi are functions, and we observe the value f(s) for s ranging over
some set S = {s1, . . . , sn}. For example, in superresolution fluorescence microscopy the
measurement apparatus is a microscope, the input signal is a collection of fluorophores
(i.e. point sources of light), and we observe the values of n pixels f(s1), . . . , f(sn). The
optics of the microscope introduce a blur around each point source, characterized by
the point spread function ψ. The fi are translates of ψ:

fi(s) = ψ(s− ti) for i = 1, . . . ,M and s ∈ S. (1.1)

Physically, wψ(s − t) represents the average number of photons incident on pixel s
when the illumination comes from a point source of light with position t, and intensity
w. The functional form of ψ is assumed known – in principle it can be derived from
Maxwell’s equations. The goal of superresolution microscopy is to recover the positions
t1, . . . , tM , intensities w1, . . . , wM , and number M of a collection of point sources from
the image {

M∑
i=1

wiψ(s− ti)
∣∣∣s ∈ S} .

2. In the second setup the fi are distributions, and we observe samples from the mixture
distribution with mixture weights wi > 0. A sample X is generated from the mixture
by first drawing a label Z ∼ Categorical(w1, . . . , wM) and then generating X ∼ fZ .
The goal is to recover the labels Z1, . . . , Zn from the unlabeled samples X1, . . . , Xn.
For example, in single cell transcriptomics the measurement apparatus is a sequencer,
the input signal is a population of cells with M types, and the output is a collection
of gene expression profiles X1, . . . , Xn. The gene expression of a cell is a vector X in
Rd, where d denotes the total number of genes. The entries of X denote the number
of copies of mRNA for different genes. Suppose we have a population of cells of M
types and with abundances w1, . . . , wM , and suppose that the gene expression of a
cell of type i is drawn randomly from some distribution fi on gene expression space.
Together with the mixture weights wi, the distributions fi form a mixture model for
gene expression profiles. The mixture model is nonparametric because we do not
assume the distributions fi come from any particular parametric family. The challenge
of single cell transcriptomics is to cluster the cells by type, without prior knowledge of
the distributions fi.

There are two major differences between these setups. First, the fi come from a para-
metric family in superresolution, but our analysis of unsupervised classification treats the fi
as nonparametric. Second, the number M of sources is unknown in superresolution, but it is
known in our analysis of unsupervised classification. Hence we encounter distinct difficulties
in our treatment of these two different setups.

In the remainder of this chapter we introduce the main results of the subsequent chapters.
Section 1.1 introduces Chapters 2 and 3 which focus on continuous compressed sensing
problems like superresolution microscopy. Section 1.2 introduces Chapter 4 which analyzes
spectral clustering under nonparametric mixture models.
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1.1 Superresolution

The emerging field of superresolution has applications in a wide array of empirical sciences in-
cluding fluorescence microscopy, astronomy, lidar, X-ray diffraction, and electron microscopy.
For example, superresolution techniques in fluorescence microscopy are revolutionizing bi-
ology by enabling direct visualization of single molecules in living cells. Superresolution is
made possible by signal processing techniques that leverage sparsity: the assumption that
an observed signal is the noisy measurement of a few weighted sources. The past decade
witnessed a lot of excitement about compressed sensing methods that recover sparse vectors
from noisy, incomplete measurements. However, almost all superresolution problems in the
natural sciences involve continuously parameterized sources where the set of candidate pa-
rameter values is infinite. For example, the image of a collection of point sources of light is
parameterized by the source locations which can vary continuously in the image plane.

The focus of Chapters 2 and 3 is on compressed sensing problems with continuous dic-
tionaries. We develop the mathematical theory of superresolution viewed an optimization
problem over the infinite dimensional space of measures. Specifically, in Chapter 2 we prove
that a weighted total variation minimization scheme can recover the true source locations in
ideal settings, and in Chapter 3 we develop an algorithm to solve the semi-infinite convex
optimization problems that arise from this measure-theoretic formulation of superresolu-
tion. Before introducing the specific contributions, we set up the mathematical framework
of superresolution.

Measurement Model

We assume the existence of an underlying set of objects called sources and a parameter
space Θ. Each source has a parameter t ∈ Θ and a nonnegative weight w > 0. The signal
generated by a collection of sources {(wi, ti)}Mi=1 is given by

y =
M∑
i=1

wiφ(ti) + ν. (1.2)

Here φ : Θ → Rn is a function that describes the contribution of a single source to the
measurement, and ν ∈ Rn is an additive noise term. Our goal is to find the signal parameters
{(wi, ti)}Mi=1, and their number M , from the noisy measurement y.

To solidify intuition, we briefly illustrate the physical interpretation of this measurement
model for the example of fluorescence microscopy. Suppose we take a picture of a collection
of fluorescent proteins through a microscope. Each protein is essentially a point source of
light, but because light diffracts as it passes through the aperture, the image is convolved
with the point spread function of the microscope. The image of a fluorophore at position
t ∈ R2 and with brightness w > 0 is

wφ(t) = w

ψ(t, s1)
...

ψ(t, sn)

 ,
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where the function ψ is the point spread function of the microscope from Equation (1.1)
and φ : R2 → Rn is the pixelated point spread function. The total image is the linear
superposition of the images of the individual fluorophores, plus additive noise. Our goal is
to remove the effects of diffraction and pixelization and recover the point source locations ti
and intensities wi. In Section 3.2 of Chapter 3 we outline more examples.

Approach

One possible approach to recover the signal parameters {(wi, ti)}Mi=1 is to grid the parameter
space Θ and restrict attention to a finite set of candidate signal parameters. In particular,
we could select grid points g1, . . . , gG ∈ Θ and assume ti ∈ {g1, . . . , gG}. We can therefore
write y =

∑G
j=1 ωjφ(gj)+ν, where ωj = 0 except for M values of j where ωj = wi for some i.

Hence the problem of recovering the signal parameters is reduced to identifying a sparse
vector ω ∈ RG. The standard approach to identify such a sparse vector is the `1 regularized
sparse regression problem

minimize

∥∥∥∥∥
G∑
j=1

ωjφ(gj)− y
∥∥∥∥∥

2

subject to
G∑
j=1

|ωj| ≤ τ .

Here τ is a regularization term that controls the sparsity level of ω. However, this approach
has significant drawbacks. The theoretical requirements imposed by the classical models of
compressed sensing become more stringent as the grid becomes finer. Furthermore, mak-
ing the grid finer can also lead to numerical instabilities and computational bottlenecks in
practice.

Another potential approach is to make a guess for M , and attempt to solve

minimize
wi,ti

∥∥∥∥∥
M∑
i=1

wiφ(ti)− y
∥∥∥∥∥

2

subject to
M∑
i=1

|wi| ≤ τ .

However, this problem is nonconvex in (wi, ti) and it is not clear how to chooseM . Hence, it is
difficult to give theoretical guarantees, and in practice an algorithm to solve this optimization
problem can be trapped in local minima.

This motivates the following measure theoretic formulation of the superresolution prob-
lem. We encode the signal parameters in a sum of Diracs µ? =

∑M
i=1wiδti , where δt denotes

the Dirac distribution centered at t. In terms of µ?, the measurement is y =
∫
φ(t)dµ?(t)+ν.

Our goal is to invert this operation to recover the measure µ? and hence recover the signal
parameters encoded in µ?.
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After observing y ∈ Rn, we estimate the signal parameters encoded in µ? by minimizing
a convex loss ` of the residual between y and

∫
φ(t)dµ(t):

minimizeµ

∥∥∥∥y − ∫ φ(t)dµ(t)

∥∥∥∥
2

subject to ‖µ‖TV ≤ τ.

(1.3)

This is a convex optimization problem over the infinite dimensional space of measures. Here
‖µ‖TV denotes the total variation of the measure µ, an infinite dimensional analogue of the
standard convex heuristic in sparse recovery and compressed sensing problems [35].

Chapters 2 and 3 of this thesis contain two contributions to “compressed sensing off the
grid”. We introduce these contributions below.

Superresolution without Separation

Much of the mathematical analysis on recovery has relied heavily on the assumption that the
sources are separated by at least some minimum amount, even in the absence of noise. In
Chapter 2 we prove that in one dimension (Θ = R) and in the absence of noise, the positions
of positively weighted sources can be recovered by solving a semi-infinite linear program, no
matter how close they are. In the absence of noise, it is possible to achieve y =

∫
φ(t)dµ(t) in

the objective of (1.3). Therefore we reformulate (1.3) with y =
∫
φ(t)dµ(t) as a constraint,

and for the objective we minimize the weighted total variation. In particular, we prove that
the solution to the following semi-infinite linear program recovers the signal parameters:

minimize
µ≥0

∫
h(t)dµ(t)

subject to y =

∫
φ(t)dµ(t).

Here h is a weighting function that weights the measure at different locations.
Our proof improves on the technique of Candès and Fernandes-Granada [27], who con-

struct a certificate of optimality by solving a certain system of linear equations. They prove
that the system has a unique solution because the matrix for the system is close to the iden-
tity when the sources are well separated. The key new idea of our approach, by contrast,
is to impose a Tchebycheff system condition to guarantee invertibility directly. Indeed, a
matrix need not be close to the identity to be invertible! Another key difference is that
we consider the weighed objective

∫
h(t)dµ(t), while prior work [27, 111] has analyzed the

unweighted objective
∫
dµ(t). We, too, could not remove the separation condition without

reweighing by h(t). In Chapter 2 we provide evidence that this mathematically-motivated
reweighing step actually improves performance in practice.

The Alternating Descent Conditional Gradient Method

Chapter 3 introduces a general approach to solve the infinite dimensional optimization prob-
lems that arise from our measure-theoretic formulation of superresolution. The algorithm,
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the alternating descent conditional gradient method (ADCG), enjoys the rapid local conver-
gence and modeling flexibility of nonconvex programming algorithms, but also the stability
and global convergence guarantees associated with convex optimization. ADCG is a measure-
theoretic formulation of the CoGENT algorithm developed by Wright and Shah [90] that can
leverage structure in the parameter space, and differentiable measurement models. ADCG
interleaves conditional gradient steps on the convex objective with nonconvex improvement
of the signal parameters and weights. For the nonconvex descent step we propose alternat-
ing descent over the weights and parameters. We show that the conditional gradient steps
update µ by adding a single element to its support, and the total support remains bounded
as the algorithm runs. Moreover we prove that ADCG converges, and achieves accuracy ε in
O(1/ε) steps. We find that the nonconvex step is the key to ADCG’s good performance in
practice. Indeed, without the nonconvex step, the algorithm can only change the support of
µ by adding and removing points. As our theoretical analysis only leverages the fact that the
nonconvex step does not worsen the result, we suspect that the convergence rate is far from
tight and can be significantly improved by a deeper analysis that charaterizes the impact of
the nonconvex step.

1.2 Spectral clustering

Clustering algorithms are valuable in many data driven scientific endeavors for their ability
to automatically detect interpretable heterogeneity. The most basic clustering algorithms
search for clusters of a particular parametric form: for example, a mixture of Gaussians.
Spectral clustering, on the other hand, is a more versatile algorithm. As we shall see in
Chapter 4, spectral clustering leverages a powerful preprocessing step that makes clusters
easy to detect and separate.

Measurement Model

We now introduce the nonparametric mixture model formalism for unsupervised classifica-
tion. Let P1, . . . ,PM be a collection of probability distributions on a compact set X and let
{wi}Mi=1 ⊂ R+ be a convex combination. That is,

∑M
i=1 wi = 1, and wi > 0. We are given

n independent observations X1, . . . , Xn of the random variable distributed according to the
mixture P̄ =

∑M
i=1 wiPi. This mixture distribution is nonparametric because the mixture

components are not restricted to any parametric family. A random sample X ∼ P̄ can be
obtained by first drawing a label Z ∼ Categorical(w1, . . . , wM), and conditioned on the event
{Z = m}, drawing X ∼ Pm. The unsupervised classification problem can be formalized as
recovering these latent labels {Zj}nj=1 from the unlabeled samples {Xj}nj=1.

To solidify intuition, it might help to keep in mind the following two natural examples:
cells and stars both have types. First, imagine a population of cells with M types of abun-
dance w1, . . . , wM . A randomly selected cell will have type m with probability wm. Cells are
classified by the genes they express (every cell in an organism has essentially the same DNA,
but cells of different types use the DNA in different ways by expressing different genes). The
mixture model postulates that the gene expression profile of a randomly selected cell of type
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m as a draw from a distribution Pm. Hence, a randomly selected cell from the population
will have a gene expression profile drawn according to P̄ =

∑M
i=1wiPi.

Second, imagine looking through a telescope at a region of the sky with M star types. The
different star types are composed of different elements, and hence give off light of different
wavelengths–their spectra are different in the optical sense. If the star types have abundances
w1, . . . , wM , and the emission spectrum of a star of type i is drawn from Pi, then the emission
spectrum of a randomly selected star has distribution

∑M
i=1wiPi.

Approach

How can we separate samples from a nonparametric mixture? Simple clustering algorithms
like K-means don’t work with general cluster shapes. Spectral clustering, on the other hand,
leverages a powerful nonlinear transformation that tends to make clusters linearly separable.

In its modern and most popular form, the spectral clustering algorithm [83, 103] involves
two steps: first, the eigenvectors of the normalized Laplacian are used to embed the dataset,
and second, the K-means clustering algorithm is applied to the embedded dataset. The
normalized Laplacian L ∈ Rn×n is defined in terms of a symmetric, continuous kernel function
k : X × X → (0,∞). The kernel function gives a notion of similarity between elements of
X . A canonical example is the Gaussian kernel k(x, x′) = exp(−‖x − x′‖2); it is close to 1
for vectors x and x′ that are relatively close, and decays to zero for pairs that are far apart.
The kernel matrix A ∈ Rn×n is the matrix of pairwise similarities Aij = k(Xi, Xj)/n. The
normalized Laplacian L is obtained from A by a similarity transformation

L = D−1/2AD−1/2,

where D is the diagonal matrix of row sums of A

Dii =
1

n

n∑
j=1

k(Xi, Xj).

Spectral clustering transforms the data according to the map

Xi 7→ ri,

where ri is the ith row of the matrix V =
[
v1 . . . vM

]
, and v1, . . . , vM are the principal

eigenvectors of L corresponding to the largest M eigenvalues. The second step of spectral
clustering applies K-means to the transformed dataset r1, . . . , rn.

The Geometry of Kernelized Spectral Clustering

To gain some intuition for why the eigenvectors of L contain information about the mixture
components Pi, note that the top eigenvector of L is

Lq = q,
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where q ∈ Rn has entries q(Xj) =
√

1
n

∑n
i=1 k(Xi, Xj), for j = 1, . . . , n. Moreover, a similar

story holds for the subset of the data Sm = {Xi : Zi = m}. If we denote the normalized
Laplacian constructed from the subset Sm by Lm then we have

Lmqm = qm,

where qm ∈ R|Sm| has entries qm(Xj) =
√

1
n

∑
X∈Sm k(X,Xj) for Xj ∈ Sm.

Suppose for the moment that the components Pi have zero overlap with respect to the
kernel k (in the sense that k(Xi, Xj) = 0 for all i, j such that Zi 6= Zj). Then the kernel ma-
trix A is block diagonal under some permutation of its rows and columns, and the Laplacian
L is block diagonal with blocks L1, . . . , LM . If we extend the vectors qm to Rn by defining
qm(Xi) = 0 for i /∈ Sm, then qm are all top eigenvectors of L:

Lqm = qm for m = 1, . . . ,M.

In this ideal situation of zero overlap, the top M eigenvectors of L reveal the latent labels
Z1, . . . , Zn since

{j : qm(Xj) 6= 0} = {j : Zj = m} for m = 1, . . . ,M.

Moreover,
ri = [q1(Xi), . . . , qM(Xi)] for m = 1, . . . ,M, (1.4)

and the embedded image of points with distinct labels are orthogonal!
Chapter 4 examines the more realistic setting where the mixture components overlap.

The analysis of Chapter 4 establishes that an approximate version of the relationship (1.4)
holds as long as the mixture components don’t overlap too much. Chapter 4 begins by pro-
viding a novel and useful characterization of the principal eigenspace of the population-level
normalized Laplacian operator: more precisely, when the mixture components are indivisible
and have small overlap, the eigenspace is close to the span of the square root kernelized com-
ponent densities. We then use this characterization to analyze the geometric structure of the
embedding of a finite set of i.i.d. samples. Our main result is to establish a certain geometric
property of nonparametric mixtures referred to as orthogonal cone structure. In particular,
we show that when the mixture components are indivisible and have small overlap, embedded
samples from different components are almost orthogonal with high probability. We then
prove that this geometric structure allows K-means to correctly label most of the samples.
Our proofs rely on techniques from operator perturbation theory, empirical process theory,
and spectral graph theory.
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Chapter 2

Superresolution without Separation

This chapter provides a theoretical analysis of diffraction-limited superresolution, demon-
strating that arbitrarily close point sources can be resolved in ideal situations. Precisely,
we assume that the incoming signal is a linear combination of M shifted copies of a known
waveform with unknown shifts and amplitudes, and one only observes a finite collection of
evaluations of this signal. We characterize properties of the base waveform such that the
exact translations and amplitudes can be recovered from 2M+1 observations. This recovery
can be achieved by solving a weighted version of basis pursuit over a continuous dictionary.
Our analysis shows that `1-based methods enjoy the same separation-free recovery guar-
antees as polynomial root finding techniques such as Prony’s method or Vetterli’s method
for signals of finite rate of innovation. Our proof techniques combine classical polynomial
interpolation techniques with contemporary tools from compressed sensing.

This chapter is joint work with Elina Robeva and Benjamin Recht. The content of this
chapter has been submitted for publication under the title Superresolution without Separation
and is available on the arxiv http://arxiv.org/abs/1506.03144.

2.1 Introduction

Imaging below the diffraction limit remains one of the most practically important yet theoret-
ically challenging problems in signal processing. Recent advances in superresolution imaging
techniques have made substantial progress towards overcoming these limits in practice [46,
84], but theoretical analysis of these powerful methods remains elusive. Building on poly-
nomial interpolation techniques and tools from compressed sensing, this chapter provides
a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily
close point sources can be resolved in ideal situations.

We assume that the measured signal takes the form

x(s) =
M∑
i=1

wiψ(s, ti), (2.1.1)

Here ψ(s, t) is a differentiable function that describes the image at spatial location s of a
point source of light localized at t. The function ψ is called the point spread function, and
we assume its particular form is known beforehand. In (2.1.1), t1, . . . , tM are the locations
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Figure 2.1: An illustrative example of (2.1.1) with the Gaussian point spread function
ψ(s, t) = e−(s−t)2

. The ti are denoted by red dots, and the true intensities wi are illustrated
by vertical, dashedd black lines. The super position resulting in the signal x is plotted in
blue. The samples S would be observed at the tick marks on the horizontal axis.

of the point sources and w1, ..., wM > 0 are their intensities. Throughout we assume that
these quantities together with the number of point sources M , are fixed but unknown. The
primary goal of superresolution is to recover the locations and intensities from a set of
noiseless observations

{x(s) | s ∈ S} .
Here S is the set of points at which we observe x; we denote the elements of S by s1, . . . , sn.
A mock-up of such a signal x is displayed in Figure 2.1.

In this chapter, building on the work of Candès and Fernadez-Granda [26, 27, 48] and
Tang et al [19, 111, 113], we aim to show that we can recover the tuple (ti, wi,M) by solving
a convex optimization problem. We formulate the superresolution imaging problem as an
infinite dimensional optimization over measures. Precisely, note that the observed signal can
be rewritten as

x(s) =
M∑
i=1

wiψ(s, ti) =

∫
ψ(s, t)dµ?(t) . (2.1.2)

Here, µ? is the positive discrete measure
∑M

i=1wiδti , where δt denotes the Dirac measure
centered at t. We aim to show that we can recover µ? by solving the following:

minimize
µ

∫
h(t)dµ(t)

subject to x(s) =

∫
ψ(s, t)dµ(t), s ∈ S

suppµ ⊂ B

µ ≥ 0 .

(2.1.3)

Here, B is a fixed compact set and h(t) is a weighting function that weights the measure
at different locations. The optimization problem (2.1.3) is over the set of all positive finite
measures µ supported on B.

The optimization problem (2.1.2) is an analog of weighted `1 minimization over the
continuous domain B. Indeed, if we know a priori that the ti are elements of a finite discrete
set Ω, then optimizing over all measures subject to suppµ ⊂ Ω is precisely equivalent
to weighted `1 minimization. This infinite dimensional analog with uniform weights has
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proven useful for compressed sensing over continuous domains [113], resolving diffraction-
limited images from low-pass signals [26, 48, 111], system identification [101], and many
other applications [35]. We will see below that the weighting function essentially ensures
that all of the candidate locations are given equal influence in the optimization problem.

Our main result, Theorem 4.3.2, establishes that for one-dimensional signals, under rather
mild conditions, we can recover µ? from the optimal solution of (2.1.3). Our conditions,
described in full-detail below, essentially require the observation of at least 2M + 1 samples,
and that the set of translates of the point spread function forms a linearly independent set.
In Theorem 2.1.1 we verify that these conditions are satisfied by the Gaussian point spread
function for any M source locations with no minimum separation condition. This is the first
analysis of an `1 based method that matches the separation-free performance of polynomial
root finding techniques [117, 41, 87]. Our motivation for such an analysis is that `1 based
methods generalize to higher dimensions and are empirically stable in the presence of noise.

In Chapter 3 we show that the problem (2.1.3) can be optimized to precision ε in polyno-
mial time using a greedy algorithm. In our experiments in Section 2.3, we use this algorithm
to demonstrate that our theory applies, and show that even in multiple dimensions with
noise, we can recover closely spaced point sources.

Main Result

We restrict our theoretical attention in this Chapter to the one-dimensional case, leaving
the higher-dimensional cases to future work. Let ψ : R2 → R be our one dimensional point
spread function, with the first argument denoting the position where we are observing the
image of a point source located at the second argument. We assume that ψ is differentiable
in both arguments.

For convenience, we will assume that B = [−T, T ] for some large scalar T . However,
our proof will trivially extend to more restricted subsets of the real line. Moreover, we will
state our results for the special case where S = {s1, . . . , sn}, although our proof is written
for possibly infinite measurement sets. We define the weighting function in the objective of
our optimization problem via

h(t) =
1

n

n∑
i=1

ψ(si, t) .

Our main result establishes conditions on ψ such that the true measure µ? is the unique
optimal solution of (2.1.3). Importantly, we show that these conditions are satisfied by the
Gaussian point spread function with no separation condition.

Theorem 2.1.1. Suppose |S| > 2M , and ψ(s, t) = e−(s−t)2
. Then for any t1 < . . . < tM ,

the true measure µ? is the unique optimal solution of (2.1.3).

Before we proceed to state the main result, we need to introduce a bit of notation and
define the notion of a Tchebycheff system. Let K(t, τ) = 1

n

∑n
i=1 ψ(si, t)ψ(si, τ), and define

the vector valued function v : R→ R2M via

v(s) =
[
ψ(s, t1) . . . ψ(s, tM) d

dt1
ψ(s, t1) . . . d

dtM
ψ(s, tM)

]T
. (2.1.4)
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Definition 1. A set of functions u1, . . . , un is called a Tchebycheff system (or T-system) if
for any points τ1 < . . . < τn, the matrixu1(τ1) . . . u1(τn)

...
un(τ1) . . . un(τn)


is invertible.

Conditions 2.1.2. We impose the following three conditions on the point spread function
ψ:

Positivity For all t ∈ B we have h(t) > 0.

Independence The matrix 1
n

∑n
i=1 v(si)v(si)

T is nonsingular.

T-system {K(·, t1), . . . , K(·, tM), d
dt1
K(·, t1), . . . , d

dtM
K(·, tM), h(·)} form a T-

system.

Theorem 2.1.3. If ψ satisfies the Conditions 2.1.2 and |S| > 2M , then the true measure
µ? is the unique optimal solution of (2.1.3).

Note that the first two parts of Conditions 2.1.2 are easy to verify. Positivity eliminates
the possibility that a candidate point spread function could equal zero at all locations—
obviously we would not be able to recover the source in such a setting! Independence is
satisfied if

{ψ(·, t1), . . . , ψ(·, tM),
d

dt1
ψ(·, t1), . . . ,

d

dtM
ψ(·, tM)} is a T-system.

This condition allows us to recover the amplitudes uniquely assuming we knew the true ti
locations a priori, but it is also useful for constructing a dual certificate as we discuss below.

We remark that we actually prove the theorem under a weaker condition than T-system.
Define the matrix-valued function Λ : R2M+1 → R2M+1×2M+1 by

Λ(p1, . . . , p2M+1) :=

[
κ(p1) . . . κ(p2M+1)

1 . . . 1

]
, (2.1.5)

where κ : R→ R2M is defined as

κ(t) =
1

n

n∑
i=1

ψ(si, t)

h(t)
v(si) . (2.1.6)

Our proof of Theorem 4.3.2 replaces condition T-system with the following:

Determinantal There exists ρ > 0 such that for any t−i , t
+
i ∈ (ti − ρ, ti + ρ), and

t ∈ [−T, T ],
the matrix Λ

(
t−1 , t

+
1 , . . . , t

−
M , t

+
M , t

)
is nonsingular whenever t, t−i , t

+
i are distinct.
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This condition looks more complicated than T-system and is indeed nontrivial to verify.
It is essentially a local T-system condition in the sense that the points τi Definition 1 are
restricted to lie in a small neighborhood about the ti. It is clear that T-system implies
Determinantal. The advantage of the more general condition is that it can hold for
finitely supported ψ, while this is not true for T-system. In fact, it is easy to see that
if T-system holds for any point spread function ψ, then Determinantal holds for the
truncated version ψ(s, t)1{|s − t| ≤ 3T}, where 1{x ≤ y} is the indicator variable equal
to 1 when x ≤ y and zero otherwise. We suspect that Determinantal may hold for
significantly tighter truncations.

As we will see below, T-system and Independence are related to the existence of
a canonical dual certificate that is used ubiquitously in sparse approximation [29, 51]. In
compressed sensing, this construction is due to Fuchs [51], but its origins lie in the the-
ory of polynomial interpolation developed by Markov and Tchebycheff, and extended by
Gantmacher, Krein, Karlin and others (see the survey in Section 2.1).

In the continuous setting of superresolution, the dual certificate becomes a dual polyno-
mial: a function of the form Q(t) = 1

n

∑n
j=1 ψ(sj, t)q(sj) satisfying

Q(t) ≤ h(t)

|Q(ti)| = h(t), i = 1, . . . ,M.
(2.1.7)

To see how T-system might be useful for constructing a dual polynomial, note that as
t+1 ↓ t1 and t−1 ↑ t1, the first two columns of Λ(t+1 , t

−
1 , . . . , t) converge to the same column,

namely κ(t1). However, if we divide by the difference t+1 −t−1 , and take a limit then we obtain
the derivative of the second column. In particular, some calculation shows T-system implies

det

[
A κ(t)
ω h(t)

]
6= 0 ∀t 6= ti,

where A = 1
n

∑n
j=1 v(si)v(si)

T is the matrix from Independence, and

ω = [h(t1), . . . , h(tM), h′(t1), . . . , h′(tM)].

Taking the Schur complement in h(t), we find

det

[
A κ(t)
ω h(t)

]
= detA

[
ωTA−1κ(t)− h(t)

]
.

Hence it seems like the function ωTA−1κ(t) might serve well as our dual polynomial.
However, it remains unclear from this short calculation that this function is bounded above
by h(t). The proof of Theorem 4.3.2 makes this construction rigorous using the theory of
T-systems.

