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Abstract

Stylized 3D Scene Synthesis in Virtual Reality

by

Han-Wei Kung

Many forms of life in the natural world have the extraordinary capacity to sense

their environments, to learn, and to remember, just as humans do, even though they are

vastly different from us. In this dissertation, I presented novel techniques developed to

exhibit an interactive abstract virtual reality experience that invites viewers to see the

natural world from a different perspective. I developed the vertex displacement and color

turbulence approaches to showcase organisms. The organisms can also modulate their

shapes according to the volumes and frequencies of sound. Furthermore, the experience

displays turbulent flow on the organisms surface to demonstrate the concept of energy

flow, or vitality, among all organisms in the natural world. Another novel feature is

that viewers can interact with the surface colors through ray casting from a handheld

controller.
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Chapter 1

Introduction

As our knowledge of other living beings unfolds, it has been revealed that they have

intelligence and abilities that are vastly different from our own. For example, mosses live

in the interstices between rocks and logs, and they have thrived with limited resources

for millions of years. Whales and other marine species have evolved to depend on hearing

as their primary sense to adapt to the perpetually dark world of the deep ocean. The

life energy of plants and animals inspired the “re-visualization” of the natural world in

virtual reality (VR) conducted in this study. Illustrating the flow of energy or vitality

in the inhabitants or organisms of the virtual world was attempted, while also enabling

them to modulate their shapes based on sound.

1.1 VR as an Aesthetic Medium

VR is a technology that presents an immersive computer-simulated virtual environ-

ment with which people can explore and interact, just as they would in reality. Common

sense seems to assume that VR in its ultimate implementation must require photoreal-

istic graphics to resemble actual reality. While it is true that hyper-realistic graphics

1



Introduction Chapter 1

are a good goal for VR, it does not necessarily follow that they should be the only goal.

Indeed, it is highly likely that non-photorealistic, stylized, or abstract graphics can also

look fantastic.

The idea of creating a stylized VR piece has led to several projects. For example, the

illustrative VR narrative from Oculus Story Studio, Dear Angelica (Figure 1.1a), was

made using Quill which essentially allows the artist to paint brushstrokes directly in VR.

Watching Dear Angelica is like entering a cartoon world where illustrations constantly

construct themselves and swirl around the viewer from scene to scene. Similarly, Google’s

Spotlight Stories project Pearl is an animated short film that looks hand-drawn and has

a painterly quality (Figure 1.1b). The Google Spotlight Stories group has also created

a number of stylized narrative short films in VR, each of which supports the specific

director’s vision; they all look quite different from each other. Furthermore, Baobab

Studios and Penrose Studios have produced VR animation using stylized characters and

motion as Disney and Pixar did for their animated feature films (Figure 1.1c and 1.1d).

2
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(a) Dear Angelica, 2016 (b) Pearl, 2016

(c) Crow: The Legend, 2017 (d) Allumette, 2016

Figure 1.1: Examples of animated VR films with non-photorealistic graphics: Oculus
Story Studio’s Dear Angelica, Google’s Pearl, Baobab Studios’ Crow: The Legend,
and Penrose Studios’ Allumette.

1.2 Research Statement

Although the projects described above have impressive results, the style of each

project cannot be readily applied to a different 3D scene. Therefore, the aim of this

study was to develop an approach that can transform an arbitrary 3D scene into a styl-

ized one in VR to convey narrative mood and emotion.

In this dissertation, two novel techniques for procedurally transforming an arbitrary

3D scene into an abstract virtual world are presented. The first, called the vertex displace-

ment technique, transforms 3D models into organic forms that can be further modulated

by sound. The other one is the color turbulence technique which creates animated tex-

tures that resemble fluid motion for audiences to interact with while immersed in VR.

3
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These two techniques can also be combined to create a variety of organic 3D shapes with

flow animation in their textures. An interactive narrative 3D environment is presented to

demonstrate the results of applying these techniques in VR. It includes multiple different

animated objects with a natural look. The audience can interact with them by making

sounds or using VR handheld controllers.

1.3 Contributions and Novelty

The contributions of this study include the following:

• A real-time vertex displacement technique that deforms a 3D object in an organic

way and makes it reactive to audio input.

• A real-time color turbulence technique that creates the appearance of a flowing

texture and can invite audience interaction.

• A demo that integrates these two techniques into VR and showcases moving organ-

isms that change shape or color when touched or when sound is played.

In addition, the following features of the presented techniques are novel:

• Using audio to deform 3D organic shapes in VR through shaders.

• Displaying interactive flow animation on 3D objects in VR through shader programs

to explain a concept of life energy flow.

• Inviting viewers to interact with textures with VR handheld controllers.

• The above processes can be combined and applied to an arbitrary 3D object.

4
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1.4 Organization

The organization of this dissertation is as follows:

• Chapter 2, Related Work. This chapter contains an overview of related work which

covers two wide fields: non-photorealistic rendering and VR.

• Chapter 3, Vertex Displacement with Perlin Noise. This chapter offers an explana-

tion of why Perlin noise was used to create the shapes for the organisms and details

the vertex displacement technique using Perlin noise, which agitates the form and

structure of 3D meshes.

• Chapter 4, Audio Responsive Modulation in Graphics. This chapter offers a dis-

cussion of the frequency and time domain representations of audio signals. Then,

how the frequency domain representation can be useful for creating audio reactive

materials is described.

• Chapter 5, Color Turbulence with Curl Noise. This chapter contains a discussion

of why curl noise was used to visualize the flow of energy and introduces the color

turbulence technique using curl noise, which creates swirling and flowing animation

across the surfaces of 3D objects. Moreover, demos are provided to show how the

technique allows objects to become interactive in VR.

• Chapter 6, An Assembly of the Two Techniques. This chapter presents multiple

demos that show different ways that the vertex displacement technique and color

turbulence technique could be applied. First, it presents various experimental re-

sults of combing both of the techniques and applying them to different models. In

addition, an immersive virtual environment to show how the techniques can give

an existing 3D scene a more lifelike feel to serve a narrative function is presented

in this chapter.

5
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• Chapter 7, Evaluation. This chapter provides an analysis of the technical and

aesthetic evaluation results. First, the techniques described in the dissertation

are evaluated by measuring their performance in VR. Furthermore, a comparative

examination of the results generated by different types of noise functions is covered

in this chapter.

• Chapter 8, Conclusions. The dissertation is concluded by summarizing the cultural

meaning, limitations, and future research of the work conducted in this study.

6



Chapter 2

Related Work

The approaches in this study borrow from and build on two different fields of research

and applications: non-photorealistic rendering and VR. Herein, the relevant background

is divided into two parts. The first is an introduction to non-photorealistic rendering

methods, while the second is a review of some VR history, properties, expectations, and

projects.

2.1 Non-photorealistic Rendering

Transforming concrete or realistic objects into an abstract or unrealistic style has

been an endeavor in computer graphics for nearly two decades. Even though work to

mimic the visual appearance of real-world works of art has produced various examples

of stylization, it remains a subject of current interest because of the complex and rich

styles of visual expression.

The methods used in non-photorealistic rendering can be separated into two groups:

methods that render 2D input images or video into stylized images [1] and methods

that render 3D models into stylized representations. Two publications provide surveys

7
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on image and video stylization algorithms [2, 3]. Here I refer to [4] and divide these

algorithms into the filtering-based and example-based techniques.

• Filtering-based techniques. Filtering-based techniques synthesize stylized images

by combining various brush strokes with different sizes, colors, textures, and orien-

tations, using image processing filters that facilitate edge detection, thresholding,

blurring, and so on. The state of the art can create pleasing results that resemble

real-world artwork, but the visual range of what they can produce is constrained to

the limited expressive properties of the predefined strokes or filters. Several inter-

active filtering-based rendering systems exist to support real-time image and video

stylization using a set of brush strokes [5] and image processing filters [6, 7, 8, 9].

• Example-based techniques. Example-based techniques create a stylized version of

a target image by transferring color and texture from an arbitrary style exemplar

image to the target image. In other words, as long as a style exemplar image is

given, the techniques can synthesize a stylized version of a target image. Therefore,

the techniques alleviate the disadvantage of the limited visual range of filtering-

based techniques. Although many of these techniques suffer from time-consuming

computation and are not suitable for real-time applications, it has recently been

shown that example-based techniques can be performed in real time due to the

advances of deep neural networks [10, 11].

8
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(a) Stroke-based methods [5]

(b) Oil paint filtering [9]

(c) Coherence-enhancing filtering [8]

Figure 2.1: Artistic image stylization using stroke-based methods and image filtering.

(a) Example style transferring [10]

Figure 2.2: Artistic image stylization using example-based methods.
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The methods that render 3D models into stylized representations can generally be

classified to fall into the following categories [12]:

• Silhouettes and creases: Silhouettes, or contours, are lines that connect back-

facing to front-facing regions of an object’s surface. Creases are lines that rep-

resent discontinuous or sharp regions of the surface (Figure 2.3). A number of

researchers have introduced schemes for real-time silhouette rendering of 3D scenes

[13, 14, 15, 16, 17, 18, 19, 20].

• Hatching: Hatching is a line drawing technique that draws a set of lines onto an

object’s surface to convey its tone and form. Compared to drawing silhouettes

and creases, hatching is a more sophisticated line drawing method used by artists.

Several systems have addressed real-time hatching in 3D scenes [16, 13, 15, 21, 22,

23, 24].

• Stippling: Similar to hatching, stippling is a drawing technique that involves a

collection of small dots drawn onto an object’s surface to suggest its tone and shape.

Many approaches have been proposed to digitally simulate stippling effects [25], and

some of them can work in real time for interactive 3D applications [26, 27, 28, 29].

• Illustrative shading methods: Illustrative shading methods are used to shade a

surface in a seemly painterly style or natural media manner. Unlike photorealistic

shading, which often focuses on simulating real-world light propagation, illustrative

shading does not necessarily need to perform such simulation. A substantial amount

of research has been devoted to this field. For instance, Gooch proposed some

classical techniques that attempt to create images similar to technical illustrations

[14, 30]. Another popular area of illustrative shading is toon or cell shading, which

captures the feel of cartoons and can be implemented on graphics hardware to

10
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provide interactive feedback [31]. Moreover, several methods have been proposed

to simulate the appearance of real-world artistic media, such as charcoal [32, 33],

ink [34], and watercolor [35, 36]. In addition, several user interface frameworks

exist to facilitate artists in creating and controlling different shading styles with

real-time feedback [37, 38, 39, 40].

Figure 2.3: For polygonal meshes, silhouettes consist of all edges that separate fron-
t-facing from back-facing polygons. For a smooth surface, silhouettes include the loci
of those surface points with a surface normal perpendicular to the view vector [41].
Creases consist of all edges that are shared by two neighboring faces, and the angle
between the two faces is greater than a certain threshold value. [19]

11
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(a) Silhouettes (black) and creases (white)

[14]

(b) Hatching [24]

(c) Stippling [27]

Figure 2.4: Models are rendered with silhouettes and creases, hatching lines, or dots.
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(a) Technical illustration [30] (b) Toon shading [31]

(c) Charcoal rendering [33] (d) Watercolor rendering [36]

Figure 2.5: Models with different shading methods that mimic artistic styles or natural
media.
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2.2 VR

In this section, I give an overview of some of the milestones in the history of VR.

