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Seismic Levee System Fragility Considering 
Spatial Correlation of Demands and 
Component Fragilities 
Dong Youp Kwak,a) M.EERI, Jonathan P. Stewart,a) M.EERI, Scott J. 
Brandenberg,a) M.EERI, and Atsushi Mikamib) 

Seismic levee performance is most readily computed for short segments having 

consistent geometry, soil conditions, and seismic demands. Spatial variations of 

seismic demands and of segment capacities significantly influence system risk, 

which is critical for flood protection because any segment failure within the system 

can cause inundation. We present a methodology to compute the probability of 

seismic levee system failure conditional on individual segment fragility and spatial 

correlations of demands and of capacities. Seismic demands are estimated from 

ground motion prediction equations; their correlation is available in the literature. 

Capacities and their correlation are derived from levee damage observations from 

a levee system in Japan shaken by two earthquakes. We find seismic capacities to 

exhibit positive correlations over shorter distances than for demands. System 

fragility is computed using Monte-Carlo simulations where segment demand and 

capacity realizations are generated to account for spatial correlations. We find 

probability of system failure is lower than would be obtained under an assumption 

of no correlation, and damage probability increases as the number of components 

in the system increases. 

INTRODUCTION 

A levee system is comprised of earth embankments that protect a particular area from 

flooding. One example is the Sacramento / San Joaquin Delta, where levees protect below-sea-

level "islands" and convey fresh water that is exported to more than 20 million urban and 

agricultural users. If a particular length of a levee is taken as a segment (e.g., 50 m in length), 

then a levee system is a collection of levee segments in series. Levee systems are typically 
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continuous and have lengths much greater (often measured in km) than their width or height 

(typically measured in m). 

Kwak et al. (2016) developed fragility functions for 50 m long levee segments in which 

probabilities of exceeding various damage thresholds are expressed as a function of peak 

ground velocity (PGV), geological conditions, and groundwater elevation. Levee segments are 

connected in series, so failure of one segment exposes the protected region to flood risk when 

the levee system is continuously ‘loaded’ (retaining water). Under such conditions, the levee 

system fragility problem involves analysis of the probability of whether at least one levee 

segment in the series exceeds a specific damage state. The solution of this problem depends 

strongly on the system length (i.e., number of segments) and correlations of capacity and 

demand among segments. The greater the number of segments, the higher is the opportunity 

for demand to exceed capacity in at least one segment.  

To illustrate the importance of spatial correlation, consider two extreme cases: perfectly 

correlated and statistically independent. For the perfectly correlated system, the capacity and 

demand for each segment are random variables that are perfectly spatially correlated. Perfect 

correlation requires that throughout the system all realizations of demand or capacity are a 

uniform number of standard deviations higher or lower than the mean value, which can vary 

spatially. For this perfectly correlated system, the probability of system failure is equal to the 

maximum of the probabilities of failure of the individual segments in the system. If the system 

failure is denoted P(FS) and the fragility of segment i as P(fi), we have: 

 ( ) ( )maxS iP F P f= ⎡ ⎤⎣ ⎦  (1) 

where arguments FS and fi indicate failure of system and segment i, respectively. Now consider 

the other extreme of statistical independence, which requires P(FS) to be computed as the 

complement of system survival, which in turn is the product of each individual segment 

surviving:  

  (2) 

where n is the total number of segments. Perfect correlation and statistical independence 

comprise extremes known as uni-modal bounds for a series system (Ang and Tang, 2007). 

When segment damage states are correlated, system failure probability is between these 

extremes:  

  
P FS( ) = 1− 1− P fi( )( )

i=1

n

∏
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 ( ) ( ) ( )
1

max 1 1
n

i S i
i

P f P F P f
=

≤ ≤ − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏  (3) 

The range of failure probabilities provided by Eq. (3) is often wide. For example, a system 

composed of 100 segments each with P(fi) = 0.05 will have P(FS) = 0.05 for perfect correlation 

and P(FS) = 0.994 for statistical independence among segments. In general, P(fi) will vary 

among segments, but is selected to be constant for this simple illustration. Where the actual 

value of P(FS) falls between these unimodal bounds depends strongly on capacity and demand 

correlations among segments.  

To address this problem, we present a methodology for computing P(FS) conditional on 

P(fi) and spatial correlations among segments. We begin in the next section by describing prior 

work for analysis of system fragility. We then describe the quantification of damage using 

Boolean variables representing damage states, define variables related to the correlation of 

damage states, and develop estimates of those correlations using autocorrelation analyses of 

levee damage data from Japan. Next we define statistical distributions and spatial correlation 

functions for segment-specific seismic levee capacity and demand. Demand correlations are 

taken from the literature (Kwak et al., 2016; Jayaram and Baker, 2009) and capacity 

correlations are obtained from observations of a levee system shaken by two recent earthquakes 

in Niigata, Japan. System-level fragility is then derived using Monte-Carlo simulations that 

consider the correlated segment demands and capacities. We conclude by applying the 

proposed approach to compute system fragility for components of a levee system protecting a 

Japanese city. 