Before turning to the proofs of these theorems (c.f. Sections 2.2 and 2.2), we survey the
mathematical theory of superresolution imaging.
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Foundations: Tchebycheff Systems

Our proofs rely on the machinery of Tchebycheff1 systems. This line of work originated in
the 1884 doctoral thesis of A. A. Markov on approximating the value of an integral

∫ b
a
f(x)dx

from the moments
∫ b
a
xf(x)dx, . . . ,

∫ b
a
xnf(x)dx. His work formed the basis of the proof by

Tchebycheff (who was Markov’s doctoral advisor) of the central limit theorem in 1887 [114].
Recall that we defined a T-system in Definition 1. An equivalent definition of a T-

system is: the functions u1, ..., un form a T-system if and only if every linear combination
U(t) = a1u1(t) + · · ·+ anun(t) has at most n− 1 zeros. One natural example of a T-system
is given by the functions 1, t, . . . , tn−1. Indeed, a polynomial of order n− 1 can have at most
n− 1 zeros. Equivalently, the Vandermonde determinant does not vanish,∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
t1 t2 . . . tn
t21 t22 . . . t2n
...

tn−1
1 tn−1

2 . . . tn−1
n

∣∣∣∣∣∣∣∣∣∣∣
6= 0,

for any t1 < . . . < tn. Just as Vandermonde systems are used to solve polynomial interpo-
lation problems, T-systems allows the generalization of the tools from polynomial fitting to
a broader class of nonlinear function-fitting problems. Indeed, given a T-system u1, ..., un, a
generalized polynomial is a linear combination U(t) = a1u1(t)+ · · ·+anun(t). The machinery
of T-systems provides a basis for understanding the properties of these generalized poly-
nomials. For a survey of T-systems and their applications in statistics and approximation
theory, see [52, 65, 66]. In particular, many of our proofs are adapted from [66], and we call
out the parallel theorems whenever this is the case.

Prior art and related work

Broadly speaking, superresolution techniques enhance the resolution of a sensing system,
optical or otherwise; resolution is the distance at which distinct sources appear indistin-
guishable. The mathematical problem of localizing point sources from a blurred signal has
applications in a wide array of empirical sciences: astronomers deconvolve images of stars to
angular resolution beyond the Rayleigh limit [89], and biologists capture nanometer resolu-
tion images of fluorescent proteins [21, 57, 97, 72]. Detecting neural action potentials from
extracellular electrode measurements is fundamental to experimental neuroscience [45], and
resolving the poles of a transfer function is fundamental to system identification [101]. To
understand a radar signal, one must decompose it into reflections from different sources [55];
and to understand an NMR spectrum, one must decompose it into signatures from different
chemicals [111].

The mathematical analysis of point source recovery has a long history going back to the
work of Prony [87] who pioneered techniques for estimating sinusoidal frequencies. Prony’s

1Tchebycheff is one among many transliterations from the cyrillic. Others include Chebyshev, Chebychev,
and Cebysev.



CHAPTER 2. SUPERRESOLUTION WITHOUT SEPARATION 15

method is based on algebraically solving for the roots of polynomials, and can recover ar-
bitrarily closely spaced frequencies. The annihilation filter technique introduced by Vet-
terli [117] can perfectly recover any signal of finite rate of innovation with minimal samples.
In particular the theory of signals with finite rate of innovation shows that given a superpo-
sition of pulses of the form

∑
akψ(t− tk), one can reconstruct the shifts tk and coefficients

ak from a minimal number of samples [41, 117]. This holds without any separation condition
on the tk and as long as the base function ψ can reproduce polynomials of a certain degree
(see [41, Section A.1] for more details). The algorithm used for this reconstruction is how-
ever based on polynomial rooting techniques that do not easily extend to higher dimensions.
Moreover, this algebraic technique is not robust to noise (see the discussion in [110, Section
IV.A] for example).

In contrast we study sparse recovery techniques. This line of thought goes back at least
to Carathéodory [33, 32]. Our contribution is an analysis of `1 based methods that matches
the performance of the algebraic techniques of Vetterli in the one dimensional and noiseless
setting. Our primary motivation is that `1 based methods may be more stable to noise and
trivially generalize to higher dimensions (although our analysis currently does not).

It is tempting to apply the theory of compressed sensing [10, 29, 30, 38] to problem (2.1.3).
If one assumes the point sources are located on a finite grid and are well separated, then
some of the standard models for recovery are valid (e.g. incoherency, restricted isometry
property, or restricted eigenvalue property). With this motivation, many authors solve the
gridded form of the superresolution problem in practice [9, 11, 78, 42, 47, 56, 91, 108, 109, 72,
43]. However, this approach has some significant drawbacks. The theoretical requirements
imposed by the classical models of compressed sensing become more stringent as the grid
becomes finer. Furthermore, making the grid finer can also lead to numerical instabilities
and computational bottlenecks in practice.

Despite recent successes in many empirical disciplines, the theory of superresolution imag-
ing remains limited. Candès and Fernandes-Granada [27] recently made an important con-
tribution to the mathematical analysis of superresolution, demonstrating that semi-infinite
optimization could be used to solve the classical Prony problem. Their proof technique has
formed the basis of several other analyses including that of Bendory et al [17] and that of
Tang et al [111]. To better compare with our approach, we briefly describe the approach
of [17, 27, 111] here.

They construct the vector q of a dual polynomial Q(t) = 1
n

∑n
j=1 ψ(sj, t)qj as a linear

combination of ψ(s, ti) and d
dti
ψ(s, ti). In particular, they define the coefficients of this linear

combination as the least squares solution to the system of equations

Q(ti) = sign(wi), i = 1, . . . ,M

d

dt
Q(t)

∣∣∣
t=ti

= 0, i = 1, . . . ,M.
(2.1.8)

They prove that, under a minimum separation condition on the ti, the system has a unique
solution because the matrix for the system is a perturbation of the identity, hence invertible.

Much of the mathematical analysis on superresolution has relied heavily on the assump-
tion that the point sources are separated by more than some minimum amount [14, 17, 27,
40, 44, 81, 39]. We note that in practical situations with noisy observations, some form of
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minimum separation may be necessary. One can expect, however, that the required minimum
separation should go to zero as the noise level decreases: a property that is not manifest in
previous results. Our approach, by contrast, does away with the minimum separation con-
dition by observing that the matrix for the system (2.1.8) need not be close to the identity
to be invertible. Instead, we impose Conditions 2.1.2 to guarantee invertibility directly. Not
surprisingly, we use techniques from T-systems to construct an analog of the polynomial Q
in (2.1.8) for our specific problem.

Another key difference is that we consider the weighted objective
∫
h(t)dµ(t), while prior

work [17, 27, 111] has analyzed the unweighted objective
∫
dµ(t). We, too, could not remove

the separation condition without reweighing by h(t). In Section 2.3 we provide evidence that
this mathematically motivated reweighing step actually improves performance in practice.
Weighting has proven to be a powerful tool in compressed sensing, and many works have
shown that weighting an `1-like cost function can yield improved performance over standard
`1 minimization [50, 68, 116, 22]. To our knowledge, the closest analogy to our use of weights
comes from Rauhut and Ward, who use weights to balance the influence of dynamic range of
bases in polynomial interpolation problems [92]. In the setting of this chapter, weights will
serve to lessen the influence of sources that have low overlap with the observed samples.

We are not the first to bring the theory of Tchebycheff systems to bear on the problem
of recovering finitely supported measures. De Castro and Gamboa [34] prove that a finitely
supported positive measure µ can be recovered exactly from measurements of the form{∫

u0dµ, . . . ,

∫
undµ

}
whenever {u0, . . . , un} form a T-system containing the constant function u0 = 1. These mea-
surements are almost identical to ours; if we set uk(t) = ψ(sk, t) for k = 1, . . . , n, where
{s1, . . . , sn} = S is our measurement set, then our measurements are of the form

{x(s) | s ∈ S} =
{∫

u1dµ, . . . ,

∫
undµ

}
.

However, in practice it is often impossible to directly measure the mass
∫
u0dµ =

∫
dµ as

required by (2.1). Moreover, the requirement that {1, ψ(s1, t), . . . , ψ(sn, t)} form a T-system
does not hold for the Gaussian point spread function ψ(s, t) = e−(s−t)2

(see Remark 2.2).
Therefore the theory of [34] is not readily applicable to superresolution imaging.

We conclude our review of the literature by discussing some prior literature on `1-based
superresolution without a minimum separation condition. We would like to mention the
work of Fuchs [51] in the case that the point spread function is band-limited and the samples
are on a regularly-spaced grid. This result also does not require a minimum separation
condition. However, our results hold for considerably more general point spread functions
and sampling patterns. Finally, in a recent paper Bendory [16] presents an analysis of `1

minimization in a discrete setup by imposing a Rayleigh regularity condition which, in the
absence of noise, requires no minimum separation. Our results are of a different flavor, as
our setup is continuous. Furthermore we require linear sample complexity while the theory
of Bendory [16] requires infinitely many samples.
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2.2 Proofs

In this section we prove Theorem 4.3.2 and Theorem 2.1.1. We start by giving a short list of
notation to be used throughout the proofs. We write our proofs for an arbitrary measurement
S which need not be finite for the sake of the proof. Let P denote a fixed positive measure
on S, and set

h(t) =

∫
ψ(s, t)dP (s).

For concreteness, the reader might think of P as the uniform measure over S, where if S is
finite then h(t) = 1

n

∑n
j=1 ψ(sj, t). Just note that the particular choice of P does not affect

the proof.

Notation Glossary

• We denote the inner product of functions f, g ∈ L2
P by 〈f, g〉P :=

∫
f(s)g(s)dP (s).

• For any differentiable function f : R2 → R, we denote the derivative in its first argu-
ment by ∂1f and in its second argument by ∂2f .

• For t ∈ R, let ψt(·) = ψ(·, t).

Proof of Theorem 4.3.2

We prove Theorem 4.3.2 in two steps. We first reduce the proof to constructing a function
q such that 〈q, ψt〉P possesses some specific properties.

Proposition 2.2.1. If the first three items of Conditions 2.1.2 hold, and if there exists a
function q such that Q(t) := 〈q, ψt〉P satisfies

Q(tj) = h(tj), j = 1, . . . ,M (2.2.1)

Q(t) < h(tj), for t ∈ [−T, T ] and t 6= tj,

then the true measure µ? :=
∑M

j=1 cjδtj is the unique optimal solution of the program 2.1.3.

This proof technique is somewhat standard [29, 51]: the function Q(t) is called a dual
certificate of optimality. However, introducing the function h(t) is a novel aspect of our proof.
The majority of arguments have h(t) = 1. Note that when

∫
ψ(s, t)dP (s) is independent of

t, then h(t) is a constant and we recover the usual method of proof.
In the second step we construct q(s) as a linear combination of the ti-centered point

spread functions ψ(s, ti) and their derivatives ∂2ψ(s, ti).

Theorem 2.2.2. Under the Conditions 2.1.2, there exist α1, . . . , αM , β1, . . . , βM , c ∈ R such
that Q(t) = 〈q, ψt〉P satisfies (2.2.1), where

q(s) =
M∑
i=1

(αiψ(s, ti) + βi
d

dti
ψ(s, ti)) + c.

To complete the proof of Theorem 4.3.2, it remains to prove Proposition 2.2.1 and Theo-
rem 4.3.1. Their proofs can be found in Sections 2.2 and 2.2 respectively.
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Proof of Proposition 2.2.1

We show that µ? is the optimal solution of problem (2.1.3) through strong duality. The
Lagrangian for (2.1.3) is

L(q, µ) =

∫
h(t)dµ(t) +

∫
S
q(s)

(
x(s)−

∫
ψ(s, t)dµ(t)

)
dP (s),

where q ∈ L2
P is the dual variable. Hence the dual of problem (2.1.3) is

maximize
q

minimize
µ≥0

suppµ⊂[−T,T ]

L(q, µ).

The dual of problem (2.1.3) can be written as

maximizeq 〈q, x〉P
subject to 〈q, ψt〉P ≤ h(t) for t ∈ [−T, T ].

(2.2.2)

Since the primal (2.1.3) is equality constrained, Slater’s condition naturally holds, im-
plying strong duality. As a consequence, we have

〈q, x〉P =

∫
h(t)dµ(t) ⇐⇒ q is dual optimal and µ is primal optimal.

Suppose q satisfies (2.2.1). Hence q is dual feasible and we have

〈q, x〉P =
M∑
j=1

wj
〈
q, ψtj

〉
P

=
M∑
j=1

wjQ(tj)

=

∫
h(t)dµ?(t).

Therefore, q is dual optimal and µ? is primal optimal.
Next we show uniqueness. Suppose the primal (2.1.3) has another optimal solution

µ̂ =
M̂∑
j=1

ŵjδt̂j

such that {t̂1, . . . , t̂M̂} 6= {t1, . . . , tM} := T . Then we have

〈q, x〉P =
∑
j

ŵj

〈
q, ψt̂j

〉
P

=
∑
t̂j∈T

ŵjQ(t̂j) +
∑
t̂j /∈T

ŵjQ(t̂j)

<
∑
t̂j∈T

ŵjh(t̂j) +
∑
t̂j /∈T

ŵjh(t̂j) =

∫
h(t)dµ̂(t).
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Therefore, all optimal solutions must be supported on {t1, . . . , tM}.
We now show that the coefficients of any optimal µ̂ are uniquely determined. By con-

dition Independence the matrix
∫
v(s)v(s)TdP (s) is invertible. Since it is also positive

semidefinite, then it is positive definite, so, in particular its upper M × M block is also
positive definite.

det

∫  ψ(s, t1)
...

ψ(s, tM)

 [ψ(s, t1) . . . ψ(s, tM)
]
dP (s) 6= 0.

Hence there must be s1, . . . , sM ∈ S such that the matrix with entries ψ(si, tj) is nonsingular.

Now consider some optimal µ̂ =
∑M

i=1 ŵiti. Since µ̂ is feasible we have

x(sj) =
M∑
i=1

ŵiψ(sj, ti) =
M∑
i=1

wiψ(sj, ti) for j = 1, . . . ,M.

Since ψ(si, tj) is invertible, we conclude that the coefficients w1, . . . , wM are unique. Hence
µ? is the unique optimal solution of (2.1.3).

Proof of Theorem 4.3.1

We construct Q(t) via a limiting interpolation argument due to Krein [71]. We have adapted
some of our proofs (with nontrivial modifications) from the aforementioned text by Karlin
and Studden [66]. We give reference to the specific places where we borrow from classical
arguments.

In the sequel, we make frequent use of the following elementary manipulation of deter-
minants:

Lemma 2.2.3. If v0, . . . , vn are vectors in Rn, and n is even, then∣∣v1 − v0 . . . vn − v0

∣∣ =

∣∣∣∣v1 . . . vn v0

1 . . . 1 1

∣∣∣∣ .
Proof. By elementary manipulations, both determinants in the statement of the lemma are
equal to ∣∣∣∣v1 − v0 . . . vn − v0 v0

0 . . . 0 1

∣∣∣∣ .
In what follows, we consider ε > 0 such that

t1 − ε < t1 + ε < t2 − ε < t2 + ε < · · · < tM − ε < tM + ε.

Definition 2. A point t is a nodal zero of a continuous function f : R→ R if f(t) = 0 and
f changes sign at t. A point t is a non-nodal zero if f(t) = 0 but f does not change sign at
t. This distinction is illustrated in Figure 2.2.
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a b

f

Figure 2.2: The point a is a nodal zero of f , and the point b is a non-nodal zero of f .

t1
t2

t1 − ε t1 + ε t2 + εt2 − ε

Q̃ε(t)

h(t)

Q̃(t)

Figure 2.3: The relationship between the functions h(t), Q̃ε(t) and Q̃(t). The function Q̃ε(t)
touches h(t) only at ti ± ε, and these are nodal zeros of Q̃ε(t) − h(t). The function Q̃(t)
touches h(t) only at ti and these are non-nodal zeros of Q̃(t)− h(t).

Our proof of Theorem 4.3.1 proceeds as follows. With ε fixed, we construct a function

Q̃ε(t) =
M∑
i=1

α[i]
ε KP (t, ti) + β[i]

ε ∂2KP (t, ti)

such that Q̃ε(t) = h(t) only at the points t = tj ± ε for all j = 1, 2, . . . ,M and the points
tj ± ε are nodal zeros of Q̃ε(t) − h(t) for all j = 1, 2, . . . ,M . We then consider the limiting
function Q̃(t) = lim

ε↓0
Q̃ε(t), and prove that either Q̃(t) satisfies (2.2.1) or 2h(t)− Q̃(t) satisfies

(2.2.1). An illustration of this construction is pictured in Figure 2.3.
We begin with the construction of Q̃ε. We aim to find the coefficients αε, βε to satisfy

Q̃ε(ti − ε) = h(ti − ε) and Q̃ε(ti + ε) = h(ti + ε) for i = 1, . . . ,M.

This system of equations is equivalent to the system

Q̃ε(ti − ε) = h(ti − ε) for i = 1, . . . ,M

Q̃ε(ti + ε)− Q̃ε(ti − ε)
2ε

=
h(ti + ε)− h(ti − ε)

2ε
for i = 1, . . . ,M.

(2.2.3)

Note that this is a linear system of equations in αε, βε with coefficient matrix given by

Kε :=


KP (tj − ε, ti) ∂2KP (tj − ε, ti)

1
2ε

(
KP (tj + ε, ti)−KP (tj − ε, ti)

)
1
2ε

(
∂2KP (tj + ε, ti)− ∂2KP (tj − ε, ti)

)

 .
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That is, the equations (2.2.3) can be written as

Kε


|
αε
|
|
βε
|

 =



h(t1 − ε)
...

h(tM − ε)
1
2ε

(h(t1 + ε)− h(t1 − ε))
...

1
2ε

(h(tM + ε)− h(tM − ε))


.

We first show that the matrix Kε is invertible for all ε sufficiently small. Note that as
ε→ 0 the matrix Kε converges to

K :=


KP (tj, ti) ∂2KP (tj, ti)

∂1KP (tj, ti) ∂1∂2KP (tj, ti)

 =

∫
v(s)v(s)TdP (s),

which is positive definite by Independence. Since the entries of Kε converge to the entries
of K, there is a ∆ > 0 such that Kε is invertible for all ε ∈ (0,∆). Moreover, K−1

ε converges
to K−1 as ε→ 0 and for all ε < ∆, the coefficients are uniquely defined as

|
αε
|
|
βε
|

 = K−1
ε



h(t1 − ε)
...

h(tM − ε)
1
2ε

(h(t1 + ε)− h(t1 − ε))
...

1
2ε

(h(tM + ε)− h(tM − ε))


. (2.2.4)

We denote the corresponding function by

Q̃ε(t) :=
M∑
i=1

α[i]
ε KP (t, ti) + β[i]

ε ∂2KP (t, ti).

Before we construct Q̃(t), we take a moment to establish the following remarkable conse-
quences of the Determinantal condition. For all ε > 0 sufficiently small the following
hold:

(a). Q̃ε(t) = h(t) only at the points t1 − ε, t1 + ε, . . . , tM − ε, tM + ε.

(b). These points t1 − ε, t1 + ε, . . . , tM − ε, tM + ε are nodal zeros of Q̃ε(t)− h(t).

We adapted the proofs of (a) and (b) (with nontrivial modification) from the proofs of
Theorem 1.6.1 and Theorem 1.6.2 of [66].
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Proof of (a). Suppose for the sake of contradiction that there is a τ ∈ [−T, T ] such that
Q̃ε(τ) = h(τ) and τ /∈ {t1 − ε, t1 + ε, . . . , tM − ε, tM + ε}. Then we have the system of 2M
linear equations

Q̃ε(tj − ε)
h(tj − ε)

− Q̃ε(τ)

h(τ)
= 0 j = 1, . . . ,M

Q̃ε(tj + ε)

h(tj + ε)
− Q̃ε(τ)

h(τ)
= 0 j = 1, . . . ,M.

Rewriting this in matrix form, the coefficient vector
[
αε βε

]
=
[
α

[1]
ε · · · α

[M ]
ε β

[1]
ε · · · β

[M ]
ε

]
of Q̃ε satisfies[

αε βε
] (
κ(t1 − ε)− κ(τ) κ(t1 + ε)− κ(τ) . . . κ(tM + ε)− κ(τ)

)
=
[
0 . . . 0

]
.

(2.2.5)
By Lemma 2.2.3 applied to the 2M + 1 vectors v1 = κ(t1 − ε), . . . , v2M = κ(tM + ε), and
v0 = κ(τ), the matrix for the system of equations (2.2.5) is nonsingular if and only if the
following matrix is nonsingular:[

κ(t1 − ε) . . . κ(tM + ε) κ(τ)
1 . . . 1 1

]
= Λ(t1 − ε, . . . , tM + ε, τ).

However, this is nonsingular by the Determinantal condition. This gives us the contra-
diction that completes the proof of part (a).

Proof of (b). Suppose for the sake of contradiction that Q̃ε(t) − h(t) has N1 < 2M
nodal zeros and N0 = 2M − N1 non-nodal zeros. Denote the nodal zeros by {τ1, ..., τN1},
and denote the non-nodal zeros by z1, . . . , zN0 . In what follows, we obtain a contradiction by
doubling the non-nodal zeros of Q̃ε(t)−h(t). We do this by constructing a certain generalized
polynomial u(t) and adding a small multiple of it to Q̃ε(t)− h(t).

We divide the non-nodal zeros into groups according to whether Q̃ε(t)− h(t) is positive
or negative in a small neighborhood around the zero; define

I− := {i | Q̃ε ≤ w near zi} and I+ := {i | Q̃ε ≥ w near zi}.

We first show that there are coefficients a0, . . . , aM , and b1, . . . , bM such that the polynomial

u(t) =
M∑
i=1

aiKP (t, ti) +
M∑
i=1

bi∂2KP (t, ti) + a0h(t)

satisfies the system of equations

u(zj) = +1 j ∈ I−
u(zj) = −1 j ∈ I+

u(τi) = 0 i = 1, . . . , N1

u(τ) = 0,

(2.2.6)
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τ1 τ2 τ3 τ4

ζ1 ζ2

ζ3

u(t)

Q̃ε(t)− h(t)

τ
0

Figure 2.4: The points {τ1, τ2, τ3, τ4} are nodal zeros of Q̃ε(t)−h(t), and the points {ζ1, ζ2, ζ3}
are non-nodal zeros. The function u(t) has the appropriate sign so that Q̃ε(t)− h(t) + δu(t)
retains nodal zeros at τi, and obtains two zeros in the vicinity of each ζi.

where τ is some arbitrary additional point. The matrix for this system is

W



κ(z1)T 1
...

κ(zN0)T 1
κ(τ1)T 1

...
κ(τN1)T 1
κ(τ) 1


where W = diag

(
h(z1), . . . , h(zN0), h(τ1), . . . , h(τN1), h(τ)

)
. This matrix is invertible by

Determinantal since the nodal and non-nodal zeros of Q̃ε(t) − h(t) are given by t1 −
ε, . . . , tM + ε. Hence there is a solution to the system (2.2.6).

Now consider the function

U δ(t) = Q̃ε(t) + δu(t) =
M∑
i=1

[α[i]
ε + δai]KP (t, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (t, ti) + δa0h(t)

where δ > 0. By construction, u(τi) = 0, so U δ(t)− h(t) has nodal zeros at τ1, . . . , τN1 . We
can choose δ small enough so that U δ(t)−h(t) vanishes twice in the vicinity of each zi. This
means that U δ(t)−h(t) has 2M +N0 zeros. Assuming N0 > 0, select a subset of these zeros
p1 < . . . < p2M+1 such that there are two in each interval [ti − ρ, ti + ρ]. This is possible if
ε < ρ and δ is sufficiently small. We have the system of 2M + 1 equations

M∑
i=1

[α[i]
ε + δai]KP (p1, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (p1, ti) = (1− δa0)h(τ)

...

M∑
i=1

[α[i]
ε + δai]KP (p2M+1, ti) +

M∑
i=1

[β[i]
ε + δbi]∂2KP (p2M+1, ti) = (1− δa0)h(τ).

Subtracting the last equation from each of the first 2M equations, we find that

(α[1]
ε + δa1, . . . , β

[M ]
ε + δbM)

(
κ(p1)− κ(p2M+1) . . . κ(p2M)− κ(p2M+1)

)
= (0, . . . , 0).
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This matrix is nonsingular by Lemma 2.2.3 combined with the Determinantal condition.
This contradiction implies that N0 = 0. This completes the proof of (b).

We now complete the proof by constructing Q̃(t) from Q̃ε(t) by sending ε → 0. Note
that the coefficients αε, βε converge as ε → 0 since the right hand side of equation (2.2.4)
converges to

K−1



h(t1)
...

h(tM)
h′(t1)

...
h′(tM)


=


|
α
|
|
β
|

 .

We denote the limiting function by

Q̃(t) =
M∑
i=1

αiKP (t, ti) +
M∑
i=1

βi∂2KP (t, ti). (2.2.7)

We conclude that h(t)− Q̃(t) does not change sign at the ti since h(t)− Q̃ε(t) changes sign
only at ti ± ε.

We now show that the limiting process does not introduce any additional zeros of h(t)−
Q̃(t). Suppose Q̃(t) does touch h(t) at some τ1 ∈ [−T, T ] with τ1 6= ti for any i = 1, ...,M .
Since h(t) − Q̃(t) does not change sign, the points t1, . . . , tM , τ1 are non-nodal zeros of
h(t) − Q̃(t). We find a contradiction by constructing a polynomial with two nodal zeros in
the vicinity of each of these M + 1 points (but possibly only one nodal zero in the vicinity
of τ1 if τ1 = T or τ1 = −T ).

For sufficiently small γ > 0, the polynomial

Wγ(t) = Q̃(t) + γh(t)

attains the value h(t) twice in the vicinity of each ti and twice in the vicinity of τ1. In other
words there exist p1 < . . . < p2M+2 such that Wγ(pi) = h(pi). Therefore

Q̃(pi) = (1− γ)h(pi) for i = 1, . . . , 2M + 2,

and so Q̃(pi)
h(pi)
− Q̃(p2M+1)

h(p2M+1)
= 0 for i = 1, 2, ..., 2M . Thus, the coefficient vector for the polynomial

Q̃(t) lies in the left nullspace of the matrix(
κ(p1)− κ(p2M+1) . . . κ(p2M)− κ(p2M+1)

)
.

However, this matrix is nonsingular by Lemma 2.2.3 and the Determinantal condition.
Collecting our results, we have proven that Q̃(t)− h(t) = 0 if and only if t = ti and that

Q̃(t)− h(t) does not change sign when t passes through ti. Therefore one of the following is
true

h(t) ≥ Q̃(t) or Q̃(t) ≥ h(t)
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with equality iff t = ti. In the first case, Q(t) = Q̃(t) fulfills the prescriptions (2.2.1) with

q(t) =
M∑
i=1

αiψ(s, ti) + βi
d

dti
ψ(s, ti).

In the second case, Q(t) = 2h(t)− Q̃(t) satisfies (2.2.1) with

q(t) = 2−
M∑
i=1

αiψ(s, ti) + βi
d

dti
ψ(s, ti).

Proof of Theorem 2.1.1

Integrability and Positivity naturally hold for the Gaussian point spread function
ψ(s, t) = e−(s−t)2

. Independence holds because ψ(s, t1), . . . , ψ(s, tM) together with their
derivatives ∂2ψ(s, t1), . . . , ∂2ψ(s, tM) form a T-system (see for example [66]). This means
that for any s1 < . . . < s2M ∈ R, ∣∣v(s1) . . . v(s2M)

∣∣ 6= 0,

and the determinant always takes the same sign. Therefore, by an integral version of the
Cauchy-Binet formula for the determinant (cf. [65]),

∣∣∣ ∫ v(s)v(s)TdP (s)
∣∣∣ = (2M)!

∫
s1<...<s2M

∣∣v(s1) . . . v(s2M)
∣∣
∣∣∣∣∣∣∣
v(s1)T

...
v(s2M)T

∣∣∣∣∣∣∣ dP (s1) . . . dP (s2M) 6= 0.