Then, I review the literature that gives a theoretical perspective of VR and discuss a few

VR audio experiences and abstract or non-photorealistic VR projects.

2.2.1 VR’s Moment

In 1962, cinematographer Morton Heilig developed the Sensorama [42] (Figure 2.6a),

which was one of the earliest known examples of immersive, multi-sensory technology. It

featured stereo speakers, a stereoscopic 3D display, fans, smell generators, and a vibrating

chair.

Then, in 1965, Dr. Ivan Sutherland proposed the ”ultimate display” concept that

summarized the three core characteristics of VR [43].

1. It is a virtual world that is viewed through a head-mounted display and appears

realistic through 3D sound and tactile feedback.

2. It simulates reality in real time.

3. It allows users to interact with the objects in the virtual world just as they would

in the real world.

Later, in 1968, Sutherland invented a head-mounted 3D display system, which was

referred to as the Sword of Damocles [44] (Figure 2.6b). The system is considered to be

the world’s first VR system with a head-mounted display.

Even after all of this development in VR, a term to describe the field still did not

exist. This all changed in 1987 when Jaron Lanier, founder of the visual programming

lab, coined the term “virtual reality.” The research area now had a name. In 1993, Sega

announced the Sega VR headset for the Sega Genesis console (Figure 2.6c). However, the

14
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Sega VR headset remained only a prototype and was never released to the general public

because it could induce motion sickness and severe headaches in users [45, 46]. In 1995,

Sega’s chief competitor, Nintendo, released the Virtual Boy, but the device also brought

discomfort after extended play [47] (Figure 2.6d). In 2016, Oculus released its Oculus

Rift headset (Figure 2.6e), which was able to track the user’s orientation and delivered a

high-quality consumer-level VR experience. Soon, HTC also released its high-quality VR

headset—HTC VIVE—which can track the orientation and position of the user so that

the user can move in 3D space (Figure 2.6f). By the year 2020, hundreds of technology

companies were developing VR hardware, content, and services [48].

15
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(a) Sensorama, 1962 (b) Sword of Damocles, 1968

(c) Sega VR, 1993 (d) Nintendo Virtual Boy, 1995

(e) Oculus Rift, 2016 (f) HTC Vive, 2016

Figure 2.6: Examples of VR technical developments.
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2.2.2 Properties and expectations of VR

In Murray’s influential book Hamlet on the Holodeck [49], she explains that a computer-

generated environment provides vivid and powerful forms of immersive narratives that

are shaped by the properties native to computers: their procedural, participatory, spa-

tial, and encyclopedic aspects. The procedural property means that any digital artifact is

potentially procedural. That is, it is made of executable procedures. The participatory

property suggests that the digital environment may invite human interaction through

technical and sensory means. Furthermore, a digital environment is spatial because it is

possible to navigate through it as a 3D virtual space. Finally, a digital environment is

encyclopedic because it can store a high capacity of multimedia information.

Murray also explains three pleasures that define the aesthetics of digital media: im-

mersion, agency, and transformation. The experience of being immersed in a virtual

world is a relaxing and pleasurable activity in itself. Agency is the satisfying power to

take action and perceive the effects, whether in real life or in a digital environment.

Transformation refers to the computers’ ability to create and simulate an environment

to role-play.

In her book Narrative as Virtual Reality [50], Ryan claims that the Holodeck from

the TV series Star Trek is the ultimate form of VR. She describes the ideal VR with the

following expectations:

• Active embodiment. VR can track the participant’s motion and direction of gaze

and thus invite the participant to move within the virtual space with his or her

actual body.

• The spatiality of the display. VR is a complete surround environment. It offers

not only a 360-degree panoramic view but also depth perception, motion parallax,

and spatialized audio. In this way, the participant feels the virtual environment is

17
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three-dimensional, instead of flat like a 2D screen.

• The transparency of the medium. Although the virtual world is the simulation

result of computer programs, the computer that runs these programs is invisible to

the participant.

• The dream of natural language. VR affords natural gestures and movements so

that the participants can naturally interact with the objects and inhabitants in the

virtual environment just as they would in the real world.

• Alternative embodiment and role-playing. VR is a first-person medium for the

participant to become a character in the virtual world. The participant is able to

take meaningful action and see the results.

• Simulation as narrative. The participant creates a story by engaging in the virtual

world with its various affordances and themes.

• VR as a form of art. Being transported to an elaborately simulated place and

enacting a role in the place is pleasurable and relaxing.

2.2.3 VR Audio Experiences

Audio-driven graphics have long been an option in motion graphics. Plenty of audio

applications for VR are also available to give users immersive interaction via audio and

visuals. Tilt Brush, a VR painting application from Google, introduces a collection of

audio-reactive brushes in various forms, such as dots, neon pulses, and chromatic waves

(Figure 2.7a). When the user plays Tilt Brush with audio in the background, the digital

paint comes to life with strokes vibrating to the beat of the audio. Amplify VR, is a

virtual platform that enables bands and musicians to stage performances in immersive

18
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environments (Figure 2.7b). By analyzing the rhythm and color of a music video, it

translates the music video into an immersive landscape where audiences can participate.

Audioshield is a rhythm game that asks the player to use virtual shields to block

blobs that fly toward the player from various directions in VR (Figure 2.7c). The blobs

represent crucial notes in a piece of music, so the game gives players a physical workout

while they play songs. Similarly, Beat Saber is another rhythm game that involves

slashing moving blocks with lightsabers to the beat of a song (Figure 2.7d).

(a) Tilt Brush: Audio Reactive Brushes, 2016 (b) Amplify VR, 2016

(c) Audioshield, 2016 (d) Beat Saber, 2018

Figure 2.7: Examples of VR audio applications. (a) With Tilt Brush’s various audio
reactive brush strokes, users can create complex three-dimensional paintings that vi-
brate to an audio beat. (b) Amplify VR is a platform for artists to showcase their
music in immersive environments in which the audience is an active participant. (c)
Audioshield is a VR rhythm game that has the player blocking incoming streaks of
light in time with two shields. (d) Much like Audioshield, Beat Saber is another VR
rhythm game that asks the player to slice musical blocks using dual lightsabers.
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2.2.4 Abstract or Non-photorealistic VR Pieces

Some well-known pieces of art have been transformed into 3D scenes in VR. For

instance, Jing Yan’s Reincarnation is a VR art experience adapted from Yves Tanguy’s

paintings [51]. It immerses the viewer in the fantastic beauty of the surrealist artworks

and invites the viewer to participate in the unconscious environment. The viewer can

interact with abstract and biomorphic creatures and join simulated flocking species.

Unlike Jing Yan’s Reincarnation, Kevin Mack’s Blortasia does not recreate famous

paintings in VR [52]. Instead, the work is an abstract and mysterious 3D world where

viewers can navigate through evolving shapes and textures. (Figure 2.8b). Similarly, Put-

nam’s Mutator VR: Vortex combines organic graphics and sounds to deliver integrated

sensory experiences in VR [53] (Figure 2.8c).

(a) Reincarnation, 2019 [51] (b) Blortasia, 2017 [52]

(c) Mutator VR: Vortex, 2017 [53]

Figure 2.8: Several installations give the viewer an immersive interaction with abstract
forms in VR.
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These works were developed mainly by following the production pipeline in three

stages: modeling, animation, and rendering [54]. The modeling stage turns 2D concepts

into 3D model representations of characters, props, and environments. The animation

stage animates characters and simulates physics dynamics, such as cloth and fluid. The

rendering stage creates lighting and rendering effects, such as global illumination and

volumetric fog.

Each of these works presents one particular rendering style that was designed specif-

ically for its own scenes. On the contrary, Klein presented a system that allows a virtual

environment to be rendered in a wide variety of non-photorealistic styles [55] (Figure

2.9). It maps non-photorealistic textures that are processed with stroke-oriented filters

in advance onto 3D models and then renders creases, silhouettes, and non-photorealistic

textures in real time.

21
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(a) Drybrush (b) Pastel

(c) Van Gogh

Figure 2.9: Klein provides a method that allows a variety of styles for one virtual
environment [55].
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Chapter 3

Vertex Displacement with Perlin

Noise

As noted in my research statement from Chapter 1, I wanted to create a work that

has organic looking and lifelike behaviors. To create organic shapes, one must generate

a bit of randomness that resembles the patterns found in nature. However, a purely

random number generator produces numbers that are unrelated to each other and do

not necessarily mimic natural shapes. In nature, most things are not purely random.

For example, clouds and terrain seem to have elements of randomness, but there are

many complex interactions among the many tiny particles that compose these natural

patterns. There is an algorithm known as Perlin noise (developed by Ken Perlin) that

can create more natural results. The shapes generated by Perlin noise have a more

organic appearance because the algorithm generates a smooth sequence of pseudo-random

numbers.

In this chapter, I describe how I used Perlin noise to displace the vertices of a 3D

mesh to create a more natural-looking shape. Then, I will present the results generated

using my approach.
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3.1 Perlin Noise

In 1985, Ken Perlin wrote a SIGGRAPH paper on procedural texture generation

using novel noise functions [56]. Then, in 2001, he invented “simplex noise [57],” which

improved the classic noise algorithm. These noise algorithms are now known as Perlin

noise. In this dissertation, I describe the classic Perlin noise only. For further details on

how to generate Perlin noise, in addition to Ken Perlin’s original papers, several helpful

online resources are available [58, 59, 60, 61, 62].

Perlin noise can scale to any number of dimensions. I explain classic 1D Perlin noise

only because it is easier to understand and implement than its other forms. To generate

Perlin noise in one dimension, first, choose a random number between -1 and 1 at every

integer point x = 0, 1, 2, 3, with a hash function. Each random number represents the

slope of a line at that point. Then, if a given input point X is at an integer coordinate,

the Perlin noise function simply returns zero. Otherwise, if X is somewhere between two

integer coordinates, we interpolate a smooth function between the values where those

two adjacent sloped lines cross x = X.

This interpolation is not linear with distance because that would result in a sequence

of numbers that do not transition smoothly into each other. Mathematically speaking,

the derivative of the noise function would not be continuous at the integer points. Instead,

we interpolate a smooth function that has zero derivatives at both its endpoints so that

the rate of change is always zero at both ends.

Originally, Ken Perlin used a cubic Hermite function where its first order derivative

was zero at its endpoints. However, he later suggested a fifth-degree polynomial because

it also has zero second order derivatives at its endpoints, which makes the noise func-

tion have continuous second order derivatives everywhere. Such property is good for

some of the common computer graphics tasks, such as surface displacement and specular

24



Vertex Displacement with Perlin Noise Chapter 3

highlights rendering.

3.2 Implementation and Results

Because Perlin noise generates coherent noise over a space, displacing the vertices of

a 3D mesh using it results in a smooth appearance and an organic feeling. In this study,

this technique was implemented through vertex shaders in the Unity game engine.

