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Abstract

Ab Initio Statistical Mechanics of Halide Perovskites

by

Jonathon Scott Bechtel

Halide perovskite materials have emerged as a potentially disruptive technology in the

field of photovoltaics with devices exceeding 20% power conversion efficiencies. Crystal-

lizing in the ABX3 perovskite structure, these materials incorporate main-group cations

(Pb2+, Sn2+, Ge2+) on the B-site, halide anions (Br−, Cl−, I−) on the X-site and large

monovalent cations (Cs+, CH3NH3
3, and other organic molecules) on the A-site. Record-

breaking materials are achieved by tuning the band gap through halide substitution on

the X-site and by increasing structural stability through the use of mixtures of organic

cations and inorganic alkali metals on the A-site. In addition to configurational degrees

of freedom associated with different alloying strategies, vibrational contributions to the

free energy play a large role in the phase evolution of these materials and result in struc-

tural phase transitions due to octahedral tilting of the metal-halide sublattice. The phase

evolution can be further complicated by the presence of order-disorder transitions due

to orientational degrees of freedom of the molecular A-cations. Anharmonic dynamic

fluctuations on all three sublattices give rise to a highly polarizable and deformable lat-

tice which plays a role in the remarkable optoelectronic properties observed in halide

perovskites.

In this thesis we examine the role of orientational, vibrational, and configurational de-

grees of freedom in the phase evolution of halide perovskite materials using first-principles

electronic structure calculations. In particular, density functional theory calculations re-

veal anisotropic molecular motion in hybrid perovskite CH3NH3PbI3 as well as a highly

vii



anharmonic energy landscape due to octahedral tilting displacement modes across all

inorganic halide perovskites.

To link first principles calculations to finite-temperature thermodynamics we make

use of cluster expansion effective Hamiltonians applied to both configurational and vibra-

tional degrees of freedom in conjunction with Monte Carlo simulations. In particular, we

predict temperature-composition phase diagrams for halide substitution in six Cs-based

perovskite binary alloy systems where solid solutions are suppressed by the size-mismatch

of end-members. Additionally, we employ machine learning methods to parameterize an

anharmonic vibrational cluster expansion enabling both ab initio prediction of finite tem-

perature phase transitions as well as a unique opportunity to investigate local structure

at high temperatures from first principles.
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Chapter 1

Introduction

1.1 Motivation

Since their first use in a photovoltaic device in 2009 [1], halide perovskite materials

have rapidly emerged as a promising material system for not only light harvesting, but

also as active materials in LEDs and other optoelectronic devices. The intense focus

on this class of materials from the scientific community has led to thousands of pub-

lications over the past decade, and has pushed device efficiencies from around 3% in

2009 [1] to over 22% certified power conversion efficiency demonstrated in 2017. [2] In

contrast to conventional semiconducting materials for PV such as Si and IV-VI mate-

rials, halide perovskites achieve remarkable optoelectronic properties without the need

for energy-intensive manufacturing processes. In fact, part of the reason for the cur-

rent "renaissance" in halide perovskite material research owes to the ease of preparation:

solution-based methods allow facile growth of halide perovskite crystals. Typically, low-

temperature, solution-based processes hinder the electronic performance of materials due

to the introduction of defects into the crystal structure; however, halide perovskites are

known to be exceptionally defect-tolerant. [3, 4] Additionally, halide perovskites show
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the best aspects of direct-gap semiconductors, such as high absorption coefficients, but

also those of indirect-gap materials, such as long carrier diffusion and low recombination

rates. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6] The unexpectedly long carrier diffusion lengths

have been shown to derive from Rashba-Dresselhaus type splittings of the conduction

band, [15, 16, 17, 18, 15, 19, 20] leading to slightly indirect band-gap character, and

also to the formation of large polarons which describe lattice phonon-electron coupling

thought to screen free carriers from recombination events. [21, 22, 12]

Central to understanding the properties of halide perovskite system is to understand

how the different microscopic degrees of freedom give rise to functional aspects of the ma-

terials. For example, the record-breaking halide perovskite materials involve complicated

alloying strategies with general compositions of (MA/FA/Cs/Rb)Pb(Br/Cl)3 indicating

mixtures of methylammonium, formamidinium, Cs, and Rubidium ions on the A-site,

and mixtures of bromine and chlorine on the halide site. Alloying on the A-site with

differently sized cations is a way to tune the average, effective A-site cation size which

has been shown to stabilize the perovskite structure with respect to decomposition to

photo-inactive phases. [23, 24, 25, 26, 27] Substitution on the halide X-sublattice, on

the other hand, gives rise to a tunable band gap. [28, 29, 30, 31] In addition to degrees

of freedom associated with chemical substitution, molecular rotations and atomic dis-

placements play a large role in dictating halide perovskite properties. For instance, the

polar methylammonium ion, CH3NH+
3 , undergoes order-disorder transitions within the

inorganic cage [32, 33, 21, 34, 35], which has important consequences on the dielectric

properties of the material. [36, 37, 38, 39, 40, 41, 42] Lastly, both hybrid and all-inorganic

halide perovskites undergo structural phase transitions associated with octahedral tilting

as a function of temperature. [43, 44, 45, 42, 46, 47, 48, 49, 50] In fact, the techno-

logically useful phases at room temperature, either the tetragonal or cubic phases, are

dynamically unstable, meaning symmetry-lowering distortions will occur spontaneously

2



as the temperature is reduced. The anharmonic lattice dynamics that give rise to struc-

tural phase transitions in these materials are also partly responsible for many of the

important electronic properties such as polaron formation [21, 22, 12] and splitting of the

conduction band due to local symmetry breaking. [15, 16, 17, 18, 15, 19, 20] The central

tasks of this dissertation are to survey the important microscopic degrees of freedom

in halide perovskites, to understand their contributions the energy using first-principles

calculations, and to link first-principles results to finite temperature properties through

statistical mechanics and an appropriate effective Hamiltonian.

1.2 Organization and Contents

First, Chapter 2 reviews the computational methods used in this dissertation. After

a discussion of electronic structure calculations and density functional theory, the cluster

expansion formalism is discussed in the context of its applications for alloys, molecular

crystals, and anharmonic vibrational effective Hamiltonians. Methods for solving the

linear regression problem for finding fitting coefficients to cluster expansion are covered

as well as application of artificial neural networks to regression problems. Lastly, the

Monte Carlo method is reviewed as it pertains to computing thermodynamic averages as

a function of temperature and chemical potential.

In Chapter 3, the energy landscape with respect molecular orientation is investi-

gated with density functional theory calculations (DFT), and a strong preference for the

crystallographic [100] direction in the cubic unit cell is found. In addition, molecular

translations are shown to play the largest role with respect to orientational preference

indicating that hydrogen bonding between NH3 hydrogen atoms and the iodine sublattice

dictates the interactions between the molecule and inorganic host.

Chapter 4 focuses on the atomic displacement and strain degrees of freedom that

3



describe structural phase transitions in inorganic halide perovskites. Primary displace-

ment order parameters are defined in terms of octahedral tilt modes for CsSnBr3, CsSn3,

CsPbBr3, and CsPbI3. Geometric optimization by DFT for all 14 symmetry lowering tilt

modes reveals that the stability of a particular tilt system corresponds to its ability to

reduce the unit cell volume. Additionally, A-site displacements are shown to be crucial to

stabilizing the ground state Pnma structure, again pointing to the importance of A-site

translations.

Chapter 5 explores chemical substitution degrees of freedom where phase stability

with respect to halide (X-site) alloying is investigated using the cluster expansion ap-

proach. Phase diagrams of six halide binaries including CsSn(BrxCly)3, CsSn(BrxIy)3,

CsSn(ClxIy)3, CsPb(BrxCly)3, CsPb(BrxIy)3, and CsPb(ClxIy)3, are constructed by first

fitting a cluster expansion Hamiltonian to DFT calculations of halide orderings in the

ground state Pnma phase, and using the resulting model in semi-grand canonical Monte

Carlo simulations. Interestingly, the temperature at which the solid solution becomes

stable correlates with the volume difference between end members. The results provide

a convenient design principle: to encourage solid solutions at low temperatures, choose

end members which have similar unit cell volumes.

An efficient parameterization of the DFT potential energy surface is sought in Chap-

ter 6 where we generalize the notion of the anharmonic vibrational cluster expansion using

artificial neural network model architectures. In this way we are able to parameterize

the DFT energy landscape with respect to atomic displacements for CsPbBr3. Cluster-

based and site-based models are explored and a detailed exploration of hyperparameter

tuning shows that models utilizing high-order basis function tend to extrapolate poorly.

On the other hand, we find that second order (harmonic) basis functions used in the

cluster-based neural net models are able to reproduce the highly anharmonic perovskite

energy landscape due to the non-linear activation functions.
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In Chapter 7, we introduce a conceptually simple vibrational effective Hamiltonian

for perovskite systems that includes only four pair interactions as well as an octahedral

cluster. The model is parameterized using machine-learning neural net models, and finite-

temperature Monte Carlo simulations are used to investigate structural phase transitions.

Remarkably, these simple models reproduce qualitatively the phase transition sequence

observed in inorganic halide perovskites. Moreover, the fitting procedure sheds light on

the pair interactions in halide perovskites and reveals how the under-coordination of the

A-site leads to subtle changes in the CsBr energy landscape in accordance with traditional

tolerance factor intuition. These results lead to the first ab initio statistical mechanics

study of inorganic halide perovskites that qualitatively reproduces the tilt transition

sequence as well as the local fluctuations of atoms as confirmed through analysis of

atomic anisotropic displacement parameters and distributions of octahedral rotations.
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Chapter 2

Background and Computational

Methods

The cluster expansion method has proven to be a useful tool, especially in the alloy

community, to link first principles electronic structure calculations to finite temperature

materials properties through statistical mechanics. A large portion of this dissertation

makes use of the cluster expansion method to define a suitable effective Hamiltonian

which allows the calculation of phase diagrams through finite temperature statistical me-

chanics. The procedure first involves identifying a microscopic degree of freedom suitable

for the problem at hand. For instance, predicting a temperature-composition phase dia-

gram involves tracking the identity of atom on every crystallographic site using discrete

site variables. More recently, the cluster expansion formalism has been extended for

continuous degrees of freedom such as molecular rotations, magnetic spins, and atomic

displacements. In any case, the cluster expansion allows one to define an appropriate set

of basis functions in terms of a microscopic degree of freedom used to model a crystal

property such as the formation energy. First-principles calculations are performed to

build a database of training data which include the crystallographic information and the

6



formation energy. The raw cystallographic information is encoded as a feature vector

by means of the symmetry-invariant basis functions. Linear regression or other machine

learning methods can be used to find the fitting coefficients which parameterize the clus-

ter expansion effective Hamiltonian. Statistical mechanics then associates this effective

Hamiltonian with a probability distribution over all microstates, which, in principle, al-

lows for the calculation of the materials properties at any temperature. However, the

normalizing factor to the thermodynamic probability distribution, i.e. the partition func-

tion, is unknown due to the high dimensionality of the phase space. Therefore, Monte

Carlo simulations must be used to draw samples from the distribution, which in turn

provides a way to calculate thermodynamic averages allowing for ab initio predictions of

finite-temperature materials properties.

This section walks through each step of the ab initio statistical mechanics approach.

First the foundations of modern electronic structure calculations are discussed and how

density functional theory allows approximate solutions to the many-body Schrodinger

equation. An overview of effective Hamiltonians and cluster expansion methods shows

how symmetry invariant basis function can be constructed for different types of micro-

scopic degrees of freedom. The procedure for fitting model parameters is discussed in

the context of the traditional linear cluster expansion as well as machine-learning mod-

els. Finally, the connection between the effective Hamiltonian and finite-temperature

properties is madethrough the use of statistical mechanics and Monte Carlo simulations.
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2.1 Electronic Structure Calculations

The behavior of a quantum system comprised of electrons and ions can be solved via

the time-independent Schrodinger equation given by

Ĥ|Ψ〉 = E|Ψ〉 (2.1)

where Ĥ is the Hamiltonian which encodes all interactions among and between electrons

and nuclei, |Ψ〉 is the many-body wavefunction, and E is the total energy. Given the

different time scales of atomic and electronic motion, the Born-Oppenheimer approxima-

tion allows for the decoupling of the nuclear and electronic wavefunctions, since electrons

are assumed to instantaneously adjust to a shift in atomic coordinates. This leads to

the electronic part of the Schrodinger equation below written in Hartree atomic units

(~ = me = e = 4π/ε0 = 1) as:

Ĥ = Te + Vint + Vext (2.2)

= −1

2

∑
j

∇2
j +

∑
i

∑
j<i

1

|rj − ri|
−
∑
i,j

Zi
|rj −Ri|

(2.3)

where Te, Vint and Vext are the kinetic energy of the electrons, interactions among elec-

trons, and Coulomb interactions between electrons and ions, respectively. [51] Electron

coordinates and nuclear coordinates are denoted r and R, respectively. This equation

with 3N electronic degrees of freedom is impractical to solve directly, and a simplification

is needed.
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2.2 DFT

The seminal contributions of Hohenberg, Kohn, and Sham recast the intractable

many-body problem into into a more manageable problem by introducing the electron

density as the central quantity. [52] Hohenberg and Kohn proved two essential theorems

that laid the framework for density functional theory which stated: (1) the ground state

energy is a unique functional of the ground state electron density, and (2) that the ground

state electron density is the unique density that minimizes the energy. By working with

the electron density n(r) which depends only on 3 spatial coordinates, we circumvent

finding the 3N many-body wavefunction. Further, Hohenberg and Kohn showed that

the many-body Schrodinger equation can be recast in terms of energy functionals as

EHK[n] = T [n] + Eee[n] +

∫
drVext(r)n(r) (2.4)

where Eext =
∫
V (r)n(r)dr.

The Kohn-Sham approach [53] to solving for the ground state electron density is to

first solve an auxiliary independent-particle system with "orbital" wavefunction solutions

ψi that reproduce the solution to the many-body problem whose ground state electron

density is given as

n =
∑
i

|ψi|2 (2.5)

The Kohn-Sham energy functional takes the form:

EKS[n] = TS[n(r)] + EH [n] +

∫
drVext(r)n(r) + EXC [n] (2.6)

The difference between the Hohenberg-Kohn functional and the Kohn-Sham functional

is the expression for the combined kinetic and interaction energies of the electrons:F =

9



T + Eint. Kohn and Sham sought a way to express F exactly in terms of the electron

density. First, one contribution to the kinetic energy that can be explicitly written out

is the kinetic energy for a system of non-interacting electrons of density n given as TS.

Furthermore a part of the electron-electron interaction due to the classical Coulomb

interaction, known as the Hartree term, can be written as

EH [n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ (2.7)

The difference between the real kinetic Energy and the kinetic energy of the non-interacting

system, as well as the difference between the electron-electron interaction and the classical

Coulomb interaction are all rolled into a single term known as the exchange-correlation

functional:

EXC [n] = T [n]− TS[n] + Eee[n]− EH [n] (2.8)

Hence, the exchange correlation functional incorporates all of the approximations to

the electron kinetic energy and interaction terms. If the exchange-correlation functional

was known, then the solution for the ground state electron density would be exact by

solving the Kohn-Sham equations for independent particles. By variationally minimizing

the energy functional EKS[n], Kohn and Sham arrived at the self-consistent Kohn-Sham

equations:

HKSψi(r) = εiψi(r) (2.9)

10



where

HKS(r) = −1

2
∇2 + Veff(r) (2.10)

Veff(r) = Vext(r) +
δEH

δn(r)
+
δEXC

δn(r)
(2.11)

= Vext(r) + VH(r) + VXC(r) (2.12)

= −
∑
j

Zj
|rj − r|

+

∫
dr′

n(r′)

|r− r′|
+ VXC(r) (2.13)

Hence, the only unknown is the exchange-correlation functional. Note that the Hartree

term and the XC term both depend on the electron density so this is a self-consistent

equation. The general procedure for solving the Kohn-Sham equations involves expand-

ing the single electron wavefunctions in terms of a set of basis functions, typically plane

waves in calculations of periodic solids, but Gaussian basis functions are also used in cal-

culation of molecular species. To solve the equations, first a trial wavefunction is supplied,

the effective potential is calculated, and the expansion coefficients of the single-electron

wavefunctions are calculated along with the energy levels. Given the new expansion co-

efficients a density can be recalculated and a new energy is found. This procedure is

repeated until a converged energy results. The energy levels at each k-point give good

approximations to the electronic eigenvalues of the band structure which is accessible

from certain experiments.

DFT reduces the intractable problem of n-body interactions between electrons by

making several approximations. First, only the outer shell electrons of individual atoms

interact with other neighboring atoms giving rise to the use of pseudopotentials which

only treat valence electrons explicitly and treat core electrons as a field of electron density.

The second approximation is treating not individual electrons but calculating the energy

in terms of an electron density throughout a material. The energy can be minimized
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self-consistently in a way to find the ground state electron density and this is guaranteed

to be the ground state.

2.3 Effective Hamiltonians

While DFT is an exceptional approach to investigate the electronic structure of solids,

its computational complexity which scales as the cube of the number of electrons limits

its application to relatively small systems on the order of 100s of atoms. Moreover, DFT

calculations are performed at 0K where entropic contributions are neglected. In order to

study finite temperature properties of materials, we make use of effective Hamiltonians,

which seek to reproduce the results of DFT with more computationally efficient models.

The general approach involves first collecting a database of DFT calculations. Invariant

features are formed from the structures, whether they be descriptors of the site dec-

orations (configurational cluster expansion), molecular orientations (rigid-rotor cluster

expansion), or atomic displacements (anharmonic vibrational cluster expansions). The

cluster expansion method involves expanding a scalar or tensor quantity of interest over

symmetry invariant basis functions. The coefficients to these terms are referred to as

effective cluster interactions (ECI) and are found by minimizing a particular objective

function, typically the squared difference between the model energies and the true DFT

energies.

In order to calculate finite temperature properties of solids it is necessary to re-

parameterize and approximate the DFT energy landscape in terms of a more convenient,

computationally less expensive model. One approach that has proven especially conve-

nient and useful is the cluster expansion method whereby a set of crystal basis functions

are constructed with respect to clusters of atoms in a crystal. As will be demonstrated

below and in the subsequent chapters, many degrees of freedom can be incorporated
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in the cluster expansion formalism, such as occupancy of chemical species on a lattice,

atomic displacements, and molecular rotations. Regardless of the microscopic degree of

freedom the procedure for constructing the cluster expansion consists of several univer-

sal steps. First, a local basis is defined on each site. Then crystal basis functions are

constructed by taking the tensor product of all site basis functions. By including the

constant basis function, 1, in the site bases, it is possible to distinguish the crystal basis

functions according to clusters (i.e. a local neighborhood of a small number of atoms

such as a pair, triplet, etc) thereby resulting in the cluster expansion. To fit the expan-

sion coefficients, spatial averages are taken over all symmetric equivalent basis functions

giving the correlations. This sets up a linear regression task for which many approaches

and algorithms are possible. Below we detail the specific cases of the configurational,

vibrational, and rotational cluster expansions with respect to how the site and crystal

basis functions are constructed.

2.3.1 Configurational Cluster Expansion

The alloy cluster expansion expands the energy of a solid in terms of basis functions,

φ, of configuration variables, σ which take on the values {0, 1} in the occupation basis

or {−1,+1} in the spin basis. The configuration variable defines which atomic species

resides at the site. For instance, in the occupation basis, σ = 0 may denote the presence

of atom A, while σ = 1 denotes the presence of atom B. Formally the energy can be

13



written as [54, 55, 56, 57, 58]:

E =
∑
α

Vα
∏
i∈α

σi (2.14)

=
∑
α

VαΦα(~σ) (2.15)

=
∑
α′

Vα′

∑
β∈Ωα′

Φα′(~σβ) (2.16)

where α runs over all clusters in the crystal, α′ runs over all symmetrically distinct

clusters, β indexes each symmetrically equivalent cluster within the orbit of the prototype

cluster Ωα′ , Φ is a crystal basis function,and Vα′ is an expansion coefficient known as

an effective cluster interaction (ECI). The cluster expansion provides a means to re-

parameterize the complicated quantum mechanical interactions onto a classical basis,

parameterized by only a few coefficients. The process for fitting a cluster expansion

involves enumerating symmetrically distinct configurations, fully relaxing them in DFT

to find the ground state energy, and then performing regression in order to minimize an

objective function such as a root mean squared error, or a cross validation score. [59, 60,

61, 62, 63]

2.3.2 Anharmonic Vibrational Cluster Expansion

The problem of describing the vibrational free energy of a solid that undergoes

structural phase transitions is an extremely difficult problem in computational mate-

rials science. The existing methods, such as high-order Taylor expansions, or fitting

force constants to ab initio MD simulations have their own drawbacks, including diffi-

cult compatibility relations to ensure rotational invariance and high computational cost.

An alternative approach of describing all vibrational degrees of freedom in a solid has

been developed in our group by Thomas and Van der Ven, and the essential features are
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described below. [64]

We want to describe the energy of a crystal with respect to atomic displacements:

E = E(R) (2.17)

where E represents the energy of a collection of N atoms and R is a 3 × N matrix of

atomic positions. We will begin with the cluster expansion formalism that posits that

the energy can be expressed as a sum of local cluster energies as

E = E0 +
∑
α

∑
n

∑
i

V(α,n,i)Φ(α,n,i)(~q
α) (2.18)

where α labels all of the clusters in a crystal n labels the polynomial order of the basis

function and i labels individual basis function of order n. V indicate the expansion

coefficients and Φ are the crystal basis functions which describe the cluster deformations.

A key feature of this description is the use of a symmetry-adapted coordinate system in

order to describe local cluster deformations, denoted by q. They are defined in terms of

the pair distances within a cluster as

qk =
∑
l

Qklf(dl, d0) (2.19)

where Q is a linear transformation of the vector of functions of pair distances dl within

the cluster. The functor can take several form including the logarithm, linear, functional
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or quadratic functional defined as

fLOG =
1

2
ln
[
d2
l

d2
l0

]
(2.20)

fLIN =

[
d2
l

d2
l0

]1/2

− 1 (2.21)

fQUAD =
1

2

[
d2
l

d2
l0

− 1

]
(2.22)

Hence the amplitudes q define a naturally rotationally and translationally invariant de-

scription of the cluster deformation. The q vectors transform as irreducible representa-

tions of the cluster point group, but to define the energy of the crystal, we need functions

that are invariant to the symmetry operations of the crystal. Crystal basis functions of

order n are constructed conceptually via tensors of rank n. For instance first, second,

and third order basis functions can be constructed as:

Φn=1 =
∑
i

κiqi = κ>q (2.23)

Φn=2 =
∑
ij

κijqiqj = q>κq (2.24)

Φn=3 =
∑
ijk

κijkqiqjqk (2.25)

Above second order, we can no longer represent the polynomials as matrix algebra. In

general an order n polynomial basis function is defined as

Φn =
∑
η

κη

n∏
ηi

qηi (2.26)

where η represents a vector of n indices specifying the index of each of the n different q

vectors.
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2.3.3 Rotational Cluster Expansion

The investigations into molecular rotations led in part to the development of the ro-

tational cluster expansion which is outlined here. First, local degrees of freedom must

be defined for a rotation. Typically, rotation matrices are the most convenient form to

parameterize a rotation, however, a key insight is the use of the quaternion parameter-

ization of a rotation which allows for a consistent description of this degree of freedom

in line with the natural cluster expansion formalism. This is because the quaternion can

be treated as a column vector with its own symmetry representation, therefore all of the

tools of linear algebra are available, such as the use of the Reynold’s operator and tensor

basis for the construction of crystal basis function polynomials. Typically the rotation

of a vector proceeds as

x′ = Rx (2.27)

where x are the coordinates of the original vector, x′ are the coordinates of the rotated

vector, and R is a rotation matrix. It should be noted that, in general, rotations do not

commute, which makes dealing with rotations tricky in practice. As an alternative of the

rotation matrix we can also describe the rotation of a matrix using quaternion algebra,

which can be thought of as an extension of the complex numbers. In this algebra a

rotation is accomplished via,

[0, x′] = q∗[0, x]q (2.28)

Quaternions of unit length offer an alternative parameterization of the space of rota-

tions. As unit vectors on the 3-sphere (S3) embedded in 4-dimensional Euclidean space,

the group of quaternions is isomorphic to SU(2) and they satisfy ||q||2 = q2
0 +q2

1 +q2
2 +q2

3 =

1; therefore quaternions as four component vectors have three degrees of freedom asso-
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ciated with the hyperspherical angles q(α, θ, φ) which define quaternion components as

follows:

q0 = cosα

q1 = sinα sin θ cosφ

q2 = sinα sin θ sinφ

q3 = sinα cos θ

Alternatively, the quaternion can be expressed in the axis angle form:

q = (q0, q) = [cos(ω/2), n̂(θ, φ) sin(ω/2)]

where ω = 2α represents the rotation angle, and n̂(θ, φ) represents the axis of rotation.