To establish the Determinantal condition, we prove the slightly stronger statement:

|Λ(p1, . . . , p2M+1)| =
∣∣∣∣∫ [v(s)

1

] [
ψ(s,p1)
h(p1)

. . . ψ(s,p2M+1)

h(p2M+1)

]
dP (s)

∣∣∣∣ 6= 0 (2.2.8)

for any distinct p1, . . . , p2M+1. When p1, . . . , p2M+1 are restricted so that two points pi, pj lie
in each ball (tk − ρ, tk + ρ), we recover the statement of Determinantal.

We prove (2.2.8) with the following key lemma.

Lemma 2.2.4. For any s1 < . . . < s2M+1 and t1 < . . . < tM ,∣∣∣∣∣∣∣∣∣∣∣∣∣

e−(s1−t1)2 · · · e−(s2M+1−t1)2

−(s1 − t1)e−(s1−t1)2 · · · −(s2M+1 − t1)e−(s2M+1−t1)2

...
...

e−(s1−tM )2 · · · e−(s2M+1−tM )2

−(s1 − tM)e−(s1−tM )2 · · · −(s2M+1 − tM)e−(s2M+1−tM )2

1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.
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Before proving this lemma, we show how it can be used to prove (2.2.8). By Lemma
2.2.4, we know in particular that for any s1 < · · · < s2M+1,

det

[
v(s1) · · · v(s2M+1)

1 · · · 1

]
6= 0

and is always the same sign. Moreover, for any s1 < · · · < s2M+1, and any p1 < . . . < p2M+1,

det

 ψ(s1, p1) . . . ψ(s1, p2M+1)
...

ψ(s2M+1, p1) . . . ψ(s2M+1, p2M+1)

 > 0.

Any function with this property is called totally positive and it is well known that the
Gaussian kernel is totally positive [66]. Now, to show that Determinantal holds for the
finite sampling measure P , we use an integral version of the Cauchy-Binet formula for the
determinant:∣∣∣∣∫ [v(s)

1

] [
ψ(s,p1)
h(p1)

. . .
ψ(s,p2M+1)

h(p2M+1)

]
dP (s)

∣∣∣∣ =

= (2M + 1)!

∫
s1<···<s2M+1

∣∣∣∣v(s1) · · · v(s2M+1)
1 · · · 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣

ψ(s1,p1)
h(p1)

. . .
ψ(s1,p2M+1)

h(p2M+1)

...
ψ(s2M+1,p1)

h(p1)
. . .

ψ(s2M+1,p2M+1)

h(p2M+1)

∣∣∣∣∣∣∣∣∣ dP (s1) . . . dP (s2M+1).

The integral is nonzero since all integrands are nonzero and have the same sign. This
proves (2.2.8).

Proof of Lemma 2.2.4. Multiplying the 2i − 1 and 2i-th row by et
2
i and the i-th column

by es
2
i , and subtracting ti times the 2i − 1-th row from the 2i-th row, we obtain that we

equivalently have to show that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

es1t1 es2t1 . . . es2M+1t1

s1e
s1t1 s2e

s2t1 . . . s2M+1e
skt1

es1t2 es2t2 . . . es2M+1t2

...
es1tM es2tM . . . es2M+1tM

s1e
s1tM s2e

s2tM . . . s2M+1e
s2M+1tM

es
2
1 es

2
2 . . . es

2
2M+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

The above matrix has a vanishing determinant if and only if there exists a nonzero vector

(a1, b1, ..., aM , bM , aM+1)

in its left null space. This vector has to have nonzero last coordinate since by Example 1.1.5.
in [66], the Gaussian kernel is extended totally positive and therefore the upper 2M × 2M
submatrix has a nonzero determinant. Therefore, we assume that aM+1 = 1. Thus, the
matrix above has a vanishing determinant if and only if the function

M∑
i=1

(ai + bis)e
tis + es

2

(2.2.9)
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has at least the 2M + 1 zeros s1 < s2 < ... < s2M+1. Lemma 2.2.5, applied to r = M and
d1 = · · · = dM = 1, establishes that this is impossible. To complete the proof of Lemma 2.2.4,
it remains to state and prove Lemma 2.2.5.

Remark. The inclusion of the derivatives is essential for the shifted Gaussians to form a
T-system together with the constant function 1. In particular, following the same logic as
in the proof of Lemma 2.2.4, we find that {1, e(s−t1)2

, . . . , e(s−tM )2} form a T-system if and
only if the function

M∑
i=1

aie
tis + es

2

has at most M zeros. However, for M = 3 the function has 4 zeros if we select a1 = −3,
t1 = 1, a2 = 7, t2 = 0, a3 = −5, t3 = −1.

Lemma 2.2.5. Let d1, ..., dr ∈ N. The function

φd1,...,dr(s) =
r∑
i=1

(ai0 + ai1s+ · · ·+ ai(2di−1)s
2di−1)etis + es

2

has at most 2(d1 + · · ·+ dr) zeros.

Proof. We are going to show that φd1,...,dr(s) has at most 2(d1 + · · · + dr) zeros as follows.
Let

g0(s) = φd1,...,dr(s).

For k = 1, ..., d1 + · · ·+ dr, let

gk(s) =

{
d2

ds2

[
gk−1(s)e(−tj+t1+···+tj−1)s

]
, if k = d1 + · · ·+ dj−1 + 1 for some j,

d2

ds2

[
gk−1(s)

]
, otherwise.

(2.2.10)

If we show that gd1+···+dr(s) has no zeros, then, gd1+···+dr−1(s) has at most two zeros, counting
with multiplicity. By induction, it will follow that g0(s) has at most 2(d1 + · · · + dr) zeros,
counting with multiplicity. Note that if d1 + · · ·+ dj−1 ≤ k < d1 + · · ·+ dj−1 + dj, then

gk(s) =(ãj,2(k−d1+···+dj−1) + · · ·+ ãj,(2dj−1)s
2dj−1−2(k−d1+···+dj−1))+

+
r∑

i=j+1

(ãi0 + · · ·+ ãi(2di−1)s
2di−1)e(ti−(t1+···+tj−1))r + cfi(r)e

r2

where c > 0 is a constant and r := s − ci. We are going to show that fi(r) is a sum of
squares polynomial such that one of the squares is a positive constant. This would mean
that gk(s) = fk(s)e

s2 has no zeros.
Denote

p0(s) = 1

p1(s) = 2s

...

pi(s) = 2spi−1(s− ci) + p′i−1(s− ci),
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where c1, ..., ck are constants. It follows by induction that the degree of pi(s) is deg(pi) = i
and the leading coefficient of pi(s) is 2i.

We will show by induction that

fi(s) = pi(s)
2 +

1

2
p′i(s)

2 + · · ·+ 1

2ii!
p

(i)
i (s)2

=
i∑

j=0

1

2jj!
p

(j)
i (s)2.

When i = 0, we have that f0(s) = 1 and
∑0

j=0
1

2jj!
p

(j)
0 (s)2 = 1. We are going to prove

the general statement by induction. Suppose the statement is true for i − 1. By the rela-
tionship (2.2.10), we have

fi(s)e
s2 =

d2

ds2

[
es

2

fi−1(s− ci)
]

=
d2

ds2

[
es

2
i−1∑
j=0

1

2jj!
p

(j)
i−1(s− ci)2

]
(2.2.11)

=
i−1∑
j=0

es
2

2jj!

{
2p

(j+2)
i−1 (s− ci)p(j)

i−1(s− ci) + 2p
(j+1)
i−1 (s− ci)2

+ (4s2 + 2)p
(j)
i−1(s− ci)2 + 8sp

(j)
i−1(s− ci)p(j+1)

i−1 (s− ci)
}

We need to show that this expression is equal to es
2
(
∑i

j=0
p

(j)
i (s)2

2jj!
). Since

pi(s) = 2spi−1(s− ci) + p′i−1(s− ci),

it follows by induction that p
(j)
i (s) = 2jp

(j−1)
i−1 (s−ci)+2sp

(j)
i−1(s−ci)+p

(j+1)
i−1 (s−ci). Therefore

we obtain

es
2

(
i∑

j=0

p
(j)
i (s)2

2jj!
) =es

2
i∑

j=0

1

2jj!

[
2jp

(j−1)
i−1 (s− ci) + 2sp

(j)
i−1(s− ci) + p

(j+1)
i−1 (s− ci)

]2

.

=es
2

i∑
j=0

1

2jj!

[
4j2p

(j−1)
i−1 (s− ci)2 + 4s2p

(j)
i−1(s− cI)2 + p

(j+1)
i−1 (s− ci)2+

+ 8jsp
(j−1)
i−1 (s− ci)p(j)

i−1(s− ci)+
+ 4sp

(j)
i−1(s− ci)p(j+1)

i−1 + 4jp
(j−1)
i−1 (s− ci)p(j+1)

i−1 (s− ci)
]

(2.2.12)
There are four types of terms in the sums (2.2.11) and (2.2.12):

p
(j)
i−1(s− ci)2, s2p

(j)
i−1(s− ci)2, p

(j−1)
i−1 (s− ci)p(j)

i−1(s− ci), and sp
(j−1)
i−1 (s− ci)p(j)

i−1(s− ci).

For a fixed j ∈ {0, 1, ..., i + 1}, it is easy to check that the coefficients in front of each of
these terms in (2.2.11) and (2.2.12) are equal. Therefore,

fi(s) = pi(s)
2 +

1

2
p′i(s)

2 + · · ·+ 1

2ii!
p

(i)
i (s)2
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=
i∑

j=0

1

2jj!
p

(j)
i (s)2

Note that since deg(pi) = i, then, p
(i)
i (s) equals the leading coefficient of pi(s), which, as we

discussed above, equals 2i. Therefore, the term 1
2ii!
p

(i)
i (s)2 = 2ii!. Thus, one of the squares

in fi(s) is a positive number, so fi(s) > 0 for all s.

2.3 Numerical experiments

In this section we present the results of several numerical experiments to complement our
theoretical results. To allow for potentially noisy observations, we solve the constrained least
squares problem

minimize
µ≥0

n∑
i=1

(∫
ψ(si, t)dµ(t)− x(si)

)2

subject to

∫
h(t)µ(dt) ≤ τ

(2.3.1)

using the conditional gradient method proposed in [23].

Reweighing matters for source localization

Our first numerical experiment provides evidence that weighting by h(t) helps recover point
sources near the border of the image. This matches our intuition: near the border, the mass
of an observed point-source is smaller than if it were measured in the center of the image.
Hence, if we didn’t weight the candidate locations, sources that are close to the edge of the
image would be beneficial to add to the representation.

We simulate two populations of images, one with point sources located away from the
image boundary, and one with point sources located near the image boundary. For each
population of images, we solve (2.3.1) with h(t) =

∫
ψ(s, t)dP (s) (weighted) and with h(t) =

1 (unweighted). We find that the solutions to (2.3.1) recover the true point sources more
accurately with h(t) =

∫
ψ(s, t)dP (s).

We use the same procedure for computing accuracy as in [98]. Namely we match true
point sources to estimated point courses and compute the F-score of the match. To describe
this procedure in detail, we compute the F-score by solving a bipartite graph matching
problem. In particular, we form the bipartite graph with an edge between ti and t̂j for all
i, j such that ‖ti − t̂j‖ < r, where r > 0 is a tolerance parameter, and t̂1, . . . , t̂N are the
estimated point sources. Then we greedily select edges from this graph under the constraint
that no two selected edges can share the same vertex; that is, no ti can be paired with two
t̂j, t̂k or vice versa. Finally, the t̂i successfully paired with some tj are categorized as true
positives, and we denote their number by TP . The number of false negatives is FN = M−TP ,
and the number of false positives is N − TP . The precision and recall are then P = TP

TP+FN
,

and R = TP
TP+FP

respectively, and the F-score is the harmonic mean:

F =
2PR

P +R
.
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We find a match by greedily pairing points of {τ1, . . . , τN} to elements of {t1, . . . , tM}, and
a tolerance radius r > 0 upper bounds the allow distance between any potential pairs. To
emphasize the dependence on r, we sometimes write F (r) for the F-score.

Both populations contain 100 images simulated using the Gaussian point spread function

ψ(s, t) = e−
(s−t)2

σ2

with σ = 0.1, and in both cases, the measurement set S is a dense uniform grid of n = 100
points covering [0, 1]. The populations differ in how the point sources for each image are
chosen. Each image in the first population has five points drawn uniformly in the interval
(.1, .9), while each image in the second population has a total of four point sources with two
point sources in each of the two boundary regions (0, .1) and (.9, 1). In both cases we assign
intensity of 1 to all point sources, and solve (2.3.1) using an optimal value of τ (chosen with
a preliminary simulation).

The results are displayed in Figure 2.5. The left subplot shows that the F-scores are
essentially the same for the weighted and unweighted problems when the point sources are
away from the boundary. This is not surprising because when t is away from the border
of the image, then

∫
ψ(s, t)dP (s) is essentially a constant, independent of t. But when the

point sources are near the boundary, the weighting matters and the F-scores are dramatically
better as shown in the right subplot.

Figure 2.5: Reweighing matters for source localization. The two plots above compare
the quality of solutions to the weighted problem (with h(t) =

∫
ψ(s, t)dP (s)) and the un-

weighted problem (with h(t) = 1). When point sources are away from the boundary (left
plot), the performance is nearly identical. But when the point sources are near the boundary
(right plot), the weighted method performs significantly better.
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(a) (b)

Figure 2.6: Sensitivity to point-source separation. (a) The F-score at tolerance radius
r = 0.1 as a function of normalized separation d

σ
. (b) The black trace shows an image for

d
σ

= 1
2
. The green stars show the locations (x-coordinate) and weights (y-coordinate) of the

true point sources. The red dots show the recovered locations and weights.

Sensitivity to point-source separation

Our theoretical results assert that in the absence of noise the optimal solution of (2.1.3) re-
covers point sources with no minimum bound on the separation. In the following experiment,
we explore the ability of (2.3.1) to recover pairs of points as a function of their separation.
The setup is similar to the first numerical experiment. We use the Gaussian point spread
function with σ = 0.1 as before, but here we observe only n = 50 samples. For each separa-
tion d ∈ {.1σ, .2σ, . . . , 1.9σ, 2σ}, we simulate a population of 20 images containing two point
sources separated by d. The point sources are chosen by picking a random point x away from
the border of the image and placing two point sources at x± d

2
. Again, each point source is

assigned an intensity of 1, and we attempt to recover the locations of the point sources by
solving (2.3.1).

In the left subplot of Figure 2.6 we plot F-score versus separation for the value of τ
that produces the best F-scores. Note that we achieve near perfect recovery for separations
greater than σ

4
. The right subplot of Figure 2.6 shows the observations, true point sources,

and estimated point sources for a separation of d
σ

= 1
2
. Note the near perfect recovery in

spite of the small separation.
Due to numerical issues, we cannot localize point sources with arbitrarily small d > 0.

Indeed, the F-score for d
σ
< 1

4
is quite poor. This does not contradict our theory because

numerical ill-conditioning is in effect adding noise to the recovery problem, and we expect
that a separation condition will be necessary in the presence of noise.
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(a) (b)

Figure 2.7: Sensitivity to noise. (a) The F-score at tolerance radius r = 0.1 as a function
of normalized separation d

σ
. (b) The black trace is the 50 pixel image we observe. The green

stars show the locations (x-coordinate) and weights (y-coordinate) of the true point sources.
The red dots show the recovered locations and weights.

Sensitivity to noise

Next, we investigate the performance of (2.3.1) in the presence of additive noise. The setup
is identical to the previous numerical experiment, except that we add Gaussian noise to the
observations. In particular, our noisy observations are

{x(si) + ηi | si ∈ S}

where ηi ∼ N (0, 0.1).
We measure the performance of (2.3.1) in Figure 2.7. Note that we achieve near-perfect

recovery when d > σ. However, if d < σ the F-scores are clearly worse than the noiseless
case. Unsurprisingly, we observe that sources must be separated in order to recover their
locations to reasonable precision. We defer an investigation of the dependence of the signal
separation as a function of the signal-to-noise ratio to future work.

Extension to two-dimensions

Though our proof does not extend as is, we do expect generalizations of our recovery result
to higher dimensional settings. The optimization problem (2.3.1) extends immediately to
arbitrary dimensions, and we have observed that it performs quite well in practice. We
demonstrate in Figure 2.8 the power of applying (2.3.1) to a high density fluorescence image
in simulation. Figure 2.8 shows an image simulated with parameters specified by the Single
Molecule Localization Microscopy challenge [20]. In this challenge, point sources are blurred
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Figure 2.8: High density single molecule imaging. The green stars show the locations of
a simulated collection point sources, and the greyscale background shows the noisy, pixelated
point spread image. The red dots show the support of the measure-valued solution of (2.3.1).

by a Gaussian point-spread function and then corrupted by noise. The green stars show the
true locations of a simulated collection of point sources, and the red dots show the support
of the measure output by (2.3.1) applied to the greyscale image forming the background of
Figure 2.8. The overlap between the true locations and estimated locations is near perfect
with an F-score of 0.98 for a tolerance radius corresponding to one third of a pixel.
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2.4 Conclusions and Future Work

In this chapter we have demonstrated that one can recover the centers of a nonnegative sum
of Gaussians from a few samples by solving a convex optimization problem. This recovery is
theoretically possible no matter how close the true centers are to one-another. We remark
that similar results are true for recovering measures from their moments. Indeed, the atoms
of a positive atomic measure can be recovered no matter how close together the atoms are,
provided one observes twice the number of moments as there are atoms. Our work can be
seen as a generalization of this result, applying generalized polynomials and the theory of
Tchebycheff systems in place of properties of Vandermonde systems.

As we discussed in our numerical experiments, this work opens up several theoretical
problems that would benefit from future investigation. We close with a very brief discussion
of some of the possible extensions.

Noise Motivated by the fact that there is no separation condition in the absence of noise,
it would be interesting to study how the required separation decays to zero as the noise level
decreases. One of the key-advantages of using convex optimization for signal processing
is that dual certificates generically give stability results, in the same way that Lagrange
multipliers measure sensitivity in linear programming. Previous work on estimating line-
spectra has shown that dual polynomials constructed for noiseless recovery extend to certify
properties of estimation and localization in the presence of noise [26, 48, 111]. We believe
that these methods should be directly applicable to our problem set-up.

Higher dimensions One logical extension is proving that the same results hold in higher
dimensions. Most scientific and engineering applications of interest have point sources arising
one to four dimensions, and we expect that some version of our results should hold in higher
dimensions. Indeed, we believe a guarantee for recovery with no separation condition can be
proven in higher dimensions with noiseless observations. However, it is not straightforward
to extend our results to higher dimensions because the theory of Tchebycheff systems is only
developed in one dimension. In particular, our approach using limits of polynomials does
not directly generalize to higher dimensions.

Other point spread functions We have shown that our Conditions 2.1.2 hold for the
Gaussian point spread function, which is commonly used in microscopy as an approximation
to an Airy function. It will be very useful to show that they also hold for other point
spread functions such as the Airy function and other common physical models. Our proof
relied heavily on algebraic properties of the Gaussian, but there is a long, rich history of
determinantal systems that may apply to generalize our result. In particular, works on
properties of totally positive systems may be fruitful for such generalizations [3, 86].

Model mismatch in the point spread function Our analysis relies on perfect knowl-
edge of the point spread function. In practice one never has an exact analytic expression
for the point spread function. Aberrations in manufacturing and scattering media can lead
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to distortions in the image not properly captured by a forward model. It would be inter-
esting to derive guarantees on recovery that assume only partial knowledge of the point
spread function. Note that the optimization problem of searching both for the locations
of the sources and for the associated wave-function is a blind deconvolution problem, and
techniques from this well-studied problem could likely be extended to the super-resolution
setting. If successful, such methods could have immediate practical impact when applied to
denoising images in molecular, cellular, and astronomical imaging.
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Chapter 3

The Alternating Descent Conditional
Gradient Method

In this chapter we propose a variant of the classical conditional gradient method (CGM)
for sparse inverse problems with differentiable observation models. Such models arise in
many practical problems including superresolution, time-series modeling, and matrix com-
pletion. Our algorithm combines nonconvex and convex optimization techniques: we propose
global conditional gradient steps alternating with nonconvex local search exploiting the dif-
ferentiable observation model. This hybridization gives the theoretical global optimality
guarantees and stopping conditions of convex optimization along with the performance and
modeling flexibility associated with nonconvex optimization. Our experiments demonstrate
that our technique achieves state-of-the-art results in several applications.

This chapter is joint work with Nicholas Boyd and Benjamin Recht. The content of
this chapter has been submitted for publication under the title The Alternating Descent
Conditional Gradient Method for Sparse Inverse Problems and is available on the arxiv
http://arxiv.org/abs/1507.01562.

3.1 Introduction

A ubiquitous prior in modern statistical signal processing asserts that an observed signal
is the noisy observation of a few weighted sources. In other words, compared to the entire
dictionary of possible sources, the set of sources actually present is sparse. In the most
abstract formulation of this prior, each source is chosen from a non-parametric dictionary,
but in many cases of practical interest the sources are parameterized. Hence, solving the
sparse inverse problem amounts to finding a collection of a few parameters and weights that
adequately explains the observed signal.

As a concrete example, consider the idealized task of identifying the aircraft that lead to
an observed radar signal. The sources are the aircraft themselves, and each is parameterized
by, perhaps, its position and velocity relative to the radar detector. The sparse inverse
problem is to recover the number of aircraft present, along with each of their parameters.

Any collection of weighted sources can be represented as a measure on the parameter
space: each source corresponds to a single point mass at its corresponding parameter value.
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We will call atomic measures supported on very few points sparse measures. When the
parameter spaces are infinite—for example the set of all velocities and positions of aircraft—
the space of sparse measures over such parameters is infinite-dimensional. This means that
optimization problems searching for parsimonious explanations of the observed signal must
operate over an infinite-dimensional space.

Many alternative formulations of the sparse inverse problem have been proposed to avoid
the infinite-dimensional optimization required in the sparse measure setup. The most canon-
ical and widely applicable approach is to form a discrete grid over the parameter space
and restrict the search to measures supported on the grid. This restriction produces a
finite-dimensional optimization problem [18, 78, 112]. In certain special cases, the infinite-
dimensional optimization problem over measures can be reduced to a problem of moment
estimation, and spectral techniques or semidefinite programming can be employed [53, 87,
113, 27]. More recently, in light of much of the work on compressed sensing and its generaliza-
tions, another proposal operates on atomic norms over data [35], opening other algorithmic
possibilities.

While these finite-dimensional formulations are appealing, they all essentially treat the
space of sources as an unstructured set, ignoring natural structure (such as differentiability)
present in many applications. All three of these techniques have their individual drawbacks,
as well. Gridding only works for very small parameter spaces, and introduces artifacts that
often require heuristic post-processing [112]. Moment methods have limited applicability,
are typically computationally expensive, and, moreover, are sensitive to noise and estimates
of the number of sources. Finally, atomic norm techniques do not recover the parameters of
the underlying signal, and as such are more naturally applied to denoising problems.

In this chapter, we argue that all of these issues can be alleviated by returning to the
original formulation of the estimation problem as an optimization problem over the space
of measures. Working with measures explicitly exposes the underlying parameter space,
which allows us to consider algorithms that make local moves within parameter space. We
demonstrate that operating on the infinite-dimensional space of measures is not only feasible
algorithmically, but that the resulting algorithms outperform techniques based on gridding or
moments on a variety of real-world signal processing tasks. We formalize a general approach
to solving parametric sparse inverse problems via the conditional gradient method (CGM),
also know as the Frank-Wolfe algorithm. In Section 3.3, we show how to augment the classical
CGM with nonconvex local search exploiting structure in the parameter space. This hybrid
scheme, which we call the alternating descent conditional gradient method (ADCG), enjoys
both the rapid local convergence of nonconvex programming algorithms and the stability
and global convergence guarantees associated with convex optimization. The theoretical
guarantees are detailed in Section 3.5, where we bound the convergence rate of our algorithm
and also guarantee that it can be run with bounded memory. Moreover, in Section 3.6 we
demonstrate that our approach achieves state-of-the-art performance on a diverse set of
examples.

Mathematical setup

In this subsection we formalize the sparse inverse problem as an optimization problem over
measures and discuss a convex heuristic.
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We assume the existence of an underlying collection of objects, called sources. Each
source has a scalar weight w, and a parameter t ∈ Θ. We require the parameter space be
measurable (that is, come equiped with a σ-algebra) and amenable to local, derivative-based
optimization. Some examples to keep in mind would be Θ = Rp for some small p, or the
sphere Sp considered as a differentiable manifold. An element t of the parameter space Θ may
describe, for instance, the position, orientation, and polarization of a source. The weight w
may encode the intensity of a source, or the distance of a source from the observation device.
Our goal is to recover the number of sources present, along with their individual weights and
parameters. We do not observe the sources directly, but instead are given a single, noisy
observation in Rd.

The observation model we use is completely specified by a function φ : Θ → Rd, which
gives the d-dimensional observation of a single, unit-weight source parameterized by a point
in Θ. A single source with parameter t and weight w generates the observation wφ(t) ∈ Rd:
that is, the observation of a lone source is homogeneous of degree one in its weight. The
observation of a lone source is homogeneous of degree one in its weight; that is, a single
source with parameter t and weight w generates the observation wφ(t) ∈ Rd Finally, we
assume that the observation generated by a weighted collection of sources is additive. In
other words, the (noise-free) observation of a weighted collection of sources, {(wi, ti)}Mi=1, is
simply

M∑
i=1

wiφ(ti) ∈ Rd. (3.1.1)

We refer to the collection {(wi, ti)}Mi=1 as the signal parameters, and the vector
∑M

i=1 wiφ(ti) ∈
Rd as the noise-free observation. We require φ to be bounded: ‖φ(t)‖2

2 ≤ 1 for all t, and
further that φ be differentiable in t. Finally, let us emphasize that we make no further
assumptions about φ: in particular it does not need to be linear or convex.

Our goal is to recover the true weighted collection of sources, {(w̃i, t̃i)}M̃i=1, from a single
noisy observation:

y =
M̃∑
i=1

w̃iφ(t̃i) + ν.

Here ν is an additive noise term.
One approach would be to attempt to minimize a convex loss, `, of the residual between

the observed vector y and the expected output for an estimated collection of sources:

minimize
w,t,K

`

(
M∑
i=1

wiφ(ti)− y
)
. (3.1.2)

For example, when ` is the negative log-likelihood of the noise term ν, problem (3.1.2)
corresponds to maximum-likelihood estimation of the true sources. Unfortunately, (3.1.2) is
nonconvex in the variables w, t, and M . As such, algorithms designed to solve this problem
are hard to reason about and come with few guarantees. Also, in practice they often suffer
from senitivity to initialization. Hence, we lift the problem to a space of measures on Θ;
this lifting allows us to apply a natural heuristic to devise a convex surrogate for problem
(3.1.2).
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We can encode an arbitrary, weighted collection of sources as an atomic measure µ on Θ,
with mass wi at point ti: µ =

∑M
i=1 wiδti . As a consequence of the additivity and homogeneity

in our observation model, the total observation of a collection of sources encoded in the
measure µ is a linear function Φ of µ:

Φµ =

∫
φ(t)dµ(t).

We call Φ the forward operator. For atomic measures of the form µ =
∑n

i=1 wiδti , this clearly
agrees with (3.1.1); but it is defined for all measures on Θ.

We now introduce the sparse inverse problem as an optimization problem over the Banach
space of signed measures on Θ equiped with the total variation norm. To reiterate, our goal
is to recover µtrue from an observation

y = Φµtrue + ν

corrupted by the noise term, ν. Recovering the signal parameters without any prior infor-
mation is, in most interesting problems, impossible; the operator Φ is almost never injective.
However, in a sparse inverse problem we have the prior belief that the number of sources
present, while still unknown, is small. That is, we assume that µtrue is an atomic measure
supported on very few points.