Once we move the vertices, we have to recalculate the vertex normals to get correct

shading across the surface (Figure 3.1). We can calculate the new normals by calculating

the cross-product between the tangent and the bitangent at the new vertex position. For

more details on the implementation, the reader is referred to the vertex displacement

shader code listed in Appendix A.

Figure 3.1: After the object’s vertices are moved, the normals also need to be recal-
culated to get correct shading across the surface of the object. The object on the left
side does not have recalculated normals. On the contrary, the one on the right side
does, and the shadow correctly matches up with its shape.

Figures 3.2, 3.3, 3.4, 3.5, and 3.6 show the results of applying the vertex displacement

method to different models with varied frequency values. The vertex displacement shader
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has two parameters: scale and frequency. In this example, for each model, the vertex

displacement shader’s scale variable is held at a constant value of 0.25, while its frequency

variable is changed from 0 to 5, with a constant step size of 1. Similarly, Figures 3.7,

3.8, and 3.9 show the results of applying the vertex displacement method to different

creature models with different frequency values.

(a) Frequency 0.0, scale 0.25 (b) Frequency 1.0, scale 0.25 (c) Frequency 2.0, scale 0.25

(d) Frequency 3.0, scale 0.25 (e) Frequency 4.0, scale 0.25 (f) Frequency 5.0, scale 0.25

Figure 3.2: Results of applying the vertex displacement method to a plane with a
fixed scale value and different frequency values.
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(a) Frequency 0.0, scale 0.25 (b) Frequency 1.0, scale 0.25 (c) Frequency 2.0, scale 0.25

(d) Frequency 3.0, scale 0.25 (e) Frequency 4.0, scale 0.25 (f) Frequency 5.0, scale 0.25

Figure 3.3: Results of applying the vertex displacement method to a sphere with a
fixed scale value and different frequency values.
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(a) Frequency 0.0, scale 0.25 (b) Frequency 1.0, scale 0.25 (c) Frequency 2.0, scale 0.25

(d) Frequency 3.0, scale 0.25 (e) Frequency 4.0, scale 0.25 (f) Frequency 5.0, scale 0.25

Figure 3.4: Results of applying the vertex displacement method to a capsule with a
fixed scale value and different frequency values.
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(a) Frequency 0.0, scale 0.25 (b) Frequency 1.0, scale 0.25 (c) Frequency 2.0, scale 0.25

(d) Frequency 3.0, scale 0.25 (e) Frequency 4.0, scale 0.25 (f) Frequency 5.0, scale 0.25

Figure 3.5: Results of applying the vertex displacement method to a cone with a fixed
scale value and different frequency values.
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(a) Frequency 0.0, scale 0.25 (b) Frequency 1.0, scale 0.25 (c) Frequency 2.0, scale 0.25

(d) Frequency 3.0, scale 0.25 (e) Frequency 4.0, scale 0.25 (f) Frequency 5.0, scale 0.25

Figure 3.6: Results of applying the vertex displacement method to a torus with a
fixed scale value and different frequency values.
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(a) Scale 0.1, frequency 0.0 (b) Scale 0.1, frequency 1.0 (c) Scale 0.1, frequency 2.0

(d) Scale 0.1, frequency 3.0 (e) Scale 0.1, frequency 4.0 (f) Scale 0.1, frequency 5.0

Figure 3.7: Results of applying the vertex displacement method to a pig’s head with
a fixed scale value and different frequency values.
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(a) Scale 0.025, frequency 0.0 (b) Scale 0.025, frequency 2.0 (c) Scale 0.025, frequency 4.0

(d) Scale 0.025, frequency 6.0 (e) Scale 0.025, frequency 8.0 (f) Scale 0.025, frequency 10.0

Figure 3.8: Results of applying the vertex displacement method to a human body
with a fixed scale value and different frequency values.
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(a) Scale 0.075, frequency 0.0 (b) Scale 0.075, frequency 2.0 (c) Scale 0.075, frequency 4.0

(d) Scale 0.075, frequency 6.0 (e) Scale 0.075, frequency 8.0 (f) Scale 0.075, frequency 10.0

Figure 3.9: Results of applying the vertex displacement method to a toy with a fixed
scale value and different frequency values.

In addition, Figures 3.10, 3.11, 3.12, 3.13, and 3.14 show the results of applying the

vertex displacement method to different models with varied scale values. For each model,

the shader’s frequency variable is held at a constant value of 6, while its scale variable is

changed from 0.0 to 0.5, with a constant step size of 0.1. Likewise, Figures 3.15, 3.16, and

3.17 show the results of applying the vertex displacement method to different creature

models with different scale values.
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(a) Scale 0.0, frequency 1.0 (b) Scale 0.1, frequency 1.0 (c) Scale 0.2, frequency 1.0

(d) Scale 0.3, frequency 1.0 (e) Scale 0.4, frequency 1.0 (f) Scale 0.5, frequency 1.0

Figure 3.10: Results of applying the vertex displacement method to a plane with a
fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 6.0 (b) Scale 0.1, frequency 6.0 (c) Scale 0.2, frequency 6.0

(d) Scale 0.3, frequency 6.0 (e) Scale 0.4, frequency 6.0 (f) Scale 0.5, frequency 6.0

Figure 3.11: Results of applying the vertex displacement method to a sphere with a
fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 6.0 (b) Scale 0.1, frequency 6.0 (c) Scale 0.2, frequency 6.0

(d) Scale 0.3, frequency 6.0 (e) Scale 0.4, frequency 6.0 (f) Scale 0.5, frequency 6.0

Figure 3.12: Results of applying the vertex displacement method to a capsule with a
fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 6.0 (b) Scale 0.1, frequency 6.0 (c) Scale 0.2, frequency 6.0

(d) Scale 0.3, frequency 6.0 (e) Scale 0.4, frequency 6.0 (f) Scale 0.5, frequency 6.0

Figure 3.13: Results of applying the vertex displacement method to a cone with a
fixed frequency value and different scale values.

37



Vertex Displacement with Perlin Noise Chapter 3

(a) Scale 0.0, frequency 6.0 (b) Scale 0.1, frequency 6.0 (c) Scale 0.2, frequency 6.0

(d) Scale 0.3, frequency 6.0 (e) Scale 0.4, frequency 6.0 (f) Scale 0.5, frequency 6.0

Figure 3.14: Results of applying the vertex displacement method to a torus with a
fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 2.0 (b) Scale 0.1, frequency 2.0 (c) Scale 0.2, frequency 2.0

(d) Scale 0.3, frequency 2.0 (e) Scale 0.4, frequency 2.0 (f) Scale 0.5, frequency 2.0

Figure 3.15: Results of applying the vertex displacement method to a pig’s head with
a fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 8.0 (b) Scale 0.02, frequency 8.0 (c) Scale 0.04, frequency 8.0

(d) Scale 0.06, frequency 8.0 (e) Scale 0.08, frequency 8.0 (f) Scale 0.1, frequency 8.0

Figure 3.16: Results of applying the vertex displacement method to a human body
with a fixed frequency value and different scale values.
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(a) Scale 0.0, frequency 2.0 (b) Scale 0.1, frequency 2.0 (c) Scale 0.2, frequency 2.0

(d) Scale 0.3, frequency 2.0 (e) Scale 0.4, frequency 2.0 (f) Scale 0.5, frequency 2.0

Figure 3.17: Results of applying the vertex displacement method to a toy with a fixed
frequency value and different scale values.
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Chapter 4

Audio Responsive Modulation in

Graphics

Organisms in the virtual world can modify their structure and appearance. Thus, their

shapes can be modulated based on sound input from music or microphones through

shader programs. In this sense, the organisms “respond to” sound. This chapter covers

the details of how the organisms were made to be sound-reactive.

4.1 Fourier Transform

The first step to have audio modulate the shapes through a shader is to interpret the

audio with a meaningful representation that can provide useful information for the shader

to process. One common way to represent audio is by showing how loud the audio is over

time (this representation is called the time domain, as shown in Figure 4.1). However,

this does not help us understand what we actually hear. Sound consists of different

frequencies of sine waves, and so instead of representing audio in the time domain, we

can alternatively represent it in the frequency domain by using the Fourier transform; this
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is a mathematical tool that converts a time-dependent signal into a frequency-dependent

signal, thereby revealing information about the frequencies of the sine waves that make

up the original signal. As a result, instead of examining audio signal loudness and time,

we determine their loudness and frequency.

Figure 4.1: Audio wave visualization in time and frequency domains.

4.2 Audio-driven Interactions

The spectrum of frequencies of the sine waves that compose the audio signal can be

useful in driving the vertex displacement shader. Specifically, given an incoming audio

stream, an array of magnitude values were calculated across the frequency spectrum using
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the Fourier transform for the implementation in this study. Each organism was then

programmed to respond to a specific frequency range. The shader program attached to

the organism displaces the vertices of the organisms 3D mesh according to the magnitude

in that frequency range.

As an illustration, Figure 4.2 to 4.7 show different frequencies of sound that modulate

six 3D spherical meshes. Each mesh’s vertex displacement shader is programmed to react

to different frequency ranges. Specifically, the six frequency ranges are 87 Hz to 258 Hz,

259 Hz to 602 Hz, 603 Hz to 1290 Hz, 1291 Hz to 2666 Hz, 2667 Hz to 5418 Hz, and 5419

Hz to 10922 Hz.
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(a) 220 Hz audio wave visualization in time and frequency domains

(b) 220 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 87 Hz to 258 Hz.

Figure 4.2: 220 Hz audio wave visualization and the modulation response of the vertex
displacement shader.
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(a) 440 Hz audio wave visualization in time and frequency domains

(b) 440 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 259 Hz to 602 Hz.

Figure 4.3: 440 Hz audio wave visualization and the modulation response of the vertex
displacement shader.
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(a) 880 Hz audio wave visualization in time and frequency domains

(b) 880 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 603 Hz to 1290 Hz.

Figure 4.4: 880 Hz audio wave visualization and the modulation response of the vertex
displacement shader.
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(a) 1760 Hz audio wave visualization in time and frequency domains

(b) 1760 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 1291 Hz to 2666 Hz.

Figure 4.5: 1760 Hz audio wave visualization and the modulation response of the
vertex displacement shader.
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(a) 3520 Hz audio wave visualization in time and frequency domains

(b) 3520 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 2667 Hz to 5418 Hz.

Figure 4.6: 3520 Hz audio wave visualization and the modulation response of the
vertex displacement shader.
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(a) 7040 Hz audio wave visualization in time and frequency domains

(b) 7040 Hz audio modulates the shape of the sphere that has a vertex shader

reacting to frequencies from 5419 Hz to 10922 Hz.

Figure 4.7: 7040 Hz audio wave visualization and the modulation response of the
vertex displacement shader.
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Chapter 5

Color Turbulence with Curl Noise

The flow of life energy in the natural world was represented by applying flow animation

to the 3D models textures. Therefore, I developed a color turbulence technique that uses

curl noise to define a variety of naturally fluid-like movements to distort and animate

textures. In this chapter, I describe how the curl noise can support the color turbulence

approach and present the results generated using the approach. Finally, I present some

virtual environments where I applied the approach along with additional interactivity to

the scenes.