ANALYSIS OF SYSTEM FRAGILITY IN PRIOR WORK 

Previous studies have addressed the system fragility problem for relatively simplified 

conditions. USACE (2008) and Wolff (2008) compute P(FS) by dividing the levee system into 

“reaches” with one or several characteristic lengths (typically 100 to 300 m) within which the 

correlation of damage is assumed perfect, whereas correlations between reaches are taken as 

zero. In these applications, a reach is a length of levee judged to have adequately similar 

geometry, soil conditions, and loading conditions that the reach can be represented by analysis 

of a single cross-section. For each reach, P(fi) is evaluated from geotechnical engineering 

models, and P(FS) is then computed using Eq. (2). For applications to flood risk in the 

Netherlands, Vrouwenvelder (2006) and Jongejan and Maaskant (2015) extend the ‘reach’ 

concept to consider non-unity correlation within reaches and potentially non-zero correlation 
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between reaches, in both cases depending on the correlation of relevant geotechnical 

properties.  

In an important study for the Sacramento / San Joaquin Delta region, the Delta Risk 

Management Strategy (URS and JRB&A, 2008) computed P(FS) by summing weighted values 

of P(fi), where the weights represent the probability of each reach being the "weakest link". 

The weight for a particular reach is proportional to P(fi), and the weights sum to unity. The 

resulting value of P(FS) is similar to assuming perfect correlation of damage among reaches, 

although P(FS) will actually be less than or equal to the maximum value of P(fi) using this 

approach. To account for levee system length, P(FS) is then multiplied by a correction factor 

ranging from 0.7 to 1.7, developed from empirical observations of flood events in the Delta. 

The principal limitation of these methods is that they incorporate the spatial correlations of 

damage in an arbitrary manner. Defining the characteristic length of a reach is difficult without 

formally considering spatial correlation of resistance and demand. Characteristic lengths may 

be different for earthquake risk than for flood risk because soil properties that resist floods 

(hydraulic conductivity, erodibility) are different from those that resist earthquakes 

(liquefaction resistance, undrained shear strength). Moreover, high water demands posed by 

floods are likely more spatially correlated than ground shaking demands. A more robust 

solution that accounts for spatial correlations in resistance and demands is therefore needed. 

A mathematical solution for system fragility can in principle be developed using an n-

dimensional joint standard normal distribution function, Φn, in which the standard normal 

variate reflects the safety margin (Rackwitz and Krzykacz, 1978). The safety margin for a 

component i, Mi, is defined as Mi = Ci – Di, where Ci and Di are random variables representing 

element capacity and demand, respectively. If Ci and Di follow normal distributions with user-

defined means and standard deviations for each element, then Mi is also normally distributed. 

Under these conditions, the probability of system survival can be obtained by finding the space 

in Φn where the n-dimensional standard normal variates are lower than the reliability index βi, 

which is defined as the mean safety margin normalized by its standard deviation, throughout 

all components. The equation of βi is:  

  (4) 

The probability of system failure P(FS) is the complement of the probability of system 

survival. In practice, for systems with n ≥ 3 components, the joint distribution Φn is difficult to 

  
βi = E Mi( ) / var Mi( )



 

 5 

solve for, so upper- and lower-bounded solutions based on limiting assumptions are used 

(Thoft-Christensen and Murotsu, 1986).  

A solution for Φn was formulated by Dunnett and Sobel (1955) (for applications unrelated 

to system fragility) under the assumption that the correlation coefficient ρ between all possible 

element combinations is constant: 

  (5) 

where xi is a variate in the ith normal distribution, i is an index for system components, ϕ and 

Φ are the probability density function (PDF) and cumulative density function (CDF) operators 

for the standard normal distribution, respectively, t is the standard normal variate and 

integrand, and n is the number of components (i.e., levee segments). To apply the joint 

distribution solution in Eq. (5) to fragility problems, as described above, it is useful to replace 

variate xi with the reliability index βi. With the substitution of βi for xi, Eq. (5) represents the 

probability of survival for a series system with equally correlated elements. The system 

fragility P(FS) can then be computed as the complement of system survival: 

  (6) 

Grigoriu and Turkstra (1979) presented a simplified version of Eq. (6) utilizing a second 

assumption that βi is constant for all elements:  

  (7) 

where βe is the constant reliability index for all elements. Eq. (7) is a single integration problem 

and as such is amenable to numerical calculation. Thoft-Christensen and Sørensen (1982) 

extended this solution to include non-equally correlated elements by estimating an average 

correlation coefficient throughout the system and applying that value in Eq. (7).  

For applications to levees, there are significant limitations associated with the assumptions 

required to derive Eq. (7). Constant reliability index will not apply to the levee segments within 

a spatially distributed system – some segments will have relatively low fragility (due to low 

demand or high capacity) while others will be higher. Likewise, we intuitively expect the 

  
Φn
i=1−n

xi;ρ( ) = φ t( ) Φ
xi + ρt

1− ρ

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∏ dt
−∞

∞

∫

  
P FS( ) = 1− Φn

i=1−n
βi;ρ( ) = 1− φ t( ) Φ

βi + ρt
1− ρ

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∏ dt
−∞

∞

∫

  
P FS( ) = 1− φ t( ) Φ

βe + ρt
1− ρ

⎛
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⎢
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∞

∫
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correlation of safety margin to not be constant but to vary with separation distance (closer 

segments well-correlated, distant segments uncorrelated). 

The proposed approach, described and illustrated in subsequent sections of this paper, was 

developed to overcome the limitations of previous methods. The approach is fully general for 

series systems having non-uniform component fragilities and defined correlations among 

demands and capacities. Although fully general, the application emphasized here is levee flood 

control systems. 