To make the connection to compressed sensing clear, we refer to such measures as sparse
measures. Note that while we are using the language of recovery or estimation in this section,
the optimization problem we introduce is also applicable in cases where these may not be
a true measure underlying the observation model. In Section 3.2 we give several examples
that are not recovery problems.

We estimate the signal parameters encoded in µtrue by minimizing the loss ` of the residual
between y and Φµ:

minimize ` (Φµ− y)

subject to |supp(µ)| ≤ N.
(3.1.3)

where the optimization is over the Banach space of signed measures (on Θ) equipped with
the total variation norm. Here N is a posited upper bound on the size of the support of
the true measure µtrue, which we denote by supp(µtrue). Although here and elsewhere in
the chapter we explicitly we place no constraint on the sign of µ, all of our discussion and
algorithms can be easily extended to the nonnegative case (that is, w ≥ 0).

While the objective function in (3.1.3) is convex, the constraint on the support of µ is
nonconvex. A common heuristic in this situation is to replace the nonconvex constraint
with a convex surrogate. The standard surrogate for a cardinality constraint on a measure
is a constraint on the total variation. This substitution results in the standard convex
approximation to (3.1.3):

minimize ` (Φµ− y)

subject to |µ|(Θ) ≤ τ.
(3.1.4)

Here τ > 0 is a parameter that controls the total mass of µ and empirically controls the
cardinality of solutions to (3.1.4). While problem (3.1.4) is convex, it is over an infinite-
dimensional space, and it is not possible to represent an arbitrary measure in a computer.
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A priori, an approximate solution to (3.1.4) may have arbitrarily large support, though we
prove in Section 3.5 that we can always find solutions supported on at most d + 1 points.
In practice, however, we are interested in approximate solutions of (3.1.4) supported on far
fewer than d+ 1 points.

In this chapter, we propose an algorithm to solve (3.1.4) in the case where Θ has some
differential structure and is therefore amenable to local, derivative based optimization. Our
algorithm is based on a variant of the conditional gradient method that takes advantage
of the differentiable nature of φ, and is guaranteed to produce approximate solutions with
bounded support.

Relationship to the lasso. Readers familiar with techniques for estimating sparse vectors
may recognize (3.1.4) as a continuous analogue of the standard lasso. In particular, the
standard lasso is an instance of (3.1.4) with `(r) = 1

2
‖r‖2

2 and Θ = {1, . . . , k}. In that case,
a measure over Θ can be represented as a vector v in Rk and the forward operator Φ as a
matrix in Rd×k. The total variation of the measure v is then simply

∑
i |vi| = ‖v‖1. We

caution the reader that this discrete setup is substantially different as the parameter space
has no differential structure. However, to make the connection to the finite dimensional case
clear, we will use the notation ‖µ‖1 to refer to the total varation of the measure µ.

Relationship to atomic norm problems

Problems similar to (3.1.4) have been studied through the lens of atomic norms [35]. The
atomic norm ‖ · ‖A corresponding to a suitable collection of atoms A ⊂ Rd is defined as

‖x‖A = inf

{∑
a∈A

|ca| : x =
∑
a∈A

caa

}
.

The connection to (3.1.4) becomes clear if we take A = {φ(t) : t ∈ Θ}. With this choice of
atomic set, we have the equality

‖x‖A = inf

{
‖µ‖1 : x =

∫
φ(t)dµ(t)

}
.

This equality implies the equivalence (in the sense of optimal objective value) of the infinite-
dimensional optimization problem (3.1.4) to the finite-dimensional atomic norm problem:

minimize ` (x− y)

subject to ‖x‖A ≤ τ.
(3.1.5)

Much of the literature on sparse inverse problems focuses on problem (3.1.5), as opposed
to the infinite-dimensional problem (3.1.4). This focus is due to the fact that (3.1.5) has
algorithmic and theoretical advantages over (3.1.4). First and foremost, (3.1.5) is finite-
dimensional, which means that standard convex optimization algorithms may apply. Addi-
tionally, the geometry of the atomic norm ball, conv{φ(t) : t ∈ Θ}, gives clean geometric
insight into when the convex heuristic will work [35].
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With that said, we hold that the infinite-dimensional formulation we study has distinct
practical advantages over the atomic norm problem (3.1.5). In many applications, it is the
atomic decomposition that is of interest, and not the optimal point x? of (3.1.5); reconstruct-
ing the optimal µ? for problem (3.1.4) from x? can be highly nontrivial. For example, when
designing radiation therapy, the measure µ? encodes the optimal beam plan directly, while
the vector x? = Φµ? is simply the pattern of radiation that the optimal plan produces. For
this reason, an algorithm that simply returns the vector x?, without the underlying atomic
decomposition, is not always useful in practice.

Additionally, the measure-theoretic framework exposes the underlying parameter space,
which in many applications comes with meaningful and useful structure—and is more in-
tuitive for practitioners than the corresponding atomic norm. Näıve interpretation of the
finite-dimensional optimization problem treats the parameter space as an unstructured set.
Keeping the structure of the parameter space in mind makes extensions such as ADCG that
make local movements in parameter space natural and uniform across applications.

3.2 Example applications

Many practical problems can be formulated as instances of (3.1.4). In this section we briefly
outline a few examples to motivate our study of this problem.

Superresolution imaging. The diffraction of light imposes a physical limit on the res-
olution of optical images. The goal of superresolution is to remove the blur induced by
diffraction as well as the effects of pixelization and noise. For images composed of a collec-
tion of point sources of light, this can be posed as a sparse inverse problem as follows. The
parameters t1, . . . , tM denote the locations of M point sources (in R2 or R3), and wi denotes
the intensity, or brightness, of the ith source. The image of the ith source is given by wiφ(ti),
where φ is the pixelated point spread function of the imaging apparatus.

By solving a version of (3.1.4) it is sometimes possible to localize the point sources
better than the diffraction limit—even with extreme pixelization. Astronomers use this
framework to deconvolve images of stars to angular resolution below the Rayleigh limit [89].
In biology this tool has revolutionized imaging of subcellular features [46, 97]. A variant of
this framework allows imaging through scattering media [76]. In Section 3.6, we show that
our algorithm improves upon the current state of the art for localizing point sources in a
fluorescence microscopy challenge dataset.

Linear system identification. Linear time-invariant (LTI) dynamical systems are used
to model many physical systems. Such a model describes the evolution of an output yk ∈ R
based on the input uk ∈ R, where k ∈ Z+ indexes time. The internal state at time k of the
system is parameterized by a vector xk ∈ Rm, and its relationship to the output is described
by

xk+1 = Axk +Buk

yk = Cxk.
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Here C is a fixed matrix, while x0, A, and B are unknown parameters.
Linear system identification is the task of learning these unknown parameters from input-

output data—that is a sequence of inputs u1, . . . , uT and the observed sequence of outputs
y1, . . . , yT [101, 53]. We pose this task as a sparse inverse problem. Each source is a small
LTI system with 2-dimensional state—the measurement model gives the output of the small
system on the given input. To be concrete, the parameter space Θ is given by tuples of the
form (x0, r, α,B) where x0 and B both lie in the `∞ unit ball in R2, r is in [0, 1], and α is in
[0, π]. The LTI system that each source describes has

A = r

[
cos(α) − sin(α)
sin(α) cos(α)

]
, C =

[
1 0

]
.

The mapping φ from the parameters (x0, r, α,B) to the output of the corresponding LTI
system on input u1, . . . , uT is differentiable. In terms of the overall LTI system, adding the
output of two weighted sources corresponds to concatenating the corresponding parameters.

In Section 3.6, we show that our algorithm matches the state of the art on two standard
system identification datasets.

Matrix completion. The task of matrix completion is to estimate all entries of a large
matrix given observations of a few entries. Clearly this task is impossible without prior
information or assumptions about the matrix. If we believe that a low-rank matrix will
approximate the truth well, a common heuristic is to minimize the squared error subject
to a nuclear norm bound. For background in the theory and practice of matrix completion
under this assumption see [7, 28]. We solve the following optimization problem:

min
‖A‖∗≤τ

‖Γ(A)− y‖2.

Here Γ is the masking operator, that is, the linear operator that maps a matrix A ∈ Rn×m

to the vector containing its observed entries, and y is the vector of observed entries. We
can rephrase this in our notation by letting Θ = {(u, v) ∈ Rn × Rm : ‖u‖2 = ‖v‖2 = 1},
φ((u, v)) = Γ(uvT ), and `(·) = ‖ · ‖2. In Section 3.6, we show that our algorithm achieves
state of the art results on the Netflix Challenge, a standard benchmark in matrix completion.

Bayesian experimental design. In experimental design we seek to estimate a vector
x ∈ Rd from measurements of the form

yi = f(ti)
Tx+ εi.

Here f : Θ → Rd is a known differentiable feature function and εi are independent noise
terms. We want to choose ti, . . . , tM to minimize our uncertainty about x — if each measure-
ment requires a costly experiment, this corresponds to getting the most information from a
fixed number of experiments. For background, see [88].

In general, this task in intractable. However, if we assume εi are independently distributed
as standard normals and x comes from a standard normal prior we can analytically derive
the posterior distribution of x given y1, . . . , yM , as the full joint distribution of x, y1, . . . , yM
is normal.
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One notion of how much information y1, . . . , yM carry about x is the entropy of the pos-
terior distribution of x given the measurements. We can then choose t1, . . . , tM to minimize
the entropy of the posterior, which is equivalent to minimizing the (log) volume of an un-
certainty ellipsoid. With this setup, the posterior entropy is (up to additive constants and a
positive multiplicative factor) simply

− log det

(
I +

∑
i

f(ti)f(ti)
T

)−1

.

To put this in our framework, we can take φ(t) = f(t)f(t)T , y = 0 and `(A) =
− log det(I + A)−1. We relax the requirement to choose exactly M measurement param-
eters and instead search for a sparse measure with bounded total mass, giving us an instance
of (3.1.4).

Fitting mixture models to data. Given a parametric distribution P (x|t) we consider the
task of recovering the components of a mixture model from i.i.d. samples. For background
see [69]. To be more precise, we are given data {x1, . . . , xd} sampled i.i.d. from a distribution
of the form P (x) =

∫
t∈Θ

P (x|t)π(t). The task is to recover the mixing distribution π. If we
assume π is sparse, we can phrase this as a sparse inverse problem. To do so, we choose
φ(t) = (P (xi|t))di=1. A common choice for ` is the (negative) log-likelihood of the data: i.e.,
y = 0, `(p) = −∑i log pi. The obvious constraints here are

∫
dπ(t) ≤ 1, π ≥ 0.

Design of numerical quadrature rules. In many numerical computing applications we
require fast procedures to approximate integration against a fixed measure. One way to do
this is use a quadrature rule: ∫

f(t)dp(t) '
M∑
i=1

wif(xi).

The quadrature rule, given by wi ∈ R and ti ∈ Θ, is chosen so that the above approximation
holds for functions f in a certain function class. The pairs (wi, ti) are known as quadrature
nodes. In practice, we want quadrature rules with very few nodes to speed evaluation of the
rule.

Often we don’t have an a priori description of the function class from which f is chosen,
but we might have a finite number of examples of functions in the class, f1, . . . , fd, along
with their integrals against p, y1, . . . , yd. In other words, we know that∫

fi(t)dp(t) = yi.

A reasonable quadrature rule should approximate the integrals of the known fi well.
We can phrase this task as a sparse inverse problem where each source is a single quadra-

ture node. In our notation, φ(t) = (f1(t), . . . , fd(t)). Assuming each function fi is differen-
tiable, φ is differentiable. A common choose of ` for this application is simply the squared
loss. For more discussion of the design of quadrature rules using the conditional gradient
method, see [8, 73].
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Neural spike identification. In this example we consider the voltage v recorded by an
extracellular electrode implanted in the vicinity of a population of neurons. Suppose that this
population of neurons contains K types of neurons, and that when a neuron of type k fires at
time t ∈ R, an action potential of the form φ(t, k) is recorded. Here φ : R×{1, . . . , K} → Rd

is a vector of voltage samples. If we denote the parameters of the ith neuron by ti = (ti, ki),
then the total voltage v ∈ Rd can be modeled as a superposition of these action potentials:

v =
M∑
i=1

wiφ(ti).

Here the weights wi > 0 can encode the distance between the ith neuron and the electrode.
The sparse inverse problem in this application is to recover the parameters t1, . . . , tM and
weights w1, . . . , wM from the voltage signal v. For background see [45].

Designing radiation therapy. External radiation therapy is a common treatment for
cancer in which several beams of radiation are fired at the patient to irradiate tumors. The
collection of beam parameters (their intensities, positions, and angles) is called the treat-
ment plan, and is chosen to minimize an objective function specified by an oncologist. The
objective usually rewards giving large doses of radiation to tumors, and low dosages to sur-
rounding healthy tissue and vital organs. Plans with few beams are desired as repositioning
the emitter takes time—increasing the cost of the procedure and the likelihood that the
patient moves enough to invalidate the plan.

A beam fired with intensity w > 0 and parameter t delivers a radiation dosage wφ(t) ∈ Rd.
Here the output is interpreted as the radiation delivered to each of d voxels in the body of
a patient. The radiation dosage from beams with parameters t1, . . . , tM and intensities
w1, . . . , wM add linearly, and the objective function is convex. For background see [59].

3.3 Conditional gradient method

In this section we present our main algorithmic development. We begin with a review of the
classical conditional gradient method (CGM) for finite-dimensional convex programs. We
then apply the CGM to the sparse inverse problem (3.1.4). In particular, we augment this
algorithm with an aggressive local search subroutine that significantly improves the practical
performance of the CGM.

The classical CGM solves the following optimization problem:

minimizex∈Cf(x), (3.3.1)

where C is a closed, bounded, and convex set and f is a differentiable convex function.
CGM proceeds by iteratively solving linearized versions of (3.3.1). At iteration k, we

form the standard linear approximation to the function f at the current point xk:

f̂k(s) ≥ f(xk) + f ′(s− xk;xk).

Here f ′(s − xk;xk) is the directional derivative of the function f at xk in the direction
s − xk. As f is convex, this approximation is a global lower bound. We then minimize the
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linearization over the feasible set to get a potential solution sk. As sk minimizes a simple
approximation of f that degrades with distance from xk we take a convex combination of sk
and xk as the next iterate. We summarize this method in Algorithm 1.

Algorithm 1 Conditional gradient method (CGM)

For k = 1, . . . kmax

1. Linearize: f̂k(s)← f(xk) + f ′(s− xk;xk).

2. Minimize: sk 3 argmins∈C f̂k(s).

3. Tentative update: x̃k+1 ← k
k+2

xk + 2
k+2

sk.

4. Final update: Choose xk+1 such that f(xk+1) ≤ f(x̃k+1).

It is important to note that minimizing f̂k(s) over the feasible set C in step 2 may be quite
difficult and requires an application-specific subroutine.

One of the more remarkable features of the CGM is step 4. While the algorithm converges
using only the tentative update in step 3, all of the convergence guarantees of the algorithm
are preserved if one replaces x̃k+1 with any feasible xk+1 that achieves a smaller value of
the objective. There are thus many possible choices for the final update in step 4, and the
empirical behavior of the algorithm can be quite different for different choices. One common
modification is to do a line-search:

xk+1 = argmin
x∈conv(xk,sk)

f(x).

We use conv to denote the convex hull—in this last example, a line segment. Another variant,
the fully-corrective conditional gradient method, chooses

xk+1 = argmin
x∈conv(xk,s1,...,sk)

f(x).

In the next section, we propose a natural choice for this step in the case of measures that
uses local search to speed-up the convergence of the CGM.

One appealing aspect of the CGM is that it is very simple to compute a lower bound on
the optimal value f? as the algorithm runs. As f̂k lower-bounds f , we have

f(s) ≥ f̂k = f(xk) + f ′(s− xk;xk) = f̂k(s)

for any s ∈ C. Minimizing both sides over s gives us the elementary bound

f? ≥ f̂k(sk).

The right hand side of this inequality is readily computed after step (2). One can prove
that the bound on suboptimality derived from this inequality decreases to zero ([60]), which
makes it a very useful termination condition.
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CGM for sparse inverse problems

In this section we apply the classical CGM to the sparse inverse problem (3.1.4). We give
two versions—first a direct translation of the fully corrective variant and then our improved
algorithm that leverages local search on Θ. To make it clear that we operate over the space
of measures on Θ we change notation and denote the iterate by µk instead of xk. The most
obvious challenge is that we cannot represent a general measure on a computer unless it is
finitely-supported. We will see however that the steps of CGM can in fact be carried out
on a computer in this context. Moreover we later prove that the iterates can be represented
with bounded memory.

Before we describe the algorithm in detail, we first explain how to linearize the objective
function and minimize the linearization. In the space of measures, linearization is most easily
understood in terms of the directional derivative.

In our formulation (3.1.4), f(µ) = `(Φµk − y). If we define the residual as rk = Φµk − y,
we can compute the directional derivative of our particular choice of f at µk in the direction
of the measure s as

f ′(s;µk) = lim
c↓0

`(Φ(µk + cs)− y)− `(Φ(µk)− y)

c
= lim

t↓0

`(rk + cΦs)− `(rk)
c

= `′(Φs; rk)

= 〈∇`(rk),Φs〉 .
(3.3.2)

Here, the inner product on the right hand side of the equation is the standard inner product
in Rd.

The second step of the CGM minimizes the linearized objective over the constraint set.
In other words, we minimize 〈∇`(rk),Φs〉 over a candidate measure s with total variation
bounded by τ . Interchanging the integral (in Φ) with the inner product, and defining F (t) :=
〈∇`(rk), φ(t)〉, we need to solve the optimization problem:

minimize
|s|(Θ)≤τ

∫
F (t)ds(t). (3.3.3)

The optimal solution of (3.3.3) is the point-mass −τsgn(F (t?))δt? , where t? ∈ argmax |F (t)|.
This means that at each step of the CGM we need only add a single point to the support
of our approximate solution µk. Moreover we prove that our algorithm produces iterates µk
with support on at most d+ 1 points (see Theorem 3.5.1).

We now describe the fully-corrective variant of the CGM for sparse inverse problems
(Algorithm 2). The state of the algorithm at iteration k is an atomic measure µk supported
on a finite set Sk with mass µk({t}) on points t ∈ Sk. The algorithm alternates between
selecting a source to add to the support, and tuning the weights to lower the current cost.
This tuning step (Step 4) is a finite-dimensional convex optimization problem that we can
solve with an off-the-shelf algorithm.
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Algorithm 2 Conditional gradient method for measures (CGM-M)

For k = 1 : kmax

1. Compute gradient of loss: gk = ∇`(Φµk−1 − y).

2. Compute next source: tk ∈ argmax
t∈Θ

|〈gk, φ(t)〉|.

3. Update support: Sk ← Sk−1 ∪ {tk}.

4. Compute weights: µk ← argmin
|µ|(Sk)≤τ
|µ|(Sck)=0

`
(∑

t∈Sk µ({t})φ(t)− y
)
.

5. Prune support: Sk ← supp(µk).

We stress here that the objective in step 2 is nonlinear in the parameter t, but linear
when considered as a functional of the measure sk.

While we can simply run for a fixed number of iterations, we may stop early using the
standard CGM bound. With a tolerance parameter ε > 0, we terminate when the conditional
gradient bound assures us that we are at most ε-suboptimal. In particular, we terminate
when

τ |〈φ(tk), gk〉| − 〈Φµk, gk〉 < ε. (3.3.4)

Unfortunately, CGM-M does not perform well in practice. Not only does it converge very
slowly, but the solution it finds is often supported on an undesirably large set. As illustrated
in Figure 3.1, the performance of CGM-M is limited by the fact that it can only change the
support of the measure by adding and removing points; it cannot smoothly move Sk within
Θ. Figure 3.1 shows CGM-M applied to an image of two closely separated sources. The
first source t1 is placed in a central position overlapping both true sources. In subsequent
iterations sources are placed too far to the right and left, away from the true sources. To
move the support of the candidate measure requires CGM-M to repeatedly add and remove
sources; it is clear that the ability to move the support smoothly within the parameter space
would resolve this issue immediately.

In practice, we can speed up convergence and find significantly sparser solutions by
allowing the support to move continuously within Θ. The following algorithm, which we call
the alternating descent conditional gradient method (ADCG), exploits the differentiability
of φ to locally improve the support at each iteration.
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Figure 3.1: The three plots above show the first three iterates of the fully corrective CGM in
a simulated superresolution imaging problem with two point sources of light. The locations
of the true point sources are indicated by green stars, and the greyscale background shows
the pixelated image. The elements of Sk for k = 1, 2, 3 are displayed by red dots.

Algorithm 3 Alternating descent conditional gradient method (ADCG)

For k = 1 : kmax

1. Compute gradient of loss: gk ← ∇`(Φµk−1 − y).

2. Compute next source: Choose tk ∈ argmax
t∈Θ

|〈φ(t), gk〉|.

3. Update support: Sk ← Sk−1 ∪ {tk}.

4. Coordinate descent on nonconvex objective:
Repeat:

a) Compute weights: µk ← argmin
|µ|(Sk)≤τ
|µ|(Sck)=0

`
(∑

t∈Sk µ({t})φ(t)− y
)
.

b) Prune support: Sk = support(µk).

c) Locally improve support: Sk = local descent((t, µk({t})) : t ∈ Sk).

Here local descent is a subroutine that takes a measure µk with atomic representation
(t1, w1), . . . , (tm, wm) and attempts to use gradient information to reduce the function

(t1, . . . , tm) 7→ `

(
m∑
i=1

wiφ(ti)− y
)
,

holding the weights fixed.
When the number of sources is held fixed, the optimization problem

minimize `

(
m∑
i=1

wiφ(ti)− y
)

subject to ti ∈ Θ
m∑
i=1

|wi| ≤ τ

(3.3.5)
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is nonconvex. Step 4 is then block coordinate descent over wi and ti. The algorithm as
a whole can be interpreted as alternating between performing descent on the convex (but
infinite-dimensional) problem (3.1.4) in step 2 and descent over the finite-dimensional (but
nonconvex) problem (3.3.5) in step 4. The bound (3.3.4) remains valid and can be used as
a termination condition.

As we have previously discussed, this nonconvex local search does not change the conver-
gence guarantees of the CGM whatsoever. We will show in §3.5 that this is an immediate
consequence of the existing theory on the CGM. However, as we will show in §3.6, the
inclusion of this local search dramatically improves the performance of the CGM.

Interface and implementation

Roughly speaking, running ADCG on a concrete instance of (3.1.4) requires subroutines for
two operations. We need algorithms to approximately compute:

(a) φ(t) and d
dt
φ(t) for t ∈ Θ.

(b) argmax
t∈Θ

|〈φ(t), v〉| for arbitrary vectors v ∈ Rd.

Computing (a) is usually straightforward in applications with differentiable measurement
models. Computing (b) is not easy in general. However, there are many applications of
interest where (b) is tractable. For example, if the parameter space Θ is low-dimensional,
then the ability to compute (a) is sufficient to approximately compute (b): we can simply grid
the parameter space and begin local search using the gradient of the function t 7→ 〈φ(t), v〉.
Note that because of the local improvement step, ADCG works well even without exact
minimization of (b). We prove this fact about inexact minimization in §3.5.

If the parameter space is high-dimensional, however, the feasibility of computing (b) will
depend on the specific application. One example of particular interest that has been studied
in the context of the CGM is matrix completion [61, 90, 54, 120]. In this case, the (b) step
reduces to computing the leading singular vectors of a sparse matrix. We will show that
adding local improvement to the CGM accelerates its convergence on matrix completion in
the experiments.

We also note that in the special case of linear system identification, Θ is 6 dimensional,
which is just large enough such that gridding is not feasible. In this case, we show that we
can reduce the 6-dimensional optimization problem to a 2-dimensional problem and then
again resort to gridding. We expect that in many cases of interest, such specialized solvers
can be applied to solve the selection problem (b).

3.4 Related work

There has recently been a renewed interest in the conditional gradient method as a general
purpose solver for constrained inverse problems [60, 54]. These methods are simpler to
implement than the projected or proximal gradient methods which require solving a quadratic
rather than linear optimization over the constraint set.



CHAPTER 3. THE ALTERNATING DESCENT CONDITIONAL GRADIENT
METHOD 50

The idea of augmenting the classic conditional gradient method with improvement steps
is not unique to our work. Indeed, it is well known that any modification of the iterate that
decreases the objective function will not hurt theoretical convergence rates [60]. Moreover,
Rao et al [90] have proposed a version of the conditional gradient method, called CoGENT,
for atomic norm problems that take advantage of many common structures that arise in
inverse problems. The reduction described in our theoretical analysis makes it clear that our
algorithm can be seen as an instance of CoGENT specialized to the case of measures and
differentiable measurement models.

The most similar proposals to ADCG come from the special case of matrix comple-
tion or nuclear-norm regularized problems. Several papers [120, 74, 54, 61] have proposed
algorithms based on combinations of rank-one updates and local nonconvex optimization in-
spired by the well-known heuristic of [25]. While our proposal is significantly more general,
ADCG essentially recovers these algorithms in the special case of nuclear-norm problems.

We note that in the context of inverse problems, there are a variety of algorithms pro-
posed to solve the general infinite-dimensional problem (3.1.4). Tang et al [112] prove that
this problem can be approximately solved by gridding the parameter space and solving the
resulting finite dimensional problem. However, these gridding approaches are not tractable
for problems with parameter spaces even of relatively modest dimension. Moreover, even
when gridding is tractable, the solutions obtained are often supported on very large sets and
heuristic post-processing is required to achieve reasonable performance in practice [112]. In
spite of these limitations, gridding is the state of the art in many application areas including
computational neuroscience [45], superresolution fluorescence microscopy [72], radar [11, 56],
remote sensing [47], compressive sensing [9, 78, 42], and polynomial interpolation [91].

There have also been a handful of papers that attempt to tackle the infinite-dimensional
problem without gridding. For the special case where `(·) = ‖·‖2

2, Bredies and Pikkarainen [24]
propose an algorithm to solve the Tikhonov-regularized version of problem (3.1.4) that is
very similar to Algorithm 3. They propose performing a conditional gradient step to update
the support of the measure, followed by soft-thresholding to update the weights. Finally,
with the weights of the measure fixed they perform discretized gradient flow over the loca-
tions of the point-masses. However, they do not solve the finite-dimensional convex problem
at every iteration, which means there is no guarantee that their algorithm has bounded
memory requirements. For the same reason, they are limited to one pass of gradient descent
in the nonconvex phase of the algorithm. In §3.6 we show that this limitation has serious
performance implications in practice.

3.5 Theoretical guarantees

In this section we present a few theoretical results. The first guarantees that we can run our
algorithm with bounded memory. The second result guarantees that the algorithm converges
to an optimal point and bounds the worst-case rate of convergence.
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Bounded memory

As the CGM for measures adds one point to the support of the iterate per iteration, we
know that the cardinality of the support of µk is bounded by k. For large k, then, µk
could have large support. The following theorem guarantees that we can run our algorithm
with bounded memory and in fact we need only store at most d + 1 points, where d is the
dimension of the measurements.

Theorem 3.5.1. ADCG may be implemented to generate iterates with cardinality of support
uniformly bounded by d+ 1.

Proof. Lemma (3.5.2) allows us to conclude that the fully-corrective step ensures that the
support of the measure remains bounded by d+ 1 for all iterations.

Lemma 3.5.2. The finite-dimensional problem

minimize
‖w‖1≤τ

`(
∑
i

wiφ(ti)− y) (3.5.1)

has an optimal solution w? with at most d+ 1 nonzeros.

Proof. Let u? be any optimal solution to (3.5.1). As u? is feasible, we have that

v =
∑
i

u?iφ(ti) ∈ τconv({±φ(ti) : i = 1, . . . ,m}).