5.1 Curl Noise

The ideal candidate method for flow animation was determined to be curl noise (cre-

ated by Robert Bridson [63]). A curl is a mathematical operator that measures the

“rotation” in a vector field. Its input is a vector field and its output is a divergence-free

vector field, which means that there are neither sources nor sinks in the flow. Applying

the curl operator to Perlin noise as an input generates curl noise containing varying vec-

tors which can be used to control the direction of the flow. Therefore, shader programs
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that use curl noise as a flow map to distort and animate textures were developed.

5.2 Implementation and Results

With curl noise, the flow animation can be realized through a combination of two

shaders: the flow shader and the blend shader. In this section, I give the details of

implementing these two shaders. The code of the flow shader and blend shader is listed

in Appendix B.1 and B.2, respectively.

First, we need to create Perlin noise before creating curl noise because curl noise is

generated by applying the curl operator to Perlin noise as an input. In the dissertation,

I wrote C# scripts in the Unity game engine to create Perlin noise. Furthermore, a few

parameters can affect the appearance of Perlin noise, and they are frequency, octave,

lacunarity, and persistence. Consider the six types of Perlin noise in Figure 5.1 and 5.2.

They were created with the same lacunarity and persistence but different octave and

frequency values. Consequently, applying the curl operator to the Perlin noise generated

the six corresponding types of curl noise, as also shown in Figure 5.1 and 5.2. The curl

noise contains 2D vectors, with each vector’s U component in the R channel and the V

component in the G channel.

Now that I had curl noise, which stores flow vectors, I developed the flow shader and

added the curl noise as a property to the shader to distort and animate an input texture.

However, the input texture gets distorted more and more as time progresses. As a result,

each color of the texture cannot retain its hue and dulls the other colors. To prevent the

colors from becoming too mingled, the flow shader has to eventually reset the texture.

A simple way to do this is to use the fractional part of the time for the animation. That

is, time progresses from 0 to 1 and then returns to 0. Once time resets to 0, the input

texture resets to its initial state and the animation starts over.
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At this point, although we have flow animation, it resets every second with noticeable

discontinuity. To make the entire flow seamlessly loop, we can first create two identical

flow animations but offset one of them. Then, we can create a seemingly continuous flow

by making one animation fade away into the other repeatedly. Note that we want the

flow animations to sporadically dissolve into each other to smooth out the transition.

Therefore, I added an additional Perlin noise to the flow shader to indicate when one

flow animation should disappear. Finally, I developed the blend shader, which alternately

displays the two flow animation.
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(a) Perlin noise (octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5)

(b) Perlin noise (octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5)

(c) Perlin noise (octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5)

(d) Curl noise generated by ap-

plying the curl operator to (a)

(e) Curl noise generated by ap-

plying the curl operator to (b)

(f) Curl noise generated by ap-

plying the curl operator to (c)

Figure 5.1: Flow maps and their corresponding Perlin noise maps that are created
with the same octaves, lacunarity, and persistence but different frequencies.

54



Color Turbulence with Curl Noise Chapter 5

(a) Perlin noise (octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5)

(b) Perlin noise (octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5)

(c) Perlin noise (octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5)

(d) Curl noise generated by ap-

plying the curl operator to (a)

(e) Curl noise generated by ap-

plying the curl operator to (b)

(f) Curl noise generated by ap-

plying the curl operator to (c)

Figure 5.2: Flow maps and their corresponding Perlin noise maps that are created
with the same octaves, lacunarity, and persistence but different frequencies.

Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10 show the results of applying the color

turbulence approach to different models with various flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.3: Results of applying the color turbulence method to a plane with different
flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.4: Results of applying the color turbulence method to a sphere with different
flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.5: Results of applying the color turbulence method to a capsule with different
flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.6: Results of applying the color turbulence method to a cone with different
flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.7: Results of applying the color turbulence method to a torus with different
flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.8: Results of applying the color turbulence method to a pig’s head with
different flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.9: Results of applying the color turbulence method to a human body with
different flow maps.
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(a) Octave 1, frequency 3, lacu-

narity 2, persistence 0.5

(b) Octave 1, frequency 6, lacu-

narity 2, persistence 0.5

(c) Octave 1, frequency 9, lacu-

narity 2, persistence 0.5

(d) Octave 3, frequency 3, lacu-

narity 2, persistence 0.5

(e) Octave 3, frequency 6, lacu-

narity 2, persistence 0.5

(f) Octave 3, frequency 9, lacu-

narity 2, persistence 0.5

Figure 5.10: Results of applying the color turbulence method to a toy with different
flow maps.

5.3 VR Integration and Interactivity

In this section, I present some virtual environments where a given 3D scene was

procedurally transformed into an expressive virtual world with animated textures that

resemble fluid motions by using the color turbulence technique (Figures 5.11, 5.12, 5.13,

and 5.14). In addition, the shader programs described in the previous section allow

viewers to interact with the textures by injecting colors into them (Figure 5.15). The
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original 3D scene is from the Fantasy Adventure Environment asset by Staggart Creations

[64], and all the 3D meshes, lighting, and particles are included in the asset.

(a) A given scene in VR

(b) The resulting scene after applying the color turbulence method

Figure 5.11: Screenshots showing a scene in VR before and after being assigned the
color turbulence method. The method paints moving and swirling patterns onto the
barks, rocks, ground, and sky.
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(a) A given 3D scene

(b) The resulting scene after applying the color turbulence method

Figure 5.12: Screenshots showing a scene in VR before and after being assigned the
color turbulence method. The method paints moving and swirling patterns onto the
leaves, barks, rocks, ground, and sky.
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(a) A given 3D scene

(b) The resulting scene after applying the color turbulence method

Figure 5.13: Screenshots showing a scene in VR before and after being assigned the
color turbulence method. The method paints moving and swirling patterns onto the
leaves, barks, rocks, ground, and sky.
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(a) A given 3D scene

(b) The resulting scene after applying the color turbulence method

Figure 5.14: Screenshots showing a scene in VR before and after being assigned the
color turbulence method. The method paints moving and swirling patterns onto the
leaves, barks, rocks, ground, and sky.
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(a)

(b)

Figure 5.15: Screenshots showing that an attendee interacts with the swirling texture
of different objects in VR.
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Chapter 6

An Assembly of the Two Techniques

In previous chapters, images and examples are presented to show the results of individual

technique. This chapter shows the results of combining both the vertex displacement

technique and the color turbulence technique, beginning with applying both techniques

to various 3D meshes. Then, a VR system that the two techniques were integrated into

is available to demonstrate the results of these techniques with a number of 3D models

in a fully immersive environment.

6.1 Combination of Vertex Displacement and Color

Turbulence

Combining the vertex displacement technique and the color turbulence technique can

create an enormous variations in organic 3D models with turbulence in their textures.

Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 show the results of combining both techniques

and assigning them to different models.
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(a) Frequency 1.0, scale 0.25,

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.0, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.0, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 6.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.1: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a sphere.
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(a) Frequency 1.0, scale 0.25;

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.0, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.0, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 6.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.2: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a capsule.
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(a) Frequency 1.0, scale 0.25;

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.0, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.0, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 6.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.3: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a cone.
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(a) Frequency 1.0, scale 0.25;

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.0, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.0, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 6.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.4: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a torus.
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(a) Frequency 1.0, scale 0.1; flow

map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.0, scale 0.1; flow

map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.1; flow

map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.0, scale 0.1; flow

map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.1; flow

map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 6.0, scale 0.1; flow

map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.5: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a pig’s head.
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(a) Frequency 1.0, scale 0.25;

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 2.6, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 3.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 4.8, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 5.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 9.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.6: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a human body.
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(a) Frequency 2.0, scale 0.25;

flow map settings: octave 1, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(b) Frequency 4.0, scale 0.25;

flow map settings: octave 1, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(c) Frequency 6.0, scale 0.25;

flow map settings: octave 1, fre-

quency 9, lacunarity 2, persis-

tence 0.5

(d) Frequency 8.0, scale 0.25;

flow map settings: octave 3, fre-

quency 3, lacunarity 2, persis-

tence 0.5

(e) Frequency 10.0, scale 0.25;

flow map settings: octave 3, fre-

quency 6, lacunarity 2, persis-

tence 0.5

(f) Frequency 12.0, scale 0.25;

flow map settings: octave 3, fre-

quency 9, lacunarity 2, persis-

tence 0.5

Figure 6.7: Results of applying the vertex displacement method with different fre-
quencies and different flow maps to a toy.

6.2 Narrative Demo

In this section, an example to demonstrate how the approach could serve as a narrative

in VR was constructed (Figure 6.8). The example is an interactive abstract virtual
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environment that seeks to imagine the natural world as alive in a way that is different

from that perceived by human beings. For instance, turbulent flow exists in all kinds of

virtual objects (inhabitants, rocks, and land), thereby representing the vitality or energy

flow of the natural world. Furthermore, all agents have the capacity to sense acoustic

signals and deform their shapes according to the volumes and frequencies of the sounds

(Figure 6.9). Participants can also interact with the virtual objects which respond by

altering their colors (Figure 6.10). To summarize, the aim of the example is to awaken

the participants’ imagination and raise their awareness of the responsive natural world

around them through animated shapes, textures, and motions.

Figure 6.8: A screenshot showing a scene from the narrative demo.
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(a)

(b)

Figure 6.9: Screenshots showing that the organisms modulate their shapes by sound.
Their shapes change as the volume of the sound goes from gentle (top) to loud (bot-
tom).
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(a) (b) (c)

Figure 6.10: Screenshots showing that an attendee interacts with the animated tex-
tures of different objects.
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Chapter 7

Evaluation

This chapter offers technical and aesthetic evaluations of vertex displacement and color

turbulence techniques. Herein, the chapter is divided into two sections. The first section

reports on the performance of each technique. The performance is evaluated by measuring

the frame rate in VR. The performance of the color turbulence method is affected by

several factors: the resolution of textures, the amount of time interval to animate, and

the number of 3D models in the scene. In contrast, the performance of the vertex

displacement method is affected by the number of 3D models.

The second section contains the aesthetic evaluation. The techniques presented in

the paper are based on Perlin noise and curl noise generation algorithms. Since many

different types of noise functions exist, the results generated by other types of noise

functions were compared according to qualitative metrics of smoothness and form to

understand the ways in which these various noise functions differ.
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7.1 Technical Evaluation

Measuring the frame rate is a common way to analyze the performance and quality of

the experience in VR. Maintaining a frame rate similar to the refresh rate of the display

used in the VR headset is essential for a quality VR experience. If the frame rate drops

below the headset’s refresh rate, it can degrade the experience to the point of motion

discomfort for the user [65, 66].

Since only a few parameters vary the visual quality and performance of VR experience,

I performed experiments with each parameter with different values and measured the

frame rate under each value. Moreover, to see how stable the frame rate is during the

rendering process for each parameter value, I measured the frame rate five times and

calculated its maximum, minimum, and average values.