DAMAGE STATES AND THEIR CORRELATION 

DAMAGE STATES 

The damage experienced by levees during earthquakes is conveniently expressed in terms 

of damage states that take into consideration crack formation, crest settlement, and other 

factors. Kwak et al. (2016) developed fragility functions for 50 m long levee segments in which 

probability of exceeding a damage threshold is expressed as a function of peak ground velocity 

(PGV), surface geology, and groundwater elevation. As shown in Table 1, damage states (DS) 

range from zero for no damage to four for severe damage (e.g., levee collapse).  

Table 1. Damage states assigned to levee segments (Kwak et al., 2016). 

Damage 
state 

Crack 
depth (cm) 

Crack 
width (cm) 

Subsidence 
(cm) Description 

0 0 0 0 No damage reported 

1 0~100 0~10 0~10 Slight damage, small cracks 

2 100~200 10~50 10~30 Moderate damage, cracks or small lateral 
spreading 

3 200~300 50~100 30~100 Severe damage, lateral spreading 

4 > 300 > 100 > 100 Levee collapse 

 

Figure 1 shows seismic levee fragility expressed as the probability of exceeding a specific 

DS versus PGV, conditioned on surface geomorphology (GN) and relative ground water 

elevation (DW), defined as the elevation difference between the base of the levee and the 

groundwater table at the time of the earthquake. A log-normal CDF was fit to fragility data 

using the maximum likelihood estimation method (Kwak et al., 2016). The fragility functions 

are statistically lower than average for GN category 1 (relatively firm materials in mountainous 

regions or gravel terrace deposits), and statistically higher than average when DW is higher than 
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-1.0 m. High DW corresponds to shallow ground water and presumably increased liquefaction 

risk. When discrete DSs are adopted to quantify damage, Boolean variables (i.e., zero or one) 

can be defined for cases of no damage (i.e., zero for DS ≤ ds) and damage (one for DS > ds) 

depending on the threshold, ds.   

 

Figure 1. Probabilities of exceeding damage states (DS) for (a) all of the segments combined, (b) 
segments with geomorphic (GN) category 1 corresponding to mountain or gravel terrace deposits, (c) 
groundwater depth relative to levee base (DW) greater than 1 m (deep ground water), and (d) 
groundwater depth less than 1 m below levee base (shallow ground water) (Kwak et al., 2016). 

CORRELATION COEFFICIENT OF DAMAGE STATES 

The correlation of two random variables is often computed using residuals of the variables 

relative to a predictive model (residual = measured value minus predicted value) (Kutner et al., 

2004; Baker and Cornell, 2006). However, the correlation of damage states is analyzed 

differently because damage is not expressed as continuous variables but as discrete variables 

as described in Table 1. If we define ‘failure’ (fi) as the damage for segment i exceeding a 

particular DS, then, fi can be represented as Boolean variables: fi = 1 for damage and fi = 0 for 

no damage. Kwak et al. (2015) derived the correlation coefficient of fi (ρDS): 

  (8) 

where µf,i is the mean of fi and E represents the expected value operator. The correlation 

coefficient for survival states, which are represented as si = 0 for damage and si = 1 for no 

damage, is equivalent to ρDS in Eq. (8) (Kwak et al., 2015). Hence, ρDS can be expressed in 

terms of si as (Kwak et al., 2015): 

  

ρDS =
E fi f j( )− µ f ,iµ f , j

µ f ,i 1− µ f ,i( )µ f , j 1− µ f , j( )
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  (9) 

where P(si) is the probability of survival for a segment i and P(si∩sj) is the probability of the 

intersection of si and sj. Eqs. (8) and (9) can be used to compute ρDS from damage state data 

without the use of an underlying model for levee fragility. Kwak (2014) demonstrated that the 

correlation coefficient of residuals calculated as Ri = fi – P(fi) is the same as that for damage 

states.  

Direct computation of ρDS would require observations of the same levee system exposed to 

many earthquakes. The probability of survival for segment i [i.e., P(si)] is the mean of si from 

many samples, whose reliability is highly dependent on the number of samples, which must be 

from events that produce shaking that is strong enough to have the potential for causing 

damage. The joint distribution P(si∩sj), which is the probability of survival of both segments i 

and j, similarly requires a large number of samples for a reliable estimate. In practice, data will 

seldom be available with which to compute ρDS from observed damage states. In the following 

section, we present an autocorrelation approach that relies on a large volume of data for a few 

events. This approach is investigated as a means by which to approximate ρDS. 

AUTOCORRELATION COEFFICIENT AS APPROXIMATION OF CORRELATION 

COEFFICIENT 

Autocorrelation represents the cross-correlation between a data vector and an offset, or 

lagged, version of the same vector in which the values in the vector appear in the same order 

but are shifted by the prescribed lag. The correlation is computed between the original and 

shifted data vectors, and the process is repeated for all possible shifts. The resulting correlation 

values are then plotted as a function of lag distance to develop an autocorrelation function. The 

autocorrelation function is equal to the damage state correlation if damage state correlation is 

stationary in space (i.e., if the correlation of damage states is a function only of spatial 

separation distance). We lack adequate observations to empirically verify whether damage 

state correlation is stationary, and therefore adopt a new variable ρac to express autocorrelation.   