In the rotation cluster expansion the crystal basis functions are made of products of

hyperspherical harmonics which have been pre-symmetrized to the molecular symmetries.

The site basis must be made invariant to the symmetries of the molecule which can be

accomplished by applying the Reynold’s operator with respect to the molecular point

group. Furthermore, the crystal symmetries dictate which polynomials formed through

a tensor product of the site bases survive when applying the Reynold’s operator of the

crystal factor group. A full treatment of the rotational cluster expansion can be found

in [65].

2.3.4 Fitting the ECI

In a linear cluster expansion, the ECI are in principle attainable due to the orthog-

onality of basis functions. However, in practice the ECI are found through regression
18



techniques such as linear regression meant to minimize the squared error between the

model and the DFT energies. The correlations for each basis function are calculated by

averaging the basis function over all symmetrically equivalent clusters.

e = E/N (2.29)

=
1

N

∑
α

VαΦα(~σ) (2.30)

=
∑
α′

vα′〈Φα′(~σβ)〉 (2.31)

where v =
V |Ωα′ |
N

is the ECI normalized by the number of unit cells and multiplied

by the multiplicity of the cluster α′ in the unit cell. The correlations are defined as

〈Φα(~σβ)〉 = 1
|Ωα′ |

∑
β∈Ωα′

Φα′(σβ), which is the average of the basis function of cluster α′

over all equivalent clusters β denoted as the orbit Ωα′ . Then the n×m correlation matrix

Φ contains m correlations for n configurations. DFT calculations are performed to find

the energy associated with each configuration which makes up the vector e. Finding

the set of clusters that should be included can either be done first, followed by linear

regression, or all at once, by using a regularized regression function. In this first approach

a method of traversing the parameter space is needed, and the genetic algorithm is a

particularly useful approach. [66] The linear regression problem is to find the expansion

coefficients v in

Φv = e (2.32)

which minimize an objective function of the form:

Γ = ||e−Φv||22 + ||Λv||1 + ||Πv||22 (2.33)
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where || · ||1 refers to the l1 norm and || · ||2 refers to the Euclidean, or l2 norm. The terms

scaled by weight matrices Λ and Π are known as regularization terms, and larger values

in Λ, LASSO [67, 68], penalizes the number of nonzero ECI, while Π penalizes the size

of the ECI, where a larger Π will shrink ECI closer to zero.

2.4 Finite Temperature Thermodynamics

We are interested in the equilibrium properties of materials which are described by

classical thermodynamics and are connected to the microscopic behavior of materials

through statistical mechanics. Due to the immense number of microscopic degrees of

freedom that make up a solid, including atomic displacements, magnetic moments, strain,

atomic species, and more, we must work with distributions over these degrees of freedom.

Probability theory tells us that the expectation value of a certain quantity is related to

the probability distribution over that value as:

〈y〉 =

∫
dσP(σ)y(σ) (2.34)

Here σ defines a microstate of the system, P(σ) is the probability of being in that

microstate and y(σ) is the value of the observed quantity. For discrete microstates,

such as configurations of atomic species on the lattice, the integral is replaced by a sum.

However, for continuous degrees of freedom such as atomic displacements or spins a 3N -

dimensional integral is required over all states. For all but the simplest cases this sum

or integral over all of phase space is computationally intractable.
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2.4.1 Canonical Ensemble

The form of P is given by statistical mechanics and it is the distribution that maxi-

mizes the entropy. Depending on which variables are held constant the form of P changes

slightly but the starting point is the canonical distribution in which the temperature is

held constant and all other intensive variables are allowed to take on the values that

minimize the free energy. In this case

P =
1

Z
exp [−βE(σ)] (2.35)

Z =

∫
dσ exp [−βE(σ)] (2.36)

where Z is the canonical partition function. This allows us to define the Helmholtz free

energy:

A = 〈E〉 − TS (2.37)

= −kBT ln [Z] (2.38)

2.4.2 Grand Canonical

In the grand canonical ensemble both the chemical potential and temperature are

held fixed resulting in the thermodynamic probability distribution:

P =
1

Z
exp [−β (E(σ) + µx)] (2.39)

Z =

∫
dσ exp [−β (E(σ) + µx)] (2.40)
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where Z is the grand canonical partition function. This results in the Grand Canonical

Free Energy:

Φ = 〈E〉 − µ〈x〉 − TS (2.41)

= −kBT ln(Z) (2.42)

2.4.3 Monte Carlo

In ab initio statistical mechanics thermodynamic properties are calculated via Markov

Chain Monte Carlo (or simply Monte Carlo) simulations. The idea is to generate samples

of states from the probability density function for which we don’t know the normalization

factor, i.e. the partition function. In the Metropolis-Hastings algorithm [69, 70], within

a lattice model, individual sites are perturbed and the move is accepted with a certain

transition probability. If the energy of the system decreases, the move is always accepted.

However, for a move where the energy remains the same or increases, the move is ac-

cepted with probability proportional to the Boltzmann factor. Transition probabilities

for accepting a proposed step are:

pi→f = min (1, exp [−β∆E]) (2.43)

where ∆E refers to the difference between the proposed state and the current state. Using

this acceptance probability, proposals which decrease the energy are always accepted

(pi→f = 1) and moves that increase the energy are accepted with probability (p =

exp [−β∆E]). Due to the temperature dependence of the Boltzmann factor, unfavorable

moves are more likely to be accepted at higher temperatures, which aligns with our

intuition of a thermally fluctuating system. Using the Metropolis algorithm guarantees

that the visited chain of states approaches the thermodynamic distribution defined by our
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Hamiltonian. The massive appeal to Monte Carlo simulations is that we draw samples

from P without having to explicitly know how to calculate Z. When this technique is

used the intractable problem of calculating thermodynamic averages simplifies to taking

arithmetic means of the quantities of interest. That is, the thermodynamic average

〈X〉 =

∫
X(σ)P(σ)dσ (2.44)

is calculated simply as

〈X〉 =
1

N

N∑
i

Xi (2.45)

where X are the values determined at each Monte Carlo step.

2.5 Machine Learning

In addition to linear models such as cluster expansions, numerous machine learning

methods have been utilized by the computational materials science community in order

to reproduce the high-dimensional DFT energy landscape. [71, 72, 73, 74, 75] In this

dissertation, we have explored the use of artificial neural nets as an alternative model

for anharmonic cluster expansion Hamiltonians. Artificial neural networks (ANNs) can

be thought of as a non-linear generalization of a linear model. ANNs have been shown

to perform regression and classification tasks with state-of-the-art accuracy. The high

accuracy/low training error achievable with ANNs is due in part to the high number of

fitting coefficients (analogous to the cluster expansion ECI) within each model. Due to

the large number of fitting coefficients, very large training databases are necessary in

order to train accurate, generalizable models. In this dissertation an ANN was trained

on over 30,000 DFT configurations in order to model the DFT energy landscape with
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respect to atomic displacements. The functional form of a two-layer neural net can be

written

N =
∑
l

V
(3)
l f

(2)
l

(∑
k

f
(1)
k

(∑
i

x
(0)
i V

(1)
ij + b

(1)
j

)
V

(2)
kl + b

(2)
l

)
+ b(3) (2.46)

where x is the input feature vector, which is composed of polynomial basis functions as

described in Chapter 6, f are the activation functions and can take several functional

forms such as rectified linear unit, sigmoid or hyperbolic tangent. The fitting parameters

are the weights of the connection between nodes V and the biases b. Efficient ways of

determining the optimal weights is an intense area of research, and we make use of state

of the art tools provided by open source libraries, specifically Tensorflow Python API.

Training neural nets can be achieved by standard gradient descent algorithms which find

the gradient of the objective function, Γ, defined as

Γ =
∑
i

(N (σi, V, b)− EDFT)2 (2.47)

where N (σi, V, b) represents the neural net approximation to the energy for configuration

σi. Given the objective function, the problem turns into the optimization problem of

finding the weights and biases of the model N which minimize Γ. While no method can

guarantee to find the global minimum of the objective function, efficient gradient descent

related algorithms are able to locate local minima that reproduce the DFT training

energies with high accuracy. A drawback of the ANN models is that it is potentially

very easy to overfit the training data; therefore, cross-validation schemes must be used

in order to validate the model’s performance in an unbiased way. Chapter 6 details

the construction, training, and validation of ANNs applied to fitting the DFT energy

landscape of CsPbBr3.
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Chapter 3

Energy Landscape of Molecular Motion

in Cubic Methylammonium Lead

Iodide from First Principles

This chapter is reprinted with permission from [76]. Copyright 2016 American Chemical

Society.

3.1 Introduction

Hybrid organic-inorganic perovskite materials for photovoltaics present a promising

avenue toward efficient, inexpensive solar energy conversion. [77] Reaching power conver-

sion efficiencies of nearly 20%, the record-setting perovskites consist of a Pb−I octahedral

framework with methylammonium cations (CH3NH3
+) occupying the A-site. [78, 79, 80]

Long electron-hole diffusion lengths [81, 82], high absorption coefficients [1, 83], and

a 1.6 eV band gap [84, 1] contribute to the remarkable photovoltaic properties of this

material.
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Establishing structure-property relationships in CH3NH3PbI3 has proven challenging

due to important entropic contributions arising from PbI6 octahedral tilting and CH3NH3
+

rotational degrees of freedom. At elevated temperature, the PbI6 octahedra of the inor-

ganic host undergo large tilt-mode oscillations relative to their average positions in the

ideal cubic structure, [85] while the molecular cations rotate rapidly. [32, 34] Distortions

of the inorganic lattice by halide substitution and octahedral tilting have been shown to

influence the band gap and absorption properties. [86, 1, 87, 88] Although the A-cation

does not contribute to electronic states near the band gap, [89, 90, 4] it has been shown

to affect the nature of the band gap through interaction with the inorganic Pb−I sub-

lattice. [17] Moreover, the dielectric properties of CH3NH3PbI3 are linked to both the

rotational dynamics and ordering of the molecular A-cation and the structural phase

transitions of the inorganic Pb−I lattice. [32, 35, 42, 91, 92]

CH3NH3PbI3 undergoes a transition from the high-temperature pseudo-cubic aris-

totype Pm3̄m structure to the tetragonal I4/mcm phase (a0a0c− tilt system in Glazer

notation) [93] at 330K and then to the orthorhombic Pnma phase (a+b−c− tilt system)

below 160K. [94, 95, 43, 96] The transitions associated with A-cation ordering have been

the subject of some debate. [35, 97, 34, 32, 86, 98, 99] Nevertheless, recent quasi-elastic

neutron scattering experiments indicate that the CH3NH3
+ molecules in the cubic phase

dynamically disorder and undergo both fast reorientations of the C−N bond axis (≈5 ps

at 300K) and faster on-axis rotations about the C−N bond axis (≈1 ps at 300K). [32]

Some degrees of freedom freeze out upon cooling and only on-axis rotations are observed

in the low temperature orthorhombic phase (≈4 ns at 70K) accompanied by a dramatic

loss in dielectric permittivity. [32]

Several studies have employed first-principles calculations to reveal the microscopic

origins of preferential CH3NH3
+ orientations and the interactions between CH3NH3

+ and

the inorganic Pb−I host lattice. [100, 101, 102, 103] In the orthorhombic phase, energy
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barriers of ≈100meV were calculated for on-axis rotations of the staggered configuration

of CH3NH3
+ due to strong N−H· · · I interactions, suggesting fully ordered A-cations in

the low temperature phase. [100] Recently, CH3NH3
+ rotations were investigated in the

tetragonal phase, and energy barriers of ≈50 and ≈20meV for on-axis rotation were

found depending on the molecular orientation. [101] Low energy pseudo-cubic Pm3̄m

configurations have previously been identified with molecular orientations in the [100],

[110], and [111] directions. [102, 103] While past studies have explored the energy of

the crystal for a subset of orientations and on-axis rotational degrees of freedom, an

understanding of the interactions of the A-cation with the inorganic Pb−I sublattice as

a function of all its rotational and translational degrees of freedom remains incomplete.

In this letter, we map out the full energy landscape of CH3NH3
+ motion in the cubic

inorganic host by accounting for all reorientations of the C−N bond axis, all on-axis rota-

tions about the bond axis, and translations of the molecule from the ideal A-site. While

the orthorhombic phase is characterized by ordered CH3NH3
+ orientations in a rigid host

lattice, large anharmonic vibrational excitations associated with octahedral tilting and

disordered molecular orientations and translations add considerable structural complex-

ity to the high-temperature cubic phase. Here we focus on the ideal cubic perovskite

structure in order to investigate the microscopic details of N−H interactions with the

Pb−I host lattice. By maintaining a rigid inorganic lattice, we separate the effects of

octahedral tilting and molecular rotation. This allows us to quantify the energy associ-

ated only with the rigid rotations of the methylammonium molecule and its interactions

with the inorganic lattice. We find that the energy of the crystal is especially sensitive to

molecular translations which lead to a stabilization of the [100] orientation as a result of

favorable N−H· · · I interactions. The energy barriers to reorientation approach 100meV

when translations are considered, while barriers to on-axis rotations range from 200meV

in the [111] orientation to <10meV in the [110] and [100] orientations. Finally, we show
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Figure 3.1: Molecular rotational degrees of freedom described by the axis-angle repre-
sentation. Orientation of the C−N bond axis is given by n(φ, θ), and on-axis rotations
are described by the angle 2α about the bond axis.

that molecular orientation has minimal effect on the band structure. In contrast, distor-

tions of the inorganic Pb−I lattice in response to different orientations and translations

of CH3NH3
+ can cause as much as a 0.25 eV increase in the band gap and, additionally,

can change it from direct to indirect.

3.2 Methods

Energies associated with molecular rotation were calculated with density functional

theory (DFT) as implemented in the Vienna ab initio Simulation Package (VASP) [104,

105] using projector augmented wave [104, 106] (PAW) pseudopotentials within the

Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) [107]. Ap-

proximate van der Waals corrections were accounted for with the zero damping DFT-D3

method of Grimme [108]. For the cubic aristotype a 6×6×6 k-point mesh centered at the

Γ point was employed with a 700 eV plane wave energy cutoff. Energies were converged

28



to within 1meV/atom with respect to k-point density. A volume relaxation of the cubic

parent phase resulted in an optimized lattice parameter of 6.32Å which agrees very well

with the experimental lattice parameter 6.3286Å at 343K. [95] The methylammonium

cation geometry and bond lengths were adapted from experimental and computational

structures of the orthorhombic phase at 100K. [96, 100] The final molecular geometry

was obtained by relaxing the molecular cation geometrically centered on the cubic per-

ovskite A-site with a staggered H arrangement, and this geometry was fixed throughout

all subsequent rigid-body rotations and translations. Energies associated with molecu-

lar rotations were calculated for a single unit cell within a rigid cubic inorganic lattice.

Crystal structures were visualized using the VESTA program suite. [109]

3.3 Results and Discussion

We define molecular rotations with respect to a reference configuration where the

C−N bond axis is oriented in the [100] direction of the cubic host. As shown in Figure 3.1,

the rotational degrees of freedom can be described by the axis-angle representation where

the polar angle θ and the azimuthal angle φ define an orientation vector for the C−N

bond. This vector also serves as a rotation axis, with 2α denoting the rotation angle

around the C−N bond. The inclination of the molecule from the xy plane is given by

|θ − π/2| while the azimuthal angle, φ, describes the counterclockwise rotation around

the z-axis. For θ = 90◦ and φ = 45◦ the molecular C−N axis points toward the edge

of the cubic unit cell in the [110] direction, while θ = 54.74◦, φ = 45◦ corresponds to a

molecular orientation along the body diagonal of the cubic unit cell in the [111] direction.

The Kohn-Sham energy landscapes of molecular rotations were calculated in an ideal

cubic perovskite crystal structure which corresponds to the average high temperature

(>330K) phase observed in CH3NH3PbI3. In addition to molecular rotations we also
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Figure 3.2: (a) Interpolated energy surfaces for molecular reorientation of CH3NH3
+

within cubic PbI6 octahedral cages where the molecular geometrical center of mass
resides at the A-site. At each orientation, the energy corresponding to the minimum
energy on-axis rotation is plotted. (b) Polar plot of orientational energy surface where
the radius is proportional to |E − βEmax| of scale from (a) where β = 1 − 1/1000. (c)
Energies for selected rotational pathways along the edges of the aymmetric orienta-
tion region which represent rotations within the (001) and (1̄10) lattice planes via
[100]→ [110] and [001]→ [111]→ [110] rotations, respectively.

considered translation of the A-cation within the cage formed by the PbI6 octahedra.

Due to the cubic symmetry of the perovskite structure, it is sufficient to consider only

orientations within the region enclosed by the [100], [110], and [111] crystallographic di-

rections, which we will refer to as the asymmetric region in orientation space. The 48

symmetry operations of the Oh point group tile the asymmetric region over the com-

plete orientation space. We calculated the energies associated with on-axis rotations and

translations of up to 1.0Å in the direction of the N atom over a grid that spanned the

asymmetric region of orientation space.

To probe the strength and nature of the interactions between the molecular A-cation

and the inorganic Pb−I sublattice, we first consider the energy surface associated with

the ideal cubic structure with the molecule’s geometric center of mass located at the

ideal perovskite A-site. The calculated energy surface is shown in Figure 3.2(a,b). The

minimum energy surface for the centered molecule is constructed by considering the

minimum energy on-axis rotation, 2α, of CH3NH3
+ at each orientation (θ,φ). In this
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way, the minimum energy surface for the space of all rigid body rotations is considered at

zero translation. Figure 3.2c reveals a shallow energy surface for the centered molecule in

which any reorientation is met by a small energy barrier <11meV. Thus, the molecular A-

cation should tumble freely above room temperature if its position is restricted to the

center of the cubic inorganic cage.

However, when translations of CH3NH3
+ are taken into account, as shown in Fig-

ure 3.3(a,b,c) for the three high-symmetry molecular orientations, it becomes clear that

the center of the perovskite A-site cage is not the lowest energy configuration for the

molecular cation. Instead, translation in any positive direction (in the direction of the

ammonium group) lowers the energy. Due to the point group of the molecule, all energy

surfaces obey the symmetries of C3; therefore only on-axis rotations up to 120◦ need be

considered. In the [100] direction (Figure 3.3a), minima occur for a 0.6Å translation

toward the face of the cubic unit cell while on-axis rotations remarkably have no effect

on the energy surface. In the [110] and [111] directions, however, the energy does depend

strongly on both molecular translations and on-axis rotations. When oriented toward the

edge of the cubic unit cell along the [110] direction (Figure 3.3b), the molecular cation

favors a 0.3Å translation with two equivalent low-energy rotational configurations. Simi-

larly, in the [111] orientation (Figure 3.3c), the A-cation tends to off-center by 0.4Å, and

adopts a preferred rotational configuration aligned with proximal I atoms. The locus of

minimum energy translations are summarized in Figure 3.4, which depicts off-centering

preferences toward the face of the cubic unit cell and along the body diagonal.

We attribute the tendencies to off center and to adopt specific rotational states to

N−H· · · I hydrogen-bonding interactions. For instance, at a translation of 0.4Å in the

[111] direction, the local minimum observed in Figure 3.3c corresponds to near align-

ment and N−H· · · I distances of approximately 2.6Å. In contrast, the local maximum

along the 0.4Å translation for the same direction corresponds to an on-axis rotation that
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Figure 3.3: (a,b,c) Energy surfaces plotted as heat maps for the three high symmetry
directions showing the effect of molecular translation and twisting rotations. Energy
heat maps (a,b,c) share the same absolute energy scale but are shown with relative color
scales. Low energy configurations in each high symmetry orientation are shown with
the minimum N−H· · · I distance labeled. (d) Relative energies associated with on-axis
rotations at zero translation and the minimum energy translation in each direction.
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[100] [110]

[111]

(b)

(a)

Figure 3.4: (a) Within the asymmetric orientation region, the translations associated
with the lowest energy configurations are plotted. The inclination and azimuthal angles
are given relative to the [100] reference configuration. (b) Polar plot where the radius
is proportional to the minimum-energy translation providing a representation of the
locus of minimum energy molecular translations throughout the cubic unit cell.

maximizes N−H· · · I distances. The effect of on-axis rotations decreases from the [111],

[110] to [100] directions as shown in Figure 3.3d. Along the body-diagonal of the cubic

unit cell, on-axis rotations which minimize N−H· · · I distances are stabilized by 203meV

compared to the rotation that maximizes N−H· · · I distances. On the other hand, on-

axis rotations only account for a 7meV energy decrease in the [110] direction, and, in

the [100] direction, there is no preferred on-axis rotation. These differences stem from

the number of favorable N−H· · · I interactions for the different orientation geometries.

Along [111] (Figure 3.3c), the molecule can simultaneously minimize three N−H· · · I dis-

33



tances (2.64Å); thus on-axis rotations encounter a large energy penalty as these three

interactions are all simultaneously disrupted. Along [110] (Figure 3.3b), the energy is

lowered by only two minimized N−H· · · I distances (2.96Å). Hence, when the molecule

rotates it is able to form a new N−H· · · I bond as it breaks two old ones resulting in a

lower energy barrier to on-axis rotations. Lastly, in the [100] orientation (Figure 3.3a),

only one N−H· · · I is minimized at a time (2.58Å), so upon on-axis rotation, a favor-

able N−H· · · I interaction is reformed as soon as an old one is broken, resulting in an

extremely shallow energy profile. These trends show that the differences in calculated

energy barriers to on-axis rotation between the high-symmetry orientations stem from

the number of disrupted N−H· · · I interactions.

Figure 3.5(a,b,c) shows the energy as a function of orientation (θ, φ), after minimizing

not only over on-axis rotations, but also over translational degrees of freedom. A compar-

ison with Figure 3.2, where translations were not treated as a degree of freedom, reveals

the significant impact that molecular off-centering from the A-site has on the crystal

energy. Molecular transitions between two locally stable configurations require reorien-

tation, translation and an axial rotation. The most favored directions are in the [100]

and [111] orientations, separated by high energy barriers to reorientation. Figure 3.5c,

for example, shows that the reorientation from [110] to [100] (corresponding to molecular

rotation in the (001) plane) encounters a 100meV energy barrier. For the molecule to

reorient between the [100] and [111] directions it must surmount an 85meV energy bar-

rier, while an 80meV energy barrier separates the [110] and [111] orientations. Hence, a

molecule rotating within the (1̄10) plane from the z-axis, through [111] to [110] and [111̄]

to the negative z-axis encounters a maximum barrier of 85meV. Moreover, Figure 3.5

shows the large stabilization of the [100] direction when translations are considered, which

is a result of reduced N−H· · · I distances. In particular, the energies for the low-energy

configurations in the high-symmetry directions decrease as the N−H· · · I distances de-
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(a) (c)(b)

[100] [110]

[111]

Figure 3.5: (a) Interpolated energy surfaces for molecular reorientation of CH3NH3
+

within cubic PbI6 octahedral cages. At each orientation, the energy corresponding
to the minimum energy on-axis rotation and minimum-energy translation is plot-
ted. (b) Polar plot of orientational energy surface where the radius is proportional
to |E − βEmax| of scale from (a) where β = 1 − 1/1000. (c) Energies for selected ro-
tational pathways along the edges of the asymmetric orientation region which rep-
resent rotations within the (001) and (1̄10) lattice planes via [100] → [110] and
[001]→ [111]→ [110] rotations, respectively.

crease from 2.96Å for the [110] orientation to 2.65Å along [111] and to 2.58Å along

[100], resulting in relative energies E[110]
min > E

[111]
min > E

[100]
min . Thus as identified above, the

number of N−H· · · I interactions dictates the barrier to on-axis rotation, but CH3NH3
+

orientational preferences originate from minimizing N−H· · · I distances.

We also investigated the electronic band structure as a function of molecular orienta-

tion to assess the impact of molecular rotation on the electronic properties of CH3NH3PbI3.

It is well known that Pb 6s and I 5p σ-antibonding orbitals form the top of the valence

band while Pb 6p and I 5p π-antibonding orbitals contribute to the bottom of the con-

duction band. [110] The calculated atomic orbital contributions to the electronic density

of states in Figure 3.6a confirm the participation of Pb s and I p orbitals in the valence

band as well as Pb p and I p orbital contributions to the conduction states. Therefore,

the inorganic Pb−I host lattice dictates the electronic properties of the CH3NH3PbI3

perovskite. This is verified by the calculated electronic band structures for the three

high-symmetry CH3NH3
+ orientations in a cubic PbI3 host shown in Figure 3.6a. The
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almost perfectly overlapping band structures in Figure 3.6a reveal that molecular ori-

entation plays a minimal role in determining the nature of the bands near the band

gap.