Firstly, for the color turbulence approach, I used the following parameters:

• Resolution of render texture: Render textures are textures that can be updated at

runtime. In my case, the animation of turbulence is rendered into render textures.

In general, the higher the texture’s resolution is, the less pixelated the rendered

image looks and the greater amount of computational effort is involved.

• Resolution of initial texture. Initial textures define the color map for the material

as the animation of turbulence begins.

• Resolution of flow texture. Flow textures contain 2D vectors that indicate the flow

directions across the surface of the material.

• Resolution of noise texture. My approach achieves seamless looping by blending

two color maps. Noise textures control when one map should transit the other.

• Amount of time suspended for the system to calculate the animation’s next state.
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This is the time interval for which animation will pause until the time interval ends

and then resume where it left off on the following frame.

• Number of 3D models in the scene. Typically, 3D models are constructed with

many little polygons. A virtual environment with a high poly count delivers more

detailed graphics but could reduce the performance.

Second, the limiting factor for using the vertex displacement approach in terms of

performance is the number of 3D models in the scene.

The virtual environment that I used for the experiments was a plain 3D scene with one

default direction light from the Unity game engine. All the frame rates were measured

on a 2.20 GHz Intel Xeon desktop with a 64 GB RAM and a dual NVIDIA GeForce

GTX 1080 Ti graphics card. Furthermore, since I used an Oculus Rift VR headset, the

recommended frame rate was 90 hz [67].

Figures 7.1 to 7.6 display the frame rates versus each parameter for the color turbu-

lence approach, while Tables 7.1 to 7.6 show their corresponding statistics logged during

runtime. The frame rate begins to drop when the resolution of texture or the number

of 3D models increases, and this is shown in Figures 7.1 to 7.4 and Tables 7.1 to 7.4.

In addition, examining the frame rate results in Figures 7.6 and Table 7.6, we see that

the frame rate is more likely to meet the recommended 90 frames per second when more

suspended time is allowed.

For the vertex displacement approach, the application can meet a consistent 90 frames

per second, even though the number of 3D models increases, as shown in Figure 7.7 and

Table 7.7. In contrast, the performance of the color turbulence approach is more prone

to drop in frame rate due to an increasing number of 3D models.
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Table 7.1: Frame rate results for different resolutions of render texture for the color
turbulence method (see results in Figure 7.1).

64 128 256 512 1024 2048

Maximum frame rate 91.15 92.21 95.03 95.09 96.95 90.11
Average frame rate 86.94 86.47 93.43 93.62 95.21 49.86
Minimum frame rate 82.31 82.71 91.88 92.11 94.28 22.54

Figure 7.1: The frame rate versus the resolution of render texture for the color turbu-
lence method. Table 7.1 shows the quantitative descriptions. The test environment
contains 4,800 triangles. The test was performed five times to calculate the maximum,
minimum, and average frame rate values.

Table 7.2: Frame rate results for different resolutions of initial texture for the color
turbulence method (see results in Figure 7.2).

64 128 256 512 1024 2048

Maximum frame rate 90.01 90.2 90.14 96.18 95.93 47.55
Average frame rate 89.91 89.95 90.06 94.61 93.44 46.93
Minimum frame rate 89.81 89.83 90.01 93.7 90.69 46.31

83



Evaluation Chapter 7

Figure 7.2: The frame rate versus the resolution of initial texture for the color turbu-
lence method. Table 7.2 shows the quantitative descriptions. The test environment
contains 4,800 triangles. The test was performed five times to calculate the maximum,
minimum, and average frame rate values.

Table 7.3: Frame rate results for different resolutions of initial texture for the color
turbulence method (see results in Figure 7.3).

64 128 256 512 1024 2048

Maximum frame rate 93.37 94.57 94.57 90.74 81.27 51.54
Average frame rate 90.85 93.75 92.56 63.34 64.01 46.45
Minimum frame rate 90.15 92.87 90.24 45.04 45.02 45.03
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Figure 7.3: The frame rate versus the resolution of flow texture for the color turbu-
lence method. Table 7.3 shows the quantitative descriptions. The test environment
contains 4,800 triangles. The test was performed five times to calculate the maximum,
minimum, and average frame rate values.

Table 7.4: Frame rate results for different resolutions of noise texture for the color
turbulence method (see results in Figure 7.4).

64 128 256 512 1024 2048

Maximum frame rate 96.52 95.6 93.29 83.28 53.7 47.64
Average frame rate 94.41 94.30 91.56 80.16 51.55 46.85
Minimum frame rate 93.49 93.33 90.08 79.12 47.65 46.06
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Figure 7.4: The frame rate versus the resolution of noise texture for the color turbu-
lence method. Table 7.4 shows the quantitative descriptions. The test environment
contains 4,800 triangles. The test was performed five times to calculate the maximum,
minimum, and average frame rate values.
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Figure 7.5: The frame rate versus the number of 3D models for the color turbulence
method. Table 7.5 shows the quantitative descriptions. Every model contains 200
triangles. The test was performed five times to calculate the maximum, minimum,
and average frame rate values.

Table 7.6: Frame rate results for different amount of suspended time for the color
turbulence method (see results in Figure 7.6).

64 128 256 512 1024 2048

Maximum frame rate 32.26 33.76 83.54 85.63 94.41 93.28
Average frame rate 23.95 25.93 50.84 61.10 90.73 90.51
Minimum frame rate 20.65 20.68 24.34 34.11 89.7 89.64
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Figure 7.6: The frame rate versus the suspended time for the color turbulence method.
Table 7.6 shows the quantitative descriptions. The test environment contains 4,800
triangles. The test was performed five times to calculate the maximum, minimum,
and average frame rate values.
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Figure 7.7: The frame rate versus the number of 3D models for the vertex displacement
approach. Table 7.7 shows the quantitative descriptions. Every model contains 200
triangles. The test was performed five times to calculate the maximum, minimum,
and average frame rate values.

7.2 Aesthetic Evaluation

Different noise functions create different geometric and texture distortion results.

Therefore, I set up a set of subjective analytic axes to indicate some of the ways in

which the noise functions contrast with one another. The noise function types covered

include white (random) noise, value noise, Perlin noise, and Worley noise. A comparison

between different results along the axes of form and smoothness was chosen because these

attributes potentially convey personality and narrative emotion. A 3D sphere model and

a 2D checkered pattern were used as the input to the geometric and texture distortion

methods, respectively (Figure 7.8).
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(a) (b)

Figure 7.8: A sphere and a checkered pattern were used as the input for aesthetic evaluation.

7.2.1 Form

Curves, circles, and round shapes may be described as having a warm and cheerful

personality because we often find similar forms in babies and puppies. In contrast,

angles can be used to portray a devious, conniving, or evil character because diagonal

or asymmetrical lines can convey something that does not belong or is unstable [68, 69].

Figure 7.9 shows a frosted texture created via white noise. The frosted pattern is not

juxtaposed with other texture distortion results because it does not strongly convey a

sense of form or smoothness. In Figure 7.10 and 7.11, we can see that white noise creates

shapes that are covered with spines, and Worley noise generates prickly shapes and a

polygon pattern. In contrast, value noise and Perlin noise create geometries consisting

of mostly round shapes and circular or spiral patterns.

7.2.2 Smoothness

How smooth is the geometric shape or texture pattern that a noise function can

create? Figure 7.10 shows that there are no smooth transitions between vertex positions

of the shapes distorted by white noise. Furthermore, Figure 7.10 and 7.11 show that some
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regions of the shapes or textures distorted by Worley noise contain smooth transitions

and some regions contain sharp changes. Finally, value noise and Perlin noise generate

the smoothest shapes and textures. The difference between value noise and Perlin noise

is that since value noise uses values that are interpolated, it may create a flat surface

or a less distorted texture. On the contrary, the results from using Perlin noise have a

higher amount of variance because interpolation is not carried out between values but is

calculated between tangents instead.

From the examination described above, I recommend using white noise or Worley

noise for a hostile or aggressive character, and Perlin noise or value noise for a friendly

or unthreatening character.

Figure 7.9: A frosted texture created via white noise
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Figure 7.10: A comparative examination of different geometric distortion results cre-
ated via white noise, Worley noise, Perlin noise, and value noise (left to right) along
the axes of form and smoothness.

Figure 7.11: A comparative examination of different texture distortion results created
via Worley noise, Perlin noise, and value noise (left to right) along the axes of form
and smoothness.
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Conclusions

In this dissertation, techniques to give 3D models an organic and flowing appearance

based on a combination of two noise algorithms are presented. With these techniques,

models can also become audio-reactive and interact with the audience in VR. These

techniques can be applied not only to VR but also across other areas of computer graphics,

with benefits for computer animation, video games, and interactive user interfaces.

The final chapter of this dissertation covers the cultural meaning, limitations, and

future work of the presented techniques.

8.1 Cultural Meaning

Essentially, this work is about our bond with the natural world. Our generation,

being insulated by technology and synthetic materials from nature itself, might have left

the natural world behind. However, at a very deep level, we still have a longing to link

with the natural world in which we evolved and where we can truly find peace. The

fantasy world of the work appears to be the product of technology, but in fact, it is the

result of my urge to retain part of the natural world in the synthetic virtual world.
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8.2 Limitations

In the course of implementing the methods that support this dissertation, I have

come to identify a few limitations of my methods. For the vertex displacement method,

the resulting shape remains smooth or continuous if the input shape is also smooth or

continuous. An example of a smooth shape is a sphere or a torus. On the contrary, the

resulting shape can be broken if the input shape is not smooth, as shown in Figure 8.1.

A shape is not smooth if its surface has some sharp corners. For instance, cubes and

tetrahedrons are not smooth shapes.

The color turbulence method also has its limitations. First, the method works only

on the models that are UV mapped. UV mapping is the process of generating a flat

representation of a 3D geometry. A UV map is the 2D representation of a 3D geometric

surface. Each coordinate on the UV map corresponds with the vertex of the 3D object.

Therefore, UV maps are vital for my method to work because they provide the link

between a surface mesh and how the turbulent flow texture gets applied onto that surface.

The other limitation of the color turbulence method is that the user interaction will

become absurd if the model’s texture is tiled to create a repeating pattern. In the case

of tiled texture, since the UV map also tiles itself, the shader is unable to inject colors

at the exact position of the point on the surface of the model that the user touched.

Instead, colors are injected at each tile across the surface of the model at the same time,

as show in Figure 8.2.

Finally, both methods have this aesthetic limitation: their results can end up being

unimpressive if people overuse these them. Like any special effects, the visuals will be

obsolete once audiences see them. Whether it matters to viewers or not will still depend

on story and character. Therefore, the methods should be carefully used to support the

narrative in an innovative way.
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(a) (b)

Figure 8.1: Applying the vertex displacement method to a 3D model can result in a
broken shape if the input shape is not smooth.

(a) (b)

Figure 8.2: One of the limitations of the color turbulence technique is that the user
interaction does not work for the 3D models that have repeating texture.
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8.3 Future Work

While the limitations described in the preceding section are overcome, several promis-

ing directions remain for future research with user interaction. In the framework de-

scribed in the dissertation, the player can use only one handheld controller to interact

with the objects in VR. Such user interaction does not feel as natural as the lifelike

interaction, where many people can manipulate the objects using both of their hands.