In other words, v
τ

lies in the convex hull of a set in Rd. Caratheodory’s theorem immediately
tells us that v

τ
can be represented as a convex combination of at most d + 1 points from

{±φ(ti) : i = 1, . . . ,m}. That is, there exists a w? with at most d+ 1 nonzeros such that

m∑
i=1

w?iφ(ti) = v.

This implies that w? is also optimal for (3.5.1).

Note that in order to find w?, we need to either use a simplex-type algorithm to solve
(3.5.1) or explore the optimal set using the random ray-shooting procedure as described
in [105].

Convergence analysis

We now analyze the worst-case convergence rate for ADCG applied to (3.1.4). We note that
the standard proofs for the convergence of the Frank-Wolfe algorithm [60] extend immediately
to the optimization in general Banach spaces. We take a different approach here by reducing
to the finite-dimensional atomic norm problem; we feel that this reduction gives additional
intuition and avoids potential issues with analysing algorithms in infinite-dimensional set-
tings.

Theorem 3.5.3 below guarantees that ADCG achieves accuracy δ in O(1
δ
) iterations.
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The theorem applies even when the linear minimization step is performed approximately.
That is, we allow tk to be chosen such that

|〈φ(tk), gk〉| ≤ max
t∈Θ
|〈φ(t), gk〉|+

ζ

k + 2
(3.5.2)

for some ζ ≥ 0. When inequality (3.5.2) holds, we say that the linear minimization problem
in iteration k is solved to precision ζ.

The analysis relies on a finite-dimensional optimization problem equivalent to (3.1.4).
Let A = {±φ(t) : t ∈ Θ}. Readers familiar with the literature on atomic norms [35] will
recognize the finite-dimensional problem we consider as an atomic norm problem:

minimizex∈Rd `(x− y)

subject to x ∈ τconvA. (3.5.3)

The connection to (3.1.4) becomes clear if we note that τconvA = {Φµ : ‖µ‖1 ≤ τ}.
Any feasible measure µ for (3.1.4) gives us a feasible point Φµ for (3.5.3). Likewise, any
feasible x for (3.5.3) can be decomposed as a feasible measure µ for (3.1.4). Furthermore,
these equivalences preserve the objective value.

Before we state the theorem precisely, we introduce some notation. Let `? = `(Φµ? − y)
denote the optimal value of (3.1.4)—the discussion above implies that `? is also the optimal
value of (3.5.3). Following Jaggi in [60], we define the curvature parameter Cf,S of a function
f on a set S. Intuitively, Cf,S measures the maximum divergence between f and its first-order

approximations, f̂(z;x) = f(x) + 〈z − x,∇f(x)〉:

Cf,S = sup
x,s∈S
γ∈[0,1]

z=x+γ(s−x)

2

γ2
(f(z)− f̂(z;x)).

Theorem 3.5.3. Let C be the curvature parameter of the function f(x) = `(x − y) on the
set τconvA. If each linear minimization subproblem is solved to precision Cζ, the iterates
µ1, µ2, . . . of ADCG applied to (3.1.4) satisfy

`(Φµk − y)− `? ≤
2C

k + 2
(1 + ζ).

Proof. We first show that the points Φµ1,Φµ2, . . . are iterates of the standard CGM (with a
particular choice of the final update step) applied to the finite-dimensional problem (3.5.3).
We then appeal to [60] to complete the proof.

Suppose that Φµk = xk. We show that the linearization step in both algorithms produces
the same result (up to the equivalence mentioned earlier). Let

tk+1 = argmax
t∈Θ

|〈φ(t),∇`(Φµk − y)〉|

be the output of step 2 of ADCG. Let sk be the output of the linear minimization step of
the standard CGM applied to (3.5.3) starting at xk. Then

sk = argmin
s∈τconvA

〈s,∇`(xk − y)〉.
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Recalling that convA = {Φµ | ‖µ‖1 ≤ 1}, we must have sk = ±τφ(tk). Therefore, the linear
minimization steps of the standard CGM and ADCG coincide.

We now need to show that the nonconvex coordinate descent step in ADCG is a valid final
update step for the standard CGM applied to (3.5.3). This is clear as the coordinate descent
step does at least as well as the fully-corrective step. We can hence appeal to the results
of Jaggi [60] that bound the convergence rate of the standard CGM on finite-dimensional
problems to finish the proof.

3.6 Numerical results

In this section we apply ADCG to three of the examples in §3.2: superresolution fluores-
cence microscopy, matrix completion, and system identification. We have made a simple
implementation of ADCG publicly available on github:

https://github.com/nboyd/SparseInverseProblems.jl.

This allows the interested reader to follow along with these examples, and, hopefully, to
apply ADCG to other instances of (3.1.4).

For each example we briefly describe how we implement the required subroutines for
ADCG, though again the interested reader may want to consult our code for the full picture.
We then describe how ADCG compares to prior art. Finally, we show how ADCG improves
on the standard fully-corrective conditional gradient method for measures (CGM-M) and
a variant of the gradient flow algorithm (GF) proposed in [24]. While the gradient flow
algorithm proposed in [24] does not solve the finite-dimensional convex problem at each
step, our version of GF does. We feel that this is a fair comparison: intuitively, fully
solving the convex problem can only improve the performance of the GF algorithm. All
three experiments require a subroutine to solve the finite-dimensional convex optimization
problem over the weights. For this we use a simple implementation of a primal-dual interior
point method, which we include in our code package.

For each experiment we select the parameter τ by inspection. For matrix completion and
linear system ID this means using a validation set. For single molecule imaging each image
requires a different value of τ . For this problem, we run ADCG with a large value of τ
and stop when the decrease in the objective function gained by the addition of a source falls
below a threshold. This heuristic can be viewed as post-hoc selection of τ and the stopping
tolerance ε, or as a stagewise algorithm [115].

The experiments are run on a standard c4.8xlarge EC2 instance. Our naive implemen-
tations are meant to demonstrate that ADCG is easy to implement in practice and finds
high-quality solutions to (3.1.4). For this reason we do not include detailed timing informa-
tion.

Superresolution fluorescence microscopy

We analyze data from the Single Molecule Localization Microscopy (SMLM) challenge [98,
20]. Fluorescence microscopy is an imaging technique used in the biological sciences to

https://github.com/nboyd/SparseInverseProblems.jl
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study subcellular structures in vivo. The task is to recover the 2D positions of a collection
of fluorescent proteins from images taken through an optical microscope.

Here we compare the performance of our ADCG to the gridding approach of Tang et
al. [112], two algorithms from the microscopy community (quickPALM and center of Gaus-
sians), and also CGM and the gradient flow (GF) algorithm proposed by [24]. The gridding
approach approximately solves the continuous optimization problem (3.1.4) by discretizing
the space Θ into a finite grid of candidate point source locations and running an `1-regularized
regression. In practice there is typically a small cluster of nonzero weights in the neighbor-
hood of each true point source. With a fine grid, each of these clusters contains many nonzero
weights, yielding many false positives.

To remove these false positives, Tang et al. propose a heuristic post-processing step
that involves taking the center of mass of each cluster. This post-processing step is hard to
understand theoretically, and does not perform well with a high-density of fluorophores.

Implementation details

For this application, the minimization required in step 2 of ADCG is not difficult: the
parameter space is two-dimensional. Coarse gridding followed by a local optimization method
works well in theory and practice.

For local descent we use a standard constrained gradient method provided by the NLopt
library [64].

Evaluation

We measure localization accuracy by computing the F1 score, the harmonic mean of precision
and recall, at varying radii. Computing the precision and recall involves first matching
estimated point sources to true point sources—a difficult task. Fortunately, the SMLM
challenge website [20] provides a stand-alone application that we use to compute the F1

score.
We use a dataset of 12000 images that overlay to form simulated microtubules (see

Figure 3.2) available online at the SMLM challenge website [20]. There are 81049 point
sources in total, roughly evenly distributed across the images. Figure 3.2a shows a typical
image. Each image covers an area 6400nm across, meaning each pixel is roughly 100nm by
100nm.

Figure 3.3 compares the performance of ADCG, gridding, quickPALM, and center of
Gaussians (CoG) on this dataset. We match the performance of the gridding algorithm
from [112], and significantly beat both quickPALM and CoG. Our algorithm analyses all
images in well under an hour—significantly faster than the gridding approach of [112]. Note
that the gridding algorithm of [112] does not work without a post-processing step.

Matrix completion

As described in §3.2, matrix completion is the task of estimating an approximately low rank
matrix from some of its entries. We test our proposed algorithm on the Netflix Prize dataset,
a standard benchmark for matrix completion algorithms.
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(a) (b)

Figure 3.2: The long sequence dataset contains 12000 images similar to (a). The recovered
locations for all the images are displayed in (b).
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Figure 3.3: Performance on bundled tubes: long sequence. F-scores at various radii
for 6 algorithms. For reference, each image is 6400nm across, meaning each pixel has a width
of 100nm. ADCG outperforms all competing methods on this dataset.
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Figure 3.4: RMSE on Netflix challenge dataset. ADCG significantly outperforms CGM-
M.

Implementation details

Although the parameter space for this example is high-dimensional we can still compute the
steepest descent step over the space of measures. The optimization problem we need to solve
is to minimize over all a, b ∈ Rn with ‖a‖2 = ‖b‖2 = 1

〈φ(a, b), ν〉 = 〈Γ(abT ), ν〉 = 〈abT ,Γ∗(ν)〉 = aTΓ∗(ν)b.

In other words, we need to find the unit norm, rank one matrix with highest inner product
with the matrix Γ∗ν. The solution to this problem is given by the top singular vectors of
Γ∗ν. Computing the top singular vectors using a Lanczos method is relatively easy as the
matrix Γ∗ν is extremely sparse.

Our implementation of local descent takes a single step of gradient descent (on the
sphere) with line-search.

Evaluation

Our algorithm matches the state of the art for nuclear norm based approaches on the Netflix
Prize dataset. Briefly, the task here is to predict the ratings 480,189 Netflix users give to
a subset of 17,770 movies. One approach has been to phrase this as a matrix completion
problem. That is, to try to complete the 480,189 by 17,770 matrix of ratings from the
observed entires. Following [93] we subtract the mean training score from all movies and
truncate the predictions of our model to lie between 1 and 5.

Figure 3.4 shows root-mean-square error (RMSE) of our algorithm and other variants
of the CGM on the Netflix probe set. Again, ADCG outperforms all other CGM variants.
Our algorithm takes over 7 hours to achieve the best RMSE—this could be improved with
a more sophisticated implementation, or parallelization.
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Comparison to prior approaches

Many researches have proposed solving matrix completion problems or general semi-definite
programs using CGM-like algorithms; see [120, 74, 54, 61]. While ADCG applied to the ma-
trix completion problem is distinct (to the best of our knowledge) from existing algorithms,
it combines existing ideas. For instance, the idea of using the conditional gradient algorithm
to solve the constrained formulation is very well known (see [61]). The idea of using local
search on a low-rank factorization goes back at least to [25], and is used in many recent
algorithms [120, 74].

In terms of performance, our implementation is relatively slow but gives very good per-
formance in terms of validation error.

System identification

In this section we apply our algorithms to identifying two single-input single-output systems
from the DaISy collection [80]: the flexible robot arm dataset (ID 96.009) and the hairdryer
dataset (ID 96.006).

Implementation details

While the parameter space is 6-dimensional, which effectively precludes gridding, we can
efficiently solve the minimization problem in step (2) of the ADCG. To do this, we grid only
over r and α: the output is linear in the remaining parameters (B and x0) allowing us to
analytically solve for the optimal B and x0 as a function of r and α.

For local descent we again use a standard box-constrained gradient method provided
by the NLopt library [64].

Evaluation

Both datasets were generated by driving the system with a specific input and recording the
output. The total number of samples is 1000 in both cases. Following [101] we identify the
system using the first 300 time points and we evaluate performance by running the identified
system forward for the remaining time points and compare our predictions to the ground
truth.

We evaluate our predictions ypred using the score defined in [53]. The score is given by

score = 100

(
1− ‖ypred − y‖2

‖ymean − y‖2

)
, (3.6.1)

where ymean is the mean of the test set y.
Figure 3.5 shows the score versus the number of sources as we run our algorithm. For

reference we display with horizontal lines the results of [53]. ADCG matches the performance
of [53] and exceeds that of all other CGM variants. Our simple implementation takes about
an hour, which compares very poorly with the spectral methods in [53] which complete in
under a minute.
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Figure 3.5: Performance on DaISy datasets. ADCG outperforms other CGM variants
and matches the nuclear-norm based technique of [101].

3.7 Conclusions and future work

As demonstrated in the numerical experiments of Section 3.6, ADCG achieves state of the
art performance in superresolution fluorescence microscopy, matrix completion, and system
identification, without the need for heuristic post-processing steps. The addition of the
nonconvex local search step local descent significantly improves performance relative to the
standard conditional gradient algorithm in all of the applications investigated. In some sense,
we can understand ADCG as a method to rigorously control local search. One could just
start with a model expansion (3.1.1) and perform nonconvex local search. However, this fares
far worse than ADCG in practice and has no theoretical guarantees. The ADCG framework
provides a clean way to generate a globally convergent algorithm that is practically efficient.
Understanding this coupling between local search heuristics and convex optimization leads
our brief discussion of future work.

Tighten convergence analysis for ADCG. The conditional gradient method is a robust
technique, and adding our auxiliary local search step does not change its convergence rate.
However, in practice, the difference between the ordinary conditional gradient method, the
fully corrective variants, and ADCG are striking. In many of our experiments, ADCG out-
performs the other variants by appreciable margins. Yet, all of these algorithms share the
same upper bound on their convergence rate. A very interesting direction of future work
would be to investigate if the bounds for ADCG can be tightened at all to be more predic-
tive of practical performance. There may be connections between our algorithm and other
alternating minimization techniques popular in matrix completion [67, 62], sparse coding [1,
5], and phase retrieval [82], and perhaps the techniques from this area could be applied to
our setting of sparse inverse problems.
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Relaxation to clustering algorithms. Another possible connection that could be worth
exploring is the connection between the CGM and clustering algorithms like k-means. The-
oretical bounds have been devised for initialization schemes for clustering algorithms that
resemble the first step of CGM [6, 85]. In these methods, k-means is initialized by randomly
seeking the points that are farthest from the current centers. This is akin to the first step of
CGM which seeks the model parameters that best describe the residual error. Once a good
seeding is acquired, the standard Lloyd iteration for k-means can be shown to converge to
the global optimal solution [85]. It is possible these analyses could be generalized to analyze
our version of CGM or inspire new variants of the CGM.

Connections to cutting plane methods and semi-infinite programs. The standard
Lagrangian dual of (3.1.4) is a semi-infinite program (SIP), namely an optimization problem
with a finite dimensional decision variable but an infinite collection of constraints [58, 102].
One of the most popular algorithmic techniques for SIP is the cutting plane method, and
these methods qualitatively act very much like the CGM. Exploring this connection in detail
could generate variants of cutting plane methods suited for continuous constraint spaces.
Such algorithms could be valuable tools for solving semi-infinite programs that arise in
contexts disjoint from sparse inverse problems.

Other applications. We believe that our techniques are broadly applicable to other sparse
inverse problems, and hope that future work will explore the usefulness of ADCG in areas
unexplored in this chapter. To facilitate the application of ADCG to more problems, such
as those described in Section 3.2, we have made our code publicly available on GitHub. As
described in Section 3.3, implementing ADCG for a new application essentially requires only
two user-specified subroutines: one routine that evaluates the observation model and its
derivatives at a specified set of weights and model parameters, and one that approximately
solves the linear minimization in step 2 of ADCG. We aim to investigate several additional
applications in the near future to test the breadth of the efficacy of ADCG.
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Chapter 4

The Geometry of Kernelized Spectral
Clustering

Clustering of data sets is a standard problem in many areas of science and engineering. The
method of spectral clustering is based on embedding the data set using a kernel function,
and using the top eigenvectors of the normalized Laplacian to recover the connected com-
ponents. We study the performance of spectral clustering in recovering the latent labels of
i.i.d. samples from a finite mixture of nonparametric distributions. The difficulty of this label
recovery problem depends on the overlap between mixture components and how easily a mix-
ture component is divided into two nonoverlapping components. When the overlap is small
compared to the indivisibility of the mixture components, the principal eigenspace of the
populationlevel normalized Laplacian operator is approximately spanned by the square-root
kernelized component densities. In the finite sample setting, and under the same assump-
tion, embedded samples from different components are approximately orthogonal with high
probability when the sample size is large. As a corollary we control the fraction of samples
mislabeled by spectral clustering under finite mixtures with nonparametric components.

This chapter is joint work with Martin Wainwright and Bin Yu. The content of this
chapter has been published in The Annals of Statistics under the title The Geometry of
Kernelized Spectral Clustering.

4.1 Introduction

In the past decade, spectral methods have emerged as a powerful collection of nonparametric
tools for unsupervised learning, or clustering. How can we recover information about the
geometry or topology of a distribution from its samples? Clustering algorithms attempt to
answer the most basic form of this question. One way in which to understand spectral clus-
tering is as a relaxation of the NP-hard problem of searching for the best graph-cut. Spectral
graph partitioning—using the eigenvectors of a matrix to find graph cuts—originated in the
early 1970’s with the work of Fiedler [49] and of Donath and Hoffman [37]. Spectral clus-
tering was introduced in machine learning, with applications to clustering data sets and
computing image segmentations (e.g., [103, 83, 79]). The past decade has witnessed an ex-
plosion of different spectral clustering algorithms. One point of variation is that some use
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the eigenvectors of the kernel matrix [104, 63, 37], or adjacency matrix in the graph setting,
whereas others use the eigenvectors of the normalized Laplacian matrix [83, 79, 103, 49].
This division goes all the way back to the work of Donath and Hoffman, who proposed using
the adjacency matrix, and of Fiedler, who proposed using the normalized Laplacian matrix.

In its modern and most popular form, the spectral clustering algorithm [83, 103] involves
two steps: first, the eigenvectors of the normalized Laplacian are used to embed the dataset,
and second, the M -means clustering algorithm is applied to the embedded dataset. The
normalized Laplacian embedding is an attractive preprocessing step because the transformed
clusters tend to be linearly separable. Ng et al. [83] show that, under certain conditions on
the empirical kernel matrix, an embedded dataset will cluster tightly around well separated
points on the unit sphere. Their results apply to a fixed dataset, and do not model the
underlying distribution of the data. Recently Yan et al. [119] derive an expression for the
fraction of data misclustered by spectral clustering by computing an analytical expression
for the second eigenvector of the Laplacian. They assume that the similarity matrix is a
small perturbation away from the ideal block diagonal case.

The embedding defined by the normalized Laplacian has also been studied in the context
of manifold learning, where the primary focus has been convergence of the underlying eigen-
vectors. This work is motivated in part by the fact that spectral properties of the limiting
Laplace-Beltrami operator have long been known to shed light on the connectivity of a man-
ifold [75]. The Laplacian eigenmaps of Belkin and Niyogi [15] reconstruct Laplace-Beltrami
eigenfunctions from sampled data. Koltchinskii and Giné [70] analyze the convergence of
the empirical graph Laplacian to the Laplace-Beltrami operator at a fixed point in the man-
ifold. von Luxburg and Belkin [77] establish consistency for the embedding in as much as
the eigenvectors of the Laplacian matrix converge uniformly to the eigenfunctions of the
Laplacian operator. Rosasco et al. [96] provide simpler proofs of this convergence, and in
part, our work sharpens these results by removing an unnecessary smoothness assumption
on the kernel function.

In this chapter, we study spectral clustering in the context of a nonparametric mixture
model. The study of spectral clustering under nonparametric mixtures was initiated by Shi
et al. [104]. One of their theorems characterizes the top eigenfunction of a kernel integral
operator, showing that it does not change sign. One difficulty in using the eigenfunctions of a
kernel integral operator to separate mixture components is that several of the top eigenfunc-
tions may correspond to a single mixture component (e.g. one with a larger mixture weight).
They proposed that eigenfunctions of the kernel integral operator that approximately do not
change sign correspond to different mixture components. However, their analysis does not
deal with finite datasets nor does it provide bounds on the fraction of points misclustered.

The main contribution of this chapter is an analysis of the normalized Laplacian embed-
ding of i.i.d. samples from a finite mixture with nonparametric components. We begin by
providing a novel and useful characterization of the principal eigenspace of the population-
level normalized Laplacian operator: more precisely, when the mixture components are indi-
visible and have small overlap, the eigenspace is close to the span of the square root kernelized
component densities. We then use this characterization to analyze the geometric structure
of the embedding of a finite set of i.i.d. samples. Our main result is to establish a certain
geometric property of nonparametric mixtures referred to as orthogonal cone structure. In
particular, we show that when the mixture components are indivisible and have small overlap,
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embedded samples from different components are almost orthogonal with high probability.
We then prove that this geometric structure allows M -means to correctly label most of the
samples. Our proofs rely on techniques from operator perturbation theory, empirical process
theory, and spectral graph theory.

The remainder of this chapter is organized as follows. In Section 4.2, we set up the prob-
lem of separating the components of a mixture distribution. We state our main results and
explore some of their consequences in Section 4.3. We prove our main results in Section 4.4,
deferring the proofs of several supporting lemmas to the Appendix.

Notation For a generic distribution P on a measurable space X , we denote the Hilbert
space of real-valued square integrable functions on X by L2(P). The L2(P) inner product
is given by 〈f, g〉P =

∫
f(x)g(x)dP(x), and it induces the norm ‖f‖P. The norm ‖f‖∞ is

the supremum of the function f , up to sets of measure zero, where the relevant measure is
understood from context. The Hilbert–Schmidt norm of an operator T : L2(P) → L2(P)
is |||T|||HS and the operator norm is |||T|||op. The complement of a set B is denoted by Bc.
See Appendix D for an additional list of symbols.

4.2 Background and problem set-up

We begin by introducing the family of nonparametric mixture models analyzed in this chap-
ter, and then provide some background on kernel functions, spectral clustering and Laplacian
operators.

Nonparametric mixture distributions

For some integer M ≥ 2, let {Pm}Mm=1 be a collection of probability measures on a compact
space X , and let the weights {wm}Mm=1 belong to the relative interior of the probability
simplex in RM—that is, wm ∈ (0, 1) for all m = 1, . . . ,M , and

∑M
m=1wm = 1. This pair

specifies a finite nonparametric mixture distribution via the convex combination

P̄ : =
M∑
m=1

wmPm. (4.2.1)

We refer to {Pm}Mm=1 and {wm}Mm=1 as the mixture components and mixture weights, respec-
tively. The family of models (4.2.1) is nonparametric, because the mixture components are
not constrained to any particular parametric family.

A random variable X̄ ∼ P̄ can be obtained by first drawing a categorical random variable
Z ∼ Categorical(w1, . . . , wM), and conditioned on the event {Z = m}, drawing a variable
from mixture component Pm. Consequently, given a collection of samples {Xi}ni=1 drawn
i.i.d. from P̄, there is an underlying set of latent labels {Zi}ni=1. Thus, in the context of
a mixture distribution, the clustering problem can be formalized as recovering these latent
labels based on observing only the unlabeled samples {Xi}ni=1.

Of course, this clustering problem is ill-defined whenever Pj = Pk for some j 6= k. More
generally, recovery of labels becomes more difficult as the overlap of any pair Pj and Pk
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increases, or if it is “easy” to divide any component into two non-overlapping distributions.
This intuition is formalized in our definition of the overlap and indivisibility parameters in
Section 4.3 to follow.

Kernels and spectral clustering

We now provide some background on spectral clustering methods, and the normalized Lapla-
cian embedding. A kernel k associated with the space X is a symmetric, continuous function
k : X ×X → (0,∞). A kernel is said to be positive semidefinite if, for any integer n ≥ 1 and
elements x1, . . . , xn ∈ X , the kernel matrix A ∈ Rn×n with entries Aij = k(xi, xj)/n is posi-
tive semidefinite. Throughout we consider a fixed but arbitrary positive semidefinite kernel
function. In application to spectral clustering, one purpose of a kernel function is to provide
a measure of the similarity between data points. A canonical example is the Gaussian kernel
k(x, x′) = exp(−‖x− x′‖2

2); it is close to 1 for vectors x and x′ that are relatively close, and
decays to zero for pairs that are far apart.

Let us now describe the normalized Laplacian embedding, which is a standard part of
many spectral clustering routines. Given n i.i.d. samples {Xi}ni=1 from P̄, the associated
kernel matrix A ∈ Rn×n has entries Aij = 1

n
k(Xi, Xj). The normalized Laplacian matrix1 is

obtained by rescaling the kernel matrix by its row sums—namely

L = D−1/2AD−1/2, (4.2.2)

where D is a diagonal matrix with entries Dii =
∑n

j=1 Aij. Since L is a symmetric matrix by
construction, it has an orthonormal basis of eigenvectors, and we let {v1, . . . , vM} denote the
eigenvectors corresponding to the largest M eigenvalues of L. The normalized Laplacian em-
bedding is defined on the basis of these eigenvectors: it is the map ΦV : {X1, . . . , Xn} → RM

defined by

ΦV(Xi) : = (v1i, . . . , vMi). (4.2.3)

A typical form of spectral clustering consists of the following two steps. First, compute the
normalized Laplacian, and map each data point Xi to a M -vector via the embedding (4.2.3).
The second step is to apply a standard clustering method (such as M -means clustering)
to the embedded data points. The conventional rationale for the second step is that the
embedding step typically helps reveal cluster structure in the data set, so that it can be
found by a relatively simple algorithm. The goal of this chapter is to formalize the sense in
which the normalized Laplacian embedding (4.2.3) has this desirable property.

We do so by first analyzing the population operator that underlies the normalized Lapla-
cian matrix. It is defined by the normalized kernel function

k̄(x, y) : =
1

q̄(x)
k(x, y)

1

q̄(y)
(4.2.4)

where q̄(y) =
√∫

k(x, y)dP̄(x). Note that this kernel function can be seen as a continuous

analog of the normalized Laplacian matrix (4.2.2).
1To be precise, the matrix I − L is actually the normalized graph Laplacian matrix. However, the

eigenvectors of L are identical to those of I − L, and we find it simpler to work with L.
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The normalized kernel function in conjunction with the mixture defines the normalized
Laplacian operator T̄ : L2(P̄)→ L2(P̄) given by

(T̄f)(·) : =

∫
k̄(·, y)f(y)dP̄(y). (4.2.5)

Under suitable regularity conditions (see Appendix C.1 for details), this operator has an
orthonormal set of eigenfunctions—with eigenvalues in [0, 1]—and our main results relate
these eigenfunctions to the underlying mixture components {Pm}Mm=1.

4.3 Analysis of the normalized Laplacian embedding

This section is devoted to the statement of our main results, and discussion of their conse-
quences. These results involve a few parameters of the mixture distribution, including its
overlap and indivisibility parameters, which are defind in Section 4.3. Our first main result
(Theorem 4.3.1 in Section 4.3) characterizes the principal eigenspace of the population-level
normalized Laplacian operator (4.2.5), showing that it approximately spanned by the square
root kernelized densities of the mixture components, as defined in Section 4.3. Our second
main result (Theorem 4.3.2 in Section 4.3) provides a quantitative description of the an-
gular structure in the normalized Laplacian embedding of a finite sample from a mixture
distribution.

Cluster similarity, coupling, and indivisibility parameters

In this section, we define some parameters associated with any nonparametric mixture dis-
tribution, as viewed through the lens of a given kernel. These quantities play an important
role in our main results, as they reflect the intrinsic difficulty of the clustering problem.