Pb-containing compounds often exhibit interesting lone pair chemistry which typi-

cally manifests in high Born effective charges indicating a tendency for Pb off-centering

and the formation of local dipoles. [111, 112] The calculated Born effective charge tensors

for the Pb2+ ions of cubic CH3NH3PbI3 is predicted to be nearly isotropic with values of

the averaged trace around 4.9 e. Well above the nominal value of +2 e, the high values for

the Born effective charges suggest a highly polarizable Pb s-lone pair. Figure 3.6(b,c,d),

showing the summed partial charge density near the top of the valence bands, reveals

the interplay between the molecular dipole and the Pb s-lone pair. As is evident in

Figure 3.6(b,c,d), the orientation of the A-cation affects the charge density surrounding

the Pb atoms. In fact in the cubic perovskite, an asymmetry arises in the Pb valence

electron distribution, with the Pb valence states tending to polarize in opposition to the

molecular orientation. Due to the periodic boundary conditions imposed in our calcula-

tions, it must be recognized that the partial charge density represents that of a crystal

with periodically aligned organic cations in a ferro arrangement, where the orientation,

translation, and on-axis rotations are repeated periodically throughout the crystal. The

presence of such ferroelectric domains at ambient temperature is an intensely debated

topic. Several studies [113, 114, 115] suggest that ferroelectric domains exist at room tem-

perature and aid carrier separation through internal electric fields while others [116, 117]

observe no appreciable macroscopic polarization. While the reported partial charge den-

sities may not represent operating conditions at high-temperatures due to the artificial

periodic boundary conditions, in the presence of an applied electric field, CH3NH3PbI3

does exhibit macroscopic polarization. [117] In this context, the predicted high Pb2+ Born

effective charges and the sensitivity of the Pb valence charge on molecular orientation
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Figure 3.6: (a) Overlayed band structures for high symmetry molecular orientations
in the ideal cubic perovskite depicting the direct band gap at the R point in GGA-PBE
with spin-orbit coupling. DOS presented for the lowest energy [100] orientation. (b,c,d)
Partial charge density associated with top of the valence band for the high symmetry
directions ([100], [110], [111]), showing the Pb s and I p orbital character at isosurface
levels of 1.912×10−5, 1.925×10−5 and 1.920×10−5 e/Å3, respectively. (e) Overlayed
band structures for the three high symmetry molecular orientations after relaxing only
the inorganic lattice. DOS shown for relaxed [100] orientation.

suggests that the Pb s-lone pair plays a role in the polarizability and dielectric response

of CH3NH3PbI3.
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The high-temperature CH3NH3PbI3 cubic phase is stabilized by vibrational entropy

and experiences large oscillations of the inorganic octahedral network, with root-mean-

squared atomic displacements as high as 0.41 Å for the I-sublattice in the direction

perpendicular to the Pb−I−Pb bond. [85] Hence, while the calculated rigid-body rota-

tional energy landscape (Figure 3.5) corresponds to CH3NH3
+ motion within the average

cubic structure with nominal 180◦ Pb−I−Pb bond angles, the local A-site environments

of the actual crystal fluctuate freely as a result of I-sublattice displacements at finite

temperature (>330K).

The true energy landscape of the solid is substantially more complex than that probed

in this study. It depends not only on the rotational and translational degrees of freedom

of CH3NH3
+ , but also on the displacement degrees of freedom of the Pb and I host atoms.

Collective octahedral tilting degrees of freedom are especially important as they are in

part responsible for the symmetry breaking phase transformations upon cooling [94, 95,

43, 96] and likely dominate the anharmonic vibrational excitations that stabilize the high

temperature cubic phase. Mapping out this more complex energy landscape can be done

with an effective Hamiltonian [118, 64, 119, 120, 121, 122] that is expressed as a function

of displacement degrees of freedom of the inorganic host along with the rotational and

translational degrees of freedom of the A-cation. High temperature behavior as well as

low temperature symmetry breaking orderings can then be probed with Monte Carlo

simulations.

While a full statistical mechanics study relying on an effective Hamiltonian is beyond

the scope of this work, we can nevertheless obtain a sense of the coupling between dis-

placement degrees of freedom of the PbI3 host and the orientational and translational

degrees of freedom of CH3NH3
+ by considering relaxations of the host for different rigid

molecular orientations and translations. To this end, we performed DFT relaxations in

which the internal degrees of freedom of the inorganic lattice (within a fixed cubic unit
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Figure 3.7: (a,b,c) Ideal (cubic) and relaxed inorganic lattice around rigid CH3NH3
+

molecules in the [100],[110], and [111] directions, respectively. (d) Relative energy
comparison per formula unit of the ideal and relaxed configurations for each of the
three high-symmetry orientations.

cell) were allowed to relax to forces less than 5meV/Å while the molecular cation was

held rigidly in place. Both the Pb and I-sublattices experience significant distortions from

the ideal cubic aristotype as shown in Figure 4.4(a,b,c) where the N−H· · · I distances as

well as Pb−I−Pb angles are labeled to emphasize the relevant distortions.

The most significant distortions are observed for the [110] orientation (Figure 4.4b)

with 164◦ Pb−I−Pb bond angles. Similarly, in the relaxed [100] configuration (Fig-

ure 4.4a), Pb−I−Pb bond angles of 168◦ are found. The observed I-sublattice displace-

ments support the idea that N−H· · · I interactions play a dominant role in stabilizing the

preferred molecular orientations.

Relaxation of Pb and I around a rigid CH3NH3
+ molecule also has a dramatic effect on

the electronic band structure of the material. Figure 3.6e, shows the calculated electronic

band structures corresponding to configurations with relaxed Pb and I ions. Since the

inorganic Pb−I host lattice governs the electronic properties of CH3NH3PbI3, distortions

in the Pb−I−Pb bond angle directly impact the band structure near the band gap. The
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distortions of the inorganic cage widen the band gap by almost 0.25 eV, and the nature

of the band gap changes from direct to indirect, which has been previously identified

as a factor leading to an increase in minority carrier lifetime and to the suppression of

radiative recombination [17].

3.4 Conclusions

In summary, we have calculated the energy surface of CH3NH3PbI3 as a function of the

orientational, translational and on-axis rotational degrees of freedom of CH3NH3
+ within

the A-site cage of the cubic Pb−I perovskite host. Our calculations show that N−H· · · I

interactions play a dominant role in determining low energy CH3NH3
+ orientations and

translations. The energy landscape as a function of molecular orientation when minimized

over translational and on-axis rotational degrees of freedom is highly anisotropic, a prop-

erty that should be accounted for in meso-scale models of this compound. Translational

degrees of freedom are found to be especially important with the equilibrium translations

exhibiting a strong dependence on molecular orientation. Molecular reorientation in cu-

bic Pb−I will therefore require substantial rigid translation when following the minimum

energy surface. We also found that the band structure of cubic CH3NH3PbI3 is relatively

insensitive to the A-cation orientation, but can change substantially when the Pb−I host

is allowed to relax in response to different configurations of CH3NH3
+ . In addition to

revealing the nature of the interactions between CH3NH3
+ and the inorganic perovskite

host, the results of this work set the stage for future statistical mechanics studies rely-

ing on effective Hamiltonians to probe the finite temperature vibrational, rotational and

translational excitations and their effect on electronic structure in this fascinating class

of materials.
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Chapter 4

Octahedral Tilting Instabilities in

Inorganic Halide Perovskites

4.1 Introduction

Since the introduction of hybrid perovskite materials for photovoltaics in 2009, [1]

the materials community has seen a resurgence in halide perovskite research. Hybrid

perovskite photovoltaic device efficiencies approach those of silicon based technologies

for PV; [24] however, stability issues, such as photo-degradation under irradiation and

decomposition to a yellow photo-inactive phase, [8, 50, 123] prevent commercial adoption

of hybrid perovskite photovoltaics. Techniques to enhance structural stability include

substitution on the A-site to stabilize the photo-active black perovskite polymorphs [23,

24, 25, 26, 27] while substitution on the halide site can be used to tune the bandgap of

these materials. [28, 29, 30, 31] Alloy engineering has aided efficiencies and stability of

halide perovskite-based devices; [25] however, the end members must be fully understood

in order to appreciate emergent structure property relationships.

The remarkable electronic properties of halide perovskites stem from low carrier trap-
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ping and low recombination rates that result in diffusion lengths [5] and lifetimes [6, 7]

on par with pristine III-V semiconductors. [8, 9, 10, 11, 12, 13, 14, 6] The goal of re-

solving the origin of unexpectedly low recombination rates in these solution-processed

materials continues to motivate many theoretical and experimental studies on halide

perovskite photophysics. Several explanations for low carrier recombination include po-

laron formation, [21, 22, 12] local dynamical Rashba splitting, [15, 16, 17, 18, 15, 19, 20]

and dielectric screening. [36, 37, 38, 39, 40, 41, 42] The common denominator of these

hypotheses is the necessity of a highly polarizable and deformable lattice facilitated by

anharmonic dynamic fluctuations including octahedral tilting, [18, 124, 125, 126, 127]

dynamical A- [128] and B-site off-centering, [129, 42] as well as orientational disorder of

the A-site organic cation. [32, 33, 21, 34, 35] In this study, we use DFT to investigate

the origin of structural instabilities and the role of octahedral tilting, strain, and A-site

displacements in phase stability of inorganic perovskites.

Halide perovskites undergo structural phase transitions as a function of tempera-

ture due to an undersized A-cation which gives rise to octahedral tilt instabilities as

explained geometrically by the Goldschmidt tolerance factor. [130] In the description of

halide perovskite phase transitions, the high temperature cubic (α) phase with space

group Pm3̄m transitions either to a tetragonal P4/mbm phase a0a0b+ with in-phase

tilts in Glazer notation [93] or I4/mcm phase with out-of-phase tilts a0a0b−. The pro-

totypical hybrid perovskite CH3NH3PbI3 adopts the I4/mcm phase [131] at interme-

diate temperature while inorganic perovskites have been observed to transition to the

P4/mbm phase. [43, 44, 45, 42, 46, 47, 48, 49, 50] Finally, both inorganic and hybrid

perovskites show Pnma ground state γ-phases with a−a−b+ tilts. [49, 132, 8, 133, 134]

Several compounds, particularly CsPbI3 and CsSnI3, [135] also exhibit a photo-inactive,

non-perovskite yellow polymorph, known as the δ-phase which consists of 1D chains of

face sharing octahedra. [136, 8, 132, 49] While the δ-phase is likely the thermodynamic
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equilibrium phase of these materials at low temperatures, [137, 24, 23, 138, 100, 139]

the technologically relevant phases include only the perovskite series. Therefore in this

study we focus only on the inorganic perovskite polymorphs even though we recognize

they may be metastable at operating temperatures for devices.

We investigate the Born-Oppenheimer energy landscape associated with octahedral

tilt instabilities to understand the impact of strains and A-cation off-centering on phase

stability. We first describe primary tilt order parameters in terms of symmetry adapted

collective displacement modes for Pm3̄m space group irreducible representations R+
4 and

M+
3 . Using the Hencky strain metric, we describe secondary strain order parameters and

enumerate symmetry-allowed strains for the 14 unique tilt systems. Lastly, the role of the

A-site cation is investigated. We find that inorganic perovskites all show Pnma ground

states, and the relative stability compared to the cubic phase correlates with the ratio

of the ground state and cubic volumes. In fact, the correlation holds for all tilt systems

studied: the relative energy of an octahedrally tilted perovskite system is dictated by its

decrease in volume. Finally, we demonstrate the importance of A-site displacements and

strain coupling in stabilizing the Pnma ground state structure.

4.2 Methods

DFT calculations were carried out using the Vienna ab initio Simulation Package

(VASP) [104, 105] with a plane-wave basis set and projector augmented wave [104, 106]

(PAW) pseudopotentials. Electron exchange and correlation were approximated within

the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) [107].

For the cubic primitive cell a 8×8×8 k-point mesh centered at the Γ point was employed

with a 600 eV plane wave energy cutoff. Energies were converged to within 1meV/atom

with respect to k-point density. Geometric optimization of the 14 distinct octahedral tilt
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systems, calculated in a 2×2×2 supercell, were seeded with an initial displacement field

associated with the octahedral rotations, and all degrees of freedom were allowed to relax

until forces were converged to within 5 meV/Å. Static calculations for the tilt subspaces

were made over a grid of order parameter amplitudes, and selective dynamics was used

to optimize only the Cs cation positions until energies were converged to within 1 meV.

To obtain accurate lattice vectors for decomposition into strain order parameters, a strict

force convergence criterion to within 0.5 meV/ Åwere used for geometric optimizations of

all translational and rotational equivalents. In plotting the strain order parameters, the

strains of translationally equivalent structures were averaged. Crystal structures were

visualized using the VESTA program suite. [109]

4.3 Perovskite Crystallography

We focus on three degrees of freedom to develop an understanding of the microscopic

aspects of phase transitions in inorganic halide perovskites. First, symmetry-adapted

normal modes are considered to describe rotations of the metal-halide octahedra. Second,

we define symmetry adapted strain order parameters which measure macroscopic lattice

deformations. Lastly, we consider the effect of collective A-cation displacements within

the perovskite structure.

4.3.1 Octahedral Tilt Order Parameters

Due to the structural flexibility of a lattice of corner-connected octahedra, ionic per-

ovskites tend to undergo distortions involving octahedral tilting as well as off-centering of

the A- and B-site cations.[18, 124, 125, 126, 127] The phase sequence of inorganic halide

perovskites is shown along with the space group symmetry in Figure 4.1(a). The phase

sequence involves a high temperature cubic α-phase, an intermediate tetragonal β-phase,
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and a low temperature orthorhombic γ-phase. Along with changes in lattice parameter,

each phase is distinguished by the presence of metal-halide octahedral rotations. Here

we consider two types of octahedral rotations: (1) in-phase rotations about a common

axis where every octahedron along the axis rotates in the same direction by the same

amplitude (left panel of Figure 4.1(b)) or (2) out-of-phase rotations about a common

axis where the amplitude of rotation changes sign for each octahedron along the rotation

axis (right panel of Figure 4.1(b)). The rotation axes are considered to lie along the high

symmetry lattice vectors of the cubic crystal, and here we will assume that the lattice

vectors coincide with the Cartesian axes.

Since octahedral rotations in perovskites can be distinguished by three rotation axes

and two types of rotation (in- or out-of-phase) a complete description of the degrees of

freedom involves a six component order parameter η = (abcdef) where a, b, c and d, e, f

denote the amplitude of in-phase and out-of-phase rotations, respectively. While η spans

a six dimensional space, we restrict ourselves by considering only pure tilt systems by

enforcing either only in-phase or out-of-phase rotations to be nonzero for a particular

rotation axis. Hence, η = (abc000) describes a tilt system of in-phase rotations about

each axis of differing amplitudes while (a000bb) corresponds to an in-phase rotation along

the x-axis and simultaneous out-of-phase rotations of equal amplitude about the y and z

axes. As an alternative notation for octahedral tilting, Glazer [93] notation uses a three

component vector to encode the three crystallographic axes, a lower case letter to denote

tilt amplitude, and a + or − exponent to denote in-phase or out-of-phase rotations,

respectively. Thus the order parameter (abc000) corresponds to the a+b+c+ tilt system

while (a000bb) corresponds to a+b−b−.

The full six dimensional order parameter η corresponds to crystal normal modes of

the R+
4 and M+

3 irreducible representations (irreps) of the crystal space group. Normal
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(a)

(b)

Figure 4.1: (a) The three phases observed as a function of temperature for CsXY3

perovskites. Cubic Pm3̄m α-phase has no activated tilt modes. Tetragonal P4/mbm
β-phase contains an in-phase tilt along one axis. Orthorhombic Pnma γ-phase con-
tains one in-phase tilt mode and two equal out-of-phase tilt modes. (b) The left
panel schematically depicts the displacement field corresponding to the (a00000) order
parameter (in-phase tilt mode along the x-axis), while the right panel depicts the out-
-of-phase tilt mode (000b00). Tilt modes along the y- and z- directions are similarly
defined where the diagrams would be viewed perpendicular to the zx- and xy-planes,
respectively.

modes that transform as the three dimensional irreps R+
4 and M+

3 approximate the effect

of out-of-phase and in-phase rotation of the the metal halide octahedra. To generate

the displacement fields that transform as R+
4 and M+

3 , it is necessary to work within

a supercell that is commensurate with the R-point and M-point of the Brillouin zone.

By considering atomic displacements in a 2 × 2 × 2 supercell we generate all symmetry

adapted collective displacements corresponding to phonon modes at commensurate k-

points including the R-point (1
2
, 1

2
, 1

2
), the M -point (1

2
, 1

2
, 0), the X-point (1

2
, 0, 0) and the

Γ-point (0, 0, 0).
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Table 4.1: Symmetry allowed secondary strain order parameters due to octahedral rotations.

Space Group M+
3 R+

4 Strain
# name (a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

221 Pm3̄m (0,0,0) (0,0,0) (A,0,0,0,0,0)
127 P4/mbm (0,0,a) (0,0,0) (A,0,B,0,0,0)
139 I/mmm (0,a,a) (0,0,0) (A,

√
3

2
B,−1

2
B,0,0,0)

204 Im3̄ (a,a,a) (0,0,0) (A,0,0,0,0,0)
71 Immm (a,b,c) (0,0,0) (A,B,C,0,0,0)
140 I4/mcm (0,0,0) (0,0,a) (A,0,B,0,0,0)
74 Imma (0,0,0) (0,a,a) (A,

√
3

2
B,−1

2
B,C,0,0)

167 R3̄c (0,0,0) (a,a,a) (A,0,0,−
√

3
3
B,
√

3
3
B,
√

3
3
B)

12 C2/m (0,0,0) (0,a,b) (A,B,C,D,0,0)
15 C2/c (0,0,0) (b,b,a) (A,0,B,−

√
2

2
C,
√

2
2
C,D)

2 P1̄ (0,0,0) (a,b,c) (A,B,C,D,E,F)
63 Cmcm (0,0,a) (0,b,0) (A,B,C,0,0,0)
62 Pnma (0,0,a) (b,b,0) (A,0,B,0,0,C)
11 P21/m (0,0,a) (b,c,0) (A,B,C,0,0,D)
137 P42/nmc (0,a,a) (b,0,0) (A,

√
3

2
B,−1

2
B,0,0,0)

To find collective displacement modes of the 40 atom supercell, we first collect the

coordinates of all atoms in a (120×1) column vector r. The displacements of the atoms, d,

from their ideal crystallographic locations, r0, are given by r = r0 + d. We construct the

Cartesian symmetry representation Md for the factor group, G, as described by Thomas

and Van der Ven [140] which describes how the vector of displacements transforms under

a crystal symmetry operation g by the equation d′ = Md(g)d. Next, we find a coordinate

transformation,

d = Qη, (4.1)

for which the matrix Q block diagonalizes the symmetry representation of the order

parameter space, Mη(g) = Q>Md(g)Q for all symmetry operations g ∈ G. In this

context the columns of Q = [q1q2...], represent the symmetry-adapted collective dis-

placement modes. For a certain column qi the corresponding amplitude is ηi. In this
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way we find the collective displacement modes q1 through q6 and their corresponding

amplitudes η1 through η6 which correspond to the frozen phonon modes described by the

three-dimensional R+
4 and M+

3 space group irreps.

Glazer et al. [93] and subsequently Howard and Stokes [141] enumerated the unique

space groups associated with symmetry breaking due to R+
4 and M+

3 displacement modes.

All 14 unique tilt systems (which result from symmetrically distinct combinations of

in-phase and out-of-phase tilts) as well as the cubic Pm3̄m reference phase are listed

along with their space group in Table 4.1. For each unique tilt system, there exists

rotational and translational equivalents due to the symmetry of the cubic parent group.

For instance, a z-oriented a0a0a+ in-phase tilt system is equivalent to a y-oriented in phase

tilt system a0a+a0 and the x-oriented tilt system a+a0a0. In the supplemental materials

we enumerate all rotational and translation equivalents for each of the 14 unique tilt

systems.

4.3.2 Strain Order Parameters

The progression of phase changes from the cubic high temperature α-phase through

the intermediate tetragonal β-phase to the orthorhombic ground state γ-phase is accom-

panied by macroscopic strains of the crystal unit cell. Often structural phase transitions

are monitored by the corresponding unit cell parameters; however, a convenient alterna-

tive is the use of strain order parameters defined relative to the cubic reference crystal.

An arbitrary lattice deformation corresponds to a left acting tensor F that operates

as L′ = FL, where L denotes a 3×3 matrix comprised of three lattice vectors arranged in

columns as L = [abc]. We use the Hencky strain defined as E = ln(F>F)/2 where F>F

is a real symmetric deformation tensor and ln refers to the matrix logarithm. Using the

same group theoretical techniques as outlined in the previous section, symmetry adapted
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order parameters are defined in terms of the tensor E as: [142]

e1 = (Exx + Eyy + Ezz)/
√

3 (4.2)

e2 = (Exx − Eyy)/
√

2 (4.3)

e3 = (2Ezz − Exx − Eyy)/
√

6 (4.4)

e4 =
√

2Eyz (4.5)

e5 =
√

2Exz (4.6)

e6 =
√

2Exy (4.7)

The first strain order parameter, e1, is proportional to the trace of the strain tensor

and describes purely volumetric expansion or compression of the crystal. The effect of

the e1 strain order parameter is illustrated in Figure 4.2(a). When using the Hencky

strain metric, e1 is related to the volume as e1 = ln(V
′

V0
)/
√

3 where V ′ is the volume of

the deformed lattice and V0 is that of the reference lattice.

Deviatoric strains, spanned by e2 and e3 are pictured in Figure 4.2(b) where the origin

represents the undistorted cubic reference phase. Along the high symmetry directions

(following the blue or purple arrows in Figure 4.2(b)) volume preserving deformations (i.e.

e1 = const.) maintain 90 degree angles between lattice vectors and result in tetragonal

distortions of the cubic reference lattice. For example, deformations described by e3

result in elongation of the z-axis as shown in Figure 4.2(b). Furthermore, tetragonal

deformations from elongation of the x- or y-axes show up as high symmetry lines within

the e2-e3 strain subspace. Due to the equivalence of the x, y, and z directions in a cubic

crystal, the x, y, and z-oriented tetragonal deformations are equivalent by symmetry.

The use of the e2 and e3 strain order parameters allows us to distinguish between the
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(a)

(b) (c)

(d) (e)

1

Figure 4.2: (a) Schematic representation of the volumetric e1 strain order parameter.
(b) 2D strain subspace spanned by e2 and e3 strain order parameters. Figures of the
same color are symmetrically equivalent tetragonal variants. (c) 3D strain subspace
spanned by e4, e5 and e6. All variants pictured are symmetrically equivalent under ro-
tations of the cubic reference. (d) The distortions of the primitive and supercell lattices
are shown in the 2D subspace spanned by e3 and e6. Along e3 the lattice maintains
tetragonal symmetry (blue), and, along e6, orthorhombic symmetry is obtained (red).
(e) Depictions of the tetragonal primitive cell (blue), orthorhombic primitive cell (red)
and perovskite 2× 2× 2 supercell (black) under the associated lattice strains.

different tetragonal variants and to conveniently display all variants within a single two-

dimensional plot.

The e4, e5, and e6 strain order parameters describe shear strains and their effect on

a cubic reference crystal is shown in Figure 4.2(c). In this work we focus on the shear

distortions described by the high symmetry axes: e4, e5, and e6. Strains along the e4 , e5,

and e6 axes distort lattice angles away from 90 degrees and correspond to orthorhombic
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deformations of the cubic reference. Due to the symmetry of the parent group, all of

the pictured distortions in Figure 4.2(c) are related by a rotation of the cubic crystal;

therefore the six displayed shear distortions are said to be rotationally equivalent. The

use of e4 , e5, and e6 makes it possible to distinguish among the orthorhombic variants

and to visualize all symmetrically equivalent shear strains within a three-dimensional

subspace.

In this work, we treat strain as secondary order parameters to the primary tilt order

parameters. When a primary tilt order parameter, denoted η, is activated in the refer-

ence cubic crystal, the symmetry is reduced from the Pm3̄m space group to a subgroup

which we call Gη. Symmetry lowering by the primary order parameters allows differ-

ent strains to take on nonzero values without changing the symmetry of the internally

distorted structure. These symmetry invariant strains are known as secondary order

parameters. [143]

In particular, a secondary strain order parameter must be invariant to the point group

Pη associated with the space group Gη as defined above. With a symmetry representation

of the point group for the strain order parameters, Me, as described by Thomas and Van

der Ven [142], we can uncover the strains that may serve as secondary order parameters

to the primary tilt order parameters through the requirement: e =
∑

g∈Pη
Me(p)e where

e is a vector of the strain order parameters e1 through e6 and Me(p) denotes the strain

symmetry representation for a symmetry operation p.

Table 1 shows symmetry allowed secondary strain order parameters relative to the

cubic crystal for each octahedral tilt system. The directions in strain space are invariant

to the point group imposed by the primary tilt order parameter. The listed invariant

strain direction (e.g. (A,0,B,0,0,0)) therefore corresponds only to the listed tilt distortion.

In order to find the symmetrically equivalent directions, one must apply the symmetry

operations of the parent group to the strain order parameter. We include a full description
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of allowed strain order parameters for all rotational and translational variants of each tilt

system in the supplemental materials.