The data set used for autocorrelation analysis consists of detailed damage observations 

along the Shinano River levee system in Japan following large seismic events in 2004 and 2007 

in the Niigata region (details of the data set are given in Kwak et al., 2016). Figure 2 shows 

autocorrelations of damage state ρac for the Boolean assignment of levee damage at DS > 0, 1, 

  

ρDS =
E sis j( )− µs,iµs, j

µs,i 1− µs,i( )µs, j 1− µs, j( )
=

P si ∩ sj( )− P si( )P sj( )
P si( ) 1− P si( )( )P sj( ) 1− P sj( )( )
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and 2 for three portions of the Shinano River levee systems (denoted SH1, SH2, and UO) and 

the two events. The values of ρac are near unity at a separation distance near zero, and decrease 

approximately exponentially with separation distance. Variations of ρac with distance are 

regressed as follows:  

  (10) 

where x is the lagged distance, cDS and αDS are regression coefficients, and εx is an error term. 

The regression coefficient αDS is equal to the 'range' in a semi-variogram, which is the lag where 

ρac becomes practically zero. Eq. (10) is divided into different equations for x = 0 and x > 0 to 

facilitate a more accurate fit to the data than would be afforded by forcing ρac to be unity at x 

= 0 in the functional form for the regression (i.e., by making cDS = 1). Accordingly, there is a 

step from 1.0 to cDS as x becomes larger than zero. The coefficients were regressed using 

separation distances in the range x ≤ 1.0 km in order to best fit the data in that critical range.  

Additional details on the autocorrelation analyses are given in Kwak et al. (2015). 

 

Figure 2. Autocorrelation coefficients of damage states (ρac) for levee systems for the SH1, SH2, and 
UO rivers from the 2004 and 2007 Niigata earthquakes. Exponential function fits are shown. Data for 
DS > 2 are only available for SH1 in 2004 event. 

As shown in Figure 2, the correlation models for DS > 0 and DS > 1 are well constrained 

because the results are similar for different river systems and different earthquakes. The fit 

curve in Figure 3 synthesizes the data from Figure 2 for DS > 0 and DS > 1, and the resulting 

regression coefficients are cDS = 0.77 and αDS =3.7 km. Regression for the DS > 2 case results 

in cDS = 0.8 and αDS = 1 km, though this case is relatively poorly constrained. 

  

ρac =
1 if x = 0

cDS exp −3× x /αDS( ) + ε x if x > 0

⎧
⎨
⎪

⎩⎪
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Figure 3. Auto-correlation coefficient ρac for DS > 0 and 1 damage states combining all river systems 
for 2004 and 2007 earthquakes and a regressed fit line considering combined data set. 

The functions derived here for ρac can be taken as approximately equivalent to ρDS if 

damage states are stationary (in space) between segments; in other words, while the mean and 

standard deviation of damage states may vary in space, their correlation must depend only on 

separation distance and otherwise be independent of location. To check the use of ρac for ρDS 

with the above assumption, Kwak et al. (2015) randomly generated Boolean variables (0 and 

1) following a pre-defined function for describing ρDS as a function of separation distance, and 

then checked whether the ρac calculated from the randomly generated dataset matched the 

values of ρDS used to generate the data. When the number of samples used in the numerical 

exercise was large (i.e., matching the 2762 segments available for the Shinano River system 

for cases with DS > 0 and 1), the values of ρac compared well to ρDS. On the other hand, for the 

relatively sparse data set for the DS > 2 condition (798 segments), ρac underestimates ρDS. Based 

on this analysis, we consider the available data to provide statistically meaningful estimates of 

ρDS for the DS > 0 and 1 damage thresholds and to marginally underestimate ρDS for DS > 2. 

SYSTEM FRAGILITY UTILIZING DAMAGE DEMANDS AND CAPACITIES  

We define below damage demands and capacities expressed as random variables from 

which segment damage probabilities can be computed. The analysis of system-level fragility 

requires correlation coefficients for those distributions, which are presented subsequently.  

System-level fragility can be defined based on variable numbers of segment failures 

comprising system failure. We first consider the one-segment case, in which the probability of 

a single levee segment exceeding a particular damage level is computed using Monte-Carlo 

simulation. That procedure is then extended to compute the probability of multiple damaged 

segments exceeding a particular damage level. 
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DAMAGE DEMANDS AND CAPACITIES 

Damage capacity represents the “strength” or “resistance” of a levee segment against being 

damaged by an earthquake, and damage demand represents the "stress" or "load" imposed on 

the levee by an earthquake. In the present context, capacity is quantified as the ground motion 

intensity measure, which if exceeded, causes the levee segment to experience damage 

exceeding a damage state, and demand is quantified as the ground motion intensity measure 

induced by an earthquake. Based on the fragility work in Kwak et al. (2016), the selected 

intensity measure for representing capacity and demand is PGV.  

For simplicity of notation, we define “failure” as occurring when demand exceeds capacity, 

regardless of the severity of the specific damage state. The probability of failure, Pf, for a 

segment is computed from capacity and demand PDFs as (adapted from Melchers, 1999): 

  (11) 

where fC and FC represent capacity PDF and CDF, respectively, fD represents the demand PDF, 

and integrand t is the variate for the product of FC and fD. Figure 4 shows an example in which 

the capacity median and standard deviation are exp(µlnC) = 104 cm/s and σlnC = 0.89, 

respectively, and the corresponding moments for demand are exp(µlnD) = 40 cm/s and σlnD = 

0.65 (a typical value from GMPEs). The figure illustrates the two terms in the integrand of Eq. 