Our first parameter is the similarity index of the mixture components {Pm}Mm=1. For any
pair of distinct indices ` 6= m, the ratio

S(P`,Pm) : =

∫
X

∫
X k(x, y)dPm(x)dP`(y)∫

X

∫
X k(x, y)dP̄(x)dP`(y)

.

is a kernel-dependent measure of the expected similarity between the clusters indexed by
P` and Pm respectively. Note that S is not symmetric in its arguments. The maximum
similarity over all mixture components

Smax(P̄) : = max
`,m=1,...,M

`6=m

S(P`,Pm) (4.3.1)

measures the overlap between mixture components with respect to the kernel k.
Our second parameter, known as the coupling parameter, is defined in terms of the square

root kernelized densities of the mixture components. More precisely, given any distribution
P, its square root kernelized density is the function q ∈ L2(P) given by

q(x) : =

√∫
k(x, y)dP(y). (4.3.2)
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In particular, we denote the square root kernelized density of the mixture distribution P̄ by q̄,
and those of the mixture components {Pm}Mm=1 by {qm}Mm=1. In analogy with the normalized
kernel function k̄ from Equation (4.2.4), we also define a normalized kernel for each mixture
component—namely

km(x, y) : =
k(x, y)

qm(x)qm(y)
for m = 1, . . . ,M . (4.3.3)

The coupling parameter

C(P̄) : = max
m=1,...,M

∥∥km − wmk̄∥∥2

Pm⊗Pm
, (4.3.4)

measures the coupling of the spaces L2(Pm) with respect to T̄. In particular, when C(P̄) = 0,
then the normalized Laplacian can be decomposed as the sum

T̄ =
M∑
m=1

wmTm, (4.3.5)

where (Tmf)(y) =
∫
f(x)km(x, y)dPm(x) is the operator defined by the normalized ker-

nel km. When the coupling parameter is no longer exactly zero but still small, then the
decomposition (4.3.5) still holds in an approximate sense.

Our final parameter measures how easy or difficult it is to “split” any given mixture
component Pm into two or more parts. If this splitting can be done easily for any component,
then the mixture distribution will be hard to identify, since there is an ambiguity as to
whether Pm defines one component, or multiple components. In order to formalize this
intuition, for a distribution P and for a measurable subset S ⊂ X , we introduce the shorthand
notation p(S) =

∫
S

∫
X k(x, y)dP(x)dP(y). With this notation, the indivisibility of P is

Γ(P) : = inf
S

p(X )
∫
S

∫
Sc
k(x, y)dP(x)dP(y)

p(S)p(Sc)
, (4.3.6)

where the infimum is taken over all measurable subsets S such that p(S) ∈ (0, 1). The
indivisibility parameter Γmin(P̄) of a mixture distribution P̄ is the minimum indivisibility of
its mixture components

Γmin(P̄) : = min
m=1,...,M

Γ(Pm). (4.3.7)

Our results in the next section apply when the similarity Smax(P̄) and coupling C(P̄) are
small compared to the indivisibility Γmin(P̄). Some examples help illustrate when this is the
case.

Example 1. Consider the one-dimensional triangular density function

gTµ(x) :=


x− µ+ 1, if x ∈ (µ− 1, µ);

−x+ µ+ 1, if x ∈ (µ, µ+ 1);

0, otherwise.
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with location µ > 0. We denote corresponding distribution by Tµ. In this example we
calculate the similarity, coupling, and indivisibility parameters for the mixture of triangular
distributions T̄ : = 1

2
T0 + 1

2
Tµ and the uniform kernel kν(x, y) = 1

2ν
1{|x− y| ≤ ν} with

bandwidth ν ∈ (0, 1).2

Similarity It is straightforward to calculate the similarity parameter Smax(T̄) by solving a
few simple integrals. We find that

Smax(T̄) =
2(2 + ν − µ)4

+

ν(16− 8ν2 + 3ν3) + (2 + ν − µ)4
+

.

Coupling To compute the coupling parameter, we must compute the kernelized densities
of T0 and Tµ, and the normalized kernel functions k1(x, y) and k̄(x, y). Some calculation
yields the following equation for the kernelized density

q2
1(x) =


(1+ν−x)2

4ν
, if x ∈ (−1− ν,−1 + ν)

1− ν
2
− x2

2ν
, if x ∈ (−ν, ν)

(1+ν+x)2

4ν
, if x ∈ (1− ν, 1 + ν)

gT0(x), otherwise.

(4.3.8)

As can be seen in Figure 4.1, the kernelized density q2
1(x) of T0 is a smoothed version of

gT0(x) that interpolates quadratically around the nondifferentiable points of gT0(x).

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

Figure 4.1: The kernelized density q2
1(x) of Equation (4.3.8) with ν = 0.05.

The kernelized density of Tµ has the same shape as that of T0 but is shifted by µ. In
particular,

q2
2(x) = q2

1(x− µ).

Therefore the normalized kernels satisfy k1(x, y) = 1
2
k̄(x, y) for x, y ∈ (−1, µ − 1 − ν). By

upper bounding the integrand over the remaining region, we find that

C(T̄)2 =

∫∫
(k1 − k̄/2)2dP1(x, y) ≤ 2(2 + ν − µ)+.

2This is not a positive semidefinite kernel function, but it helps to build intuition our intuition in a case
where all the integrals are easy.
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Indivisibility It is straightforward to calculate the indivisibility Γ(Tµ). For any ν ∈ (0, 1)
and µ ∈ R, the set S defining Γ(Tµ) is S = (µ,∞). Hence, by solving a few simple integrals
we find that

Γ(Tµ) =
2(6− ν)(2− ν)ν

16− 8ν2 + 3ν3
.

Note that Γ(Tµ) does not depend on µ. Therefore the indivisibility of T̄ : = 1
2
T0 + 1

2
Tµ is

Γmin(T̄) = Γ(Tµ) = Γ(T0).

It is instructive to consider the indivisibility of the following poorly defined two-component
mixture

T̄bad : =
1

2
Pbad(µ) +

1

2
T2µ,

where Pbad(µ) is the bimodal component Pbad(µ) : = 1
2
T0 + 1

2
Tµ. It is easy to verify that for

any ν ∈ (0, 1) and µ > 2 + ν, the indivisibility of the bimodal component is Γ(Pbad(µ)) = 0,
and therefore Γmin(T̄bad) = 0.

♠

From Example 1 we learn that the similarity Smax(T̄) and coupling C(T̄) parameters
decrease as the offset µ increases. Together, these two parameters measure the overlap which
our intuition tells us should decrease as µ increases. On the other hand, the indivisibility
parameter Γmin(T̄) is independent of µ.

Our next example is more realistic in the sense that the kernel and mixture components
do not have bounded support, and the kernel function is positive semidefinite.

Example 2. In this example we calculate the similarity, coupling and indivisibility parame-
ters for the mixture of Gaussians N̄ = 1

2
N(0, 1)+ 1

2
N(µ, 1) equipped with the Gaussian kernel

kν(x, y) = 1√
2πν

exp
[
− |x−y|2

2ν2

]
.

Similarity As in the previous example, it is straightforward to calculate the maximal
intercluster similarity Smax(N̄) by solving a handful of Gaussian integrals. We find that

Smax(N̄) =
2 exp −µ2

2ν2+4

1 + exp −µ2

2ν2+4

≤ 4e
−µ2

2ν2+4 . (4.3.9)

Coupling The kernelized density of N(0, 1) is

q2
1(x) =

1√
ν2 + 1

exp
[ −x2

2(ν2 + 1)

]
,

and the kernelized density of N(µ, 1) is simply the translation q2
2(x) = q2

1(x − µ). We can
bound the coupling parameter C(N̄) by upper bounding the integrand k1 − k̄ over a high-
probability compact set (a modification of the trick from Example 1). We show the resulting
bound in Figure 4.2. This (albeit loose) bound captures the exponential decay of C(N̄) with
µ.
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Figure 4.2. The coupling parameter for the mixture of Gaussians with Gaussian kernel
and bandwidth ν = 2. The red line displays the simulated value as a function of the offset
µ between mixture components. The black line displays our analytical bound.

Indivisibility It is straightforward to compute the indivisibility of the unit-variance nor-
mal distribution N(µ, 1) with location µ ∈ R. The set defining the indivisibility is S = (µ,∞).
Solving a handful of Gaussian integrals yields

Γmin(N(µ, 1)) =
2

π
arctan(ν

√
2 + ν2). (4.3.10)

♠

We conclude with a counter example, showing that the similarity parameter is not rela-
tively small for the linear kernel k(x, y) = x · y.

Example 3. Consider the mixture P̄ = 1
2
P1 + 1

2
P2 with components P1 uniform over (1, 2)

and P2 uniform over (2 + δ, 3 + δ). With the linear kernel k(x, y) = x · y, we have

Smax(P̄) =

∫∫
xydP1(x)dP2(y)∫∫
xydP1(x)dP̄(y)

=

∫
ydP2(y)∫
ydP̄(y)

≥ 1

2
.

Since Γmin(P̄) is always between 0 and 1, this calculation demonstrates that the similarity
parameter Smax(P̄) is never small compared to Γmin(P̄). ♠

Population-level analysis

In this section, we present our population-level analysis of the normalized Laplacian embed-
ding. Consider the following two subspaces of L2(P̄):
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• the subspace R ⊂ L2(P̄) spanned by the top M eigenfunctions of the normalized
Laplacian operator T̄ from Equation (4.2.5), and

• the span Q = span{q1, . . . , qM} ⊂ L2(P̄) of the square root kernelized densities (see
Equation (4.3.2)).

The subspace Q can be used to define a map ΦQ : X → RM known as the square-root
kernelized density embedding, given by

ΦQ(x) : = (q1(x), . . . , qM(x)). (4.3.11)

This map is relevant to clustering, since the vector ΦQ(x) encodes sufficient information to
perform a likelihood ratio test (based on the kernelized densities) for labeling data points.

On the other hand, the subspace R is important, because it is the population-level quan-
tity that underlies spectral clustering. As described in Section 4.2, the first step of spectral
clustering involves embedding the data using the eigenvectors of the Laplacian matrix. This
procedure can be understood as a way of estimating the population-level Laplacian embed-
ding : more precisely, the map ΦR : X → RM given by

ΦR(x) : = (r1(x), . . . , rM(x)), (4.3.12)

where {rm}Mm=1 are the top M eigenfunctions of the kernel operator T̄.
To build intuition, imagine for the moment varying the kernel function so that the ker-

nelized densities converge to the true densities. For example, imagine sending the bandwidth
of a Gaussian kernel to 0. While the kernelized densities approach the true densities, the
subspace R is only a well defined mathematical object for kernels with non-zero bandwidth.
Indeed, as the bandwidth shrinks to zero, the eigengap separating the principal eigenspace
R of T̄ from its lower eigenspaces vanishes. For this reason, we analyze an arbitrary but
fixed kernel function, and we discuss kernel selection in Section 4.5.

The goal of this section is to quantify the difference between the two mappings ΦQ and
ΦR, or equivalently between the underlying subspaces Q and R. We assume that that the
square root kernelized densities q1, . . . , qM are linearly independent so that Q has the same
dimension, M , as R. This condition is very mild when the overlap parameters Smax(P̄) and
C(P̄) are small. We measure the distance between these subspaces by the Hilbert–Schmidt
norm3 applied to the difference between their orthogonal projection operators:

ρ(Q,R) : = |||ΠQ − ΠR|||HS. (4.3.13)

Recall the similarity parameter Smax(P̄), coupling parameter C(P̄), and indivisibility pa-
rameter Γmin(P̄), as previously defined in equations (4.3.1), (4.3.4) and (4.3.7), respec-
tively. Our main results involve a function of these three parameters and the minimum
wmin : = min

m=1,...,M
wm of the mixture weights, given by

ϕ(P̄; k) : =

√
M [Smax(P̄) + C(P̄)]1/2

wmin Γ2
min(P̄)

. (4.3.14)

3Recall that the Hilbert–Schmidt norm of an operator is the infinite dimensional analogue of the Frobe-
nius norm of a matrix.
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Our first main theorem guarantees that as long as the mixture is relatively well-separated,
as measured by the difficulty function ϕ, then the ρ-distance (4.3.13) between R and Q is
proportional to ϕ(P̄; k). Our theorem also involves the quantity

bmax : = max
m=1,...,M

∥∥∥∥∫ km(x, y)dPm(y)

∥∥∥∥2

∞
.

Note that this is simply a constant whenever the kernels km are bounded.

Theorem 4.3.1 (Population control of subspaces). For any finite mixture P̄ with difficulty

function bounded as ϕ(P̄; k) ≤
[
576
√

12 + bmax

]−1

Γ2
min(P̄), the distance between subspaces Q

and R is bounded as

ρ(Q,R) ≤ 16
√

12 + bmax ϕ(P̄; k). (4.3.15)
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Figure 4.3. The ρ-distance between Q and R scales linearly with Smax(P̄) + C(P̄). Each
point corresponds to a different offset µ between the two Gaussian mixture components
from Example 3.

The relationship (4.3.15) is easy to understand in the context of translated copies of
identical mixture components. Consider the mixture of Gaussians with Gaussian kernel setup
in Example 3. Recall from equation (4.3.10) that the indivisibility parameter is independent
of the offset µ. Hence in this setting relationship (4.3.15) simplifies to

ρ(Q,R) ≤ c[Smax(P̄) + C(P̄)]1/2.

Figure 4.3 shows a clear linear relationship between ρ(Q,R) and Smax(P̄) + C(P̄), suggesting
that it might be possible to remove the square root in the clustering difficulty (4.3.14).

One important consequence of the relationship (4.3.15) stems from geometric structure
in the square root kernelized density embedding. When there is little overlap between mix-
ture components with respect to the kernel, the square root kernelized densities are not
simultaneously large, i.e., ΦQ(X) will have at most one component much different from zero.
Therefore the data will concentrate in tight spikes about the axes. This is illustrated in
Figure 4.4.
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Figure 4.4. Geometric structure in the square root kernelized density embedding. (left)
Square root kernelized densities for a mixture of Gaussians with Gaussian kernel. The color
of the i-th dot indicates the likelihood ratio of the mixture components at Xi. (center) Data
embedded under the square root kernelized density embedding ΦQ, colored by likelihood
ratio. (right) Normalized Laplacian embedding of the samples, colored by latent label.

Finite sample analysis

Thus far, our analysis has been limited to the population level, corresponding to the ideal
case of infinitely many samples. We now turn to the case of finite samples. Here an additional
level of analysis is required, in order to relate empirical versions (based on the finite collection
of samples) to their population analogues. Doing so allows us to show that under suitable
conditions, the Laplacian embedding applied to i.i.d. samples drawn from a finite mixture
satisfies a certain geometric property, which we call orthogonal cone structure, or OCS for
short.

We begin by providing a precise definition of when an embedding Φ : X → RM reveals
orthogonal cone structure. Given a collection of labeled samples {Xi, Zi}ni=1 ⊂ X × [M ]
drawn from a M -component mixture distribution, we let Zm = {i ∈ [n] | Zi = m} denote
the subset of samples drawn from mixture component m = 1, . . . ,M . For any set Z ⊆
[n] = {1, 2, . . . , n}, we use |Z| to denote its cardinality. For vectors u, v ∈ Rn, we use

angle(u, v) = arccos 〈u, v〉
‖u‖2‖v‖2 to denote the angle between them. With this notation, we have

the following:

Definition 3 (Orthogonal cone structure (OCS)). Given parameters α ∈ (0, 1) and θ ∈
(0, π

4
), the embedded data set {Φ(Xi), Zi}ni=1 has (α, θ)-OCS if there is an orthogonal basis

{e1, . . . , eM} of RM such that∣∣∣{i ∈ [n] | angle
(
Φ(Xi), em

)
< θ
}
∩ Zm

∣∣∣ ≥ (1− α)
∣∣Zm∣∣ for all m = 1, . . . ,M .

In words, a labeled dataset has orthogonal cone structure if most pairs of embedded data
points with distinct labels are almost orthogonal. See Figure 4.5 for an illustration of this
property.

Our main theorem in the finite sample setting establishes that under suitable conditions,
the normalized Laplacian embedding has orthogonal cone structure. In order to state this
result precisely, we require a few additional conditions.
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Figure 4.5. Visualizing (α, θ)-OCS: The labeled set of points plotted above has (α, θ)
orthogonal cone structure with respect to its labeling. The color of each dot indicates the
value of the corresponding label Zi ∈ {1, 2}, where 1 corresponds to red and 2 to blue. This
set of points has (α, θ)-orthogonal cone structure because a fraction 1− α of the red points
(for which Zi = 1) lie with an angle θ of e1, a fraction 1− α blue points (for which Zi = 2)
lie with an angle θ of e2, and e1 is orthogonal to e2.

Kernel parameters As a consequence of the compactness of X , the kernel function is
b-bounded, meaning that k(x, x′) ∈ (0, b) for all x, x′ ∈ X . As another consequence, the
kernelized densities are lower bounded as qm(Xm) ≥ r > 0 with P̄-probability one. In the
following statements, we use c, c0, c1, . . . to denote quantities that may depend on b, and r
but are otherwise independent of the mixture distribution.

Tail decay The tail decay of the mixture components enters our finite sample result
through the function ψ : (0,∞)→ [0, 1], defined by

ψ(t) : =
M∑
m=1

Pm
[q2

m(X)

‖qm‖2
P̄
< t
]
. (4.3.16)

Note that ψ is an increasing function with ψ(0) = 0. The rate of increase of ψ roughly
measures the tail-decay of the square root kernelized densities. Intuitively, perturbations to
the square root kernelized density embedding will have a greater effect on points closer to
the origin.

Recall the population level clustering difficulty parameter ϕ(P̄; k) previously defined in
equation (4.3.14). Our theory requires that there is some δ > 0 such that[

ϕ(P̄; k) +
1

Γ2
min(P̄)

( 1√
n

+ δ
)]

︸ ︷︷ ︸
ϕn(δ)

≤ c Γ2
min(P̄). (4.3.17)

In essence, we assume that the indivisibility of the mixture components is not too small
compared to the clustering difficulty.

With this notation, the following result applies to i.i.d. labeled samples {(Xi, Zi)}ni=1

from a M -component mixture P̄.
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Theorem 4.3.2 (Finite-sample angular structure). There are constants c, c0, c1, c2 depending

only on b and r such that for any δ ∈ (0,
‖k‖P̄
b
√

2π
) satisfying condition (4.3.17) and any t >

c0
w3

min

√
ϕn(δ), the embedded data set {ΦV(Xi), Zi)}ni=1 has (α, θ)-OCS with

|cos θ| ≤ c0

√
ϕn(δ)

w3
mint− c0

√
ϕn(δ)

and α ≤ c1

(wmin)
3
2

ϕn(δ) + ψ(2t), (4.3.18)

and this event holds probability at least 1− 8M2 exp
( −c2 nδ4

δ2+Smax(P̄)+C(P̄)

)
.

ΦV

R2 R3

Figure 4.6. According to Theorem 4.3.2, the normalized Laplacian embedding of i.i.d.
samples from a nonparametric mixture with small overlap, indivisible components, and
large enough sample size, has (α, θ)-OCS with α � 1 and θ � 1. The left plot shows
i.i.d. samples in R2, and the right plot displays the image (in R3) of these data under the
normalized Laplacian embedding, ΦV . The embedding was performed using a regularized
Gaussian kernel. The color of each point indicates the latent label of that point.

Theorem 4.3.2 establishes that the embedding of i.i.d. samples from a finite mixture P̄ has
orthogonal cone structure (OCS) if the components have small overlap and good indivisibility.
This result holds with high probability on the sampling from P̄. See Figure 4.6 for an
illustration of the theorem.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

t

ψ
(t
)

Figure 4.7. The tail decay function ψ(t) roughly follows a power-law for the standard
Gaussian distribution and Gaussian kernel with bandwidths ν ∈ {0.15, 0.45, 0.75, 1, 1.5, 2.5}.



CHAPTER 4. THE GEOMETRY OF KERNELIZED SPECTRAL CLUSTERING 74

The tail decay of the mixture components enters the bounds on α and θ in different ways:
the bound on θ is inversely proportional to t, but the bound on α is tighter for smaller t.
Depending on how quickly ψ increases with t, it may very well be the dominant term in the
bound on α. For example if there is a γ > 0 such that ψ(t) ≤ tγ for all t ∈ (0, 1), and we set
t = ϕβn for some β ∈ (0, 1), then we obtain the simplified bounds

|cos θ| ≤ c

w3
min

ϕ1/2−β
n and α ≤ c

(wmin)
3
2

(
ϕn + ϕγβn

)
.

Indeed, we find that whenever γβ < 2, the tail decay function is the dominant term in
the bound on α. Note that this power-law tail decay is easy to verify for the Gaussian
distribution with Gaussian kernel from Example 2 (see Figure 4.7).

Finally, the constants c, c0, c1, c2 increase as the kernel bound b increases and as r de-
creases. This is where we need the tail truncation condition r > 0. This assumption is
common in the literature (see Cao and Chen [31], for example). Both Luxburg, Belkin and
Bousquet [77] and Rosasco, Belkin and De Vito [96] assume k(x, y) ≥ r > 0, which is more
restrictive. Note that this automatically holds if we add a positive constant to any kernel.
This is sometimes called regularization and can significantly increase the performance of
spectral clustering in practice [2].

Algorithmic consequences

In this section we apply our theory to study the performance of spectral clustering. The
standard spectral clustering algorithm applies M -means to the embedded dataset. For com-
pleteness, we give pseudo code for the update step of M -means below.

M -means update

Input: Normalized embedded data yi : = ΦV (Xi)
‖ΦV (Xi)‖ for i = 1, . . . , n, and mean vectors

{a1, . . . , aM}
for m ∈ {1, . . . ,M} do

Ẑm ←
{
i : m = argmin

`
‖a` − yi‖

}
a′m ←

∑
i∈Ẑm

yi

|Ẑm|

end for
return {Ẑ1, . . . , ẐM} and {a′1, . . . , a′M}

In practice, we have found that applying M -means to an embedded dataset works well
if the underlying orthogonal cone structure is “nice enough”. The following proposition
provides a quantitative characterization of this phenomenon. It applies to an embedded
data set {ΦV(Xi), Zi)}ni=1 with (α, θ)-OCS, and an initialization of a1, . . . , aM as uniformly
random orthonormal vectors. Recall the notation Zm = {i ∈ [n] | Zi = m}.
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Proposition 4.3.3. Suppose θ and α are sufficiently small that

αn+ (1− α) |Zm| sin θ
(1− α) |Zm|

≤ sin
π

8
, and

(1− α) |Zm| cos θ − αn
|Zm|+ αn

≥ 1

2
, (4.3.19)

for m = 1, . . . ,M. Then there is a constant cK such that with probability at least 1 − 4cKθ
2π

over the random initialization, the M-means algorithm misclusters at most αn points. When
K = 2, we have cK = 1.

Intuitively, condition (4.3.19) requires α and θ to be small enough so that the different
cones from the (α, θ)-OCS do not overlap.

Proof. We provide a detailed proof for the case M = 2. By the definition of (θ, α)-OCS,
there exist orthogonal vectors e1, e2 such that a fraction 1−α of the embedded samples with
latent label m lie within an angle θ of em, m = 1, 2. Let us say that the initialization is
unfortunate if some aj falls within angle θ

2
of the angular bisector of e1 and e2, an event

which occurs with probability 4θ
2π

.
Suppose without loss of generality that a1 is closer to e1, and let a′1, a

′
2 denote the updates

a′m =
∑
i∈Ẑm

vi

|Ẑm|
, m = 1, 2.

If the initialization is not unfortunate, then all points in the θ-cone around e1 are closer to
a1 than a2. In this case, the (θ, α)-OCS implies that the e2-coordinate of a′1 is at most

αn+ (1− α) |Z1| , sin θ
(1− α) |Z1|

≤ sin
π

8
,

and the e1-coordinate of a′1 is at least

(1− α) |Z1| cos θ − αn
|Z1|+ αn

≥ 1

2
.

We conclude that all points in the θ-cone about e1 are closer to a′1 than a′2. Consequently,
we find that after a single update step of M -means, all but a fraction α of the samples are
correctly labeled. Moreover, this holds for all subsequent M -means updates. This completes
the proof for M = 2.

The proof for general M follows the same steps. The probability that any am falls within
angle θ

2
of the angular bisector of any pair ej, e` is still proportional to θ, with a constant of

proportionality cK that depends on M .

4.4 Proofs

We now turn to the proofs of our main results, beginning with the population level result
stated in Theorem 4.3.1. We then provide the proof of Theorem 4.3.2 and Proposition 4.3.3.
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Proof of Theorem 4.3.1

Our proof leverages an operator perturbation theorem due to Stewart [107] to show that Q
is an approximate invariant subspace of the normalized Laplacian operator T̄ from equa-
tion (4.2.5). Recalling that ΠQ denotes the projection onto subspace Q (with ΠQ⊥ defined
analogously), consider the following three operators

A : = ΠQT̄ Π∗Q, B : = ΠQ⊥T̄ Π∗Q⊥ , and G : = ΠQ⊥T̄ Π∗Q.

By definition, a subspace Q is invariant under T̄ if and only if G = 0. In our setting,
this ideal situation occurs when there is no overlap between mixture components. More
generally, operator perturbation theory can be used guarantee that a space is approximately
invariant as long as the Hilbert–Schmidt norm |||G|||HS is not too large relative to the spectral
separation between A and B. In particular, define the quantities

γ : = |||G|||HS, and sep(A,B) : = inf
{
|a− b| | a ∈ σ(A), b ∈ σ(B)

}
.

In application to our problem, Theorem 3.6 of Stewart [107] guarantees that as long γ
sep(A,B)

<
1
2
, then there is an operator S : Q → Q⊥ such that

|||S|||HS ≤
2 γ

sep(A,B)
(4.4.1)

such that Range(Π∗Q + Π∗Q⊥ S) is an invariant subspace of T̄.
Accordingly, in order to apply this result, we first need to control the quantities |||G|||HS

and sep(A,B). The bulk of our technical effort is devoted to proving the following two
lemmas:

Lemma 4.4.1 (Hilbert–Schmidt bound). We have

|||G|||HS ≤
√
M(12 + bmax)

wmin

√
Smax(P̄) + C(P̄), (4.4.2)

where bmax : = max
m=1,...,M

∥∥∫ km(x, y)dPm(y)
∥∥2

∞.

Lemma 4.4.2 (Spectral separation bound). Under the hypothesis of the theorem, we have

σmin(A) ≥ 1− 13M [Smax(P̄) + C(P̄)]1/2, and

σmax(B) ≤ 1− Γ2

8
+

3[Smax(P̄) + C(P̄)]1/2

wmin

.

Consequently, the spectral separation is lower bounded as

sep(A,B) ≥ Γ2

16
. (4.4.4)
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See Appendices A.1 and A.2, respectively for the proof of these lemmas.

Combined with our earlier bound (4.4.1), these two lemmas guarantee that

|||S|||HS ≤ 16
√

12 + bmax ϕ(P̄, k). (4.4.5)

Moreover, we find that Range(Π∗Q + Π∗Q⊥ S) is equal to R, the principal eigenspace of

T̄. Indeed, by Stewart’s theorem, the spectrum of T̄ is the disjoint union σ(T̄) = σ(A +
G∗S)∪σ(B−SG∗). After some calculation using the upper bound on ϕ(P̄, k) in the theorem
hypothesis, we find that the spectrum of T̄ satisfies σmin(A + G∗S) > σmax(B− SG∗), and
any element x ∈ Range(Π∗Q + Π∗Q⊥ S) must satisfy

sup
q∈Q

{x∗T̄x
x∗x

∣∣∣ x = (Π∗Q + Π∗Q⊥ S)q
}
> σmax(B− SG∗).

Therefore Range(Π∗Q + Π∗Q⊥ S) = R.
The only remaining step is to translate the bound (4.4.5) into a bound on the norm

|||ΠR − ΠQ|||HS. Observe that the difference of projection operators can be written as

ΠR − ΠQ = (ΠR + ΠR⊥)(ΠR − ΠQ) = ΠRΠQ⊥ − ΠR⊥ΠQ.