4.3.3 Strain/Tilt Order Parameters for α → β → γ Phase Tran-

sitions

The α→ β → γ phase transitions in inorganic perovskites involve symmetry breaking

due to octahedral tilting and macroscopic strains. The primary octahedral tilt order

parameters dictate group-subgroup relations between phases as a result of symmetry

breaking due to atomic displacements while secondary strain order parameters measure

the change in lattice vectors that accompany internal distortions. In this section, we

apply the previously developed strain and displacement order parameters to describe

the symmetry breaking associated with the experimentally observed α → β → γ phase

sequence.

We begin by discussing the α → β transition which corresponds to a lowering of

symmetry from cubic to tetragonal. The tetragonal symmetry breaking of the lattice is

associated with strains in the e2-e3 subspace as shown in Figure 4.3(a). Along e3, the

crystal is elongated along the z-direction while the xy-plane is compressed resulting in the

z-oriented βz phase. Symmetrically equivalent deformations distinguished by elongation

of the y or x-axes are shown as the βy and βx variants. Hence there are three rotationally

equivalent β-phase variants associated with the cubic α-phase reference.

The β → γ transition lowers the crystal point group symmetry from tetragonal to

orthorhombic. Orthorhombic symmetry breaking of the lattice results from activation of

shear modes, described by the e4, e5, and e6 strain order parameters as discussed above.

In discussing the β → γ transition, we will focus on a particular tetragonal β-phase

variant, specifically βz, but the same arguments apply for both βx and βy. For the case
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of βz, two γz-phase variants, γ+
z and γ−z result from the activation of the e6 strain order

parameter giving rise to shears in the xy-plane. As pictured in Figure 4.3(b), the positive

and negative γz variants correspond to positive or negative e6 amplitudes. The γ+
z and γ−z -

phases are related by a 90◦ rotation about the z-axis making them rotationally equivalent.

If we were to consider the β → γ transitions for the other tetragonal variants, i.e.

βy → γ±y or βx → γ±x , orthorhombic symmetry breaking would correspond to activation

of the e5 and e4 strain order parameters, respectively. Hence, each tetragonal phase

results in two symmetrically equivalent γ-phase orientational variants, giving a total

of six symmetrically equivalent orientational γ-phase variants that can emerge from a

common cubic phase.

So far, we have described the macroscopic strain order parameters which uniquely

identify a phase among the three experimentally observed phases (i.e. α, β, and γ), but

which also allow one to distinguish between rotational variants of the same phase (i.e.

βx, βy and βz). Next we describe the symmetry-adapted displacement order parameters

which give rise to corresponding tilt systems of the β and γ phases. In doing so, we

will be able to distinguish translational variants of the different phases. Physically, this

corresponds to distinguishing between a positive or negative rotation about a particular

tilt axis.

We now identify a two-dimensional tilt subspace which contains all three experi-

mentally observed phases for the α → βz → γ+
z transition. The ground state Pnma

orthorhombic structure commonly observed in perovskites, for example the γ+
z -phase

variant, adheres to the (00abb0) tilt pattern or b−b−a+ in Glazer notation. The tilt com-

ponents of this phase can be separated into two order parameters η1 = (00a000), which

describes in-phase tilts along the z-axis, and η2 = (000bb0), which describes simultane-

ous and equivalent out-of-phase tilts along both the x- and y-axes. Together these order

parameters span a two-dimensional tilt subspace pictured in Figure 4.3(c) which contains
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Figure 4.3: (a) Relevant strain order parameter subspaces for all rotational variants of
the α→ β → γ phase transitions. Points marked β represent symmetrically equivalent
tetragonal variants, and γ points are symmetrically equivalent orthorhombic phases.
In this work we focus on the strain subspace spanned by e3-e6 plotted in (b). (b) For
the βz variant there exists two rotationally equivalent orthorhombic variants, γ+

z and
γ−z . (c) Two-dimensional tilt subspace spanned by the in-phase tilt order parameter
η1 = (00a000) which results in P4/mbm symmetry and the out-of-phase tilt order
parameter η2 = (000bb0) which results in Imma symmetry. When both η1 and η2

are nonzero, the symmetry is reduced to the Pnma space group. (d) The rotationally
equivalent tilt order parameter η̃2 = (000b-b0) is introduced to describe the Pnma γ−z
variants which occur when both η̃2 and η1 are nonzero. (e) Examples of the translation
variants corresponding to (c) where the ± sign indicates positive or negative tilts.
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the α-phase at the origin, the βz-phase along the η1 axis, and the γ+
z -phase when both η1

and η2 are nonzero. Depictions of the tilt systems associated with η1 and η2 are pictured

in Figure 4.3(e).

An additional unique tilt system also appears within this subspace, namely the Imma

orthorhombic phase corresponding to nonzero values of the η2 order parameter. Al-

though the Imma orthorhombic phase with b−b−a0 tilts is not experimentally observed,

we will refer to it as a hypothetical ε-phase when discussing energy landscapes within

this subspace below.

While the strain order parameters distinguish symmetrically equivalent rotational

variants as shown in Figures 4.3(a,b), the microscopic displacement order parameters

η1 and η2 allow us to distinguish between symmetrically equivalent translational vari-

ants. For a particular strain state, there exist several equivalent internal displacements

arising from the octahedral tilt patterns. That is, the crystal can sample translational

variants through pure octahedral rotations, but rotational equivalents come along with

a reorientation of the macroscopic strain.

For example, consider the z-oriented tetragonal βz-phase. This phase is distinguished

by a positive e3 strain component and in-phase tilts along the z-axis, described by η1

in Figure 4.3(c). However a translational equivalent exists for tilts with negative tilt

angle about the z-axis given by −η1. Hence for each tetragonal variant there exists two

equivalent translational variants (e.g. a0a0a+ and a0a0-a+ for βz). Likewise, for each

orthorhombic γ-phase variant (e.g. γ+
z =(+e3,+e6)) there exist four translational variants

(e.g. tilt systems b−b−a+, -b−-b−a+, -b−-b−-a+, and b−b−-a+), as shown by the four red

circles in Figure 4.3(c).

The tilt subspace presented in Figure 4.3(c) corresponds only to the α, βz, and γ+
z

variants from Figure 4.3(b). In order to describe the octahedral tilts of γ−z , we introduce

the rotationally equivalent tilt order parameter η̃2 = (000b-b0) as shown as an orthogonal
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Figure 4.4: (a) Energies per formula unit (f.u.) of DFT relaxed tilt systems for
CsSnBr3, CsSnI3, CsPbBr3, and CsPbI3 relative to the cubic reference within each
chemistry. Pnma γ-phase ground states are found for all compounds. The low energy
P21/m structures are found to map to the Pnma structures with a tolerance of 0.01 Å.
(b) Relative energies of the Pnma ground states as a function of tolerance factor in
Equation 4.8. (c) Relative energies of the Pnma ground states plotted as a function
of the e1 = ln(V ′/V )/

√
3 strain order parameter as explained in the Section IIIB .

The relative energy shows a linear relationship with e1 indicating the significant role
of volume contraction in perovskite stability.

axis in Figure 4.3(d). Here, the red squares indicate the four translational equivalents

corresponding to γ−z .

In summary, there exist three rotational variants of the β-phase, each with two trans-

lational variants, for a total of six symmetrically equivalent tetragonal variants. For the

γ-phase, there are six rotational equivalents, each with four translational variants, for a

total of 24 symmetrically equivalent structures. The relationship between rotational and

translational equivalents and the corresponding secondary strain order parameters are

compiled in the supplemental materials.
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4.3.4 A-Cation Displacement

The third degree of freedom explored in this study involves displacements of the A-site

cation, in this case Cs. We probe the stability of the ground state orthorhombic A-cation

ordering by displacing the Cs sub lattice within the ab plane according to the factor

group of the crystal. Since the four Cs atoms are related by symmetry operations of the

factor group, a displacement of one Cs atom dictates the displacement field of all atoms

related by symmetry. By exploring the energy landscape associated with displacements

that maintain Pnma symmetry, we are able to determine if there exist unexplored local

minima with respect to Cs displacements.

4.4 Results

4.4.1 Tilt System Energy and Volume

In Figure 4.4(a) we present the DFT energies obtained after full geometric optimiza-

tion of all 14 possible tilt systems including the reference cubic α-phase structure. We

find that, among all chemistries, the orthorhombic γ-phase tilt system b−b−a+ always has

the lowest energy. This finding agrees with experimental observations of γ-phase ground

states upon cooling from the high temperature α-phase in CsSnI3, CsSnBr3, CsPbI3, and

CsPbBr3. [49, 132, 8, 133, 134]

In perovskite materials, the tendency to distort from the cubic α-phase has been

shown to correlate with the size of the A-site cation relative to the size of the cubocta-

hedral void in which it resides. The Goldschmidt tolerance factor quantifies the degree

of under or over coordination of the A-site as:

τ =
rA + rX√
2(rB + rX)

=
√

2
(rA
a

+
rX
a

)
. (4.8)
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where rA, rB, and rX refer to the ionic radii of the A, B and X sites of a perovskite,

respectively, and a refers to the cubic lattice parameter. For compounds with perfectly

coordinated A-site cations, τ = 1, and the cubic α-phase is typically favored. However,

for materials with under-coordinated A-sites, τ < 1, and structural distortions associated

with octahedral tilts are expected to occur.

Figure 4.4(b) depicts the relative energies of the γ-phase ground states (where each

chemistry is referenced to the energy of the cubic α-phase) as a function of the Gold-

schmidt tolerance factor. In the case of halide perovskites, ionic radii for the group VI

divalent cations such as Pb2+ and Sn2+ are not well established. [144, 27] Hence, we

instead calculate τ using the the second equality in Equation 4.8, with rA and rX given

by the known Shannon radii [144] and a given by the DFT calculated cubic lattice pa-

rameter. In Figure 4.4(b), the tolerance factor moderately correlates with the relative

energy of the ground state γ-phase systems across each chemistry.

While the tolerance factor serves as a proxy to predict the stabilization of the γ-

phase based only upon α-phase properties, we observe that the trend in energy of the

ground state γ-phase relative to the cubic high temperature α-phase follows an almost

perfect linear relationship with the volumetric e1 strain order parameter as presented in

Figure 4.4(c). In agreement with the predictions based on tolerance factor, Figure 4.4(c)

shows that Pb-based compounds undergo larger volume contraction resulting in larger

stabilization energies relative to the Sn-based counterparts. In addition to comparisons

between chemistries, the volumetric e1 strain order parameter also aids in the analysis

of tilt systems within a single chemistry. Remarkably, the correlation between relative

tilt system energy (as referenced to the cubic α-phase) and e1 persists among all tilt

systems as shown in Figure 4.5. Here, we observe that the γ-phase ground state corre-

sponds to the most volume-decreasing tilt system, thereby resulting in the lowest energy.

Together, Figures 4.4 and 4.5 suggest a unified description of tilt system stability in
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Figure 4.5: Energy per formula unit (f.u.) of DFT relaxed tilt systems vs e1 for (a)
CsSnI3, (b) CsSnBr3, (c) CsPbI3, and (d) CsPbBr3 relative to the cubic reference
within each chemistry. All chemistries show a linear relationship between the relative
energy (with respect to the cubic phase) and the e1 invariant of the Hencky strain
metric. The relationship between e1 and the ratio of the volumes between the deformed
structure, V , and the reference structure V0 is given by e1 = ln(V/V0)/

√
3.The slope

(m) is given in meV/(0.01 unit e1) and R2 is the coefficient of determination of the best
fit line. The ground state γ-phase is the lowest energy and most volume decreasing
tilt system for each chemistry.

ionic all-inorganic halide perovskites where, within a certain chemistry, the most volume

decreasing tilt system corresponds to the most stable phase, and between chemistries,

the volume contraction of the ground state phase dictates the energy difference from

the high temperature α-phase. Importantly, the energy differences between the γ-phase

ground state and the α-phase cubic reference for each chemistry are consistent with

the observed orthorhombic to tetragonal transition temperatures of this perovskite se-

ries. [42, 135, 43, 8, 50]
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4.4.2 Strain/Tilt Order Parameter Decomposition of DFT Opti-

mized Tilt Systems

In order to study the coupling between tilt modes and lattice strains, we performed

DFT relaxations with tight force convergence criteria for a subset of the tilt systems

considered in Figure 4.4(a), including Imma (ε), P4/mbm (β), and Pnma (γ). Figure 4.6

shows decompositions of the lattice strains in terms of symmetrized strain order param-

eters e3 and e6 as well as a decomposition of activated tilt modes in terms of collective

displacement modes η1 = (00a000), η2 = (000bb0), and η̃2 = (000b-b0) for CsSnBr3,

CsSnI3, CsPbBr3, and CsPbI3. The tilt mode decompositions in Figure 4.6(b-e) are

plotted using the same coordinate system described in Figures 4.3(c,d) where trans-

lationally equivalent structures belong to the same plane while rotationally equivalent

structures belong to an orthogonal plane. The length of each displacement order pa-

rameter axis is normalized to η1 = η2 = η̃2 = 1 which corresponds to a displacement

||d(η1 = 1)|| = ||d(η2 = 1)|| = ||d(η̃2 = 1)|| = 4.088Å where d is defined in Equation 4.1.

As is clear in Figure 4.6, the tetragonal β-phase (P4/mbm, a0a0a+), represented as

blue circles, has large η1 amplitudes as expected due to the presence of in-phase tilts.

Additionally the tetragonal β-phase structures show large positive e3 strains, indicating a

compression in the xy-plane and expansion along the z-axis (Figure 4.2(b,d)) as a result

of large in-phase tilting.

The orthorhombic ε-phase (Imma, b−b−a0), represented by green symbols, undergoes

large η2 or η̃2 amplitudes, depending on the rotational variant. Its unit cell undergoes

negative e3 strains and moderate e6 strains. A negative e3 strain indicates expansion of

the xy-plane as shown in Figure 4.2(d). Unlike the tetragonal β-phase which contracts

in the xy-plane (e3 > 0) due to in-phase tilts about the z-axis, the ε phase has no tilts

along the z-axis and exhibits expansion of the xy-plane (e3 < 0).
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Figure 4.6: (a) Strains associated with the (00abb0), (000bb0), and (00a000) are shown
as 2D projections into the xy-plane. Strains are enlarged by a factor of three for
clarity. Amplitude of tilt modes (left) and strain modes e3 and e6 (right) for (b)
CsSnBr3, (c) CsSnI3, (d) CsPbBr3, (e) CsPbI3. Order parameters η1 and η2 represent
the tilt systems (00a000) and (000bb0) respectively, while η̃2 denotes (000b−b0), the
rotationally equivalent axis to (000bb0).

Interestingly, two simultaneous out-of-phase tilts (i.e. η2 or η̃2 are nonzero) are always

accompanied by shear strains represented, in this case, as the e6 strain order parameter.
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The strain decompositions in the right column of Figure 4.6(b-e) illustrate that the sign

of e6 depends on the rotational equivalent specified by the octahedral tilt order parameter

either η2 or η̃2. The corresponding strains are illustrated in Figure 4.2(d) where a change

in the sign of e6 corresponds to a 90◦ rotation of the lattice about the z-direction.

The orthorhombic γ-phase (Pnma, b−b−a+ ) structures express large amplitudes for

both the η1 and η2 (or η1 and η̃2 for the rotational variants) as well as large e6 strains and

small e3 strains. Exaggerated illustrations of the strains associated with the γ (Pnma),

ε (Imma), and β (P4/mbm) phases are pictured in Figure 4.6(a)

Lastly, we observe from Figures 4.6(b,c,d,e) that the magnitudes of the tilt modes

and strains generally increase as a function of relative stability from CsSnBr3, CsSnI3,

CsPbBr3, to CsPbI3, similar to the correspondence between e1 and energy from Fig-

ure 4.4(c). This further illustrates the coupling between strain and tilts, where larger

amplitude octahedral tilts induce larger macroscopic strains in the crystal. Furthermore,

the most volume decreasing system, CsPbI3, exhibits the largest strains, the largest tilt

mode amplitudes and the deepest stabilization energies, while for the least volume de-

creasing compound, CsSnBr3, the opposites hold true.

4.4.3 Energy Landscape of Octahedral Tilt Order Parameters

Now we explore the energy landscape associated with pure octahedral tilts and

Cs displacements for CsSnBr3 and CsPbI3 as shown in Figure 4.7(a,b). CsSnBr3 and

CsPbI3 were chosen since they represent the extremes in terms of volume contrac-

tion, tilt amplitude, and stabilization energies as previously discussed. The horizon-

tal and vertical axes in Figure 4.7 correspond to the subspace first presented in Fig-

ure 4.3(c) and have been normalized such that a value of 1 corresponds to a displacement,

||d(η1 = 1)|| = ||d(η2 = 1)|| = 4.088Å where d is defined in Equation 4.1. The three
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rows of Figure 4.7 represent the same energy landscape at the equilibrium (i) α-cubic

strain, (ii) β-tetragonal strain, and (iii) γ-orthorhombic strain, which are represented by

the inset in the middle of Figure 4.7. Furthermore, within each row, the first column

of Figure 4.7(a,b) fixes the Cs positions to the center of the A-site cage, while in the

second column the Cs atoms are allowed to relax to their minimum energy positions. By

investigating the octahedral tilt energy landscape at different strains and with/without

Cs displacements, we are able to disentangle the effects of octahedral tilting, A-site dis-

placements, and strain on perovskite tilt system stability.

We begin by studying the octahedral tilt energy landscape at the reference cubic

strain in the first row of Figure 4.7(a,b)(i). Interestingly as seen in the fixed Cs columns

of Figure 4.7(a,b)(i) the energy landscape within the tilt subspace is nearly isotropic with

respect to any combination of imposed tilts. Both η1 and η2 octahedral tilts lower the

energy of the crystal relative to the cubic reference. Hence, the cubic crystal, represented

at the origin of the energy landscape, is dynamically unstable within this subspace. In

harmonic phonon dispersions, these instabilities manifest as imaginary frequency vibra-

tional modes at the R- and M -points of the Brillouin zone. [127] The constant energy

contours are almost perfectly isotropic with a slight preference for the (00a000) a0a0a+

tilt system. Thus, based solely on halide displacements, all of the considered tilt patterns

are nearly degenerate in energy, and the primary tilt order parameters are inadequate

to distinguish the ground state phases. This raises the question of why the γ-phase is

stable as a ground state as previously demonstrated in Figure 4.4(a).

The answer lies in the position of the A-site cation, in this case the Cs+ ion. While

the left columns of Figure 4.7(a,b)(i) are calculated at fixed strain, halide displacement,

and Cs position, the right columns represent the energy surface after only the Cs atoms

are allowed to relax to their minimum energy positions. Upon relaxation of the A-site

cation, the energy surfaces exhibit minima at each of the Pnma translational equivalents
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Figure 4.7: Energy surfaces for (a) CsSnBr3 and (b) CsPbI3 plotted as heat maps for
the 2D tilt space spanned by η2 = (000bb0) on the vertical axis and η1 = (00a000)
on the horizontal axis. Energies are relative to the energy of the cubic reference in
each chemistry and are normalized per one perovskite formula unit (f.u.). The order
parameter axes are normalized such that ||d(η1 = 1)|| = ||d(η2 = 1)|| = 4.088Å where
d is defined in Equation 4.1. Left column represents static calculations at (i) cubic
Pm3̄m α-phase strain, (ii) tetragonal P4/mbm β-phase strain, and (iii) orthorhombic
Pnma γ-phase strains. Right column indicates the energy at the same strain after
optimizing only the Cs+ cation positions. Only after cation displacements are the
Pnma ground state tilt systems stabilized.

as shown in the right columns of Figure 4.7(a,b)(i) for both CsSnBr3 and CsPbI3. Hence

at the reference cubic strain, both the α-phase, located at a local maximum, and the β-

phase, located at a saddle point, are unstable with respect to a combination of octahedral

tilts and A-site displacements.

Up to this point the calculated energy surface is of the crystal in the reference strain

of the high temperature cubic phase; however at intermediate and low temperatures, the
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average strain state of the crystal changes to tetragonal and orthorhombic. Therefore, it

is instructive to investigate the same octahedral tilt energy landscapes at the equilibrium

strains of the low symmetry structures.

Next, in Figure 4.7(a,b)(ii), we recalculate the same octahedral tilt energy landscape

at the equilibrium tetragonal β-phase strain corresponding to the a0a0a+ tilt system

(pictured as the third panel in Figure 4.6(a)). Before Cs optimization, there exist minima

at the β-phase tilt systems (ηβ1 , 0) while the ε, α, and γ phases are all unstable. After

the Cs positions are optimized, (right columns of Figure 4.7(a,b)(ii)), the γ-phase tilt

systems are again stabilized at the local minima (±ηγ1 ,±η
γ
2 ). The main effect of fixing

the equilibrium β-phase lattice parameters is the reduction in energy of the β-phase

saddle points after Cs optimization relative to the ε-phase saddle point. The significant

energy reduction associated with Cs displacements is enough to stabilize the γ-phase

even at β-phase lattice parameters.

Finally, Figure 4.7(a,b)(iii) shows the octahedral tilt energy landscape at the ground

state γ-phase strain. Interestingly, before Cs optimization the experimentally observed

tetragonal β-phase (P4/mbm a0a0a+ tilt system) is slightly stabilized at (ηβ1 , 0) as shown

in left columns of Figure 4.7(a,b)(iii). However, once Cs cation positions are optimized,

(right columns of Figure 4.7(a,b)(iii)), we once again observe the stabilization of the

γ-phase tilt system at minima located at (±ηγ1 ,±η
γ
2 ). At the ground state equilibrium

lattice parameters, the energy of the β-phase saddle point is reduced relative to the

ε-phase saddle point.

By recalculating the energy landscape with respect to octahedral tilts at the strains of

the α, β, and γ phases, we have shown that the main effect of strain is to alter the relative

energies of the β and ε saddle points. Furthermore, through selective optimization of the

Cs positions, we have shown that a strong coupling between octahedral tilts and Cs

displacements is the main source for stabilization of the γ-phase regardless of the strain
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state of the crystal.

4.4.4 A-cation Off-Centering in γ-phase Ground States

The effect of Cs optimization in Figure 4.7 demonstrates the importance of a strong

coupling between octahedral tilts and A-site displacements in stabilizing γ-phase ground

states. According to bond valence arguments, A-cation displacements originate from a

minimization of unfavorable Coulomb interactions in the crystal. [145] Since Cs+ off-

centering plays such a large role in the stabilization of the γ-phase ground state, we

also explored the energy landscape as a function of cooperative Cs+ displacements in the

ground state γ-phase structure.

Figure 4.8(a) depicts the z = 0 and z = 1/2 slices of the γ-phase ground state struc-

ture within the orthorhombic primitive cell. In the ground state Pnma γ-phase, the Cs

atoms displace from the ideal cubic positions (shown as dashed circles) to their minimum

energy positions (indicated by filled teal circles). Using the factor group of the structure,

we find symmetrically equivalent displacements of the Cs asymmetric unit represented

as the unit axes in Figure 4.8(a). In this way we map out the energy landscape of Cs

displacements that maintain Pnma symmetry as shown in Figure 4.8(b,c) for CsSnBr3

and CsPbI3, respectively. Even for small Cs displacements away from the minimum en-

ergy positions, the energy penalty for Cs displacements is quite large (Figure 4.8(b,c));

therefore, we rule out the possibility of any other local minima for Cs orderings in the

Pnma ground state.

4.5 Discussion and Conclusions

We have confirmed Pnma γ-phase ground states among the 14 distinct tilt systems

for CsSnBr3, CsSnI3, CsPbBr3, and CsPbI3 through full geometric optimization using
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Figure 4.8: (a) z=0 and z=1/2 sections of the orthorhombic primitive cell of the Pnma
ground state. Dashed circles represent high symmetry points of the orthorhombic
lattice which correspond to the ideal A-site positions in the cubic crystal and the
coordinate axes represent displacements from these points that respect that factor
group of the crystal. (b,c) Energy contours with respect to cation displacements as
defined above for CsSnBr3 and CsPbI3, respectively. Energies are relative to the
relaxed ground state energy and are presented as energy per unit cell (u.c.) which
contains 20 atoms. All displacements raise the energy thereby ruling out any other
local minima in terms of cation displacements that maintain Pnma symmetry.
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DFT. We find that all tilt systems lower the energy of the crystal with respect to the

high temperature cubic α-phase. Furthermore, by calculating the Born-Oppenheimer

energy landscape with respect to symmetry adapted collective displacement modes at

various strain states and with/without Cs displacements, we were able to disentangle the

energetic contributions of these three degrees of freedom. Notably, the coupling between

tilts and A-site displacements are necessary to stabilize the γ-phase ground state tilt

systems, while strain coupling lowers the β-phase saddle point energy relative to that of

the ε-phase saddle point.

The next important result is that the cubic and tetragonal phases are unstable as op-

posed to metastable. The presence of continuous energy lowering distortions in the cubic

and tetragonal phase means that harmonic phonon theory is inadequate to describe the

vibrational thermodynamics of these systems. Interestingly, we observe nearly isotropic

instabilities with respect to pure octahedral tilts associated with the R+
4 and M+

3 irreps

of the cubic Pm3̄m space group. Only upon selective relaxation of the Cs+ A-cation are

Pnma phases stabilized. The configuration of the Cs cations is fully dictated by distor-

tions of the octahedral cage, and we find no other Cs displacement patterns with lower

energy.