(11) (FC and fD) and their product, which is a failure density function having an underlying area 

equivalent to Pf.  

For a given capacity distribution (as in Figure 4a), if the median of demand [i.e., exp(µlnD)] 

is allowed to vary from zero to large values (at the upper limit of the fragility curve) with 

constant standard deviation, a distribution of failure probabilities Pf will be obtained that 

comprises a fragility function for the segment. The median of the fragility function matches 

the median of the capacity distribution, whereas the standard deviation of fragility function 

(i.e., β) is computed as: 

   β = σ lnC
2 +σ ln D

2  (12) 

Eq. (12) supposes that demand and capacity are uncorrelated, which is generally true for 

seismic risk applications. In our case, we have estimates of β = 0.80-0.92 from Kwak et al. 

(2016) (range reflects effects of various conditioning variables) and we seek to compute σlnC 

through rearrangement of Eq. (12). Because the density of ground motion recording stations is 

  
Pf = P C − D ≤ 0( ) = fC c( ) fD d( )dc dd

−∞

c≥d

∫−∞

∞

∫ = FC t( ) fD t( )dt
−∞

∞

∫
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high in the study region used in development of the fragility functions, the standard deviation 

of the demand estimates used by Kwak et al. (2016) is much lower (0.2-0.3) than is typical for 

forward predictions of ground motion (0.5-0.7). Using σlnD = 0.25 results in estimates of σlnC = 

0.76-0.89, which are only slightly reduced from the β values. These values of capacity 

dispersion are large because of many relevant factors that are not reflected in the formulation 

of the fragility function (e.g., site-specific soil properties related to shear strength and 

liquefaction resistance).  

 

Figure 4. (a) Example CDF of capacity (FC) and PDF of demand (fD). (b) Failure density computed as 
product of FC and fD. The area below the failure density function is the probability of failure, Pf (after 
Melchers, 1999). 

CORRELATION OF DAMAGE DEMANDS 

The ground shaking experienced by a distributed levee system will exhibit spatially 

variable intensity measures (IMs). Some of those spatial variations will follow well-understood 

trends with respect to site-source distance (IMs tend to decrease with distance from the fault 

rupture) or site condition (IMs tend to increase for softer soils). However, some of those 

variations are, for practical purposes, random. The relatively ‘deterministic’ features can 

usually be described by a GMPE, whereas the random features can be represented by spatial 

variations of residuals. To facilitate analysis of the correlation of residuals, the fixed effect 

(approximately the mean of residuals) for earthquake k is denoted ηk and the residual between 

observation i and an event term-adjusted GMPE (also known as a within-event residual) is 

denoted εki. We consider here the spatial correlation of εki. 
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Regression analyses of semi-variance were performed using the 2004 and 2007 Niigata 

earthquake recordings (Kwak et al., 2012, 2016), which related a semi-variogram model to 

separation distance. Those relationships can be converted to correlation coefficient 

relationships having a similar form as follows (e.g., Goovaerts 1997):  

  (13) 

where ,ˆDD kρ  indicates the mean correlation coefficient for event k, x is the separation distance, 

and αDD is equivalent to the range of a semi-variogram model (e.g., Goovaerts 1997). Values 

of αDD were found to be 21 and 27 km for the 2004 and 2007 earthquakes, respectively. 

The variation of  with distance is as shown in Figure 5. Jayaram and Baker (2009) have 

analyzed semi-variogram data from several California earthquakes and the Chi Chi Taiwan 

earthquake. While they did not consider the IM of PGV, for the related IM of 0.5 sec PSA 

(Bommer and Alarcon, 2006), they find ranges of 17.1 km for widely varying geologic 

conditions between stations and 33.0 km for similar geologic conditions. The correlations 

based on this model are also shown in Figure 5, which encompass those evaluated by Kwak et 

al. (2012, 2016) for the Japan earthquakes. 

 

Figure 5. Correlation coefficients of damage demands (i.e., within-event residuals for PGV) from 
recordings of the 2004 and 2007 Niigata earthquakes and from Jayaram and Baker (2009). 

CORRELATION OF DAMAGE CAPACITY   

The correlation of damage capacity ρDC between segments cannot be calculated directly 

from residuals in the manner used for demand correlations because direct capacity 

“measurements” from observed performance are unavailable. Baker (2008) shows that the 

capacity distribution is the derivative of the fragility curve if demand is deterministic. When 

   
ρ̂DD ,k x( ) = exp −3x /αDD ,k( )

  ρ̂DD
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demand is not deterministic, its dispersion contributes to β (standard deviation of fragility 

function) per Eq. (12). In this section, we show how ρDC can be inferred from specified capacity 

and demand distributions and specified demand correlations. We first present equations for the 

probability of damage to a system consisting of two segments with correlated capacity subject 

to known demands. We then show how this process can be inverted to infer ρDC from the 

spatially correlated fragility functions and demands. We note here that we consider ρDC to be a 

fundamental parameter for a given levee system, whereas ρDS is an outcome of the correlated 

capacity and demand distributions. 