Now Lemma 3.2 of Stewart [107] gives the explicit representations

ΠR = (I + S∗S)−
1
2 (ΠQ + S∗ΠQ⊥), and ΠR⊥ = (I + SS∗)−

1
2 (ΠQ⊥ + ΠQS).

Consequently, we have

|||ΠR⊥ΠQ|||HS ≤ |||(I + SS∗)−
1
2 S|||HS, and |||ΠRΠQ⊥ |||HS ≤ |||(I + S∗S)−

1
2 S∗|||HS.

By the continuous functional calculus (see §VII.1 of Reed and Simon [94]), we have the
expansion

(I + SS∗)−
1
2 =

∞∑
n=1

(
2n

n

)
(SS∗)n−1

22n
.

Putting together the pieces, in terms of the shorthand ε = |||S|||HS, we have

|||ΠR − ΠQ|||HS ≤
ε

2

∞∑
n=1

(
2n

n

)( ε
2

)2(n−1)
=

2

ε

( 1√
1− ε2

− 1
)
≤ ε,

which completes the proof.

Proof of Theorem 4.3.2

We say that a M -element subset (or M -tuple) of {X1, . . . , Xn} is diverse if the latent labels
of all points in the subset are distinct. Given some θ ∈ (0, π

4
), a M -tuple is θ-orthogonal if

all its distinct pairs, when embedded, are orthogonal up to angle θ
2
. In order to establish

(α, θ)-angular structure in the normalized Laplacian embedding of {X1, . . . , Xn}, we must
show that there is a subset of {X1, . . . , Xn} with at least (1 − α)n elements, and with the
property that every diverse M -tuple from the subset is θ-orthogonal.

We break the proof into two steps. We first lower bound the total number of M -tuples
that are diverse and θ-orthogonal. In the second step we construct the desired subset. We
present the first step below and defer the second step to Appendix B.1 in the supplement.
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Step 1: Consider a diverse M -tuple (X1, . . . , XM) constructed randomly by selecting Xm

uniformly at random from the set {Xi | Zi = m} for m = 1, . . . ,M . Form the M ×M
random matrix

V =

 | |
ΦV(X1) · · · ΦV(XM)
| |

 ,
where ΦV denotes the normalized Laplacian embedding from equation (4.2.3). Let Ṽ denote
an independent copy of V . Let Q ∈ RM×M denote the diagonal matrix with entries Qmm =
qm(Xm)
‖qm‖P̄n

, where P̄n is the empirical distribution over the samples X1, . . . , Xn, and define Qmax :

= maxm
‖qm‖∞
‖qm‖P̄

.

At the core of our proof lies the following claim involving a constant c3. For at least a
fraction 1− 2Mc3ϕn(δ)√

wmin
of the diverse M -tuples, we have the inequality

|||V T Ṽ −Q2|||HS ≤
32
√

3

w3
min

Q2
max

√
c3

√
ϕn(δ), (4.4.6)

holding on a high probability set A. For the moment, we take this claim as given, before
returning to define A explicitly and prove the claim.

When the inequality (4.4.6) is satisfied, we obtain the following upper bound on the
off-diagonal elements of V T Ṽ :

(
V T Ṽ

)
m`
≤ 32

√
3Q2

max

w3
min

√
c3

√
ϕn(δ) for m 6= `.

This is useful because

cos angle(ΦV(Xm),ΦV(X`)) =
(V T Ṽ )m`√

(V TV )mm(V T Ṽ )``

.

However, we must also lower bound minm(V T Ṽ )mm. To this end by union bound we obtain

Pr
{

min
m

Q2
mm ≤ t

}
= Pr

{
min
m

q2
m(Xm)

‖qm‖2
P̄n

≤ t

}
≤

M∑
m=1

Pr

{
q2
m(Xm)

‖qm‖2
P̄n

≤ t

}
: = ψn(t).

(4.4.7)
On the set Aψ : = {supt |ψn(t)− ψ(t)| ≤ δ} ⊂ A, we may combine equations (4.4.6)
and (4.4.7) to obtain

min
m

(
V T Ṽ

)
mm
≥ t− 32

√
3Q2

max

w3
min

√
c3

√
ϕn(δ),

with probability at least 1− ψ(2t). Therefore, there is a θ satisfying

|cos θ| ≤ 32
√

3Q2
max

√
c3

√
ϕn(δ)

w3
mint− 32

√
3Q2

max

√
c3

√
ϕn(δ)
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such that at least a fraction 1 − 2Mc3ϕn(δ)√
wmin

− ψ(2t) of the diverse M -tuples are θ-orthogonal

on the set A. This establishes the finite sample bound (4.3.18) with c0 : = 2c3 and c1 : =
32
√

3Q2
max

√
c3.

It remains to prove the intermediate claim (4.4.6). Define the matrix

A : =


〈

q1
‖q1‖P̄n

, v1

〉
P̄n
· · ·

〈
q1

‖q1‖P̄n
, vM

〉
P̄n

...
. . .

...〈
qM

‖qM‖P̄n
, v1

〉
P̄n
· · ·

〈
qM

‖qM‖P̄n
, vM

〉
P̄n

 . (4.4.8)

Note that the entries of AAT are(
AAT

)
m`

=
〈ΠVqm,ΠVq`〉P̄n
‖qm‖P̄n ‖q`‖P̄n

.

The off-diagonal elements satisfy

(
AAT

)
m`
≤ 3(ϕ̂+

√
Ŝmax), for m 6= `

where ϕ̂ = maxm
‖qm−ΠVqm‖P̄n
‖qm‖P̄n

, and Ŝmax = maxm6=`
‖q`‖2Pnm
‖qm‖2P̄n

(and Pnm denotes the empirical

distribution for the samples with latent label m). Similarly, the diagonal elements satisfy∣∣(AAT )
mm
− 1
∣∣ ≤ 3ϕ̂. Putting together the pieces yields |||AAT − I|||2HS ≤ 3M2(ϕ̂ + Ŝmax),

which in turn implies

|||(AAT )
−1 − I|||2HS ≤

3M2(ϕ̂+
√
Ŝmax)

1− 3M2(ϕ̂+
√
Ŝmax)

.

We now transform this inequality into one involving V T Ṽ . Write B = AV , and B̃ = AṼ
note that V T Ṽ = BT (AAT )

−1
B̃. Therefore, we find that

|||V T Ṽ −Q2|||HS ≤ |||BT B̃ −Q2|||HS + |||BT
[
(AAT )

−1 − I
]
B̃|||HS

≤ 3|||Q|||HS|||B −Q|||HS + |||B|||2HS|||(AAT )
−1 − I|||HS,

where the last inequality used |||B|||HS ≤ 2|||Q|||HS. Now note that the entries of B are

Bm` = ΠVqm(X`)
‖qm‖P̄n

. Therefore the difference B −Q satisfies

E
[
|||B −Q|||2HS|X1, . . . , Xn

]
≤M2

( ϕ̂√
ŵmin

+

√
Ŝmax

)2
+M

ϕ̂2

ŵmin

, (4.4.9)

where ŵmin = minm
nm
n

, and the expectation above is over the selection of the random M -
tuple (X1, . . . , XM).4

4 Note that are two different types of randomness at play in the construction of V , and hence B; there
is randomness in the generation of the i.i.d. samples X1, . . . , Xn from P̄, and there is randomness in the
selection of the diverse M -tuple (X1, . . . , XM ).
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Both Ŝmax and ϕ̂ are small with high probability. Indeed, Bernstein’s inequality guaran-
tees that √

Ŝmax ≤
√
Smax + δ (4.4.10)

with probability at least 1 − 2M2 exp −n(Smax+δ2)2

8Q2
max(2Smax+δ2)

. We control ϕ̂ with a finite sample
version of Theorem 4.3.1, which we state as Proposition 4.4.3 below.

Let V = span{v1, . . . , vM} denote the principal eigenspace of the normalized Laplacian
matrix.

Proposition 4.4.3. There are constants c′2, c3 such that for any δ ∈ (0,
‖k‖P̄
b
√

2π
) satisfying

condition (4.3.17), we have
ϕ̂ ≤ c3ϕn(δ) (4.4.11)

with probability at least 1− 10M exp
( −nc′2δ4

δ2+Smax(P̄)+C(P̄)

)
.

See Section 4.4 for the proof of this auxiliary result.

On the set {ϕ̂ ≤ c3ϕn(δ)} ∩ {ŵmin ≥ 1
2
wmin} := Aζ ∩ Aw, Equation (4.4.9) simplifies to

E
[
|||B −Q|||2HS|X1, . . . , Xn

]
≤ 4M2c2

3ϕ
2
n(δ)

wmin

,

whenever
(√2c3ϕn(δ)√

wmin
+Smax + δ

)2 ≤ 3c23ϕ
2
n(δ)

wmin
, which is a consequence of condition (4.3.17). By

Markov’s inequality we obtain the following result: at least a fraction 1 − 2Mc3ϕn(δ)√
wmin

of the

diverse M -tuples satisfy

|||B −Q|||2HS ≤
2Mc3ϕn√

wmin

. (4.4.12)

For the diverse M -tuples that do satisfy inequality (4.4.12) we find that

|||V T Ṽ −Q2|||HS ≤
(6
√

2M3/2Qmax

w
1/4
min

+ 32
√

3M3Q2
max

)√
c3
√
ϕn,

valid on the set A = Aw ∩ Aq ∩ Aψ ∩ {ϕ̂ ≤ c3ϕn(δ)} ∩ {
√
Ŝmax ≤

√Smax + δ}, thereby
establishing the bound (4.4.6).

To complete the first step of the proof of Theorem 4.3.2, it remains to control the proba-

bility of A. By Hoeffding’s inequality, we have P[Aw] ≥ 1−Me
−nw2

min
2 . Finally, an application

of Bernstein’s inequality controls the probability of Aq, and an application of Glivenko Can-
telli controls the probability of Aψ. Putting together the pieces we find that A holds with

probability at least 1− 8M2 exp
( −nc2δ4

δ2+Smax(P̄)+C(P̄)

)
, where c2 := min

(
c′2,

1
8Q2

max

)
.
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Proof of Proposition 4.4.3

Consider the operator T̂ : L2(P̄n)→ L2(P̄n) defined by

(T̂f)(x) =

∫
1

q̄n(x)
k(x, y)

f(y)

q̄n(y)
dP̄n(y),

where q̄n(x) = 1
n

∑M
i=1 k(Xi, x) is the square root kernelized density for the empirical distri-

bution P̄n over the data X1, . . . , Xn. k̄n(x, y) := k(x,y)
q̄n(x)q̄n(y)

for the normalized kernel func-

tion. Note that for any f ∈ L2(P̄n) and v ∈ Rn with coordinates vi = f(Xi), we have
(T̂f)(Xj) = (Lv)j, where L is the normalized Laplacian matrix (4.2.2). Consequently, the

principal eigenspace V of L is isomorphic to the principal eigenspace of T̂ which we also
denote by V for simplicity.

To prove the proposition, we must relate T̂ to the normalized Laplacian operator T̄.
These operators differ in both their measures of integration—namely, P̄n versus P̄—and
their kernels, namely k(x,y)

q̄n(x)q̄n(y)
versus k(x,y)

q̄(x)q̄(y)
. To bridge the gap we introduce an intermediate

operator T̃ : L2(P̄n)→ L2(P̄n) defined by

(T̃f)(x) =

∫
1

q̄(x)
k(x, y)

f(y)

q̄(y)
dP̄n(y).

Let Ṽ denote the principal eigenspace of T̃. The following lemma bounds the ρ-distance
between the principal eigenspaces of T̃ and T̂.

Lemma 4.4.4. For any δ ∈ [0,
‖k‖P̄
b
√

2π

]
satisfying condition (4.3.17), we have

ρ(V , Ṽ) ≤ c4

Γ2

( 1√
n

+ δ
)
, (4.4.13)

with probability at least 1− 6e
−nπδ2

2 , where c4 = 1024
√

2π
‖k‖P̄b
r4 .

See Appendix B.3 for a proof of this lemma.
We must upper bound ‖qm − ΠVqm‖P̄n . By triangle inequality,

‖qm − ΠVqm‖P̄n ≤ ‖qm − ΠRqm‖P̄n + ‖ΠRqm − ΠṼqm‖P̄n
+ ‖ΠVqm − ΠṼqm‖P̄n .

Note that ‖ΠVqm − ΠṼqm‖P̄n ≤ ‖qm‖P̄n ρ(Ṽ ,V). We can control this term with the lemma.
The term ‖qm − ΠRqm‖P̄n is the empirical version of a quantity controlled by Theorem 4.3.1.
We handle the empirical fluctuations with a version of Bernstein’s inequality. For δp ≥ 0 we
have the inequality

‖qm − ΠRqm‖P̄n ≤ ‖qm − ΠRqm‖P̄ + δp (4.4.14)

with probability at least 1− 2 exp
(
− nδ4

p

8(δ2
p+c2popϕ

2)Q̃2
max

)
, where Q̃max = maxm

‖qm−ΠRqm‖∞
‖qm‖P̄

and

cpop : = 16
√

12 + bmax

M
.
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It remains to control ‖ΠRqm − ΠṼqm‖P̄n . Let H̄ denote the reproducing kernel Hilbert

space (RKHS)5 for the kernel k̄. Now we define two integral operators on H̄. Let H̄ denote
the operator defined by

(H̄h)(x) =

∫
k̄(x, y)h(y)dP̄(y),

and similarly let H̃ : H̄ → H̄ denote the operator defined by

(H̃h)(x) =

∫
k̄(x, y)h(y)dP̄n(y).

Both H̄ and H̃ are self-adjoint, compact operators on H̄ and have real, discrete spectra. Let
G denote the principal M -dimensional eigenspace of H̄ and let G̃ denote the principal M -
dimensional principal eigenspace of H̃. The following lemma bounds the ρ-distance between
these subspaces of H̄.

Lemma 4.4.5. For any δ > 0 satisfying condition (4.3.17), we have

ρ(G, G̃) ≤ c5

Γ2

( 1√
n

+ δ
)

with probability at least 1− 2e−nπEk̄(X̄,X̄)δ2
, where c5 = 64

√
2π
√
Ek̄(X̄, X̄) b

r2 .

See Appendix B.2 for the proof of this Lemma.

By the triangle inequality, we have

‖ΠRqm − ΠṼqm‖P̄n ≤ ‖ΠRqm − ΠGqm‖P̄n +
∥∥ΠGqm − ΠG̃qm

∥∥
P̄n

+
∥∥ΠG̃qm − ΠṼqm

∥∥
P̄n
.

We claim that

‖ΠRqm − ΠGqm‖P̄n = 0, and
∥∥ΠG̃qm − ΠṼqm

∥∥
P̄n

= 0. (4.4.15)

We take these identities as given for the moment, before returning to prove them at the end
of this subsection.

Now the term
∥∥ΠGqm − ΠG̃qm

∥∥
P̄n

can be controlled using the lemma in the following way.

For any h ∈ H̄, note that

‖h‖2
P̄n =

1

n

n∑
i=1

〈
h, k̄Xi

〉2

H̄ ≤
1

n

n∑
i=1

‖h‖2
H̄ k̄(Xi, Xi)

by Cauchy-Schwarz for the RKHS inner product. Using this logic with h = ΠGqm − ΠG̃qm,
we find

∥∥ΠGqm − ΠG̃qm
∥∥
P̄n
≤ ‖qm‖H̄

√√√√ 1

n

n∑
i=1

k̄(Xi, Xi)ρ(G, G̃). (4.4.16)

5We give a brief introduction to the theory of reproducing kernel Hilbert spaces and provide some
references for further reading on the subject in Appendix C.2.
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Collecting our results and applying Lemmas 4.4.4 and 4.4.5 yields

‖qm − ΠVqm‖P̄n ≤
(
cpopϕ+ δp

)
‖qm‖P̄ +

cn ‖qm‖P̄n
Γ2

( 1√
n

+ δ
)
,

where

cn : =
256
√

2πb

r2

[‖qm‖H̄
‖qm‖P̄

Ek̄(X̄, X̄) +
2

r2

]
. (4.4.17)

By an application of Bernstein’s inequality, we have

‖qm‖P̄n ≤
√

2 ‖qm‖P̄

with probability at least 1− 2e
−n

16Q2
max . For δ ∈ (0, 1

2
√

2πQmax
), we have

2e
−ncpop

2δ4

8Γ4Q̃2
max(δ2+Smax(P̄)+C(P̄)) + 6e

−nπδ2
2 + 2e

−n
16Q2

max ≤ 10e
− nc′2δ

4

δ2+Smax(P̄)+C(P̄) ,

where δp = cpopδ

Γ2 , and c′2 = min
( cpop

2

8Γ4Q̃2
max
, π

2

)
. Modulo the claim, this proves the proposition

with c3 = 2 max(cpop, cn).
We now return to prove the claim (4.4.15). Note the following relation between the

eigenfunctions of T̄ and those of H̄: if ri is an eigenfunction of T̄ with eigenvalue λi and
‖ri‖P̄ = 1, then gi : =

√
λiri has unit norm in H̄, and is an eigenfunction of H̄ with eigenvalue

λi. Note that the eigenfunctions ri of T̄ form an orthonormal basis of L2(P̄), and therefore
qm =

∑∞
i=1 airi, where ai are the coefficients 〈qm, ri〉P̄. By the observation above, we have

the equivalent representation qm =
∑∞

i=1
ai√
λi
gi. Therefore the L2(P̄) projection onto R =

span{r1, . . . , rM} is ΠRqm =
∑M

i=1 airi, and the H̄ projection onto G = span{g1, . . . , gM} is

ΠGqm =
∑M

i=1
ai√
λi
gi. Therefore the relation gi =

√
λiri implies ‖ΠR − ΠG‖P̄n = 0. Similar

reasoning yields
∥∥ΠG̃q` − ΠṼq`

∥∥
P̄n

= 0.

4.5 Discussion

In this paper, we have analyzed the performance of spectral clustering in the context of
nonparametric finite mixture models. Our first main contribution is an upper bound on the
distance between the population level normalized Laplacian embedding and the square root
kernelized density embedding. This bound depends on the maximal similarity index, the
coupling parameter, and the indivisibility parameter. These parameters all depend on the
kernel function, and we present our analysis for a fixed but arbitrary kernel.

Although this dependence on the kernel function might seem undesirable, it is actually
necessary to guarantee identifiability of the mixture components in the following sense. A
mixture with fully nonparametric components is a very rich model class: without any re-
strictions on the mixture components, any distribution can be written as a M -component
mixture in uncountably many ways. Conversely, when the clustering difficulty function is
zero, the representation of a distribution as a mixture is unique. In principle, one could



CHAPTER 4. THE GEOMETRY OF KERNELIZED SPECTRAL CLUSTERING 84

optimize over the convex cone of symmetric positive definite kernel functions so to minimize
our clustering difficulty parameter. In our preliminary numerical experiments, we have found
promising results in using this strategy to choose the bandwidth in a family of kernels.

Building on our population-level result, we also provided a result that characterizes the
normalized Laplacian embedding when applied to a finite collection of n i.i.d. samples. We
find that when the clustering difficulty is small, the embedded samples take on approximate
orthogonal structure: samples from different components are almost orthogonal with high
probability. The emergence of this form of angular structure allows an angular version of
M -means to correctly label most of the samples.

Perhaps surprising is the fact that the optimal bandwidth (minimizing our upper bound)
is non-zero. Although we only provide an upper bound, we believe this is fundamental
to spectral clustering, not an artifact of our analysis. Again, the principal M -dimensional
eigenspace of the Laplacian operator is not a well-defined mathematical object when the
bandwidth is zero. Indeed, as the bandwidth shrinks to zero, the eigengap distinguishing
this eigenspace from the remaining eigenfucntion vanishes. This eigenspace, however, is the
population-level version of the subspace onto which spectral clustering projects. For this
reason, we caution against shrinking the bandwidth indefinitely to zero, and we conjecture
that there is an optimal population level bandwidth for spectral clustering. However, we
should mention that we cannot provably rule out the optimality of an appropriately slowly
shrinking bandwidth, and we leave this to future work. Further investigation of kernel
bandwidth selection for spectral clustering is an interesting avenue for future work.

4.6 Supplementary proofs for Theorem 1

This appendix is devoted to the proofs of Lemmas 1 and 2. In addition to the normalized
Laplacian operator T̄, our proofs involve several other quantities, which we introduce here.
For a general distribution P and kernel k, we define the kernel integral operator

Tk,P : f 7→
∫
f(x)k(x, ·)dP(x).

For m = 1, . . . ,M , we define the difference operator

Emf = Tkm,Pmf − wmTk̄,Pmf. (4.6.1)

Note that by definition, the operator Em an integral operator with kernel km − wmk̄, and
hence we have the bound

|||Em|||op ≤
∥∥km − wmk̄∥∥Pm for m = 1, . . . ,M .

This bound is useful in the analysis to follow.

Proof of Lemma 1

We denote the normalized version of qm by q̃m = qm
‖qm‖P̄

. By Jensen’s inequality and convexity

of the squared HS-norm,

|||ΠQ⊥T̄Π∗Q|||2HS ≤
M∑
m=1

wm|||ΠQ⊥Tk̄,PmΠ∗Q|||2HS ≤M max
m

wm|||ΠQ⊥Tk̄,PmΠ∗Q|||2HS.
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Without loss of generality, assume that the maximum maxmwm|||ΠQ⊥Tk̄,PmΠ∗Q|||2HS is achieved
at the index m = 1. Pick an orthonormal basis {hm}∞m=1 for L2(P̄) with

span{h1, . . . , hM} = span{q1, . . . , qM}

and h1 = q̃1. By expanding the Hilbert–Schmidt norm in terms of this basis, we find

|||ΠQ⊥Tk̄,P1
Π∗Q|||2HS ≤

∥∥Tk̄,P1
q̃1

∥∥2

P̄ −
〈
q̃1,Tk̄,P1

q̃1

〉2

P̄ +
M∑
m=2

∥∥Tk̄,P1
hm
∥∥2

P̄ . (4.6.2)

By decomposing ‖·‖2
P̄ according to the mixture representation of P̄, we obtain the in-

equality

∥∥Tk̄,P1
q̃1

∥∥2

P̄ −
〈
q̃1,Tk̄,P1

q̃1

〉2

P̄ ≤w1

∥∥Tk̄,P1
q̃1

∥∥2

P1
− w2

1

〈
q̃1,Tk̄,P1

q̃1

〉2

P1
+

M∑
m=2

wm
∥∥Tk̄,P1

q̃1

∥∥2

Pm
.

We claim that the following inequality holds:

M∑
m=2

wm
∥∥Tk̄,P1

q̃1

∥∥2

Pm
≤ 2(Smax(P̄) + C(P̄))

w2
min

. (4.6.3)

We take this claim as given for the moment, returning to prove it later.

Focusing on the expression w1

∥∥Tk̄,P1
q̃1

∥∥2

P1
− w2

1

〈
q̃1,Tk̄,P1

q̃1

〉2

P1
, we add and subtract the

term E1, as defined in equation (4.6.1), and then apply triangle inequality, thereby finding
that

w1

∥∥Tk̄,P1
q̃1

∥∥2

P1
− w2

1

〈
q̃1,Tk̄,P1

q̃1

〉2

P1
=

=
1

w1

[ ∥∥(w1Tk̄,P1
+ E1 − E1)q̃1

∥∥2

P1
− w1

〈
q̃1, (wTk̄,P1

+ E1 − E1)q̃1

〉2

P1

]
≤ 1

w1

[ (
‖q̃1‖P1

+ |||E1|||op ‖q̃1‖P1

)2 − w
(
‖q̃1‖2

P1
− 〈q̃1, E1q̃1〉P1

)2 ]
≤‖q̃1‖2

P1

w1

[∑M
m=2wm ‖q1‖2

Pm

‖q1‖2
P̄

+ (1 + w1 ‖q̃1‖2
P1

)(2|||E1|||op + |||E1|||2op)
]
.

Combining with the bound (4.6.3), we obtain the inequality∥∥Tk̄,P1
q̃1

∥∥2

P̄ −
〈
q̃1,Tk̄,P1

q̃1

〉2

P̄ ≤
S2

max + 2|||E1|||op

w2
min

+
S2

max + 8|||E1|||op

w2
min

.

Turning to the final term in equation (4.6.2), we first write∥∥Tk̄,P1
hm
∥∥2

P̄ =

∫ ( ∫ √
k̄(x, y)

√
k̄(x, y)hm(y)dP1(y)

)2
dP̄(x).

By the Cauchy-Schwarz inequality, we have∥∥Tk̄,P1
hm
∥∥2

P̄ ≤
∫ ( ∫

k̄(x, y)dP1(y)
)( ∫

k̄(x, y)h2
m(y)dP1(y)

)
dP̄(x)
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≤ max
`

∥∥∥∥∫ k`(x, y)dP`(y)

∥∥∥∥
∞

2

‖hm‖2
P1
.

Note that

‖hm‖P1
≤ sup

h∈span{q2,...,qM}
‖h‖P̄=1

‖h‖P1
≤ sup

a`∈R

∑M
`=2 |a`| ‖q`‖P1

‖∑ a`q`‖P̄
= max

m∈{2,...,M}

‖qm‖P1

‖qm‖P̄
≤ Smax.

Therefore we conclude

|||ΠQ⊥T̄Π∗Q|||2HS ≤
M(12 + ‖p̃m‖2

∞)[Smax(P̄) + C(P̄)]

w2
min

.

It remains to prove the bound (4.6.3). The fact
∥∥T̄q̃m∥∥P̄ ≤ 1 combined with the positivity

of the kernel function implies that

1 ≥
∥∥w1Tk̄,P1

q̃1

∥∥2

P̄ =
M∑
m=1

wm
∥∥w1Tk̄,P1

q̃1

∥∥2

Pm
.

The term corresponding to m = 1 in the expression above accounts for almost all of the sum.
Indeed, if we examine the m = 1 term, we find that

w1

∥∥w1Tk̄,P1
q̃1

∥∥2

P1
= w1

∥∥(w1Tk̄,P1
−Tk1,P1)q̃1 + q̃1

∥∥2

P1

≥ w1 ‖q̃1‖2
P1

(1− |||E1|||op)
2 ≥ 1− S2

max − 2|||E1|||op,

which completes the proof of the bound (4.6.3).

Proof of Lemma 2

Lower bound on σmin(A): Let λ̃1, λ̃2, . . . , λ̃M denote the nonzero eigenvalues of ΠQT̄Π∗Q.

We seek a lower bound on λ̃M . Since the spectrum of T̄ is contained in [0, 1], it suffices
to lower bound

∑M
m=1 λ̃

2
m = |||ΠQT̄Π∗Q|||2HS. Let {h1, . . . , hM} be an orthonormal basis of Q

obtained from the Gram-Schmidt procedure on q̃1, . . . , q̃M . Note that

hm = am
(
q̃m −

m−1∑
`=1

〈q̃m, q̃`〉P̄ q̃`
)
,

where am :=
∥∥q̃m −∑m−1

`=1 〈q̃m, q̃`〉P̄ q̃`
∥∥−1

P̄ denotes the normalizing constant.
By the definition of the Hilbert–Schmidt norm, we may write

|||ΠQT̄Π∗Q|||2HS ≥
M∑
m=1

〈
hm, T̄hm

〉2

P̄ . (4.6.4)

By the loose bound
〈
q̃m, T̄q̃`

〉
P̄ ≤ 1,〈

hm, T̄hm
〉
P̄ ≥ a2

m

[ 〈
q̃m, T̄q̃m

〉
P̄ − 2M

(
max
m6=`
〈q̃m, q̃`〉P̄

)]
.
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If we decompose the Laplacian operator via T̄ =
∑M

m=1 wmTk̄,Pm , and if also write out the
inner product 〈·, ·〉P̄ as a mixture of inner products, we find that〈

q̃m, T̄q̃m
〉
P̄ ≥

〈
q̃m, wmTk̄,Pm q̃m

〉
P̄≥wm

〈
q̃m, wmTk̄,Pm q̃m

〉
Pm

≥ wm
(
〈q̃m,Tkm,Pm q̃m〉Pm − |||Em|||op ‖q̃m‖2

Pm

)
= wm ‖q̃m‖2

Pm

(
1− |||Em|||op

)
.