Upon full relaxations, tilt instabilities are always accompanied by macroscopic strains

which we decomposed into symmetrized strain order parameters using the Hencky strain

metric. We found that the volumetric strain order parameter e1 correlates with the rel-

ative energy of CsBX3 perovskites. Interestingly, Pb based compounds show a greater

degree of volume contraction as well as octahedral tilting. In addition to the geometri-

cal aspects of A-site under coordination, the trend that Pb-containing compounds show

deeper stabilization energies for octahedral tilting likely originates due to the higher

band gap of Pb compounds indicating a higher degree of ionicity. [146, 43] The de-

gree of ionicity is known to play a role in the degree of octahedral tilting in oxide per-
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Figure 4.9: Enlarged energy surface with respect to η1 and η2 at the ground state
orthorhombic Pnma strain from Figure 4.7(a)(iii) where Cs+ positions have been opti-
mized. Circles mark the location of minima or saddle points; red indicates the b−b−a+

tilt system occurring at the minimum (ηγ1 ,η
γ
2 ), green b

−b−a0 at (0,ηε2) and blue b0b0a+

at (ηβ1 ,0). At the orthorhombic ground state strain, we observe deeper saddle points
for the P4/mbm tilt system (±ηβ1 ,0) as opposed to the Imma tilt system (0,±ηε2) which
follows the experimentally observed phase sequence from the ground state orthorhom-
bic γ-phase to tetragonal P4/mbm β-phase at intermediate temperatures to the high
temperature Pm3̄m cubic α-phase.

ovskites where more covalent metal-oxygen bonds stabilize 180◦ degree O−M−O bond

angles. [147, 148, 149] For instance, the metal, ReO3, comprised of corner connected

octahedra maintains 180◦ bond angles [148, 150] despite the lack of a central A-site

cation (leading to a tolerance factor of zero). Therefore, higher ionicity leads to weaker

Pb−I−Pb bonds in Pb-based compounds resulting in larger octahedral tilting distortions

relative to Sn-based compounds studied here. In addition, stronger relative stabilization

energies for the Pb-containing compounds correlates with the experimentally observed

orthorhombic to tetragonal phase transition temperatures of CsMX3 halide perovskites

where Sn-containing compounds exhibit smaller bandgaps and lower transition temper-

atures than the Pb-containing counterparts.

The cubic α-phase and tetragonal β-phase of inorganic CsMX3 perovskites are dy-

namically unstable as demonstrated by the energy landscape with respect to octahedral
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tilt order parameters and Cs+ displacements. We reproduce the energy landscape with

respect to octahedral tilts at the orthorhombic γ phase strain in Figure 4.9 for CsSnBr3.

The experimental high temperature α-phase and the intermediate temperature β-phase

reside at a local maximum and saddle point, respectively, indicating that these phases

are unstable. Two important aspects of this energy landscape are that (1) the γ-phase

is only stabilized after optimization of the Cs positions and (2), at the equilibrium γ-

phase lattice parameters, the β-phase saddle point has a lower energy compared to the

ε-phase saddle point. The lower energy barrier between γ-phase variants passing through

the β-phase saddle points suggest that this is the more favorable transition pathway

as the structure is heated from low temperature. The phase progression from γ to β

likely occurs as out-of-phase octahedral rotations oscillate between positive and negative

rotations corresponding to oscillations between γ phase translational and orientational

variants through the β-phase. As the temperature is increased, sufficient thermal en-

ergy allows the system to sample all symmetrically equivalent structures resulting in an

average cubic structure.

The complexity of the Born-Oppenheimer energy surface at zero Kelvin underscores

the many avenues for anharmonic and dynamic fluctuations at high temperature. While

high temperature halide perovskites adopt the cubic phase, large anharmonic vibrational

excitations are likely occurring dynamically within local environments. For instance,

polar fluctuations involving head-to-head displacements of the Cs cation, have been ob-

served in hybrid and inorganic lead bromide perovskites, [128] large anharmonic halide

displacements contribute to a fluctuating lattice,[18, 124, 125, 126, 127] and dynami-

cally disordered metal atoms have been shown to increase with temperature [129, 42].

More specifically, inelastic x-ray scattering experiments on hybrid perovskites show that

phonon modes corresponding to the R+
4 and M+

3 irreps are substantially populated in the

cubic crystal indicating non-cubic local environments. [18] Moreover, structural studies

70



on inorganic cesium lead halide nanocrystals have shown that increasing populations of

twinned γ-phase nano domains can appear as higher symmetry phases from XRD further

complicating the picture of local symmetry breaking at high temperature. [151]

The dynamic local environment of perovskites at high temperatures remains unclear,

and accurate simulations of the lattice dynamics of these systems are critical to under-

stand the impact on electronic properties. However, due to the dynamically unstable

nature of the intermediate temperature tetragonal β-phase and high temperature cu-

bic α-phase, models of the lattice dynamics of inorganic halide perovskites cannot be

adequately handled within a harmonic approximation. Instead anharmonic vibrational

hamiltonians are needed to model structural phase transitions. [64] We have identified the

relevant strain and displacement order parameters to guide the construction and fitting

of DFT-based anharmonic vibrational effective hamiltonians in order to build accurate

lattice dynamics models of inorganic perovskite materials.

In conclusion, we have shown that a careful examination of the coupling between

strain, tilts, and Cs+ displacements is needed to explain the nature of structural phase

transitions in inorganic halide perovskites. However, from a macroscopic standpoint,

it is simply the degree of volume contraction that dictates the stability of the Pnma

ground state perovskite tilt system. Finally, we reiterate that the intermediate and high

temperature phases are both dynamically unstable (i.e. they appear at saddle points or

local maxima with respect to tilt order parameters) which gives rise to a deformable and

polarizable lattice that is essential to the optoelectronic properties of halide perovskites.
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4.6 Secondary Strain Order Parameters for Perovskite

Tilt Transitions

For each 14 unique tilt system we compile its rotational and translational equiva-

lents below along with the symmetry-allowed secondary strain order parameters. Given

a direction in the six dimensional tilt space corresponding to a particular tilt system

(e.g. η = (a00000) P4/mbm) the symmetry equivalent tilt order parameters are found

by applying the symmetry operations of the 2×2×2 cubic perovskite factor group as

η′ = Mη(g)η. The parent factor group contains several distinct types of symmetry

operations including pure translations, rotations/reflections, and glide/screw operations.

Pure translations applied to η result in translational equivalents that are grouped be-

tween single horizontal lines in the tables below. For example, in the P4/mbm space

group, η = (a00000) and η = (−a00000) are translational equivalents. Rotations, re-

flections, glide, or screw operations result in rotational equivalents which have their own

translation equivalents. For example η = (0a0000) and η = (00a000) are rotational

equivalents for the P4/mbm tilt system. In the tables below, single lines separate ro-

tational equivalents. The secondary strain order parameters are found by applying the

Reynold’s operator of the primary order parameter subgroup as described in the main

text. Since strains are a macroscopic property, they are invariant to microscopic trans-

lations resulting in just one secondary strain order for each group of translational tilt

equivalents.
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Table 4.2: 127 P4/mbm

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,0,0) (0,0,0) (A,
√

3
2 B,−1

2B,0,0,0)
(-a,0,0) (0,0,0)

(0,a,0) (0,0,0) (A,
√

3
2 B,12B,0,0,0)

(0,-a,0) (0,0,0)

(0,0,a) (0,0,0) (A,0,B,0,0,0)
(0,0,-a) (0,0,0)

Table 4.3: 139 I/mmm

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,a,a) (0,0,0) (A,
√

3
2 B,−1

2B,0,0,0)
(0,a,-a) (0,0,0)
(0,-a,-a) (0,0,0)
(0,-a,a) (0,0,0)

(a,0,a) (0,0,0) (A,
√

3
2 B,12B,0,0,0)

(a,0,-a) (0,0,0)
(-a,0,-a) (0,0,0)
(-a,0,a) (0,0,0)

(a,a,0) (0,0,0) (A,0,B,0,0,0)
(a,-a,0) (0,0,0)
(-a,-a,0) (0,0,0)
(-a,a,0) (0,0,0)

Table 4.4: 204 Im3̄

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,a,a) (0,0,0) (A,0,0,0,0,0)
(a,-a,-a) (0,0,0)
(-a,a,-a) (0,0,0)
(-a,-a,a) (0,0,0)

(-a,-a,-a) (0,0,0) (A,0,0,0,0,0)
(-a,a,a) (0,0,0)
(a,-a,a) (0,0,0)
(a,a,-a) (0,0,0)
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Table 4.5: 71 Immm
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,b,c) (0,0,0) (A,B,C,0,0,0)
(a,-b,-c) (0,0,0)
(-a,b,-c) (0,0,0)
(-a,-b,c) (0,0,0)

(-a,-c,-b) (0,0,0) (A,B,C,0,0,0)
(-a,c,b) (0,0,0)
(a,-c,b) (0,0,0)
(a,c,-b) (0,0,0)

(c,a,b) (0,0,0) (A,B,C,0,0,0)
(c,-a,-b) (0,0,0)
(-c,a,-b) (0,0,0)
(-c,-a,b) (0,0,0)

(-c,-b,-a) (0,0,0) (A,B,C,0,0,0)
(-c,b,a) (0,0,0)
(c,-b,a) (0,0,0)
(c,b,-a) (0,0,0)

(b,c,a) (0,0,0) (A,B,C,0,0,0)
(b,-c,-a) (0,0,0)
(-b,c,-a) (0,0,0)
(-b,-c,a) (0,0,0)

(-b,-a,-c) (0,0,0) (A,B,C,0,0,0)
(b,a,-c) (0,0,0)
(b,-a,c) (0,0,0)
(-b,a,c) (0,0,0)

Table 4.6: 140 I4/mcm

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (a,0,0) (A,
√

3
2 B,-1

2B,0,0,0)
(0,0,0) (-a,0,0)

(0,0,0) (0,a,0) (A,
√

3
2 B,12B,0,0,0)

(0,0,0) (0,-a,0)

(0,0,0) (0,0,a) (A,0,B,0,0,0)
(0,0,0) (0,0,-a)

74



Table 4.7: 74 Imma
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (0,a,a) (A,
√

3
2 B,−1

2B,C,0,0)
(0,0,0) (0,-a,-a)

(0,0,0) (0,a,-a) (A,
√

3
2 B,−1

2B,C,0,0)
(0,0,0) (0,-a,a)

(0,0,0) (a,0,a) (A,
√

3
2 B,12B,0,C,0)

(0,0,0) (-a,0,-a)

(0,0,0) (a,0,-a) (A,
√

3
2 B,12B,0,C,0)

(0,0,0) (-a,0,a)

(0,0,0) (a,a,0) (A,0,B,0,0,C)
(0,0,0) (-a,-a,0)

(0,0,0) (a,-a,0) (A,0,B,0,0,C)
(0,0,0) (-a,a,0)

Table 4.8: 167 R3̄c
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (a,a,a) (A,0,0,
√

3
3 B,

√
3

3 B,
√

3
3 B)

(0,0,0) (-a,-a,-a)

(0,0,0) (-a,a,a) (A,0,0,−
√

3
3 B,

√
3

3 B,
√

3
3 B)

(0,0,0) (a,-a,-a)

(0,0,0) (a,-a,a) (A,0,0,
√

3
3 B,−

√
3

3 B,
√

3
3 B)

(0,0,0) (a,-a,a)

(0,0,0) (a,a,-a) (A,0,0,
√

3
3 B,

√
3

3 B,−
√

3
3 B)

(0,0,0) (-a,-a,a)
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Table 4.9: 12 C2/m

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (0,a,b) (A,B,C,D,0,0)
(0,0,0) (0,-a,-b)

(0,0,0) (0,a,-b) (A,B,C,D,0,0)
(0,0,0) (0,-a,b)

(0,0,0) (0,b,a) (A,B,C,D,0,0)
(0,0,0) (0,-b,-a)

(0,0,0) (0,b,-a) (A,B,C,D,0,0)
(0,0,0) (0,-b,a)

(0,0,0) (a,0,b) (A,B,C,0,D,0)
(0,0,0) (-a,0,-b)

(0,0,0) (a,0,-b) (A,B,C,0,D,0)
(0,0,0) (-a,0,b)

(0,0,0) (b,0,a) (A,B,C,0,D,0)
(0,0,0) (-b,0,-a)

(0,0,0) (b,0,-a) (A,B,C,0,D,0)
(0,0,0) (-b,0,a)

(0,0,0) (a,b,0) (A,B,C,0,0,D)
(0,0,0) (-a,-b,0)

(0,0,0) (a,-b,0) (A,B,C,0,0,D)
(0,0,0) (-a,b,0)

(0,0,0) (b,a,0) (A,B,C,0,0,D)
(0,0,0) (-b,-a,0)

(0,0,0) (b,-a,0) (A,B,C,0,0,D)
(0,0,0) (-b,a,0)
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Table 4.10: 15 C2/c

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (a,b,b) (A,
√

3
2 B,−1

2B,C,
√

2
2 D,

√
2

2 D)
(0,0,0) (-a,-b,-b)

(0,0,0) (-a,b,b) (A,
√

3
2 B,−1

2B,C,
√

2
2 D,

√
2

2 D)
(0,0,0) (a,-b,-b)

(0,0,0) (a,b,-b) (A,
√

3
2 B,−1

2B,C,
√

2
2 D,−

√
2

2 D)
(0,0,0) (-a,-b,b)

(0,0,0) (a,-b,b) (A,
√

3
2 B,−1

2B,C,
√

2
2 D,−

√
2

2 D)
(0,0,0) (a,b,-b)

(0,0,0) (b,a,b) (A,
√

3
2 B,12B,

√
2

2 C,D,
√

2
2 C)

(0,0,0) (-b,-a,-b)

(0,0,0) (b,-a,b) (A,
√

3
2 B,12B,

√
2

2 C,D,
√

2
2 C)

(0,0,0) (-b,a,-b)

(0,0,0) (b,a,-b) (A,
√

3
2 B,12B,

√
2

2 C,D,−
√

2
2 C)

(0,0,0) (-b,-a,b)

(0,0,0) (-b,a,b) (A,
√

3
2 B,12B,

√
2

2 C,D,−
√

2
2 C)

(0,0,0) (b,-a,-b)

(0,0,0) (b,b,a) (A,0,B,
√

2
2 C,

√
2

2 C,D)
(0,0,0) (-b,-b,-a)

(0,0,0) (b,b,-a) (A,0,B,
√

2
2 C,

√
2

2 C,D)
(0,0,0) (-b,-b,a)

(0,0,0) (b,-b,a) (A,0,B,
√

2
2 C,−

√
2

2 C,D)
(0,0,0) (-b,b,-a)

(0,0,0) (-b,b,a) (A,0,B,
√

2
2 C,−

√
2

2 C,D)
(0,0,0) (b,-b,-a)
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Table 4.11: 2 P1̄

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (a,b,c) (A,B,C,D,E,F)
(0,0,0) (-a,-b,-c)

(0,0,0) (a,b,-c) (A,B,C,D,E,F)
(0,0,0) (-a,-b,c)

(0,0,0) (a,-b,c) (A,B,C,D,E,F)
(0,0,0) (-a,b,-c)

(0,0,0) (-a,b,c) (A,B,C,D,E,F)
(0,0,0) (a,-b,-c)

(0,0,0) (a,c,b) (A,B,C,D,E,F)
(0,0,0) (-a,-c,-b)

(0,0,0) (a,c,-b) (A,B,C,D,E,F)
(0,0,0) (-a,-c,b)

(0,0,0) (a,-c,b) (A,B,C,D,E,F)
(0,0,0) (-a,c,-b)

(0,0,0) (-a,c,b) (A,B,C,D,E,F)
(0,0,0) (a,-c,-b)

(0,0,0) (b,a,c) (A,B,C,D,E,F)
(0,0,0) (-b,-a,-c)

(0,0,0) (b,a,-c) (A,B,C,D,E,F)
(0,0,0) (-b,-a,c)

(0,0,0) (b,-a,c) (A,B,C,D,E,F)
(0,0,0) (-b,a,-c)

(0,0,0) (-b,a,c) (A,B,C,D,E,F)
(0,0,0) (b,-a,-c)

78



Table 4.12: 2 P1̄ cont.
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,0,0) (b,c,a) (A,B,C,D,E,F)
(0,0,0) (-b,-c,-a)

(0,0,0) (b,c,-a) (A,B,C,D,E,F)
(0,0,0) (-b,-c,a)

(0,0,0) (b,-c,a) (A,B,C,D,E,F)
(0,0,0) (-b,c,-a)

(0,0,0) (-b,c,a) (A,B,C,D,E,F)
(0,0,0) (b,-c,-a)

(0,0,0) (c,b,a) (A,B,C,D,E,F)
(0,0,0) (-c,-b,-a)

(0,0,0) (c,b,-a) (A,B,C,D,E,F)
(0,0,0) (-c,-b,a)

(0,0,0) (c,-b,a) (A,B,C,D,E,F)
(0,0,0) (-c,b,-a)

(0,0,0) (-c,b,a) (A,B,C,D,E,F)
(0,0,0) (c,-b,-a)

(0,0,0) (c,a,b) (A,B,C,D,E,F)
(0,0,0) (-c,-a,-b)

(0,0,0) (c,a,-b) (A,B,C,D,E,F)
(0,0,0) (-c,-a,b)

(0,0,0) (c,-a,b) (A,B,C,D,E,F)
(0,0,0) (-c,a,-b)

(0,0,0) (-c,a,b) (A,B,C,D,E,F)
(0,0,0) (c,-a,-b)
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Table 4.13: 63 Cmcm
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,0,0) (0,b,0) (A,B,C,0,0,0)
(a,0,0) (0,-b,0)
(-a,0,0) (0,b,0)
(-a,0,0) (0,-b,0)

(a,0,0) (0,0,b) (A,B,C,0,0,0)
(a,0,0) (0,0,-b)
(-a,0,0) (0,0,b)
(-a,0,0) (0,0,-b)

(0,a,0) (b,0,0) (A,B,C,0,0,0)
(0,a,0) (-b,0,0)
(0,-a,0) (b,0,0)
(0,-a,0) (-b,0,0)

(0,a,0) (0,0,b) (A,B,C,0,0,0)
(0,a,0) (0,0,-b)
(0,-a,0) (0,0,b)
(0,-a,0) (0,0,-b)

(0,0,a) (b,0,0) (A,B,C,0,0,0)
(0,0,a) (-b,0,0)
(0,0,-a) (b,0,0)
(0,0,-a) (-b,0,0)

(0,0,a) (0,b,0) (A,B,C,0,0,0)
(0,0,a) (0,-b,0)
(0,0,-a) (0,b,0)
(0,0,-a) (0,-b,0)
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Table 4.14: 62 Pnma
M+

3 R+
4 Strain

(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,0,0) (0,b,b) (A,
√

3
2 B,-1

2B,C,0,0)
(a,0,0) (0,-b,-b)
(-a,0,0) (0,b,b)
(-a,0,0) (0,-b,-b)

(a,0,0) (0,b,-b) (A,
√

3
2 B,-1

2B,C,0,0)
(a,0,0) (0,-b,b)
(-a,0,0) (0,b,-b)
(-a,0,0) (0,-b,b)

(0,a,0) (b,0,b) (A,
√

3
2 B,12B,0,C,0)

(0,a,0) (-b,0,-b)
(0,-a,0) (b,0,b)
(0,-a,0) (-b,0,-b)

(0,a,0) (b,0,-b) (A,
√

3
2 B,12B,0,C,0)

(0,a,0) (-b,0,b)
(0,-a,0) (b,0,-b)
(0,-a,0) (-b,0,b)

(0,0,a) (b,b,0) (A,0,B,0,0,C)
(0,0,a) (-b,-b,0)
(0,0,-a) (b,b,0)
(0,0,-a) (-b,-b,0)

(0,0,a) (b,-b,0) (A,0,B,0,0,C)
(0,0,a) (-b,b,0)
(0,0,-a) (b,-b,0)
(0,0,-a) (-b,b,0)
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Table 4.15: 11 P21/m

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(a,0,0) (0,b,c) (A,B,C,D,0,0)
(a,0,0) (0,-b,-c)
(-a,0,0) (0,b,c)
(-a,0,0) (0,-b,-c)

(a,0,0) (0,b,-c) (A,B,C,D,0,0)
(a,0,0) (0,-b,c)
(-a,0,0) (0,b,-c)
(-a,0,0) (0,-b,c)

(a,0,0) (0,c,b) (A,B,C,D,0,0)
(a,0,0) (0,-c,-b)
(-a,0,0) (0,c,b)
(-a,0,0) (0,-c,-b)

(a,0,0) (0,c,-b) (A,B,C,D,0,0)
(a,0,0) (0,-c,b)
(-a,0,0) (0,c,-b)
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Table 4.16: 11 P21/m cont.

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,a,0) (b,0,c) (A,B,C,0,D,0)
(0,a,0) (-b,0,-c)
(0,-a,0) (b,0,c)
(0,-a,0) (-b,0,-c)

(0,a,0) (b,0,-c) (A,B,C,0,D,0)
(0,a,0) (-b,0,c)
(0,-a,0) (b,0,-c)
(0,-a,0) (-b,0,c)

(0,a,0) (c,0,b) (A,B,C,0,D,0)
(0,a,0) (-c,0,-b)
(0,-a,0) (c,0,b)
(0,-a,0) (-c,0,-b)

(0,a,0) (c,0,-b) (A,B,C,0,D,0)
(0,a,0) (-c,0,b)
(0,-a,0) (c,0,-b)
(0,-a,0) (-c,0,b)

(0,0,a) (0,b,c) (A,B,C,0,0,D)
(0,0,a) (0,-b,-c)
(0,0,-a) (0,b,c)
(0,0,-a) (0,-b,-c)

(0,0,a) (0,b,-c) (A,B,C,0,0,D)
(0,0,a) (0,-b,c)
(0,0,-a) (0,b,-c)
(0,0,-a) (0,-b,c)

(0,0,a) (0,c,b) (A,B,C,0,0,D)
(0,0,a) (0,-c,-b)
(0,0,-a) (0,c,b)
(0,0,-a) (0,-c,-b)

(0,0,a) (0,c,-b) (A,B,C,0,0,D)
(0,0,a) (0,-c,b)
(0,0,-a) (0,c,-b)
(0,0,-a) (0,-c,b)
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Table 4.17: P42/nmc

M+
3 R+

4 Strain
(a,b,c) (a,b,c) (e1, e2, e3, e4, e5, e6)

(0,a,a) (b,0,0) (A,
√

3
2 B,-1

2B,0,0,0)
(0,a,a) (-b,0,0)
(0,-a,-a) (b,0,0)
(0,a,-a) (b,0,0)
(0,-a,a) (b,0,0)
(0,a,-a) (-b,0,0)
(0,-a,a) (-b,0,0)
(0,-a,-a) (-b,0,0)

(a,0,a) (0,b,0) (A,
√

3
2 B,12B,0,0,0)

(a,0,a) (0,-b,0)
(-a,0,-a) (0,b,0)
(a,0,-a) (0,b,0)
(-a,0,a) (0,b,0)
(a,0,-a) (0,-b,0)
(-a,0,a) (0,-b,0)
(-a,0,-a) (0,-b,0)
(0,-a,0) (b,0,b)

(a,a,0) (0,0,b) (A,0,B,0,0,0)
(a,a,0) (0,0,-b)
(-a,-a,0) (0,0,b)
(a,-a,0) (0,0,b)
(-a,a,0) (0,0,b)
(a,-a,0) (0,0,-b)
(-a,a,0) (0,0,-b)
(-a,-a,0) (0,0,-b)
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Chapter 5

First principles thermodynamics study

of phase stability in inorganic halide

perovskite solid solutions

5.1 Introduction

Efficient, low-cost, solution-processed solar cells based on hybrid halide perovskite ac-

tive layers offer a promising alternative to current Si-based technologies which require en-

ergy intensive manufacturing processes. [152] Tolerance to defects [4, 6, 153, 154, 155, 133]

as a result of an "inverted" band structure [38] enables high photovoltaic performance

from relatively low-temperature, solution-processed perovskite materials. Remarkably,

hybrid perovskites seem to offer the best of both worlds in terms of optoelectronic prop-

erties: they have a high absorption coefficient [83] and high photoluminescence [156],

characteristic of a pristine direct band gap semiconductor, but, at the same time, they ex-

hibit long diffusion lengths [5, 10, 13] and low radiative recombination rates [8, 9, 11, 12],

characteristic of indirect band gap semiconductors. The origin of these seemingly contra-
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indicated properties is an extremely active area of research, but several explanations have

been proposed. First, Rashba-Dresselhaus splitting of the conduction band (composed

of Pb p states) due to spin-orbit coupling and local asymmetry of the inorganic sub

lattice may explain the low recombination rates[16, 17, 18, 15, 20], since the region of

phase space available for direct electron-hole recombination diminishes at moderate car-

rier concentrations. [19]. Second, electron-phonon interactions may lead to the formation

of large polarons which protect carriers from scattering and recombination. [21, 22, 12].