Consider a levee system consisting of two segments where segment i has exp(µlnC) of 108 

cm/s and σlnC of 0.89, and segment j has exp(µlnC) of 84 cm/s and σlnC of 0.80. Figure 6 shows 

randomly generated sets of capacities for both segments plotted together. In one case (Figure 

6a) the capacities are uncorrelated (ρDC = 0), whereas in the other (Figure 6b) they are strongly 

correlated with ρDC = 0.8. If these segments are subjected to the levels of deterministic demand 

marked in the figure (PGV = 35 cm/s for levee i and 43 cm/s for levee j), segment failure is 

defined by the capacity realizations (dots) that are less than the demand (i.e., those in the shaded 

space). Furthermore, assuming these two segments constitute a series system for which failure 

of either segment constitutes system failure, the probability of system failure is represented by 

the fraction of realizations within the shaded region to the total number of realizations. The 

value of P(FS) depends on the correlation coefficient, being higher for ρDC = 0 [P(FS) = 0.29] 

than for ρDC = 0.8 [P(FS) = 0.21]. 

 

Figure 6. Randomly sampled damage capacities for two segments having different statistical moments. 
The capacities are (a) uncorrelated (ρDC = 0) and (b) correlated (ρDC = 0.8). Modified from Baker (2008). 
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The damage states for the combination of segments i and j can be represented as four sets 

of Boolean variables: [0 0] for failures of i and j, [0 1] for failure of i and survival of j, [1 0] 

for survival of i and failure of j, and [1 1] for survivals of i and j, respectively. With these 

damage states represented as Boolean variables, we can calculate ρDS using Eq. (9). For the 

case of uncorrelated capacities and deterministic demands (Figure 6a), P(si) = 0.9, P(sj) = 0.8, 

and P(si∩ sj) = 0.72, which provides ρDS = 0. For the case of correlated capacities (Figure 6b), 

P(si) and P(sj) are unchanged, and P(si∩ sj) = 0.78, which provides ρDS = 0.5.  

The above example illustrates the calculation of ρDS for two segments having a particular 

correlation of capacities (ρDC), given capacity PDFs, and deterministic demands. The present 

problem is formulated somewhat differently, in that we seek a solution for ρDC given PDFs of 

capacities, a target model for the spatial correlation of damage states (ρDS), and the demand 

distributions for the earthquake ground motions that produced those damage states. We solve 

this in an iterative manner as follows: 

1. Define a trial function for ρDC as follows:  

  (14) 

where x is separation distance and αDC is a constant for which an arbitrary trial value 

is selected in this initial step.  

2. Using Monte-Carlo simulation, generate realizations of correlated capacities for the 

Shinano River system based on given PDFs of capacities and the spatial correlation 

structure defined in Step 1.  

3. Define the appropriate correlated distribution of event-specific demands within the 

system and then evaluate damage states for each segment by comparing capacities 

with demands.  

4. Calculate ρDS as a function of separation distance from the realizations in Step 3 

using Eq. (9), and compare with the target ρDS in Figure 2.  

5. Adjust the value of αDC and repeat Steps 1 to 4 until a good match is obtained.  

Figure 7 shows the values of ρDC obtained from this procedure using 50,000 Monte Carlo 

simulations, where the mismatch from Step 5 is less than 0.1 km. Also plotted in Figure 7 are 

the average values of ρDS (ρDS-avg) from Step 4, and the target ρDS from Figure 2. Values of 

coefficients αDC obtained for each damage threshold are indicated in Figure 7. The value of 

   ρDC x( ) = exp −3x /αDC( )



 

 16 

αDC (< 10 km) in Eq. (14) is less than αDD (20-30 km), indicating the spatial scale of variation 

of demand is larger than for capacity.  

 

Figure 7. Correlation coefficients for damage capacities (ρDC) derived to produce correlated damage 
states (ρDS) from simulations that match the target equations. (a) DS > 0 and 1, (b) DS > 2. 

MONTE-CARLO SIMULATION FOR EVALUATING SYSTEM FRAGILITY 

With the demand and capacity correlation coefficients (ρDD and ρDC) having been defined, 

we now introduce a Monte-Carlo simulation approach for analysis of system fragility. In this 

analysis, we assume that failure occurs if at least one levee segment within the system fails 

because demand exceeds capacity. The steps in this approach are:  

1) Generate a vector of N event terms as normally distributed random variables with zero 

mean and dispersion equal to the between-event standard deviation from a selected 

GMPE, τln. An event-term represents approximately the average misfit of a GMPE 

median to the data for that event and is denoted as ,E kη  for event k.  

2) Generate two matrices populated with normally distributed random variables with zero 

mean and standard deviation of unity. One matrix (ZDD) contains entries rik that are 

taken as modified within-event ground motion residuals that will be used to compute 

demands for segment i and event k (modification is described subsequently). The other 

matrix (ZDC) contains the random field that will be used to compute damage capacities 

(elements in the matrix are denoted zik). The two matrices are written as: 
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  (15) 

Within the matrices, each column represents an event, and each row represents a 

segment. There are n segments and N events that are represented in ZDD and ZDC. 

3) Construct symmetric matrices of correlation coefficient for damage demand (KDD) and 

capacity (KDC), which are as follows: 

 

 (16) 

where (ρDD)ij and (ρDC)ij represent correlation coefficients of damage demand and 

capacity between segments i and j, respectively. We utilize regression models for (ρDD)ij 

and (ρDC)ij [i.e.,  from Eq. (13) and ρDC from Eq. (14)].  