Plugging this lower bound into equation (4.6.4), we obtain

M ≥ |||ΠQT̄Π∗Q|||2HS ≥
M∑
m=1

a4
m

[
(1− S2

max)(1− |||Em|||op)− 6MSmax

]2
.

To finish the argument, we must lower bound am. Note that∥∥∥∥∥q̃m −
m−1∑
`=1

〈q̃m, q̃`〉P̄ q̃`
∥∥∥∥∥
P̄

≤
(
1 + (M − 1)(2Smax + S2

max)
)
≤ (1 + 3MSmax).

When 3MSmax < 1, as is implied by the hypothesis of Theorem 1, some further algebra yields

λ̃M ≥ 1− 13M [Smax(P̄) + C(P̄)]1/2 ≥ 1− 13
[Smax(P̄) + C(P̄)]1/2

wmin

.

Upper bound on σmax(B): We pursue an upper bound on |||ΠQ⊥T̄Π∗Q⊥ |||op ≤ |||T̄Π∗Q⊥|||op.
By the definition of operator norm and the decomposability of ‖‖P̄ via mixture components,

|||T̄Π∗Q⊥|||op = sup
f∈Q⊥
‖f‖P̄≤1

∥∥T̄f∥∥P̄ ≤ sup
f∈Q⊥
‖f‖P̄≤1

max
m

∥∥T̄f∥∥Pm ≤ max
m

sup
f∈Q⊥
‖f‖P̄≤1

∥∥T̄f∥∥Pm .
We upper bound the supremum in the right hand side above for each m = 1, . . . ,M .

Consider an arbitrary feasible f (depending on m), and define g = f − 〈f, q̂m〉Pm q̂m, where
q̂m = qm

‖qm‖Pm
. Since f ∈ Q⊥, we expect ‖g − f‖P̄ to be small. Peeling off small terms, we

obtain the inequality∥∥T̄f∥∥Pm ≤ ‖Tkm,Pmg‖Pm + ‖g − f‖Pm +
∑
`6=m

w`
∥∥Tk̄,P`f

∥∥
Pm

+ |||Em|||op‖f‖Pm . (4.6.5)

The three terms besides ‖Tkm,Pmg‖Pm on the right hand side of equation (4.6.5) are small
when the overlap between mixture components is small. Indeed, the first of these is

‖g − f‖P̄ = ‖q̂m‖P̄
∣∣〈f, q̂m〉Pm∣∣ (i)

=
‖qm‖P̄

wm‖qm‖Pm

∣∣∣∣∣∑
`6=m

w`〈f, q̂m〉P`

∣∣∣∣∣
=

‖qm‖2
P̄

wm ‖qm‖2
Pm

∣∣∣∣∣∑
6̀=m

w`〈f, q̃m〉P`

∣∣∣∣∣ ≤ (1 +
S2

max

wmin

) ∣∣∣∣∣∑
` 6=m

w` ‖f‖P`

∣∣∣∣∣Smax

(ii)

≤ 2Smax
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Here equality (i) follows from the identity 0 = 〈f, qm〉P̄ =
∑M

`=1w`〈f, qm〉P` , whereas in-
equality (ii) follows from Jensen’s inequality, the bound ‖f‖P̄ ≤ 1, and the assumption
S2

max ≤ wmin.
The second of these small terms is

∑
` 6=m

∥∥w`Tk̄,P`f
∥∥
Pm

. By Jensen’s inequality and

inequality (4.6.3), we obtain

∑
6̀=m

∥∥w`Tk̄,P`f
∥∥
Pm
≤
√∑

`6=m

w`
∥∥Tk̄,P`f

∥∥2

Pm
≤
√

2[Smax(P̄) + C(P̄)]1/2

wmin

.

To complete the argument, we bound ‖Tkm,Pmg‖Pm by the second eigenvalue of Tkm,Pm , which
we denote by λ2(Tkm,Pm). Indeed, note that

‖Tkm,Pmg‖Pm ≤ sup
‖h‖Pm≤1

〈h,qm〉Pm=0

‖Tkm,Pmh‖Pm = λ2(Tkm,Pm).

To control λ2(Tkm,Pm), we use a version of Cheeger’s inequality (see Appendix 4.8 for the

theorem statement). Consider the transition kernel Π(x, dy) := k(x,y)dPm(y)
p(x)

, where p(x) =∫
k(x, y)dPm(y). Let Z =

∫
X p(x)dPm(x), and let P̃m denote the probability measure on X

that assigns to a measurable set S ⊂ X the mass

P̃m(S) =
1

Z

∫
y∈S

p(y)dPm(y).

It is easy to verify that P̃m is the invariant probability measure for the transition kernel Π.
The transition kernel Π induces a linear transformation TAsym : L2(P̃m)→ L2(P̃m) via

(TAsymf)(x) =

∫
k(x, y)

p(x)
f(y)dPm(y).

Cheeger’s inequality bounds the second eigenvalue of this transformation. In particular, by
Theorem 4.8.3, we have

1− Γ(Π)2

8
≥ λ2(TAsym), where Γ(Π) := inf0<P̃m(S)<1

∫
S Π(x,Sc)P̃m(dx)

P̃m(S)P̃m(Sc)
.

However, our choice of Π implies that Γ(Π) ≤ Γ. It is straight forward to verify that the
spectrum of the asymmetric Laplacian TAsym coincides with the spectrum of the symmetric
Laplacian Tkm,Pm . Therefore

1− Γ2

8
≥ λ2(Tkm,Pm).

Finally, inequality (4.6.5) reduces to the inequality

|||T̄Π∗Q⊥ |||op ≤ 1− Γ2

8
+

3[Smax(P̄) + C(P̄)]1/2

wmin

.
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4.7 Supplementary proofs for Theorem 2

This appendix is devoted to the second step in proof of Theorem 2 and the proofs of Lemmas 3
and 4. Note that we present the proof of Lemma 4 before the proof of Lemma 3 because the
two proofs mostly follow the same steps and the proof of Lemma 4 is slightly easier.

Proof of Step 2

Recall that a diverse M -tuple is good if all its distinct pairs form angles within θ of π
2

or 3π
2

.
Otherwise we call it bad. In Step 1, we showed that a uniformly chosen diverse M -tuple is
good with probability 1− p. Since there are

∏M
i=1 ni diverse M -tuples, at most dp(∏M

i=1 ni)e
of them can be bad.

Let e1 ∈ RM be the point in the fewest bad M -tuples. Without loss of generality, we
may assume that e1 has latent label 1. By the minimality of e1, it is contained in at most
p
∏M

i=2 ni bad M -tuples. Let G1 ⊂ RM×M denote the set of good M -tuples containing e1.
Let e2 ∈ RM be the most frequent point, different from e1, occurring in the M -tuples in G1.
Suppose without loss of generality that e2 has latent label 2. Let G2 denote the set of diverse
M -tuples in G1 with e2 in the second coordinate. By the minimality of e2, we find that

|G2| ≥ (1− p)n3 . . . nM .

Continuing in this way, choose points e3, . . . , eM−1 and construct G3, . . . , GM−1. Note that

GM−1 = {(e1, . . . , eM−1, z) : z has label M and (e1, . . . , eM−1, z) is good}.

By the minimality of e1, . . . , eM−1, we find that |GM−1| ≥ (1 − p)nM . Moreover all the ele-
ments of GM−1 are good M -tuples. However, all the M -tuples of GM−1 contain e1, . . . , eM−1.

Define the set

Z : =
{
z | (e1, . . . , eM−1, z) ∈ GM−1

}
.

Let GZ be the set of all good M -tuples with one coordinate in Z. Suppose a fraction p′

of the diverse M -tuples (y1, . . . , yM−1, z) ∈ GZ are incompatible with e1 in the sense that
(e1, y2, . . . , yM−1, z) is bad. This implies that e1 is in at least p′ |GZ | bad M -tuples. By the
minimality of e1, we have the inequality

p′ ≤ p

1− p.

Let G1
Z ⊂ GZ be the subset of GZ that is compatible with e1. The bound on p′ implies that∣∣G1

Z

∣∣ ≥ 1− 2p

1− p |GZ | .

Define G2
Z ⊂ G1

Z to be the subset of M -tuples in G1
Z compatible with e2. By the choice of

e2, ∣∣G2
Z

∣∣ ≥ 1− 2p

1− p
∣∣G1

Z

∣∣ .
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Continuing in this way, define GM−1
Z ⊂ · · · ⊂ G2

Z ⊂ G1
Z with∣∣GM−1

Z

∣∣
n1 . . . nM

≥
[
1− 2p

][1− 2p

1− p
]M−2 ≥ 1−Mp.

By construction, all of the elements of GM−1
Z are good. Moreover, all are compatible with

e1, . . . , eM−1. This completes the proof of Step 2.

Proof of Lemma 4

Recall that G denotes the principal eigenspace of H̄ and G̃ denotes the principal eigenspace of
H̃. We apply a result due to Stewart [107], stated precisely as Theorem 4.8.2 in Appendix 4.8,
to show that G is an approximate invariant subspace of H̃. The spectral separation of
two operators A and B is given by sep(A,B) : = inf{|a − b| : a ∈ σ(A), b ∈ σ(B)}. By
Theorem 4.8.2, if

|||ΠG⊥H̃Π∗G|||HS

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥)
≤ 1

2
,

then there is an operator A : G → G⊥ satisfying

|||A|||HS ≤
2|||ΠG⊥H̃Π∗G|||HS

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥)

such that Range(Π∗G−Π∗G⊥A) is an invariant subspace of H̃. By the argument of Theorem 1,
we obtain

ρ(G, G̃) ≤ 2|||ΠG⊥H̃Π∗G|||HS

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥)
.

We complete the proof of the Lemma in two steps; we first upper bound |||ΠG⊥H̃Π∗G|||HS, and

then lower bound the eigengap term sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥).

Step 1: In Step 1, we control the tails of the random variable |||ΠG⊥H̃Π∗G|||HS. We work

instead with the operator norm, and this causes us to pick up an additional factor of
√
M

because

|||ΠG⊥H̃Π∗G|||HS ≤
√
M |||ΠG⊥H̃Π∗G|||op.

Since ΠG⊥H̄Π∗G = 0, we are free to add this term inside the operator norm, which yields

|||ΠG⊥H̃Π∗G|||op ≤ |||H̃− H̄|||op.

We complete the first step by proving that the random variable |||H̄− H̃|||op has subgaussian
tails.

By the definition of operator norm,

|||H̄− H̃|||op = sup
‖h‖H̄≤1

∣∣∣∣〈h(y),

∫
k̄(x, y)h(x)[dP̄n(x)− dP̄(x)]

〉
H̄

∣∣∣∣ .
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By exchanging the order of inner product and integration and using the representer property,
we find that

|||H̄− H̃|||op = sup
‖h‖H̄≤1

∣∣∣∣∣ 1n
n∑
i=1

h2(Xi)−
∫
h2(x)dP̄(x)

∣∣∣∣∣ .
The object on the right hand side is the supremum of the empirical process over the function
class F2 = {h2 : ‖h‖H̄ ≤ 1}. By definition k̄(x, y) ≤ b

r2 and therefore the function class F2 is

uniformly bounded in the sense that for any h with ‖h‖H̄ ≤ 1, h2(x) =
〈
h, k̄x

〉2

H̄ ≤
∥∥k̄x∥∥2

H̄ ≤
b
r2 . We therefore may apply a standard concentration results for empirical processes over
bounded function classes [13] to obtain

|||H̄− H̃|||op ≤ 2Rn(F2) + δ0, (4.7.1)

with probability at least 1−2 exp
(
− nδ0

2r4

8b2

)
. By standard results on Rademacher and Gaus-

sian complexity [12], we have
√

2
π
Rn(F2) ≤ 2b

r2

√
Ek̄(X̄,X̄)

n
.

Step 2: To complete the proof of the lemma, we must control the eigengap term. By
Stewart [107, Thm 2.3], the spectral separation sep is stable to perturbations in its arguments.
Adding and subtracting ΠGH̄Π∗G in the first argument of sep below (and ΠG⊥H̄Π∗G⊥ in the
second), we find that

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥) ≥ sep(ΠGH̄Π∗G,ΠG⊥H̄Π∗G⊥)− 2|||H̄− H̃|||op.

Note that sep(ΠGH̄Π∗G,ΠG⊥H̄Π∗G⊥) = sep(ΠRT̄Π∗R,ΠR⊥T̄Π∗R⊥), and we can replace the pro-
jections onto R by projections onto Q using the same trick. This is helpful since we know
from our population level analysis that

sep(ΠQT̄Π∗Q,ΠQ⊥T̄Π∗Q⊥) ≥ Γ2

16
,

and therefore (using ρ(R,Q) ≤ 1), we obtain

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥) ≥ Γ2

16
− 6ρ(R,Q)− 2|||H̄− H̃|||op. (4.7.2)

On the set A0 = {6ρ(R,Q) + 2|||H̄− H̃|||op ≤ Γ2

32
} we obtain the lower bound

sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥) ≥ Γ2

32
. (4.7.3)

By equation (4.7.1), the set A0 has probability at least 1− 2e
−nδ0

2r4

8b2 . Finally, combining the
results of Step 1 and Step 2, we obtain the inequality

ρ(G, G̃) ≤ 64
√
M

Γ2

(2
√

2πb
√

Ek̄(X,X)

r2
√
n

+ δ0

)
,

with probability at least 1 − 2e
−nδ0

2r4

8b2 . Note that we write the statement of the lemma in
terms of δ = r2δ0

2
√

2πb
√

Ek̄(X,X)
.
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Proof of Lemma 3

Recall that V denotes the principal eigenspace of T̂, and Ṽ denotes the principal eigenspace
of T̃. We apply Stewart’s operator perturbation theorem (see section 4.8) to show that Ṽ is
an approximate invariant subspace of T̂. By Stewart [107, Thm 3.6], if

|||ΠṼ⊥T̂Π∗Ṽ |||HS

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥)
≤ 1

2
,

then there is an operator A : Ṽ → Ṽ⊥ satisfying

|||A|||HS ≤
2|||ΠṼ⊥T̂Π∗Ṽ |||HS

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥)

such that Range(Π∗Ṽ −Π∗Ṽ⊥A) is an invariant subspace of T̂. By the argument of Theorem 1,
we obtain

ρ(V , Ṽ) ≤
2|||ΠṼ⊥T̂Π∗Ṽ |||HS

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥)
. (4.7.4)

We complete the proof of the lemma in two steps; we first upper bound |||ΠṼ⊥T̂Π∗Ṽ |||HS, and

then lower bound the eigengap term sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥).

Step 1: In Step 1, we show that the random variable |||ΠṼ⊥T̂Π∗Ṽ |||HS has sub-Gaussian
tails. Note that

|||ΠṼ⊥T̂Π∗Ṽ |||HS ≤
√
M |||T̃− T̂|||op.

Recall that the kernels of these two integral operators are given by

k̄(x, y) =
k(x, y)

q̄(x)q̄(y)
, k̄n(x, y) =

k(x, y)

q̄n(x)q̄n(y)
.

We show that the kernels quite similar for large n by controlling the difference ‖q̄2 − q̄2
n‖∞.

Rewrite the difference as∥∥q̄2 − q̄2
n

∥∥
∞ = sup

x

∣∣∣∣∣Ek(x,X)− 1

n

n∑
i=1

k(x,Xi)

∣∣∣∣∣ .
Note that the right hand side above is the supremum of the empirical process over the class
of functions F = {k(x, ·) : x ∈ X}. This function class is uniformly bounded in the sense
that k(x, y) ≤ b. Therefore, by a standard concentration result for empirical processes [13],
we have

sup
x

∣∣P̄k(x, ·)− P̄nk(x, ·)
∣∣ ≤ 2Rn {k(x, ·) : x ∈ X}+ δ1, (4.7.5)

with probability at least 1− 2e−
nδ1

2

8b2 . The Rademacher complexity is upper bounded by

Rn(F) ≤
√
πb

2n

√
Ek(X̄, X̄).
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Let Q,Qn : L2(P̄n)→ L2(P̄n) denote operators corresponding to pointwise multiplication
by q̄ and q̄n, respectively. In other words, for f ∈ L2(P̄n), we have

Qf = q̄f, Qnf = q̄nf.

Recall we assume there is a scalar r > 0 such that P̄{q̄(X) < r} = 0. Therefore, the
operator Q is invertible with bounded inverse Q−1 given by pointwise multiplication by 1

q̄
.

In particular, we have the bound |||Q−1|||op ≤ 1
r
. Let rn = mini q̄n(Xi).

The advantage of having introduced the operators Q and Qn is that we can now write

T̃ = Q−1Tk,P̄nQ
−1, T̂ = Q−1

n Tk,P̄nQ
−1
n .

By the triangle inequality for operator norm, we have

|||T̃− T̂|||op ≤ |||Tk,P̄n|||op

(
|||Q−1 −Q−1

n |||2op + 2|||Q−1 −Q−1
n |||op|||Q−1

n |||op

)
. (4.7.6)

We can control the finite sample error in Q with our empirical process bound (4.7.5). Note
in particular that

|||Q−1 −Q−1
n |||op ≤

‖q̄n − q̄‖∞
rrn

≤ 1

r2rn

∥∥q̄2(x)− q̄2
n(x)

∥∥
∞. (4.7.7)

As is the case for any kernel integral operator, we have |||Tk,P̄|||op ≤ ‖k‖P̄. However, equa-
tion (4.7.6) involves the empirical version, |||Tk,P̄n|||op. The concentration of Tk,P̄n about Tk,P̄
follows from Rosasco et al. [96, Thm. 7], which implies that |||Tk,P̄n|||op ≤ 2|||Tk,P̄|||op with

probability at least 1 − 2e
−n‖k‖2P̄

8b2 . Therefore |||Tk,P̄n|||op ≤ 2 ‖k‖P̄ with the same probability.
Using this fact, after some algebra equation (4.7.6) reduces to

|||T̃− T̂|||op ≤
16 ‖k‖P̄
r4

(
δ1 +

√
2πb√
n

)
, (4.7.8)

with probability at least 1− 4e
−nδ1

2

8b2 whenever δ1 +
√

2πb√
n
≤ r2

2
, and δ1 ≤ ‖k‖P̄.

Step 2: We lower bound the eigengap term sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥). By Stewart [107,
Thm 2.3], the spectral separation sep is stable to perturbations in its arguments. Adding
and subtracting ΠṼT̃Π∗Ṽ in the first argument of sep below (and ΠṼ⊥T̃Π∗Ṽ⊥ in the second)
yields

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥) ≥ sep(ΠṼT̃Π∗Ṽ ,ΠṼ⊥T̃Π∗Ṽ⊥)− 2|||T̂− T̃|||op.

Note that sep(ΠṼT̃Π∗Ṽ ,ΠṼ⊥T̃Π∗Ṽ⊥) = sep(ΠG̃H̃Π∗G̃,ΠG̃⊥H̃Π∗G̃⊥), and we can replace projec-

tions onto G̃ by projections onto G by again leveraging the stability of sep to perturbations
in its arguments. In this way we obtain (using ρ(G, G̃) ≤ 1)

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥) ≥ sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥)− 2|||T̂− T̃|||op

− 6|||H̃|||opρ(G, G̃).
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Recall from equation (4.7.2) that sep(ΠGH̃Π∗G,ΠG⊥H̃Π∗G⊥) ≥ Γ2

32
on A0. Therefore, we obtain

the lower bound

sep(ΠṼT̂Π∗Ṽ ,ΠṼ⊥T̂Π∗Ṽ⊥) ≥ Γ2

64
,

valid on the setA0∩A1, whereA1 = {2|||T̂− T̃|||op + 6|||H̃|||opρ(G, G̃) ≤ Γ2

64
}. By equation (4.7.8),

the set A1 has probability at least 1 − 4e
−nδ1

2

8b2 . Recall that A0 has probability at least

1 − 2e
−nδ0

2r4

8b2 . Therefore A0 ∩ A1 has probability at least 1 − 4e
−nδ1

2

8b2 − 2e
−nδ0

2r4

8b2 . This
completes Step 2.

Combining the results of Step 1 and Step 2, inequality (4.7.4) simplifies to

ρ(V , Ṽ) ≤ 512
√
M ‖k‖P̄
r4Γ2

(√2πb√
n

+ δ1

)
, (4.7.9)

with probability at least 1 − 4e
−nδ1

2

8b2 − 2e
−nδ0

2r4

8b2 . In the statement of the lemma we write

δ1 =
√

2πbδ, and δ0 =
2
√

2πb
√

Ek̄(X,X)

r2 δ.

4.8 Background

In this appendix, we provide some background on kernel integral operators, reproducing
kernel Hilbert spaces, and operator perturbation theory.

Kernel integral operators

Given a probability measure P on a measurable space X , and a P-square integral kernel
k : X × X → R, the kernel integral operator on L2(P,X ) is the linear operator

Tk,P : f 7→
∫
f(x)k(x, ·)dP(x). (4.8.1)

The assumption that k is square integrable implies that Tk,P is a bounded linear operator and
|||Tk,P|||op ≤ ‖k‖P. Moreover, this ensures that Tk,P is compact (e.g., [36, Prop. 4.7]). If the
kernel function is symmetric, then Tk,P is a self-adjoint operator and, by the spectral theory
for self-adjoint compact operators, Tk,P has a countable sequence of eigenvalues λ1, λ2, . . .
and orthonormal eigenfunctions r1, r2, . . . and can be represented by the series

Tk,Ph =
∞∑
i=1

λi 〈ri, h〉 ri,

which converges in L2(P)-norm. As a corollary of this result, any symmetric and square
summable kernel function can be represented, in the sense of L2(P) convergence, by the
series

k(x, y) =
∞∑
i=1

λiri(x)ri(y), (4.8.2)
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for x and y in the support of P̄. (For instance, see Riesz and Nagy [95, Sec. 97]). We say a
kernel function is positive semidefinite if for any finite set of elements x1, . . . , xn the kernel
matrix with entries Aij = k(xi, xj) is positive semidefinite. When the kernel function is
symmetric, continuous, and positive semidefinite, then we have a slightly stronger statement
about the representation of k by the eigenfunctions of Tk,P.

Theorem 4.8.1 (Mercer). Suppose that X is compact, and that k : X×X → R is continuous,
symmetric and positive semidefinite, then the representation (4.8.2) is uniformly convergent.

For a proof in the simple case where X is an interval [a, b] ⊂ R, see Riesz and Nagy [95, Sec. 98].
For a full, updated treatment see the book by Steinwart and Christmann [106].

Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space is a Hilbert space of real-valued functions on X with the
property that for each x ∈ X , the evaluation functional f 7→ f(x) is bounded. For any
RKHS, there exists a unique positive semidefinite kernel function k : X ×X → R such that
for any h ∈ H and x ∈ X , we have 〈h, k(x, ·)〉H = h(x). Conversely, given any positive
semidefinite kernel function k, we can construct a RKHS, H, in which kx := k(x, ·) acts as
the representer of evaluation at x. We construct this Hilbert space as (the completion of)
the set of finite linear combinations

∑n
i=1 aik(xi, ·) equipped with inner product defined by〈
kx, ky

〉
= k(x, y). (4.8.3)

One striking fact is that for any given any kernel k and distribution P on X , the RKHS
is isomorphic to an ellipsoid in L2(P). Consider the kernel integral operator Tk,P : L2(P)→
L2(P) defined in equation (4.8.1). Denote its eigenfunctions by {ri}∞i=1. Let HP : H → H
denote the integral operator onH defined byH 3 h 7→

∫
h(x)kxdP(x). If ri satisfies ‖ri‖P̄ = 1

and Tk,Pri = λiri, then gi :=
√
λiri has unit norm in H, and is an eigenfunction of HP with

eigenvalue λi. By Mercer’s theorem, for any probability measure P on X , an element of the
RKHS can be represented in terms of the eigenfunctions of Tk,P by

h(x) =
〈 ∞∑
i=1

λiri(x)ri, h
〉
H =

∞∑
i=1

λiri(x)
〈
ri, h

〉
H.

Hence the H norm of such an h is
∑∞

m=1 λi〈ri, h〉
2
H, showing that h is a member of L2(P).

Consequently, the RKHS is isomorphic to an ellipsoid in L2(P). For more background on
reproducing kernel Hilbert spaces, we refer the reader to various standard references [4, 99,
100, 106, 118].

Operator perturbation theorem

In this section, we state an operator perturbation theorem due to Stewart [107]. Let T be
a self-adjoint Hilbert–Schmidt operator on a Hilbert space H. Let U ⊂ H be a subspace,
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let U⊥ denote its orthogonal complement, and let ΠU and ΠU⊥ denote the corresponding
projection operators. For the decomposition of T according to (U ,U⊥), write[

A G∗

G B

]
where A = ΠUTΠ∗U , G = ΠUTΠ∗U⊥ , and B = ΠU⊥TΠ∗U⊥ . Set

α := |||G|||HS, β := inf{|a− b| : a ∈ σ(A), b ∈ σ(B)}.

Theorem 4.8.2 (Stewart). If α
β
< 1

2
, then there is an operator E : U → U⊥ such that

Range(Π∗U + Π∗U⊥E) is an invariant subspace of T , and satisfying the bound |||E|||HS ≤ 2α
β

.
Moreover, the spectrum of T is the disjoint union

σ(T ) = σ(A+G∗E) ∪ σ(B − EG∗).

Cheeger’s inequality

In this section, we state a version of Cheeger’s inequality due to Lawler and Sokal [75].
Suppose that Π : X ×Σ→ [0,∞) is a transition probability kernel on (X ,Σ) with invariant
measure P̃m. The transition kernel Π induces a linear transformation on L2(P̃m) via f 7→∫
f(y)Π(·, dy). Let λ2(Π) denote the second largest eigenvalue of this linear transformation.

Define

Γ(Π) : = inf
0<P̃m(S)<1

∫
S

Π(x, Sc)P̃m(dx)

P̃m(S)P̃m(Sc)
, (4.8.4)

where the infimum is taken over all measurable sets S.

Theorem 4.8.3 (Cheeger’s inequality). We have the following inequalities

1− Γ(Π)2

8
≥ λ2(Π) ≥ 1− Γ(Π). (4.8.5)
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4.9 List of symbols

Symbol Definition
ϕ difficulty of clustering problem
Smax(P̄) expected intercluster similarity
C(P̄) coupling parameter
Γ indivisibility of mixture components
P̄ mixture distribution on X
q̄ square root kernelized density for P̄
Pm the m-th mixture component on X
wm the m-th mixture weight
qm square root kernelized density for Pm
k kernel function on X × X
k̄ q̄-normalized kernel function on X × X
km qm-normalized kernel function on X × X
P̄n empirical mixture distribution on X
||| · |||op operator norm
||| · |||HS Hilbert–Schmidt norm
‖·‖P L2(P) norm
〈·, ·〉P L2(P) inner product
ρ distance between subspaces
Q span of square root kernelized densities
R M -dimensional principal eigenspace of T̄
G M -dimensional principal eigenspace of H̄

G̃ M -dimensional principal eigenspace of H̃

Ṽ M -dimensional principal eigenspace of T̃

V M -dimensional principal eigenspace of T̂
Tk,P generic kernel operator with kernel k integrating against P
T̄ Laplacian operator on L2(P̄)

T̃ intermediate operator on L2(P̄n)

T̂ Laplacian matrix on L2(P̄n)
H̄ reproducing kernel Hilbert space for k̄

H̃ intermediate operator on H̄
H̄ Laplacian operator on H̄
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