Regardless of the mechanism for low recombination rates, the commercial adoption of

hybrid perovskites requires materials that remain thermodynamically stable to thermal

variations resulting from the natural day-night cycle and, of course, to light irradiation.

Even at ambient conditions, hybrid lead iodide perovskites decompose to PbI2 within

hours or days. [153, 157] Moreover, inorganic perovskite compounds CsSnI3 and CsPbI3

have been observed to revert to a stable non-perovskite δ-phase. [136, 8, 132, 49] The

main approach for stabilizing the photoactive perovskite α-phase involves increasing the

average effective size of the A-cation constituent through substitution with mixtures of

Cs, methylammonium, and formamadinium. [23, 24, 25, 26, 27]

Another key feature of halide perovskites is the ability to tune the band gap through

halide substitution. Compositional engineering on the halide sub lattice allows band gap

tuning across the entire composition range from small band gap AMI3 to larger band

gap AMBr3 materials. [28, 29, 30, 31] However, in the x < 0.66 region of APb(IxBr1−x)3

alloys, the so-called Hoke effect leads to semi-reversible photo-induced phase separation

into I-rich and Br-rich domains. [158, 159, 160] In CH3NH3Pb(IxBr1−x)3, photo-induced

phase separation prevents tuning of the band gap into the 1.75-2.25 eV range thereby

diminishing the maximum attainable open circuit voltage in photovoltaic devices. [161]

The most striking experimental signature of the Hoke effect involves a drastic red shift

in the photoluminescence spectrum due to the formation of small band gap, brightly lu-
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minescing I-rich domains. In particular, when a film of mixed halide content such as

APb(Br0.5I0.5)3 is subjected to light irradiation, an original PL peak at around 650 nm

diminishes while a large peak at 725 nm increases in intensity due to small band gap I-rich

domains. A small peak at 530 nm also grows due to large band gap Br-rich domains. Thin

film X-ray diffraction also points to the formation of two crystalline domains with dif-

fering lattice parameters, namely the Br- and I-rich domains. [158] Transient differential

absorption measurements further support the notion of light induced phase segregation

and establish kinetic rate constants for the process. [162]. Lastly, direct cathodolumines-

cence imaging also reveals the formation of I-rich domains due to light irradiation. [163]

In order to better understand the Hoke effect, it is crucial that the equilibrium phase

diagrams of the alloyed halide perovskites are accurately characterized and fully under-

stood. In this letter, we use cluster expansions and finite temperature statistical me-

chanics to predict the equilibrium phase behavior of inorganic binary halide perovskites,

CsM(XxY1−x)3. While first-principles approaches have been used before to study binary

halide perovskite phase stability [163, 164, 165], they have relied on mean field approaches

and therefore neglect the important role of long- and short-range order among the dif-

ferent halide species at finite temperature. We find that Pb-based compounds tend to

have a ground state halide ordering at x = 2/3, which our finite temperature statistical

mechanics treatment rigorously accounts for. In addition, we show that the stability of

the x = 2/3 ordering in for example CsPb(IxBr1−x)3 results in a miscibility gap that

only extends to x = 2/3, a composition that closely matches the end state of the photo-

induced phase separation in this alloy. Our Monte Carlo simulations also show that the

Pb-based compounds retain a degree of long range order associated with halide layering

at temperatures above the miscibility gap around x = 2/3. Finally, a correlation is found

between the critical temperature for mixing and the volume difference between the end

members of the alloys, suggesting a simple design rule to control miscibility in alloyed
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Figure 5.1: (a) Ground state orthorhombic Pnma γ-phase structure for CsPbI3. (b)
An example of the layered ground state at x = 2/3 is shown for CsPbBr2Cl. The
x = 5/6 structure is a related layered structure within 1meV of convex hull. Double
sided arrows indicate layers of Cl on the halide sub lattice. x = 1 is the CsPbBr3
ground state for comparison. The two distinct halide sub lattices are labeled apical
and equatorial.

halide perovskites.

5.2 Methods

The Vienna ab initio Simulation Package (VASP) [104, 105] was used to carry out

DFT calculations with a plane-wave basis set and projector augmented wave [104, 106]

(PAW) pseudopotentials. The Perdew-Burke-Ernzerhof functionals revised for solids

(PBEsol) were used to approximate the electron exchange-correlation functional. [166] For

the orthorhombic primitive cell a 6×4×4 k-point mesh centered at the Γ point was used

with a 600 eV plane wave energy cutoff. Energies were converged to within 1meV/atom

with respect to k-point density. Geometric optimization of symmetrically distinct halide

decorations was halted when energies between ionic steps fell below 0.005meV/atom

and final energies were calculated during a subsequent static calculation. The CASM
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Figure 5.2: DFT formation energies (blue circles) for three (a) Pb-based and (b)
Sn-based halide binaries compared to the cluster expansion energies (red squares).
Energies for configurations which were not calculated with DFT are all predicted to
lie above the convex hull (teal squares).

code, [167, 168, 64] was used to construct cluster expansions and perform Monte Carlo

simulations. We fit a cluster expansion effective Hamiltonian to DFT energies using a

genetic algorithm for feature (cluster) selection [66] and least squares minimization to

calculate the ECI. In order to avoid over-fitting, ECI which minimize a 10-fold cross

validation (CV) score were used as the model parameters. In this way we were able to

construct effective Hamiltonians with CV scores and root mean square errors (RMSE)

less than 10meV/atom, approaching the limit set by DFT accuracy which is around

1meV/atom. Crystal structures were visualized using the VESTA program suite. [109]
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5.3 Results

Full geometric optimization with DFT predicted the Pnma orthorhombic form of

perovskite with b−b−a+ tilts as having the lowest energy of all 15 unique perovskite tilt

systems for Cs-based inorganic halide perovskites. [169] Hence, to predict miscibility tem-

peratures for halide perovskite binaries we chose the Pnma structure, which is pictured

in Figure 5.1, as the parent crystal structure over which to explore binary halide disorder

at absolute zero and at finite temperature.

Halide substitution in halide perovskites was modeled with the cluster expansion ap-

proach [54]. We studied six binary systems: CsSn(IxBr1−x)3, CsPb(IxBr1−x)3, CsSn(BrxCl1−x)3,

CsPb(BrxCl1−x)3, CsSn(IxCl1−x)3, and CsPb(IxCl1−x)3. The orthorhombic primitive cell

of the Pnma tilt system has 20 atoms, 12 of which are halide sites. DFT energies were

collected after full geometric optimization of about 70-80 configurations with symmetri-

cally distinct halide decorations for each binary. The DFT energies were used to train a

cluster expansion of the form:

E(~σ) = V0 +
∑
α

Vαϕα(~σ) (5.1)

where ~σ specifies the decoration of halide species on the alloying sites, α denotes clusters

of sites, the ϕα(σ) are polynomial basis functions composed of products of configurational

variables, and the Vα are expansion coefficients known as effective cluster interactions

(ECI) to be determined by fitting to the DFT training data. Details of the fitting

procedure for finding appropriate ECI are given in the Methods.

DFT energies are compared to the cluster expansion energies (clex) in Figure 5.2 for Sn

and Pb binaries, respectively. Noticeably, ground state orderings are found at x = 2/3 for

CsSnBr2Cl, CsPbBrI2, and CsPbBr2Cl, agreeing with other theoretical and experimental
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reports. [164, 165, 30, 158, 170] In fact, as has been previously pointed out the layered

structures at x = 2/3 maximize favorable Coulomb interactions which explains their low

formation energy. [165] Furthermore, Figure 5.2 demonstrates the effect of halide size

difference on the mixing energy. For instance, neither of the CsM(IxCl1−x)3 binaries

(with M = Pb or Sn) exhibit ground state orderings at intermediate concentrations x,

and the postive formation energies of these mixed halide configurations are the highest

among binary systems studied here. The absolute values of the formation energies of

mixing decrease as the size difference between the anions decrease when going from

CsM(IxCl1−x)3 to CsM(IxBr1−x)3 to CsM(BrxCl1−x)3.

Semi-grand canonical Monte Carlo simulations were performed using the CASM code

to calculate thermodynamic averages as a function of temperature and halide chemi-

cal potential. [167, 168, 64] Free energy integration was used to construct finite tem-

perature phase diagrams as presented in Figure 5.3. Miscibility gaps were found for

both CsPb(IxCl1−x)3 and CsSn(IxCl1−x)3 with transition temperatures of 423K and

460K, respectively. The high transition temperatures are consistent with the fact that

CsM(IxCl1−x)3 solutions are experimentally unaccessible at room temperatures. [171] The

CsPb(IxBr1−x)3 and CsSn(IxBr1−x)3 binaries exhibit transition temperatures at 217K

and 225K in agreement with previous theoretical studies. [165] Finally, CsPb(BrxCl1−x)3

and CsSn(BrxCl1−x)3 binaries have transition temperatures at 97K and 74K, respec-

tively, indicating facile phase miscibility. A second small miscibility gap was found at

very low temperatures below 50K in the binary systems that exhibit the x = 2/3 ground

state ordering. However, due to the limitations of Monte Carlo sampling we were unable

to resolve these features, and we cut off the phase diagram at 50K.

The strong preference for layering in CsPb(BrxCl1−x)3, CsSn(BrxCl1−x), and CsPb(IxBr1−x)3

results in the x = 2/3 ground state and a sharp phase boundary near that composition.

The layered ordering at x = 2/3, however, does not undergo an abrupt thermodynamic
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order-disorder phase transition with increasing temperature, but instead very gradually

approaches the disordered state over a broad temperature interval. This is possible be-

cause the layered ordering at x = 2/3 does not break any symmetries of the orthorhombic

parent Pmna crystal structure. The different halides of the binary alloys segregate to

sites that are already symmetrically distinct sites due to the octahedral tilting within

the Pmna orthorhombic phase. There is therefore no requirement for a thermodynamic

order-disorder transition.

To gauge the degree of halide layering we introduce the order parameter:

η = xeq − xap

where xeq and xap denote the compositions on the equatorial and apical octahedral sites

shown in Figure 5.1. The order parameter η takes on its maximum value of 1 in the

fully ordered state at x = 2/3, where the larger halide ion occupies the equatorial sites,

and becomes equal to zero in the completely disordered state, when the compositions

on each sub lattice are equal to each other. In Figure 5.3, constant chemical potential

Monte Carlo cooling runs are plotted with the color indicating the average value of η.

Yellow indicates an ideally disordered solution, while purple signifies halide layering. As

is evident from Figure 5.3, all of the binaries, except CsSn(IxCl1−x)3, retain a degree of

halide layering even above the critical temperature for mixing. Interestingly, layering is

more pronounced for the Pb-based compounds, with CsPb(IxBr1−x)3 showing long range

order even at 300K.

Although the six binaries studied here show differences with respect to the shape of

the two-phase region and the degree of layering, the critical temperatures for full mixing

seem to be agnostic to the identity of the metal ion and generally increase as the size

difference between halide alloying elements increases. Figure 5.4, which shows the mixing
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Figure 5.3: Phase diagrams for the three Pb- and Sn-based binaries as determined
through free energy integration from semi-grand canonical Monte Carlo sampling
within a µT ensemble. Dashed lines indicate the estimated critical temperature. Solid
black lines trace the boundary between the two-phase region (white) and the solid
solution phase where the color corresponds to the layering order parameter, η, as de-
scribed in the text. Only CsM(IxCl1−x)3 binaries are predicted to phase separate at
room temperature. For systems which exhibit the x = 2/3 ground state, a sharp
phase boundary around x = 2/3 is predicted. Black squares (circles) represent exper-
imentally observed tetragonal to cubic (orthorhombic to tetragonal) structural phase
transition temperatures.

temperature Tmg as a function of the volume difference between binary end members,

reveals the key role played by halide ion size. As is clearly evident in Figure 5.4, a
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Å

Figure 5.4: Transition temperatures for full halide miscibility (as determined from
Figure 5.3) plotted as a function of volume difference between the DFT-relaxed end
members for each binary. A strong linear relationship suggests the significant role of
strain in determining the phase miscibility.

large volume difference between end-members results in a higher critical temperature.

Differently sized halide anions introduce local strains that penalize a solid solution and

favor phase separation. This result can serve as a design principle for compositional

engineering in other binary halide perovskites with different A-site cations: to decrease

the mixing temperature choose end members that have similar volumes.

5.4 Discussion

Our first-principles statistical mechanics study of phase stability in alloyed orthorhom-

bic Pnma CsM(XxY1−x)3 perovskites has demonstrated the importance of long- and

short-range order both at absolute zero Kelvin and at finite temperature. Three of the

six CsM(XxY1−x)3 binaries studied here favor an ordered phase at x = 2/3 in which

the larger halide occupies the equitorial sites and the smaller halide occupies the apical
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sites of the orthorhombic γ-phase perovskite parent crystal structure. The layered halide

ordering within the orthorhombic perovskite persists to room temperature and above,

even in the binaries that do not form the perfectly ordered phase at zero Kelvin. Our

calculations also show that the binaries that form the layered x = 2/3 phase do not have

simple miscibility gaps that span the full composition range between x = 0 and x = 1.

Instead, their phase diagrams have two phase regions between x ≈ 0 and x ≈ 2/3. The

calculated phase diagrams of six halide perovskite alloys have also revealed a clear corre-

lation between the critical temperature of mixing and the volume difference between the

alloy end members.

The calculations of this work extend past studies of phase stability in the binary halide

perovskites.[164, 165] Previous first-principles treatments, however, did not explicitly

treat the long-range ordered x = 2/3 phases or the presence of short-range order at

finite temperature as they were based on mean field approximations. Furthermore, past

studies considered halide disorder over tilt systems of the perovskite crystal that have

been shown to be dynamically unstable: Brivio et al. [164] used a pseudo cubic reference

phase for the hybrid perovskite, while the orthorhombic Pnma structure is known to be

the ground state, and Yin et al. [165] used the I4/mcm reference state for the inorganic

halide perovskites even though it is only observed in hybrid perovskites.

The results presented here, including the calculated phase diagrams and order-parameter

maps, represent an accurate thermodynamic description of the alloyed orthorhombic

halide perovskites with which a more precise understanding of photo-induced phase sep-

aration, also known as the Hoke effect, [158, 30, 160] can be realized. Several mod-

els have been put forward to explain the Hoke effect in hybrid perovskites such as

CH3NH3Pb(IxBr1−x)3. Bischak et al. [163] developed a mean-field thermodynamic de-

scription that predicts photo-induced phase segregation as a result of polaron formation

due to the preference of holes for small bandgap I-rich domains. In this model, light
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irradiation leads to polaron formation which induces local strains that drive halide segre-

gation. Figure 5.4 does indeed show that an increase in the difference in the volumes of

the pure halide perovskite end members leads to an increase in the critical temperature

of the miscibility gap. Presumably this correlation is preserved even if the increase in the

difference in volume between end members is photo-induced. Kinetic models have also

been developed that assume that band gap differences between the solid solution phase

and the I-rich phase generates driving forces for phase segregation. [172]

A complexity that emerges in studying the Hoke effect in a hybrid perovskite such

as CH3NH3Pb(IxBr1−x)3 is the occurrence of structural transformations around room

temperature. For instance, CH3NH3PbI3 exists in the tetragonal I4/mcm phase at

room temperature and undergoes a tetragonal to cubic transition at 330K. [131] For

CH3NH3PbBr3, this cubic to tetragonal transition occurs below room temperature at

235K. [173, 174, 92] The difference in transition temperatures for the pure end members

indicates that there should be a two-phase region separating an I-rich tetragonal phase

from a Br-rich cubic phase around room temperature. The existence of such a two-phase

region obfuscates the role of photo-induced excited state phenomena versus equilibrium

thermodynamics as the origin of halide segregation in the Hoke effect.

In contrast to the hybrid perovskites, the CsPb(IxBr1−x)3 alloy, which also exhibits

photo-induced phase separation, [160, 175, 172] does not undergo structural transforma-

tions until well above room temperature. The orthorhombic-tetragonal phase transition

occurs at around 448K [8] (361K) [45] in CsPbI3 (CsPbBr3), while the tetragonal-cubic

transition occurs at 533K [8] (403K) [45] in CsPbI3 (CsPbBr3). The dependence of

the structural phase transition temperatures on composition x is not yet established for

CsPb(IxBr1−x)3. Nevertheless, our first-principles statistical mechanics study predicts

that CsPb(IxBr1−x)3 forms a complete solid solution within the orthorhombic phase

around 200 K. The higher temperature tetragonal and cubic forms of CsPb(IxBr1−x)3
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therefore likely also form solid solutions for all x. To first-order then, we expect simple

lens shaped two-phase regions separating tetragonal from orthorhombic and cubic from

tetragonal CsPb(IxBr1−x)3 as schematically illustrated by the dashed lines in Figure 5.5.

The calculated miscibility gap within the orthorhombic form of CsPb(IxBr1−x)3 is also

shown in Figure 5.5 with a solid line.

Beal et al. [160] showed that the Hoke effect takes place in CsPb(IxBr1−x)3 for compo-

sitions x < 0.66. Under light illumination, the photoluminescence peak of samples with

compositions x < 0.66 converge to the x = 2/3 PL peak at around 650 nm, which remains

constant as a function of time. [160] Hence, the experimental observations suggest the

presence of a phase boundary at x = 2/3 under light irradiation. Our first-principles

study predicts that CsPb(IxBr1−x)3 forms a solid solution well below room temperature,

which is consistent with the fully tunable band gap for this binary at room temper-

ature across the whole composition range. [176, 160] Remarkably, the topology of the

predicted low-temperature miscibility gap in orthorhombic CsPb(IxBr1−x)3 (Figure 5.5)

is very similar to the photo-induced miscibility gap observed by Beal et al. [160] at room

temperature.

Our calculated low-temperature phase diagram for CsPb(IxBr1−x)3 suggests that the

layered halide ordering at x = 2/3 plays an important role in the photo-induced phase

separation in this alloy. The topology and quantitative transition temperatures of the

halide perovskite phase diagrams are sensitive to the distribution of the formation energies

for different halide orderings. This is evident upon comparing the first-principles DFT

formation energy plots of Figure 5.2 with the calculated phase diagrams of Figure 5.3.

Light illumination that causes electronic excitations will affect the formation energy of

each halide ordering in a different way, since each symmetrically distinct ordering will

have a different band structure. If for example, light illumination affects the formation

energy of the layered x = 2/3 ordering in a more favorable way than the energies of all the
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Figure 5.5: Hypothetical extension of the CsPb(IxBr1−x)3 phase diagram to include
known structural phase transitions from the stable orthorhombic phase to the dy-
namically stabilized tetragonal and cubic phases. Black squares (circles) represent
experimentally observed tetragonal to cubic (orthorhombic to tetragonal) structural
phase transition temperatures. Dashed lines represent two-phase boundaries for ideal
mixing and the solid line is adapted from Figure 5.3. Dotted-dashed line represents
possible two-phase boundary during light irradiation.

other arrangements, it will result in an increase in the finite temperature thermodynamic

stability of the x = 2/3 ordering and a concomitant increase in the miscibility gap critical

temperature, thereby extending the 2/3 phase boundary to higher temperatures as shown

by the dashed-dotted line in Figure 5.5. The photo-luminescence experiments of Beal et

al. [160], consistently showing photo-induced phase segregation that results in an I-rich

phase around x = 2/3, suggests that this may be occurring. It is therefore suggested

that future experimental and theoretical studies focus on the x = 2/3 layered ordering

to further clarify the Hoke effect in CsPb(IxBr1−x)3.
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In order to properly account for structural phase transitions of the end members,

it is necessary to incorporate the vibrational contributions to the free energy together

with the configurational free energy. However, for materials such as perovskites that are

dynamically stabilized at high temperatures, harmonic approximations are not adequate,

and higher order formulations of the vibrational hamiltonian are required. [169] In princi-

ple, the full phase diagram could be calculated by combining an anharmonic vibrational

cluster expansion [64] with a configurational cluster expansion.

In conclusion, we have applied a rigorous statistical mechanics approach to calculate

the finite temperature phase diagrams for Pb and Sn halide perovskite binaries within

the low-temperature orthorhombic γ-phase. The prevailing distinction between binaries

studied in this work is the size difference between halide ions, which introduces asymmetry

into the phase diagrams and affects the critical temperature for mixing. In particular, we

propose a simple design principle to guide alloy engineering: a smaller volume difference

between end members results in a lower critical mixing temperature. We presented the

first phase diagrams that fully account for the 2/3 ground state and showed that Pb-

based compounds still exhibit a tendency to layer ordering at high temperatures. Finally

we discussed the implications of the CsPb(IxBr1−x)3 phase diagram and the stability of

the x = 2/3 layered ordering on the Hoke effect.

99



Chapter 6

Machine-learning the potential energy

landscape of halide perovskites

6.1 Introduction

Structural phase transitions from stable ground states to dynmically unstable high

temperature phases are abundant in technoglogically useful materials yet prediction of

their vibrational properties from first-principles calculations remains a challenge. In prin-

ciple, large ab initio molecular dynamics simulations could provide all finite temperature

thermodynamic information. However, due to the computational cost of density func-

tional theory calculations it becomes necessary to approximate the DFT with simpler,

computationally efficient, effective Hamiltonians. For ground state phases at equilibrium,

vibrational models based on harmonic or quasi-harmonic approximations can accurately

reproduce finite-temperature vibrational properties; however, for phases that exist at

saddle points or local maxima within the potential energy surface (PES), higher order

expansions of the PES are necessary.

Several methods exist which seek to parameterize the zero Kelvin PES of materials
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from density functional theory including effective Hamiltonians based on local displacive

modes [177], localized lattice Wannier modes [118], the slave-mode expansion, [178],

and the anharmonic vibrational cluster expansion [64]. Additionally, there exist many

machine learning based methods which utilize a set of symmetry invariant basis functions

to describe local atomic environments along with a particular model architecture such

as artificial neural networks to fit the high-dimensional PES. [71, 72, 73, 74, 75, 179,

180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191] In this work, we focus on the

anharmonic vibrational cluster expansion method and show how the incorporation of a

neural net model archiecture provides an avenue for accurately mapping the DFT PES.

Given the impressive success of halide perovskite materials over the past decade

in achieveing high power conversion efficiencies as the active material in phtovoltaic

devices, [2] we focus on the inorganic halide perovskite CsPbBr3 as our model sys-

tem. Since most Cs-based inorganic halide perovskite undergo a similar phase tran-

sition sequence upon cooling (cubic, Pm3̄m → tetragonal, P4/mbm → orthorhombic,

Pnma), [43, 44, 45, 42, 46, 47, 48, 49, 50] CsPbBr3 can be considered as representative

of the family of Cs-based inorganic halide perovskites.

The structural phase transitions in inoragnic halide perovskites involve collective dis-

placement modes associated with octahedral tilting [169], and it has been shown that

at high temperatures these modes are still highly populated giving rise to strong local

distortion even in the average cubic structure. [18, 124, 125, 126, 127] Moreover, the soft

and strongly anharmonic lattice dynamics are thought to play a role in the electronic

properties due to large local fluctuations resulting in Rashba-Dresselhaus splitting of the

conduction bands [15, 16, 17, 18, 15, 19, 20] and giving rise to strong electron-phonon

interactions which allow large polaron formation. [21, 22, 12]

Since the different phases of inorganic halide perovskites can be connected by symme-

try lowering displacive modes from the high temperature cubic phase, it is convenient to
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parameterize the energy alndscape in terms of distortions of the cubic reference. For this

reason we base our method upon the anharmonic vibrational cluster expansion which

expands the energy in terms of basis functions of disortions of local cluster as referenced

to the cubic phase. Instead of a linear expansion in terms of these basis functions, we

use artificial neural nets which are a non-linear extension of the linear cluster expansion

model. Two different approaches using the neural-net architecture are explored in which

the energy is a sum of either site energies or cluster energies. Finally, after fitting these

two different models and performing cross-validation, we find that site-based models best

fit the PES. While low training and test set errors are achieved, we also emphasize that

neural net architectures are likely not suitable for thermodynamic simulations such as

finite temperature Monte Carlo or molecular dynamics studies due to poor model extrap-

olation.

6.2 Methods

6.2.1 Descriptors

In order to take full advantage of crystal symmetry we work in a symmetry adapted

basis of pair distances that corresponds to cluster normal modes. In particular, we

represent the energy in terms of polynomials of collective cluster displacements (CCDs) of

the high symmetry cubic phase. The CCDs transform as irreducible representations of the

clusters point group in the high symmetry phase. Thus, they can capture any symmetry

lowering distortions with a minimal number of descriptors. The CCD amplitudes are

formed from a linear combination of functions of squared pair distances, dl,

qk =
∑
l

Qklf(dl)
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Figure 6.1: Depictions of the displacement modes specified by CCDs for an (a) octa-
hedron, (b) pair, and (c) triplet.

where f can take on different nonlinear forms such as the natural log or quadratic func-

tor. Crystal basis functions which obey symmetries of the crystal point group are then

constructed as polynomials of the CCD amplitudes and they are denoted Φ
(n)
α (~q) for the

nth basis function of cluster α.