4) Using the Cholesky decomposition method (Baecher and Christian, 2003), estimate 

matrices YDD and YDC containing correlated random variables. The entries in these 

matrices are denoted as r′ik (used for correlated demand) and z′ik (used for correlated 

capacity). The decomposition is performed as follows:  

  (17) 
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where SDD and SDC are lower triangular matrices from Cholesky decomposition, whose 

multiplication with their transpose [i.e., (SDD)T and (SDC)T] results in the correlation 

matrices, KDD and KDC. If the correlation matrix is not positive-definite, a scheme is 

required to make it a positive definite matrix to use Cholesky decomposition. We utilize 

the scheme of Qi and Sun (2006). 

5) Transform r′ik and z′ik to damage demands (dik) and capacities (cik) in units of PGV:  

   (18) 

where µlnD,i and 𝜙lnD,i are the natural log mean and within-event standard deviation of 

PGV from a GMPE, respectively, whereas µlnC,i and σlnC,i are the natural log mean and 

standard deviation of damage capacity for segment i. It should be noted that the 

simulation procedure operates on many (N) realizations of a given scenario earthquake 

for which the mean and standard deviation of ground motions are constant between 

realizations; hence there is no need for subscript k in µlnD,i and 𝜙lnD,i.  

6) Find the damage state for segment i and event k (fik) as follows: 

  (19) 

7) Find the damage state for the system for event k, Fk, considering the damage states of 

all n segments: 

  (20) 

8) Estimate the probability of system failure P(FS): 

  (21) 

Following the above procedure, P(FS) can be calculated for a system given the statistical 

moments of damage capacity and demand distributions for each segment within the system, as 

well as models for the dependence of demand and capacity correlation coefficients on 

separation distance. We choose 50,000 realizations for Monte-Carlo simulation, from which 

the COV of estimated P(FS) is 0.002.  

dik = exp r 'ik×φlnD ,i + µlnD ,i +ηE ,k( )
cik = exp z 'ik×σ lnC ,i + µlnC ,i( )

  

fik =
0 if cik > dik

1 if cik ≤ dik

⎧
⎨
⎪

⎩⎪

  Fk = max fik( )

  
P FS( ) = 1

N
Fk

k=1

N

∑
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FRAGILITY ANALYSIS FOR FAILURE CRITERIA DEFINED FOR ARBITRARY NUMBER 

OF DAMAGED SEGMENTS 

System fragilities derived in the previous section are based on the implicit assumption that 

a series system ‘fails’ if one or more segments within the system fail. This is a valid approach 

for analysis of flood risk associated with levees that are frequently loaded (i.e., retaining water). 

However, there are other applications where fragility associated with multi-segment failure is 

of interest. For example, if an earthquake strikes a flood control levee system while the water 

level is low, there is no immediate flood risk, but the number of ‘failed’ segments has direct 

impact on repair planning and costs to restore the system to full functionality. This failure 

criterion can be expressed as:  

  (22) 

where P(FS,x) represents the probability of having more than or equal to x segments damaged 

within a system. Hence, P(FS,1) matches the system fragility computed in the previous section 

using Eq. (21). In this section we describe the calculation of P(FS,x). 

Recall that Step 6 in the previous section provides simulated damage states fik for n levee 

segments subjected to ground shaking from event k. Utilizing fik, the damage state of the levee 

system for event k (Fk,x) is taken as one if the number of damaged segments is greater or equal 

to x and is zero otherwise:  

  (23) 

By repeating this analysis for N events, the average of Fk,x can be computed, which is taken as 

P(FS,x):  

  (24) 

EXAMPLE APPLICATION FOR PORTION OF SHINANO RIVER SYSTEM 

The procedure described in the previous section is used to calculate P(FS,x) for two scenario 

earthquakes applied to a 10 km interval of the Shinano River levee system providing flood 

protection for Nagaoka city, as shown in Figure 8. Three damage thresholds (DS > 0, 1, and 2) 

  
P FS ,x( ) = P X ≥ x( )
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n

∑⎛⎝⎜
⎞
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N
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are considered. Demand must be computed for a scenario earthquake rather than for a uniform 

hazard level because a single earthquake will not mobilize uniform hazard level ground 

motions throughout the entire spatially-distributed system. Results are presented as probability 

of X segments exceeding each damage threshold, and the capacity correlation is varied to 

demonstrate its importance. 

 

Figure 8. Aerial view of Nagaoka city region showing flood control levees along the Shinano River. 
Projections of fault planes for the M 6.6 2004 and 2007 Niigata earthquakes are shown. 

The major model components required for the analysis are as follows:  

1) Capacity: Capacity distributions are inferred from the fragility functions based on 

ground water elevation relative to levee base DW. The median of the capacity 

distributions is taken as equal to the median of the fragility function, and the standard 

deviations are set as 0.76 for DW > -1 m and 0.85 for DW < -1 m per Eq. (12).    

2) Demands: Demands are specified based on a scenario earthquake (location and 

magnitude). For the present analysis we consider two scenario events, which are repeats 

of the 2004 and 2007 earthquakes. In other words, we use the same fault rupture planes, 

which have known positions and site-to-source distances for levee segments. However, 

to be consistent with a forward prediction, the measured ground motions are not 

utilized. Rather, we consider scenario ground motions from the Boore et al. (2014) 

GMPE with randomized event-terms.  