Allowing for two handheld controllers not only provides the player a more natural in-

teraction but also makes the interaction more interesting. Consider that the player can

paint on the objects using two different colors and observe how one pigment moves and

reacts to another. Other issue related to user interaction is that collaborative interactiv-

ity should be addressed. In other words, multiple players should be allowed to participate

at the same time. This function brings the entire audience into a shared environment

just as they could experience in cinema or at concerts.

Another direction for future research is testing my approach on smartphone VR head-

sets and standalone VR headsets. Smartphone VR headsets, such as Google Cardboard,

Google Daydream, and Samsung Gear VR, use compatible mobile devices for their VR

content. Standalone VR headsets, such as Oculus Go and Oculus Quest, are similar to

smartphone VR headsets but with one extra benefit: they do not require a smartphone

to operate. Although smartphone VR headsets and standalone VR headsets do not have

the graphical capabilities of tethered VR headsets, which are connected to a PC to push

its visuals, they provide portable VR experiences and are less expensive than tethered

headsets. The techniques described in this dissertation can be performed on a tethered

VR headset that is powered by a high-end PC with modern graphics cards. However,

the performance on mobile devices or standalone VR headsets was not investigated. If

the techniques can be smoothly run on smartphone VR headsets and standalone VR
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headsets, casual VR users who do not own high-end PCs can still experience the results

in a simpler and more affordable way.
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Appendix A

Cg Implementation of Vertex

Displacement Method

Appendix A.1 lists the Cg code that manipulates the vertex positions of a 3D object’s

surface using Perlin noise. The code also updates the shadow to match the object’s new

shape and recalculates normals based on the new shape. The Perlin noise function that

the code uses is provided by Keijiro Takahashi [70] and is included in Appendix A.2.

A.1 Vertex Displacement Shader

Shader ”Custom/ LitVertexDisplacement ” {

P r op e r t i e s {

Tess (” T e s s e l l a t i o n ” , Range (1 , 8 ) ) = 4

Color (” Color ” , Color ) = (1 , 1 , 1 , 1 )

MainTex (” Albedo (RGB)” , 2D) = ” white ” {}

G l o s s i n e s s (” Smoothness ” , Range ( 0 , 1 ) ) = 0 .5

M e t a l l i c (” M e t a l l i c ” , Range ( 0 , 1 ) ) = 0 .0
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No i s eSca l e (” Noise Sca l e ” , f l o a t ) = 0 .5

NoiseFrequency (” Noise Frequency ” , f l o a t ) = 0 .5

N o i s e O f f s e t (” Noise O f f s e t ” , Vector ) = (0 , 0 , 0)

[ Toggle ] EnableEmiss ion (” Enable Emission ?” , i n t ) = 0

[HDR] Emiss ionColor (” Emission Color ” , Color ) = (1 , 1 , 1 )

EmissionMap (” Emission ” , 2D) = ” white ” {}

}

SubShader {

Tags { ”RenderType”=”Opaque” }

CGPROGRAM

// P hy s i c a l l y based Standard l i g h t i n g model , and enable

// shadows on a l l l i g h t types

#pragma s u r f a c e s u r f Standard fu l l f o rwardshadows

#pragma t e s s e l l a t e : t e s s ver tex : ve r t addshadow

// Use shader model 3 . 0 target , to get n i c e r l ook ing l i g h t i n g

#pragma t a r g e t 4 . 6

// You may try d i f f e r e n t no i s e methods , such as

// #inc lude ” no i seS implex . cg inc ”

#inc lude ” Class icNoise3D . h l s l ”

sampler2D MainTex , EmissionMap ;
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s t r u c t Input {

f l o a t 2 uv MainTex ;

} ;

f l o a t Tess ;

h a l f G l o s s i n e s s ;

h a l f M e t a l l i c ;

f i x e d 4 Color , Emiss ionColor ;

i n t EnableEmiss ion ;

f l o a t No i s eSca l e , NoiseFrequency ;

f l o a t 3 N o i s e O f f s e t ;

f l o a t 4 t e s s ( )

{

r e turn Tess ;

}

f l o a t 3 getNewVertPosit ion ( f l o a t 3 p , f l o a t 3 n)

{

f l o a t no i s e = c n o i s e ( f l o a t 3 (p . x + N o i s e O f f s e t . x ,

p . y + N o i s e O f f s e t . y ,

p . z + N o i s e O f f s e t . z ) ∗ NoiseFrequency ) ;

// f l o a t no i s e = s n o i s e ( f l o a t 3 (p . x + Time . y ,
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// p . y + Time . y ,

// p . z + Time . y ) ∗ NoiseFrequency ) ;

// remap ’ no i se ’ from i t s d e f a u l t range [−1 , 1 ] to a t a r g e t

// range o f [ 0 , 1 ]

// no i s e = ( ( no i s e + 1) / 2 ) ;

p += No i s eSca l e ∗ no i s e ∗ n ;

re turn p ;

}

void ve r t ( inout a p p d a t a f u l l v )

{

f l o a t 3 p o s i t i o n = getNewVertPosit ion ( v . ver tex . xyz ,

v . normal ) ;

// c a l c u l a t e the b i tangent ( sometimes c a l l e d binormal ) from

// the c r o s s product o f the normal and the tangent

f l o a t 3 b i tangent = c r o s s ( v . normal , v . tangent . xyz ) ;

// how f a r we want to o f f s e t our ve r t p o s i t i o n to c a l c u l a t e

// the new normal

f l o a t v e r t O f f s e t = 0 . 0 1 ;

f l o a t 3 positionAndTangent = getNewVertPosit ion (

v . ver tex . xyz + v . tangent . xyz ∗ ve r tO f f s e t , v . normal ) ;
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f l o a t 3 pos it ionAndBitangent = getNewVertPosit ion (

v . ver tex . xyz + bi tangent ∗ ve r tO f f s e t , v . normal ) ;

// now we can c r e a t e new tangents and b i tangent s based on

// the deformed p o s i t i o n s

f l o a t 3 newTangent = positionAndTangent − p o s i t i o n ;

f l o a t 3 newBitangent = pos it ionAndBitangent − p o s i t i o n ;

// r e c a l c u l a t e the normal based on the new tangent &

// b i tangent

v . normal = normal ize ( c r o s s ( newTangent , newBitangent ) ) ;

v . ve r tex . xyz = p o s i t i o n ;

}

void s u r f ( Input IN , inout SurfaceOutputStandard o ) {

// Albedo comes from a tex ture t i n t e d by c o l o r

f i x e d 4 c = tex2D ( MainTex , IN . uv MainTex ) ∗ Color ;

o . Albedo = c . rgb ;

// M e t a l l i c and smoothness come from s l i d e r v a r i a b l e s

o . M e t a l l i c = M e t a l l i c ;

o . Smoothness = G l o s s i n e s s ;

o . Alpha = c . a ;

o . Emission = EnableEmiss ion ∗

tex2D ( EmissionMap , IN . uv MainTex ) ∗ Emiss ionColor ;
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}

ENDCG

}

FallBack ” D i f f u s e ”

}

A.2 Classic Noise Functions

// Noise Shader Library f o r Unity

// https : // github . com/ k e i j i r o / NoiseShader

//

// Or i g i na l work ( webgl−no i s e )

// Copyright (C) 2011 Ste fan Gustavson

// Trans la t i on and mod i f i c a t i on was made by K e i j i r o Takahashi .

//

// This shader i s based on the webgl−no i s e GLSL shader . For

// f u r t h e r d e t a i l s o f the o r i g i n a l shader , p l e a s e see the

// f o l l o w i n g d e s c r i p t i o n from the o r i g i n a l source code .

//

//

// GLSL t e x t u r e l e s s c l a s s i c 3D no i s e ” c n o i s e ” ,

// with an RSL−s t y l e p e r i o d i c va r i an t ” pno i se ” .

// Author : Ste fan Gustavson ( s t e f a n . gustavson@l iu . se )

// Vers ion : 2011−10−11

//
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// Many thanks to Ian McEwan o f Ashima Arts f o r the

// id ea s f o r permutation and grad i en t s e l e c t i o n .

//

// Copyright ( c ) 2011 Ste fan Gustavson . Al l r i g h t s r e s e rved .

// D i s t r ibu t ed under the MIT l i c e n s e . See LICENSE f i l e .

// https : // github . com/ashima/webgl−no i s e

//

f l o a t 3 mod( f l o a t 3 x , f l o a t 3 y )

{

r e turn x − y ∗ f l o o r ( x / y ) ;

}

f l o a t 3 mod289 ( f l o a t 3 x )

{

r e turn x − f l o o r ( x / 289 . 0 ) ∗ 2 8 9 . 0 ;

}

f l o a t 4 mod289 ( f l o a t 4 x )

{

r e turn x − f l o o r ( x / 289 . 0 ) ∗ 2 8 9 . 0 ;

}

f l o a t 4 permute ( f l o a t 4 x )

{
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r e turn mod289 ( ( ( x ∗34 .0)+1.0)∗x ) ;

}

f l o a t 4 tay l o r InvSqr t ( f l o a t 4 r )

{

r e turn ( f l o a t 4 )1 .79284291400159 − r ∗ 0 .85373472095314 ;

}

f l o a t 3 fade ( f l o a t 3 t ) {

r e turn t∗ t∗ t ∗( t ∗( t ∗6 .0−15 .0)+10.0) ;

}

// C l a s s i c Pe r l i n no i s e

f l o a t c n o i s e ( f l o a t 3 P)

{

f l o a t 3 Pi0 = f l o o r (P) ; // In t eg e r part f o r index ing

f l o a t 3 Pi1 = Pi0 + ( f l o a t 3 ) 1 . 0 ; // I n t e g e r part + 1

Pi0 = mod289 ( Pi0 ) ;