The basis functions for the different clusters are enumerated below up to second order.

Higher order basis functions can be found in the appendix.

Table 6.1: General Pair Basis Functions up second order

basis function formula
Φ1 q0

Φ2 q2
0
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Table 6.2: General linear triplet basis functions up to second order

basis function formula
Φ0 q1

Φ1 q2

Φ2 q2
0

Φ3 q2
1

Φ4

√
2q1q2

Φ5 q2
2

Table 6.3: General octahedron basis functions up to second order

basis function formula
Φ0 q0

Φ1 q2
0

Φ2

√
1/3(q2

1 + q2
2 + q2

3)

Φ3

√
1/2(q2

4 + q2
5)

Φ4

√
2/3(q1q6 + q2q7 + q3q8)

Φ5

√
1/3(q2

6 + q2
7 + q2

8)

Φ6

√
1/3(q2

9 + q2
10 + q2

11)

Φ7

√
1/3(q2

12 + q2
13 + q2

14)

6.2.2 Linear Cluster Expansion

Here we review the mathematical framework for the CCD hamiltonian, a linear com-

bination of crystal basis functions, and generalize to a neural network model based on

non-linear combinations of crystal basis functions.

We assume that the energy of a crystal can be expanded as a sum of n-body terms

that depend only on pair distances.

V (~r) = V0 +
∑
α

∑
n

V (n)
α Φ(n)

α (~q)

Here α runs through all clusters of the crystal, and n indexes the crystal basis func-

tions of that cluster. We can instead rewrite the energy as a sum of distinct clusters

α′ and then average over all symmetrically equivalent clusters β which are part of the
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cluster’s orbit, Ωα′ to arrive at the following

V (~r) = V0 +
∑
α′

∑
n

V
(n)
α′

∑
β∈Ωα′

Φ
(n)
α′ (~qβ) (6.1)

= V0 +
∑
α′

∑
n

V
(n)
α′ |Ωα′|〈Φ(n)

α′ (~qβ)〉 (6.2)

where 〈Φ(n)
α′ (~qβ)〉 = 1

|Ωα′ |
∑

β∈Ωα′
Φ

(n)
α′ (~qβ), and |Ωα′| is the size of the orbit Ωα′ or, in other

words, the number of symmetrically equivalent copies cluster α′. Normalizing for the

number of unit cells, m, such that v = V/m:

v = v0 +
∑

η=(α′,n)

V
(n)
α′
|Ωα′ |
m
〈ΦΩη(~qβ)〉 (6.3)

= v0 +
∑

η=(α′,n)

V
(n)
α′ mα′〈ΦΩη(~qβ)〉 (6.4)

This is the classical expression for the cluster expansion that allows fitting of the

effective cluster interactions (ECI), V (n)
α′ , to first principles calculations (which provide

the energies v, and correlations 〈ΦΩη(~qβ)〉) through linear regression techniques. Note

that the ECI represent an individual cluster’s contribution to the total energy; therefore

it is multiplied by the orbit multiplicity in the final expression.

6.2.3 Cluster-Based Neural Net

Instead of a linear combination of orbit-averaged basis functions, we can rearrange

the sums from above and consider a non-linear combination of polynomial basis functions

for each cluster:
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Figure 6.2: Visualization of how (a) site-based and (b) cluster-based models incorpo-
rate site-averaged basis functions or cluster-based basis functions respectively.

V (~r) = V0 +
∑
α′

∑
β∈Ωα′

∑
n

V
(n)
α′ Φ

(n)
α′ (~qβ) (6.5)

V ≈ V0 +
∑
α′

∑
β∈Ωα′

NΩα′

({
Φ

(n)
α′ (~qβ)

})
(6.6)

where β runs over all symmetrically equivalent copies of cluster α′, andNΩα′

({
Φ

(n)
α′ (~qβ)

})
represents a neural network model for cluster α′ with polynomial basis function (n) as

inputs and the individual cluster contribution to the crystal energy as an output. Thus

the final model V is simply the sum of |α′| neural networks NΩα′
, where |α′| is the number

of unique clusters. A visual interpretation of the computational graph for a cluster-based
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neural net model is depected in Figure 6.2(b). In this model, each distinct cluster type

is associated with a distinct neural net. Then the neural net produces a per cluster

energy for each cluster of that type found throughout the crystal. All cluster energy

contributions are then summed throughout the crystal resulting in the total energy.

6.2.4 Site-Based Neural Net

Alternatively, we can express the energy as a sum of site contributions to the energy

where we sum over all clusters that contain the current site:

V (~r) = V0 +
∑
i

∑
Ωiη

VΩiη

1

Nα′

∑
β∈Ωiη

ΦΩiη
(~qβ) (6.7)

= V0 +
∑
i

Ei({~q}) (6.8)

where Nα′ denotes the number of sites in the cluster α′. This term is necessary to

avoid over counting a cluster’s contribution to the total energy. For example, a pair

cluster will appear twice in this expression since it is visited once for each site; therefore

we divide energy contribution by the number of sites. Ωi
η, where η = (α′, n) is a dual

index for cluster α′ and basis function n, denotes the site-orbit for cluster α′ radiating

from site i. Each basis function, labeled n, for each symmetrically equivalent cluster β

of prototype α′ shares the same coefficient VΩiη
in the linear expansion:

Ei({~q}) =
∑
Ωiη

VΩiη

1

|α′|
∑
β∈Ωiη

ΦΩiη
(~qβ) (6.9)

However, in a more general expansion we can take non-linear combinations of the
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flower-tree summed basis functions as follows:

Ei({~q}) ≈ N i

∑
β∈Ωiη

ΦΩiη
(~qβ)


 (6.10)

= N i
({
GΩiη

})
(6.11)

where N i is a non-linear functional of the summed cluster basis function radiating

from the ith site.

Thus we are motivated to construct an artificial neural networks that takes as inputs{
GΩiη

}
and outputs the energy of a crystal. That is

E =
∑
i

N i
({
GΩiη

})
(6.12)

The site-based neural net model is summarized in Figure 6.2(a). In this scheme, each

asymmetric unit is associated with a distinct neural net. Site energies are calculated

for each site within the crystal and the contributions are summed for the total crystal

energy.

6.2.5 Artificial Neural Network

Whether working in the site-based or cluster-based cluster expansion, we make use

of artificial neural network models that take as inputs ~x (where xi could be either the

flower-tree summed basis functions in the site-based model, or simply the evaluated basis

functions in the cluster based model) and output an energy e. Artificial neural networks

are hierarchical recursive functions made up of activation nodes fi which represents a

non-linear function f at node i. A one-layer neural net produces output e from inputs x
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as follows:

e = b(1) +
∑
j

w
(1)
j fj(b

(0)
j +

∑
k

xkW
(0)
kj ) (6.13)

where b(1) is a bias term associated with the 1st layer, and b(0)
j , are bias terms associated

with the input layer into node j of the first hidden layer.W (0)
kj represents the weight

matrix connecting the input layer to the first hidden layer, and w(1)
j is the weight matrix

connecting the hidden layer to the output layer. The model variables are the weights and

biases which are trained through optimization techniques described below. The activation

function can take several forms including the hyperbolic tangent, rectified linear unit, or

logistic function. In this study we used the hyperbolic tangent exclusively.

6.2.6 Objective Function

In order to train the neural network model, we must define a convex objective function

to minimize. In this case it is chosen to penalize differences in energies between the model

and DFT, however it can be extended to penalize differences in forces if the derivatives

of the model with respect to atomic displacements are known. The extension to forces is

discussed further in the appendix. In general the objective function is the sum of squared

errors between the model prediction and the DFT energy for each configuration σ over

the whole data set:

Γ =
∑
σ

(EANN(σ)− EDFT(σ))2 (6.14)

The objective function is minimized with respect to the weights of the neural network.

Many optimization algorithms exist to optimize the weights of the network function, and

we employed the Adam algorithm in this study.

109



Figure 6.3: (a) Distribution of energies for all configurations in the database. (b) All
data is split into a training set and test set. The training set is further subdivided into
10 training folds and 10 validation folds for use in hyperparameter tuning.

6.2.7 DFT

Density functional theory calculations were performed using the Vienna Ab Initio

Simulation Package (VASP). [104, 105] A plane wave basis set with an energy cutoff of 400

eV was employed and projector augmented wave psuedopotentials (PAW). [106, 104] The

GGA-PBEsol functional was used to approximate electron correlation and exchange. [166]

Energies were converged to within 1 meV / atom with respect to k-point density and a

6×6×6 Γ-centered k-point mesh was used. The VESTA program suite was used to

visualize crystal structures.

6.3 Training Set

The training set is a critical component in a machine learning problem. The resulting

model is only as good as the training set. The most important regions of PES include

the potential energy wells in which the ground state structure resides. Therefore, much

effort was made to sample configurations near the ground state structure along with the

structures associated with the intermediate tetragonal phase and the high temperature
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Figure 6.4: (a) Clusters used in final model which includes 7 pairs, 1 triplet, and 1
octahedron. Results of 10-fold cross validation for (b) cluster-based model and (c)
site-based model. Training and validation (cv) average RMSE is plotted with error
bars of 1 standard deviation. In (b,c), left columns indicate 1 hidden layer while right
columns indicate 2 hidden layers and top rows indicate 2nd order models while the
bottom row indicates 4th order models.

cubic phase.

Sampling the PES was done in several ways. The starting point began with the geo-

metric relaxation of the 15 tilt systems as previously described in Bechtel2018. For each

of these relaxed structures, systematic displacement enumerations were made in terms

of symmetry-adapted displacement modes, i.e. the displacement fields that block diag-

onalize the crystal symmetry representation. The same supercell (2×2×2) was used for

all of the tilt systems to avoid issues with differing k-point grids. Systematic strain enu-

merations were also included on the primitive perovskite structure, and the irreducible

wedge of each subspace was sampled in the volume 1 cell. In addition to systematic

enumerations, stochastic sampling of strains and displacements were made to generate

more configurations. The strain and displacement fields were chosen at random from

an n-sphere, and the correlations were compared to existing configurations to ensure

uniqueness, i.e. that a very similar structure wasn’t already included in the database.

Also interpolations between structures were used for example between the three experi-

mentally observed phases. In total, 31,000 configurations were calculated.
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Figure 6.5: Fitting statistics for 1 layer 2nd order cluster-based model with 8 hidden
nodes per layer. (a) ANN energy vs DFT energy shows that both training and test set
show similar average error. (b) Distribution of errors for lowest 125meV configurations
binned into 25meV bins. The red and green dashed lines indicate the RMSE over the
entire test and training set resepectively. Low energy configurations show very low
error.

6.4 Results

6.4.1 Model Training

After compiling the training database, we built a model selection pipeline as follows.

Cluster selection is typically built into the model selection/cross validation schemes of

cluster expansion Hamiltonians, however due to the number of hyperparameters involved

in the models here, we restricted our model selection and hyperparamater tuning to 5 sets

of clusters. Due to the covalent bonding of within the octahedra, octahedral cluster were

included in all 5 sets that were considered. The five sets were built up as follows: (1) 4

pairs + 1 octahedron, (2) 5 pairs + 1 octahedron, (3) 8 pairs + 1 octahedron, (4) 4 pairs

+ 1 triplet + 1 octahedron, (5) 7 pairs + 1 triplet + 1 octahedron. For each model we

tested several hyperparameters including number of hidden layers, number of nodes per

hidden layer, and number of input features (up to 2nd or 4th order basis functions). This

resulted in 400 different models that were tested using 10-fold cross validation resulting

in over 4000 trained neural net models.
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6.4.2 Hyperparameter Tuning

Validation and training sets can be used to tune the hyper parameters of the ANN.

Here the total data set was split into a training set (80% of data), and a test set (20% of

data). The test set was kept removed from any training iterations such that it remained

an unbiased evaluator of model performance. K-fold cross validation with 10 folds was

used to find the optimal hyper parameters (number of nodes, layers, and input features

in the ANN model). In this training method, the training set (which makes up 80% of

the total data) is further split up into a cv training set (90% of the full training set) and

a cv test set (10% of the full training set). The model is trained only on the cv training

set, and it is evaluated on the cv test set. This procedure is repeated 10 times such that

all of the full training set data is used at least once.

Training neural nets requires an optimization routine to update the model variables

and it is an important research area. We employed a batch training strategy over at least

1000 epochs per batch size, with batch sizes 2, 10, 100, and 1000, which typically yielded

a well converged model in terms of the RMSE. The Adam optimization routine was used

to update model weights and biases during training which incorporates momentum and

per/weight learning parameters in the gradient descent.

In Figure 6.4, the training results for the best performing model is displayed. The

model consists of basis functions generated from 7 pairs, 1 triplet, and 1 octahedral

cluster as pictured in Figure 6.4(a). Four other combinations of clusters were tested as

shown in the supporting information, but it was found that including more clusters, and

especially including the triplet cluster resulted in more robust models. The neural net

training results are displayed in Figures 6.4 for the (b) cluster-based model and the (c)

site-based model. For each model, input features up to order 2 or order 4 basis functions

were tested (rows of Figures 6.4(a,b)) as well as number of hidden layers (columns of
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Figures 6.4(a,b)).

The site-based model and cluster-based perform similarly with several key differences.

First, the cluster-based models generalize better to the validation set with smaller vali-

dation errors among all models tested. However, the site-based models achieve smaller

errors on the training folds. Large differences between the training error and the val-

idation error indicate that the models tend to overfit the training data and generalize

poorly. However, the order 2 cluster-based model with 1 hidden layer performed the

best in terms of generalizability with both the smallest validation error and the smallest

difference between the training and validation errors. In particular the model with order

2 cluster-based model with 1 hidden layer and 8 nodes per hidden layer had the smallest

validation error among all models and was therefore chosen as the best model according

to the cross validation scheme.

6.4.3 ANN Fit Evaluation

After finding the optimal hyperparameters for our model (shown with the black circle

on Figure 6.4(b) indicating the order 2 cluster-based model with 1 hidden layer of 8

nodes), we retrained the model on the full training set and calculated the error on the

holdout set as shown in Figures 6.5(a,b). The training and test rmse were similar to

those found in the hyperparameter tuning as expected. Additionally, we investigated the

distribution of errors for different energy regions as shown in Figures 6.5(b). Interestingly,

the model performs best for the lowest energies configuration, meaning that it faithfully

reproduces the important ground state structures.
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Figure 6.6: Model and DFT energies as a function of (a) a linear interpolation exper-
imentally observed phases, (b) in-phase tilts, (c) volume, and (d) anti-phase tilts. In
all cases, the ANN PES aligns well with the DFT energy surface.

6.4.4 DFT energy surfaces

Now we explore how the ANN traces the DFT potential energy surface along impor-

tant paths. In Figure 6.6, we plot the energies as a function of (a) a linear interpolation

experimentally observed phases, (b) in-phase tilts, (c) volume, and (d) anti-phase tilts.

In all cases, the ANN PES aligns well with the DFT energy surface. Additionally,the

ANN PES appears to be relatively smooth. In the supporting information we provide

example fits for the overfitted models.
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6.5 Discussion

The key points made by this paper are as follows:

1. We have extended the linear anharmonic vibrational cluster expansion as first

detailed by Thomas and Van der Ven for the more general case of non-linear functionals

of polynomial basis functions.

2. We have shown the alternative formulation for the CCD ANN, i.e. cluster-based

and site-based, and have discussed the pros and cons of each.

3. We have trained CCD ANN models to a large database of DFT calculations and

have achieved low errors as confirmed by cross validation.

4. We have shown how harmonic basis functions can be used to describe an anhar-

monic energy landscape through the use of non-linear activation functions in a neural

net architecture.

6.6 Conclusions

The development of anharmonic vibrational hamiltonians is a challenging problem,

however, by making use of machine learning techniques it is possible to capture a high

degree of complexity that is present in the DFT energy landscape. When large DFT

dataset on the order of 100,000 configurations are easily computable, there may be a

point when anharmonic vibrational neural nets compete as a viable option for modeling

the PES.
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6.7 Appendix

The objective function can be extended to include forces as follows:

Γ = ε∆E + (1− ε)∆F (6.15)

= ε
∑
σ

(E(σ)− EDFT(σ))2 (6.16)

+ (1− ε)
∑
σ

∑
i

∥∥∥~f i(σ)− ~f iDFT(σ)
∥∥∥2

(6.17)

= ε
∑
σ

(∑
i

Ei(σi)− EDFT(σ)

)2

(6.18)

+ (1− ε)
∑
σ

∑
i

∥∥∥~f i(σ)− ~f iDFT(σ)
∥∥∥2

(6.19)

which requires forces computed from the Network function. The calculation of the forces

are described below. Forces can be computed from the following:

f i
′

α′ =
∂

∂ri
′
α′
E (6.20)

=
∂

∂ri
′
α′

∑
i

Ei
({
GΩiη

})
(6.21)

=
∑
j∈NL

∂

∂ri
′
α′
Ej
({
GΩjη

})
(6.22)

=
∑
j∈NL

∂

∂ri
′
α′
N j
({
GΩjη

}
, {wγ}

)
(6.23)

=
∑
j∈NL

∑
η

∂N j

∂GΩjη

∂GΩjη

∂ri
′
α′

(6.24)

Hence we split the derivative into a derivative of the Network function N with respect

to the inputs G which is computable from automatic differentiation schemes implemented

in modern nueral network codes (TensorFlow) and the derivative of the input with respect
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to position.

∂GΩjη

∂ri
′
α′

=
∂
∑

β∈Ωjη
ΦΩjη

(~qβ)

∂ri
′
α′

(6.25)

=
∑
β∈Ωjη

∂ΦΩjη
(~qβ)

∂ri
′
α′

(6.26)

=
∑
β∈Ωjη

∑
k

∂ΦΩjη
(~qβ)

∂qk

∂qk
∂ri

′
α′

(6.27)

=
∑
β∈Ωjη

∑
k

∂ΦΩjη
(~qβ)

∂qk

∂qk
∂ri

′
α′

(6.28)

(6.29)

Now we compute the derivatives of the CCDs with respect to position, in this case

specifying the LogCCD functor.

∂qk
∂ri

′
α′

=
∂

∂ri
′
α′

∑
l

Qklf(d2
l , d

2
l0

) (6.30)

=
∂

∂ri
′
α′

∑
l

Qklln(d2
l /d

2
l0

)/2 (6.31)

=
∂

∂ri
′
α′

∑
l

Qkl[ln(dl)− ln(dl0)] (6.32)

=
∑
l

Qkl
ln(dl)

∂ri
′
α′

(6.33)

=
∑
l

Qkl
1

dl

∂dl
∂ri

′
α′

(6.34)

(6.35)
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The derivative of pair distances with respect to position is given as follows:

∂dl
∂ri

′
α′

=
∂

∂ri
′
α′

(∑
α

(rmα − rnα)2

)1/2

(6.36)

=
1

2

(∑
α

(rmα − rnα)2

)−1/2
∂

∂ri
′
α′

∑
α

(rmα − rnα)2 (6.37)

=
1

2dl
2(rmα′ − rnα′)

∂

∂ri
′
α′

(rmα′ − rnα′) (6.38)

=
1

dl
(rmα′ − rnα′)


1 i′ = m

−1 i′ = n

0 else

(6.39)

Putting it all together, we get:

f i
′

α′ =
∑
j∈NL

∑
η

∂N j

∂GΩjη

∂GΩjη

∂ri
′
α′

(6.40)

=
∑
j∈NL

∑
η

∂N j

∂GΩjη

∑
β∈Ωjη

∑
k

∂ΦΩjη
(~qβ)

∂qk

∂qk
∂ri

′
α′

(6.41)

=
∑
j∈NL

∑
η

∂N j

∂GΩjη

∑
β∈Ωjη

∑
k

∂ΦΩjη
(~qβ)

∂qk

∑
l

Qkl
1

dl

∂dl
∂ri

′
α′

(6.42)

=
∑
j∈NL

∑
η

∂N j

∂GΩjη

∑
β∈Ωjη

∑
k

∂ΦΩjη
(~qβ)

∂qk

∑
l

Qkl
1

d2
l

(rmα′ − rnα′)×


1 i′ = m

−1 i′ = n

0 else

(6.43)
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Thus we have for the energy :

E =
∑
i

Ei (6.44)

=
∑
i

N
({
GΩiη

}
, {wγ}

)
(6.45)

(6.46)

And for the forces:

~f i
′
=
∑
j∈NL

∑
η

∂N j

∂GΩjη

∇GΩjη
(6.47)

= ~f i
′

({
GΩjη

}
, {wγ} ,

{
∂ΦΩjη

∂q

})
(6.48)
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Chapter 7

Machine-learning parameterization of

an anharmonic vibrational effective

Hamiltonian for octahedral tilting

transitions in perovskites

7.1 Introduction

Vibrational excitations in solids play an important role in structural, thermodynamic,

and electronic properties of materials. [192] First principles calculations have proven suc-

cessful in reproducing the harmonic phonon dispersions for materials in their equilibrium

ground state. [193] However, many technologically relevant phases exist in metastable

or dynamically unstable phases stabilized by anharmonic vibrational excitations. In

these cases, harmonic approximations fail, and higher order terms are necessary to cap-

ture structural instabilities. For instance, halide perovskite materials undergo successive

symmetry lowering distortions upon cooling due to unstable octahedral tilt modes, cubic-

121



to-tetragonal phase transitions are observed in ZrH2 [64] and Jahn-Teller distortions in

layered oxide battery materials lead structural phase transitions.

Several approaches exist to model anharmonic lattice dynamics and temperature-

dependent structural phase transitions. The most straightforward but computationally

expensive approach is to perform ab initio molecular dynamics in order to obtain ther-

modynamic averages as a function of temperature. [194, 195, 196, 197] However, the

computational cost of such simulations restricts supercell size which can introduce finite-

size effects. Another approach involves explicitly adding terms to an effective hamiltonian

that capture the relevant instabilities and then fitting the model to first principles cal-

culations. This approach was applied to polar and octahedral tilting distortions in oxide

perovksites in the early work of Rabe, Waghmare, and Zhong. [198, 199, 200, 201, 118,

119, 202, 203, 204, 205, 206, 207, 208] More recently, generalized anharmonic vibrational

cluster expansion effective Hamiltonians enumerate basis functions in terms of cluster

normal modes. [64, 178] Model parameters are fit to a database of first principles calcula-

tions, and Monte Carlo simulations allow for the calculation of thermodynamic averages.

Using this technique, order parameters can be calculated as a function of temperature

which can be used to determine structural phase transition temperatures.

While the anharmonic vibrational cluster expansion provides a general approach to

vibrational effective Hamiltonians, where one allows the fitting procedure to identify

which instabilities to include in the model, obtaining an appropriate fit can be extremely

challenging for several reasons. First, unlike a configurational cluster expansion, a vibra-

tional effective Hamiltonian has the additional constraint of requiring a convex energy

landscape. Including this constraint in least squares fitting is a non-trivial task. Second,

since vibrational cluster expansions are based on continuous atomic displacements de-

grees of freedom as opposed to discrete configurational variables, there is an additional

approximation associated with the cut-off in the degree of the polynomial basis func-
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tions. Hence, the number of fitting parameters in such models becomes very large as

larger clusters and higher order basis functions are included.

To overcome the challenges in fitting the potential energy surface with generalized

linear models, many recent attempts have been made to apply more sophisticated machine

learning techniques to mapping the DFT potential energy surface. [73, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188, 189, 190, 191]. Most of these approaches involve

identifying appropriate descriptors, which are often built using pair distances and angles

between atoms, and then using a machine learning regression technique ranging from

linear regression to artifical neural networks. While these methods can reproduce the

potential energy surface with low error, they often extrapolate poorly making them ill-

suited for large scale Monte Carlo simulations.

In this work, we reparameterize a neural network model of the potential energy sur-

face in order to guarantee a convex energy landscape which allows for Monte Carlo

simulations. By focusing on reproducing low energy configurations we are able to suc-

cesfully reproduce qualitative features of the structural phase transitions in CsPbBr3, an

inorganic halide perovskite which undergoes phase transitions associated with octahe-

dral tilting and A-cation displacements. Interestingly, we also show how energy barriers

between the observed phases dictate regions of phase stability.

7.2 Results

7.2.1 DFT

The Vienna Ab Initio Simulation Package (VASP) was used to carry out density

functional theory (DFT) calculations. [104, 105] For all calculations, the GGA-PBESol

functional was employed wth projector augmented wave pseudopotentials with a 400 eV
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Figure 7.1: (a) DFT relaxations of the experimentally observed phases of CsPbBr3.
DFT energy surface for configurations with orthorhombic lattice parameters as a func-
tion of octahedral tilts. For each configuration, the PbBr6 sublattice and lattice pa-
rameters were held fixed while the Cs sublattice was allowed relax. The resulting
energy landscape indicates that the cubic phase exists as a local maximum, the tetrag-
onal phase exists at a saddle point, and the ground state orthorhombic phase exists
as a stable minimum.

cutoff for the plane wave basis set. [166, 106, 104] A 6×6×6 Γ-centered k-point mesh was

used which resulted in energy convergence to within 1 meV / atom. Crystal structures

were visualized using the VESTA program suite.