3) Demand correlation ρDD: We use Eq. (13) with αDD = 24 km for both scenario events.   

4) Capacity correlation ρDC: We use Eq. (14) with αDC shown in Figure 7.  
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Figure 9 shows resulting system fragilities computed for damage thresholds of DS > 0 to 2 

for each earthquake scenario (2004 and 2007 earthquakes). The 10 km levee system has the 

following probabilities of having at least one damaged segment:  

• DS > 0: 76% for 2004 earthquake and 61% for 2007 earthquake  

• DS > 1: 62% for 2004 earthquake and 41% for 2007 earthquake  

• DS > 2: 50% for 2004 earthquake and 28% for 2007 earthquake  

In the case where the capacity and demand distributions are assumed uncorrelated, the 

probability of damage to at least one segment is >95% for all cases except DS > 2 in the 2007 

event (for which it is nearly 80%). In contrast, the one-segment damage probability for 

perfectly correlated capacity and demand is less than 30%. When capacity and demand 

distributions are correlated in accordance with field observations, the one-segment damage 

probabilities are between these unimodal bounds. This example illustrates that consideration 

of spatial correlation significantly influences estimation of P(FS). 

Figure 9 also shows how probability of exceeding damage to more than x segments 

decreases as x approaches 200 (equivalent to the number of segments within the 10 km system). 

The uncorrelated case drops off quickly, whereas the perfectly correlated case drops off slowly. 

The two curves cross at a specific value of x, indicating that the probability of a large number 

of segments being simultaneously damaged is higher when the capacity and demand among 

segments are strongly correlated. Note that the uncorrelated case shown in Figure 9 represents 

uncorrelated demand (ρDD = 0) and uncorrelated capacity (ρDC = 0), which produces 

uncorrelated damage states (ρDS = 0; numerator in Eq. 9 becomes zero if ρDD = ρDC = 0). The 

perfectly correlated case represents ρDD = 1 and ρDC = 1, but not necessarily ρDS = 1. The ρDS 

becomes unity when segment fragilities are the same among segments and ρDD = ρDC = 1, but 

is less than unity when failure probabilities vary among segments. 

Longer levee systems have more segments that could potentially be damaged, and therefore 

have correspondingly higher system failure probability. To evaluate the system length effect, 

we vary the levee system length from 0.1 to 10 km starting from the south end of the selected 

region using the model parameters described in the previous section, and compute system 

fragilities. The results in Figure 10 show that probability of damage to at least one segment 

increases from a lower-bound for short lengths to maxima of about 0.61, 0.41, and 0.28 for DS 

> 0, 1, and 2, respectively, for the largest considered length of 10 km. Results for uncorrelated 
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(ρDD = ρDC = 0) and perfectly correlated (ρDD = ρDC = 1) conditions (i.e., the unimodal bounds) 

are also shown for reference purposes. 

 

Figure 9. Fragilities for levee systems protecting Nagaoka city east for damage criteria defined on the 
basis of (1) three damage states and (2) variable minimum number of damaged segments, x. The 
simulations use the 2004 and 2007 Niigata-region earthquake scenarios having within-event and 
between-event variability from a GMPE (not from observation). The sudden steps shown for perfectly 
correlated cases are caused by changes in capacity distributions due to variable ground water conditions. 

 

Figure 10. System fragility of levees protecting Nagaoka city east when the system length is varied 
from 0.1 km to its actual length of 10 km. Results apply for the 2007 Niigata earthquake scenario having 
GMPE-compatible within-event and between-event variability. 

SUMMARY AND CONCLUSIONS 

In this manuscript we extend the seismic fragility model developed for levee segments in 

previous work (Kwak et al., 2016) for application to a levee system by: (1) developing a 

methodology for evaluating correlations in levee capacities, (2) adopting models in the 
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literature for correlation in earthquake ground shaking demands, and (3) developing a 

methodology for analysis of system fragility given segment fragility functions, spatially 

distributed demands, and appropriate correlation coefficient models for levee demand and 

capacity.  

Critical components of the proposed procedure are demand and capacity correlation 

models. Demand correlations describe similarities of ground motion intensity measures in 

space, and are taken from the literature (Jayaram and Baker, 2009). Capacity correlations are 

related to spatial correlations of soil properties and groundwater levels, and were evaluated in 

the present work using a data set from the Shinano River in Japan. The capacity correlation 

structure is specific to this system, but nevertheless provides an approximate basis for assessing 

capacity correlations for other systems, with due consideration of associated epistemic 

uncertainties that can be quantified through variation of an empirical parameter (coefficient 

αDC in Eq. 14). 

The proposed methodology is applied to an example levee system with 10 km length 

providing flood protection for Nagaoka City in Japan. Probability of damage to at least one 

segment is maximum when capacity and demand are both spatially uncorrelated, whereas 

minimum fragilities are found when perfect correlation is applied. Our proposed method 

provides intermediate results that reflect the effects of the actual correlation structure.  

The proposed methodology is a significant improvement over previous procedures in which 

spatial correlation of levee damage was treated incorrectly, and provides a means for 

calibrating procedures where capacity correlation is computed from correlation of geotechnical 

properties. The methods we propose are specific to levee systems subject to ground shaking, 

but could be extended to any other serial-system where demands and capacities are spatially 

correlated.  
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