Pi1 = mod289 ( Pi1 ) ;

f l o a t 3 Pf0 = f r a c (P) ; // Frac t i ona l part f o r i n t e r p o l a t i o n

f l o a t 3 Pf1 = Pf0 − ( f l o a t 3 ) 1 . 0 ; // Frac t i ona l part − 1 .0

f l o a t 4 ix = f l o a t 4 ( Pi0 . x , Pi1 . x , Pi0 . x , Pi1 . x ) ;

f l o a t 4 iy = f l o a t 4 ( Pi0 . y , Pi0 . y , Pi1 . y , Pi1 . y ) ;

f l o a t 4 i z 0 = ( f l o a t 4 ) Pi0 . z ;

f l o a t 4 i z 1 = ( f l o a t 4 ) Pi1 . z ;
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f l o a t 4 ixy = permute ( permute ( ix ) + iy ) ;

f l o a t 4 ixy0 = permute ( ixy + i z 0 ) ;

f l o a t 4 ixy1 = permute ( ixy + i z 1 ) ;

f l o a t 4 gx0 = ixy0 / 7 . 0 ;

f l o a t 4 gy0 = f r a c ( f l o o r ( gx0 ) / 7 . 0 ) − 0 . 5 ;

gx0 = f r a c ( gx0 ) ;

f l o a t 4 gz0 = ( f l o a t 4 ) 0 . 5 − abs ( gx0 ) − abs ( gy0 ) ;

f l o a t 4 sz0 = step ( gz0 , ( f l o a t 4 ) 0 . 0 ) ;

gx0 −= sz0 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gx0 ) − 0 . 5 ) ;

gy0 −= sz0 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gy0 ) − 0 . 5 ) ;

f l o a t 4 gx1 = ixy1 / 7 . 0 ;

f l o a t 4 gy1 = f r a c ( f l o o r ( gx1 ) / 7 . 0 ) − 0 . 5 ;

gx1 = f r a c ( gx1 ) ;

f l o a t 4 gz1 = ( f l o a t 4 ) 0 . 5 − abs ( gx1 ) − abs ( gy1 ) ;

f l o a t 4 sz1 = step ( gz1 , ( f l o a t 4 ) 0 . 0 ) ;

gx1 −= sz1 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gx1 ) − 0 . 5 ) ;

gy1 −= sz1 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gy1 ) − 0 . 5 ) ;

f l o a t 3 g000 = f l o a t 3 ( gx0 . x , gy0 . x , gz0 . x ) ;

f l o a t 3 g100 = f l o a t 3 ( gx0 . y , gy0 . y , gz0 . y ) ;

f l o a t 3 g010 = f l o a t 3 ( gx0 . z , gy0 . z , gz0 . z ) ;

f l o a t 3 g110 = f l o a t 3 ( gx0 .w, gy0 .w, gz0 .w) ;
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f l o a t 3 g001 = f l o a t 3 ( gx1 . x , gy1 . x , gz1 . x ) ;

f l o a t 3 g101 = f l o a t 3 ( gx1 . y , gy1 . y , gz1 . y ) ;

f l o a t 3 g011 = f l o a t 3 ( gx1 . z , gy1 . z , gz1 . z ) ;

f l o a t 3 g111 = f l o a t 3 ( gx1 .w, gy1 .w, gz1 .w) ;

f l o a t 4 norm0 = tay l o r InvSqr t ( f l o a t 4 ( dot ( g000 , g000 ) ,

dot ( g010 , g010 ) ,

dot ( g100 , g100 ) ,

dot ( g110 , g110 ) ) ) ;

g000 ∗= norm0 . x ;

g010 ∗= norm0 . y ;

g100 ∗= norm0 . z ;

g110 ∗= norm0 .w;

f l o a t 4 norm1 = tay l o r InvSqr t ( f l o a t 4 ( dot ( g001 , g001 ) ,

dot ( g011 , g011 ) ,

dot ( g101 , g101 ) ,

dot ( g111 , g111 ) ) ) ;

g001 ∗= norm1 . x ;

g011 ∗= norm1 . y ;

g101 ∗= norm1 . z ;

g111 ∗= norm1 .w;

f l o a t n000 = dot ( g000 , Pf0 ) ;

f l o a t n100 = dot ( g100 , f l o a t 3 ( Pf1 . x , Pf0 . y , Pf0 . z ) ) ;
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f l o a t n010 = dot ( g010 , f l o a t 3 ( Pf0 . x , Pf1 . y , Pf0 . z ) ) ;

f l o a t n110 = dot ( g110 , f l o a t 3 ( Pf1 . x , Pf1 . y , Pf0 . z ) ) ;

f l o a t n001 = dot ( g001 , f l o a t 3 ( Pf0 . x , Pf0 . y , Pf1 . z ) ) ;

f l o a t n101 = dot ( g101 , f l o a t 3 ( Pf1 . x , Pf0 . y , Pf1 . z ) ) ;

f l o a t n011 = dot ( g011 , f l o a t 3 ( Pf0 . x , Pf1 . y , Pf1 . z ) ) ;

f l o a t n111 = dot ( g111 , Pf1 ) ;

f l o a t 3 fade xyz = fade ( Pf0 ) ;

f l o a t 4 n z = l e r p ( f l o a t 4 ( n000 , n100 , n010 , n110 ) ,

f l o a t 4 ( n001 , n101 , n011 , n111 ) , f ade xyz . z ) ;

f l o a t 2 n yz = l e r p ( n z . xy , n z . zw , fade xyz . y ) ;

f l o a t n xyz = l e r p ( n yz . x , n yz . y , f ade xyz . x ) ;

r e turn 2 .2 ∗ n xyz ;

}

// C l a s s i c Pe r l i n no i se , p e r i o d i c va r i an t

f l o a t pno i se ( f l o a t 3 P, f l o a t 3 rep )

{

// In t e g e r part , modulo per iod

f l o a t 3 Pi0 = mod( f l o o r (P) , rep ) ;

// In t e g e r part + 1 , mod per iod

f l o a t 3 Pi1 = mod( Pi0 + ( f l o a t 3 ) 1 . 0 , rep ) ;

Pi0 = mod289 ( Pi0 ) ;

Pi1 = mod289 ( Pi1 ) ;

f l o a t 3 Pf0 = f r a c (P) ; // Frac t i ona l part f o r i n t e r p o l a t i o n
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f l o a t 3 Pf1 = Pf0 − ( f l o a t 3 ) 1 . 0 ; // Frac t i ona l part − 1 .0

f l o a t 4 ix = f l o a t 4 ( Pi0 . x , Pi1 . x , Pi0 . x , Pi1 . x ) ;

f l o a t 4 iy = f l o a t 4 ( Pi0 . y , Pi0 . y , Pi1 . y , Pi1 . y ) ;

f l o a t 4 i z 0 = ( f l o a t 4 ) Pi0 . z ;

f l o a t 4 i z 1 = ( f l o a t 4 ) Pi1 . z ;

f l o a t 4 ixy = permute ( permute ( ix ) + iy ) ;

f l o a t 4 ixy0 = permute ( ixy + i z 0 ) ;

f l o a t 4 ixy1 = permute ( ixy + i z 1 ) ;

f l o a t 4 gx0 = ixy0 / 7 . 0 ;

f l o a t 4 gy0 = f r a c ( f l o o r ( gx0 ) / 7 . 0 ) − 0 . 5 ;

gx0 = f r a c ( gx0 ) ;

f l o a t 4 gz0 = ( f l o a t 4 ) 0 . 5 − abs ( gx0 ) − abs ( gy0 ) ;

f l o a t 4 sz0 = step ( gz0 , ( f l o a t 4 ) 0 . 0 ) ;

gx0 −= sz0 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gx0 ) − 0 . 5 ) ;

gy0 −= sz0 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gy0 ) − 0 . 5 ) ;

f l o a t 4 gx1 = ixy1 / 7 . 0 ;

f l o a t 4 gy1 = f r a c ( f l o o r ( gx1 ) / 7 . 0 ) − 0 . 5 ;

gx1 = f r a c ( gx1 ) ;

f l o a t 4 gz1 = ( f l o a t 4 ) 0 . 5 − abs ( gx1 ) − abs ( gy1 ) ;

f l o a t 4 sz1 = step ( gz1 , ( f l o a t 4 ) 0 . 0 ) ;

gx1 −= sz1 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gx1 ) − 0 . 5 ) ;

gy1 −= sz1 ∗ ( s tep ( ( f l o a t 4 ) 0 . 0 , gy1 ) − 0 . 5 ) ;
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f l o a t 3 g000 = f l o a t 3 ( gx0 . x , gy0 . x , gz0 . x ) ;

f l o a t 3 g100 = f l o a t 3 ( gx0 . y , gy0 . y , gz0 . y ) ;

f l o a t 3 g010 = f l o a t 3 ( gx0 . z , gy0 . z , gz0 . z ) ;

f l o a t 3 g110 = f l o a t 3 ( gx0 .w, gy0 .w, gz0 .w) ;

f l o a t 3 g001 = f l o a t 3 ( gx1 . x , gy1 . x , gz1 . x ) ;

f l o a t 3 g101 = f l o a t 3 ( gx1 . y , gy1 . y , gz1 . y ) ;

f l o a t 3 g011 = f l o a t 3 ( gx1 . z , gy1 . z , gz1 . z ) ;

f l o a t 3 g111 = f l o a t 3 ( gx1 .w, gy1 .w, gz1 .w) ;

f l o a t 4 norm0 = tay l o r InvSqr t ( f l o a t 4 ( dot ( g000 , g000 ) ,

dot ( g010 , g010 ) ,

dot ( g100 , g100 ) ,

dot ( g110 , g110 ) ) ) ;

g000 ∗= norm0 . x ;

g010 ∗= norm0 . y ;

g100 ∗= norm0 . z ;

g110 ∗= norm0 .w;

f l o a t 4 norm1 = tay l o r InvSqr t ( f l o a t 4 ( dot ( g001 , g001 ) ,

dot ( g011 , g011 ) ,

dot ( g101 , g101 ) ,

dot ( g111 , g111 ) ) ) ;

g001 ∗= norm1 . x ;

g011 ∗= norm1 . y ;

g101 ∗= norm1 . z ;
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g111 ∗= norm1 .w;

f l o a t n000 = dot ( g000 , Pf0 ) ;

f l o a t n100 = dot ( g100 , f l o a t 3 ( Pf1 . x , Pf0 . y , Pf0 . z ) ) ;

f l o a t n010 = dot ( g010 , f l o a t 3 ( Pf0 . x , Pf1 . y , Pf0 . z ) ) ;

f l o a t n110 = dot ( g110 , f l o a t 3 ( Pf1 . x , Pf1 . y , Pf0 . z ) ) ;

f l o a t n001 = dot ( g001 , f l o a t 3 ( Pf0 . x , Pf0 . y , Pf1 . z ) ) ;

f l o a t n101 = dot ( g101 , f l o a t 3 ( Pf1 . x , Pf0 . y , Pf1 . z ) ) ;

f l o a t n011 = dot ( g011 , f l o a t 3 ( Pf0 . x , Pf1 . y , Pf1 . z ) ) ;

f l o a t n111 = dot ( g111 , Pf1 ) ;

f l o a t 3 fade xyz = fade ( Pf0 ) ;

f l o a t 4 n z = l e r p ( f l o a t 4 ( n000 , n100 , n010 , n110 ) ,

f l o a t 4 ( n001 , n101 , n011 , n111 ) , f ade xyz . z ) ;

f l o a t 2 n yz = l e r p ( n z . xy , n z . zw , fade xyz . y ) ;

f l o a t n xyz = l e r p ( n yz . x , n yz . y , f ade xyz . x ) ;

r e turn 2 .2 ∗ n xyz ;

}
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Cg Implementation of Color

Turbulence Method

The color turbulence method consists of two programs—the flow shader and the blend

shader. The flow shader generates flow animation in the texture of an object via a flow

map, which contains 2D vectors. The blend shader morphs back and forth between two

flow animations that have slightly different time offsets so that the overall flow looks

continuous.