7.2.2 Perovskite Energy Surface

First we review the DFT energy landscape that captures the transition pathways

between the low temperature orthorhombic γ-phase (Pnma), the tetragonal β-phase

(P4/mbm), and the cubic α-phase (Pm3̄m) as pictured in Figure 7.1. For a detailed

description see Bechtel and Van der Ven 2018. Briefly, the tetragonal phase is achieved
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from the cubic phase by the activation of in-phase tilt modes denoted (00a+) in Glazer

notation, which indicates tilts about the z-rotation axis of amplitude a. Further, the or-

thorhombic phase is obtained from the tetragonal phase by activating two simultaneous

anti-phase tilts about the x and y rotation axes resulting in the (b−b−a+) tilt pattern. As

shown in Figure 7.1(b), the tetragonal phase exists as a saddle point between orthorhom-

bic variants. Another phase denoted as the ε-phase with (b−b−0) tilts also resides at

a saddle point between orthorhombic γ variants. However, due to the smaller energy

barrier through the β-phase, the system prefers to sample orthorhombic variants via the

β-phase resulting in an average tetragonal strucure upon warming. In this study we will

further explore the relationship between the competing energy barrier heights and the

transition temperatures at which the orthorhombic to tetragonal and tetragonal to cubic

transitions occur.

7.2.3 Minimal Cluster Model

We now build upon previous work in modeling the potential energy surface using

cluster-based neural network models. Cluster-based neural networks model the crystal

energy as a sum of cluster energies. An energy function is trained for each type of

cluster considered. Interestingly, due to the non-linear activation functions of neural

networks, anharmonic energy landscapes can be reproduced using only harmonic basis

function inputs. As described by Bechtel et al., cluster-based neural network models can

be constructed which map the DFT potential energy surface with low error. However,

it was shown that these models typically generalize poorly. In addition, neural networks

can behave unpredictably in under represented regions within the feature space. In initial

tests, we found that Monte Carlo simulations always found spurious ground states during

equilibration of neural network effective Hamiltonians. Furthermore, neural network
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models are slow to evaluate compared to polynomial models which restricts the feasbility

of large scale Monte Carlo simulations. For these reasons we now develop a framework

to extract a more suitable effective Hamiltonian from the neural network model with the

following chracteristics: (1) fast to evaluate, (2) smooth energy surface as a function of

atomic displacements, and (3) a convex energy landscape.

For fast evaluations we chose to work with polynomial functions of the neural network

inputs. In other words for each cluster we find a low order polynomial approximation to

the neural network energy landscape which can be expressed as follows:

E =
∑
α

N α (7.1)

≈
∑
α

∑
i

V α
i Φα

i (q) (7.2)

where α represents a cluster in the crystal, N α is the neural network cluster model,

Φα
i (q) is the ith polynomial basis function for cluster α and V α

i is its fitting coeffecient

or effective cluster interaction (ECI). Using polynomials is both fast to evaluate and it

guarantees the second criteria of smoothness. In order to meet the third criteria for a

suitable effective Hamiltonian we ensure that the fitting coefficient (ECI) of the highest

order term for a cluster is positive.

An example of this fitting procedure is depicted in Figure 7.2(d-h). In this work we

base all of our models on the simplest cluster-based neural network models presented

in Bechtel et al. which include five distinct clusters with basis functions up to second

order. Furthermore, we only consider the neural network models with one hidden layer.

In Figure 7.2(d-h) we see the energy landscape of each cluster as a function of the q0

displacement mode. For pair clusters there is simply one displacement degree of freedom

representing the distance between atoms. For larger clusters of N atoms there are 3N−6
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Figure 7.2: (a) Root mean square error (rmse) of 1-hidden layer neural network models
with four pair clusters and one octahedral cluster plotted as a function of nodes per
hidden layer. Linear models were used to reparameterize the neural net models and
the total rmse (black line) and rmse for configurations with energy less than the cubic
reference (EDFT < 0) (dashed black line) are plotted for each model. The circled point
corresponds to the best performing linear reparameterized model, which is reffered
to as ELin. (b) ELin vs EDFT for all configurations. Large errors are observed for
high energy configurations with a total rmse of 0.0277 eV/atom. (c) Violin plot of
errors between linear model and DFT for 0.025 eV energy bins. The violins show
the distribution of errors for each energy bin and the dashed dotted line represents
the rmse for configurations in the lowest energy bin with EDFT < 0 which is 0.0024
eV/atom.(d-h) Energy landscapes as a function of q0 (volumetric deformation) for each
cluster considered. The teal markers indicate the energy of the neural netwokr function
and the red line shows the polynomial model used as a reparameterization. The solid
red region corresponds to the region which was included in the fitting procedure.

displacement degrees of freedom which separate into irreducible subspaces when building

polynmial basis functions that are invariant to the crystal symmetry. For the octahedral

cluster, we fit the energy contributions from each irreducible subspace separately by

setting all other subspace basis functions to zero and fitting calculating the resulting

energy. Depictions of these polynomial fits are shown in the Supporting Information,

but here we focus on the q0 functions which represent pair distances in the case of pair
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clusters and volumetric deformations in the case of larger clusters.

As shown in Figure 7.2(d-h), the cluster energy functions as predicted by the neural

network model typically have minima near q0 = 0 which represents the reference dis-

tance of that cluster in the high-temperature cubic phase. For small deformations, the

energy behaves mostly harmonically, but can deviate substantially at high deformation.

Hence, we chose to approximate the neural network energies for CsPb, BrBr, and CsCs

(Figures 7.2(e,f,g)) with a second order polynmial of the form e = ax + bx2. By fitting

these polynomial models only in the region near the minima we were able to gaurantee

convex energy functions. For the CsBr and PbBr6 clusters (Figures 7.2(d,h)), the neural

network energy shows both a shift in the location of the minimum and the appearance of

higher order features in the energy landcsape near the minima. Thus, for these clusters

we employed a fourth order polynomial approximation to the neural network energy of

the form e = ax+ bx2 + cx3 + dx4, and fit the coefficients using data near the minimum,

ensuring that the resulting model had a positive coefficient for the fourth order term

(d > 0).

This process was carried out for all second order, one-layer neural networks as de-

scribed previously, and the root mean square errors for the linearized models and the

neural network models are summarized in Figure 7.2(a). While the neural network mod-

els tend to have smaller overall errors around 8meV compared to around 40meV for the

reparamaterized linear models, we see that the linearized models still perform well for

low energy (i.e. energies lower than the cubic high temperature phase, EDFT < 0).

The best performing linear model was that fit to the 8 node, 1 layer, 2nd order

neural network model which is circled in Figure 7.2(a). The linearized model energies are

compared to DFT energies in Figure 7.2(b), and large errors are observed for high energy

configurations as expected due to the fitting procedure that focuses on the minimum

energy regions of the cluster functions. Intersetingly, however, the errors for low energy
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configurations are relatively small, around 3meV, as shown in Figure 7.2(c). The cluster

energy functions of the 8-node, 1-layer, 2nd order neural network and the reparameterized

linear model is depicted in Figure 7.2(d-h).

Next we plot how the linearized model reproduces the DFT energy landscape in

Figure 7.3. The linearized model reproduces many of the qualitative featurs of the en-

ergy surface with several key discrepencies. The simplified linear model, based upon

only four pairs and one octahedral cluster, remarkably reproduces minima corresponing

to orthorhombic γ-phase configurations. At regions of large tilts the linearized model

severely overestimates the energy. This likely comes from the fact that the cluster energy

functions were only fit in small regions near the minima resulting in overstimation of a

cluster’s energy for large deformations. Interestingly, the linear model also overstimates

the saddle point energy for the ε-phase.

Figure 7.3: Linearized model energy landscape (surface) compared to the DFT energy
landscape (mesh). Energy barriers through the ε-phase and β-phases are depicted and
labeled ∆Eγ→ε and ∆Eγ→α resepectively. The linear model reproduces many of the
qualitative features of the DFT energy landscape; however it overestimates the energy
barrer ∆Eγ→ε.
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7.2.4 Monte Carlo

Having constructed a simplified model that reproduces the qualitative features of

the DFT ground state energy landscape, we next turned to finite temperature Monte

Carlo simulations in order to investigate structural phase transition as a function of

temperature. Monte Carlo simulations were performed using an extension of the code

developed by Thomas et al. Thermodynamic averages are computed once the system has

equilibrated, typically around 2000-4000 passes, and averages are taken for 4000 passes.

In order to avoid complications with differently oriented crystal variants, we first find

the ground state structure in a small supercell and use it to seed simulations in larger

supercells ensuring that all simulations equilibrate within the same orientational variant.

The Monte Carlo experiments are carried out by first using a simulation cell containing

1000 primitive volumes (5000 atoms) over a course temperature grid (20K increments).

Once the location of the phase transition is identified another Monte Carlo experiment

is performed using a simulation cell of 4096 primitive volumes (20,480 atoms) over a fine

temperature grid (1K increments). These results are then used to estimate the tranisition

temperatures.

Thermodynamic averages of the deformation tensor and atomic displacements were

used to analyze the evolution of local and average structure as a function of temperature.

We present the Monte Carlo results using the linearized effective Hamiltonian discussed in

the previous section in Figure 7.4. The lattice parameters of the supercell are normalized

by the number of primitive volumes contained in the simulation box. We also compute

the cubic Hencky strain order parameters as shown in Figure 7.4(d).

Over the 20K grid it appears that only one phase transition occurs from the or-

thorhombic γ-phase to the cubic α-phase as indicated by the decay of the e3 and e6

strain order parameters. However, when analyzed using a larger simulation cell and a
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Figure 7.4: Thermodynamically averaged (a) lattice parameters, (b) lattice angles,
(c) pseudo-cubic lattice parameters and strain order parameters from Monte Carlo
simulations using the linearized CCD model. One phase transition from the low tem-
perature orthorhombic phase to the high temperature cubic phase is observed, and the
representative strutures are shown in (e) and (f) where thermodynamically averaged
diplacement covariances were used to compute the anisotropic displacement param-
eters. ADP ellipsoids enclose 90% of the cumulative probability density of atomic
motion.
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Figure 7.5: (a) Rescaled model energies of the tetragonal β-phase E∗(β), or-
thorhombic ε-phase E∗(ε), orthorhombic γ-phase E∗(γ) and the difference in energy
barriers,E∗(β)−E∗(ε). The energy of the model ground state γ-phase was held fixed at
the value of the DFT γ-phase in order to compare the effect of lowering the tetragonal
saddle point energy (E∗(β)) and increasing the difference between energy barriers. (b)
Transition temperatures as a function of barrier height difference between the γ-phase
and the ε-phase. As the β-phase energy decreases and the difference in barriers in-
creases, the tetragonal phase is stabilized.

finer temperature grid, two transitions were identified. First, an orthorhombic to tetrag-

onal transition occurs as e6 strain order parameter reaches zero at around 269K. Then a

second transition from tetragonal to cubic occurs as the e3 strain order parameter goes

to zero at about 274K.

To visualize the crystal structures of the different phases, we average the atomic

coordinates and displacement covariance matrices within a volume 8 supercell which are

presented in Figure 7.4(d) for the observed orthorhombic, tetragonal and cubic phases.

The structures reproduce the tilt modes and A-cation displacements of the experimentally

observed γ and α phases. Remarkably the anisotropic displacement parameters also

closely match those observed experimentally. In particular the high temperature cubic

phase shows very large pancake-shaped Br ADPs indicating a high degree of motion in

only one plane. These correspond to highly anharmonic lattice dynamics associated with

octahedral tilting of the PbBr6 inogranic sublattice.
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Figure 7.6: Thermodynamically averaged (a) lattice parameters, (b) lattice angles,
(c) pseudo-cubic lattice parameters and strain order parameters from Monte Carlo
simulations using the linearized CCD model. One phase transition from the low tem-
perature orthorhombic phase to the high temperature cubic phase is observed, and the
representative strutures are shown in (e) and (f) where thermodynamically averaged
diplacement covariances were used to compute the anisotropic displacement param-
eters. ADP ellipsoids enclose 90% of the cumulative probability density of atomic
motion.

7.2.5 Stabilizing the Tetragonal Phase

The Monte Carlo results of the linearized effective Hamiltonian qualitatively repro-

duced the two phase transitions observed experimentally, but showed only a small window

for tetragonal phase stability. The small temperature window of stability for the tetrag-

onal phase is even more surprising given the large overstimation of the ε-phase compared

to DFT as shown in Figure 7.3.

In order to stabilize the tetragonal phase we explored ways to artificially decrease
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the energy barrier through the tetragonal β-phase relative to the ε-phase. In particular,

we varied the first order term, V BrBr
0 of the BrBr pair energy functional (i.e. a in e =

aq0+bq2
0). In order to maintain a consistent energy scale for comparing the effect of energy

barrier heights we rescaled the energy of the model for each value of V BrBr
0 according to

E∗ = ELin · (EDFT(γ)/ELin(γ)) where ELin is the model energy, EDFT(γ) is the ground

state DFT energy of the orthorhombic γ-phase (-24.79 meV/atom) and ELin(γ)) is the

model energy of the γ-phase before rescaling. This has the effect of fixing the ground state

energy that the model produces for the γ-phase while allowing the energy barriers to shift

relative to the ground state as pictured in Figure 7.5(a). By varying V BrBr
0 the energies

of both the ε-phase and β-phase decrease in energy however the difference between their

energies increases indicating that the β-phase is being stabilized relative to the ε-phase.

After constructing rescaled effective Hamiltonians for varying values of V BrBr
0 , we

again performed Monte Carlo simulations for each of these models to determine the effect

of shifting energy barriers relative to the γ-phase ground state. Due to computational

constraints, we evaluated the rescaled models within a 1728 volume simulation cell at

5K temperature increments which limits the resolution at which we can assign accurate

transition temperature. The resulting transition temperatures are plotted against the

difference in energy barrier in Figure 7.5(b). For the rescaled model with no change in

energy barriers, there are two transitions, as previously pointed out, however the region

of stability is too small to be uncovered at the temperature resolution used. As the

difference in energy barriers increases, the tetragonal phase becomes stabilized resulting in

two distinct phase transitions with diverging transition temperatures. When the β-phase

decreases in energy it results in lower transition temperatures for the orthorhombic to

tetragonal transition while increasing the transition temperature between the tetragonal

and cubic phases.

An example of the Monte Carlo results for a tetragonally-stabilized model is given
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in Figure 7.6(a), which clearly show distinct regions for the three phases. Again, we

plot examples of the average structure along with the ADPs derived from the thermody-

namically averaged displacement covariance matrices. Both the orthorhombic and cubic

phases show the same distinctive behavior as in the unscaled model; however, the tetrag-

onal phase shows an additional anisotropy of the Cs displacements with a football shaped

thermal ellipsoid.

7.2.6 Octahedral Tilts across Transitions

With a parameteric model that stabilizes the tetragonal phase and reproduces many

of the qualitative features of the anisotropic thermal displacements, we focus now on

understanding the role of octahedral tilts throughout the successive phase transitions.

The phase transitions in inorganic halide perovskites are often described in terms of the

collective tilt modes of the halide sublattice. With our microscopic model we are in

a unique position to explore the local environment due to octahedral tilts as shown in

Figure 7.7(a).

Specifcally, we collected extrinsic Euler rotation angles for all octahedra in the sim-

ulation cell after every Monte Carlo pass. In order to obtain the Euler angles, first

the Kabsch algorithm is applied to find the optimal rotation matrix that minimizes the

squared distances between the rotated and non-rotated octahedron. The rotation matrix

was then decomposed into elementary extrinsic Euler angles.

We plot histograms of the individual octahedral rotations for each phase in Fig-

ure 7.7(b). In the orthorhombic phase there exist bimodal peaks in the distribution for

each Euler angle. In these simulations the in-phase rotation takes place about the z-axis,

while the out-of-phase rotations occur along the a and b axes. We see the progression

in octahedral rotations between the orthorhombic and tetragonal phases as the bimodal
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peaks along a and b combine to a single peak centered at zero in the tetragonal phase.

Likewise, the in-phase tilting peaks coalesce into one peak centered at 0 upon warming

to the cubic phase. The distributions are shown as a function of temperature in Fig-

ure 7.7(e) where it is observed that the rotations serve as order parameters through the

two phase transitions.

7.3 Discussion

While machine learning approaches have been shown to reproduce the DFT energy

landscape with low error, they are typically not suitable for Monte Carlo simulations due

to (1) high computational cost, (2) non-smooth and (3) non-convex energy landscapes.

We have shown how the results of a cluster-based neural net model can be reparameterized

at the cluster level using simple polynomial approximations. In this way, we are able to

build an easily interpretable model that meets the three criteria enumerated above.

For example, from the polynomial reparameterization shown in Figure 7.2(d-h), we

can identify certain features of the cluster energy functions that provide key physical

insights. Interestingly, the CsBr bond shows a minima at low q corresponding to a

tendency to prefer shorter bond lengths. This simple functional form conveys much

of the intuition surrounding perovskite phase transitions as described by concepts such

as the tolerance factor. That is, tilting transitions are thought to originate due to an

undersized A−site cation which results in an under coordinated cation by bond valence

sum arguments. Octahedral tilting occurs during cooling in order to satisfy the A-site

cation’s coordination environment. Therefore the minimum in the CsBr pair energy can

be inuitively explained by the desire to satisfy the Cs atom’s under coordination by being

closer to the Br sublattice.

By fitting simple polynomials to the ANN functions, we constructed a minimal model
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Figure 7.7: (a) Diagram of the extrinsic rotation Euler rotations about the x, y, and
z rotation axes denoted by ψ, φ, and θ, respectively. Also pictured is the 512-volume
simulation cell from which histograms of octahedral rotations were collected. His-
tograms of octahedral rotation angles fit with Gaussian kernel density esitmation at
(b) 400K, (c) 300K and (c) 200K representing the distribution of tilts in the cubic,
tetragonal, and orthorhombic phase, respectively. (d) Order paramater plots of the
maximums in the octahedral tilt distributions as a function of temperature. In the
cubic to tetragonal transition the tils along x and y go to zero, while the tilts along z
only go to zero during the tetragonal to cubic transition.
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that was amenable to fast evaluations and suitable for Monte Carlo simulations. Inter-

estingly the minimal model was able to reproduce the key features of the perovskite

phase transitions, including the orthorhombic, tetragonal, to cubic phase sequence with

the correct tilt sequence also observed. Moreover, the thermal ellipsoids qualitatively

matched those observed in experiments. The fact that such a simple functional form of

the pair energies is enough to reproduce the perovskite phase sequence demonstrates the

importance of these particular pair energies.

Next, we parameterically showed the role of energy barrier differences on phase tran-

sition temperatures in CsPbBr3. By varing a single ECI which corresponded to shifting

the BrBr energy function to low q0 the tetragonal phase was stabilized relative to the

ε-phase. Interestingly small changes in the energy abrriers led to large changes in the

transition temperatures observed in Monte Carlo simulations.

Lastly, the local structure due to octahedral tilting was investigated by collecting

histograms of Euler angles over many Monte Carlo passes. The bimodal distribution

of rotation angles coalesce into one peak upon a phase transition whereupon the mean

tilt angle goes to zero. Within the cubic phase, all distributions of rotation angles are

centered at zero but the distributions show large dispersion indicating large deviations

from the high symmetry phase. There has been some debate as to the local structure

of halide perovksite materials at high temperature, with a consensus that the material

is not locally cubic. Our Monte Carlo experiments also suggest that the material is on

average cubic, but large octahedral tilt modes are still present.

7.4 Conclusions

By reparameterizing a neural network model of the DFT potential energy surface

we have constructed a minimal vibrational effective Hamiltonian that qualtiatively re-
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produces the DFT energy surface near the ground state. Additionally, by using a sim-

ple polynomial reparameterization we overcome the traditional challenges with machine

learning models that make them ill-suited for Monte Carlo simultions. Our Monte Carlo

results show that simple polynomial models of cluster energies can reproduce the com-

plex phase sequence of octahedral tilt modes in halide perovskites. Incorporating the

tolerance factor perspective on perovskite tilts, we demonstrated that the octahedral tilt

modes come about due to a minimum in the CsBr energy functional corresponding to

shortened bond lenghts. Lastly, the local structure due to octahedral tilts showed that in

the cubic phase, tilts average to zero but still show significant deviation from the cubic

phase.
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Chapter 8

Conclusion

The field of halide perovskite research has shown the potential of intense focus by many

different communities from chemistry, to photo-physics to first-principles investigations.

In only a short period of time, we have seen the efficiency of devices vastly improve,

and some fundamental science has uncovered fascinating aspects of halide perovskite

structural and electronic properties. In particular the coupling between structural degrees

of freedom and the electronic properties is at the heart of revealing the basic properties of

halide perovskites. This dissertation has taken a detailed investigation into the structural

aspects of halide perovskites. First, the energy landscape of the methylammonium ion

was mapped in Chapter 3 revealing that translations of the A-cation are an important

degree of freedom besides orientational degrees of freedom. Although the A-cation does

not contribute electronic states near the Fermi level, hydrogen-bonding between the NH3

H atoms and the halide ions shows how the A-site cation can play a role in the structure

of the octahedral sublattice, therefore affecting electronic properties.

Both hybrid perovskites and inorganic perovskites undergo structural phase transi-

tions associated with octahedral tilting. In Chapter 4, we employed a group theoretical

approach to identify primary displacement order parameters and secondary strain order
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parameters associated with octahedral tilting in the perovskite crystal structure. Several

results emerged from our comprehensive treatment of the structural degrees of freedom

in inorganic halide perovskites. First, all 14 of the symmetry lowering tilt deformations

reduce the energy from the high symmetry cubic phase inorganic halide perovskites.

More importantly, the energy of the tilted variants correlates with the volume decrease

from the high symmetry phase to the low symmetry phase, confirming a very general

picture of tilting distortion in halide perovskites: as a system is cooled from the high

symmetry cubic phase, the most energetically favorable transitions are those which most

reduce the volume where the Pnma phase always exists as the most volume decreasing

ground state. Additionally, a closer look at the structural distortions of the orthorhombic

and tetragonal phases revealed that A-cation displacements are necessary to stabilize the

experimentally observed phase.

Experimental reports of photo-induced halide segregation in halide perovskites mo-

tivated the ab initio determination of the temperature vs composition phase diagrams

presented in Chapter 5. By parameterizing a cluster expansion model from DFT cal-

culations for six different binary halide systems, we were able to investigate the finite

temperature phase behavior halide perovskites from first principles. The point at which

solid solutions were found to be stable correlated remarkably well with the volume differ-

ence between end-members giving a design principle for halide perovskite solid solutions:

for a lower miscibility gap choose end members with similar volumes.

In Chapter 6, machine learning techniques along with basis functions of collective

displacement modes were used to parameterize the DFT potential energy surface for the

highly anharmonic CsPbBr3 energy landscape. A detailed hyperparameter study showed

how low order shallow neural net models serve as the most generalizable models while

more complex models often overfit the DFT training data resulting in poor extrapolation.

Interestingly, using a neural network with non-linear activation functions based upon
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harmonic basis function inputs allowed full mapping of the anharmonic energy landscape.

Lastly in Chapter 7, we developed a simple, interpretable vibrational Hamiltonian

based on simple pairwise and octahedral cluster interactions. Parameterizing the model

with machine-learning techniques we constructed a vibrational model amenable to finite-

temperature Monte Carlo simulations. The cubic-tetragonal-orthorhombic phase tran-

sitions were qualitatively reproduced using this model demonstrating that pairwise in-

teractions are central to the physics of halide perovskite structural phase transitions.

Furthermore, we showed the local structure of octahedral tilts evolves as a function of

temperature. We show how the mean of rotation angle distributions tends to zero upon

a phase transition, however the dispersion of the distribution increases revealing highly

deformed local structure in the high temperature cubic phase.

This dissertation has explored many degrees of freedom present in the halide per-

ovskite system including orientational degrees of freedom, displacement degrees of free-

dom, and configurational degrees of freedom, applying finite temperature statistical me-

chanics to study the phase behavior of halide perovskites due to each contribution to the

free energy. With the recent development of the orientational cluster expansion, a natural

progression of this work includes the parameterization of a rotational cluster expansion

to study the finite temperature properties of molecular orientation predicted from first

principles simulations. Moreover, due to the abstraction of the cluster expansion formal-

ism, it is possible to construct coupled Hamiltonians, say between orientational degrees

of freedom and vibrational degrees of freedom, by taking the tensor product between the

site basis functions resulting in even more general models. In this vein, it is likely that

developments will lead to fully generalized effective Hamiltonians that can handle rota-

tional, vibrational, configurational and possibly electronic degrees of freedom in the near

future. To the motivated researcher there is an abundance of opportunity for pushing

the limits of DFT and effective Hamiltonians.
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