B.1 Flow Shader

Shader ” Unl i t /Flow”

{

P r op e r t i e s

{

MainTex (” Animated Texture (RGB)” , 2D) = ” white ” {}

Orig ina lTex (” Or i g i na l Texture (RGB)” , 2D) = ” white ” {}
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FlowMap (” Flow (RG)” , 2D) = ” black ” {}

NoiseMap (” Noise (A)” , 2D) = ” white ” {}

PhaseOf f s e t (” Phase O f f s e t ” , Float ) = 0 .0

Speed (” Speed ” , Float ) = 1 .0

FlowStrength (” Flow Strength ” , Float ) = 1 .0

}

SubShader

{

Tags { ”RenderType”=”Opaque” }

LOD 100

Pass

{

CGPROGRAM

#pragma ver tex ve r t

#pragma fragment f r a g

#inc lude ”UnityCG . cg inc ”

s t r u c t appdata

{

f l o a t 4 ver tex : POSITION ;

f l o a t 2 uv : TEXCOORD0;

} ;
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s t r u c t v2f

{

f l o a t 2 uv : TEXCOORD0;

f l o a t 4 ver tex : SV POSITION ;

} ;

sampler2D MainTex , Orig inalTex , FlowMap , NoiseMap ;

f l o a t PhaseOf f set , Speed , FlowStrength ;

f l o a t 4 MainTex ST ;

f l o a t 4 FlowMap TexelSize ;

f l o a t 2 ForceOr ig in ;

f l o a t ForceExponent ;

v2f ve r t ( appdata v )

{

v2f o ;

o . ve r tex = UnityObjectToClipPos ( v . ver tex ) ;

o . uv = TRANSFORM TEX( v . uv , MainTex ) ;

r e turn o ;

}

#d e f i n e IF (a , b , c ) l e r p (b , c , s tep ( ( f i x e d ) ( a ) , 0 ) ) ;
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f i x e d 4 f r a g ( v2f i ) : SV Target

{

// Time parameters

f l o a t time = Time . y ∗ Speed ;

f l o a t 2 f low = normal ize ( tex2D ( FlowMap , i . uv ) . rg ∗ 2 − 1)

∗ FlowMap TexelSize . xy ;

f low ∗= FlowStrength ;

f l o a t 2 uv = i . uv ;

uv . x −= flow . x ;

uv . y += f low . y ;

f l o a t no i s e = tex2D ( NoiseMap , i . uv ) . a ;

f l o a t p rog r e s s = f r a c ( time + no i s e + PhaseOf f s e t ) ;

f i x e d 3 colAnimated = tex2D ( MainTex , uv ) . rgb ;

f i x e d 3 c o l O r i g i n a l = tex2D ( Orig inalTex , uv ) . rgb ;

f i x e d 3 c o l = l e r p ( colAnimated ,

c o l O r i g i n a l ,

smoothstep ( 0 . 9 , 0 . 95 , p rog r e s s ) ) ;

f l o a t fade = 1 − abs (1 − 2 ∗ prog r e s s ) ;

// Dye ( i n j e c t i o n c o l )
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f l o a t 3 dye = sa tu ra t e (

s i n ( time ∗ f l o a t 3 ( 2 . 7 2 , 5 . 12 , 4 . 9 8 ) ) + 0 . 5 ) ;

// Blend dye with the c o l from the b u f f e r .

f l o a t 2 pos = ( i . uv − 0 . 5 ) ;

f l o a t amp = exp (

− ForceExponent ∗ d i s t ance ( ForceOrig in , pos ) ) ;

c o l = l e r p ( co l , dye , s a tu ra t e (amp ∗ 1 0 0 ) ) ;

r e turn f i x e d 4 ( co l , fade ) ;

}

ENDCG

}

}

}

B.2 Blend Shader

Shader ” Unl i t /Blend”

{

P r op e r t i e s

{

MainTex (” Transparency (A)” , 2D) = ” white ” {}

TexA (” Texture A (RGB, A no i s e )” , 2D) = ” white ” {}

TexB (” Texture B (RGB, A no i s e )” , 2D) = ” white ” {}
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}

SubShader

{

Tags { ”Queue”=”Transparent ” ”RenderType”=”Transparent ” }

LOD 100

ZWrite Off

Blend SrcAlpha OneMinusSrcAlpha

Pass

{

CGPROGRAM

#pragma ver tex ve r t

#pragma fragment f r a g

#inc lude ”UnityCG . cg inc ”

s t r u c t appdata

{

f l o a t 4 ver tex : POSITION ;

f l o a t 2 uv : TEXCOORD0;

} ;

s t r u c t v2f

{
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f l o a t 2 uv : TEXCOORD0;

f l o a t 4 ver tex : SV POSITION ;

} ;

sampler2D MainTex , TexA , TexB ;

f l o a t 4 MainTex ST ;

v2f ve r t ( appdata v )

{

v2f o ;

o . ve r tex = UnityObjectToClipPos ( v . ver tex ) ;

o . uv = TRANSFORM TEX( v . uv , MainTex ) ;

r e turn o ;

}

f i x e d 4 f r a g ( v2f i ) : SV Target

{

// sample the t ex tu re

f i x e d 4 texA = tex2D ( TexA , i . uv ) ∗ tex2D ( TexA , i . uv ) . a ;

f i x e d 4 texB = tex2D ( TexB , i . uv ) ∗ tex2D ( TexB , i . uv ) . a ;

f i x e d 4 c o l = texA + texB ;

c o l . a = tex2D ( MainTex , i . uv ) . a ;

r e turn c o l ;
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}

ENDCG

}

}

}
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Appendix C

Research Timeline

In this appendix, I provide a graphical timeline of research to indicate significant steps

and milestones along the way. This illustrates the long-term effort and work involved in

this dissertation.
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Research Timeline Chapter C

2014 Fall 2015 Spring 2015 Fall 2016 Winter 2016 Spring 2016 Summer 2016 Fall 2017 Winter

Arrived at MAT UCSB with MS in Visualization from Texas A&M

Motion capture for VR

VR character animation

Procedural modeling

DreamWorks Internship

2015 Winter 2015 Summer

Image stylization

Physically-based rendering
Path tracing

Painterly rendering with curved brush strokes 3D fractals

Figure C.1: 2014-2017 Research timeline
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2017 Spring 2017 Fall 2018 Winter 2018 Summer 2018 Fall 2019 Winter 2019 Spring 2019 Summer

Qualifying exam

Perlin noise

Fluid turbulence with curl noise

Proposal

VR integration

Vertex displacement with Perlin noise

Audio reactive shader

2017 Summer 2018 Spring

Pinscreen internship

Figure C.2: 2017-2019 Research timeline
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[6] H. Winnemöller, S. C. Olsen, and B. Gooch, Real-time video abstraction, in ACM
Transactions On Graphics (TOG), vol. 25, pp. 1221–1226, ACM, 2006.

[7] N. Redmond and J. Dingliana, Adaptive abstraction of 3d scenes in realtime, .

[8] J. E. Kyprianidis and H. Kang, Image and video abstraction by
coherence-enhancing filtering, in Computer Graphics Forum, vol. 30, pp. 593–602,
Wiley Online Library, 2011.

[9] A. Semmo, D. Limberger, J. E. Kyprianidis, and J. Döllner, Image stylization by
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Funkhouser, Non-photorealistic virtual environments, in Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pp. 527–534,
ACM Press/Addison-Wesley Publishing Co., 2000.

[56] K. Perlin, An image synthesizer, ACM Siggraph Computer Graphics 19 (1985),
no. 3 287–296.

[57] K. Perlin, Improving noise, in ACM transactions on graphics (TOG), vol. 21,
pp. 681–682, ACM, 2002.

[58] “Perlin noise / fuzzy notepad.”
https://eev.ee/blog/2016/05/29/perlin-noise.

[59] “Pretty pictures with perlin noise fields ryan marcus.”
https://rmarcus.info/blog/2018/03/04/perlin-noise.html.

[60] “Simplex noise demystified.”
http://weber.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf.

129

https://www.digi-capital.com/news/2019/01/for-ar-vr-2-0-to-live-ar-vr-1-0-must-die
https://www.digi-capital.com/news/2019/01/for-ar-vr-2-0-to-live-ar-vr-1-0-must-die
https://eev.ee/blog/2016/05/29/perlin-noise
https://rmarcus.info/blog/2018/03/04/perlin-noise.html
http://weber.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf


[61] “Perlin noise: Part 2 (perlin noise).” https://www.scratchapixel.com/lessons/

procedural-generation-virtual-worlds/perlin-noise-part-2.

[62] “Understanding perlin noise.”
https://flafla2.github.io/2014/08/09/perlinnoise.html.

[63] R. Bridson, J. Houriham, and M. Nordenstam, Curl-noise for procedural fluid flow,
in ACM Transactions on Graphics (ToG), vol. 26, p. 46, ACM, 2007.

[64] “Fantasy adventure environment.” https://assetstore.unity.com/packages/

3d/environments/fantasy/fantasy-adventure-environment-70354.

[65] J. J. LaViola Jr, A discussion of cybersickness in virtual environments, ACM
Sigchi Bulletin 32 (2000), no. 1 47–56.

[66] S. Davis, K. Nesbitt, and E. Nalivaiko, A systematic review of cybersickness, in
Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9, ACM,
2014.

[67] “Unity manual: Vr overview.”
https://docs.unity3d.com/Manual/VROverview.html.

[68] T. Bancroft, Creating characters with personality. Watson-Guptill, 2016.

[69] C. Solarski, Drawing basics and video game art: classic to cutting-edge art
techniques for winning video game design. Watson-Guptill, 2012.

[70] “Github - keijiro/noiseshader: Noise shader library for unity.”
https://github.com/keijiro/NoiseShader.

130

https://www.scratchapixel.com/lessons/procedural-generation-virtual-worlds/perlin-noise-part-2
https://www.scratchapixel.com/lessons/procedural-generation-virtual-worlds/perlin-noise-part-2
https://flafla2.github.io/2014/08/09/perlinnoise.html
https://assetstore.unity.com/packages/3d/environments/fantasy/fantasy-adventure-environment-70354
https://assetstore.unity.com/packages/3d/environments/fantasy/fantasy-adventure-environment-70354
https://docs.unity3d.com/Manual/VROverview.html
https://github.com/keijiro/NoiseShader

	Acknowledgements
	Curriculum Vitae
	Abstract
	Introduction
	VR as an Aesthetic Medium
	Research Statement
	Contributions and Novelty
	Organization

	Related Work
	Non-photorealistic Rendering
	VR

	Vertex Displacement with Perlin Noise
	Perlin Noise
	Implementation and Results

	Audio Responsive Modulation in Graphics
	Fourier Transform
	Audio-driven Interactions

	Color Turbulence with Curl Noise
	Curl Noise
	Implementation and Results
	VR Integration and Interactivity

	An Assembly of the Two Techniques
	Combination of Vertex Displacement and Color Turbulence
	Narrative Demo

	Evaluation
	Technical Evaluation
	Aesthetic Evaluation

	Conclusions
	Cultural Meaning
	Limitations
	Future Work

	Cg Implementation of Vertex Displacement Method
	Vertex Displacement Shader
	Classic Noise Functions

	Cg Implementation of Color Turbulence Method
	Flow Shader
	Blend Shader

	Research Timeline
	Bibliography



